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Resumo

Esta tese compara o uso de diferentes modelos estruturais para estimação
dos activos de uma empresa e da da volatilidade dos mesmos, de modo a cal-
cular o correspondente valor da Distance to Default, tal como definido pela
Moody’s KMV. A abordagem utilizada consiste em implementar a estimação
de métodos baseados no modelo de Black-Scholes e no modelo CEV. Estes
métodos são seguidamente utilizados para determinar os valores da Distance

to Default para uma amostra de empresas, de modo a encontrar o método
que melhor aproxima os valores da Moody’s KMV. Alguns dos resultados
obtidos foram melhores que os do modelo padrão, o modelo Black-Scholes.
O uso de um modelo baseado em interpretar o valor de mercado da empresa
como uma opção do tipo Down and Out Call sobre os activos da empresa,
os quais se determinou seguirem o modelo CEV Square Root, e em postular
directamente uma relação funcional entre a volatilidade dos activos da em-
presa e a volatilidade do valor da empresa em mercado, mostrou resultados
substancialmente melhores que os restantes modelos.

Palavras-Chave: Moody’s KMV, Distance to Default, Modelo Black-
Sholes, Modelo CEV.





Abstract

This thesis compares the use of different structural models in order to esti-
mate a firm’s assets and asset’s volatility values and compute the correspond-
ing Distance to Default value as defined by Moody’s KMV. The approach
used consists in implementing estimation methods based on the Black-Scholes
Model and the Constant Elasticity of Variance Model. These methods are
then applied to determine the Distance to Default values from a sample of
firms, in search for the method that better approximates Moody’s KMV val-
ues. Some of the results obtained were better than the benchmark model, the
Black-Scholes model. The use of a model based on interpreting equity as one-
year Down and Out Call Option on the firm’s assets who were determined to
follow a CEV Square Model and on postulating directly a functional relation
between the firm’s asset’s volatility and equity volatility, showed substan-
tially better results than the remaining models.

Key-words: Moody’s KMV, Distance to Default, Black-Sholes Model,
CEV Model.
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Introduction

Structural models have been in use for years as a basis for credit risk and
credit pricing models 1.

Moody’s KMV (MKVM) implements a modified structural model called
the Vasicek-Kealhofer model, which allows for the estimation of the assets
and asset’s volatility of a publicly traded firm. These estimates are used by
MKVM to compute a “distance to default” (DD) value for which it deter-
mines an empirical distribution to generate the Expected Default Frequency
(EDF) measure 2.

Due to commercial reasons, MKMV method is not fully disclosed. More-
over, for many investors in need of estimating default probabilities or merely
comparing the risk of investing in different firms 3, replicating MKVMmethod-
ology would be an impractically complex and time-consuming task and would
require the use of MKVM proprietary defaults database.

This thesis addresses the problem of estimating MKMV DD using struc-
tural models that result in methods different from the MKMV methodology.
It proposes alternative structural models and analyses them in terms of: (a)
their capacity for approximating DD values as computed by MKVM; (b) their
computation time; (c) their ability to approximate MKVM EDF values.

The thesis is organized as follows. Chapter 1 describes MKMV general
framework for estimating default probabilities. It also contains MKVM DD
definition, how to compute it and how to calculate its corresponding EDF
measure.

Chapter 2 exposes the proposed structural models from a theoretical point

1See, for example, the description of the Merton and Vasicek-Kealhofer models present
in Arora et al. [2005].

2This is a commercially available estimate of a firm’s one-year default probability.
3Note that it is theoretically possible to compare firms in terms of their default risk

without knowing their respective default probabilities.
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of view. It describes in detail each of the model’s assumptions and motiva-
tions and derives the corresponding formulas that allow us to estimate the
assets and asset’s volatility values needed to compute a firm’s DD.

In Chapter 3 we test the models introduced in the previous chapter,
using a sample obtained from MKMV of DD and EDF measures for different
firms. We measure the difference between MKVM DD and EDF values and
our models values for each of the firms in the sample. We then compare our
models based on these results and on their computation time.

Chapter 4 presents the thesis main conclusions.

2



Chapter 1

Moody’s KMV Expected
Default Frequency and
Distance to Default

Moody’s KMV EDF (Expected Default Frequency) credit risk measures are
forward-looking default probabilities estimates for public (and private) firms.
Each EDF measure is determined in three steps:

1. Estimate the firm’s assets value and volatility;

2. Calculate the Distance to Default;

3. Map the Distance to Default to the probability of default.

1.1 Estimating the firm’s assets value and volatil-
ity

In this step, for a publicly traded firm, asset value (A) and asset volatility
(σA) are estimated from the market value of equity and book value of lia-
bilities. In general, this can be achieved by choosing a structural model and
using an options pricing based approach, which recognizes equity as a call
option on the underlying assets of the firm 1. For this purpose, MKVM uses
a version of the Vasicek-Kealhofer model, whose original formulation can be
found in Vasicek [1984].

1See Merton [1974] for the seminal example.
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1.2 Calculating the distance to default

Having estimated A and σA, MKVM computes the Distance to Default
trough the following formula 2:

DD =
A− dp

AσA
,

where dp denotes the default point.
The default point is an estimate of the value for which if the firm’s assets

value falls bellow, the firm will default.
It is important to stress that this is an estimate and that it does not

coincide with the value of the firm’s liabilities. As stated by MVMV [Crosbie
and Bohn, 2003, p. 7], “in general firms do not default when their asset value
reaches the book value of their total liabilities. (...) The asset value the firm
will default, generally lies somewhere between total liabilities and current, or
short-term liabilities”.

1.3 Mapping the Distance to Default to the
probability of default

Usually, the estimates described in Section 1.2 would allow us to compute
a model implied default probability, either analytically or by using Monte
Carlo Methods.

However, in the case of Moody’s KMV use of the Vasiceck-Kealhofer
model, default probabilities calculated in this manner “provide little dis-
criminatory power” [Crosbie and Bohn, 2003, p. 14-18].

For this reason, EDF measures are computed using the DD empirical
distribution. MKVM obtains a relationship between DD and default prob-
ability from data on historical default: 3 for each DD value, the company
queries the default history for the proportion of firms with this DD value
that defaulted over the following year.

2To be precise, MKVM DD values depend on the time horizon we are considering:
there is a DD value for each time horizon; the formula presented here is a one year DD.
See the example from page 32 in Dwyer and Qu [2007].

3MKMV uses a database including over 250,000 company-years of data and over 4,700
incidents of default or bankruptcy; see [Crosbie and Bohn, 2003, p. 14] and [Dwyer and
Qu, 2007, p. 22].
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Chapter 2

Theoretical Models

2.1 General Considerations

In each section of this chapter, we will follow the methodology described in
Section 1.1:

i. Describe equity as a call option on the underlying assets of the firm;

ii. Choose a structural model that posits a stochastic process for the value
of the firm’s assets and from which it is possible to derive a valuation
formula for the option specified in i.;

iii. Write an equation using the option valuation formula from ii. that relates
A and σA with the firm’s equity (E), the firm’s equity volatility (σE) and
the risk-free interest rate (r); apply Ito’s lemma to the process from ii.
or specify a functional relation between σA and σE in order to obtain the
second equation needed to estimate A and σA.

The approach followed was to choose as structural models for step ii. the
Black-Scholes model, for being the simplest of the most widely used models
in option valuation, and the Constant Elasticity of Variance (CEV) model 1.

The resulting empirical distribution of default probabilities as computed
by MKMV has much wider tails than the Normal distribution resulting from
the use of the Black-Scholes model 2. The CEV Model posits a distribution

1To be precise, we used a particular case of this model called the Constant Elasticity
of Variance Square-Root Model.

2[Crosbie and Bohn, 2003, p. 18]
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for the time t value of the assets that possess wider tails than the correspond-
ing Lognormal distribution from the Black-Schols model. For this reason, the
CEV model is a natural alternative to the Black-Scholes model. Moreover,
the fact that it exhibits the so called leverage effect on volatility (the instan-
taneous variance of stock returns being inversely related to the asset price)
led us to formulate the hypothesis that this is a more powerful model for the
estimation of default probabilities 3.

2.2 Black-Scholes Model

The Black-Scholes model posits that the market value of a firm’s underlying
assets (A) follows the following stochastic process:

dA = µAAdt+ σAAdz, (2.1)

where σA denotes the annualized volatility of the asset and dz is a standard
Brownian motion.

2.2.1 Black-Scholes Model - 1 year - without default

In this section we assume that:

i. The firm’s assets follow the process described by Equation (2.1);

ii. All the firm’s debt is short-term debt with maturity equal to one year;

iii. There is no possibility of default occurring during the forthcoming year;

iv. In a year from now, it will be indifferent to an investor holding all the
firm’s equity or receiving the value of the firm’s assets minus the short-
term debt that must be paid.

These assumptions imply that holding equity today is equivalent to holding a
call option on the assets of the firm with strike price equal to the short-term
debt and maturity equal to one year. Using the Black-Scholes option pricing
formula 4, we can therefore write

E = AN(d1)− e−rτstdN(d2), (2.2)

3The existence of this leverage effect on volatility is supported by several empirical
studies: see, for instance, Beckers [1980] and Christie [1982].

4See Black and Scholes [1973].
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where E denotes the equity value observed today in the market, std is the
amount of short-term debt the firm owes, r is the risk-free interest rate, N(.)
is the standard normal cumulative distribution function, τ = 1 is the time
to maturity,

d1 =
ln ( A

std) + (r +
σ2
A
2 )

σA

and
d2 = d1 − σA.

Since E is a function of A and t, we can use Ito’s lemma to conclude that

dE =
�∂E
∂t

+ µAA
∂E

A
+

1

2
(σAA)

2∂
2E

∂A2

�
dt+ σAA

∂E

∂A
dz.

This implies that

dE

E
=

� 1
E

∂E

∂t
+ µA

A

E

∂E

A
+

1

2
σ2
A

A2

E

∂2E

∂A2

�
dt+ σA

A

E

∂E

∂A
dz

and so we obtain the relation

σE =
A

E

∂E

∂A
σA =

A

E
N(d1)σA

5. (2.3)

Equity’s volatility σE can be estimated from equity’s historical market values.
Therefore, we can approximate A and σA by solving the system composed of
equations (2.2) and (2.3)





E = AN(d1)− e−rτstdN(d2)

σE = A
EN(d1)σA

(2.4)

2.2.2 Black-Scholes Model - 1 year - with default

The assumptions from the previous section can be made more realistic by
replacing assumption iii. with:

iii. Default can occur at anytime.

5See appendix A for the derivation of the equality ∂E
∂A = N(d1).
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Again, equity can be valued (approximately) as a call option with underlying
equal to A and strike equal to std, maturing in a year. Assumption iii. implies
that the referred option should be a Down and Out Call with lower barrier
equal to the dp and zero rebate, accounting for the fact that the firm can
default in case At < dp. Using the Black-Scholes option pricing formula for
a Down and Out Call 6 , and noting that max (std, dp) = dp, we get

E = C (A, std, τ)−
�
dp

A

�2

C

�
(dp)2

A
, std, τ)

= AN (d1)− e−τrstdN (d2)−
�
dp

A

�2 �dp2

A
N (d3)− e−τrstdN (d4)

�
,

(2.5)

where τ = 1, C(A,X, τ) denotes the Black Scholes model valuation of a
standard call with underling A, strike X and maturity τ ,

d1 =
ln ( A

std) + τ(r +
σ2
A
2 )

3σA
,

d2 = d1 − σA,

d3 =
ln [ dp2

A std ] + τ(r +
σ2
A
2 )

3σA

and
d4 = d3 − σA.

Using Ito’s lemma as in the previous section, we can approximate A and
σA by solving the system 7





E = AN(d1)− e−τrstdN(d2)− (dpA )

2
[ (dp)

2

A N(d3)− e−τrstdN(d4)]

σE = A
E

∂E
∂AσA

6See Merton [1973].
7Note that ∂E

∂A can be approximated using standard numerical techniques.
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2.3 CEV Square Root Model

The Constant Elasticity of Variance (CEV) Square Root model posits that
the market value of a firm’s underlying assets follows the following stochastic
process:

dA = µAAdt+ δA
√
Adz. (2.6)

It follows immediately from the above equation that

σA =
δA√
A
. (2.7)

2.3.1 CEV Model - 1 year - without default

The assumptions made in this section are the same as the ones described in
Section 2.2.1, except for statement i., which we now replace with

i. The firm’s assets follow the process described in (2.6).

Again, these assumptions imply that holding equity today is equivalent to
holding a call option on the assets of the firm with strike price equal to
the short-term debt and maturity equal to one year. Using the CEV model
option pricing formula 8, we can therefore write

E = AQχ2(4,2x)(2k std)− std e−rτ [1−Qχ2(2,2kX)(2x)], (2.8)

where Q2
χ(a, b) denotes the complementary distribution function of a random

variable that follows a non-central Chi-squared law with a degrees of freedom
and no-centrality parameter b, τ = 1 is the time to maturity of the option,

k :=
2r

δ2A(e
rτ − 1)

,

and
x := kAerτ .

Applying Ito’s Lemma we can conclude that:

dE =
�∂E
∂t

+ µAA
∂E

A
+

1

2
(δA

√
A)2

∂2E

∂A2

�
dt+ δA

√
A
∂E

∂A
dz.

8See Cox [1975].
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This implies that

dE

E
=

� 1
E

∂E

∂t
+ µA

A

E

∂E

A
+

1

2
δ2A

A

E

∂2E

∂A2

�
dt+ δA

√
A

E

∂E

∂A
dz

and so we obtain the relation

σE =

√
A

E

∂E

∂A
δA. (2.9)

As in the previous chapter, we can approximate A and δA by solving the
system composed of equations (2.8) and (2.9)





E = AQχ2(4,2x)(2k std)− std e−rτ [1−Qχ2(2,2kX)(2x)]

σE =
√
A
E

∂E
∂AδA

(2.10)

After approximating A and δA, an estimate of σA can be obtained trough
Equation (2.7).

2.3.2 CEV Model - 1 year - with default

In this section it is assumed that:

i. The firm’s assets follow the process described by Equation (2.6);

ii. All the firm’s debt is short-term debt with maturity equal to one year;

iii. Default can occur at anytime.

iv. In a year from now, it will be indifferent to an investor holding all the
firm’s equity or receiving the value of the firm’s assets minus the short-
term debt that must be paid.

Henceforth, ECEV (A,X, dp, r, τ) denotes the computed value of a Euro-
pean Down and Out Call option with an underlying A following the process
described by Equation (2.6), strike X, lower barrier dp, maturity τ = 1, zero
rebate and risk-free rate r. This value is computed using a Monte Carlo
method, detailed in appendix C.

The use of Monte Carlo Methods for the valuation of E implies that
the time required to compute ∂E

∂A numerically makes it unfeasible the use
of Equation (2.9). Consequently, the approach followed was to postulate
directly the functional relation supposed to exist between σA and σE.

In order to do this, it is necessary to add to our list of assumptions:

10



vi. Equity also follows a CEV Square Root Model of the type described by
Equation (2.8);

vii. δA ≈ δE.

Since assumption vi. implies that σE = δE√
E

and consequently that δE =

σE

√
E, we can approximate δA using assumption vii:

δA ≈ δE = σE

√
E. (2.11)

Regarding assumption vii., it is worth noting that it is well known that
in general σA < σE

9. What we are assuming, recurring here to Equation
(2.9), is that σA < σE due to the fact that we usually have A > E. We see
no reason to believe the way σA changes with A, is in any aspect, different
from the way σE varies with E.

Since equity can be seen as a Down and Out Call Option with zero rebate,
as was done in Section 2.2.2, and using Equation (2.11), we can write





E = ECEV (A, std, dp, r, τ)

δA = σE

√
E

(2.12)

2.3.3 CEV Model - 10 years - with default

In this section we consider a more realistic picture of a firm’s debt structure
by defining two classes of debt: short-term debt and long-term debt.

The assumptions made are the following:

i. The firm’s assets follow the process described by Equation (2.6);

ii. The firm’s debt consists of short-term debt (std), maturing in one year,
and long-term debt (ltd), which we assume will mature in ten years;

iii. Default can occur at anytime;

iv. In ten years from now, it will be indifferent to an investor holding all the
firm’s equity or receiving the value of the firm’s assets minus ltd;

9See for instance Crosbie and Bohn [2003]
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v. Equity follows a CEV Square Root Model of the type described by Equa-
tion (2.8);

vi. δA ≈ δE.

It is worth noting that the above assumptions imply the following:

a) If somewhere between now and a year from now we have At < dp, our
firms defaults;

b) In a year from now, our firm will have to pay the short-term debt std,
implying that A1 will be replaced by A1 − std and dp by dp− std;

c) After reaching year one and paying std, we can approximate equity’s
value by that of a European Down and Out Call option with underlying
(A− dp), strike ltd, lower barrier (dp− std), maturity τ = 9, zero rebate
and risk-free rate r.

From statements a), b) and c), it is possible to value equity’s present value
using Monte Carlo methods, as described in Appendix C .

Representing these valuation by E = ECEV10(A, std, ltd, dp, r, τ) we can
then solve, as in the previous section, the following equations:





E = ECEV10(A, std, ltd, dp, r, τ)

δA = σE

√
E

(2.13)

As stated before, after estimating δA, σA can be approximated trough Equa-
tion (2.7).

12



Chapter 3

Numerical Results

3.1 Sample and Moody’s KMV results

The models described in Chapter one were applied to a sample of 20 firms,
whose relevant financial data, as supplied by Moody’s KMV, is summarized
below in Table 3.1. E denotes the firm’s equity, σE, its equity volatility, std
the short-term debt, dp the firm’s default-point and r its risk-free rate.

Each firm is identified with an abbreviated name. For the firm’s complete
name, as well as the date to which the presented data refers to, see appendix
B.

All default probabilities presented were computed using Monte Carlo
methods, generating for each computation n = 1000 sample paths, each
with 120 equally spaced points.

13



Table 3.1: Sample Data

E σE total debt std dp r
NRTLQ 6599.295 47.74% 14170 6481 10325 3.41%
FRP 634.72 47.72% 2758.782 308.638 1931.147 3.07%
SPCB 245.357 90.39% 3146.126 606.156 2202.288 2.69%
LEAR 1990.578 50.92% 6924.567 3921.7 5423.133 3.84%
TROXA 335.68 51.40% 1238.3 408.7 866.81 1.93%
PGPDQ 1976.713 33.44% 2746.79 948.269 1922.753 4.53%
VSUNQ 1057.599 44.03% 755.771 97.428 529.04 2.45%
FNM 63780.203 27.01% 802294 335618 568956 4.90%
8868 429.522 45.32% 338.687 212.573 275.63 5.01%
ANS 109.87 65.04% 1110.947 83.949 777.663 3.08%
SIX 584.243 49.22% 2463.2 291.421 1724.24 5.50%
PRTL 79.32 124.41% 862.423 253.411 603.696 5.38%
VRSO 0.57 2636.93% 35.699 30.466 33.083 2.48%
IREP 0.34 8470.44% 135.488 124.998 130.243 2.50%
TMBAF 37.67 226.67% 1965 501 1375.5 2.72%
TOUS 9.24 1226.35% 2243.4 519 1570.38 2.69%
WOLV 3.95 143.93% 7.49 6.422 6.956 5.45%
BFTH 26.92 168.19% 1845.17 437.781 1291.619 5.32%
NEWC 92.64 190.52% 22995.418 12646.253 17820.836 5.26%
TRINQ 1.57 1107.18% 49.856 49.426 18.471 5.37%

14



Moody’s KMV Model results for this given sample are presented bellow.

Table 3.2: Moody’s KMV

A σA DD EDF
NRTLQ 19515.295 19.23% 2.45 0.0128
FRP 2824.308 17.16% 1.84 0.0445
SPCB 2486.701 18.25% 0.63 0.2479
LEAR 8383.416 14.95% 2.36 0.0185
TROXA 1380.905 17.55% 2.12 0.0269
PGPDQ 4711.857 15.41% 3.84 0.0019
VSUNQ 1753.849 28.18% 2.48 0.0057
FNM 872775.125 4.55% 7.65 0.005
8868 735.261 27.56% 2.27 0.0103
ANS 998.29 15.43% 1.43 0.0861
SIX 3023.065 16.90% 2.54 0.0143
PRTL 704.127 23.38% 0.61 0.2563
VRSO 33.669 45.93% 0.04 0.35
IREP 130.6 23.13% 0.01 0.35
TMBAF 1341.097 16.98% 0.00 0.35
TOUS 1405.017 20.53% 0.00 0.35
WOLV 11.807 55.81% 0.74 0.2
BFTH 1300.774 16.10% 0.04 0.2
NEWC 18708.627 7.47% 0.64 0.2
TRINQ 51.218 34.09% 1.88 0.2

3.2 Black-Scholes Model

3.2.1 Black-Scholes Model - 1 year - without default

Table 3.3 shows the results obtained for this model.

15



Table 3.3: Black-Scholes - 1 year - without default

A σA DD p
NRTLQ 20289.3504 0.1560 3.1479 0
FRP 3309.0899 0.0924 4.5063 0
SPCB 3275.0752 0.0849 3.8569 0
LEAR 8649.8835 0.1186 3.1454 0
TROXA 1549.4566 0.1129 3.9033 0
PGPDQ 4601.8443 0.1436 4.0529 0
VSUNQ 1795.0556 0.2595 2.7182 0
FNM 827709.1852 0.0208 15.0193 0
8868 751.6408 0.2591 2.4445 0
ANS 1184.8575 0.0646 5.3226 0
SIX 2914.4842 0.0998 4.0931 0
PRTL 847.6201 0.1899 1.5152 0.0461
VRSO 0.5700 26.3693 0.0000 1
IREP 0.3400 84.7044 0.0000 1
TMBAF 1125.0819 0.4488 0.0000 1
TOUS 9.2400 12.2635 0.0000 1
WOLV 9.7109 0.7444 0.3811 0.7053
BFTH 1650.0290 0.0958 2.2678 0.002
NEWC 20806.3050 0.0491 2.9253 0
TRINQ 1.5700 11.0718 0.0000 1
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Figure 3.2.1 compares this section model DD results with Moody’s data.
Firms are ordered in descending order of DD (as computed by MKMV).

Figure 3.1: Moody’s vs BS-1Y-without default - distance to default
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3.2.2 Black-Scholes Model - 1 year - with default

Table 3.4 shows the results obtained for this model.
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Table 3.4: Black-Scholes - 1 year - with default

A σA DD p
NRTLQ 20289.350 0.156 3.148 0.000
FRP 3309.090 0.092 4.506 0.000
SPCB 3275.075 0.085 3.857 0.000
LEAR 8649.884 0.119 3.145 0.000
TROXA 1549.457 0.113 3.903 0.000
PGPDQ 4601.844 0.144 4.053 0.000
VSUNQ 1795.056 0.259 2.718 0.000
FNM 827709.185 0.021 15.019 0.000
8868 751.641 0.259 2.445 0.000
ANS 1184.858 0.065 5.323 0.000
SIX 2914.484 0.100 4.093 0.000
PRTL 847.693 0.190 1.516 0.046
VRSO 33.671 0.462 0.038 0.944
IREP 130.571 0.213 0.012 0.946
TMBAF 1566.434 0.226 0.540 0.531
TOUS 1605.235 0.267 0.081 0.899
WOLV 10.900 0.532 0.680 0.428
BFTH 1650.029 0.096 2.268 0.002
NEWC 20806.305 0.049 2.925 0.000
TRINQ 20.797 1.240 0.090 0.945
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Figure 3.2.2 compares this section model DD results with Moody’s data.
Firms are ordered in descending order of DD (as computed by MKMV).

Figure 3.2: Moody’s vs BS-1Y-with default - distance to default
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3.3 CEV Model

3.3.1 CEV Model - 1 year - without default

The results for this model are presented in Table 3.5.
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Table 3.5: CEV - 1 year - without default

A σA DD p
NRTLQ 20283.581 0.157 3.130 0.000
FRP 3308.638 0.093 4.487 0.000
SPCB 3271.884 0.087 3.768 0.000
LEAR 8647.503 0.119 3.124 0.000
TROXA 1549.000 0.114 3.875 0.000
PGPDQ 4601.808 0.144 4.052 0.000
VSUNQ 1794.777 0.260 2.712 0.000
FNM 827709.152 0.021 15.019 0.000
8868 751.490 0.260 2.438 0.002
ANS 1184.595 0.065 5.278 0.000
SIX 2914.029 0.100 4.074 0.000
PRTL 840.710 0.204 1.382 0.087
VRSO 0.664 26.363 0.000 1.000
IREP 0.376 84.703 0.000 1.000
TMBAF 980.964 0.644 0.000 1.000
TOUS 27.344 12.174 0.000 1.000
WOLV 8.831 0.940 0.226 0.803
BFTH 1649.349 0.099 2.194 0.005
NEWC 20854.120 0.049 2.989 0.000
TRINQ 2.235 11.039 0.000 1.000
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Figure 3.3.1 compares this section model DD results with Moody’s data.
Firms are ordered in descending order of DD (as computed by MKMV).

Figure 3.3: Moody’s vs CEV-1Y-without default - distance to default
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3.3.2 CEV Model - 1 year - with default

The results for this model are presented in Table 3.6.
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Table 3.6: CEV - 1 year - with default

A σA DD p
NRTLQ 19878.210 0.275 1.747 0.034
FRP 3217.283 0.212 1.886 0.026
SPCB 2921.250 0.262 0.940 0.285
LEAR 8405.500 0.248 1.413 0.092
TROXA 1504.376 0.243 1.746 0.043
PGPDQ 4563.202 0.220 2.629 0.001
VSUNQ 1773.355 0.340 2.064 0.007
FNM 820250.907 0.075 4.068 0.000
8868 740.446 0.345 1.819 0.023
ANS 1110.323 0.205 1.464 0.088
SIX 2830.448 0.224 1.748 0.032
PRTL 738.620 0.408 0.448 0.592
VRSO N/A N/A 0.000 1.000
IREP N/A N/A 0.000 1.000
TMBAF 1387.079 0.374 0.022 0.929
TOUS N/A N/A 0.000 1.000
WOLV 9.805 0.914 0.318 0.737
BFTH 1401.547 0.233 0.336 0.650
NEWC 18260.200 0.136 0.177 0.746
TRINQ N/A N/A 0.000 1.000
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The equations used in this model weren’t able to provide estimates for
the values of A and σA of the firms VRSO, IREP, TMBAF and TRINQ. This
particularity of the model occurs for some firms with high EDF measures,
for which equity is small relatively to total debt dp: when trying to solve the
first equation of the System (2.12), we are faced with:

1. A positive drift for A;

2. A lower barrier for A, dp; if A is lesser than dp, ECEV (A, std, dp, r, τ)
is automatically valued at 0;

3. An upper barrier for σA; since δA is uniquely determined by E and
√
E

trough the second equation of System (2.12), it is easy to see that σA

cannot be larger than δA√
dp
.

For some of the these firms, making A minimum (equal to dp) results in a
value for σA for which ECEV (A, std, dp, r, τ) is minimum but larger than E.

This behavior must not be considered a drawback of the model in ques-
tion. We can interpret the results obtained by considering that, when no
solution is found, the market values observed imply that the firm is in fact
already in default. As such, for these cases, we set DD = 0 and assign the
firm a probability of default equal to one. Figure 3.3.2 compares this sec-
tion model DD results with Moody’s data. As before, firms are ordered in
descending order of DD (as computed by MKMV).
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Figure 3.4: Moody’s vs CEV-1Y-with default - distance to default
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3.3.3 CEV Model - 10 year - with default

The results for this model are presented in Table 3.7.

Table 3.7: CEV - 10 year - with default

A σA DD p
NRTLQ 19534.545 0.277 1.699 0.042
FRP 2394.050 0.246 0.787 0.356
SPCB N/A N/A 0.000 1.000
LEAR 8642.239 0.375 0.022 0.073
TROXA 1386.160 0.253 1.481 0.090
PGPDQ 4331.129 0.226 2.461 0.002
VSUNQ 1550.290 0.364 1.811 0.024
FNM 824165.934 0.075 4.121 0.000
8868 774.317 0.338 1.908 0.013
ANS N/A N/A 0.000 1.000
SIX 1951.903 0.269 0.433 0.572
PRTL N/A N/A 0.000 1.000
VRSO N/A N/A 0.000 1.000
IREP N/A N/A 0.000 1.000
TMBAF N/A N/A 0.000 1.000
TOUS N/A N/A 0.000 1.000
WOLV N/A N/A 0.000 1.000
BFTH N/A N/A 0.000 1.000
NEWC N/A N/A 0.000 1.000
TRINQ N/A N/A 0.000 1.000
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Again, it is important to note that there were firms in the sample for
which the equations used weren’t able to provide estimates for the values of
A and σA. The results indicate that this model is clearly unsatisfactory in
its ability to distinguish default risk between firms with high EDF : all the
firms in the sample with EDF higher than 0.25 were classified as being in
default. Such a small threshold implies that the model is not fit to use for
practical purposes.
One possible explanation for this relies in the fact that we are using a constant
risk-free rate (and consequently a constant drift) for such a large period of
time.

Figure 3.3.3 compares this section model DD results with Moody’s data.
As before, firms are ordered in descending order of DD (as computed by
MKMV).

Figure 3.5: Moody’s vs CEV-10Y-with default - distance to default
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3.4 Comparison of the Models

Table 3.8 compares the results obtained in terms of:

1. Sample mean of the difference between MKVM DD values and each of
the other method’s DD values (DD), computed by the formula:

DD =

�20
i=1 |DDMi −DDmi|

20
,

where DDMi and DDmi denote, respectively, the DD value supplied
by MKVM for firm i of the sample and the DD value obtained for firm
i from the model to which we are applying the formula.

2. Sample mean of the difference between MKVM default probability val-
ues and each of the other method’s default probabilities (p), which is
obtained trough the use of the expression:

p =

�20
i=1 |pMi − pmi|

20
,

where pMi denotes the one-year default probability estimated by MKVM
for firm i of the sample and pmi denotes the the same default proba-
bility for firm i but obtained from the model to which we are applying
the formula 1.

Table 3.8: Models Comparisons

DD p
BS - 1Y - no default 1.5148 0.0691
BS - 1Y - default 1.5239 0.0691
CEV - 1Y - no default 1.5027 0.0668
CEV - 1Y - default 0.6073 0.0450
CEV - 10Y- default 0.4920 0.0939

In general, the models proposed seem to provide poor results.

1MKVM truncates its EDF measures at 35%, so for each default probabilities estimated
by our models that are larger than 0.35, we replace them with 0.35 in these computations.
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BothDD and p are estimators of, respectively, the absolute difference be-
tween our model’s DD values and MKMV values and the absolute difference
between our model’s default probabilities and MKMV EDF values.

Therefore, a value for DD close to 1.5, as was obtained in three of the
proposed models, implies that we should expect, on average, to commit an
an absolute error of 1.5. This seems substantially high when compared to the
DD values in our sample (note that changing a DD value by 1.5 in any of the
firms would immediately lead us to consider her substantially riskier/safer
than many other firms in the sample). Similarly, an error of approximately
600 basis points (or even 450), makes it implausible to use this models for,
say, CDS pricing.

Surprisingly, the model described in section 3.3.2 provides much better
results than the remaining ones and seems to be the best alternative to
estimate Moody’s KMV Distance to Default. It’s DD is half of the value
obtained with the models from the first three sections. It possesses the second
smallest DD and smallest p.
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Chapter 4

Conclusion

The approach followed in this thesis resulted in models that exhibited a too
much poor performance for them to be used in practice as methods for the
estimation of Moody’s KMV Distance to Default.

Nevertheless, one of the proposed methods showed substantially better
results than the remaining ones, and in particular showed better results than
the methods based on the Black-Scholes model. This implies that it should
be in no way excluded the possibility of obtaining different structural models
better fit to estimate MKVM DD.

The model who exhibited better results was based on interpreting equity
as one-year Down and Out Call Option on the firm’s assets who were deter-
mined to follow a CEV Square Model and on postulating directly a functional
relation between the firm’s asset’s volatility and equity volatility. This in-
volved the use of Monte Carlo methods in order to evaluate Down and Out
Call Options.
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Appendix A

Auxiliary Results

A.1 Derivation of Black-Scholes δ

Applying the Chain Rule to the Black-Scholes formula for the pricing of a
standard Call Option, results in:

∂E

∂A
= N(d1) +

∂N(d1)

∂A
A− std e−rτN(d2)

Expanding the second parcel from the above expression, we have

∂N(d1)

∂A
=

∂N(d1)

∂d1

∂d1
A

= f(d1)
∂

ln ( A
std)+

�
r+

σ2
A
2

�

σA

∂A
=

f(d1)

AσA
√
τ
,

with f denoting the probability density function of the Normal distribution.
Since

∂N(d2)

∂A
=

∂N(d2)

∂d2

∂d2
A

= f(d2)
∂(d1 − σA

√
τ)

∂A
=

f(d2)

AσA
√
τ

and

f(d2) =

exp

�
−(d1−σa

√
τ)

2

2

�

√
2π

=
exp

�
−d21

2 + ln A
std + rτ

�

√
2π

=
f(d1)Aerτ

std
,

we can therefore conclude that
∂E

∂A
= N(d1) +

f(d1)

σA
√
τ
A− std e−rτ erτf(d1)

std σA
√
τ
= N(d1) +

f(d1)

σA

√
T

− f(d1)

σA

√
T

= N(d1)
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Appendix B

Auxiliary Tables

B.1 Firms used in the sample
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Table B.1: Firm / date the financial data in the sample refers to

Full name Date
NRTLQ Nortel Networks INC 14-Jan-08
FRP FairPoint Communications Inc. 30-Jul-08
SPCB Spectrum Brands Inc. 3-Feb-08
LEAR Lear Corp 1-Jan-08
TROXA Tronox Inc. 3-Dec-08
PGPDQ Pilgrim’s Pride Corp 3-Nov-07
VSUNQ Verasun Energy Group 31-Oct-08
FNM Fannie Mae 7-Sep-07
8868 Urban Corporation 13-Sep-07
ANS Ainsworth Lumber Co Ltd 28-Jul-08
SIX Six Flags Inc 16-Jun-07
PRTL Primus Telecomm Group Inc 22-May-07
VRSO Verso Technologies Inc 13-Apr-08
IREP Interep National Radio Sales Inc 7-Mar-08
TMBAF Tembec Inc 27-Feb-08
TOUS Tousa Inc 5-Feb-08
WOLV Netwolves Corp 6-Jun-07
BFTH Bally Total Fitness Holding Corp 6-May-07
NEWC New Century Financial Corp 21-Mar-07
TRINQ Trinsic Inc 15-Feb-07
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Appendix C

Monte Carlo Methods

C.1 ECEV (A,X, dp, r, τ )

The steps we follow to compute ECEV (A,X, dp, r, τ) are:

1. Determine a number of sample paths ite and number of points per path
n to be used. In our case, we defined ite = 1000 and n = 10.

2. Generate ite sample paths with n points, using the distribution spec-
ified for A. This is possible when, as is the case, the distribution of
At|A0=A is known, by following the steps:

i. Generate a pseudo-random number (rand) between 0 and 1;

ii. Solve the equation FA 1
n
|A0=A

= rand to generate the path’s next

point;

iii. Repeat the previous two steps, replacing the initial value for A
with the last step’s result;

iv. Stop when A1 is determined.

3. For each path generated, determine its minimum. If it is less than dp,
replace the path’s endpoint by X + 1.

4. Replace each path’s endpoint (ep) with the value max(X − ep, 0).

5. Sum all the endpoints of all paths and divide the result by ite. The
value obtained is an estimate for the terminal payoff of our call.

6. Multiply the previous result by e−r to determine its present value.
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C.2 ECEV10(A, std, ltd, dp, r, τ )

The steps we follow to compute ECEV10(A, std, ltd, dp, r, τ) are:

1. Determine a number of sample paths ite and number of points per path
n to be used. In our case, we defined ite = 1000 and n = 12.

2. Generate ite sample paths with n points, using the distribution spec-
ified for A. This is possible when, as is the case, the distribution of
At|A0=A is known, by following the steps:

i. Generate a pseudo-random number (rand) between 0 and 1;

ii. Solve the equation FA 1
n
|A0=A

= rand to generate the path’s next

point;

iii. Repeat the previous two steps, replacing the initial value for A
with the last step’s result;

iv. Stop when A1 is determined;

v. If our path’s current minimum point is less than dp, set the current
path’s endpoint (ep) equal to 0 and start generating a new path.
Otherwise, set A = (A− std) and dp = (dp− std) and return to iii;

vi. Stop when A10 is determined.

3. For each path generated, determine its minimum. If it is less than dp,
replace the path’s endpoint by X + 1.

4. Replace each path’s endpoint (ep) with the value max(X − ep, 0).

5. Sum all the endpoints of all paths and divide the result by ite. The
value obtained is an estimate for the terminal payoff of our call.

6. Multiply the previous result by e−r to determine its present value.
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