
Universidade de Lisboa
Faculdade de Ciências

Departamento de Informática

EVOLUTION OF SELF-ORGANISING

BEHAVIOURS WITH NOVELTY SEARCH

Jorge Miguel Carvalho Gomes

DISSERTAÇÃO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Interação e Conhecimento

2012

Universidade de Lisboa
Faculdade de Ciências

Departamento de Informática

EVOLUTION OF SELF-ORGANISING

BEHAVIOURS WITH NOVELTY SEARCH

Jorge Miguel Carvalho Gomes

DISSERTAÇÃO

Projecto orientado pelo Prof. Doutor Paulo Jorge Cunha Vaz Dias Urbano
e co-orientado pelo Prof. Doutor Anders Lyhne Christensen

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Interação e Conhecimento

2012

Acknowledgments

In the first place, I would like to thank my supervisors, Paulo Urbano and Anders

Christensen, without them this work would not exist and they were great at guiding

me through it. I am grateful to Paulo for accompanying me through my academic

years, as a teacher and as supervisor in a few research projects, always with an

incredible creativity, genius ideas, and an insatiable curiosity. And I am grateful to

Anders Christensen for teaching me scientific rigour, and how to write clearly and

expose my ideas.

I am also thankful to Joel Lehman for being available and enthusiastic to discuss

novelty search issues with us, as well as Kenneth O. Stanley for answering our

questions about NEAT and novelty search. They both did great works and made

an excellent job at promoting them and making them available to the community.

I would like to thank everyone at LabMAg for the companionship and brainstor-

ming. Special thanks to my long time workmates Fernando Silva and Davide Nunes

for putting up with me, to Nuno Henriques for teaching me how to make the world

a better place, and to Phil Lopes, Edgar Montez, João Silva and Christian Marques

for being friends besides colleagues.

To my family, for providing for my education and for giving me the moral values

needed to succeed in life. And to my close friends, for spicing up my life with fun

and fellowship.

Finally, I wish to thank Viviana, for all the love, care, and for distracting me

from my work when I needed.

iii

To my parents and my brother.

To Viviana.

Resumo

A pesquisa de novidade (novelty search) é um nova e promissora técnica de

evolução artificial, que desafia a abordagem tradicional focada na perseguição direta

dos objetivos. O principal conceito por trás da pesquisa de novidade é a recompensa

de soluções que sejam novas, em vez de soluções que se aproximem do objetivo

pré-definido. Este carácter divergente da procura faz com que a pesquisa de novidade

não esteja sujeita a alguns problemas comuns na evolução artificial, tal como a

convergência prematura e a deceção da função objetivo, pois na pesquisa de novidade

o objetivo não tem influência direta no processo evolutivo. A função objetivo

diz-se decetiva quando ela conduz a população do algoritmo evolucionário para

máximos locais, e como consequência não consegue atingir o objetivo desejado numa

quantidade razoável de tempo.

No algoritmo de pesquisa de novidade, a função objetivo é substitúıda por uma

métrica que quantifica a novidade das soluções, baseando-se em caracterizações de

comportamento que são obtidas para cada uma. A função que obtém estas caracte-

rizações deve ser definida pelo humano que conduz o processo, usando conhecimento

sobre o domı́nio e tendo em consideração a tarefa que se está a tentar desempenhar.

A novidade de cada individuo é medida relativamente à população corrente e a

um arquivo de indiv́ıduos que representa o espaço de comportamentos que já foi

anteriormente explorado. Desta forma, soluções que se situem em locais do espaço

de comportamentos que estejam pouco explorados são consideradas mais aptas

para seleção, e vice-versa, guiando o processo evolutivo em direção à diversidade

comportamental. Contraintuitivamente, embora a pesquisa de novidade ignore

totalmente o objetivo, ela revelou em vários casos um maior sucesso que a abordagem

tradicional baseada em objetivos, especialmente em tarefas onde a função objetivo

sofre de algum grau de deceção.

Em trabalhos anteriores, a pesquisa de novidade foi aplicada com sucesso em

tarefas de robótica não coletiva. Nesta tese, propomos a aplicação da pesquisa

de novidade à evolução de controladores para robótica coletiva, uma área que tem

sido dominada pelas técnicas de evolução tradicionais, focadas em objetivos. A

motivação para a aplicação da pesquisa de novidade a esta área é o elevado ńıvel de

complexidade na robótica coletiva, resultante das relações entre os vários agentes do

vii

grupo, e entre os agentes e o seu ambiente. À medida que um sistema se torna mais

complexo, a função objetivo é mais suscet́ıvel de se tornar decetiva, e a pesquisa

de novidade é particularmente eficaz a lidar com a deceção da função objetivo.

Ultrapassar o problema da deceção neste domı́nio é mais um passo em direção à

geração automática de controladores para grupos de robôs capazes de resolver tarefas

com a complexidade do mundo real. O caráter da pesquisa de novidade orientado

à diversidade comportamental é também interessante neste domı́nio, pois permite

a geração de uma diversidade de soluções para o mesmo problema, possivelmente

revelando formas originais de auto-organização.

Nas nosso trabalho, os controladores que são usados pelos grupos de robôs (todos

os robôs do grupo usam o mesmo controlador) são redes neuronais recorrentes.

O método escolhido para implementar o processo neuro-evolutivo foi o NEAT. A

pesquisa de novidade é implementada sobre o NEAT, da forma como foi descrito

acima. O NEAT é um método neuro-evolutivo que modifica tanto os pesos das

ligações da rede, como a sua estrutura, podendo adicionar e remover nós e ligações.

Começa com um conjunto de redes neuronais simples, completamente ligadas e

sem nós intermédios, e vai gradualmente complexificando as redes neuronais, à

medida que se verifique vantajoso, podendo levar à evolução de comportamentos

gradualmente mais complexos.

Para conduzir o estudo descrito nesta tese, foi seguida uma abordagem expe-

rimental, através da realização de ensaios evolucionários com diferentes técnicas

evolucionárias, parâmetros, e tarefas. Em cada ensaio foram recolhidas informações e

métricas detalhadas de forma a facilitar a compreensão das dinâmicas evolucionárias.

Para a execução dos ensaios evolucionários, foi desenvolvida uma nova aplicação,

baseada num simulador de robótica existente e numa implementação do NEAT. A

aplicação é altamente modular, permitindo a definição de novos ambientes, robôs,

métodos evolucionários, entre outros, sem ter que modificar código fonte existente.

O primeiro passo do nosso trabalho consistiu em aplicar o algoritmo original de

pesquisa de novidade à evolução de controladores para um grupo de robôs que deve

executar uma tarefa de agregação. Nesta tarefa (amplamente estudada em trabalhos

anteriores), os robôs são colocados em posições aleatórias dentro de uma arena

fechada, e têm como objetivo formar um único agregado compacto, em qualquer

ponto da arena. A tarefa é dificultada por uma arena de grandes dimensões e robôs

com sensores de curto alcance. Foram realizadas experiências com a pesquisa de

novidade usando três diferentes caracterizações de comportamento: uma altamente

correlacionada com o objetivo, outra pouco correlacionada, e finalmente a com-

binação das duas. Foi também experimentada a evolução tradicional guiada por

objetivos.

viii

De seguida, é experimentada a aplicação da pesquisa de novidade a uma tarefa

de gestão coletiva de energia, em que os robôs gastam energia ao longo do tempo e

devem coordenar-se para permitir o acesso periódico à única estação de recarga, de

modo a sobreviverem. São definidas duas variantes desta tarefa, uma em que os robôs

gastam sempre a mesma quantidade de energia ao longo do tempo, e outra em que

a quantidade de energia despendida depende da velocidade dos robôs. Na primeira

variante, a função objetivo consegue guiar eficazmente a população em direção ao

objectivo. Na segunda variante, a função objetivo é claramente decetiva, e conduz

a população para máximos locais muito prematuros. Foram também experimenta-

das duas caracterizações comportamentais distintas na pesquisa de novidade: uma

caracterização curta, altamente relacionada com o objetivo, e outra caracterização

expandida, com algumas dimensões não relacionadas com o objetivo.

Os resultados destas experiências revelam que a pesquisa de novidade pode ser

um método eficaz para evolução de controladores para robótica coletiva. A pesquisa

de novidade mostrou ser eficaz em ultrapassar a deceção da função objetivo, evitando

com sucesso os máximos locais. Foi particularmente bem sucedida na inicialização da

evolução, evitando a convergência prematura e atingindo elevados valores de fitness

cedo na evolução. Foram estabelecidas comparações detalhadas entre a pesquisa de

novidade e o método evolutivo tradicional, baseado em objetivos. Em configurações

onde a deceção da função objetivo não era um problema, a pesquisa de novidade

obteve um desempenho semelhante à evolução guiada por objetivos, em termos dos

valores de fitness das soluções evolúıdas. Por outro lado, em configurações onde a

função objetivo era decetiva, a pesquisa de novidade revelou-se claramente superior.

Os resultados também mostram que a pesquisa de novidade consegue evoluir soluções

com redes neuronais mais simples, em comparação com a evolução guiada por objeti-

vos. Os nossos resultados representam uma contribuição relevante para o domı́nio da

robótica coletiva evolucionaria, pois os trabalhos anteriores revelam dificuldades em

evoluir grupos de robôs capazes de desempenhar tarefas ambiciosas. As experiências

sugerem que a evolução de comportamentos coletivos é especialmente suscet́ıvel à

deceção da função objetivo, e como tal a pesquisa de novidade revela-se como uma

promissora alternativa para ultrapassar esta dificuldade, e conseguir a evolução de

comportamentos coletivos mais ambiciosos.

Os resultados também revelaram que a pesquisa de novidade pode ser utilizada

para descobrir uma ampla diversidade de formas de auto-organização. A procura de

diversidade em robótica coletiva é um tópico relevante porque tipicamente existe

um grande leque de possibilidades de comportamentos, resultante das posśıveis

interações entre os vários robôs do grupo, e entre os robôs e o ambiente. Procurar

ativamente estas possibilidades pode levar a formas inesperadas de auto-organização

e diferentes soluções para o mesmo problema. Por exemplo, nas experiências com a

ix

tarefa de agregação, a pesquisa de novidade evoluiu um tipo de comportamentos de

agregação que não é descrito no trabalho relacionado, mas que pode ser encontrado

no mundo natural.

Estas experiências forneceram também alguma compreensão sobre como devem

ser construidas as caracterizações comportamentais a usar na pesquisa de novidade.

Mostrámos que combinar várias medidas pode ser uma forma de aumentar o desem-

penho da pesquisa de novidade. No entanto, deve-se evitar acrescentar à caracte-

rização do comportamento dimensões que estejam pouco relacionadas com a tarefa

que se está a tentar resolver. Neste caso, os resultados mostraram que a pesquisa

de novidade pode começar a focar-se em zonas do espaço de comportamentos que

não são relevantes para a solução da tarefa. Para visualizar e analisar espaços de

comportamentos de elevada dimensionalidade, foram utilizados mapas de Kohonen

auto-organizados. Esta técnica de visualização mostrou ser útil para uma melhor

compreensão da dinâmica evolucionária na pesquisa de novidade.

Como referido acima, os resultados mostraram que a pesquisa de novidade pode

ter dificuldade em encontrar boas soluções em espaços de comportamentos que

tenham dimensões não relacionadas com o objetivo. Para ultrapassar este problema,

estendemos o nosso estudo para variantes da pesquisa de novidade que combinam

a diversidade comportamental com a função objetivo. Propomos um novo método

para combinar a pesquisa de novidade com os objetivos, chamado Progressive Mi-

nimal Criteria Novelty Search (PMCNS). Este método restringe progressivamente

o espaço de comportamentos, através da definição de um limiar de fitness que os

indiv́ıduos devem superar para serem selecionados para reprodução. Este limiar é

dinâmico, começando sem impacto e aumentando progressivamente à medida que a

população se vai aproximando do objetivo.

Para avaliar este novo método, foram realizadas experiências com as tarefas de

agregação e gestão coletiva de energia, já apresentadas anteriormente. O PMCNS

foi comparado com outro método bem sucedido, onde a avaliação de cada individuo

consiste numa combinação linear dos seus valores de fitness e novidade. Os resul-

tados mostram que o PMCNS é um método eficaz em direcionar a exploração do

espaço de comportamentos para as zonas associadas a soluções de elevada qualidade,

sem comprometer a diversidade que é descoberta pela pesquisa de novidade, e

conseguindo na mesma ultrapassar a deceção da função objetivo. O desempenho

do PMCNS foi superior a todos os outros métodos testados.

Palavras-chave: Robótica evolucionária, algoritmos genéticos, neuro-evolução,

robótica coletiva, pesquisa de novidade, NEAT, auto-organização

x

Abstract

Novelty search is a recent artificial evolution technique that challenges the tra-

ditional evolutionary approach. The main idea behind novelty search is to reward

the novelty of solutions instead of progress towards a fixed goal, in order to avoid

premature convergence and deception. Deception occurs in artificial evolution when

the objective-function leads the population to local maxima, failing to reach the

desired objective. In novelty search, there is no pressure to evolve better solutions,

only pressure to evolve solutions different from the ones seen so far, thus avoiding

the potential deceptiveness of an objective-function. In previous works, novelty

search has been applied with success to single robot system. In this thesis, we use

novelty search together with NEAT to evolve neuro-controllers for homogeneous

swarms of robots. The aim of this approach is to facilitate the achievement of more

ambitious objectives through artificial evolution, and in the end contribute towards

the evolution of robotic swarms capable of taking on complex, real-world tasks.

Our empirical study is conducted in simulation and uses two common swarm

robotics tasks: aggregation, and sharing of an energy recharging station. Our

results show that novelty search is capable of overcoming deception, and is notably

effective in bootstrapping the evolution. In non-deceptive setups, novelty search

achieved fitness scores similar to fitness-based evolution. Novelty search could

evolve a broad diversity of solutions to the same problem, unveiling interesting

forms of self-organization. Our study also encompasses variants of novelty search

that combine novelty with objectives, in order to combine the exploratory character

of novelty search with the exploitatory character of objective-based evolution. We

propose Progressive Minimal Criteria Novelty Search (PMCNS), a novel method for

combining novelty and objectives, where the exploration of the behaviour space is

progressively restricted to zones of increasing fitness scores. We show that PMCNS

can improve the fitness scores of the evolved solutions, without compromising the

diversity of behaviours. Overall, our study shows that novelty search is a promising

alternative for the evolution of controllers for robotic swarms.

Keywords: Evolutionary robotics, genetic algorithms, neuro-evolution, swarm

robotics, novelty search, NEAT, self-organisation

xi

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Original Contributions . 4

1.2 Context . 5

1.3 Thesis Structure and Related Publications 5

2 Related Work 7

2.1 Evolutionary Robotics . 7

2.2 Evolutionary Swarm Robotics . 9

2.3 Neuroevolution . 10

2.4 NEAT . 11

2.4.1 Genetic Encoding . 11

2.4.2 Tracking Genes Through Historical Markings 12

2.4.3 Protecting Innovation Through Speciation 14

2.4.4 Incremental Complexification 15

2.5 Deception in Evolutionary Computation 15

2.6 Novelty Search . 17

2.7 The Problem of Vast Behaviour Spaces 19

2.7.1 Minimal Criteria Novelty Search 20

2.7.2 Linear Blend of Novelty and Fitness 20

2.7.3 Multi-objectivisation . 21

2.8 Generic Behaviour Measures . 21

3 Novelty Search in Evolutionary Swarm Robotics 23

3.1 Aggregation Experiments . 23

3.1.1 Aggregation Related Work . 23

3.1.2 Experimental Setup . 24

3.1.3 Configuration of the Evolutionary Algorithms 25

3.1.4 The First Experiment . 27

xiii

3.1.5 The Alternative Novelty Measure 32

3.1.6 Combining novelty measures 36

3.2 Energy Management Experiments . 38

3.2.1 Energy Management Related Work 38

3.2.2 Experimental Setup . 39

3.2.3 Configuration of the Evolutionary Algorithms 40

3.2.4 Overcoming Deception with Novelty Search 41

3.2.5 A More Rich Behaviour Characterisation 47

3.3 Discussion . 49

4 Combining Novelty and Fitness 55

4.1 Progressive Minimal Criteria Novelty Search 55

4.2 Energy Management Experiments . 57

4.2.1 Impact of Behaviour Space Dimensionality 57

4.2.2 Impact of Deception . 61

4.2.3 Algorithm Parameters . 63

4.3 Aggregation Experiments . 66

4.3.1 Performance Comparison . 66

4.3.2 Novelty-Fitness Balance . 68

4.4 Discussion . 69

5 Conclusion 73

5.1 Summary of the Contributions . 74

5.2 Future Work . 76

5.3 Conclusion . 77

A Simulation and Evolution Workbench 79

A.1 Application Features . 80

A.2 Tools and Libraries . 80

A.3 Architecture and Design . 82

A.4 Implementation . 85

A.5 Distributed Computing . 88

Bibliography 91

xiv

List of Figures

2.1 Genotype to phenotype mapping in NEAT. 12

2.2 Examples of mutation in NEAT. 13

2.3 Crossover in NEAT. 14

3.1 Model of the robot used in the aggregation experiments. 25

3.2 Fitness trajectory of novelty search with the centre of mass measure. 28

3.3 Solutions found by novelty search with the centre of mass measure. . 30

3.4 Comparison of the behaviour space exploration with the centre of

mass measure. 31

3.5 Fitness trajectory of novelty search with the number of clusters measure. 33

3.6 Solutions found by novelty search with the number of clusters measure. 34

3.7 An illustration of conflation. 35

3.8 Fitness trajectory of novelty search with the combined measure. . . . 37

3.9 Comparison of the behaviour space exploration with the combined

measure. 37

3.10 Environment and robots in the energy management task. 40

3.11 Comparison of the fitness performance in the energy management

task, with both variants. 42

3.12 Solutions evolved for the energy management task. 43

3.13 Bootstrapping problem in the energy management task with fitness-

based evolution. 44

3.14 Behaviour space exploration comparison (energy management). . . . 46

3.15 Fitness performance with the expanded behaviour measure. 47

3.16 Behaviour space exploration with the expanded measure. 48

4.1 Performance of PMCNS and linear blend, using both novelty mea-

sures, in the energy management task. 58

4.2 Comparison of behaviour space exploration with PMCNS and linear

blend, using the simple novelty measure. 59

4.3 Comparison of behaviour space exploration with PMCNS and linear

blend, using the expanded novelty measure. 60

xv

4.4 Comparison of the performance of PMCNS and linear blend in both

energy management setups. 62

4.5 The impact of the parameter ρ in linear blend. 64

4.6 The impact of the percentile parameter in PMCNS. 64

4.7 The impact of the smoothening parameter in PMCNS. 65

4.8 Performance of PMCNS and linear blend in the aggregation task. . . 66

4.9 Behaviour space exploration with PMCNS and linear blend in the

aggregation task. 68

4.10 The impact of the parameters ρ in linear blend and P in PMCNS

(aggregation task). 69

A.1 Simbad user interface. 81

A.2 The architecture of EvoSimbad. 83

A.3 UML class diagram of EvoSimbad. 84

A.4 EvoSimbad graphical user interface. 87

A.5 Job execution flow using JPPF. 88

A.6 The distribution of computation in EvoSimbad. 89

A.7 Increase in processing power compared to increase in system perfor-

mance. 90

xvi

List of Tables

3.1 NEAT parameters used in the experiments. 26

3.2 Comparison of the evolved networks complexity. 38

A.1 Results of distribution of the computation. 90

xvii

Chapter 1

Introduction

In the measurement world, we set a goal and strive
to achieve it. In the universe of possibility, we set the
context and let life unfold.

Benjamin Zander

The quote above raises an interesting question that often challenges common

intuitions: should we really strive blindly to achieve previously set goals? Can’t the

best way to achieve a goal be to forget the goal for moments and just let things

unfold, explore the possibilities, and see where it leads?

This absence of rigid goals can actually lead to great accomplishments. If we

look onto the biological evolution, there are no pre-defined goals; however this open-

endness has lead to incredibly complex and fit organisms. What drives the evolution

forward is not the direct pursuit for goals, but rather the constant generation of

diversity, which is the result of reproduction and mutation mechanisms that always

create genetic diversity. This pressure towards diversity indirectly leads to organisms

that develop the required traits for the survival of the species — without ever directly

pursuing those traits or even knowing a priori what they are.

Novelty search (Lehman and Stanley, 2011a) is a unique evolutionary search

method inspired by this character of biological evolution, which abandons the objec-

tives and guides the evolution towards behavioural diversity instead. In traditional

evolutionary computation (henceforth referred as fitness-based evolution), candidate

solutions are scored by a fitness function that has been derived directly from the

task or problem for which a solution is sought. Novelty search does not drive the

evolutionary process toward a fixed goal. In novelty search, candidate solutions

are scored based on how different they are from solutions seen so far, and the

evolutionary process is therefore continuously driven towards novelty, following a

divergent process.

The objective-oriented evolutionary approach seems intuitively more adequate

to achieve goals, however, it is associated with a number of issues, where decep-

1

2 CHAPTER 1

tion is one of the most prominent. Deception (Goldberg, 1987) is a challenging

problem in evolutionary computation, and occurs when the evolutionary process

converges prematurely to local optima, thus failing to reach the desired objective in

a reasonable amount of time. Deception can be caused by an objective function

that fails to reward the intermediate steps needed to achieve the final goal, or

deceives the search by actively leading it in a wrong direction. Novelty search

has the potential to overcome deception, since it is not influenced by the objective

function, and has a divergent nature, thus avoiding premature convergence. Lehman

and Stanley (2011a) have shown that, although novelty search does not pursue a goal

directly, it may be able to find the goal faster and more consistently than traditional

fitness-based evolution. Novelty search has also proven capable of finding a greater

diversity of solutions to a problem than traditional fitness-based evolution (Lehman

and Stanley, 2011b).

Novelty search has been successfully applied to many domains, including non-

collective evolutionary robotics in tasks such as maze navigation (Lehman and

Stanley, 2011a; Mouret, 2011), T-maze tasks that require lifetime learning (Risi

et al., 2009), biped walking (Lehman and Stanley, 2011a), and the deceptive tartarus

problem (Cuccu and Gomez, 2011). There are many motivations behind the use

of evolutionary techniques for the design of a control system for a robot (Harvey

et al., 1993). In a multirobot domain in particular, the dynamical interactions

among robots and the environment make it difficult to hand-design a control system

for the robots that yields the desired macroscopic swarm behaviours. Artificial

evolution has been shown capable of exploiting these dynamic features and synthesise

self-organised behaviours (Trianni et al., 2003).

However, evolutionary robotics has only been proven effective in simple tasks,

under laboratory conditions (Sprong, 2011). The main challenge in evolutionary

robotics is the difficulty in guiding the evolution towards solutions that are able to

solve complex problems. As the complexity of a task or a system increases, artificial

evolution is more likely to get affected by deception, which causes the evolutionary

process to fail. Complex tasks also cause issues in bootstrapping the evolution

(Gomez and Miikkulainen, 1996), because the qualities of the solutions in the initial

population, which are randomly generated, may not be adequately distinguished

by the objective function. As such, the evolution has no clues about which are

the most promising individuals that should be propagated to the next generations.

Some solutions to these problems have been proposed, such as incremental evolu-

tion (Gomez and Miikkulainen, 1996) and multi-objective evolutionary algorithms

(Knowles et al., 2001). However, these methods are highly dependent on domain

knowledge, that should be provided a priori by the experimenter. This dependence

on domain knowledge is not desirable, because it can bias the evolutionary process

INTRODUCTION 3

and ultimately is contrary to the ambition of having a method that automatically

generates robotic controllers.

In this thesis, we use novelty search to evolve neural controllers for swarm robotic

systems. Most previous works in evolutionary swarm robotic systems use objective-

based evolutionary approaches. Our motivation for applying novelty search to

swarm robotic systems is their high level of complexity, resulting from the intricate

dynamics between many interacting units. This high level of complexity is prone to

generate deceptive fitness landscapes (Whitley, 1991), and novelty search has been

shown capable of overcoming deception (Lehman and Stanley, 2011a). Evolution-

ary techniques based on diversity maintenance mechanisms have also been proven

effective in bootstrapping the evolutionary process (Mouret and Doncieux, 2009),

which is another challenge in evolving complex systems and solving complex tasks.

By overcoming these challenges with novelty search, we will work towards solutions

for evolving multi-robot systems able to perform complex tasks, requiring less effort

and intervention from the experimenter when compared to other techniques such as

fitness shaping and incremental evolution.

The drive of novelty search towards behavioural diversity is another motivation

for this work. Novelty search can generate a diversity of solutions in a single

evolutionary run, as opposed to fitness-based evolution, in which a particular run

often converges to a single solution. This diversity can provide a range of different

solutions to the experimenter who is conducting the evolutionary process. This

is especially relevant in the domain of swarm robotics, because the dynamical

interactions between the robots and the environment may result in many behav-

ioral possibilities (Trianni, 2006). Novelty search can explore these possibilities,

potentially revealing new and unexpected forms of self-organisation.

As novelty search is guided by behavioural innovation alone, its performance

can be greatly affected when searching through vast behaviour spaces (Lehman

and Stanley, 2010a; Cuccu and Gomez, 2011), since it may spend most of its time

exploring behaviours that are irrelevant for the goal task. There are a few methods

that were proposed to overcome this limitation, such as Minimal Criteria Novelty

Search (Lehman and Stanley, 2010a), among others that bring together behavioural

diversity and fitness evaluation (Mouret and Doncieux, 2012). In this thesis, we

investigate the application of some of these methods in the swarm robotics domain,

in order to cope with behaviour spaces where novelty search fails to explore the high

fitness behaviour zones.

The evolution of the network topology along with the weights has proved to

be beneficial in many domains (Stanley, 2004). However, most previous works in

evolutionary swarm robotics use neuroevolution methods that optimise only the

weights of the neural network. In this thesis, we use NEAT (NeuroEvolution of

4 CHAPTER 1

Augmenting Topologies) (Stanley and Miikkulainen, 2002) to evolve the neural

controllers used by the robots in a swarm. NEAT is a method that evolves both

the network topology and weights, allowing solutions to become gradually more

complex as they become better (Stanley and Miikkulainen, 2002). The use of NEAT

as the underlying neuroevolution method in novelty search is motivated by the

complexifying nature of NEAT, which imposes some order in the exploration of the

behaviour space, because simple controllers are explored before moving on to more

complex ones.

1.1 Original Contributions

The focus of our research is the application of evolutionary techniques based on

novelty search to synthesise controllers for swarms of robots. This thesis comprises

the following contributions:

1. This work is the first to introduce novelty search to the domain of evolution-

ary swarm robotics. We compare novelty search with the more traditional

objective-based evolution.

2. In our work, the evolutionary methods are implemented with NEAT, a popular

neuroevolution method with incremental complexification of network topolo-

gies. This is the first work to apply NEAT to the evolution of controllers for

robotic swarms.

3. Our empirical study is based on two popular collective robotics tasks: aggrega-

tion and sharing of an energy recharging station. The energy management task

represents a relevant problem that is not much addressed by the evolutionary

approach. We show that evolutionary robotics can synthesise good solutions

for this task.

4. We show that novelty search is effective in overcoming deception in the swarm

robotics domain, and can successfully bootstrap the evolution. We study how

to devise novelty distance metrics for this domain.

5. We show that novelty search has the potential of unveiling a broad diversity

of collective behaviours. Previous works on evolutionary swarm robotics did

not focus on discovering behavioural diversity.

6. This thesis proposes progressive minimal criteria novelty search (PMCNS), an

extension of minimal criteria novelty search, that combines novelty search with

objective-based evolution by progressively restricting the behaviour search

space. PMCNS is compared with other novelty search variants described in

the literature.

INTRODUCTION 5

1.2 Context

This thesis is the final work for the obtainment of the Masters Degree in Informatics

Engineering by Faculty of Sciences of the University of Lisbon (FCUL). This thesis

was oriented by the Professor Paulo Jorge Cunha Vaz Dias Urbano (FCUL) and by

the Professor Anders Lyhne Christensen (ISCTE).

The work was developed in LabMAg – Laboratory of Agent Modelling, a re-

search unit dedicated to computational models of agents, hosted in the Informatics

Department of FCUL.

1.3 Thesis Structure and Related Publications

Below, we provide an overview of the thesis. This thesis describes an original re-

search, some of which has been published in proceedings of international conferences

by the author and the supervisors. The publications related to the results presented

in this document are listed below.

In Chapter 2, we present and explain the core concepts approached in this thesis,

and discuss the related work. We start by briefly presenting evolutionary robotics,

and evolutionary swarm robotics in particular. We present neuroevolution and why

it is fit for the evolution of robot controllers. We then present in greater detail the

neuroevolution method NEAT (NeuroEvolution of Augmenting Topologies). We

move on to the problem of deception in evolutionary computation, and how novelty

search can overcome this problem. The novelty search algorithm is presented in

detail and we discuss some of the applications found in the current literature. We

finish by describing limitations of novelty search and how some of these limitations

were addressed in related work. We briefly present other evolutionary methods

inspired by novelty search that can be found in the literature.

In Chapter 3, we apply the original novelty search algorithm to the evolution of

controllers for two swarm robotics tasks. First, we experiment with the aggregation

task. We begin by presenting previous works that used this task, and then describe

the experimental setup used in our study. We experiment with different novelty

measures to assess their impact in the effectiveness of the evolution and in the

exploration of the behaviour space, and establish comparisons with the traditional

fitness-based evolution. We then move on to the energy management task, presenting

the previous works related to this task and the experimental setup. We show how

novelty search can overcome deception, by using two variants of the task with

different levels of deceptiveness. We also study how novelty search is affected by

large behaviour spaces, using two novelty measures with different levels of detail.

We wrap up with a discussion encompassing the results obtained in the experiments

with both tasks. Chapter 3 is partially based on the following published papers:

6 CHAPTER 1

– Gomes, J., Urbano, P., Christensen, A.L.: Introducing novelty search to evolu-

tionary swarm robotics. In: Proceedings of the 8th International Conference

on Swarm Intelligence (ANTS 2012), pp. 85–96. Springer Verlag, Berlin,

Germany (2012). Invited for publication of an extended version the Swarm

Intelligence journal.

– Gomes, J., Urbano, P., Christensen, A.L.: Diverse Behaviors in Swarm Robotics

with Novelty Search. In: Proceedings of the Thirteenth International Confer-

ence on the Simulation and Synthesis of Living Systems (ALIFE XIII), pp.

553-554. MIT Press (2012).

In Chapter 4, we study evolutionary techniques that combine novelty search

with fitness-based evolution. We propose Progressive Minimal Criteria Novelty

Search, an evolutionary technique based on novelty search that intends to overcome

the limitations of Minimal Criteria Novelty Search. To evaluate the proposed

technique, we revisit the tasks used in Chapter 3. Using the energy management

and aggregation tasks, we compare PMCNS with an evolutionary technique that

uses a linear blend of novelty and fitness scores, and with the results obtained in the

previous chapter using novelty search and fitness-based evolution. We also study the

parameters of both evolutionary techniques, especially the balance between novelty

search and fitness-based evolution. We finish with a discussion compiling all the

experimental results presented in the chapter. Chapter 4 is partially based on the

following paper:

– Gomes, J., Urbano, P., Christensen, A.L.: Progressive Minimal Criteria Nov-

elty Search. In: Proceedings of the 13th edition of the Ibero-American Confer-

ence on Artificial Intelligence (IBERAMIA 2012), Springer, Berlin, Germany

(2012), in press.

In Chapter 5, we confront the work presented in this thesis with the initial objec-

tives layed out in the preliminary report, summarise the major findings described in

this thesis, discuss the challenges that were found, and point out some future work

directions.

Appendix A describes the software application developed in the context of this

thesis for carrying on the experimental studies.

Chapter 2

Related Work

In this chapter, we address the core concepts approached in this thesis and review

the related work. We start by introducing the field of evolutionary robotics, and we

discuss some of the most notable works, then we move on to swarm robotics and

how evolutionary approaches have been applied to such systems. We then approach

in greater detail how robot controllers can be evolved via neuroevolution and will

explain how NEAT algorithm works. We move on to the problem of deception in

evolutionary computation, a frequent problem in evolutionary robotics, and how it

can be overcome. We finally explain in detail how novelty search has the potential to

overcome the deception problem and present similar approaches already developed.

2.1 Evolutionary Robotics

Evolutionary robotics is a field of research that applies artificial evolution to the

generation of control systems for autonomous robots. During evolution, robots

attempt to perform a given task in a given environment. The controllers of the

better performing robots are selected, altered, and propagated, to perform the task

again in an iterative process that mimics some aspects of natural evolution (Nelson

et al., 2009).

The concept of evolutionary robotics, based on neural networks controllers and

evolutionary algorithms, is not a recent idea. Beer and Gallagher (Beer and Gal-

lagher, 1992) introduced the idea of evolving agent controllers through genetic

algorithms (Holland, 1975). Evolutionary algorithms, such as genetic algorithms, are

optimisation methods that use operators of reproduction, mutation, and selection to

artificially evolve solutions for a given problem. Candidate solutions of the problem

play the role of individuals in a population, and a fitness function determines which

individuals are best suited for solving the problem. The evolution of the population

then takes place through the repeated application of the genetic operators.

According to (Beer and Gallagher, 1992), the evolutionary approach is more

7

8 CHAPTER 2

adequate than traditional symbolic AI in the task of developing adaptive behaviours,

since it promotes the shaping of the agents to their environment, and does not

depend on the ability of the designer to consider all the possible contingencies. Using

the evolutionary approach, the intelligent behaviours emerge from the interaction

between an agent’s internal control mechanisms and its external environment, rather

than from an agent’s ability to reason explicitly with symbolic representations of

its situation. In (Beer and Gallagher, 1992), the controllers are artificial neural

networks, and are evolved with genetic algorithms to perform two tasks: i) Chemo-

taxis, which consists of following chemical signals in order to reach the source of the

signal, and ii) legged locomotion, a much more difficult problem since the agent has

to simultaneously solve the problems of support and progression. The evolutionary

process was successful in evolving controllers for both tasks, which deemed this

approach very promising.

The foundations of evolutionary robotics were later established in (Nolfi and

Floreano, 2000), where the basic concepts and methodologies are described, and a set

of empirical experiments of different complexity is presented. Many problems have

been solved with evolutionary robotics, but the complexity of the solved problems

has not yet reached the point where they can be useful in real world complex

problems. The most common tasks solved by evolutionary robotics are described in

a recent survey (Sprong, 2011).

The evolutionary process typically requires a fitness function to measure how

well each controller performs in respect to the objective. This is a key component in

evolution, as it establishes the goal the robot should achieve, and can also provide

some clues on how to achieve it by incorporating a priori knowledge. A survey of

fitness functions in the field of evolutionary robotics can be found in (Nelson et al.,

2009).

The fitness evaluation of each controller usually consists of running a simulation

with the robots in their environment, using that controller, and measuring their

performance according to the defined fitness function. Although some attempts

have been made to evolve the controllers entirely in the physical robots (Floreano

and Mondada, 1994, 1996), this process is typically too slow and cumbersome, so

it usually is made in simulated environments. In (Jakobi et al., 1995) is described

the gap between the real and simulated worlds, the common pitfalls when evolv-

ing controllers in simulated environments and how to overcome them. This work

demonstrates that it is possible to develop successful robot controllers in simulation

that generate almost identical behaviours in reality.

RELATED WORK 9

2.2 Evolutionary Swarm Robotics

Multi-robot systems are inspired by the observation of social activities, which are

based on concepts like division of labour, cooperation and communication. If such

collective organisation can benefit societies, robotic groups could also benefit from

those same concepts, gaining numerous advantages, such as: ability to solve more

difficult tasks; robustness to the failure of individuals; versatility; parallelism of

operation (Jones and Mataric, 2005).

One research area of collective robotics is swarm robotics (Şahin, 2005), which

our work will be based upon. In swarm robotics, large homogeneous groups of

robots coordinate themselves to accomplish complex tasks. In (Dorigo and Şahin,

2004), four criteria are given to measure the degree to which a robotic system can

be considered a swarm robotic system:

i. The study should be relevant for the coordination and control of a large number

of robots, including all approaches that aim for scalability.

ii. The study should involve relatively few groups of homogeneous robots, each

group comprising a large number of individuals.

iii. The study should consider tasks that cannot be efficiently solved by a single

robot, due to individual limitations.

iv. The study should involve robots that have local and limited sensing and com-

munication abilities.

In (Trianni, 2006), the author identifies the main challenges in the design of

swarm robotic systems and why the evolutionary approach is particularly useful for

this purpose. According to the authors, manually designing individuals of a swarm

is a very challenging task, because one has to decompose the global behaviour into

behavioural rules for the individual robots, taking into account the interactions

among the system components. This requires discovering the relevant interactions

between the individual robots and between them and the environment, which will

ultimately lead to the emergence of global coordinated behaviour.

Evolutionary robotics represents an effective solution to this design problem

because it eliminates the necessity of decomposing the swarm behaviour. Instead,

the system is evaluated as a whole and then relies in the evolutionary process to

synthesise the controller that will be used locally by the individuals. Several works

have been developed using evolutionary robotics in swarm systems, in order to

evolve fairly simple collective behaviours, such as coordinated motion (Baldassarre

et al., 2007), foraging (Liu et al., 2007), aggregation (Trianni et al., 2003), and hole

avoidance (Trianni et al., 2006). An extensive survey over the modelling of swarm

10 CHAPTER 2

robotics and the problems that have been solved so far can be found in (Bayindir

and Şahin, 2007).

2.3 Neuroevolution

In order for the robots to be autonomous, they need some kind of controller that

can process the sensorial data and control the actuators based on that information.

One of the most used structures to model controllers in evolutionary robotics are

Artificial Neural Networks (Haykin, 1994). An ANN is an information processing

paradigm that is inspired by the way biological brains process information. It is

composed of a large number of highly interconnected processing elements (neurons)

working as whole to achieve complex mappings between inputs and outputs.

In (Floreano and Mondada, 1994) are identified some reasons why artificial neural

networks are particularly adequate for the control system of artificial autonomous

agents:

i. They are flexible. Their ability to learn enables dynamic adaptation of robot

behaviour to changes in the environment, even when the networks have a fixed

structure.

ii. They deal with the micro-structure of the robot, meaning that they can exploit

at its best the sensory-motor features of the robot, and can learn to use only a

subset of the available sensors and actuators.

iii. They have a good tolerance to noise, making them good candidates for mediat-

ing between physical sensors and actuators with intrinsic noise.

iv. With recurrent and lateral connections, they can cope with temporal structure

and complex mappings required in many real-world tasks.

Neural networks are also well-suited for artificial evolution because small changes

in the network typically correspond to small changes in its behaviour, allowing the

evolutionary algorithms to progress gradually towards the solution. Harvey et al.

(Harvey et al., 1993) also advocates the use of neural networks for evolutionary

robotics and compares them with other types of evolvable controllers, such as

high level programs, evolved via genetic programming (Koza, 1992), or polynomial

transfer functions.

Neuroevolution is a field of research that focuses on methods for evolving artificial

neural networks with evolutionary algorithms. Some methods start from a fixed

network topology and evolve only the network connection weights, while others

evolve the network topology along with the weights, generating new nodes and

RELATED WORK 11

connections alongside with the adjustment of the weights of the existing connections.

Evolving topologies brings a few more challenges, such as a crossover method that

should work between different topologies and the necessity of protecting new network

structures in order for them to have space to optimise their weights. However, the

evolution of the topology along with the weights has shown a number of advantages

(Stanley and Miikkulainen, 2002). First, the experimenter does not have to decide

the topology of the network, which typically requires a trial and error process.

Second, evolving the topology can actually increase by several times the efficiency

of neuroevolution, when compared to other fixed-topology methods.

Many systems have been developed that evolve both neural network topologies

and weights, differing in the underlying evolutionary algorithm that is used, in

the encoding of the neural networks and on the aspects of the network that are

evolved. In this work, we will focus in one algorithm, NeuroEvolution of Aug-

menting Topologies (NEAT) (Stanley and Miikkulainen, 2002). NEAT is based on

genetic algorithms and modifies both the network structure and weights through a

complexification mechanism. NEAT will be further detailed in the next section.

2.4 NEAT

NEAT (Stanley and Miikkulainen, 2002) combines the usual search for the appro-

priate network weights with complexification of the network structure, allowing the

behaviour of evolved neural networks to become increasingly sophisticated over gen-

erations. The NEAT method consists of solutions to three fundamental challenges

in evolving neural network topology, which will be briefly explained below.

i. What kind of genetic representation would allow meaningful crossover between

networks with different topologies? The proposed solution is to use historical

markings to line up genes with the same origin.

ii. How can a topological innovation, that may require a few generations to optimise

the connection weights, be protected so that it does not disappear from the

population prematurely? The proposed solution is to separate innovations into

different species.

iii. How can topologies be minimised throughout evolution so the most efficient

solutions will be discovered? The proposed solution is to start from a minimal

structure and add nodes and connections incrementally.

2.4.1 Genetic Encoding

Evolving structure requires a flexible genetic encoding. In order to allow structures

to complexify, their representations must be dynamic and expandable. Each genome

12 CHAPTER 2

Node 1
Sensor

Node 2
Sensor

Node 3
Sensor

Node 4
Output

Node 5
Hidden

In 1
Out 4
Weight 0.7

Enabled
Innov 1

In 2
Out 4
Weight−0.5

DISABLED
Innov 2

In 3
Out 4
Weight 0.5

Enabled
Innov 3

In 2
Out 5
Weight 0.2

Enabled
Innov 4

In 5 In 1 In 4
Out 4 Out 5 Out 5
Weight 0.4 Weight 0.6 Weight 0.6

Enabled Enabled Enabled
Innov 5 Innov 6 Innov 11

Genome (Genotype)
Node

Genes
Connect.

Genes

Network (Phenotype)

1 2 3
5

4

Figure 2.1: A genotype to phenotype mapping example in NEAT. [Image from
(Stanley and Miikkulainen, 2002)]

in NEAT includes a list of connection genes, each one specifying the in-node, the

out-node, the weight of the connection, and an innovation number, which allows

finding corresponding genes during crossover. The structure of the genome and its

mapping to the phenotype is showed in Figure 2.1.

Mutation in NEAT can change both connection weights and network structures.

Connection weights mutate as in any neuroevolution system, with each connection

either perturbed or not. Structural mutations, which form the basis of complexifi-

cation, occur in two ways, either by adding a new connection between to previously

unconnected nodes or by adding a new node that splits an existing connection and

preserves its weight (Figure 2.2). Adding nodes in this way preserves the previous

functionality but at the same time introduces a new non-linearity that provides the

opportunity to elaborate those functionalities in the next generations.

Through mutation, the genomes in NEAT will gradually get larger. Genomes of

varying sizes will appear, sometimes with different connections at the same positions

in the genome representation. The crossover operator must be able to cope with

these challenges in order to perform crossovers between different topologies, which

will be explained next.

2.4.2 Tracking Genes Through Historical Markings

The historical origin of each gene can be used to determine exactly which genes

match up between any individuals in the population. Two genes with the same

historical origin represent the same structure, since they were both derived from the

same ancestral gene at some point in the past. Thus, in order to properly align and

recombine any two disparate topologies in the population, the system only needs to

RELATED WORK 13

1

1

1

1

2

2

2

2

3

3

3

3
6

5

5

5

5

4

4

4

4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

5−>4

5−>4

5−>4

5−>4

1−>5

1−>5

1−>5

1−>5

3−>5

3−>6 6−>4

DIS

DIS DIS

DIS

DIS

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

8 9

Mutate Add Connection

Mutate Add Node

Figure 2.2: An example of a Add Connection mutation (top) and a Add Node
mutation (bottom). [Image from (Stanley and Miikkulainen, 2002)]

keep track of the historical origin of each gene.

Whenever a new gene appears through structural mutation, a global innovation

number is incremented and assigned to that gene. The innovation numbers, thus,

represent a chronology of every gene in the population. Whenever two genomes cross

over, the offspring will inherit the same innovation numbers on each gene. Thus,

the historical origin of every gene is known throughout evolution.

When crossing over, the genes with the same innovation numbers are lined up

(Figure 2.3). The offspring is then formed in one of two ways: In uniform crossover,

matching genes are randomly chosen for the offspring genome. In blended crossover,

the connection weights of matching genes are averaged. The disjoint and excess

genes are inherited from the more fit parent.

Genomes of different organisations and sizes remain compatible throughout evo-

lution, and the variable-length genome problem is essentially avoided. This method-

ology allows NEAT to complexify structure while different networks still remain

compatible for crossover.

However, it turns out that it is difficult for a population of varying topologies to

support new innovations that add structure to existing networks, because smaller

structures optimise faster than larger structures, and adding nodes and connections

usually initially decreases the fitness of the network, giving recently augmented

structures little chance of surviving. The solution is to protect innovation by

speciating the population, as explained next.

14 CHAPTER 2

1−>4

1−>4

1−>4

1−>4

1−>4

2−>4

2−>4

2−>4

2−>4

2−>4

3−>4

3−>4

2−>5

2−>5

2−>5

2−>5

2−>5

5−>4
¡

5−>4
¡

5−>4
¡

5−>6
¡

5−>4
¡

5−>4
¡

1−>5

1−>5

6−>4
¢

6−>4
¢

1−>6

1−>6

1−>61−>5

5−>6
¡

5−>6
¡

3−>5

3−>5

3−>56−>4
¢

3−>4

3−>4

3−>4

DISAB

DISAB

DISAB
£

DISAB
£

DISAB

DISAB

DISAB DISAB

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

4

4

5
¡

5
¡

5
¡

6
¢

5
¡

5
¡

8
¤

8
¤

7

7

10

10

108
¤

6
¢

6
¢

9

9

97

3

3

3

disjoint
¦

disjoint
¦

disjoint
¦

excess§excess§

Parent1
¨

Parent2
¨

Parent2

Offspring
©

Parent1
¨

1

1

1
2

2

2
3

3

3

5

5

5

6

4

4

6

4

Figure 2.3: The gene alignment process, based on the innovation numbers, necessary
for the crossover. [Image from (Stanley and Miikkulainen, 2002)]

2.4.3 Protecting Innovation Through Speciation

NEAT speciates the population so that individuals compete primarily within their

own niches instead of with the population at large. This way, topological innovations

are protected and have time to optimise their structure before they have to compete

with other niches in the population.

Historical markings make it possible for the system to divide the population

into species based on how similar they are topologically. The distance between two

network encodings can be measured as a linear combination of the number of excess

and disjoint genes, as well as the average weight differences of matching genes. When

a new genome is created, it is compared to a random genome of each existing species,

and if the distance between them is below a certain threshold, it is placed in that

species. If the genome is not compatible with any existing species, a new one is

created.

As the reproduction mechanism, NEAT uses explicit fitness sharing (Goldberg

and Richardson, 1987), where organisms in the same species must share the fitness

of their niche. The adjusted fitness of each organism is calculated by dividing its

individual fitness score by the number of organisms in the respective species. Every

species is then assigned a potentially different number of offspring in proportion

to the sum of adjusted fitnesses of its member organisms. Species reproduce by

RELATED WORK 15

first eliminating the lowest performing members from the population. The entire

population is then replaced by the offspring of the remaining individuals in each

species.

2.4.4 Incremental Complexification

Other systems that evolve network topologies and weights begin evolution with

a population of random topologies. In contrast, NEAT begins with a uniform

population of simple networks, with no hidden nodes and fully connected, differing

only in their initial random weights. Speciation protects new innovations, allowing

diverse topologies to gradually accumulate over evolution. Thus, NEAT can start

minimally, and grow the necessary structure over generations. New structures are

introduced incrementally as structural mutations occur, and only those structures

survive that are found to be useful through fitness evaluations. In this way, NEAT

searches through a minimal number of weight dimensions, significantly reducing

the number of generations necessary to find a solution, and ensuring that networks

become no more complex than necessary.

2.5 Deception in Evolutionary Computation

We are kept from our goal not by obstacles but by a
clear path to a lesser goal.

Robert Brault

Evolutionary algorithms typically measure the progress of the population accord-

ing to a pre-defined fixed objective, rewarding the individuals that seem closer to

that objective (Holland, 1975). While this may seem straightforward and intuitive,

in fact there are some problems associated with this approach. Objective functions

often suffer from the problem of local optima, dead ends in the search space that

stop the population from getting better and reaching the global optima. This global

optima might have been achieved if a different path in the exploration of the search

space was taken (Goldberg, 1987). The problem is that the objective function does

not necessarily reward the stepping stones in the search space that ultimately lead

to the objective, and can actually deceive the evolution by pointing the wrong way.

Objective functions with this property are called deceptive objective functions. This

makes the design of good objective functions challenging, since sometimes pursuing

what appears to be a reasonable objective results in an ineffective objective function.

Another issue that can arise if the objective function does not reward the inter-

mediate steps towards the solution is the bootstrap problem (Mouret and Doncieux,

2009; Gomez and Miikkulainen, 1996). This problems occurs when the task is too

16 CHAPTER 2

demanding to exert significant selective pressure on the population during the early

stages of evolution, as all of the individuals perform poorly. As a consequence, the

genetic algorithm gets trapped very early in an uninteresting region of the solution

space.

One way of overcoming these issues in order to solve complex problems with the

evolutionary process is described in (Gomez and Miikkulainen, 1996). In this work,

the complex behaviours are learned incrementally through the gradual complexifica-

tion of the task. Instead of evaluating a population on the same task throughout the

course of evolution, a set of goals of increasing difficulty is defined. The population

is then evaluated using those goals in sequence throughout the evolution, in an effort

to ultimately achieve the final goal. A drawback of this approach is that it requires

a significant amount of a priori knowledge about the task and a careful oversight

and analysis of the evolution, in order to try to understand where the evolution gets

stuck and how to devise a new sub-goal that will allow the population to overcome

that difficulty. The underlying problem of local optima is also not fixed, because if

these optima are pervasive, search will still likely get stuck in a dead end.

Other common approaches for mitigating deception are based on some kind of

diversity maintenance technique, many of them inspired by speciation or niching

in natural evolution, where the competition occurs within the same niche instead

of compassing the entire population. Fitness Sharing (Goldberg and Richardson,

1987), used by NEAT, was one of the first works concerning the mitigation of

deception. This method enforces competition between similar solutions so that

there is pressure to find solutions in distant parts of the search space. Other similar

approaches include enforcing competition among individuals with similar fitness

scores (Hu et al., 2005; Hutter and Legg, 2006) and among individuals of different

genetic ages (Hornby, 2006; Castelli et al., 2011). Multi-objectivisation (Deb, 2001)

might also be used to avoid deception, because if a local optimum is reached in one

objective, there is still hope to evolve in respect to the other objectives (Knowles

et al., 2001). In (Mouret and Doncieux, 2008), incremental evolution of a robot

controller is implemented as a multi-objective algorithm, where each sub-task is

modelled as a different objective. This eliminates some biases of the traditional

incremental approaches, like the necessity of pre-determining the order in which

the tasks should be learned. However, some issues are still identified, like the

limitation of multi-objective algorithms of only handling a few objectives (Mouret

and Doncieux, 2008) .

While these methods for mitigating deception might aid evolution to avoid

getting stuck in local optima, they leave the underlying problem untreated, namely

the issue that the objective function itself might be actively misdirecting the search

towards dead ends. With this issue in mind, a new radical approach for seeking ob-

RELATED WORK 17

jectives was recently proposed, Novelty Search (Lehman and Stanley, 2008, 2011a),

in which our work will be built upon. This approach puts the objectives completely

aside, and consists of seeking behavioural diversity instead of actively pursuing the

objectives. Novelty Search will be further explained in the next section.

2.6 Novelty Search

Evolutionary algorithms are often applied as black-box optimisation algorithms

designed to converge to a globally optimal fitness. In contrast, natural evolution

diverges, creating and maintaining a wide variety of solutions to the problems of life.

Novelty search (Lehman and Stanley, 2011a) is a divergent evolutionary technique,

inspired by natural evolution’s drive towards novelty, which strives to create novel

behaviours instead of progress towards a fixed objective.

In novelty search (Lehman and Stanley, 2011a), individuals in an evolving pop-

ulation are selected based exclusively on how different their behaviour is when

compared to the other behaviours discovered so far. Through the exploration of

the behaviour space, the objective will eventually be achieved, even though it is

not being actively pursued. Implementing novelty search requires little change to

any evolutionary algorithm aside from replacing the fitness function with a domain

dependent novelty metric. This metric quantifies how different an individual is from

the other individuals with respect to their behaviour. Like the fitness function,

the novelty metric must be adequate to the domain, expressing what behaviour

characteristics should be measured and therefore conditioning what behaviours will

be explored. The use of a novelty measure creates a constant pressure to evolve

individuals with novel behaviour features, instead of maximising a fitness objective.

The novelty of a newly generated individual is computed with respect to the

behaviours of an archive of past individuals and to the current population, giving a

comprehensive sample of where the search has been and where it currently is. The

novelty archive is representative of the previously explored behaviours. However,

it does not contain all of those behaviours, in order to minimise the impact in

the algorithm’s computational complexity. The archive is initially empty, and

behaviours are added to it if they are significantly different from the ones already

there, i.e., if their novelty is above some threshold. The purpose of the archive

is to allow the penalisation of future individuals that exhibit previously explored

behaviours.

The novelty metric characterises how far away the new individual is from the

rest of the population and its predecessors in behaviour space, determining the

sparseness at any point in that space. A simple measure of sparseness at a point is

the average distance to the k-nearest neighbours of that point, where k is a fixed

18 CHAPTER 2

parameter empirically determined. Intuitively, if the average distance to a given

point’s nearest neighbours is large then it is in a sparse area; it is in a dense region

if the average distance is small. The sparseness ρ at point x is given by:

ρ(x) =
1

k

k∑
i=1

dist(x, µi) , (2.1)

where µi the ith-nearest neighbour of x with respect to the distance metric dist,

which is a domain-dependent measure of behavioural difference between two indi-

viduals in the search space. Candidates from more sparse regions of the behaviour

space thus receive higher novelty scores, guiding the search towards what is new,

with no other explicit objective.

The behaviour of each individual is typically characterised by a vector of num-

bers. The experimenter should design the behaviour characterisation so that each

vector contains aspects of the behaviour of the individual that are considered relevant

to the problem that is being solved. Once the behaviour characterisation is defined,

the novelty distance metric dist can be defined as the distance between the behaviour

vectors. A commonly used distance is the Euclidian distance between the vectors.

The behaviour characterisation can be for example the situation of the agent

at the end of the trial or some measure that is sampled along the trial. For

instance, when originally introduced, novelty search was demonstrated on a maze

navigation task (Lehman and Stanley, 2011a), where the behaviour characterisation

was a vector containing the final position (x, y) of the robot in the maze. Choosing

the aspects of the behaviour that should be put in the behaviour characterisation

typically requires domain knowledge, and has direct implications on the diversity

of behaviours that will be synthesised by evolution. Excessively detailed behaviour

characterisations can open the search space too much, and might cause the evolution

to focus on evolving behaviours that are irrelevant for solving the problem. On

the other hand, a too simple behaviour characterisation might be insufficient for

accurately estimating the novelty of each individual, and can prevent the evolution

of some types of solutions.

It is important to note that the detail of the behaviour characterisation is not

necessarily correlated with the length of the behaviour vector. In the maze naviga-

tion experiments (Lehman and Stanley, 2011a), the authors expanded the behaviour

characterisation to include intermediate points along the path of an individual

through the maze, instead of just the final position. The authors experimented with

different sampling frequencies, resulting in behaviour characterisations of different

lengths, and the results showed that the performance of the evolution was largely

unaffected by the length of the behaviour characterisation. Although a longer

characterisation increased the dimensionality of the behaviour space, only a small

portion of this space was reachable since adjacent points in a given path were highly

RELATED WORK 19

correlated (i.e. the agent can only move so far in the interval between samples). It

was demonstrated that larger behaviour descriptions do not necessarily imply a less

effective search, despite having a larger behaviour space.

Once objective-based fitness is replaced with novelty, the underlying evolutionary

algorithm operates as normal, selecting the most novel individuals to reproduce.

Over generations, novelty search encourages the population to spread out across

the space of possible behaviours, eventually encountering individuals that solve the

given problem, even though progress towards the solution is not directly rewarded.

In fact, there have been several successful applications of novelty search. The most

notable applications include the evolution of adaptative neural networks (Soltoggio

and Jones, 2009); genetic programming (Lehman and Stanley, 2010b); evolution

strategies (Cuccu et al., 2011); robot body-brain co-evolution (Krcah, 2010); biped

robot control (Lehman and Stanley, 2011a); and robot navigation in deceptive mazes

(Lehman and Stanley, 2008; Mouret, 2011).

Although novelty search does not require a specific underlying neuroevolution

method, as seen in (Cuccu and Gomez, 2011; Mouret, 2011), authors mention

that it benefits from methods that gradually complexificate the neural network.

This complexification imposes some order in the search, because simple networks

are only able to model relatively simple input-output mappings, which typically

translates in simple behaviours, thus temporarily reducing the search space. As

the networks get more complex, more complex behaviours can arise, gradually

opening the behaviour search space. This order also ensures that the evolved

solutions will be as simple as possible, because the simpler behaviours in the search

space will be depleted before advancing to more complex ones. Novelty Search

was initially implemented and tested over NEAT (Stanley and Miikkulainen, 2002),

which employs a complexification mechanism, as we have described in section 2.4.

2.7 The Problem of Vast Behaviour Spaces

One limitation of novelty search is that if the behavioural space is too big or even

infinite, then the search might actually get lost in unfruitful regions, and not explore

the regions that will ultimately lead to the objective (Lehman and Stanley, 2010a;

Cuccu and Gomez, 2011). As such, several works have been built upon novelty

search in an attempt to mitigate this problem, by reuniting novelty search with

the traditional objective-oriented evolutionary approach. In (Mouret and Doncieux,

2012), it is presented a comprehensive empirical study where a large number of

evolutionary techniques inspired on novelty search are compared.

To address the problem of vast behaviour spaces, the authors of novelty search

proposed minimal criteria novelty search (MCNS) (Lehman and Stanley, 2010a).

20 CHAPTER 2

MCNS is an extension of novelty search where individuals must meet some domain-

dependent minimal criteria to be selected for reproduction, thus restricting the

behaviour search space. Cuccu and Gomez (Cuccu and Gomez, 2011) proposed

to base selection on a linear blend of novelty score and fitness score (henceforth

referred to as linear blend). Mouret (Mouret, 2011) proposed novelty-based multi-

objectivisation, which is a Pareto-based multi-objective evolutionary algorithm. The

novelty objective is added to the task objective in a multi-objective optimisation.

These approaches will be detailed next.

2.7.1 Minimal Criteria Novelty Search

Minimal criteria novelty search (Lehman and Stanley, 2010a) is an extension of

NS that relies on a task-dependent minimal criteria. In MCNS, if an individual

satisfies minimal criteria, it is assigned its normal novelty score, as computed in

the original novelty search algorithm. If an individual does not satisfy the minimal

criteria, it is assigned a score of zero and is only considered for reproduction if there

are no other individuals in the population that meet the criteria. In (Lehman and

Stanley, 2010a), the authors applied MCNS to two maze navigation tasks, both

with very large behaviour spaces. The results show that MCNS can mitigate the

problem of massive behaviour spaces, and in such cases, it could reach the goals

more consistently than pure novelty search. It is argued that this extension can

make novelty search more effective without losing its open-ended character.

However, MCNS suffers from two major drawbacks. First, the choice of minimal

criteria in a particular domain requires careful consideration and domain knowledge,

since it adds significant restrictions to the search space. Constraining the search

space too much can be prejudicial to the effectiveness of the evolution. Second, if no

individuals are found that meet the minimal criteria, search is effectively random.

Therefore, it may be necessary to seed MCNS with a genome specifically evolved to

meet the criteria, in case it is unlikely to generate individuals satisfying them in the

initial population.

2.7.2 Linear Blend of Novelty and Fitness

Cuccu and Gomez (Cuccu and Gomez, 2011) proposed a linear blend of novelty and

fitness score, as a form of sustaining diversity and improving the performance of

standard objective search. Their approach constrains and directs the search in the

behaviour space. Each individual i is evaluated to measure both fitness, fit(i), and

novelty, nov(i), which after being normalised (Eq. 2.2) are combined according to

Eq. 2.3.

RELATED WORK 21

fit(i) =
fit(i)− fitmin

fitmax − fitmin

, nov(i) =
nov(i)− novmin

novmax − novmin

, (2.2)

score(i) = (1− ρ) · fit(i) + ρ · nov(i) . (2.3)

The parameter ρ controls the relative weight of fitness and novelty, and must

be specified by the experimenter through trial and error. fitmin and novmin are the

lowest fitness and novelty scores in the current population, and fitmax and novmax

are the corresponding highest scores. In (Cuccu and Gomez, 2011), the linear blend

method was applied to the deceptive Tartarus problem, with a large behaviour

space, and performance was compared for different values of ρ. The best results

were produced with values of ρ between 0.4 and 0.9, reaching the peak performance

with ρ = 0.8, with the novelty score having much more importance in the blend

than the fitness score. The fitness of the solutions achieved with this method was

notably higher when compared to both pure novelty search and pure fitness-based

evolution.

2.7.3 Multi-objectivisation

Another way of combining novelty and fitness is described in (Mouret, 2011), fol-

lowing a multi-objectivisation approach. In this work, the novelty measure and the

fitness value are considered distinct objectives, and are combined via a Pareto-based

Multi-objective Evolutionary Algorithm (MOEA) (Deb, 2001). The Pareto domi-

nance relation ensures that novel but inefficient candidate solutions will be selected,

but also that efficient but less novel ones will be considered equally valuable. The

technique was applied to a deceptive maze navigation problem. Compared with pure

novelty search, the multi-objectivisation obtained only slightly better results.

A similar approach is followed in (Lehman and Stanley, 2011b), where it is used

to evolve robot morphologies. However, this work introduces local competition,

meaning that each individual only competes with individuals of similar morpholo-

gies. The local competition combined with the Pareto multi-objectivisation, proves

to be especially valuable in finding a diversity of robots with very distinct morpholo-

gies. This approach does not seek to find the singular most optimally fit solution,

but rather a wide variety of solutions well-adapted to solve the problem at hand.

2.8 Generic Behaviour Measures

While previously introduced works show that behavioural diversity can contribute

with substantial improvements to evolutionary robotics, the behavioural diversity

22 CHAPTER 2

measures rely on problem-specific descriptions of behaviours. Designing these mea-

sures requires some expert knowledge about the task one is trying to solve. To

counter this issue, a different approach to behavioural diversity was taken in (Don-

cieux and Mouret, 2010). This work introduces generic behavioural similarities that

rely only on sensori-motor values, which are problem independent. The behaviour

description is composed by the set of sensor and effector data sampled over time, and

several similarity measures are proposed, such as Hamming distance; measure based

on Fourier coefficients; state count; and trajectory similarity. It is shown that these

measures can be as effective as domain-dependent behavioural descriptions, and

some of these generic measures can even model the human perception of behavioural

differences. However, the authors note that choosing which similarity measure to use

remains an open question, and this choice has a great impact in the performance of

the evolution. In (Gomez, 2009) is suggested that Normalized Compressed Distance

(NCD) can be a good measure to assess behavioural difference, as it does not

require sequences of the same length and explores only algorithmic regularities in

the sequences.

The empirical study in (Mouret and Doncieux, 2012) also compares task-specific

behaviour distance measures with generic similarity measures, using three different

evolutionary robotics tasks. The results show that task-specific measures are in most

cases better than generic measures, however, it is described one experiment where

task-specific measures are significantly worse. This result highlights one of the main

pitfalls of task-specific measures: when correctly chosen, they may be very efficient,

but their design is not always obvious.

The work described in this thesis only deals with task-specific behaviour dis-

tances. While generic measures seem a promising approach, they are not much

studied in the literature. Since the focus of our work is the application of novelty

search to the domain of evolutionary swarm robotics, we chose to work only with

task-specific behaviour distances, as they are described in the original and most

popular novelty search algorithm.

In this chapter, we have reviewed the domain of evolutionary swarm robotics

and its open challenges. We also presented novelty search, its advantages and

downfalls, and the previous applications of this algorithm. In the next chapter,

we will experiment with the application of novelty search to the domain of swarm

robotics, to study the potential of this approach in overcoming some challenges of

evolutionary robotics, like the problem of deception and bootstrapping. To the best

of our knowledge, novelty search has not been applied to swarm robotics before.

Chapter 3

Novelty Search in Evolutionary
Swarm Robotics

In this chapter, we will apply the original novelty search algorithm (Lehman and

Stanley, 2011a) to the evolution of controllers for a swarm of robots. In our

experiments, we use two different robotics tasks: an aggregation task, where robots

start from random initial positions of a bounded arena, and must form a single

aggregate in the end; and an energy management task, where the robots of the swarm

must share a charging station in order to avoid the depletion of their batteries. We

compare the performance of novelty search with fitness-based evolution, study the

dynamics of novelty search in the exploration of the behaviour space, and address the

challenge of devising behaviour distance metrics for the domain of swarm robotics.

3.1 Aggregation Experiments

In this section, we apply novelty search to the aggregation task and compare it

with fitness-based evolution. Three experiments were performed using different

novelty measures: one highly correlated with the fitness function, an alternative

measure only weakly correlated, and finally a combination of the two. In each

experiment, the performance of novelty search was compared to the performance

of traditional fitness-based evolution. NEAT with random selection is used as a

baseline for performance comparisons.

3.1.1 Aggregation Related Work

Several works describe the evolution of aggregation behaviours in swarms of robots,

where neural networks with fixed topologies are evolved via evolutionary algorithms

guided by fitness. Baldassarre et al. (2003) successfully evolved controllers for

a swarm of robots to aggregate and move towards a light source in a clustered

formation. Trianni et al. (2003) describe the evolution of a swarm of simple robots to

23

24 CHAPTER 3

perform aggregation in a square arena. In those experiment, two different behaviours

were evolved: a static clustering which forms compact and stable aggregates and a

dynamic clustering which creates loose but moving aggregates. Bahgeçi and Şahin

(2005) used a similar experimental setup as (Trianni et al., 2003), and studied

how some parameters of the evolutionary method affect the performance and the

scalability of behaviours in swarm robotic systems.

In these studies, the robots used directional sound sensors and sound signalling

to identify other robots in the environment. Sound signalling enabled robots to

follow sound gradients in order to aggregate. In fact, these works show that neural

networks without any hidden neurons are sufficient to successfully solve the task.

In our work, we make the aggregation task more challenging: we remove the sound

gradient, decrease the range of the sensors, and increase the size of the arena. These

modifications increase the difficulty of the task and may require quite different

strategies for aggregation because it is harder for the robots to find each other

(Soysal et al., 2007).

3.1.2 Experimental Setup

The experiments were conducted with a framework developed in the context of

this thesis, described in Appendix A. The framework is based on the Simbad 3d

Robot Simulator (Hugues and Bredeche, 2006) for the robotic simulations, and on

NEAT4J1 for the implementation of NEAT.

The environment is a 5 m by 5 m square arena bounded by walls. The robots

are modelled based on the e-puck educational robot Mondada et al. (2009), but do

not strictly follow its specification. Each simulated robot has 8 IR sensors evenly

distributed around its chassis for the detection of obstacles (walls or other robots)

within a range of 10 cm, and 8 IR sensors dedicated to the detection of other robots

within 25 cm range. An additional sensor calculates the percentage of nearby robots,

relative to the size of the swarm, within a radius of 25 cm. This implies that each

robot has to know a priori the full swarm size. In this thesis, the authenticity of the

robots is not our primary concern, since the focus is the comparison between various

evolutionary methods, that are used over the same experimental setup. However, the

obstacles sensors could be implemented with active IR sensors, the robots sensors

with passive IR sensors, and the count sensor could be implemented with short-range

communication (Correll and Martinoli, 2007). Figure 3.1 depicts the robot and

sensor setup.

To evaluate each controller, 10 simulations are run with it, varying the number of

robots and their starting positions and orientations. The swarm is homogeneous and

the group size varies from 3 to 10, with each controller being run at least once with

1NeuroEvolution for Augmenting Topologies For Java – http://neat4j.sourceforge.net

http://neat4j.sourceforge.net

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 25

Figure 3.1: The model of the robot used in the aggregation experiments. The robot
itself is depicted in white, its wheels in dark grey, the IR obstacle sensors in red, the
passive IR sensors for detection of other robots in blue, and the grey circle represents
the range of the robot counter sensor.

every group size. The starting positions and orientations are random but ensure a

minimum distance of 30 cm between the robots. Each simulation lasts for 500 s of

simulated time, corresponding to 5000 simulation steps (10 updates per second).

3.1.3 Configuration of the Evolutionary Algorithms

For fitness-based evolution, we used the default NEAT implementation provided by

the NEAT4J library (see Section 2.4 for an explanation of NEAT). Random evolution

was also implemented with NEAT, but in each generation random fitness scores are

assigned to the individuals of the population. For novelty search, we extended the

same NEAT implementation following the description and parameters in (Lehman

and Stanley, 2011a), with a k value of 15 and a dynamic archive threshold (Lehman

and Stanley, 2010a). This dynamic threshold ensures a constant and reasonable

flow of individuals to the archive, at an average rate of 3 individuals per generation.

If in one generation more than 3 behaviours are added to the archive, the archive

threshold is raised by 10%, if no behaviour is added in one generation, the archive

threshold is lowered by 10%.

The NEAT parameters were the same in both evolutionary methods: recurrent

links are allowed, the crossover rate was 25%, the mutation rate 10%, the population

size 200, and each evolution runs for 250 generations. The rest of the parameters

were the default of the NEAT4J implementation. Table 3.1 summarises the NEAT

parameters used in our experiments.

26 CHAPTER 3

Table 3.1: The NEAT parameters used in the experiments. Only the parameters in
italic were modified, the rest are the default in the implementation. See (Stanley and
Miikkulainen, 2002) and http://neat4j.sourceforge.net/documents/config.

html for a detailed explanation of the parameters.

Parameter Value

Probability mutation 0.1
Probability crossover 0.25
Probability add link 0.05
Probability add node 0.03
Probability mutate bias 0.3
Population size 200
Recurrency allowed true
Max weight perturbation 0.5
Max bias perturbation 0.1
Compatibility threshold 0.5
Compatibility change 0.05
Target species count 10
Max generations with no improvement 15
Survival threshold 0.2
Excess coefficient 1
Disjoint coefficient 1
Weight coefficient 0.4

The fitness function that evaluates the performance of the swarm in each simu-

lation is based on the average distance to the centre of mass, also used in (Trianni

et al., 2003). The centre of mass of the swarm is given by:

R =
1

N

N∑
i=1

ri , (3.1)

where N is the number of robots and ri is the position of the robot i.

The average distance to the centre of mass is sampled throughout the simulation

at regular intervals of 10 s. The samples are then combined in a single fitness

value using a weighted average, with linearly more weight towards the end of the

simulation. The purpose of the weighted average is to express that the robots

should aggregate as soon as possible but that it is relatively more important that

they remain aggregated at the end of the simulation. The fitness F of a simulation

with T time steps and N robots is defined as:

F = 1− 1∑
t
T

T∑
t=1

t

T

N∑
i=1

dist(Rt, rit)

N
, (3.2)

where Rt is the centre of mass at each instant, and rit is the position of each robot.

The distance values are normalized to [0,1].

http://neat4j.sourceforge.net/documents/config.html
http://neat4j.sourceforge.net/documents/config.html

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 27

The fitness scores obtained in each of the 10 simulations are combined in a

single value using the harmonic mean. The harmonic mean of a list of numbers

tends strongly towards the smaller elements of the list, mitigating the impact of

large outliers and aggravating the impact of small ones. The choice of this mean is

supported by the results reported in (Bahgeçi and Şahin, 2005), where it is argued

that pessimistic combination functions (that give more importance to the lower

values) are preferable.

As mentioned in Section 2.6, the novelty measure characterises the distance

between one controller and the others in behaviour space. To calculate the distance

in behaviour space, we use the Euclidian distance between vectors that represent

the level of aggregation along time. These vectors are built by measuring behaviour

features at regular intervals throughout the simulation (every 10 s). We devised three

ways of measuring the group behaviour, which will be presented in the next sections.

As 10 simulations are conducted to evaluate each controller, its behaviour vector is

the average of the vectors obtained in each of the simulations. In order to compare

novelty search with the fitness-based evolution, the controllers evolved by novelty

search were also evaluated with the fitness function F . It is important to note that

the fitness scores did not have any influence in the novelty search experiments, and

the novelty scores did not influence fitness-based evolution.

3.1.4 The First Experiment

The first behaviour measure uses a metric similar to the fitness function; a vector is

built with the average distance to centre of mass sampled throughout the simulation.

Unlike the fitness function, the behaviour measure does not have any bias towards

the end of the simulation. Considering a simulation with N robots and T temporal

samples, the behaviour vector bcm that characterises a controller is given by:

bcm =
1

N

[
N∑
i=1

dist(R1, ri1), · · · ,
N∑
i=1

dist(RT , riT)

]
. (3.3)

In our experiments, the sampling rate was 10 s and the simulation time 500 s,

resulting in a behaviour vector of length 50.

The fitness scores of the highest scoring individuals evolved using novelty search

and fitness driven evolution are depicted in figure 3.2. The statistic used for a fair

comparison is the best fitness score found so far, from the start of the evolution

until the current generation. Since novelty search does not explore the search space

following the fitness gradient, using the statistic of the best fitness found in each

generation (one of the most common measures) would not result in a fair comparison.

The evolution was tested with more generations but there was no perceivable change

in the fitness values after the 250th generation. Individuals with fitness value over

28 CHAPTER 3

0 50 100 150 200 250

0.
55

0.
65

0.
75

0.
85

Generation

Fi
tn

es
s

S
co

re

Random
Fitness
Novelty CM

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Random Fitness Novelty
CM

Figure 3.2: Fitness trajectories of novelty search with the centre of mass novelty
measure, fitness-based evolution, and evolution with random selection. Left: Fitness
value of the best individual found so far in each generation, with each evolutionary
method. The values are averaged over 10 evolutionary runs for each method. Right:
Boxplots with the best fitness score found in each evolutionary run, for each method.

0.8 are reasonable solutions to the task. Note that although the minimum fitness

value is ≈ 0.05, the best fitness on an initial random population is on average ≈ 0.6.

This happens not because the task is too easy, but because in this task, the robots

doing nothing at all and staying in their initial positions (which is one of the most

simple input-output mappings) can be more beneficial than many other complex

behaviours.

There is not a big difference between the fitness of the controllers evolved with

novelty search and fitness-based evolution. The difference between the fitness tra-

jectories of both methods is not statistically significant (Student’s t-test with p-

value < 0.05). Both methods are significantly better than the random evolution

(p-value < 0.01). The boxplots show that novelty search is fairly consistent in

achieving high fitness scores. Fitness-based evolution also shows a good consistency,

but there was one evolutionary run (outlier in the boxplot) where the best fitness

score was very low, probably caused by premature convergence of the population.

If we analyse the behaviours of the best controllers evolved by both methods,

significant differences are found, despite the similar fitness values. In the fitness-

based evolution, the highest scoring controllers were always very similar, displaying

only one distinctive behaviour: the robots explore the environment in large circles,

and form static clusters when they encounter one another. If the cluster size is

less than half of the swarm size, the robots abandon it after a while and start

exploring again. The best behaviour found by the random evolution consisted of

robots navigating in circles in the arena, and when two collide, they stay together

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 29

in that place. This typically results in bad fitness values because multiple clusters

are formed, often far from each other.

Novelty search, on the other hand, found several distinct high-scoring controllers

that could perform the aggregation task. Each evolutionary run of novelty search

could evolve several different solutions, finding many (sometimes all) of the solu-

tions described next and variants of them. Figure 3.3 also illustrates the following

behaviours.

1. The robots go straight forward until they hit the wall, and then, depending

on the impact angle, they stay there for a while or start moving along the wall

until they find other robots. When they do, they stop and form an aggregate

there. If no robot stays stopped near the wall long enough, this behaviour

drastically fails, as all robots start moving alone along the wall.

2. Similar to (1), but when they meet each other they continue to follow the wall

until they hit a corner, aggregating there.

3. Similar to the best behaviour evolved by fitness-based evolution, but without

splitting the small clusters. This naturally results in a worse solution, since

more than one small aggregates can be formed.

4. Similar to (3), but navigating in the environment only in straight trajectories

instead of curves. Whenever a robot hits a wall, it rebounds with an angle of

90º.

It is important to note that none of these behaviours (including the best solution

evolved by fitness-based evolution) are perfect, failing frequently by forming more

than one aggregate. The success rate seems to be highly dependent on the size of

the swarm. The solutions tend to fail more frequently as the swarm size approaches

either the maximum (10) or the minimum size (3).

The main difference between the behaviours was that novelty search evolved

controllers that exploited the wall to achieve better solutions, while in the fitness-

based evolution robots always avoided navigating near the walls. It is interesting

to note that none of the related works in evolutionary robotics reports aggregation

behaviours that exploit the walls of the arena. However, this behaviour represents

a promising solution, since it can even be found in biological systems, such as in

groups of cockroaches (Jeanson et al., 2005).

Our hypothesis is that learning to navigate along the walls requires going against

the fitness gradient. If the robots go towards the walls, they will often end up in

different ones, and staying there will result in a low fitness because the centre of

mass will be in the centre of the arena, far from the robots. On the other hand,

30 CHAPTER 3

(1) (2)

(3) (4)

Figure 3.3: Some of the solutions found with novelty search with the centre of mass
behaviour measure. Each line represents the trajectory of the robot throughout the
simulation. The circle depicts the initial position of the robot and the square its
final position.

avoiding the walls results in better fitness because they will be on average closer

to the centre. If the fitness evolution misses the stepping stone of being close to

the walls, it will hardly be able to reach behaviours that require the use of walls to

achieve aggregation. A good analogy that explains this problem is given in (Lehman

and Stanley, 2011a):

”Consider fingers stuck within a Chinese finger trap. While the goal is

to free one’s fingers, performing the most direct action of pulling them

apart yields no progress. Rather, the necessary precursor to solving the

trap is to push one’s fingers together, which seems to entrap them more

severely. In this way, the trap is deceptive because one must seemingly

move farther from the goal to ever have the hope of reaching it.”

To confirm our hypothesis, we analysed the behaviour space explored in novelty

search and in fitness evolution. To facilitate this analysis, all the individuals evolved

in fitness evolution were also evaluated with the same behaviour measure that was

used in novelty search. Since each behaviour description is a long vector, we applied

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 31

a dimensionality reduction method in order to visualise the behaviour space. We

used a Kohonen self-organising map (Kohonen, 1990), a type of neural network

trained using unsupervised learning to produce a two-dimensional discretisation of

the input space of the training samples, preserving the topological relations.

The Kohonen map was trained with the behaviours found both in novelty search

and in fitness evolution. However, since the number of evolved individuals was too

large (200 individuals per generation, 250 generations, 10 evolutionary runs, 2 evo-

lutionary methods, totalling 1 million individuals), it was computationally infeasible

to build the Kohonen map with all the individuals. To overcome this limitation, it

was taken a random sample of 100.000 individuals from each evolutionary method,

and then the map was built with these 200.000 individuals. Each random sample of

individuals was then mapped individually to the trained map. The resulting maps

can be seen in Figure 3.4.

Fitness-based evolution Novelty Search - CM measure

Figure 3.4: Kohonen maps representing the explored behaviour space in fitness-
based evolution (left) and in novelty search with the centre of mass measure (right).
Each circle is a neuron that is characterised by the vector depicted by the line inside
(the average distance to the centre of mass over time). Each behaviour vector is
mapped to the most similar neuron. The darker the background of a neuron is, the
more behaviours were mapped to it. The behaviour patterns associated with higher
fitness scores are highlighted with a bold circle.

As it can be seen in the maps, the fitness-based evolution avoids the zones

where the average distance to the centre of mass rises beyond the initial value,

preventing the evolution of good solutions that might require traits found only in

those behaviour zones. The evolution is much more focused in behaviours that

express a monotonic fall of the average distance to the centre of mass, which is

consistent with the observable performances of the best controllers. This is an

important result because it demonstrates that the fitness function is preventing the

evolution of certain types of solutions. On the other hand, novelty search is not

subject to this fitness pressure, and can therefore explore and discover a wide range

32 CHAPTER 3

of solutions to the task.

In our version of the aggregation task, the convergence of fitness-based evolution

to one type of solutions does not have harmful consequences to the evolution, since

the fitness function is not deceptive and can lead the search towards other good

solutions. However, it is clear that there is one class of solutions that is being

hindered by the fitness function. If that class of solutions was essential for the

solution of the problem, fitness-based evolution would have most likely failed. In

Section 3.2, we will show an example of the harmful consequences of premature

convergence.

3.1.5 The Alternative Novelty Measure

We devised a new behaviour description, based on the metric used in (Bahgeçi and

Şahin, 2005), in order to determine how the novelty measure influences the evolved

solutions. The new description consists of measuring the number of robot clusters

along the simulation. Two robots belong to the same cluster if the distance between

them is less than 30 cm. Applying this iteratively we can obtain the number of

clusters. The number of samples was the same as in our previous experiments (50).

The behaviour vector bcl is described by:

bcl =
1

N
[clustersCount(1), · · · , clustersCount(T)] . (3.4)

With this new measure, the best fitness score found in each evolutionary run was

on average lower than novelty search with the centre of mass behaviour measure,

but an insufficient number of trials were performed to claim statistical significance

beyond p < 0.1. The fitness trajectories are depicted in Figure 3.5. However, the

boxplots show that novelty search with the centre of mass novelty measure achieves

high fitness scores much more consistently than novelty search with the number of

clusters measure. The explanation for this will be presented ahead. Analysing the

evolved behaviours, it is possible to identify significant differences, when compared

to the behaviour evolved with the centre of mass measure. The following distinct

solutions were evolved (Figure 3.6):

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 33

0 50 100 150 200 250

0.
55

0.
65

0.
75

0.
85

Generation

Fi
tn

es
s

S
co

re

Random
Fitness
Novelty CM
Novelty CL

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Random Fitness Novelty
CM

Novelty
CL

Figure 3.5: Fitness trajectory of novelty search with the number of clusters novelty
measure. Left: Fitness trajectory of the best individual found so far in each
generation, with each method. The values are averaged over 10 evolutionary runs
for each experiment. Right: Boxplots with the best fitness score found in each
evolutionary run, for each method.

1. Each robot goes towards walls, navigates along it, and when it finds another

robot, they form a single file, keeping a fixed distance. The file keeps moving

along the walls of the arena. This fails frequently, because the robots all move

at the same speed, and as such they may never find one another. Also, the

fitness score is not good when the swarm is big, since a long single file has a

high average distance to the centre of mass.

2. The robots navigate in circles in the environment, forming a static cluster

when they sense each other. This often results in more than one aggregate,

and consequently, a low fitness score.

3. Similar to (2), but they randomly abandon their respective clusters, which

partially mitigates the problem of forming many small static clusters. How-

ever, it can create another undesirable situation, where there is a single big

cluster and one or two robots outside the cluster wandering in the arena.

4. The robots navigate in circles, and when two robots meet at some distance,

one tries to follow the other. When robots collide, they form a cluster and

remain aggregated.

Most behaviours were quite different from the ones found in the previous ex-

periment. The reason the previous experiment did not find these behaviours (and

vice-versa) is conflation (see Lehman and Stanley (2011a)). Conflation occurs

when individuals with distinct observable behaviours have very similar behaviour

34 CHAPTER 3

(1) (2)

(3) (4)

Figure 3.6: Some of the solutions found with novelty search with the number
of clusters behaviour measure. Each line represents the trajectory of the robot
throughout the simulation. The circle depicts the initial position of the robot and
the square its final position.

descriptions. The consequence is that an individual with a distinct observable

behaviour might not be considered novel by the novelty measure, thus eventually

disappearing from the population. Conflation can represent both an advantage

because it reduces the search space, and a disadvantage, when different successful

solutions or important stepping stones are dismissed. In our experiments, what

happens is that the centre of mass novelty measure is conflating some solutions

that are not conflated in the clusters measure and vice-versa, thus evolving different

solutions in both the experiments.

Two examples of behaviours that can be conflated are shown in Figure 3.7. When

the centre of mass measure is used, for example, the clustering of the robots is

irrelevant. The search will therefore avoid behaviours that have an already explored

centre of mass progression but differ in the clustering of the robots, possibly by-

passing interesting solutions. This effect can also be seen in the evolved behaviours:

with the centre of mass measure, there were more solutions that exploited the use of

the walls, because navigating near them has a great impact in that novelty measure;

while with the number of clusters measure, the solutions focused on the interactions

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 35

Figure 3.7: An illustration of conflation in the centre of mass measure (left) and in
the number of clusters measure (right). In both cases, if the robots evolved from the
left configuration to the right, that change would not be captured by the respective
behaviour description, despite potentially being relevant.

between the agents and clusters, including following each other and leaving the

cluster.

Conflation is also responsible for the lower fitness scores obtained with the

number of clusters novelty measure. Individuals with the same behaviour character-

isation can display different observable behaviours and can have very distinct fitness

scores. The consequence is that solutions that are novel are not being rewarded as

such, regardless of having a different fitness score of the other individuals in the

population (or the archive) with a similar behaviour characterisation. Consider for

instance the case in Figure 3.7 – right. If that was the final position of the robots,

the first sample would have a good fitness score, while the second sample would not,

despite having the same number of clusters.

The consequence is that some evolutionary runs might achieve high fitness scores,

while others might not, depending on the order good solutions are evolved. When

a good and intuitively novel solution appears, its novelty score still depends on the

behaviour patterns previously explored. If the originality of that good solution is

captured by the novelty measure, it will receive a high novelty score and it will be

further explored. Otherwise, if the novelty measure fails to reflect the originality of

the solution (i.e. the solution is conflated), it will receive a low novelty score, and a

promising solution for the task might get discarded. The outcome of this undesirable

conflation is reflected in the boxplot in Figure 3.5, where it is shown that novelty

search with the number of clusters measure is fairly inconsistent in achieving high

fitness scores. The centre of mass behaviour measure is less prone to suffer from this

effect, since the behaviour characterisation is closely related to the fitness score of

the individuals.

36 CHAPTER 3

3.1.6 Combining novelty measures

In order to reduce conflation, we setup a new experiment with a richer behaviour

description, by combining the novelty measures proposed in the two previous exper-

iments. To combine the two behaviour descriptions presented before in Equations

3.3 and 3.4, we simply concatenate the two vectors. But as the novelty measure is

based on the Euclidean distance between the vectors, caution must be displayed to

ensure that both components have similar contributions to this distance. Namely,

we want the vectors to have the same length and the items in the vectors to have the

same range, which can be achieved by normalising each of the components. Note

that both bcm and bcl had the same length (50) and that each element the vectors

ranged from 0 to 1. The new behaviour description bcomb is thus defined as:

bcomb = (bcm,bcl) . (3.5)

The fitness performance of the search with this new measure was improved,

evolving individuals with high fitness scores much sooner than in the other experi-

ments, as seen in Figure 3.8. The fitness values in novelty search were significantly

higher than fitness-based evolution until generation 100. After that, the difference

is not statistically significant. Novelty search with the combined measure is also

fairly consistent in achieving high fitness scores. This performance improvement

is justified by the reduction of conflation. Remind that if novelty search evolves

individuals that have a behaviour characterisation similar to one already present in

the population or the archive, they will receive a low novelty score, regardless of

being actually different and having a distinct fitness score. The low novelty scores

can hinder the exploration of such solutions, negatively affecting the performance of

the search. With a more detailed behaviour characterisation, the novelty score of the

individuals could be measured with more accuracy, reducing conflation. This caused

the evolution to reach good solutions more consistently, as there is less chance that

those solutions are conflated.

It is also interesting to look at the explored behaviour space (Figure 3.9). We

can see that there was a greater diversity of solutions, exploring many combinations

of the progression of the number of clusters and the distance to the centre of

mass. Novelty search explored the behaviour space much more uniformly, while

fitness-based evolution spent much time in rather uninteresting behaviour zones

(bottom left). On the other hand, novelty search did spend less time exploring the

higher fitness behaviour zones (top left). Observing some of the best controllers in

action, we notice that this combined measure seems to have evolved all the successful

behaviours that were generated using the previous two measures independently.

To understand why novelty search with the combined measure was faster than

fitness-based evolution in finding good individuals, we evaluated the network com-

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 37

0 50 100 150 200 250

0.
55

0.
65

0.
75

0.
85

Generation

Fi
tn

es
s

S
co

re

Random
Fitness
Novelty CM
Novelty CL
Novelty CMCL

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Random Fitness Novelty
CM

Novelty
CL

Novelty
CMCL

Figure 3.8: Fitness trajectory of novelty search with the combined novelty measure.
Left: Fitness value of the best individual found so far in each generation. The values
are averaged over 10 evolutionary runs for each experiment. Right: Boxplots with
the best fitness score found in each evolutionary run, for each method.

Fitness-based evolution Novelty Search CM-CL measure

Figure 3.9: The explored behaviour space in novelty search with the combined
novelty measure and in the fitness-based evolution. In each neuron, the left half is
the number of clusters measure and the right half is the centre of mass. The darker
the neuron background is, the more behaviours were mapped to it. Neurons with
the best behaviours have a bold circle.

plexity of the solutions. We analysed the first individual to appear in each evo-

lutionary run with a fitness score above some threshold. The results are show in

Table 3.2.

We can see that on average, novelty search finds good individuals with less

complex neural networks. For example, novelty search finds the first good individual

(with fitness value over 0.8) on average with 22.5 neurons and 38.4 links, while the

fitness-based evolution finds the first good individual on average with 26.6 neurons

and 44 links. Taking in consideration that the initial networks (without hidden

38 CHAPTER 3

Table 3.2: Network complexity of the first individual evolved with a fitness score
above the threshold, in each evolutionary method (Fit – Fitness-based evolution;
NS – Novelty Search). The values are averaged over 10 evolutionary runs for each
method.

Threshold Generation Neurons Links
Fit NS Fit NS Fit NS

0,60 4,38 3,13 19,63 19,13 34,63 34,13
0,65 19,63 9,13 21,38 20,00 36,63 35,13
0,70 41,00 15,63 23,14 21,13 38,71 36,25
0,75 56,86 35,00 24,71 21,13 40,86 36,75
0,80 94,43 71,88 26,57 22,50 44,00 38,38
0,825 131,43 111,00 28,00 24,20 46,86 41,8

neurons) have 19 neurons and 34 links, these differences can be considered quite

pronounced.

These differences in network complexity can offer an explanation to the steeper

fitness trajectory of novelty search. Due to the incremental nature of NEAT, more

complex networks take more generations to evolve. If fitness-based evolution starts

to converge to more complex structures, it takes more time to evolve effective

controllers. As novelty search does not converge, and explores the simple solutions

before moving on to more complex ones, it is more capable of finding solutions with

less network complexity. Looking at the early solutions found by novelty search,

we discovered that in some cases they are the ones that the fitness-based evolution

could not evolve at all (behaviours that used the wall). In other cases, they were

apparently the same solutions that the fitness-based evolution would find in later

generations with more complex networks.

3.2 Energy Management Experiments

In this section, we study the application of novelty search to a different swarm

robotics task, in which multiple robots must share a single battery charging station

in order to survive. The charging station only has room for one robot and the robots

must therefore evolve effective coordination strategies.

3.2.1 Energy Management Related Work

The problem of autonomous robot charging and resource conflict management is

widely studied in the literature. In (Cao et al., 1997), resource conflict is identified

as one of the fundamental challenges in the design of cooperative behaviours in

multi-robot systems. Resource conflict arises when a single indivisible resource (in

our experiments, the charging station) is requested by multiple robots at the same

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 39

time.

The problem of sharing a charging station in particular is studied in (Muñoz

Meléndez et al., 2002). In this work, a few strategies are proposed for a group of three

robots to share a charging station using simple mechanisms, without communication.

These strategies share a basic approach: each robot seeks the charging station when

its energy level is below some threshold and leaves the charging station when the

energy level reaches some other pre-defined threshold. While this approach works if

the energy levels of the robots are not synchronised, it may fail if the robots start

with the same energy levels. The paper also proposes some strategies to create this

alternation. In (Michaud and Robichaud, 2002), the problem of sharing a charging

station is also addressed. In this work, more complex strategies are proposed, with

the robots being able to reason and predict about their energetic capabilities.

To the best of our knowledge, there is only one previous work that uses artificial

evolution to approach this task. In (Bastos, 2011), genetic algorithms are used

to evolve neural controllers for robots of a swarm that should perform an energy

management task. Multiple charging stations are present in the environment, each

one with capacity for two robots. The swarm is composed by 5 robots, each one

equipped with sensors with a maximum range bigger than the size of arena. The

maximum autonomy time of the robots is also just slightly inferior to the simulation

time. This set of factors oversimplifies the problem, and the maximum fitness score

can be achieved with only 10 generations of the evolutionary algorithm. Despite

addressing a similar task, our experimental setup is much more demanding, and as

such we can not establish comparisons with Bastos’ work.

3.2.2 Experimental Setup

The experiments used a resource sharing task, where a swarm of 5 homogeneous

robots must coordinate in order to allow each member periodical access to a single

battery charging station. The charging station only has room for one robot. To

survive, each robot will have to possess several competencies: navigate and avoid

walls, find and position itself on the charging station to recharge, and effectively

share the common resource with the other robots.

The environment is a 4 m by 4 m square arena bounded by walls. The charging

station is placed in the centre of the arena. The robots are based on the physical

characteristics of the e-puck educational robot (Mondada et al., 2009), but do

not strictly follow its specification. Each simulated robot has 8 IR sensors evenly

distributed around its chassis for the detection of obstacles (walls or other robots)

up to a range of 10 cm, and 8 sensors dedicated to the detection of other robots up

to a 25 cm range.

Each robot starts with full energy (1500 units) and lose energy over time. In

40 CHAPTER 3

Figure 3.10: The energy management experimental setup. The grey circle in the
middle is the charging station. The black filled circles are the robots (starting
positions vary in each simulation). The solid circle around the top left robot
represents the range of the obstacles sensor, the dashed circle represents the range of
the robots sensor and the dotted circle represents the range of the charging station
sensor.

order to charge, the robots must remain still (maintain the same position) inside the

charging station, which has the same diameter as a robot. Each robot is additionally

equipped with (1) a ring of 8 sensors for the detection of the charging station up to

a range of 1 m; (2) a boolean sensor that indicates whether the robot is inside the

charging station or not; (3) an internal sensor that reads the current energy level

of the robot. If a robot runs out of energy, it stops working, and remains immobile

until the end of the simulation. The experimental setup is depicted in Figure 3.10.

We test each controller 10 times in varying initial conditions. In each simulation,

the initial position and orientation of each robot was randomised. The set of possible

initial positions only includes those from where a robot cannot sense the charging

station. Each simulation lasts for 400 s of simulated time at 10 updates per second,

resulting in 4000 simulation steps.

We used two slightly different setups in our experiments. In setup A, the robots

lose a fixed 10 units of energy per second. In setup B, the robots lose energy

proportionally to the power used by their motors, at a rate between 5 and 10 units

of energy per second. In both setups, the charging station charges a robot at a rate

of 100 units of energy per second.

3.2.3 Configuration of the Evolutionary Algorithms

The evolutionary parameters (of NEAT and novelty search) are the same as the

aggregation experiments, described in Section 3.1.3.

The fitness function F used to evaluate the controllers is a linear combination of

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 41

the number of robots alive at the end of the simulation and the average energy of

the robots throughout the entire simulation:

F = 0.9 · |aT |
N

+ 0.1 ·
T∑
t=1

N∑
i=1

eit
TNemax

, (3.6)

where |aT | is the number of robots alive in the end of the simulation, T is the length

of the simulation, N is the number of robots in the swarm, eit is the energy of the

robot i at instant t, and emax is the maximum energy of a robot.

The average energy component of the fitness function, despite not being directly

associated with the objective of survival, had to be included in order to bootstrap the

evolution. Due to the difficulty of the setup, it is unlikely that the initial population

contains solutions where at least one robot survives until the end. Analysing the

initial populations, we calculated that the probability of randomly generating a

solution where at least one robot survives until the end (in any of the trials) is

0.58% in setup A, and 0.89% in setup B. As such, it was necessary to add another

component (with low weight) that could distinguish the equally poor solutions.

The behaviour characterisations, used to compute the behavioural difference in

NS, followed a different principle from the aggregation experiment. While in the

previous task there was a clear objective that the robots should achieve at the

end (aggregate), in this task we want the robots to evolve a stable behaviour that

endures through time, without a defined end. In the previous experiments, we

measured behaviour features sampled through time, to describe the progression of

the swarm towards the final aggregation state. In this experiment, we will only use

single-value measures that describe the stable behaviour of the swarm.

The behaviour characterisation is closely related to the fitness function. It is

composed by just two measures, normalised between 0 and 1: (1) the number of

robots alive at the end of the simulation; and (2) the average energy of the alive

robots throughout the simulation. It is defined by:

bsimple =

(
|aT |
N

,
A∑
t=1

∑
i∈at

eit
A · |at| · emax

)
, (3.7)

where A is the number of time steps in which there was at least one robot alive and

at is the set of alive robots at instant t.

3.2.4 Overcoming Deception with Novelty Search

To study how novelty search and fitness-based evolution are influenced by the

deceptiveness of the problem, we evaluated and compared their performance in two

different setups (described in Section 3.2.2). These setups, despite being intuitively

similar, originate quite different fitness landscapes. The results can be seen in

Figure 3.11.

42 CHAPTER 3

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non−Variable energy (A)

Generations

Fi
tn
es
s

Fitness
Novelty
Random

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Variable energy (B)

Generations

Fi
tn
es
s

Fitness
Novelty
Random

Random Fit Nov Random Fit Nov

0.
2

0.
4

0.
6

0.
8

1.
0 Non−Variable energy (A) Variable energy (B)

Figure 3.11: Top: Fitness score of the best individual found so far until each gen-
eration, with each evolutionary method. Values are averaged over 10 evolutionary
runs with each method. Bottom: Boxplots with the best fitness score found in each
evolutionary run.

Non-variable Energy Spending

In the setup A, fitness-based evolution can achieve on average higher fitness scores

than novelty search. Novelty search, on the other hand, can bootstrap faster,

achieving higher fitness scores until generation 100. The statistical significance of

these differences could only be verified with p-value < 0.1 (Student’s t-test). Both

methods are significantly better than evolution with random selection (p-value <

0.01). The extremely poor performance of random evolution highlights the difficulty

of the task. To acquire the ability of recharging, the robots must know how to seek

the charging station (which requires the ability of avoiding the walls), and once they

are close to it, they must position themselves inside the station and remain still. In

order for more than one robot to survive, the robots should be capable of sharing

the charging station, which includes determining when to go charge and when to

leave the station.

The maximum fitness score in practice is about 0.97, which corresponds to all

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 43

robots surviving until the end of the experiment, while maintaining high levels of

energy. The best solutions evolved by both evolutionary methods were on average

far from this maximum score. This means that the best solutions were mediocre,

with only about 3 robots surviving until the end of the experiment. The solutions

evolved by novelty-search and fitness-based evolution are similar. It is often hard

to make sense of the group dynamics in the evolved solutions, because sometimes

robots take unexpected and unintelligible actions. However, it is possible to identify

some patterns of behaviour (Figure 3.12):

1. The robots start navigating in circles until they sense the charging station, and

when they do, they head towards it and charge. If another robot is already

in the charging station, the first leaves and the new one takes its place. The

robot that leaves moves around in the arena and then returns to the station.

2. The robots search for the charging station in straight trajectories and head

towards it when they find it. If another robot is already charging, the first

leaves and starts surrounding the charging station closely. It tries to charge

again when its energy level is below some threshold.

3. The robots start navigating in circles to find the charging station. Once a

robot is in the charging station, it remains there until its energy is above some

threshold and then leaves. When a robot leaves, it moves away just a little

from the station and remains keeps its position (with small movements) until

its energy is almost depleted.

(1) (2) (3)

Figure 3.12: The patterns of behaviour corresponding to the best solutions found
by novelty search and fitness-based evolution. Each line represents the trajectory of
the robot throughout the simulation. The circle depicts the initial position of the
robot and the square its final position.

These distinct behaviours all have the same shortcoming: sometimes the robots

cannot find the charging station initially and die without ever recharging; when

44 CHAPTER 3

leaving the charging station sometimes they get lost and cannot return to it; in some

cases one robot dies too close to the charging station, preventing the others from

charging, and the whole swarm dies. Both novelty search and fitness-based evolution

could find solutions with the above described behaviour patterns. However, the

trajectories in finding the charging station and leaving it may differ, as well as

the energy thresholds for trying to charge and for leaving the station. Observing

the solutions in action, there was not a perceivable difference in the quality of the

solutions found by fitness-based evolution and novelty search, respectively.

Variable Energy Spending

In the setup with variable energy (setup B), the task is actually easier, since the

robots can spend less energy than in setup A. Their energy consumption is a function

of the wheels speed, with the maximum rate of consumption being equal to that in

setup A. However, fitness-based evolution performs much worst in setup B. This

happens because new local maxima are created in the fitness landscape, and the

evolution gets stuck in them. Figure 3.13 depicts the individual fitness trajectories

obtained with fitness-based evolution. We can see that half of the evolutionary runs

fail to achieve fitness scores higher than the best fitness in the initial population,

failing to bootstrap the evolution.

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generations

Fi
tn

es
s

Figure 3.13: The fitness trajectories (best fitness found so far in each generation)
of each evolutionary run of fitness-based evolution, using the setup B. Four out of
eight evolutionary runs could not bootstrap the evolution (some lines overlap).

Observing in action the best controllers evolved by the evolutionary runs that

prematurely converged, we can identify the following behaviours: (1) The robots

move slowly in small circles, and if they eventually get close to the charging station,

they go towards it and stay there until the end, causing the other robots do die;

(2) the robots do not move at all. The dead end in the fitness landscape can be

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 45

easily identified: the evolution starts to converge to controllers that reduce the wheel

speed in order to save energy. Saving energy will cause the robots to remain alive

longer, thus increasing the fitness score of the solution just slightly. But reducing

the wheel speed too much prevents the robots of charging, and results in very low

fitness scores. Once the population starts converging to the local maxima of saving

energy, it can hardly get away from it, since reducing the movement speed is adverse

to finding the charging station.

With the setup A (non-variable energy), the average energy component of the

fitness-function helped in bootstrapping the evolution, as the only possible way of

increasing the average energy was for the robots to use the charging station. The

population evolved in the direction of learning how to charge efficiently, which is

clearly a good step towards the solution of the problem. With the setup B (variable

energy), there was another (easier) way of increasing the average energy: the robots

can reduce their movement speed. The bootstrapping component of the fitness

function actually had an adverse effect, and lead the population to a very premature

local maxima.

The performance of novelty search, on the other hand, was not affected by

the variable energy, since the evolution is divergent and does not get stuck in

local maxima. It confirms that novelty search can successfully overcome deception

and bootstrap the evolution in situations where fitness-based evolution can not.

However, analysing the best evolved solutions in action reveals that they are very

similar to the ones previously presented in Figure 3.12. The solutions with higher

fitness scores did not seem to take advantage of the variable energy. Intuitively, one

of the best solutions for this problem would be for the robots to remain still after

leaving the charging station, in order to conserve energy, and only move again when

their energy levels reach a low level. Nevertheless, this pattern of behaviour was

poorly explored by evolution. The explanation for this is conflation – as movement

speed is not directly contemplated in the novelty search distance metric, there is not

a direct pressure to explore that possibility.

To study the explored behaviour space, the individuals evolved in fitness-based

evolution were also evaluated with the behaviour measure used in novelty search.

We randomly sampled 100.000 individuals evolved by each evolutionary method,

and then mapped them in the corresponding plot, according to the two components

of the behaviour measure. The resulting plots can be seen in Figure 3.14.

The analysis of the explored behaviour space confirms that novelty search was

not significantly affected by the inclusion of variable energy, as the space exploration

is very similar in both setups. When compared to fitness-based evolution in the

non-deceptive setup (A), novelty search explores a greater diversity of solutions

where only one robot survives. However, since novelty search spends much time

46 CHAPTER 3

Figure 3.14: Behaviour space exploration with both setups and both evolutionary
methods. The x-axis is the average energy level of the robots still alive, the y-axis is
the number of robots alive at the end of the simulation. Each individual is mapped
according to its behaviour. Darker zones mean that there were more individuals
evolved with the behaviour of that zone.

exploring this mediocre behaviour zone, it fails to explore adequately the behaviour

zones where more robots survive (associated with higher fitness scores). This can

explain why novelty search has a faster bootstrap than fitness-based evolution, but

fails to achieve higher fitness scores in end. In Chapter 4, we will address this

problem in greater detail.

The plot of fitness-based evolution in setup B also confirms the prominent local

maxima identified before: the robots do not move at all (alive = 0 and average

energy ≈ 700)); and only one robot survives (alive = 1 and average energy ≈ 1000).

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 47

3.2.5 A More Rich Behaviour Characterisation

In the previous section, we saw that novelty search fails to explore some interesting

behaviour zones, such as solutions that exploit the movement speed of the robots

in order to save energy. To try to overcome this limitation, we devised a new

behaviour measure that describes with greater detail the behaviour of the swarm.

The new behaviour characterisation is an extension of the Equation 3.7, composed

with two more measures, completely independent from the fitness function: (1) the

average movement of the alive robots throughout the simulation; and (2) the average

distance of the alive robots to the charging station. The movement of a robot in a

given instant is determined by the average wheel speed at that instant. These two

measures are also normalised between 0 and 1.

This new measure was experimented only with the setup B (variable energy

spending). The comparison with the previous measure and fitness-based evolution

is depicted in Figure 3.15.

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generations

Fi
tn

es
s

Fitness
Nov simple
Nov extra

Fit Nov Simple Nov Extra

0.
2

0.
4

0.
6

0.
8

Figure 3.15: Left: Fitness score of the best individual found so far until each
generation, using the setup B, and different novelty measures. Values are averaged
over 10 evolutionary runs. Right: Boxplots with the best fitness score found in each
evolutionary run.

The fitness performance of novelty search with the new behaviour measure was

worse than novelty with the more simple measure. The more complex measure can

actually be more effective in the early stages of the evolution, but then the evolution

seems to get lost in the behaviour space and fails to find solutions with higher fitness

scores. To confirm this hypothesis, we analysed the explored behaviour space. Since

each behaviour is now 4-dimensional, a dimensionality reduction method had to

be adopted for visualisation. The visualisation methodology was similar to the one

described in Section 3.1.4. A Kohonen map was built with all the behaviours evolved

48 CHAPTER 3

by novelty search, and then it was counted how many behaviours were mapped to

each unit of the map. The resulting plot is in Figure 3.16.

Energy
Survivors

Movement
Distance

Behaviour space exploration

Figure 3.16: Kohonen map representing the explored behaviour space with novelty
search with the expanded behaviour measure. Each circle represents a behaviour
pattern, depicted by the 4 slices of different colour. Each slice represents one
component of the behaviour measure – the bigger the slice, the bigger the value
of that component. The darker the background of a circle is, the more individuals
were evolved with the corresponding behaviour.

The analysis of the behaviour space reveals that novelty search successfully

explored many different behaviours – a notable variety of combinations of average

energy, movement and distance to the charging station. However, the number of

surviving robots at the end was the least explored component of the behaviour

measure. In almost all the behaviour patterns, the number of surviving robots stayed

between 0 and 1. Only one pattern has about 3 surviving robots (the circle with the

largest yellow slice), and this pattern was the least common in the evolution. This

analysis confirms that novelty search did get lost exploring behavioural possibilities

associated with low fitness scores.

The explanation for this phenomena is that the two new components that were

added to the behaviour characterisation are mostly orthogonal to the component

more related with the performance of the solutions (the number of surviving robots).

As such, novelty search can find novelty by exploiting the three other components,

without having to explore the component of the number of surviving robots. Further-

more, the three other components are easier to explore than the number of surviving

robots, since they require less coordination among the robots. Consequently, novelty

search ends up exploiting the three components less correlated with the performance

of the solution, and does not exert sufficient selective pressure to adequately explore

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 49

the single component that is directly related with the performance of the solutions.

In this case, reducing conflation was actually not beneficial for the performance of

novelty search, as it significantly decreased the attention from exploring the most

important dimensions.

With the previous, more simple, behaviour characterisation, the possibilities were

more restricted. To find high novelty scores, novelty search had to focus more on

exploring solutions with an increased number of surviving robots, as the reduced

number of components resulted in less possibilities of obtaining high novelty scores.

As a consequence, novelty search with the simple measure had significantly more

success in finding solutions with high fitness scores, when compared to novelty search

with this more complex measure. This issue is studied in the literature and was

presented in Section 2.7. In the next chapter, we will study and experiment methods

that try to overcome this limitation, by using the fitness function to provide selective

pressure towards high fitness behaviour zones.

3.3 Discussion

The experiments described in this chapter used two different tasks for studying the

use of novelty search in the evolution of controllers for a swarm of robots. Overall,

novelty search was successfully used in this domain, offering a number of significant

advantages, but also revealing a number of issues and challenges. Most of our results

regarding novelty search are in accordance with the previous works in the literature.

In this section, we will discuss the successes and limitations of novelty search in a

broader perspective.

Effectiveness of Novelty Search

Our experiments reveal that novelty search can be as good as fitness-based evolu-

tion in non-deceptive setups, regarding the fitness score of the evolved solutions.

Other works have shown that novelty search can perform better than fitness-based

evolution in deceptive tasks, but fails to match the performance of fitness-based

evolution as the task gets less deceptive (Lehman and Stanley, 2011a; Mouret, 2011).

Our results show that the aggregation task and the energy task with non-variable

energy spending are not notably deceptive, as fitness-based evolution can always

find high-scoring solutions. Still, novelty search managed to perform almost as well

as the fitness-based evolution.

The energy task with variable energy spending is highly deceptive, as fitness-

based evolution frequently gets stuck in poor local maxima. In this setup, novelty

search largely outperformed fitness-based evolution. It could effectively overcome

deception, and did not get stuck in any local maxima. This result confirms that

50 CHAPTER 3

novelty search is an effective strategy for overcoming deception in evolutionary

swarm robotics. Overcoming deception allows for the evolution of solutions for more

demanding tasks, pushing evolutionary swarm robotics towards real-world, complex

problems.

In both tasks, and with all behaviour measures, novelty search exhibited a

common pattern regarding the fitness score of the solutions that are discovered

along the evolution. Novelty search can bootstrap the evolution notably well,

better than fitness-based evolution, finding good solutions early in the evolution,

with less complex neural networks. However, after this initial bootstrap, novelty

search struggles to find solutions with progressively better fitness scores. Our results

suggest that this happens because novelty search starts to diverge too much, and

does not focus the search in behaviour zones associated with high fitness scores.

Even towards the end of the evolution, novelty search continues to actively explore

behaviours with very low fitness-scores, wasting time in behaviours that at that

stage of evolution are mostly useless.

This pattern becomes even more clear in the energy management task, with the

expanded behaviour measure. With this measure, the performance of the search

was significantly worse, when compared to novelty search with the more simple

measure. The more complex measure achieved a faster bootstrap, but then the

search starts exploring dimensions of the behaviour space that are mostly irrelevant

for the performance of the solutions, and the fitness scores started to improve very

slowly. This suggests that the pressure exerted by the fitness function should not

be completely ignored, as we did with novelty search in this chapter. At least in

the later stages of evolution, the fitness pressure seems to be necessary in order to

focus evolution in behaviour zones of high fitness scores. In the next chapter, we

will address this issue, and study how the pressure from the fitness function can

actually help novelty search in the exploration of the behaviour space.

Design of the Behaviour Characterisations

The biggest challenge in using novelty search in the domain of swarm robotics was

the definition of the novelty measure. Our experiments suggest that conflation can

be a serious issue when evolving collective behaviours with novelty search. While in

single robot systems, conflation can be mitigated by describing the full behaviour

of the robot, for example its position in space over time (Lehman and Stanley,

2011a), in swarm robotics that is not possible. Describing the behaviour of all the

robots individually would open the search space too much. It would also introduce

scalability issues, for example if the number of robots varies or if the swarm is

very large. It is necessary to devise measures that evaluate the swarm as whole.

Conflation is essential to cope with the greater diversity of collective behaviours,

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 51

but caution must be displayed in order not to conflate aspects of the swarm that

are relevant to the solution.

The experiments with the aggregation task showed that by combining different

novelty measures, we can reduce conflation and improve the performance of novelty

search. This combination can simply be the concatenation of the behaviour vectors

associated with each measure, which was effective in this task. This technique was

also used in the energy management experiments, however, it had an adverse effect

in the effectiveness of novelty search. By enriching the behaviour characterisation,

conflation was reduced, but evolution lost the pressure to explore solutions with high

performance, exploring instead other behavioural possibilities that were irrelevant

for the achievement of the objective. The difference was that in the aggregation

experiments the behaviour characterisation was enriched with another component

that was also relevant to the aggregation objective, while in the energy experiments

the components that were added were orthogonal to the objective.

This result suggests that it must be displayed caution when combining novelty

measures. First, it is not advisable to blindly put everything together in a single

behaviour measure, as the evolution might exploit behaviour zones that are not

relevant for solving the task. The components of the behaviour characterisation

should be somewhat related with the objective that one is trying to achieve, which

happened in the aggregation experiments, but did not happen in the energy man-

agement experiments with the expanded behaviour characterisation. Second, if

some components of the behaviour characterisation are known to be more relevant

than others, this relevance should be expressed in the characterisation, for example

by scaling some of the components. This allows for a greater exploration around

the components that are more relevant. Our approach for combining behaviour

measures was effective in one experiment, but overall it revealed to be naive, and

more sophisticated ways of combining behaviour components should be devised.

In the experiments with the aggregation task, the combined behaviour measure

(sampling of centre of mass and number of clusters) was a vector of length 100. In

the energy management task, with the expanded behaviour measure, it was a vector

of length 4. However, novelty search had more difficulty in exploring the behaviour

space in the energy management task, than in the aggregation task. This result is

a reminder that long behaviour characterisations do not necessarily translate in a

behaviour space more difficult to explore, and do not degrade the performance of

the evolution. In the aggregation task, the values of the behaviour characterisation

vector are highly correlated between them, and correlated with the quality of the

solutions. As such, the effectiveness of novelty search is not affected by the long

behaviour characterisation. On the other hand, in the energy management task, the

values of the behaviour characterisation are mostly independent from one another,

52 CHAPTER 3

and some are independent from the quality of the solutions. Therefore, despite being

just 4 values, there is a greater risk of novelty search start exploring zones of the

behaviour space that are not relevant to the objective.

Behavioural Diversity

Regarding the solutions evolved in the aggregation task, the best solutions found by

both novelty search and fitness-based evolution were satisfactory, but frequently

displayed major flaws. It suggests that there is still margin for improvement.

Although it is hard to compare our solutions with the ones in the related work, as

we use quite different robot sensors in our setup, some similarities can be identified.

In (Trianni et al., 2003) it is described an aggregation behaviour (static clustering)

where the robots explore the arena in circles until they find one another, and when

they do, they form a static cluster and wait for other robots to join the cluster. This

behaviours is very similar to the best solution evolved by fitness-based evolution in

our experiments, and to many behaviours evolved by novelty search.

In the energy management task, the best solutions were just mediocre, both in

novelty search and fitness-based evolution, managing to keep alive on average only 3

of the 5 robots. The task seems quite demanding, and there is still room for improve-

ment. We can not establish a comparison with related work, since to the best of

our knowledge there are no works describing the evolution of solutions for an energy

management task. However, there are works in swarm robots energy management

from a non-evolutionary perspective. Interestingly, a number of solutions found by

both fitness-based evolution and novelty search are remarkably similar to the basic

strategy described in (Muñoz Meléndez et al., 2002) and presented in Section 3.2.1.

We showed that the diversity found by novelty search can produce many different

solutions to the same task. This is most evident in the aggregation task, where there

is one class of solutions explored by novelty search, that was not evolved at all by

fitness-based evolution (the use of the walls to achieve aggregation). This is valuable

because it can be used to provide a range of different solutions to the experimenter

that is using the evolutionary process. It is especially relevant in the swarm robotics

domain, because there are many behaviour possibilities and non-obvious relations

between the agents that might be revealed. Interestingly, the related work does

not describe aggregation behaviours that use the walls of the arena to form the

aggregates, a behaviour that can be found in the biological world. This indicates that

novelty search can indeed be used to unveil a diversity of forms of self-organisation.

The Kohonen maps proved to be useful in the visualisation of the behaviour

search space. In situations where the behaviour space has more than 2 dimensions,

a dimensionality reduction method is required in order to visualise the search space.

Kohonen maps are adequate because they discretise the behaviour space around

NOVELTY SEARCH IN EVOLUTIONARY SWARM ROBOTICS 53

”behaviour patterns”, maintaining the topological relations between these patterns.

This allows the understanding of the behaviour zones that were explored in the

evolution, and the zones where the fitness-based evolution gets stuck. We verified

that controllers mapped to different neurons typically have different observable

behaviours. This suggests that analysing the differences in the behaviour vectors

might be a way of automatically identifying distinct solutions.

Another advantage of novelty search verified in our experiments was that it could

found solutions with simpler neural networks than the ones found by fitness-based

evolution, for similar fitness scores. This is coherent with the results reported in

(Lehman and Stanley, 2010a). Our results suggest that while fitness-based evolution

tends to converge towards more complex networks, novelty search performs a more

ordered search, exploring the simple solutions before moving on to more complex

ones.

Chapter 4

Combining Novelty and Fitness

In the previous chapter, we saw that in some cases novelty search struggles to guide

the evolutionary process towards behaviour zones associated with high fitness scores.

This problem has also been encountered in other studies, and the common approach

to overcome this issue is to combine novelty search with fitness-based evolution

(see Section 2.7). Combining these two evolutionary techniques is promising be-

cause while novelty search is an exploration technique, fitness-based evolution can

be viewed as an exploitation technique. The objective is to simultaneously take

advantage of novelty search’s capability of exploring the space of possible solutions,

and the capability of fitness-based evolution of progressively improving solutions.

In this chapter, we propose Progressive Minimal Criteria Novelty Search (PM-

CNS), a new method for bringing together novelty search and fitness-based evo-

lution. We compare it with another successful method for combining fitness and

novelty, henceforth referred to as linear blend (Cuccu and Gomez, 2011), where

each individual is assigned an evaluation score that is a linear combination of its

novelty score and its fitness score (see Section 2.7.2). Both the energy management

task and the aggregation task are used in the experiments described in this chapter.

We compare the results described in the previous chapter with the results obtained

with linear blend and PMCNS, by using the same experimental setups.

4.1 Progressive Minimal Criteria Novelty Search

One method of combining novelty and fitness is Minimal Criteria Novelty Search

(MCNS) (Lehman and Stanley, 2010a). With MCNS, the behaviour space is re-

stricted by defining domain dependent minimal criteria that the evolved individuals

must meet. However, some limitations were identified, such as the necessity of

fine tuning the minimal criteria, and the difficulty of bootstrapping the evolution

if none of the individuals in the initial population meet the minimal criteria (see

Section 2.7.1). To overcome these limitations, we propose an extension of MCNS,

55

56 CHAPTER 4

named Progressive Minimal Criteria Novelty Search (PMCNS).

The objective of PMCNS is to take advantage of the behaviour space restriction

provided by MCNS, without having to pre-define domain dependent minimal crite-

ria, thus avoiding the need to seed an initial population that satisfy the criteria. In

our algorithm, the minimal criterion is a dynamic fitness threshold – individuals with

a fitness score greater than the threshold meet the criterion. Although in novelty

search the fitness score does not influence the evolution, typically a fitness function

must be provided anyway, in order to be able to identify the best controllers found

by novelty search. In this way, our algorithm does not require the definition of

task-specific minimal criteria or any other additional measures. It is important to

note that this fitness function is used only to evaluate the quality of the solutions

in respect to the objective, not to guide the evolution. As such, it does not need to

be shaped to overcome local maxima or bootstrap the evolution, artifices that are

frequently needed in fitness-based evolution.

As pre-defining a fixed fitness threshold would raise the same issues as in MCNS

(choosing the adequate threshold and bootstrapping the search), we progressively

increase the minimal criterion (fitness threshold) during the evolutionary process.

The idea behind the increasing fitness criterion is to progressively restrict the search

space, to avoid spending too much effort on search through regions of the behaviour

space with the least fit behaviours.

The minimal criterion starts at the theoretical minimum of the fitness score

(typically zero), so all controllers initially meet the criterion. In each generation,

the new criterion is found by determining the value of the P -th percentile of the

fitness scores in the current population, i.e., the fitness score below which P percent

of the individuals fall. The P -th percentile (0 ≤ P < 100) of N ordered values is

obtained by first calculating the ordinal rank n:

n =
P

100
×N +

1

2
, (4.1)

rounding the result to the nearest integer, and then taking the value vn that corre-

sponds to the rank n. Only increases in the minimal criterion are allowed, and in

order to smoothen the increase, the minimal criterion from the previous generation

is used to compute the criterion for the current generation:

mcg = mcg−1 + max(0, (vn −mcg−1) · S) , (4.2)

where mc is the minimal criterion, and S is the smoothing parameter. The score of

each individual in the population is then calculated according to:

score(i) =

{
novi if fiti ≥ mcg

0 otherwise
, (4.3)

COMBINING NOVELTY AND FITNESS 57

where novi and fiti is the novelty score and the fitness score of the individual i,

respectively. The parameter P controls the exigency of the minimal criterion (0 – all

individuals meet the criterion, 1 – only the individual with the highest fitness meets

the criterion). The smoothening parameter S controls the speed of the adaptation

of the minimal criterion (0 – no changes at all, 1 – the value from the previous

generation is not considered).

The operation of the novelty archive is not modified, and works as in the original

novelty search algorithm. Even individuals that do not meet the minimal criterion

are still added to the repository if their behaviour is sufficiently novel.

4.2 Energy Management Experiments

In this section, we revisit the energy management task, by using evolutionary

methods that combine novelty search with the fitness function. We experiment

with the linear blend method described in the literature, and the PMCNS method

proposed in this chapter. We compare these methods with the previous results

obtained with novelty search and fitness-based evolution, and study how PMCNS

compares to linear blend, and how it can overcome the limitations of MCNS.

The experimental setup was exactly the same as the one used in the previous

energy management experiments, described in Section 3.2.2. The fitness function

and novelty distance metrics are also the same of the previous experiments, described

in Section 3.2.3.

4.2.1 Impact of Behaviour Space Dimensionality

To test the capability of fitness-novelty linear blend and PMCNS in dealing with

behaviour spaces of different dimensionality, we experimented these methods with

the two behaviour measures presented in Section 3.2.2:

• Simple measure: Average energy of the alive robots and the number of robots

alive at the end of the simulation

• Expanded measure: Simple measure plus the average movement of each robot

and the average distance to the charging station.

The setup B (variable energy spending) was used in these experiments. The

novelty-fitness linear blend was run with ρ = 0.75 (75% novelty score and 25%

fitness score). PMCNS was run with P = 0.5 (percentile parameter) and S = 0.25

(smoothening parameter). These parameters will be discussed below in Section 4.2.3.

The results can be seen in Figure 4.1.

The results show that both linear blend and PMCNS are more effective than

pure novelty search in both behaviour spaces. The performance differences are

58 CHAPTER 4

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simple measure

Generations

Fi
tn

es
s

sc
or

e

PMCNS
Blend
NS

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Expanded measure

Generations

Fi
tn

es
s

sc
or

e

PMCNS
Blend
NS

Fit Nov Blend PMCNS Nov Blend PMCNS

0.
2

0.
4

0.
6

0.
8

1.
0

Simple Measure Expanded Measure

B
es

t f
itn

es
s

sc
or

e

Figure 4.1: Top: Fitness trajectory obtained with PMCNS novelty search, linear
blend, and pure novelty search, with each novelty distance measure. Bottom:
Boxplots with the best fitness score found in each evolutionary run. The Simple
measure is composed of the average energy level and number of surviving robots. The
expanded measure is the simple measure plus the average distance to the charging
station and average movement of the robots.

more significant with the expanded measure, that creates behaviour space with

more dimensions. With this measure, novelty search is significantly affected. It can

successfully bootstrap the evolution but fails to reach high fitness scores in the end,

as the evolution starts focusing the exploration on behaviour dimensions that are not

relevant for the performance of the solution. On the other hand, the results suggest

that Linear blend and PMCNS can overcome this issue, and guide the evolution

towards progressively better solutions. With the simple measure, PMCNS shows a

significantly better performance (Student’s t-test, with p-value < 0.05) than linear

blend. With the expanded measure, there are no significant differences between the

performance of both methods.

COMBINING NOVELTY AND FITNESS 59

Figure 4.2: Behaviour space exploration with each evolutionary method, using the
simple novelty distance measure. The x-axis is the average energy level of the robots
alive, the y-axis is the number of robots alive at the end of the simulation. Each
individual is mapped according to its behaviour. Darker zones mean that there were
more individuals evolved with the behaviour of that zone.

An analysis of the explored behaviour space can provide a better insight into the

strengths and weaknesses of each evolutionary method. To analyse the behaviour

space, we used the same visualisation methods as in Section 3.2. Figure 4.2 and

Figure 4.3 depict the behaviour space exploration with the simple novelty measure

and the expanded measure, respectively.

The analysis of the behaviour space exploration confirms that PMCNS and linear

blend have a greater focus on the behaviour zones associated with higher fitness

scores, compared to pure novelty search. Also, it should be noted that the coverage

of the behaviour space was not negatively affected in PMCNS and linear blend.

These methods could still unveil the same behaviour diversity as novelty search

alone, what changed was the effort they put in exploring each behaviour zone – the

evolution focused less on the low fitness behaviours (with a low number of surviving

60 CHAPTER 4

Novelty Search Linear blend

PMCNS

Energy
Survivors

Movement
Distance

Figure 4.3: Kohonen maps representing the explored behaviour space with each
evolutionary method, using the expanded behaviour measure. Each circle represents
a behaviour pattern, depicted by the 4 slices of different colour. Each slice represents
one component of the behaviour measure – the bigger the slice, the bigger the value
of that component. The darker the background of a circle is, the more individuals
were evolved with the corresponding behaviour.

robots) and more on the high fitness behaviours (high number of surviving robots).

The behaviour space exploration is not dramatically distinct between PMCNS

and linear blend. However, PMCNS clearly has a greater focus in the behaviours

with higher fitness values. It finds behavioural diversity where it is most relevant –

in the zones of successful behaviours. It is interesting to note that although PMCNS

might be viewed as technique to restrict the search space, it was actually able to find

a broader behavioural diversity than novelty search alone. The explanation is that

in this task, it is easier to find novel behaviours with low fitness scores than novel

behaviours with high fitness scores, since there are 4 behaviour dimensions, and only

one (number of surviving robots) is directly related to the quality of the solutions.

Furthermore, this dimension is the most difficult to explore, as it requires more

coordination in the robotic swarm. Consequently, novelty search exploits the other

behaviour dimensions, and gets focused in low fitness behaviour zones. The growing

minimal criterion creates an additional pressure to explore the behaviour dimensions

COMBINING NOVELTY AND FITNESS 61

correlated with the fitness score, actually helping novelty search to explore new

behaviour zones.

Both PMCNS and linear blend could find a broad diversity of successful be-

haviours, as it can be seen in Figure 4.2. For the same number of alive robots at the

end there are behaviours with average energy ranging from 800 to 1150. Observing

in action some of these successful behaviours confirms this diversity:

1. The robots go towards the charging station and stay there. When another one

arrives, the first moves away from the station and returns some time later.

2. Similar to (1), but when they move away, they never go farther than the station

sensor range (1 m).

3. The robots go towards the station, circle around it at a very close distance,

and when their energy is below 1000 units, they go to the charging station and

only leave when they are full.

4. Similar to (3), but they go to the charging station with energy bellow 400 units

and only charge until 1000. Other combinations of thresholds for charging and

leaving the station were also found.

The observable behaviour patterns of the solutions found by PMCNS and linear

blend are not notably different from the patterns found by novelty search (see

Section 3.2.4). However, the solutions evolved by PMCNS and linear blend are

more fine tuned, with less frequent flaws, thus resulting in higher fitness scores. For

instance, the robots are better at avoiding the walls, better at finding the charging

station and returning to it, and can manage the conflicts in the charging station

more efficiently. While with novelty search the best solutions only manage to keep

3 robots alive, with PMCNS and linear blend the best solutions can keep 4-5 robots

alive. We consider that PMCNS and linear blend can effectively solve the task at

hand.

4.2.2 Impact of Deception

To study how PMCNS and linear blend are influenced by the deceptiveness exhibited

by the fitness function, we evaluated and compared their performance in the two

setups presented in Section 3.2.2. As explained in the previous chapter, in the setup

A the robots spend a fixed amount of energy, while in the setup B each robot spends

energy proportionally to the speed of its wheels. Despite being intuitively similar,

we have seen that setup B originates deception, while the setup A does not. In setup

B, the fitness-based evolution usually converges to a very poor local maximum where

the robots do not move in order to save energy.

62 CHAPTER 4

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setup A (Non variable energy)

Generations

Fi
tn

es
s

sc
or

e

PMCNS
Blend
NS
Fit

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Setup B (Variable energy)

Generations

Fi
tn

es
s

sc
or

e

PMCNS
Blend
NS
Fit

Fit Nov Blend PMCNS Fit Nov Blend PMCNS

0.
2

0.
4

0.
6

0.
8

1.
0

Setup A Setup B

B
es

t f
itn

es
s

sc
or

e

Figure 4.4: Top: Comparison of the fitness trajectories obtained with the two energy
management experimental setups: with and without variable energy spending. The
lines depict the fitness trajectory obtained with each evolutionary method, using the
simple novelty distance measure. Bottom: Boxplots of the best fitness score found
in each evolutionary run.

In this comparison, linear blend was run with ρ = 0.75, and PMCNS with

P = 0.5 and S = 0.25. Only the simple novelty measure was used (average energy

and number of surviving robots at the end). The results are presented in Figure 4.4.

In both setups, PMCNS significantly outperforms fitness-based evolution and

NS (p-value < 0.01, Student’s t-test). PMCNS is also significantly better than

linear blend in both setups (p-value < 0.05). The boxplots show that PMCNS is

more consistent than the other methods in finding good solutions. PMCNS does not

seem to be affected by the deceptiveness of the fitness function, since its performance

is very similar in both setups. The performance of the linear blend method is also

satisfactory, being better than novelty search in setup B and as good as fitness-

based evolution in setup A. Linear blend was also not negatively affected by the

COMBINING NOVELTY AND FITNESS 63

deceptiveness in setup B.

The original MCNS algorithm was also tested by defining a fixed fitness threshold

as the minimal criterion. Values of 0.03, 0.07, 0.10 and 0.20 were tested for the fitness

threshold. Evolution was only able to bootstrap with a fitness threshold of 0.03. In

this case, the fitness trajectory was slightly worse than pure novelty search. With

greater fitness thresholds, the evolution could not find individuals with a fitness

score that surpassed the threshold, and thus MCNS effectively acted as a random

evolution, achieving on average a best fitness of 0.065.

4.2.3 Algorithm Parameters

The algorithm parameters in PMCNS and linear blend control the balance between

behavioural novelty and the pressure from the fitness function. We tested several

values of the parameters of PMCNS and linear blend, in order to assess the impact

of the novelty-fitness balance in the performance of these evolutionary methods. All

the experiments were run with the setup B (variable energy spending), and with the

simple novelty distance measure. The parameters used in PMCNS and linear blend

in the experiments described in the previous sections resulted from this analysis.

Linear Blend Novelty-Fitness Balance

The ρ parameter in the linear novelty-fitness blend establishes the ratio between

the weight of the novelty score and the fitness score. Only two ρ values were tested

(0.50 and 0.75). Fitness-based evolution corresponds to ρ = 0, and pure novelty

search corresponds to ρ = 1. The results are depicted in Figure 4.5. The best

performance was achieved with ρ = 0.75 (significantly better than all other setups

with p-value < 0.01), which means that the novelty score has much more importance

than the fitness score in the evaluation of each individual. This is in accordance with

the results reported in (Cuccu and Gomez, 2011), where the best performance was

achieved with ρ = 0.8.

The inferior performance verified with ρ = 0.5 can be explained by the deceptive

nature of the fitness function, which leads the evolution to local maxima. As the

weight given to the fitness score is higher, it is more likely that linear blend will be

affected by the deceptiveness of the fitness function, and the reduced weight of the

novelty score is not enough to divert the search away from local maxima.

PMCNS Minimal Criterion Strictness

The P (Percentile) parameter is the most important in the PMCNS algorithm. It

defines the exigency of the minimal criteria, and consequently, the percentage of

population individuals that receive a non-zero score. Three variations of P were

64 CHAPTER 4

0 50 100 150 200 250
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Generations

Fi
tn

es
s

sc
or

e

ρ = 0
ρ = 0.5
ρ = 0.75
ρ = 1

Figure 4.5: Fitness trajectories obtained with multiple values of ρ in linear blend.
The higher the ρ value, the more weight novelty score has in the evaluation of the
individuals.

tested: 25%, 50% and 75%. The experiments were run with a fixed smoothening

parameter S = 0.50. Figure 4.6 shows how the P parameter affects the fitness

trajectory, the progression of the minimal criteria, and the number of individuals

that meet the minimal criteria.

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generations

F
itn

es
s

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generations

F
itn

es
s

0 50 100 150 200 250

0
50

10
0

15
0

20
0

Generations

In
di

vi
du

al
s

ab
ov

e
M

C

Min. Criteria SurvivorsBest Fitness Minimal Criteria

25%
50%
75%

25%
50%
75%

25%
50%
75%

Figure 4.6: Left: how the P parameter of PMCNS affects the fitness trajectory.
Middle: the progression of the minimal criterion value over the generations. Right:
the average number of individuals above the minimal criterion in each generation.

We can see that a too strict minimal criteria (P = 75%) is prejudicial to

the evolution. Lower values are preferred, where just a small percentage of the

population does not meet the minimal criteria. Analysing the behaviour space

explored with each variant, we can see that the 50% variant have a greater focus in

the high fitness behaviour zones than the 25%, but the 25% covers a slightly larger

behaviour space. The 75% variant explored a very narrow zone of the behavioural

space, and actually explored the high-fitness zones less because it got stuck in some

COMBINING NOVELTY AND FITNESS 65

low-fitness zones, due to its high level of elitism.

PMCNS Minimal Criterion Smoothening

The smoothening parameter affects the rate of change of the minimal criterion

threshold. A high S value will result in a fast adaptation of the minimal criterion

threshold to the fitness profile of the current population. A low S value will delay

this adaptation, indirectly reducing the fitness pressure, since the minimal criterion

threshold has more resistance to increases, which allows low scoring individuals to

remain longer in the population.

We tested three different values for S, maintaining a fixed percentile parameter

of P = 0.5. The results (see Figure 4.7) show that although the smoothening

parameter does not affect the performance of the evolution greatly, the impact can

be significant. The fitness trajectory with the highest value (0.75 – fast threshold

adaptation) was significantly worse (p-value < 0.05, Student’s t-test) than the

trajectory obtained with the other lower values. The lowest value (0.25 – slow

threshold adaptation) was on average superior to the medium value (0.50), but it

is not enough to claim statistical significance beyond p-value ≈ 0.06. These results

suggest that lower smoothening values are preferred, however, small modifications

in the smoothening value do not seem to have significant impact in the performance

of the algorithm.

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PMCNSSS Smoothening

Generations

Fi
tn

es
s

sc
or

e

S=0.25
S=0.50
S=0.75

Figure 4.7: Fitness trajectories obtained with PMCNS, using multiple values of S
and P = 0.50. The S parameter controls the speed of adaptation of the minimal
criteria threshold. The higher the S value, the faster the adaptation is.

66 CHAPTER 4

4.3 Aggregation Experiments

In the experiments with the aggregation task in the previous chapter, both nov-

elty search and fitness-based evolution achieved good results, however, the evolved

behaviours still displayed some flaws and there was margin for improvement. To

strengthen our empirical study on the combination of novelty search and fitness, we

revisit the aggregation task, using PMCNS and linear blend to evolve controllers for

this task. With these experiments, we intend to study if PMCNS and linear blend

can improve over novelty search and fitness-based evolution, even when novelty

search achieves good results and the fitness function is not deceptive.

The experimental setup is exactly the same as the previous one (Section 3.1.3).

Only the combined novelty measure is used, because it was the measure that de-

livered the best results in the previous aggregation experiments (see Section 3.1.6).

This measure is composed by the average distance to the centre of mass and by the

number of the robot clusters, both sampled throughout the simulation time.

4.3.1 Performance Comparison

We compared PMCNS and linear blend with the previous results obtained with

pure novelty search fitness-based evolution. The results are depicted in Figure 4.8.

PMCNS was run with the parameters P = 0.50 (50th percentile) and S = 0.25

(slow threshold adaptation). Linear blend was run with ρ = 0.50 (novelty score

and fitness score with the same weight). These parameters are discussed below in

Section 4.3.2.

0 50 100 150 200 250

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Generations

Fi
tn

es
s

sc
or

e

Fit

NS

Blend

PMCNS
Fit Nov Blend PMCNS

0.
65

0.
75

0.
85

Figure 4.8: Left: Fitness trajectories obtained with each evolutionary method, in
the aggregation experimental setup using the combined novelty measure. Right:
Boxplots of the best fitness score found in each evolutionary run.

COMBINING NOVELTY AND FITNESS 67

There are no significant differences between the fitness trajectories of PMCNS

and linear blend. However, these methods improved over pure novelty search,

achieving in the end significantly higher fitness scores (p-value < 0.01, Student’s

t-test). PMCNS and linear blend are on average superior to fitness-based evolution,

but this superiority is only statistically significant until generation 150 (considering

significance with p-value < 0.05).

Despite the slight differences in the fitness scores, the best solutions evolved

by PMCNS and linear blend are essentially the same as the ones evolved by pure

novelty search. As mentioned before, even the best solutions evolved by novelty

search often displayed flaws, resulting in more than one aggregate of robots. In

PMCNS and linear blend, the solutions evolved by novelty search were fine-tuned by

the selection pressure from the fitness-function, resulting in solutions that are more

frequently successful in achieving aggregation, with higher fitness scores. However,

none of the evolutionary methods evolved a solution that always achieved a single

aggregate in the end.

An analysis of the explored behaviour space provides a valuable insight into the

evolutionary dynamics of each method (see Figure 4.9). There were behaviour zones

(bottom left) explored in novelty search that were not explored by PMCNS and

linear blend, however, these behaviour zones are associated with very low fitness

scores. The diversity of possible solutions to the problem was not compromised

(right column), and it was actually boosted. Both PMCNS and linear blend have a

much greater focus in the high fitness behaviour zones (right column in the grid),

when compared to pure novelty search.

As noted in the aggregation experiments in the previous chapter, fitness-based

evolution spends much time exploring a rather uninteresting behaviour zone, associ-

ated with low fitness scores (top left corner). It suggests that fitness-based evolution

gets stuck early in local maxima, which also explains why it has a slow bootstrap.

This phenomena was also verified in linear blend (although with less magnitude),

which is understandable since the fitness score acounts for 50% of the score assigned

to each individual of the population. This reveals one weakness of the linear blend

method: if the fitness function leads the evolution towards local maxima, linear

blend can also get stuck in such local maxima. PMCNS, on the other hand, does

not seem to be affected by this phenomena, since the fitness function does not

directly contribute for the evaluation of the individuals of the population.

68 CHAPTER 4

Fitness-based evolution Novelty search

Linear blend PMCNS

Figure 4.9: Kohonen maps representing the explored behaviour space with each
evolutionary method. Each circle is a neuron that is characterised by the vector
depicted by the line inside. The left half represents the average distance to the
centre of mass over time, and the right half the average number of clusters over
time. Each behaviour vector is mapped to the most similar neuron. The darker the
background of a neuron is, the more behaviours were mapped to it. The solutions
with higher fitness scores are mapped to the last column of the grid.

4.3.2 Novelty-Fitness Balance

To tune the parameters for linear blend and PMCNS methods, we tested multiple

values of ρ in linear blend, and P in PMCNS. These parameters control the balance

between the weight of the novelty score and the pressure from the fitness function.

The results are depicted in Figure 4.10. In linear blend, ρ = 0 corresponds to

fitness-based evolution, and ρ = 1 corresponds to pure novelty search.

Concerning linear blend, there are no significant differences between the fitness

trajectory obtained with ρ = 0.75 and ρ = 0.50 (p-value < 0.05, Student’s t-test). In

PMCNS, there are no significant differences between the fitness trajectories obtained

COMBINING NOVELTY AND FITNESS 69

0 50 100 150 200 250

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Blend − ρ

Generations

Fi
tn

es
s

sc
or

e

ρ = 0

ρ = 0.5

ρ = 0.75

ρ = 1

0 50 100 150 200 250

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Generations
Fi

tn
es

s
sc

or
e

P=0.25

P=0.50

P=0.75

PMCNS Percentile

Figure 4.10: Left: The fitness trajectories obtained with linear blend using different
ρ values (higher ρ gives more weight to the novelty score). Right: Fitness trajectories
obtained with PMCNS, using different P values (The higher the P , the more exigent
the minimal criteria is).

with P = 0.75 and P = 0.50, but with P = 0.25 the trajectory is significantly inferior

to the other parameter values.

These results contrast to the ones obtained in the energy management experi-

ments, where different parameter values had significant impact in the performance

of the algorithm. In the energy management experiments, novelty search was

clearly superior to fitness-based evolution, which prematurely converged to local

maxima, achieving poor results. On the other hand, in the aggregation experiments,

fitness-based evolution and novelty search are both able to achieve good results.

This explains why the P and ρ parameters have a greater impact in the energy

management experiments: the balance between fitness and novelty must be carefully

adjusted so that evolution does not get stuck in local maxima that are created by

the fitness function.

4.4 Discussion

We presented a new method, progressive minimal criteria novelty search, for com-

bining fitness and novelty in evolutionary search. We extended minimal criteria

novelty search by using a dynamic fitness threshold as the minimal criterion, pushing

exploration of behaviour space towards zones of higher fitness. We experimented

with the two tasks already presented in the previous chapter, aggregation and energy

70 CHAPTER 4

management. The new algorithm was compared with MCNS with a fixed fitness

threshold as minimal criteria, novelty search alone, fitness-based evolution, and a

linear blend of novelty and fitness scores.

Effectiveness of Combining Novelty and Fitness

We showed that the combination of novelty and fitness is a promising approach

for the evolution of controllers for swarm robotics. In all the experimental setups,

the fitness trajectory obtained with PMCNS and linear blend were at least as good

as novelty search and fitness-based evolution alone. In the energy management

experiments, the improvement offered by the combination of fitness and novelty

was pronounced, with the solutions being notably better. In the deceptive setup,

the combination of novelty and fitness did not suffer from premature converge, as

fitness-based evolution did. In the aggregation experiments, the improvement offered

by PMCNS and linear blend was also statistically significant, but less noticeable in

the quality of the evolved solutions.

Regarding the solutions evolved by PMCNS and linear blend, they were based

on the same behaviour patterns found by novelty search alone. However, they

were more fine-tuned and displayed less flaws, thus resulting in significantly higher

fitness scores. In the energy management experiments, the behaviour space coverage

was greater and more uniform with PMCNS and linear blend, when compared to

novelty search alone. In the aggregation experiments, PMCNS and linear blend

covered similar behaviour zones when compared to novelty search, however, in the

first two, there was clearly a greater focus in the behaviour zones associated with

higher fitness scores. This result suggests that the fitness function can actually help

novelty search to explore the behaviour space, by creating an additional pressure

to explore zones associated with higher fitness, which typically are more difficult to

reach in complex tasks.

Progressive Minimal Criteria Novelty Search

PMCNS could effectively overcome the drawbacks of MCNS, while achieving a better

performance. The fitness score was successfully used as minimal criterion. It was

clearly advantageous to use a progressive minimal criterion, compared to a fixed

minimal criterion in MCNS. The bootstrap problem was overcome, as the minimal

criterion starts from the minimum fitness score, and only increases if the fitness

profile of the current population also does. The smoothening of the growth revealed

to be an important part of this process, with higher smoothening values delivering

the best results (25% – the new threshold is 25% of the P -percentile value of the

current population plus 75% of the last threshold).

The performance of PMCNS was superior to the linear blend of novelty and

COMBINING NOVELTY AND FITNESS 71

fitness. In the energy management task, the fitness trajectory of PMCNS was

significantly better than linear blend in both setups. In the aggregation task, it was

as good as linear blend. PMCNS also explored more the behaviour zones associated

with higher fitness scores. This is relevant because it suggests that PMCNS creates

a pressure to evolve a diversity of successful individuals. As opposed to the linear

blend, where the fitness function is always influencing the score of the individuals,

PMCNS only imposes a minimal criterion for selection, and so the fitness function

does not have any influence on the score of the individuals, which is based only on

the novelty measure.

Algorithm Parameters

Regarding the balance between the weight of the fitness function and the weight

of the novelty score in linear blend, our results suggest giving more weight to the

novelty score (around 75%) delivers the best results, which is coherent with previous

works with this method (Cuccu and Gomez, 2011). However, in the aggregation

experiments, a lower weight of novelty score (50%) delivered the same performance

as the higher weight (75%). This can be explained by the fact that the fitness

function is more effective in guiding the evolution in the aggregation task than in

the energy management task, and as such, the linear blend method can withstand

a higher weight to the fitness function in the aggregation task.

With respect to the percentile parameter P in PMCNS, that determines the

fitness threshold, our experimental results show that 50% (the median of the current

population) offers the best performance in most situations. This means that, on

average, half of the population receives its normal novelty score and the other half

receives a null score. In the energy management task, a lower P value (25% – 3/4

of the population receive normal novelty score) also delivered good results, and in

the aggregation task, a higher P value (75% – 1/4 of the population receive novelty

score) also had good performance. This suggests a similar effect to the one found

in linear blend, described above. When the fitness function has better capability

of guiding evolution, a more exigent minimal criterion can be used. On the other

hand, when the fitness function leads the evolution towards local maxima, a more

permissive minimal criterion is preferable.

Chapter 5

Conclusion

The initial objective of this research was to explore if and how novelty search can

contribute to the evolution of controllers for swarm robots. We consider that this

objective was reached, as this thesis identifies and defends a number of advantages

in using novelty search to evolve robotic swarms, instead of the traditional objective-

based evolution. In the preliminary report of this thesis, a number of questions and

challenges were identified. All those questions were addressed in this final document:

• How will novelty search perform in non-deceptive setups? We showed, in the

experiments with both tasks, that the performance of novelty search in non-

deceptive setups is similar to objective-based evolution. In deceptive setups,

novelty search clearly outperforms it.

• How to analyse and visualise the behaviour space explored in novelty search?

We showed that Kohonen self-organising maps provide an effective way of

analysing behaviour spaces with high dimensionality.

• How to overcome conflation in order to increase the diversity of the evolved

solutions? We showed that the combination of different behaviour measures

can reduce conflation, and increase the diversity of solutions.

• How will novelty search perform with a more complex task? We experimented

with a more challenging task, robots sharing a single energy charging station

in order to survive. Novelty search performance was not significantly worse

than objective-based evolution, but both failed to achieve excellent solutions

to the task in the given number of generations. We showed that variations of

novelty search that combine novelty with fitness might be more appropriate

in these situations.

Beyond the initial objectives and challenges, we also proposed a new method

(Progressive Minimal Criteria Novelty Search) for combining novelty search with

73

74 CHAPTER 5

the fitness function. This method is based on the progressive restriction of the

behaviour space, and was compared with other variants of novelty search.

5.1 Summary of the Contributions

The main contribution of our research was the study of novelty search based evo-

lutionary techniques applied to the evolution of controllers for swarms of robots.

To conduct this study, we followed an experimental approach, making evolutionary

runs with different evolutionary techniques, parameters, and tasks. Detailed data

was gathered in each evolutionary run to allow for an analysis of the evolutionary

dynamics. The experimental framework itself was the first contribution of this thesis.

A new experimental framework was developed based on a pre-existing 3d robotics

simulator (Simbad), and on an implementation of NEAT (NEAT4J). The framework

is highly modular, allowing the definition of new environments, robots, evolutionary

techniques, and so forth, without having to modify existing code.

Our experimental study was based on two distinct swarm robotic tasks: i) an

aggregation task, where the robots start randomly distributed in a closed envi-

ronment and should form a single aggregate; and ii) an energy management task,

where the robots lose energy over time and should coordinate themselves in order

to allow periodical access to the single charging station in the environment. While

the first task is widely studied in the context of evolutionary robotics, the energy

management task is described in the literature, but only one work addresses it

from an evolutionary perspective, using an oversimplified experimental setup. The

evolution of robot controllers to perform the energy management task with resource

conflict was an original contribution from this thesis. Some of the solutions evolved

to the energy management task are similar to solutions proposed in the related work

(non-evolutionary).

A secondary contribution of this thesis was the use of NEAT in evolutionary

swarm robotics. NEAT is a neuroevolution method that evolves both the topology of

the network and the weights of the connections. Previous works in this domain only

describe the use of neuroevolution methods that start from a fixed network topology

and evolve only the connection weights. Although this was not the focus of this

thesis, and we did not establish experimental comparisons with other neuroevolution

methods, we showed that NEAT can be effective in evolving controllers for swarms

of robots. The complexification mechanism in NEAT brings interesting possibilities

in this domain, as the evolutionary process produces gradually more complex forms

of self-organisation throughout the evolution.

Our experimental results showed that novelty search can be an effective way

to evolve controllers for robotic swarms. Novelty search proved to be effective

CONCLUSION 75

in overcoming deception in the swarm robotics domain, avoiding local maxima

where fitness-based evolution got stuck. We established detailed comparisons of

novelty search with the classical fitness-based evolution. In non-deceptive setups,

where fitness-based evolution always succeeded, novelty search displayed a similar

performance to fitness-based evolution, in terms of the fitness score of the evolved

solutions. In deceptive setups, novelty search was clearly superior. Novelty search

was particularly successful in bootstrapping the evolution, avoiding premature con-

vergence and reaching higher fitness scores sooner in the evolution. We also showed

that novelty search can evolve solutions with less complex neural networks. Our

results represent a valuable contribution to the field of evolutionary swarm robotics,

because the current literature describes significant difficulties in evolving robotic

swarms for complex tasks. Our experiments suggest that the evolution of swarm

behaviours is generally prone to deception, and thus novelty search presents as a

promising alternative to overcome this difficulty.

Another contribution brought forth by the experiments in this thesis was the

use of novelty search as a way to unveil a broad diversity of collective behaviours.

Previous evolutionary swarm robotics studies did not focused on the discovery of

behavioural diversity. However, this is an interesting topic because in collective

robotics there is typically a broad range of behavioural possibilities, brought by

the possible interactions among the robots, and between the robots and their en-

vironment. Revealing some of these possibilities can lead to unexpected forms of

self-organisation and different solutions for the same problem, which can be valuable

for the experimenter. For instance, novelty search could evolve a class of solutions

for aggregation that is not described in the related work, but can be found in the

biological world.

In this thesis, we provided insight on how to devise behavioural measures for

robotic swarms, in order to overcome conflation and explore the behavioural possi-

bilities. We showed that combining different novelty measures can be an effective

way of improving the performance of novelty search. However, one should avoid

increasing the dimension of the behaviour space with measures that are weakly

related with the task that one is trying to solve. In this case, our results showed

that novelty search can start to explore behaviour zones that are not relevant for

solving the task, and fail to adequately explore the important zones. We also

presented a technique for visualising high dimension behaviour spaces, with Kohonen

self-organising maps. This visualisation proved useful to analyse and compare the

exploration of the behaviour space, and to understand the evolutionary dynamics

in novelty search.

As stated above, our results showed that novelty search can struggle to find

high fitness solutions when the behaviour space has dimensions that are weakly

76 CHAPTER 5

related with the objective. To overcome this issue, we also studied novelty search

variants that bring together behavioural diversity and the fitness function. We

proposed a new algorithm for combining novelty search with fitness evaluation,

named Progressive Minimal Criteria Novelty Search (PMCNS). This new algorithm

progressively restricts the search space by establishing a fitness threshold that the

individuals must meet in order to be selected for reproduction. This threshold is

dynamic, starts with a null impact and increases progressively as the fitness profile

of the population also does.

Our experimental results showed that PMCNS is effective in guiding the be-

havioural exploration towards behaviour zones of higher fitness, without compro-

mising novelty search capabilities of overcoming deception and finding diversity of

solutions. We compared PMCNS with linear blend of novelty and fitness scores,

another method described in the literature for combining novelty search with ob-

jectives. The performance of PMCNS was superior to the other tested evolutionary

methods, achieving consistently good solutions at the end. Regarding the balance

between novelty search and the pressure from the fitness function, our results suggest

that when the fitness function alone has better capability of guiding evolution, a

higher pressure from the fitness function is tolerable. Otherwise, novelty search

should be the predominant force in guiding evolution.

5.2 Future Work

We showed that novelty search has the potential to find a great diversity of solutions

for a given problem. However, this diversity of solutions is hard to unveil by hand,

since only looking at the solutions with higher fitness scores can be restrictive:

there can be solutions with lower fitness scores but with more interesting behaviour

patterns. An interesting line of work would be to develop methods for automatically

identifying solutions with diverse forms of self-organization. This could work as a

system for suggesting to the human experimenter possible solutions for a given

problem.

Our experiments showed that combining novelty measures can be an effective

strategy for reducing conflation. We used a naive approach for this combination: a

simple concatenation of the behaviour characterisations. This approach has some

limitations, as the behaviour characterisations need to be previously normalised

and must have the same length. It could be studied more elaborate strategies for

combining novelty measures. One possibility would be to devise an algorithm that

automatically normalises the length and range of the behaviour characterisations,

so that all of them have similar contributions for the novelty measure. Another

possibility would be to use a multi-objective evolutionary algorithm, with each

CONCLUSION 77

novelty measure as a separate objective.

Our results suggested that in novelty search some dimensions of the behaviour

space are more easily explored than others, which might be prejudicial for the

behaviour diversity. To overcome this issue, we could give less weight to the easily-

explored dimensions, so that there is an additional pressure to explore the other

dimensions. These weights could eventually be automated during evolution, based

on how much each dimension is explored during the search.

We faced some challenges when hand-designing the behaviour characterisations,

due to the wide variety of behaviour possibilities in swarm robotics. Conflation

is hard to avoid, and a very detailed behaviour characterisation can lead to a less

effective evolution. There are variants of novelty search that work with generic

behaviour measures (see Section 2.8), where the behaviour characterisation is for

example the mapping between the sensors of the robot and the actuators. It would

be interesting to study how generic behaviour measures could be adapted to work

in the collective robotics domain, and assess if they can be a viable alternative to

domain dependent novelty measures.

In PMCNS, the functioning of the novelty archive was not modified, individuals

can still be added to the archive even if they do not meet the minimal criteria. It

would be interesting to experiment another variant where such individuals are not

added to the archive. This could reduce the size of the archive considerably, and

increase the computational performance of the algorithm.

A natural next step of our research would be to apply novelty search and PMCNS

to more complex and demanding swarm robotics tasks. It would be valuable to

provide insight on what are the limits of novelty search, in regard to the complexity

of the goal that one wants to achieve.

5.3 Conclusion

This thesis showed that novelty search is a promising alternative for the artificial

evolution of controllers for swarm robots. This was empirically demonstrated with

two different swarm robotics tasks, and a number of different experimental setups for

each task. Novelty search could overcome deception, excelled at bootstrapping the

evolution, evolved solutions with less complex neural networks, and unveiled a wide

variety of solutions for a given task. Combining novelty search with objective-based

evolution can further increase the potential of this approach, by focusing novelty

search in the most interesting behaviour zones. Our contribution represents another

step towards the design of robotic swarms capable of performing complex, real world

tasks.

Appendix A

Simulation and Evolution
Workbench

In order to conduct the experiments necessary in our empirical study, an adequate

experimental framework was needed. We implemented a new framework (named

EvoSimbad) based on pre-existing libraries. Although the framework was naturally

tailored to fit the requirements of our study, the implementation allows the config-

uration of a wide range of experiments. This framework can thus be used outside

the scope of this thesis, in other evolutionary robotics studies.

Experiments in evolutionary robotics typically require two major software com-

ponents that are mostly independent:

• A robotics simulator, where it must be possible to define the environment

topology and rules, as well as the robots along with its capabilities of sensing

and acting upon that environment.

• The evolutionary process, responsible for the running the evolutionary algo-

rithms. It will use the robotics simulator in order to evaluate the evolved

solutions.

These two components are connected through i) the neural controller, which is

evolved by the evolutionary algorithm and used by the robots in simulation, and

ii) the evaluation function, responsible for measuring the fitness and the behaviour

of the robots in simulation and returning it to the evolutionary algorithm. In the

context of this thesis, a software application was developed that comprises these two

components, taking advantage of other existing tools, namely Simbad (Hugues and

Bredeche, 2006) for robotics simulation, and NEAT4J for neural network evolution.

79

80 APPENDIX A

A.1 Application Features

The developed tool offers the following possibilities and features.

i. Easily extensible design, allowing the definition of new components without

having to modify any previously existing code.

ii. Supports the definition of simulated environments with possibly different topolo-

gies and obstacles of different shapes.

iii. Supports the definition of robots with a great variety of customizable sensors

and actuators.

iv. The environments can vary in each simulation, such as different obstacle posi-

tions or variable initial positions of the robots.

v. Simulator with realistic physics, including collisions effects and realistic move-

ment.

vi. Supports the definition and usage of distinct evolutionary algorithms, including

novelty search.

vii. Supports the definition and customisation of fitness functions.

viii. Production of detailed logs about the evolution, along with the persistence of

individuals (robots controllers) from the population.

ix. Visualisation of the robots behaviour in their environment, using any previously

evolved controller.

x. Each experiment setup is intelligible and flexible, and allows the customisation

of experiments without having to modify the source code of the application.

xi. Allows the distribution of the processing power, to further accelerate the attain-

ment of experimental results.

A.2 Tools and Libraries

The application was developed in Java 71 programming language. A few open source

libraries were used, taking advantage of existing technologies and thus speeding the

development of the application.

1JDK 7 – http://jdk7.java.net

http://jdk7.java.net

SIMULATION AND EVOLUTION WORKBENCH 81

Figure A.1: Simbad user interface. The 3D window displays the robots and
environment (top right), there is a window to control the simulation flow (bottom),
and a window to monitor the sensors of the robot (left)

Simbad2 (Hugues and Bredeche, 2006) is a Java 3d robot simulator for scientific

and educational purposes. It provides 3D visualisation and sensing, single or multi-

robots simulation, vision sensors, contact sensors, range sensors and a Swing user

interface for control of the simulations (see Figure A.1). It enables programmers to

write their own robot controllers, modify the environment, use the available sensors

and define new ones. Simbad is used in the application for the robotics simulation,

including the environment and robots definition, sensors and visualisation of the

evolved behaviours.

NEAT4J 3 is a Java open-source framework that implements the NEAT algorithm

as proposed in (Stanley and Miikkulainen, 2002). NEAT4J allows a complete

2Simbad 3d Robot Simulator – http://simbad.sourceforge.net/
3NeuroEvolution for Augmenting Topologies for Java – http://neat4j.sourceforge.net

http://simbad.sourceforge.net/
http://neat4j.sourceforge.net

82 APPENDIX A

customisation of the parameters of the NEAT algorithm. It is used in the application

as a base for the implementation of the evolutionary methods.

JPPF 4, short for Java Parallel Processing Framework, is a Java framework

that enables applications with large processing power requirements to be run on

any number of computers, in order to dramatically reduce their processing time.

It is very well documented and provides a high level of abstraction with very

little configurations needed. JPPF comprises four major components: The grid

node application that must be running in the computers that will perform the

computations; the grid server application that distributes the load to the grid nodes;

the grid client library that sends jobs to the server to be executed in the grid; the

administration console that provides a graphical user interface for managing the

nodes, servers and jobs.

Some libraries of Apache Commons5 are also used throughout the application.

Apache Commons is a project dedicated to the creation and maintenance of reusable

Java components. It complements the Java API by adding many useful classes and

methods that helps speeding up the software development.

A.3 Architecture and Design

To achieve the desired flexibility, many components of the application can be cus-

tomizable and provided by the user. It is thus necessary an architecture that allows

the implementation of new components without having to modify the existing code.

This was achieved through the definition of a set of core interfaces that define each

component, and classes that work with the functionality described by the interfaces,

linking everything together.

The specific implementations of the components that will be used in each ex-

periment are specified by the user in the configuration, and are loaded at runtime

and provided to the other software modules that need them. Such architecture is

depicted in Figure A.2, where it is specified the boundary between what is provided

by the user and what is settled in the core of the application.

The following components were defined via interfaces or abstract classes, estab-

lishing the extension points of the application:

• AgentGenerator: Responsible for creating the set of robots that will be put

in each simulation.

• EnvironmentGenerator: Creates the simulated environment where the simu-

lation will occur.

4Java Parallel Processing Framework – http://www.jppf.org/
5Apache Commons – http://commons.apache.org

http://www.jppf.org/
http://commons.apache.org

SIMULATION AND EVOLUTION WORKBENCH 83

Figure A.2: The architecture of the application. The core classes of the application
use the implementations provided by the user through well established interfaces.
The user interface is well separated from the rest of the application logic.

• AgentPlacer: Given an environment and a number of robots to place, gener-

ates the initial positions and directions for them.

• EvaluationFunction: Gathers measures along each simulation for evaluating

the performance of the robot(s).

• SimulationBuilder: Using the previously described components, prepares a

set of simulations that will evaluate a robot controller.

• Simulator: Runs simulations with a given controller and returns the eval-

uation of the controller according to the EvaluationFunction. Uses the

SimulationBuilder to generate the required simulations.

• EvolutionMethod: Defines the evolutionary method that will drive the evolu-

tion of the controllers, using the Simulator for the evaluation of the population.

• Logger: Defines a set of methods for recording logs of the evolution and

controllers generated by it.

The implementation of each component is loaded in runtime by the class ComponentLoader

and made available to the other software components. The articulation between

these classes is specified in the class diagram in Figure A.3, where the key classes

and methods are presented.

84 APPENDIX A

Figure A.3: UML class diagram of the core classes and interfaces of the application.
A few auxiliary classes, methods and attributes have been omitted from the diagram.

SIMULATION AND EVOLUTION WORKBENCH 85

A.4 Implementation

Configuration and Class Loading

Each experiment can be configured via a text file, where each component of the

application is instantiated through the specification of its class and constructor

arguments. A typical configuration file looks like this:

Listing A.1: A typical configuration file.

environment = evosimbad.commons.SquareGenerator(5)

agents = evosimbad.aggregation.AggregationEpuckGenerator

(3, 10, 0.25, true, false)

simulator = evosimbad.simulation.GridSimulator()

simulationBuilder = evosimbad.simulation.SimpleSimulationBuilder

(5000, 10, 10)

evolution = evosimbad.evolution.FitnessNEAT(250)

savePopulation = true

PROBABILITY.MUTATION = 0.1

PROBABILITY.CROSSOVER = 0.25

POP.SIZE = 200

agentPlacer = evosimbad.commons.RandomAgentPlacer(0.1, 0.7)

logger = evosimbad.commons.CSVLogger

(/home/jorge/Temp, /home/jorge/Aggregation/Fit)

evaluation = evosimbad.aggregation.AggregationFitness(100)

For each of the components described in Section A.3, the user specifies the name

of the component (e.g. environment), the fully qualified name of the class that will

be instantiated (e.g. evosimbad.commons.SquareGenerator), and the constructor

to be used in the instantiation (e.g. (5)). During the setup of the experiment,

the class is loaded in runtime through its fully qualified name and it is checked if it

implements the interface of the corresponding component (or extends the correct ab-

stract class). Then, using Java Reflection, the constructors of that class are iterated

until it is found one that fits the given arguments. The class is then instantiated and

that instance persists until the end of the experiment. An exception to this is the

EvaluationFunction, which requires a new instance for each simulation. Instead

of keeping a single instance, the right constructor and the arguments are kept and

used every time a new instance is needed. All these class loading mechanisms are

implemented in the ComponentLoader class. It is also possible to define other options

by key and value, for example PROBABILITY.MUTATION = 0.1. These are stored in

a map and can be read by any component in the application at any time.

86 APPENDIX A

Common Components

A number of implementations of components were made that are useful in most of

the experiments conducted. Some of these are presented next.

VariableAgentGenerator implements AgentGenerator

Abstract implementation that generates a set of homogeneous agents. The number

of generated agents is random, varying within user-defined limits. Each agent is

assigned a different name and colour.

Epuck extends NNAgent

Represents a robot similar to the e-puck educational robot (Mondada et al., 2009),

including active IR sensors for the detection of obstacles, and passive IR sensors for

the detection of other robots.

SquareGenerator implements EnvironmentGenerator

Generates a square arena with walls around it. The environments are implemented

extending Simbad classes. An example of such environment can be seen in Fig-

ure A.1.

RandomAgentPlacer implements AgentPlacer

Places the robots in the environment with random positions and directions, keeping

a given minimum distance between them.

NEATEvolution extends EvolutionMethod

It was implemented an abstract class NEATEvolution that represents evolutions

guided by the NEAT algorithm, described in Section 2.4, using the implementation

available in the NEAT4J library.

SimpleSimulationBuilder extends SimulationBuilder

Generates N simulations for the evaluation of each individual, using the user spec-

ified implementations of AgentGenerator, EnviornmentGenerator, AgentPlacer

and EvaluationFunction. N is a constant value specified by the user in the

configuration.

MultiThreadedSimulator extends Simulator

This simulator implementation runs multiple simulations at the same time in the

same computer, using a number of pre-specified cores, thus taking full advantage of

the multi-processor architectures.

GridSimulator extends Simulator

This implementation runs the simulations in a JPPF grid, which will be detailed in

Section A.5.

SIMULATION AND EVOLUTION WORKBENCH 87

CSVLogger extends Logger

This implementation generates CSV (Comma Separated Values) files with the recorded

logs, and bundles everything in an experiment folder together with the configuration

used and the saved individuals. CSV files are practical because they can be read by

many spreadsheet and statistical analysis applications.

ImageTracer

Traces the trajectories of the robots in a simulation and produces a single image

with those trajectories. These images are useful for a quick and static analysis of

the swarm behaviour.

User Interface

The user interface is shown in Figure A.4. The main menu (1) provides options for

i) save and load experiment configurations, ii) control the flow of the experiment, iii)

save and view individuals, and iv) manipulate the logs. The configuration pane (2)

provides a text area for writing and editing experiment configurations. The progress

bar (3) provides visual information on the progress of the experiment. The statistics

bar (4) provides useful real-time information, such as the best fitness found so far,

the elapsed time in the experiment and the time remaining. The output window (5)

shows a log sent by the evolution method, with statistics such as the average fitness

in each generation.

1

2

3

5

4

Figure A.4: The EvoSimbad graphical user interface.

88 APPENDIX A

Figure A.5: The common flow of a job’s execution in the grid using JPPF. This
chart shows the different steps involved in the execution of a job, and where each
of them takes place with regards to the grid component boundaries. Figure from
http://www.jppf.org.

A.5 Distributed Computing

The most significant computational cost in the evolutionary process corresponds to

the simulations needed to evaluate each individual in the population. A possible

way of dealing this cost is by splitting the computation into multiple computers.

This was achieved with the Java Parallel Processing Framework (JPPF). Figure A.5

explains the common flow of JPPF when executing a job on the grid and the function

of each component.

To parallelize the evaluation of the population, the evaluation of each population

individual is isolated in a distinct task. The set of tasks (one for each individual)

constitutes a job. In each generation of the evolutionary algorithm, a job is sub-

mitted to the JPPF grid for the evaluation of the current population. It is thus

necessary to wait for the completion of the entire job before moving on with the

evolutionary algorithm.

JPPF requires tasks to implement the Serializable interface, which excluded the

most natural solution of modelling each task as a simulation, as the Simulation

http://www.jppf.org

SIMULATION AND EVOLUTION WORKBENCH 89

Figure A.6: The flow of information when distributing the evaluation of the
population individuals (controllers).

object encapsulates an EnvironmentDescription object (from the Simbad library)

that is not Serializable. To overcome this issue, instead of sending the Simulation

objects, it is sent the instructions on how to build these simulations. Each task

consists of a NeuralNetwork object that is the controller to be evaluated, and the

SimulationBuilder object that will build the simulations to evaluate it. The result

of the execution is EvaluationFunction objects produced by the simulations. The

diagram in Figure A.6 summarises this flow of information.

To assess the improvements offered by the distribution of the work load, a few

tests were made with a configuration of a typical evolution. With the configuration

used, each generation requires the execution of 1000 simulations, each one with 4000

time steps, corresponding to 400s of simulated time. The performance test was made

by first executing the application locally and then executing it on the grid, with a

variable number of computers linked to the grid. The Table A.1 exposes the results,

showing the average time spent in an evolution iteration with different grid setups.

If we compare the increase in processing power with the increase of performance

(decrease in processing time), as showed in Figure A.7, we can see that there is

some deceleration in the performance improvements. These losses can be explained

by the network overhead of distributing the tasks and waiting for every computer

to complete theirs. These results confirm that the system escalates with more

computers. However, as the number of grid nodes grow, it can be expected greater

system overhead, and the should not increase linearly with the total processing

power.

90 APPENDIX A

Table A.1: Results of distribution of the computation.

Setup Number of cores Time per generation

1 Intel Core 2 Duo 3GHz 2 159,2 s
2 Intel Core i7 3,4GHz 8 40,2 s
3 Intel Core 2 Duo 3GHz 14 29,1 s
2 Intel Core i7 3,4GHz
6 Intel Core 2 Duo 3GHz 20 22,9 s
2 Intel Core i7 3,4GHz
7 Intel Core 2 Duo 3GHz 26 20,6 s
2 Intel Core i7 3,4GHz
1 Intel Xeon 3GHz

2 cores 8 cores 14 cores 20 cores 26 cores
1

3

5

7

9

11

13

15

Total GHz increase

Generation time
decrease

Setup

R
a

tio
 to

 b
a

se
 s

e
tu

p
 (

2
 c

o
re

s)

Figure A.7: The increase in processing power compared to the increase in system
performance, using the data in Table A.1.

Bibliography

E. Bahgeçi and E. Şahin. Evolving aggregation behaviors for swarm robotic systems:

A systematic case study. In Swarm Intelligence Symposium, pages 333–340. IEEE,

New York, NY, 2005.

Gianluca Baldassarre, Stefano Nolfi, and Domenico Parisi. Evolving mobile robots

able to display collective behaviors. Artificial Life, 9(3):255–268, 2003.

Gianluca Baldassarre, Vito Trianni, Michael Bonani, Francesco Mondada, Marco

Dorigo, and Stefano Nolfi. Self-organized coordinated motion in groups of phys-

ically connected robots. IEEE Transactions on Systems, Man, and Cybernetics,

37(1):224–239, 2007.

André Bastos. Experiments in evolutionary computacional robotics. Master’s thesis,

Faculty of Sciences, University of Lisbon, Portugal, 2011. URL http://docs.di.

fc.ul.pt/jspui/handle/10455/6758.

Levent Bayindir and Erol Şahin. A review of studies in swarm robotics. Turkish

Journal of Electrical Engineering and Computer Sciences, 15(2):115–147, 2007.

Randall D. Beer and John C. Gallagher. Evolving dynamical neural networks for

adaptive behavior. Adaptive Behavior, 1(1):91–122, 1992.

Y. Uny Cao, Alex S. Fukunaga, and Andrew B. Kahng. Cooperative mobile robotics:

Antecedents and directions. Autonomous Robots, 4(1):7–27, 1997.

Mauro Castelli, Luca Manzoni, and Leonardo Vanneschi. A method to reuse old

populations in genetic algorithms. In Progress in Artificial Intelligence, 15th

Portuguese Conference on Artificial Intelligence, volume 7026 of Lecture Notes

in Computer Science, pages 138–152. Springer, Berlin, Germany, 2011.

Nikolaus Correll and Alcherio Martinoli. Modeling self-organized aggregation in a

swarm of miniature robots. In IEEE International Conference on Robotics and

Automation, pages 379–384. IEEE, New York, NY, 2007.

91

http://docs.di.fc.ul.pt/jspui/handle/10455/6758
http://docs.di.fc.ul.pt/jspui/handle/10455/6758

92 BIBLIOGRAPHY

Erol Şahin. Swarm robotics: From sources of inspiration to domains of application.

In Swarm Robotics, volume 3342 of Lecture Notes in Computer Science, pages

10–20. Springer, Berlin, Germany, 2005.

Giuseppe Cuccu and Faustino J. Gomez. When novelty is not enough. In European

Conf. on the Applications of Evolutionary Computation, volume 6624 of LNCS,

pages 234–243. Springer, Berlin, Germany, 2011.

Giuseppe Cuccu, Faustino J. Gomez, and Tobias Glasmachers. Novelty-based

restarts for evolution strategies. In IEEE Congress on Evolutionary Computation,

pages 158–163. IEEE, New York, NY, 2011.

Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John

Wiley & Sons, Hoboken, NJ, 2001.

Stéphane Doncieux and Jean-Baptiste Mouret. Behavioral diversity measures for

evolutionary robotics. In IEEE Congress on Evolutionary Computation, pages

1–8. IEEE, New York, NY, 2010.

Marco Dorigo and Erol Şahin. Guest editorial: Swarm robotics. Autonomous Robots,

17(2-3):111–113, 2004.

Dario Floreano and Francesco Mondada. Automatic creation of an autonomous

agent: Genetic evolution of a neural-network driven robot. From animals to

animats, 3:421–430, 1994.

Dario Floreano and Francesco Mondada. Evolution of homing navigation in a real

mobile robot. IEEE Transactions on Systems, Man, and Cybernetics, 26(3):396–

407, 1996.

David E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem.

In Genetic Algorithms and Simulated Annealing, Research Notes in Artificial

Intelligence, pages 74–88. Pitman Publishing, London, UK, 1987.

David E. Goldberg and Jon Richardson. Genetic algorithms with sharing for

multimodal function optimization. In Genetic Algorithms and their Applications:

Proceedings of the Second International Conference on Genetic Algorithms, pages

41–49. Lawrence Erlbaum, Mahwah, NJ, 1987.

Faustino Gomez and Risto Miikkulainen. Incremental evolution of complex general

behavior. Technical Report AI96-248, Dep. of Computer Sciences, The University

of Texas, Austin, TX, 1996. URL ftp://ftp.cs.utexas.edu/pub/AI-Lab/

tech-reports/UT-AI-TR-96-248.ps.gz.

ftp://ftp.cs.utexas.edu/pub/AI-Lab/tech-reports/UT-AI-TR-96-248.ps.gz
ftp://ftp.cs.utexas.edu/pub/AI-Lab/tech-reports/UT-AI-TR-96-248.ps.gz

BIBLIOGRAPHY 93

Faustino J. Gomez. Sustaining diversity using behavioral information distance. In

Genetic and Evolutionary Computation Conference, pages 113–120. ACM, New

York, NY, 2009.

Inman Harvey, Philip Husbands, and Dave Cliff. Issues in evolutionary robotics.

In Second International Conference on Simulation of Adaptive Behavior, pages

364–373. MIT Press, Cambridge, MA, 1993.

Simon Haykin. Neural networks: A comprehensive foundation. MacMillan, New

York, NY, 1994.

John H. Holland. Adaptation in Natural and Artificial Systems. The University of

Michigan Press, Ann Arbor, MI, 1975.

Gregory Hornby. ALPS: the age-layered population structure for reducing the

problem of premature convergence. In Genetic and Evolutionary Computation

Conference, pages 815–822. ACM, New York, NY, 2006.

Jianjun Hu, Erik D. Goodman, Kisung Seo, Zhun Fan, and Rondal Rosenberg.

The hierarchical fair competition (hfc) framework for sustainable evolutionary

algorithms. Evolutionary Computation, 13(2):241–277, 2005.

Louis Hugues and Nicolas Bredeche. Simbad: An autonomous robot simulation

package for education and research. In From Animals to Animats 9, volume 4095

of Lecture Notes in Computer Science, pages 831–842. Springer, Berlin, Germany,

2006.

Marcus Hutter and Shane Legg. Fitness uniform optimization. IEEE Transactions

on Evolutionary Computation, 10(5):568 –589, 2006.

Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap: The

use of simulation in evolutionary robotics. In Advances in Artificial Life, Third

European Conference on Artificial Life, volume 929 of Lecture Notes in Computer

Science, pages 704–720. Springer, Berlin, Germany, 1995.

Raphael Jeanson, Colette Rivault, Jean-Louis Deneubourg, Stephane Blanco,

Richard Fournier, Christian Jost, and Guy Theraulaz. Self-organized aggregation

in cockroaches. Animal Behaviour, 69(1):169–180, 2005.

Chris V. Jones and Maja J. Mataric. Behavior-based coordination in multi-robot

systems. In Autonomous Mobile Robots: Sensing, Control, Decision Making, and

Applications, page 549–569. Marcel Dekker, New York, NY, 2005.

94 BIBLIOGRAPHY

Joshua Knowles, Richard Watson, and David Corne. Reducing local optima in single-

objective problems by multi-objectivization. In Evolutionary Multi-Criterion

Optimization, volume 1993 of Lecture Notes in Computer Science, pages 269–283.

Springer, Berlin, Germany, 2001.

Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,

1990.

John R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, 1992.

Peter Krcah. Solving deceptive tasks in robot body-brain co-evolution by searching

for behavioral novelty. In 10th International Conference on Intelligent Systems

Design and Applications, pages 284–289. IEEE, New York, NY, 2010.

Joel Lehman and Kenneth O. Stanley. Exploiting open-endedness to solve problems

through the search for novelty. In Proceedings of the Eleventh International

Conference on Artificial Life (ALIFE XI), Cambridge, MA, 2008. MIT Press,

Cambridge, MA.

Joel Lehman and Kenneth O. Stanley. Revising the evolutionary computation

abstraction: minimal criteria novelty search. In Genetic and Evolutionary

Computation Conf., pages 103–110. ACM, New York, NY, 2010a.

Joel Lehman and Kenneth O. Stanley. Efficiently evolving programs through the

search for novelty. In Genetic and Evolutionary Computation Conference, pages

837–844. ACM, New York, NY, 2010b.

Joel Lehman and Kenneth O. Stanley. Abandoning objectives: Evolution through

the search for novelty alone. Evolutionary Computation, 19(2):189–223, 2011a.

Joel Lehman and Kenneth O. Stanley. Evolving a diversity of virtual creatures

through novelty search and local competition. In Genetic and Evolutionary

Computation Conf., pages 211–218. ACM, New York, NY, 2011b.

Wenguo Liu, Alan F. T. Winfield, and Jin Sa. Modelling swarm robotic systems:

A case study in collective foraging. In Towards Autonomous Robotic Systems

(TAROS 07), pages 25–32, 2007.

François Michaud and Etienne Robichaud. Sharing charging stations for long-term

activity of autonomous robots. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, volume 3, pages 2746–2751, 2002.

BIBLIOGRAPHY 95

Francesco Mondada, Michael Bonani, Xavier Raemy, James Pugh, Christopher

Cianci, Adam Klaptocz, Stéphane Magnenat, Jean-Christophe Zufferey, Dario

Floreano, and Alcherio Martinoli. The e-puck, a robot designed for education in

engineering. In 9th Conf. on Autonomous Robot Systems and Competitions, pages

59–65. IPCB, Castelo Branco, Portugal, 2009.

Jean-Baptiste Mouret. Novelty-based multiobjectivization. New Horizons in

Evolutionary Robotics, 341:139–154, 2011.

Jean-Baptiste Mouret and Stéphane Doncieux. Overcoming the bootstrap problem

in evolutionary robotics using behavioral diversity. In IEEE Congress on

Evolutionary Computation, pages 1161–1168. IEEE, New York, NY, 2009.

Jean-Baptiste Mouret and Stéphane Doncieux. Encouraging behavioral diversity

in evolutionary robotics: An empirical study. Evolutionary Computation, 20(1):

91–133, 2012.

Jean-Baptiste Mouret and Stéphane Doncieux. Incremental evolution of animats’

behaviors as a multi-objective optimization. In From Animals to Animats 10,

volume 5040 of Lecture Notes in Computer Science, pages 210–219. Springer,

Berlin, Germany, 2008.

Angélica Muñoz Meléndez, François Sempé, and Alexis Drogoul. Sharing a charging

station without explicit communication in collective robotics. In Proceedings of

the 7th International Conference on Simulation of Adaptive Behavior on From

Animals to Animals, ICSAB, pages 383–384. MIT Press, Cambridge, MA, 2002.

Andrew L. Nelson, Gregory J. Barlow, and Lefteris Doitsidis. Fitness functions in

evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems,

57(4):345 – 370, 2009.

Stefano Nolfi and Dario Floreano. Evolutionary Robotics: The Biol-

ogy,Intelligence,and Technology. MIT Press, Cambridge, MA, 2000.

Sebastian Risi, Sandy D. Vanderbleek, Charles E. Hughes, and Kenneth O. Stanley.

How novelty search escapes the deceptive trap of learning to learn. In Genetic and

Evolutionary Computation Conf., pages 153–160. ACM, New York, NY, 2009.

Andrea Soltoggio and Ben Jones. Novelty of behaviour as a basis for the neuro-

evolution of operant reward learning. In Proceedings of the 11th Annual conference

on Genetic and evolutionary computation, pages 169–176. ACM, New York, NY,

2009.

96 BIBLIOGRAPHY

Onur Soysal, Erkin Bahgeçi, and Erol Şahin. Aggregation in swarm robotic systems:

Evolution and probabilistic control. Turkish Journal of Electrical Engineering and

Computer Sciences, 15(2):199–225, 2007.

Corné Sprong. Common tasks in evolutionary robotics, an overview. Technical

report, Faculty of Sciences, University of Amsterdam, Netherlands, 2011. URL

http://www.few.vu.nl/nl/Images/werkstuk-sprong_tcm38-217791.pdf.

Kenneth O. Stanley. Efficient Evolution of Neural Networks Through Com-

plexification. PhD thesis, Dep. of Computer Sciences, The University of

Texas, Austin, TX, 2004. URL http://nn.cs.utexas.edu/downloads/papers/

stanley.phd04.pdf.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural network through

augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002.

Vito Trianni. On the Evolution of Self-Organising Behaviours in a Swarm of

Autonomous Robots. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium,

2006. URL http://laral.istc.cnr.it/trianni/docs/thesis-trianni.pdf.

Vito Trianni, Roderich Groß, Thomas Halva Labella, Erol Şahin, and Marco Dorigo.

Evolving aggregation behaviors in a swarm of robots. In European Conf. on

Artificial Intelligence, volume 2801 of LNCS, pages 865–874. Springer, Berlin,

Germany, 2003.

Vito Trianni, Stefano Nolfi, and Marco Dorigo. Cooperative hole avoidance in a

swarm-bot. Robotics and Autonomous Systems, 54(2):97 – 103, 2006.

L. Darrell Whitley. Fundamental principles of deception in genetic search. In

Foundations of Genetic Algorithms, pages 221–241. Morgan Kaufmann, San

Mateo, CA, 1991.

http://www.few.vu.nl/nl/Images/werkstuk-sprong_tcm38-217791.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.phd04.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.phd04.pdf
http://laral.istc.cnr.it/trianni/docs/thesis-trianni.pdf

	List of Figures
	List of Tables
	Introduction
	Original Contributions
	Context
	Thesis Structure and Related Publications

	Related Work
	Evolutionary Robotics
	Evolutionary Swarm Robotics
	Neuroevolution
	NEAT
	Genetic Encoding
	Tracking Genes Through Historical Markings
	Protecting Innovation Through Speciation
	Incremental Complexification

	Deception in Evolutionary Computation
	Novelty Search
	The Problem of Vast Behaviour Spaces
	Minimal Criteria Novelty Search
	Linear Blend of Novelty and Fitness
	Multi-objectivisation

	Generic Behaviour Measures

	Novelty Search in Evolutionary Swarm Robotics
	Aggregation Experiments
	Aggregation Related Work
	Experimental Setup
	Configuration of the Evolutionary Algorithms
	The First Experiment
	The Alternative Novelty Measure
	Combining novelty measures

	Energy Management Experiments
	Energy Management Related Work
	Experimental Setup
	Configuration of the Evolutionary Algorithms
	Overcoming Deception with Novelty Search
	A More Rich Behaviour Characterisation

	Discussion

	Combining Novelty and Fitness
	Progressive Minimal Criteria Novelty Search
	Energy Management Experiments
	Impact of Behaviour Space Dimensionality
	Impact of Deception
	Algorithm Parameters

	Aggregation Experiments
	Performance Comparison
	Novelty-Fitness Balance

	Discussion

	Conclusion
	Summary of the Contributions
	Future Work
	Conclusion

	Simulation and Evolution Workbench
	Application Features
	Tools and Libraries
	Architecture and Design
	Implementation
	Distributed Computing

	Bibliography

