
Using XML to Build Consistency Rules
for Distributed Specifications

Andrea Zisman Wolfgang Emmerich Anthony Finkelstein
 City University University College London
 Department of Computing Department of Computer Science
 Northampton Square Gower Street
 London EC1V 0HB London WC1E 6BT
 +44 (0)20 74778346 +44 (0)20 76794413
 a.zisman@soi.city.ac.uk {w.emmerich | a.finkelstein}@cs.ucl.ac.uk

ABSTRACT

The work presented in this paper is part of a large
programme of research aimed at supporting consistency
management of distributed documents on the World Wide
Web. We describe an approach for specifying consistency
rules for distributed partial specifications with overlapping
contents. The approach is based on expressing consistency
rules using XML and XPointer. We present a classification
for different types of consistency rules, related to various
types of inconsistencies and show how to express these
consistency rules using our approach. We also briefly
describe a rule editor to support the specification of the
consistency rules.

Keywords: Inconsistency, consistency rules, XML,
XPointer.

1. INTRODUCTION

The size and complexity of industrial software systems
require collaboration and co-ordination of physically
distributed teams of people during systems development.
Each person or group of people has their own perspective
and understanding of the system. These different
perspectives are based on the skills, responsibilities,
knowledge and expertise of the people concerned. The
result is multiple distributed partial specifications in a
variety of forms produced using heterogeneous
applications, word processors, specialised applications,
software engineering tools, and similar.

Inevitably, the heterogeneity of the specifications and the
diversity of stakeholders and development participants
results in inconsistencies among the distributed partial
specifications [18]. However as development proceeds
there is a requirement for consistency.

Consistency management is a multifaceted and complex
activity that is fundamental to the success of software
development. Different approaches have been proposed to
manage consistency [11][17][21][25][28]. This research
has identified a strong need for mechanisms, techniques
and tools that aid in detecting, identifying and handling
inconsistencies among distributed partial specifications.

We are interested in identifying inconsistencies among
partial specifications where the documents in which these
specification fragments are represented exhibit Internet-
scale distribution. We assume that the different
specifications are constructed in languages that are
themselves specified using the eXtensible Markup
Language (XML) [5]. This assumption is, we believe,
entirely reasonable since XML is evolving as the standard
format for exchanging data among heterogeneous,
distributed computer systems. Many tools are already using
XML to represent information internally or as a standard
export format. Examples are found in the next generation of
IBM's VisualAge tool set, Microsoft Office 2000, ADLS,
and Rational Rose 20001.

The work presented in this paper is part of a large
programme of research to support consistency management
of distributed documents on the World Wide Web [10]. An
important issue when managing inconsistencies of
distributed documents is to describe the relationships that
are required to hold among the documents. The
relationships are expressed through consistency rules. In
[10] we proposed an approach to identify and detect
inconsistencies among distributed documents, based on
pre-defined consistency rules. The elements related by

1 A detailed description of XML and its applications is beyond the
scope of this paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

these rules are associated through hyperlinks, named
consistency links.

The work presented in this paper complements the work
proposed in [10]. It describes a way of expressing the
consistency rules by using a consistency rule syntax, based
on XML [5] and XPointer [16]. We present a classification
for the different types of consistency rules that we can
represent with our syntax. In addition, we analyse the
expressiveness of the consistency rule syntax and describe
how to apply this syntax to complex software engineering
notations. We also present a consistency rule editor to
support the specification of consistency rules based on the
syntax. Note that the notion of consistency used here does
not correspond to the logical concept of consistency (for a
discussion of this see [8] and [18]).

The remainder of the paper is structured as follows. Section
2 briefly describes our approach to managing consistency
between distributed documents. Section 3 presents the
syntax that is used in our approach to describe the
consistency rules. Section 4 describes a classification for
different types of consistency rules that can be expressed
by using the syntax defined in section 3. Section 5
addresses the consistency rule editor. Section 6 presents
some related work. Finally, section 7 summarizes the
results, discusses some evaluation aspects, and suggests
directions for future work.

2. MANAGING CONSISTENCY AMONG
DISTRIBUTED DOCUMENTS

In [10] we proposed an approach to identify inconsistencies
among documents with Internet-scale distribution. The
approach is simple and lightweight, relying largely on the
judicious use of standards. It consists of using consistency
rules to identify related data, represented as elements, in
distributed documents. The related elements are associated
through hyperlinks, named consistency links. The links are
traversed to identify either consistent or inconsistent
elements. The approach is built on existing Internet
technologies, in particular the eXtensible Markup
Language (XML) [5] and related technologies (e.g.
XPointer [16], XLink [15], and DOM [1]).

The documents we are concerned with have overlapping
content. In order to facilitate comparison and the
identification of the relationships between the contents of
distributed documents, we assume that the participating
documents are specified in XML.

We developed a consistency link generator to produce
consistency links automatically, based on the consistency
rules. The consistency link generator evaluates consistency
rules relevant to pairs of distributed documents. It identifies
sets of possible related elements and checks these elements
through the conditions of the consistency rules. Depending

on the type of the consistency rule and on the result of the
evaluation of the conditions, consistency links are created.

After creating the consistency links and associating related
elements, the distributed documents are displayed in a
browser allowing users to navigate through the documents
by clicking on elements and being taken to the elements in
other documents to which they relate.

3. CONSISTENCY RULE SYNTAX

In this section we describe the syntax used to express the
consistency rules. The consistency rule syntax is based on
XML [5] and XPointer [16]. The reasons for using XML
and XPointer are that they provide an open and
standardised basis for specifying the consistency rules and
dramatically simplifies the task of constructing a rule
interpreter (consistency link generator).

Figure 1 shows the Document Type Definition (DTD) [5]
for our consistency rule syntax. The ConsistencyRule
element is composed of six element contents and attributes
id and type. The id attribute is a unique identification for a
consistency rule. The type attribute specifies the type of the
rule and contains three possible values: CT, CF, and IF .
The rule type specification is used to express the kind of
relationships among elements being compared. Thus, the
first argument (C or I) determines whether two elements
are related because they are consistent or inconsistent, with
respect to a certain rule. The second argument (T or F)
specifies whether the consistency rule is or is not
mandatory (true or false, respectively). Note that it does not
make sense to have the case I T (inconsistent and
mandatory), which would mean that there have to be
related inconsistent elements in the participating distributed
partial specifications.

The description of the six element contents is as follows:

• Description - it contains a natural language
explanation of the rule.

• Source & Destination - they contain XPointer
expressions for identifying possible related elements
depending on the type of the rule. It is likely that there
may be more than one Destination element
related to the same Source element. This occurs
when a rule relates more than two elements in the same
partial specification or distinct partial specifications.
Each Destination element in a rule has a unique
identification represented by attribute dest_id, which is
referenced in element Condition .

• Condition - is composed of four attributes: (a)
expsource, an expression related to the Source

3

element; (b) op, an operator associating expsource with
expdest, which can have the following values: equal,
not_equal, greater_than, less_than, less_equal,
gerater_equal, sum, difference, multiplicity, division,
average ; (c) dest_ref, a reference to the unique
identification of a Destination element; and (d)
expdest, an expression related to the Destination
element.

• Operator - this element is related to the situation in
which the consistency rule is composed of more than
one condition. In this case, Operator can have the
boolean values "AND" and "OR".

< ! E L E M E N T ConsistencyRule (Description ,
Source,Destination+,Condition,(Operator,

 Condition) *)>
<!ATTLIST ConsistencyRule
 id ID #REQUIRED
 type (CT|CF|IF) #REQUIRED>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT Source (XPointer)>
<!ELEMENT Destination (XPointer)>
<!ATTLIST Destination dest_id ID #REQUIRED>
<!ELEMENT XPointer (#PCDATA)
<!ELEMENT Condition EMPTY>
<!ATTLIST Condition
 expsource CDATA #REQUIRED
 op CDATA #REQUIRED
 dest_ref IDREFS #REQUIRED
 expdest CDATA #REQUIRED>
<!ELEMENT Operator EMPTY>
<!ATTLIST Operator value (AND | OR) "AND">

 Figure 1: Consistency rule syntax

4. CLASSIFICATION FOR THE CONSISTENCY
RULES

In this section we present a classification for different types
of consistency rules that we can represent by using the
syntax described in section 3. The different types of
consistency rules are related to distinct types of
inconsistencies that can exist among partial specifications
generated during distributed software system development.
In order to illustrate the classification, we present examples
of the different types of consistency rules based on the
DTD shown in Figure 1.

The classification and respective examples described in this
section are related to UML models, Z specifications, Data
Flow Diagrams, and other software engineering documents.
We use the Unified eXtensible Format (UXF) [24] and the
XML Metadata Interchange (XMI) [19] DTDs, for the
UML models. We also use a DTD for the Z specification

based on the Z Interchange Format (ZIF), presented in Z
standards [30].

In order to produce the classification described below,
some important criteria have been taken into account.
Partial specifications are represented as XML documents.
First, in our approach to consistency management [10] the
participating documents and the content of the Source
and Destination sets in a consistency rule are always
compared pair wise. Second, in XML documents data is
represented as elements and attributes. XML has no rules
regarding when data should be represented as an element or
as an attribute. For instance, in XMI [19] all the
components of the UML metamodel are represented as
XML elements. As a consequence of this we identify
general types of consistency rules, which compare
documents, elements, and mixture of documents and
elements. In the text, we use the term elements to mean
both XML elements and XML attributes.

Table 1 summarises the classification that we use for the
consistency rules. In the table, the names in the rows and
columns are related to the different types of components
being compared: the Source set and the Destination
set, respectively. The content of each position in the table
refers to different types of consistency rules described
below. The most common rules compare two elements and
we refine Type 1 in Table 2 with a set of specialized types
of rules appropriate for partial software engineering
specifications.

Element Document Unrelated
Element Type 1 Type 2 Type 3
Document Type 4 Type 5 Type 6

Table 1: Classification of consistency rules

Transitivity Type 7
Cross-reference Type 8
Dependency Type 9
Associativity Type 10
Fixed values Type 11

Table 2: Specialized types of consistency rules

4.1 Consistency rules

In this subsection we describe and illustrate different
general types of consistency rules. In the examples we
present instances of mandatory, non-mandatory, consistent
and inconsistent rules (CT, CF, and IF).

Type 1: Existence of related elements
This type is related to the situation in which the existence
of an element e1 in a partial specification d1 requires the

4

existence of an element e2 in another partial specification
d2.
Example: For every instance e1 in a UML collaboration
diagram d1, there must exist a class e2 in a UML class
diagram d2, where the name of e2 equals the type of e1.
<ConsistencyRule id = "r1"
 type = "CT">
 <Description> For every instance in a
 collaboration diagram there must
 exist a class in a class diagram
 where the name of the class equals
 the type of the instance.
 </Description>
 <Source><XPointer>
 root().child(all,Package).
 (all,CollaborationDiagram).
 (all,Collaboration).(all,Instance)
 </XPointer></Source>
 <Destination dest_id="CL1"><XPointer>
 root().child(all,Package).
 (all,ClassDiagram).(all,Class)
 </XPointer></Destination>
 <Condition
 expsource="origin().attr(CLASS)"
 op="equal"
 dest_ref="CL1"
 expdest="origin().attr(NAME)">
 </Condition></ConsistencyRule>

Type 2: Existence of documents, due to the existence of an
element
This type of rule is related to the situation in which the
existence of an element e1 in a partial specification d1
requires the existence of another partial specification d2.
Example: For every non-primitive process e1 in a data flow
diagram (DFD) d1, there must exist a DFD d2 with the
same name as e1.
<ConsistencyRule id = "r2"
 type = "CT">
 <Description>For every non-primitive
 process e1 in a DFD, there must exist a
 DFD with the same name as e1.
 </Description>
 <Source><XPointer>root().child(all,
 Diagrams).(all,DFD).all(Process).all
 (Non-primitive)</XPointer></Source>
 <Destination dest_id="DFD1"><XPointer>
 root().child(all,Diagrams).(all.DFD).
 (all,TaggedValue).(all,Tag)
 </XPointer></Destination>
 <Condition expsource="origin().attr(NAME)Ó
 op="equal"
 dest_ref="DFD1"
 expdest="origin().attr(VALUE)Ó>
 </Condition></ConsistencyRule>

Type 3: Existence of an unrelated element
This type of rule is related to the existence of an unrelated
element e1 in a partial specification d1.
Example: For every UML model d1, there must exist a
package e1 in d1.

<ConsistencyRule id = "r3"
 type = "CT">
<Description> For every UML model there must
 exist a package e1. </Description>
<Source><XPointer>
 root().child(all,XMI.content).(all,
 Model_Management.Model)</XPointer></Source>
<Destination dest_id="P1"><XPointer>root().
 child(all,XMI.content).(all,Model_
 Management.Model)</XPointer></Destination>
<Condition expsource="origin().descendant
 (all,FoundationCore.Namespace.
 ownedElement).child(all,Model_Management.
 Package)"
 op="equal"
 dest_ref="P1"
 expdest="#unrelated">
</Condition></ConsistencyRule>

Type 4: Existence of elements, due to the existence of a
document
This type of rule is related to the situation in which the
existence of a partial specification d1 requires the existence
of an element e1 in another partial specification d2.
Example: A partial specification d1 containing an informal
structure text describing the flow of events of a use case
and a use case e1, in a UML model d2, with the same
name, are considered to be related.
<Consistency>
<ConsistencyRule id = "r4"
 type = "CF">
 <Description> An informal structured text
 describing the flow of events of a use
 case and a use case e1 in a UML model with
 the same name, are considered to be
 related. </Description>
 <Source><XPointer>
 root().child(all,XMI.content).(all,
 Model_Management.Model).descendant
 (all,Foundation.Core.Namespace.
 ownedElement). child(all,
 Behavioral_Elements.Use_Cases.
 UseCase).(all,Foundation.Core.Model
 Element.taggedvalue).(all,Foundation.
 Extension_Mechanisms.TaggedValue)
 </XPointer></Source>
 <Destination dest_id="UC1"><XPointer>
 root().child(all,XMI.content).
 (all,Model_Management.Model).
 descendant(all,Foundation.Core.
 Namespace.ownedElement).child(all,
 Behavioral_Elements.Use_Cases.UseCase)
 </XPointer></Destination>
 <Condition expsource="origin().
 ancestor(1,Foundation.Core.
 ModelElement.taggedValue).ancestor(1,
 Behavioral_Elements.Use_Cases.
 UseCase).child(1, Foundation.Core.
 ModelElement.name)Ó
 op="equal"
 dest_ref="UC1"
 expdest=" origin().child(1,Foundation.

5

 Core.ModelElement.name)Ó></Condition>
<Operator value=ÓANDÓ/>
<Condition expsource=origin().child(1,
 Foundation.Extension_Mechanisms.
 TaggedValue.tag)Ó
 op=ÓequalÓ
 dest_ref=ÓUC1Ó
 expdest=Ó#documentationÓ>
</Condition></ConsistencyRule>

Type 5: Existence of related documents
This type of rule is related to the situation in which the
existence of a partial specification d1 requires the existence
of another partial specification d2.
Example: A document design partial specification d1 and a
document code partial specification d2, with the same
name, are considered to be related.
<ConsistencyRule id = "r5"
 type = "CF">
 <Description> A document design
 specification and a document code
 specification, with the same name, are
 considered to be related.</Description>
 <Source><XPointer> root().child(all,
 Doc_Des_Spe).(all,TagValue)
 </XPointer></Source>
 <Destination dest_id="DCS1"><XPointer>
 root().child(all,Doc_Cod_Spe).(all,
 TagValue)</XPointer></Destination>
 <Condition expsource="origin().attr(NAME)"
 op="equal"
 dest_ref="DCS1"
 expdest="origin().attr(NAME)">
 </Condition></ConsistencyRule>

Type 6: Existence of an unrelated document
This type of rule is related to the existence of an unrelated
partial specification d1.
Example: For every software system being developed there
must exist a partial specification d1 concerning its software
requirements partial specification (SRS).
<ConsistencyRule id = "r6"
 type = "CT">
 <Description> For every software
 system being developed, there must
 exist a document with its SRS.
 </Description>
 <Source><XPointer>
 root().child(all,Documents)
 </XPointer></Source>
 <Destination dest_id="D1">
 <XPointer>root().child(all,Documents)
 </XPointer></Destination>
 <Condition expsource="origin().
 child(all,Sof_Req_Spe)"
 op="equal"
 dest_ref="D1"
 expdest="#unrelated">
 </Condition></ConsistencyRule>

4.2 Specialised types of consistency rules

In this subsection we describe and illustrate different
specialised types of consistency rules.

Type 7: Transitivity
This type of rule is related to the situation in which the
existence of two elements e1 and e2, in two different partial
specifications d1 and d2, with element e1 related to element
e2 in partial specification d1, demands the absence of a
relationship between elements e1 and e2, in partial
specification d2. The relationship between e1 and e2 should
not appear in d2 either directly or indirectly, by transitivity
through other elements.
Example: For every class e1 and subclass e2 in a UML
class diagram d1, e2 should not be a superclass of e1 in
any other UML class diagram d2, of the same UML model,
for any level of nesting.
<ConsistencyRule id = "r7"
 type = "IF">
 <Description>For every class e1 and
 subclass e2 in a class diagram, e2
 should not be a superclass of e1 in
 any other class diagram, for any
 level of nesting </Description>
 <Source><XPointer>
 root().child(all,XMI.content).(all,
 Model_Management.Model).(all,
 Foundation.Core.Namespace.
 ownedElement).(all,Foundation.Core.
 Generalization) </XPointer></Source>
 <Destination dest_id="CL1"><XPointer>
 root().child(all,XMI.content).(all,
 Model_Management.Model).(all,Foundation.
 Core.Namespace.ownedElement).(all,
 Foundation.Core.Generalization)</XPointer>
 </Destination>
 <Condition expsource="#transitivity"
 op="equal"
 dest_ref="CL1"
 expdest="#transitivity">
 </Condition>
 <Operator value="AND"/>
 <Condition expsource="id(origin().
 descendant(all,Foundation.Core.
 Generalization.subtype).child(1,
 #element,xmi.idref,*)).child(1,
 Foundation.Core.ModelElement.name)"
 op="equal"
 dest_ref="CL1"
 expdest="id(origin().descendant(all,
 Foundation.Core.Generalization.
 supertype).child(1,#element,
 xmi.idref,*)).child(1,Foundation.
 Core.ModelElement.name)"></Condition>
 <Operator value="AND"/>
 <Condition expsource=="id(origin().
 descendant(all,Foundation.Core.
 Generalization.supertype).
 child(1,#element,xmi.idref,*)).
 child(1,Foundation.Core.

6

 ModelElement.name)"
 op="equal"
 dest_ref="CL1"
 expdest="id(origin().descendant(all,
 Foundation.Core.Generalization.
 subtype).child(1,#element,
 xmi.idref,*)).child(1,Foundation.
 Core.ModelElement.name)">
 </Condition></ConsistencyRule>

Type 8: Cross-reference
This type of rule is concerned with the situation in which
the existence of two related elements e1 and e2 in partial
specification d1 , and the existence of an element e'2,
related to element e2, in another partial specification d2,
demand the existence of an element e'1 in partial
specification d2 , where e'1 is related to e 1, and e'1 is
related to e'2.
Example: For every class e1 with a subclass e2 in a UML
class diagram d1, if there is a schema e'2, in a Z
specification document d2, with the same name as the
subclass e2, then there must exist an inclusion e'1 in
schema e'2, with the same name as class e1.
<ConsistencyRule id = "r8"
 type = "CT">
 <Description>For every class e1 and
 subclass e2 in a UML class diagram,
 if there is a schema e'2 in a Z
 document with the same name as the
 subclass e2, then there must exist
 an inclusion e'1 in e'2 with the
 same name as class e1 </Description>
 <Source><XPointer>root().child(all,
 Package).(all,ClassDiagram).(all,
 Class).(all,Generalization)
 </XPointer></Source>
 <Destination dest_id="SC1">
 root().child(all,Zparas).(all,Schemadef).
 (all,formals)<XPointer></Destination>
 <Condition expsource="origin().
 ancestor(1,Class).attr(NAME)"
 op="equal"
 dest_ref="SC1"
 expdest="origin().ancestor(1,Schemadef).
 attr(NAME)"></Condition>
<Operator value="AND"/>
<Condition expsource="origin().attr(FROM)"
 op="equal"
 dest_ref="SC1"
 expdest="origin().attr(NAME)">
</Condition> </ConsistencyRule>

Type 9: Dependency
This type of rule is related to the situation in which the
existence of an element e1 expressing a relationship
between two elements e2 and e3, where e2 is related to
another element or partial specification eÕ2 (dÕ2), and e3 is
related to another element or partial specification eÕ3 (dÕ3),
demands the existence of an element eÕ1, which expresses a
relationship between eÕ2 (dÕ2) and eÕ3 (dÕ3).

Example: For every association between two classes e2
and e3 that are included in two different UML packages e2Õ
and e3Õ, there must exist a dependency between these two
packages.
<ConsistencyRule id = "r9"
 type = "CT">
 <Description> For every association
 between two classes in two packages there
 must exist a dependency between these two
 packages.</Description>
 <Source><XPointer>root().child(all,
 XMI.content).(all,Model_Management.
 Model).descendant(all,Foundation.Core.
 Namespace.ownedElement).child(all,
 Foundation.Core.Association)
 </XPointer></Source>
 <Destination dest_id="DP1"><XPointer>
 root().child(all,XMI.content).(all,
 Model_Management.Model).descendant
 (all,Foundation.Core.Namespace.owned
 Element).child(all,Foundation.Core.
 Dependency)</XPointer></Destination>
 <Condition expsource="id(origin().
 child(all,Foundation.Core.Association.
 connection).(1,Foundation.Core.
 AssociationEnd)Échild(1,Foundation.
 Core.ModelElement.name)"
 op="equal"
 dest_ref="DP1"
 expdest="id(origin().child(1,Foundation.
 Core.Dependency.client)É.child(1,
 Foundation.Core.ModelElement.name)">
 </Condition>
 <Operator value="AND"/>
 <Condition expsource="id(origin().child
 (all,Foundation.Core.Association.
 connection).(2,Foundation.Core.
 AssociationEnd)É.child(1,Foundation.
 Core.ModelElement.name)"
 op="equal"
 dest_ref="DP1"
 expdest="id(origin().child(1,Foundation.
 Core.Dependency.supplier)É.
 child(1,Foundation.Core.ModelElement.
 name)"></Condition>
<Operator value="OR"/>
<Condition expsource="id(origin().child(all,
 Foundation.Core.Association.
 connection).(1,Foundation.Core.
 AssociationEnd)Échild(1,Foundation.
 Core.ModelElement.name)"
 op="equal"
 dest_ref="DP1"
 expdest="id(origin().child(1,
 Foundation.Core.Dependency.
 supplier)É.child(1,Foundation.Core.
 ModelElement.name)"></Condition>
 <Operator value="AND"/>
 <Condition expsource="id(origin().child
 (all,Foundation.Core.Association.
 connection).(2,Foundation.Core.
 AssociationEnd)É.child(1,Foundation.
 Core.ModelElement.name)"

7

 op="equal"
 dest_ref="DP1"
 expdest="id(origin().child(1,Foundation.
 Core.Dependency.client)É.child(1,
 Foundation.Core.ModelElement.name)">
</Condition></ConsistencyRule>

Type 10: Associativity
This type of rule is concerned with the case where the
existence of an element e1 in a partial specification d1,
demands the existence of either element e2, or element e3,
or element en (n _ _) in another partial specification d2.
Example: For every association e1 in a UML class
diagram d1, there must exist either a schema e2 in a Z
partial specification d2, with the same name as the
association e1, or a variable e3 in a schema in a Z partial
specification d2, with the same name of the association e1,
and the variable must be of type relation or cartesian
product.
<ConsistencyRule id = "r10"
 type = "CT">
 <Description>For every association in a
 UML class diagram there must exist
 either a schema in a Z document with
 the same name as the association, or
 a variable in a schema with the same
 name of the association, and the
 variable must be of type relation or
 cartesian product </Description>
 <Source><XPointer>
 root().child(all,Package).(all,
 ClassDiagram).(all,Class).(all,
 Association)</XPointer></Source>
 <Destination dest_id="SC1"><XPointer>
 root().child(all,Zparas).(all,
 Schemadef)</XPointer></Destination>
 <Destination dest_id="VR1"><XPointer>
 root().child(all,Zparas).
 (all,Schemadef).(all,decpart).
 (all,declaration).(all,variable)
 </XPointer></Destination>
 <Condition
 expsource="origin().attr(NAME)"
 op="equal"
 dest_ref="SC1"
 expdest="origin().attr(NAME)">
 </Condition>
 <Operator value="OR"/>
 <Condition
 expsource="origin().attr(NAME)"
 op="equal"
 dest_ref="VR1"
 expdest="origin().attr(NAME)">
 </Condition>
 <Operator value="AND"/>
 <Condition expsource="#relation"
 op="equal"
 dest_ref="VR1"
 expdest="origin().ancestor(1,
 declaration).child(all,rel).
 attr(kind)">
 </Condition>

 <Operator value="OR"/>
 <Condition
 expsource="origin().attr(NAME)"
 op="equal"
 dest_ref="VR1"
 expdest="origin().attr(NAME)">
 </Condition>
 <Operator value="AND"/>
 <Condition
 expsource="#cartesianproduct"
 op="equal"
 dest_ref="VR1"
 expdest="origin().ancestor(1,
 declaration).child(all,rel).
 attr(kind)">
 </Condition></ConsistencyRule>

Type 11: Fixed values
This type of rule is concerned with comparisons among
elements and partial specifications that have fixed values.
The example described in consistency rule Type 10 also
illustrates Type 11.
Example: For every method e1 of a class in a UML class
diagram d1, there must exist a schema e2 in a Z partial
specification d2, with the same name of the method, and the
purpose of the schema e2 needs to be of value "operation".
<ConsistencyRule id = "r11"
 type = "CT">
 <Description>For every method of a class in
 a class diagram, there must exist a schema
 in a Z specification with the same name of
 the method, and the purpose of the schema
 needs to be of value ÒoperationÓ.
</Description>
 <Source><XPointer>root().child(all,
 Package).(all,ClassDiagram).(all,Class).
 (all,Operation)</XPointer></Source>
 <Destination dest_id=ÓSC1Ó><XPointer>
 root().child(all,Zparas).(all,
 Schemadef)</XPointer></Destination>
 <Condition expsource=Óorigin().attr(NAME)Ó
 op=ÓequalÓ
 dest_ref=ÓSC1Ó
 expdest=Óorigin().attr(NAME)Ó>
</Condition>
<Operator value=ÓANDÓ/>
<Condition expsource=Ó#operationÓ
 op=ÓequalÓ
 dest_ref=ÓSC1Ó

 expdest=”origin().attr(PURPOSE)”>
</Condition></ConsistencyRule>

5. THE RULE EDITOR

Although XML [5] and XPointer [16] provide a simple and
efficient way of describing consistency rules, we recognise
that the syntax proposed may not make it straightforward
for users to define the rules. The difficulties are related
primarily to the following issues: (a) the size of the
expressions (this is generally because the DTDs are large

8

and complex); (b) the XPointer syntax; and (c) the
requirement to have a detailed understanding of the DTDs.
In order to alleviate these difficulties we developed a rule
editor to assist with the partial specification of the
consistency rules. The rule editor is implemented in Java,
using JDK 1.2.2 and the XML parser for Java from IBM
Alphaworks.

Figure 2 presents a screen dump of the rule editor. When
using the editor the user selects the type of documents
associated with the consistency rule to be specified. Based
on this selection the tool presents the respective DTDs for
these documents in a tree format. The user defines the
Source and Destination elements and the respective
Conditions in an interactive way, by selecting elements
and attributes from the DTD structures. The rule editor
translates the information specified by the user into a
consistency rule based on the DTD presented in Figure 1.

Figure 2: A consistency rule specification in the rule
editor

6. RELATED WORK

Many approaches have been proposed to support
consistency management of multiple perspectives in
different formats. In [8][9][11] the authors view
inconsistency as a logical concept. They proposed a first-
order logic-based approach to inconsistency handling in the
ViewPoints framework. This approach has provided us
with the conceptual underpinning of the work reported but
has not been implemented in a distributed setting.
Spanoudakis and Finkelstein [25][26] suggested a method
called reconciliation to allow detection and verification of
overlaps and certain types of inconsistencies between
specifications expressed in an object-oriented framework.
When managing consistency, overlap detection is an
activity that precedes consistency rule construction [12].
We are currently investigating the use of the reconciliation
method to support identification of consistency rules.

Van Lamsweerde et al. [28][29] proposed a formal
framework for various types of inconsistencies that can
occur during requirements engineering process. The idea is
to manage conflicts at the goal level in the context of the
KAOS requirements engineering methodology [7]. This is
achieved by introducing new goals or by transforming
specifications of goals into new specifications free of
conflicts.

Some software development environment projects integrate
tools for different languages and incorporate consistency
constraints that span across different documents. Examples
are found in Arcadia [27], ESF [20], ATOMOSPHERE [3],
and GOODSTEP [13]. The approaches used in all of these
projects utilise a centralised repository, such as PCTE [4]
or an object database for storing documents. However, the
use of these repository limits scalability and commitment
on the part of both users and tool vendors to a heavyweight
integration mechanism. Identification and resolution of
semantic and syntactic conflicts are also issues in the
multidatabase system domain. Many approaches have been
proposed in the literature [6][14][22][23]. A survey of
different approaches to detect and resolve conflicts can be
found in [2]. We believe that more needs to be done to
evaluate these approaches in the context of software
engineering.

Although the existing approaches have contributed to a
better understanding of the consistency management
problem we have only just scratched the surface and
considerable further work is required to make consistency
management a practical proposition.

7. CONCLUSION AND FUTHER WORK

This paper describes an approach to express consistency
rules among distributed specifications. The approach uses
XML and related technologies to allow Internet-scale
distribution and standardisation of the consistency
management process. In order to illustrate our approach
and to specify the types of inconsistencies in which we are
interested we have presented a classification for different
types of consistency rules supported by the approach. The
approach is lightweight and can be deployed in a variety of
different settings.

We are extending our work to allow other types of
consistency rules. In particular, rules involving logical
quantifiers (∀ , ∃) and numeric quantifiers (1, 2, É, n). In

addition, we are also exploring rules related to particular
domains. We are now using the approach in real
applications with some very large specifications, it is out of
the scope of the paper to report on these trials, however we
believe that they are showing promising results. Once this
work is further advanced we plan to look in more detail at
inconsistency handling.

9

ACKNOWLEDGEMENTS

We would like to thank S. Dupuy, E. Ellmer, S. Guerra, C.
Nentwich, and T. Revheim for their helpful discussion on
the topic. We would also like to acknowledge financial
support from the European Union through the RENOIR
project and PROMOTER.

REFERENCES

 [1] V. Apparo, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A.L.
Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, and L. Wood.
Document Object Model (DOM) Level 1 Specification.
Recommendation http://www.w3.org/TR/1998/REC-DOM-Level-
1-19981001, World Wide Web Consortium.

 [2] C. Batini, M. Lenzerini, and S.B. Navathe. A Comparative
Analysis of Methodologies for Database Schema Integration. ACM
Computer Surveys, 18(4), pages 323-364, December 1986.

 [3] J. Boarder, H. Obbink, M. Schmidt, and A. Volker. Advanced
Techniques and Methods of System Production in a
Heterogeneous, Extensible, and Rigorous Environment. In N.
Madhavji, W. Schafer, and H. Weber, editors, Proc. of the 1st Int.
Conf. On System Development Environments and Factories,
Berlin, Germany, pages 199-206, London. Pitman Publishing,
1989.

 [4] G. Boudier, F. Gallo, R. Minot, and I. Thomas. An Overview of
PCTE and PCTE+. ACM SIGSOFT Software Engineering Notes,
13(2), pages 248-257. Proc. of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments, Boston, Mass, 1989.

 [5] T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible
M a r k u p L a n g u a g e . R e c o m m e n d a t i o n
http://www.w3.org/TR/1998/REC-xml-19980210, World Wide
Web Consortium.

 [6] M.W. Bright, A.R. Hurson, and S. Pakzard. Automated Resolution
of Semantic Heterogeneity in Multidatabases. ACM Transaction
on Database Systems, 19(12), pages 212-253, June 1994.

 [7] R. Darimont and A. van Lamsweerde. Formal Refinement Patterns
for Goal-Driven Requirements Elaboration. In Proceedings FSE'4
- Fourth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, San Francisco, pages 179-190, October
1996.

 [8] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh. Co-
ordinating Distributed ViewPoints: the anatonomy of a
consistency check. In Concurrent Engineering Research &
Applications, CERA Institute, USA 1994.

 [9] S. Easterbrook and B. Nuseibeh. Using ViewPoints for
Inconsistency Management. IEE Software Engineering Journal,
November 1995.

 [10] E.Ellmer, W. Emmerich, A. Finkelstein, D. Smolko, and A.
Zisman. Consistency Management of Distributed Documents
using XML and Related Technologies. Submitted for publication.
1999.

 [11] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh.
Inconsistency Handling in Multi-Perspective Specifications. IEEE
Transactions on Software Engineering, 20(8), pages 569-578,
August 1994.

 [12] A. Finkelstein, G. Spanoudakis, and D. Till. Managing
Interference. Joint Proceedings of the SIGSOFTÕ96 Workshops Ð
ViewpointsÕ96: An International Workshop on Multiple
Perspectives on Software Development, San Francisco, ACM
Press, pages 172-174, October 1996.

 [13] GOODSTEP Team. The GOODSTEP Project: General Object-
Oriented Database for Software Engineering Processes. In K.
Ohmaki, editor, Proc. of the Asia-Pacific Software Engineering
Conference, Tokyo, Japan, pages 410-420. IEEE Computer
Society Press, 1994.

 [14] J. Hammer and D. McLeod. An Approach to Resolving Semantic
Heterogeneity in a Federation of Autonomous, Heterogeneous
Database Systems. International Journal of Intelligent and
Cooperative Information Systems, 2(1), pages 51-83, 1993.

 [15] E. Maler and S. DeRose (1998). XML Linking Language (XLink).
Technical Report http://www.w3.org/TR/1998/WD-xlink-
19980303, World Wide Web Consortium.

 [16] E. Maler and S. DeRose (1998). XML Pointer Language
(XPointer). Technical Report http://www.w3.org/TR/1998/WD-
xptr-19980303, World Wide Web Consortium.

 [17] K. Narayanaswamy and N. Goldman. "Lazy" Consistency: A
Basis for Cooperative Software Development. In Proc. of Int.
Conf. On Computer-Supported Cooperative Work (CSCW'92),
Toronto, Ontario, Canada, pages 257-264 - ACM SIGHI &
SIGOIS.

 [18] B. Nuseibeh. To Be and Not to Be: On Managing Inconsistency in
Software Development. In Proc. of 8th IEEE International
Workshop on Software Specification & Design (IWSSD-8), pages
164-169, March 1996.

 [19] OMG (1998). XML Metadata Interchange (XMI) - Proposal to the
OMG OA&DTF RFP 3: Stream-based Model Interchange Format
(SMIF). Technical Report AD Document AD/98-10-05, Object
Management Group,m 492 Old Connecticut Path, Framingham,
MA 01701, USA.

 [20] W. Sch�fer and H. Weber. European Software Factory Plan Ð The
ESF-Profile. In P. A. Ng and R.T. Yeh, editors, Modern Software
Engineering Ð Foundations and current perspectives, chapter 22,
pages 613-637. Van Nostrand Reinhold, New York, 1989.

 [21] R.W. Schwanke and G.E. Kaiser. Living with Inconsistency in
Large Systems. In Proc. of the Int. Workshop on Software Version
and Configuration Control, Grassau, Germany, pages 98-118,
B.G. Teubner, Stuttgart.

 [22] E.Sciore, M. Siegel, and A. Rosenthal. Using Semantic Values to
Facilitate Interoperability Among Heterogeneous Information
Systems. ACM Transactions on Database Systems, 19(2), pages
254-290, June 1994.

 [23] M. Siegel and S.E. Madnick. A Metadata Approach to Resolving
Semantic Conflicts. In proceedings of the 17th International
Conference on Very Large DataBases, pages 133-145, Barcelona,
Spain, 1991.

 [24] J. Suzuki and Y. Yamamoto. Making UML models exchangeable
over the Internet with XML: The UXF Approach. In Muller, P.-A.
and Bezivin, J., editors, Proc. Of Int. Worshop on UML'98,
Mulhouse, France, Lecture Notes in Computer Science. Springer.

 [25] G. Spanoudakis and A. Finkelstein. Reconciliation: Managing
Interference in Software Development. In Proceedings of the
ECAI '96 Workshop on Modelling Conlicts in AI, Budapest,
Hungary, 1996.

 [26] G. Spanoudakis and A. Finkelstein. A Semi-automatic Process of
Identifying Overlaps and Inconsistencies between Requirements
Specifications. In Proceedings of the 5th International Conference
on Object-Oriented Information Systems (OOIS 98), pages 405-
425, 1998.

 [27] R.N. Taylor, R.W. Selby, M. Young, F.C. Belz, L.A. Clarce, J.C.
Wileden, L. Osterweil, and A.L Wolf. Foundations of the Arcadia
Environment Architecture. ACM SIGSOFT Software Engineering
Notes , 13(5), pages 1-13. Proc. of the 4th ACM SIGSOFT
Symposium on Software Development Environments, Irvine, Cal,
1988.

 [28] A. van Lamsweerde. Divergent Views in Goal-Driven
Requirements Engineering. In Proceedings of the ACM SIGSOFT
Workshop on Viewpoints in Software Development, San Francisco,
pages 252-256. October 1996.

 [29] A. van Lamsweerde, R. Darimont, and E. Letier. Managing
Conflicts in Goal-Driven Requirements Engineering. IEEE
Transaction on Software Engineering. November 1998.

 [30] Z Standards panel. Z Notation version 1.2. TR, September, 1995.
http://www.comlab.ox.ac.uk/oucl/groups/zstandards.

10

APPENDIX: CASE STUDY

This paper concerns consistency rules and therefore the
examples presented are at the level of the particular
specification schemes such as UML and Z rather than an
instance level specification such as the case study. We have
a UML specification of the TRMCS and would be able to
demonstrate our tools in the context of this case study if
this is of interest.

