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Abstract

The present work focuses on the pricing of European-style interest rate swaptions, using the
Edgeworth expansion [Collin-Dufresne and Goldstein (2002)] and the Hyperplane approxima-
tions [Singleton and Umantsev (2002)], under multi-factor exponentially-affine models of the
term structure. In a market without arbitrage opportunities, it is shown that an interest rate
swaption can be priced as an option on a coupon-bearing bond. While the Edgeworth approx-
imation suggests a cumulant expansion of the probability density function of the price of the
underlying coupon-bearing bond, the Hyperplane approximation proposes a linearization of the
exercise region, so that the same methods used when under one-factor models can be applied.

Both methods are analyzed in detailed, and then implemented considering a three-factor
Gaussian model, and different maturities for the underlying interest rate swaps, as well as
a range of strike prices for each swaption. While there are almost no differences between the
results yielded by both approximations, the Edgeworth approximation proves to be significantly
slower as the time-to-maturity of the underlying swap increases. Moreover, the Edgeworth
approximation is less flexible, because it requires a closed-form solution for the moments of
the distribution of the underlying asset (i.e. a coupon-bearing bond), which are not so readily

available for non-affine term structure models.

Key words: Interest rate swaptions, coupon-bearing bonds, multi-factor exponentially-

affine term structure models, Edgeworth expansion approximation, Hyperplane approximation.
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Chapter 1
Introduction

Over the past years, the pricing of swaptions has received great attention from researchers and
practitioners. The increasing importance of swaps in financial markets!, the connections to
other financial instruments (it is a well known fact that a swaption can be priced as an option
on a coupon-bearing bond), as well as the unavailability of closed-form pricing formulas when
the interest rate dynamics are modeled using two or more factors, have fostered the need to
develop simple, fast and accurate methods for swaption pricing.

Three of the approaches suggested in the literature to the problem of swaption pricing
have gained superior notability: the Edgeworth expansion approximation [Collin-Dufresne and
Goldstein (2002)], the Hyperplane approximation [Singleton and Umantsev (2002)] and the
Stochastic Duration approximation [Munk (1999)].

The Edgeworth approximation, proposed by Collin-Dufresne and Goldstein (2002) suggests
an application of the Edgeworth expansion technique to the characteristic function, in order to
have an approximation —through the Fourier Inversion Theorem— of the probability density
function of the price of the underlying coupon-bearing bond.

On the other hand, the Hyperplane approximation, introduced by Singleton and Umantsev
(2002), proposes an approximation of the exercise probabilities of the swaption through a lin-
earization of the exercise region, being the exercise boundary approximated by a hyperplane (a
straight line, in the case of a two-factor interest rate model). The relevant exercise probabilities
are then computed using the same numerical methods used for standard pure discount bonds.

In the third approach, Munk (1999) extends the results achieved by Wei (1997), and defines
the concept of stochastic duration of a coupon-bearing bond as the time-to-maturity of a pure

discount bond with the same instantaneous variance of relative price changes as the coupon-

I According to the Bank of International Settlements, the notional value in single currency interest-rate
derivatives increased from 60 trillion dollars in 1999 to almost 450 trillion dollars in 2009, with the combined
market of interest-rate swaps and options representing around 89% of the total notional value.



bearing bond. He then shows that an European-style option on a coupon-bearing bond (and
therefore, a swaption) can be priced as a multiple of the price of a pure discount bond having
the same stochastic duration of the underlying coupon-bearing bond (or interest rate swap).

As the majority of the literature concerning interest rate modelling, all the mentioned
approaches assume that the interest rate dynamics are modeled by exponentially-affine term
structure models. The affine framework became widely used among researchers and practition-
ers, given its analytical tractability, allowing the existence of closed-form solutions for interest
rate derivatives [see, for example, Duffie and Kan (1996)], conserving at the same time the
distinctive features that characterize term structure models (e.g. long-term mean reversion
and, at least for a number of models, heterocedastic volatility). For instance, Dai and Single-
ton (2000) test the goodness-of-fit of multi-factor exponentially-affine term structure models
to several time-series of interest rates, Cox et al. (1985) as well as Jamshidian (1989) show
the existence of closed-form solutions for options on pure discount bonds, under one-factor
square-root and Gaussian models, Longstaff and Schwartz (1992) extend the results of Cox et
al. (1985) to a two-factor CIR model and Duffie et al. (2000) demonstrate that the entire
family of exponentially-affine term structure models possesses closed-form pricing formulas for
options on pure discount bonds.

The main purpose of this work is to analyze in detail some of the proposed method for swap-
tion pricing, namely the Edgeworth expansion approximation [Collin-Dufresne and Goldstein
(2002)] and the Hyperplane approximation [Singleton and Umantsev (2002)], under the general-
istic assumption that the the underlying term structure dynamics are of the exponentially-affine
form.

The remainder of this work is structured as follows. Chapter 2 describes the term structure
framework that will be adopted, as well as the main features of the swaptions market. Chap-
ters 3 and 4 analyze the Edgeworth expansion and the Hyperplane approximation approaches,
and illustrate how to implement them under a three-factor Gaussian model of the term struc-
ture. Chapter 5 provides some numerical results, regarding the speed and accuracy of both

approximations. Chapter 6 concludes.



Chapter 2
Preliminary results

Before moving towards the pricing of European-style swaptions, this Chapter describes the
term structure framework that will be adopted, as well as the main features of the swaptions

market.

2.1 Exponentially-affine term structure models

This section follows Bjork (2004, section 22.3). Let r (t) denote the short rate, which, in a

M-factor model, is assumed to have the following dynamics:

re=0(t)+ )z (t), (2.1)

k=1

where 7 (t) = ro and 79 > 0. Moreover, it is assumed that the processes xy (t) follow the

following stochastic differential equation:
day (£) = puy [t (D) dt + o [t (1) W2 (1), (2.2)

where W,? (t) is a standard Brownian motion, defined in the risk-neutral probability measure

Q, with instantaneous correlation p,; (—1 < p,; < 1), such that
AW (5 dWE (8) = pydt, (23)

where k,l = 1,..., M. Finally, let F; denote the sigma-field generated by {W,i@ (t)}]k\ilup to

time t. An interest rate model is called an exponentially-affine term structure model, if the



functions p, [t, 7 ()] and oy [t,r (t)] satisfy certain conditions, namely

p [t ()] = o (8) 7 (8) + By (1) (2.4)

and

o [t (1)) = /7 (8) 7 () + i, (1), (2.5)

such that the time-t value of a pure discount bond with maturity at time 7' (and unit face
value) can be written as an exponentially-affine function of the short term interest rate [Dai
and Singleton (2000)], that is if

Pt T) = Eqg {eXp <—/tT0rsds>‘.7-}} (2.6)

AT) =Y By (t,T) (t)] : (2.7)

= exp

where A (t,T) and By (t,T) are deterministic functions, satisfying the following equations:

QACT) — B3, (t) By (t.T) — Ly, (t) B2 (¢, T) .
AT, T) =0 :
and
%Jrak (t)Bp (t,T) — 27, ) B (t,T) +1 =0 29)
B(T,T) =0 : :

2.2 European-style interest rate swaptions

An interest rate swap —usually known as an IRS— is a financial contract by which one party
exchanges a stream of fixed interest payments for the stream of floating-rate cash-flows of
another party. This occurs because certain companies have a comparative advantage in fixed
rate markets, while other companies have an advantage in floating rate markets. As so, a
company may be borrowing fixed, when it wants floating, or borrowing floating when it is
looking for fixed. This way, an interest rate swap transforms a fixed rate loan into a floating-
rate loan or vice versa.

An European-syle interest rate swaption is a contract that gives its holder the right, but
not the obligation, to enter an interest rate swap at a future date T, > ¢, with payments C'
on dates T;, with ¢ = 1,..., N, that correspond to F' payments per year. In financial markets,
swaptions are quoted on the fixed component (generally known as leg) of the underlying swap.

There are two types of swaptions: the receiver swaption, which gives its holder the right to



enter a receiver swap (receive cash-flows at a fixed rate, and pay cash-flows at a floating-rate),
and the payer swaption, which gives its holder the right to enter a payer swap (pay cash-flows
at a fixed rate, and receive cash-flows at a floating-rate).

At time T, the exercise decision of the swaption is taken by considering the difference
between the payment rate initially fixed for the swap (C') and the spot swap rate for the
underlying swap, at time Ty, here denoted as SR (Ty, Ty). Then, depending on the swaption

under analysis, the exercise decision can be:

1. For receiver swaptions, the exercise happens only if SR (Ty, Ty) < C, as its holder is able
to obtain an higher interest rate than the one quoted in the swap market. The terminal

payoff of a receiver swaption will be then given by:

N
1
S [Ty, Ty, SR (T, Tw) ,C, N, F] = [C' — SR (Tp, Tw)] " x = X Y P(To.T);  (2.10)
i=1

2. For payer swaptions, the exercise happens only if SR (T,, Ty) > C, as its holder is able
to obtain a lower interest rate than the one quoted in the swap market. The terminal
payoff of a payer swaption will be then given by:

1 N
S [Ty, Ty, SR (Ty, Tw) ,C, N, F] = [SR (Tp, Ty) — C]" x = X Y P(T). (211)

=1

Moreover, it is a well-known fact that, at time-Tj, the value of the underlying interest rate

swap is given by: | P (T Th)
- 0,4 N

% sz\il P (TOa Tl)

As so, and considering the receiver swaption with terminal payoff given by equation (2.10),

SR (Ty, Ty) = (2.12)

1 N

JF
X = X Y P(Ty, T

=1

N
- 1} (2.13)

S[To,To,SR(TOaTN)ycaFaN] =

C
P(Ty, Tv) + 5 ) _ P (10, T)

1 — P (Ty, Tw)
C— =
7 2im1 P (10, T)

oN
P(T07TN)+F;P(TOaTi)

It is easily seen that



or, more simply (considering that C; = %, fori=1,..,.N—1,and Cy =1+ %),
N
> CiP(Ty, Ti) = Y (To) (2.14)
i=1

is in fact the value, at time Ty, of a coupon-bearing bond with cash-flow payments of C; on
dates T;, with ¢ = 1,..., N. Therefore, in a market without arbitrage opportunities, a receiver
swaption can be priced as a call option on the previously described coupon-bearing bond, with
a strike equivalent to a monetary unit, and with the same time-to-maturity of the considered
swaption. Similarly, a payer swaption can be priced as a put option on the same coupon-
bearing bond, equally with a strike price of a monetary unit, and the same time-to-maturity of
the considered swaption.

Taking this into account, the date-t price of an European-style call with maturity date

at time Ty, strike price K and on a coupon-bearing bond with payments C; on dates T; (for

4

i=1,...,N) is given by

CB [t 1o, KACHL, ATYY] = Bo

N
e SO rods max (Z CiP (1o, Ti) — K, 0)

=1

N
P (T, T;
= > CiEq [—(TOO y >H{Y(To)>K}
i=1 el rsds

T
—KEq [6”’5 O TSdSH{Y(To»K}‘ ft}

;

N
= Y GiP(t,T)Boy, [Liymysry| F]

i=1

~KP(t,Ty) Boy, [Ty =] 7]

N
= Y GP(t,T) oy, [Tyy=ky| Fi]

=1

—KP(t,To) g, [H{Y(TO)>K}‘ ft] ; (2.15)

where, in going from the second to the third equality of the previous equation the risk-neutral
measure Q was transformed into the well known T; risk-neutral forward probability measure Qr,
[El Karoui and Rochet (1989), Jamshidian (1991) and Geman et al. (1995)], with i =0,..., N,
and where Y (7)) is defined in equation (2.14) as the date-T, price of the underlying coupon-
bearing bond.

A closed-form solution for this problem has not yet been found for multi-factor exponentially-
affine models, since the exercise boundary is a non-linear function of the state variables, and

therefore the methodology proposed by Jamshidian (1989) for one-factor models cannot be



applied. As so, the pricing of European-style interest rate swaptions can only be performed
through approximation schemes. In the next sections, some of the methodologies proposed
in literature, namely the Edgeworth expansion approximation [Collin-Dufresne and Goldstein
(2002)] and the Hyperplane approximation [Singleton and Umantsev (2002)], are discussed.
Later, the results obtained from these approaches are compared, namely in terms of accuracy

and speed.



Chapter 3
Edgeworth expansion approximation

Proposed by Collin-Dufresne and Goldstein (2002), the Edgeworth expansion for swaption
pricing suggests an approximation of the exercise probabilities Ilg, [Y (7p) > K] through a
cumulant expansion of the probability density function of the date-Tj price of the underlying
coupon-bearing bond. Here, the distribution cumulants are defined to be the coefficients CJQT
of a Taylor series expansion of the natural logarithm of the characteristic function ;. (¢) of
Y (Tp), with i =0, ..., N, i.e.

(ik)’
i

In g, (9)] = f:c’% (3.1)

j=1

Moreover, under the Fourier inversion theorem, the relationship between the probability

density function mg,. and the characteristic function ¢, is given by

1 [
Mo )= 5 [ Meg, () dk (3.2

:% .

Applying equations (3.1) and (3.2), and preserving cumulants only up to the third order,

the previous expression can be rewritten as follows:

1 400 . . l{,’2 ) .k,3 5 ;
TQr, (y) = o exp | —tky + zchTi ~ 5, ZECQTi +0 (k ) dk
1 400 . o k‘2 ) .kg s
N oo /_oo exp {—zky + zchTi ~ 5, ZECQTi] dk, (3.3)

where C]QT,- represents the j-th distribution cumulant (j = 1, ..., M), under the forward proba-

bility measure Q7.



Following Chu and Kwok [2007, equation (4.4)], integration procedures imply that

3
3 1 3 1

1 CQTZ- <y o CQTZ) CQTZ- <y o CQTi> Y- CIQTZ-
TQr, (y) ~ 2 - B z n /5 ) (34)

CQTi 2 <022T-> 2 <C?QT~> CQTi

where )
:)22

n(z)= e 2. (3.5)

V21

Using approximation (3.4), the expression for the exercise probability g, [Y (Tp) > K]

follows immediately:

+o00
o, [V (To) > K] = / Ton, () dy

K
3 1 s
/+oo 1 CQTi (y CQTi> CQTZ (y - CQTi) Y= C(leng

~ 5 — 5 7 n 5 dy

K \/ CQr, 2 (Cgh) ’ 6 <Cén> ’ “Qr,

C%T— 2
— NE) 2 (2 1) ne), 3.6
2 2
6 (CQTi)
where
c}QT' — K

2
\/ CQTi

Given the approximation (3.6) for the exercise probabilities Ilg,. [Y (o) > K], the only step
left in order to complete the algorithm is the computation of the moments and cumulants of
the distribution of Y (7p), under the forward measure Qr, (with i = 0,..., N). In other words,
for each one of the (IV 4 1) forward measures, the algorithm determines the first j-th moments
(j=1,...,M) of Y (Tp), defined by

ml, =Eq, [Y (TO)J} . (3.8)

For any 7, Y (To)j can be expressed as a simple sum of pure discount bond prices. On the

other hand, since all bond prices are of the exponential-affine form, the previous equation is



once again rewritten as

Z (Ciy X .. x Cy,) x (P(To,Ty,) x ... x P(Ty, T;,))

J —
mQTi B EQTi K

- EQTi

Z (Oil % x 027) % (ec(TO,Tij)*Zi\il Dk(TmTij)xk(To)) (3.9)

150y =1

where the functions C (To,Tij) and Dy (To,Tij) are the sums of functions A (To,ﬂ-j) and
B (Ty, T;,), ie.

J

N
C(To.T,)= Y. A(LT,) (3.10)
11,...,05=1
and N
Dy (Ty,T,) = > Bi(Th,Ty,), (3.11)
1 5eenyij=1

for j = 1,..., M. Finally, with the distribution moments, one can easily compute the corre-
sponding cumulants, through the following formula [see, for instance Gardiner (1997), section
2.7]:
) . I N
CjQTi - mé«?Ti o Z <j 7 )C]Q_Timsz (3.12)
i=1
Next section illustrates how to implement the Edgeworth expansion approximation, under
a three-factor Gaussian model of the term structure. The Matlab algorithm for the selected

example can be found in Appendix A3.

3.1 Implementation

In this work, a three-factor Gaussian model was considered for the purpose of illustrating the
implementation of the Edgeworth expansion approximation. Following the description of the

technique outlined in the previous section, the necessary steps for its implementation are:

1. Computation of the moments and cumulants of the distribution of Y (75).

Recalling equation (3.9), the moments of the distribution of Y (75) can be computed
through

mh, = 3 (G x X Q) x C0T) x Bo, [ (e Zha (BT )nm)] 3 13)

10



where C' (To, Tij) and D;, (T 05 Tij) are defined by equations (3.10) and (3.11), considering
functions A (TO,TZ-].) and By (T o,Tz']-) defined in Appendix Al. By equation (A.8), the
model factors follow normal transition density functions. As so, since the linear combi-
nation of normally distributed variables is also normallly distributed, the expected value
on the right-hand side of equation (3.13) can be calculated using the same idea as in
Appendix Al: if Z is a normal random variable with mean ;1 and variance o2, then its

moment-generating function will be given by:

E[exp (Z)] = exp (u + %&) : (3.14)

2

In this case, p and 0 are defined to be the expected value and variance of the random

variable Z = [~ 30_ Dy (To, T,

+,) @ (To)], under the forward measure Qr,, with i =
0, ..., N. Therefore:

Eo,, [Z|1F] = —Di(To, Ti) Eqy, [v1 (To) |Fi] — Do (10, Ti) Eqy, [22 (To) |74
— D3 (To, T3) By, 25 (To) [ 2] (3.15)

Using equation (A.35) yields:

Eq,, [Z|F) = —Di(Ty,T;) [e 0z (t) — Myy — Myp — M)
—Dy (1o, T;) [67'{2(%%)@ (t) — Moy — Myy — Mo
—Dy (To, T;) [e 7Ty (£) — May — May — My, (3.16)

where My, is defined by equation (A.34). Considering the conditional variance,

04, 217 = Di (TOaT')UéTi o (To) |7] + D3 (T, To) o7, [2 (To) |72]
+D5 (To, Ti) o7, |3 (To) |74
+2Dy (To, T, )D 2 (To, Ti) 120, [01 (To) [ Fil 0, 22 (To) | Fi]
+2D1 (To, Ty) D3 (To, Ti) p130,, [21(To) [Fi] o, w3 (To) | 7]
+2D5 (To, Ti) D3 (To, Ti) pa30,,, 122 (To) [ Fi] o, [23 (To) |F4] . (3.17)

]

11



Rearranging terms, equation (3.14) can be rewritten as':

3 3
1 e (To—
By, [exp (Z) |F] = exp { > Di(T0,T) My + 50t [Z1F) = Y Di (T, Ti) e+ Dy (t)} .
k=1

k=1

(3.18)
With the moments of the distribution, the necessary cumulants can be rapidly calculated

using equation (3.12).

2. Calculation of the approximated exercise probabilities.

After obtaining the cumulants of the distribution of Y (7j), the only step left to complete
the implementation is the calculation of the approximated exercise probabilities, for all the

considered forward probability measures. This can be easily performed through equations
(3.6) and (3.7).

'Equation (3.18) corrects equations (28), (29) and (30) in Collin-Dufresne and Goldstein (2002).

12



Chapter 4
Hyperplane approximation

The Hyperplane approximation technique, introducted by Singleton and Umantsev (2002), sug-
gests an approximation of the exercise probabilities Ilg, [V (Ty) > K], where the fundamental
goal is the linearization of the exercise region, so that the same methods used when under
one-factor models can be applied.

The first step of the algorithm, considering a three-factor interest rate model, is to compute

(22,0/2: T2,1-a/2) and (T34/2, T31-a/2) such that
HQTi [.7327(1/2 < Z9 (To) < I271_a/2} =1—« (41)

and
HQTZ- |:ZL'3704/2 < I3 (TQ) < 11371_@/2] =1—aq, (42)

where « is a given level of significance (for instance, 1% or 5%). Both pairs can be easily
calculated using the univariate transition density function followed by each factor under each
one of the forward probability measures, depending on the chosen term structure model (e.g.
the normal density function for Gaussian models, the non-central chi-square density function
for models of the Cox-Ingersoll-Ross family, etc.).

After this, the next step is to find x4 1, 212, 213 and 214 so that the four computed points
($1,1;$2,a/2;$3,a/2), ($1,2;$2,17a/2;3:3,a/2)7 (351,3;%2,&/2;333,17@2) and (1'1,4;37172,04/2;353,1704/2) fall
on the exercise boundary [Y (Tp) = K. Due to the non-linear nature of the exercise boundary,
the corresponding equation must be solved using a numerical algorithm.

Armed with the coordinates for the four triplets, the next step of the algorithm involves the

fitting of a hyperplane (which degenerates into a straight line, in the case of two-factor models)

Bia1 + Baxa + Pars =1 (4.3)

13



to the four points, which can be performed by using standard Ordinary Least Squares proce-

dures, i.e.
’ -1 ’
8= (X X) X'Y (4.4)
where
B
B
B = : (4.5)
B
B4
T11  T2a/2 T3,0/2
X — T12 T21-a/2 T3,0/2 (4.6)
13 T2a/2 T31-a/2
T14 T1-20/2 T31-a/2
and
1
1
Y = (4.7)
1
1
Finally, the exercise probabilities can be rewritten as:
HQTi [Y (T()) > K] ~ HQTi (51%’1 + 62372 + 53333 > K) (48)
or
Loy, [Y (To) > K] = gy, (8121 + Bywz + Bazs < K), (4.9)

which can be solved using the same techniques used for one-factor models. The choice between
equation (4.8) or equation (4.9) depends on the location of the exercise region. A simple
method to find the correct sign of the inequality is as follows: for each one of the exercise
probabilities, corresponding to the (N + 1) forward measures, substitute the triplet (z1, s, z3)
in the exercise boundary [Y (7p) = K| by (0,0,0). Then, if [Y (7y) > K], the correct form of
the exercise probability will be as in equation (4.8). Otherwise, if [Y (Tp) < K], the correct
exercise probability will be as in equation (4.9).

Next section illustrates how to implement the Hyperplane approximation under a three-
factor Gaussian model of the term structure. Once again, the corresponding Matlab algorithm

code for the selected example can be found in Appendix A3.

14



4.1 Implementation

As in the Edgeworth approximation, the three-factor Gaussian model is used to illustrate the
implementation of the Hyperplane approximation. Therefore, following the structure outlined

in the previous section, the necessary steps for the implementation of the algorithm are:

1. Computation of ($27a/2, $271_a/2> and (I’&a/g, .T371_a/2> .
In order to find both pairs, one needs the univariate transaction density function followed
by x5 and x3. Following Appendix A1, and since the chosen term structure model belongs
to the Gaussian family, all factors follow a normal transition density function, i.e.:
1  (ep—mg)?

Xk (
T, [ (1) < Xl = —— / K (4.10)

where k = 1,...,3 and p,, and o3 represent the expected value and the variance of z; at

time T, under the corresponding forward measure ()r,. Following Appendix Al, both

parameters are given by
. = Bay, [ox (To) | F] = e 000 (T) = Myt — Mo — My, (4.11)

where My, is given by

. 01010k — ki (To—1) —k1(T;—To) —rp (To—t) =1 (T;—1)
M, = — "~ 1— k(40 _ 1 _
M ik (R4 R) kit m) (1= ) e ‘ I}
(4.12)
with k,l=1,..,3and ¢ =0,..., N, and
2 2 U% —2k1(To—t)
As so, using equation (4.10), basic integration procedures yield that
a
Mo, (2 (To) > ThasplFi] =1 - > (4.14)
and, therefore,
o
Teap = ¥ { 5 Boy, [ (T0) |7, 02 [ (Th) 1)} (4.15)
for k = 2, 3. Similarly,
Q@
HQTz‘ [wk <T0> < xk71_a/2|ft] =1— 5 (416)

15



implies that

(6]
Teiap = {1 = 5 Bo,, o (T0) |l 02, [ox (To) | 7i] | (4.17)

where ®! (0, 1, 0?) denotes the inverse of the univariate normal cumulative distribution
function, with expected value and variance given by p and o2, respectively, and for the

level of significance 6.

2. Computation of z1 1, 712, 713 and 1 4.

After the previous step, one needs to compute 11, %12, 13 and 14, in order to
obtain the triplets (551,1;902,&/2;373,&/2), ($1,2;x2,17a/2;l‘3,a/2)7 ($1,3;5E2,a/2;$3,17a/2) and
(x174; T1-2,0/2) T3,1-a /2). This is done by solving four non-linear equations (one for each

triplet) of the following form:

N
> CP(Ty,T) = K (4.18)
=1
1.e.
N 3
Y Cixexp |A(To,Th) =Y Bi(To, Ti) i (To) | = K (4.19)
i=1 k=1

where A (T, T;) and By (T, T;) are the functions defined in Appendix Al.

3. Fitting of a hyperplane to the four computed points.

As mentioned in the previous section, the fitting of a hyperplane (or a straight line, for

two-factor models), can be easily performed using standard OLS procedures, i.e.

8 — <XX> Xy

Ti1 T2a/2 T3,0/2 Ti1  T2,a/2 T3,0/2
. T12 T21-a/2 T3,0/2 ) T12 T21-a/2 T3,0/2
T1,3 T2a/2 T31-a/2 T1,3  T2a/2 T31-/2
Ti14 T1-20a0/2 T31-a/2 T14 T1-20a/2 T31-a/2
/
Tl T2a/2  T30/2 1
T1,2 T21-a/2 T3,a/2 1 (4 20)
T13  T2a/2  T31-a/2 1 .
Ti4 T1-20/2 T31-a/2 1

4. Calculation of the approximated exercise probabilities.
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With the computed 3, the approximated exercise probabilities can be rapidly computed
using equations (4.8) or (4.9). As already mentioned, zi, x2, x5 and x4 follow normal
transition density functions, with expected values and variances (in each one of the con-
sidered forward measures) given by equations (4.11) and (4.13), respectively. Hence, the

distribution of

BIX(Ty) = Byx1 (Ty) + Byxs (Ty) + Paxs (Ty), (4.21)

under the forward measure ()7, is a normal law characterized by having expected value

and variance, respectively, given by

Bq,, 8" X (To) |Fi] = 51 Bay, [21 (To) |[F] + BBy, [22 (To) |F] + B3Bay, (o5 (To) | 7],

(4.22)
and
UéTi [B'X(Ty)|7] = %Uén [z (To) | F4] +B§Uén [z2 (To) [ F4] +5§Uén (25 (To) | 7]
128, Bapra0, o1 (To) [Fi 0, [ (T0) | ]
2610301304, [01 (To) [ Fi] o, [rs (To) | Fi]
2050302300, [02 (To) [ Fi] o, s (To) [ Fi], (4.23)

where Eq,. [z (To) |F] and O'éTv [zx (To) | F2], with & = 1,..,3, are given by equations
(4.11) and (4.13), respectively. Z
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Chapter 5
Numerical results

In this work, the three-factor Gaussian model of the term structure is considered, for the purpose
of illustrating the implementation of the Edgeworth and the Hyperplane approximations, as
well as testing their accuracy and speed. The purpose of this chapter is therefore to present
the numerical results obtained from these analyses.

Three swaptions where considered in the analysis:

1. A 2-2 swaption (time-to-maturity of 2 years for the option, and 2 years for the underlying

interest-rate swap, with semiannual payments);

2. A 2-5 swaption (time-to-maturity of 2 years for the option, and 5 years for the underlying

interest-rate swap, with semiannual payments);

3. A 2-10 swaption (time-to-maturity of 2 years for the option, and 10 years for the under-

lying interest-rate swap, with semiannual payments).

All the three swaptions were considered to have strike rates ranging from 4% to 8% (at
0.1% increases), corresponding to a total of 41 contracts, for each swaption-swap maturity.
The parameter values for the numerical implementations of the three-factor Gaussian model

were obtained from Collin-Dufresne and Goldstein (2002, exhibit 1), and are as follows:

Table 5.1 - Three-factor Gaussian model parameters

I (O> w2 (0) m3(0) 0 K1 K2 Rs3 01 p) 03 P12 P13 P23
0.01 0.006 —-0.02 0.06 1.0 0.2 05 0.01 0.006 0.002 —-02 -0.1 0.3

Moreover, in the Edgeworth approximation, the Taylor series expansion of the characteristic

function was assumed only up to the third order. In the Hyperplane approximation, a level of
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significance of 5% was considered. Both algorithms were run on an Intel Core Duo CPU, with
1.67 GHz and 2 Gb RAM.

Concerning the accuracy of both techniques, the absolute average price differences between
the results obtained with the Edgeworth expansion and the Hyperplane approximations, for

the 41 x 3 contracts analyzed, were as follows:

Table 5.2 - Absolute average price differences between the

Edgeworth and the Hyperplane approximations

Absolute average difference

Swaption 1 (2 x 2) 7.8 x 107
Swaption 2 (2 x 5) 1.2 x 1077
Swaption 3 (2 x 10) 5.3 x 1077

Table 5.2 shows that there are almost no differences between the results obtained with
the two approximations, even when considering underlying interest rate swaps with longer
maturities.

In terms of the speed, running times for both approximations, for the considered swaption

contracts, were as follows:

Table 5.3 - Running times (in seconds) for the Edgeworth

and the Hyperplane approximations

Edgeworth approximation Hyperplane approximation

Swaption 1 (2 x 2) 0.571 1.774
Swaption 2 (2 x 5) 7.844 6.452
Swaption 3 (2 x 10) 1153.28 20.423

For the first swaption, the Edgeworth approximation was the fastest technique, mainly due
to the fact that the underlying interest rate swap has a small number of payments, which
decreases the associated computational cost. However, as the number of payments of the un-
derlying swap increases, the computational costs associated with the Edgeworth approximation
significantly increase, in comparison with the Hyperplane approximation. As a result, in the
third swaption (and for the 41 considered contract strike prices), the running time for the
Edgeworth approximation was around 19.2 minutes, and only 20.4 seconds for the Hyperplane

approximation. This happens because each moment of the distribution of Y (75) requires the
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computation of a summation with N terms (for instance, the computation of the third mo-
ment of the distribution of Y (7}), for a swap with 20 payments, requires the computation of a
sum with 8 000 terms), thus greatly increasing the running times necessary for the computation

of higher order moments.
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Chapter 6
Conclusions

In this work two approaches to the problem of swaption pricing were analyzed: the Edgeworth
expansion and the Hyperplane approximations. With 3 swaptions, and a range of 41 strike
prices for each swaption, no significant differences were found between the prices yielded by
both approximations. However, in terms of speed, the Edgeworth expansion is significantly
slower as the time-to-maturity of the underlying interest rate swap increases, due to the high
computational costs associated with the computation of the moments of Y (Tj), which have to
be replicated for each one of the strike prices under analysis.

Moreover, the Edgeworth approximation seems to be less flexible, since it requires a closed-
form solution for the moments of the distribution of Y (7j), which is not so readily derived for
other term structure models, as it is for the considered three-factor Gaussian model. Therefore,
an interesting extension of this analysis would be to test both approximations with other term
structure models, neither Gaussian, nor of the exponentially-affine family. However, given space

and time constraints, this topic is left for future work.
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Appendix A

Auxiliary results - Three-factor

Gaussian model

Under the risk-neutral probability measure Q, the three-factor Gaussian model assumes that

the short-term interest rate r (t) has the following dynamics:

r(t)=0(t)+ Y z(t), (A1)

with 7 (0) = ro and r9 > 0. Furthermore, the processes xj(t) satisfy the following stochastic

differential equation:
dzy, (t) = —kpay (t) dt + o dW2 (1), (A.2)

where k; and o, are positive constants, and (WlQ, WQQ , Wé@) is a three-dimensional Brownian

motion, with instantaneous correlation p,; (=1 < p,; < 1), such that
AW (£) W2 (t) = pydt. (A.3)

Finally, let F; denote the sigma-field generated by the triplet (x1, x5, x3) up to time ¢. Using
the stochastic differential equation (A.2) and applying It6’s lemma to the process

yr () = ™'y (t), (A.4)
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one obtains:

dye (t) = kre™'ay () dt + e"™'dxy (t)
= Iikenktl‘k (t) dt + €Rkt [—Iikxk (t) dt + O'k;dVVI;Q (t)]
= ™o dWR(t). (A.5)

Integrating both sides of the previous equation between s and ¢ (> s) yields,
t
yr (1) = yr (s) + O'k/ e""““dW;@ (u). (A.6)
Combining equations (A.4) and (A.6),
t
ey (1) = ™5y (8) + oy / e AW (u), (A.7)

1.e.

t
5 t) = () oy [ eI ), (A.8)
with £ =1, ..., 3. Recalling equation (A.1),
t
r(t) = 6(t)+e g (s) + e 2, (s) + e gg (5) + 01/ e Mg (u)

t t
+0o, / e~V AWR (u) 4 o3 / e g (u) . (A.9)

In order to obtain the discount factor under the three-factor Gaussian model, one can make
use of the following result: if Z is a normal random variable with mean y and variance o2, then

its moment-generating function will be given by:

E [exp (2)] = exp (M + %ﬁ) | (A.10)

Taking this into account, one only needs to show that, for each (¢,7") the random variable

I(t,T):= /t (21 (8) + 22 (s) + 23 (5)] ds, (A.11)

conditional to the sigma field F; is in fact normally distributed. Basic integration by parts
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yields

/t Uk (s)ds = Ta(T) — tan (1) — /t " s (5)
_ /tT(T—s)d:ck(s)+(T—t)a:k(t)
— —/@k/tT(T—s)xk(s)ds+ak/tT(T—s)dW,i@(s)+(T—t)xk(t)
= e (1) /t (T 5) e s — /t ") /t G- () d
oy /t T = ) dWO(s) + (T — 1) 2 (1) (A.12)

Computing separately the previous expression,

T T T
— KL, (t)/ (T —s)e 6 Vds = —g (t)T/ ke 0 ds + (t)/ kpse 50 g
t t t
v (s—t1 T Fs + 1) erns=07 7
= x ()T [e rk(s t)]t — xy, (t) [( k ) ]
Kk t
_ ., (t) Te—rkT—t) _p _ (IikT + 1) e—tk(T—t) _ (Iikt + 1)
k p
—Hk(T—t) _ 1
_ a;k(t){—(T—t)——e ]
R
—ke(T—t) _ 1
= () (T —t) - T (), (A.13)
Kk

and, again through integration by parts
T s
—IikO'k/ (T — s)/ e VAW (u) ds
T ' s ' ]
= —IikO'k/ {/ ey 2 (u)} ds {/ (T —v) e‘”"”dv}
¢ L)t ¢
T T T ops
= —KLO) [/ W2 (u)] [/ (T —v) e‘”“’dv] + /ikak/ [/ (T —v) e‘“’“”dv] e s dW 2 (s)
¢ ¢ ¢ ¢
T T
= —nkok/ {/ (T — ) e‘”’““dv] e dW 2 (s)
t s

T —KES —kiT —KES
T — k k — k
_ _kao—k/ {( e e - 1 e = dW 2 (s)
t

. /tT {(T _ s+ &] dW,;@ (s). (A.14)

Rk
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Recalling equation (A.12) and adding up the previous terms, one obtains

T 1 — —kg(T—t) T
/ oe(s)ds=—° g )+ & / [1— e T=9] g2 (s) . (A.15)
¢ R Rk J¢

Since any I[t0’s integral, with a deterministic integrand, possesses a normal distribution with

zero mean and variance equal to its quadratic variation, then:

1— e—lﬂ(T—t) 1 1 — e—mz(T—t)

o (o)
Eg |l (t,T)|F] = — a1 (¢ — X0+ —— 25 (¢ — x0
ol (. T)|F] o xl()+m>< + . 952()+K2>< +
1 _ —H3(T—t)

b T+ xo

R3 K3
3
k=1

where
1— e—Hk(T—t)
By (t.T)=—% (A.17)
Kk

Concerning the computation of the conditional variance,

I (t,T)|F] = Eo{ll(t,T)—Bg(I(t,T)|F)]|F}
= Eg {01 / [1 — e”‘“(T’S)] alVVlQ (s) + 2/ [1 — e’”Q(T’S)] dWéQ (s)+

K1 K2
T

2
+ 93 [1 — e*ns(Tfs)} de? (5):| ’.7:;5} .

K3
Using [td’s isometry, simple integration procedures imply that:
[ (t,T) | F]

o2 [T o2 . 2 T a2
:—;/t [1- ds—f-/{—g } ds+l<§/t 1—e s(T )] ds

2

T
—|—2p12%% [1— e @=9] [1 - e ds

T
+2p13§§ [1— e T=9] [1 — e T ds
t

T
+2,023,Z—22—2 [1—emT=9] [1— e (T9)] ds (A.18)
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1.e.

o* [1(t,T)|F]
0% 26—/{1(T—s) 6—251(T—s):|T U% |: 26—H2(T—s) 6—252(T—s) T
=3 |5 - Toa 5T -
K{ K1 2K . K3 Ko 2K9 .
O'% 26—53(T—s) e—2f@3(T—s) T
+—2 |:8 — — }
K3 K3 2K3 :
oroy [ e T8 omm(T—s)  o=(mtn2)(T-s)7T
21— — |5 — - +
K1 k2 [ K1 K2 (K1 + K2) ‘
o105 [ eTs)  pmms(T=s)  o—(mitns)(T—s)]7
+2p13—— |5 — -
K1 K3 | K1 K3 (k1 +ks) |,
oo [ e 2T omms(T=s)  o—(xatns)(T—s)] T
205522 5= - +
Ko K3 | K2 K3 (ks +K3) |,
_ ol lT 2= 2em0T0 1 eQm(Tt)} o3 [T 2—2e 01— 62@(“)]
=2 |-t - | —t- -
K2 K1 2k K3 Ko 2Ky
2 9 _ 9e—ka(T—t) 1— 6—253(T—t)
+23 {T S - }
K3 K3 2R3
010 1 — efnl(Tft) 1 — efng(Tft) 1 — e*(lﬁﬁrnz) T—t)
+2p1y——2 {T—t— - +
K1 K9 K1 Ko (K1 + K2)
o1 0 1— e—nl(T—t) 1 — 6—&3(T—t) 1— e—(/il+li3) T—t)
+2pyg—— [T —t — - +
K1 K3 K1 K3 (K1 + K3
1— —ka(T—1) 1— —k3(T—t) 1— —(ka+k3)(T—t)
12y, 2272 [T I S ¢ } (A.19)
K2 K3 K2 K3 (Ko + K3)
Since p;,; = 1, for any k = [, the previous equation can be rewritten as:
’ oo
(TR =Y pkl% [T —t — By, (t,T) — By, (t,T) + Byt (t,T)] . (A.20)
kl

k=1

Therefore, combining equations (A.10), (A.11), (A.16), (A.17) and (A.20) the discount

factor under the three-factor Gaussian model is given by:

P(LT) = By [exp (— /t Trsds) |}'t}

. [exp (_ /t U 16(5) + 20 (5) + 22 (5) + 75 (5)] ds) |ft] a2
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and, therefore,

P(t,T) = exp ds}E [exp( tT[xl (8)+x2(3)+x3(s)]d8) \]—"t}
— oo / 5(s ds] e {~Boll (,7) 7] + 30 (1) 7]}
= exp A(t,T)—z::Bk (t,T) (t)] (A.22)
where!

A(LT) = /5 )ds + = Zﬂklgkgl[T—t—Bk(tT) BUET) + Bow (,T)]  (A.23)
kll Rkhi

and By (t,7) is defined as in equation (A.17).
Using a change of numeraire [El Karoui and Rochet (1989), Jamshidian (1991) and Geman
et al. (1995)], it is easily shown that the state variables have the following dynamics in the

forward measure Qr;:

3
dl’k (t) = [—likl‘l (t) — Z O'kO'l,Olek (Tl — t) dt -+ O'de];QTi (t) s (A24)

where

AW () = AW (t) + Zakalplek (T, — t) dt, (A.25)

=1
with¢=0,...,Nand k=1,...,3.
Applying It6’s lemma to the process

yr () = ™'y (t), (A.26)
then:

dye (t) = kpe™zy (t) + e 'dry (t)

3
= Kkpe™lay (1) + ™ { [—/ﬁk$k (t) — Z 0k0py; Bj (T; — 1)
j=1

3
= —e™ [Z orojpy; Bj (Ti — 1)
j=1

'Equation (A.23) corrects equation (26) in Collin-Dufresne and Goldstein (2002).

dt + opdW, T (t)}

dt + o™t dW T (1) . (A.27)
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Integrating both sides of the previous equation between s and ¢t (> s) yields

t 3 '
ue () = i (s) + / ~e"N" 040504 Br; (T; — ) du + o / e AW (u)
s Jj=1 s

¢ ¢
= yr(s) — / e o101 pp1 Bry (T; — u) du — / e o109 PRo By (T; — u) du

¢ ¢
= / e o 03p3 Brs (T — u) du + ak/ e“k“dWSTi (u) (A.28)

Through standard integration procedures, the first integral yields:

t
/ €™ 01,01 pp1 By (Ti — t) du

i 1 — e—ﬂl(Ti—U)
= O-ko-lpk]_/ enku |:/{—:| du
s 1

t
— Llpkl/ efiku _ eﬁku—ml(Ti—u)du
K1 s

K (k1 + k)

(T —) 1t
OkO1Pk1 {6""““ efiru—r1(Ti “)}
K1 s

_ 0k01Pk1
K1k (K1 + ki)

(i1 + ) 4" — e’

= 1 (k1 + ky) €70 — ppe™ T () 4 ) e 4 /{ke"‘ks"‘“l(Ti—s)]
K1k (K1 + Ki)

= O0kO1Pk1 Kt KRS\ _ kpt—k1(Ti—t) _  krs—k1(Ti—s) A.29
/ﬁ)l/ﬁk(lﬁ—i—,‘ik){(/ﬁ—i_ﬁk) (e € ) Kk [e e }} (A.29)

Appying the same process to the remaining integrals,

t
/ eﬁkquO—?plﬂan (T‘z - t) du

_ 0k02Pko ket KkES\ krt—ra(Ti—t) _ krs—ra(Ti—s)
_I{QK](;(KQ"_K/]C) {(l{2+/€k) (ek ek) ffk |:€k 2 ek 2 :|}7 (A.30)

and

t
/ e 01033 By (T; — t) du

_ 0k03Pk3 ket RkEs\ kpt—r3(Ti—t) _ krs—k3(Ti—s)
753/%('{3—1-@){(53—’_@)(6’6 ek) ﬁk[ek ' e ” (A.31)

28



Therefore, recalling equation (A.28),

. 0k01Pk1 Kt KLS kpt—r1 (T;—t) krs—k1(Ti—s)
) = _ Kkt RESY kt—rK1 _ Rk
W = )~ I (o (¥ =) < premtn-a])

k9202
RoKk (K,Q + Hk)

_ O0kL03Pk3 ket RES) kpt—r3(Ti—t) _ kps—r3(T;—s)
K3k (K3 + Ki) {<H3+H’“>(ek ek) Kk [ek 3 RS —R3 ]}

t
o / e (). (A.32)

{(/432 + /{k) (eﬁkt . enks) — K, [enkt—ﬁz(Ti—t) o enks—nz(Ti—s)]}

Combining equations (A.26) and (A.32),

K _ KK 0k01Pk1 Kkt KkS Krt—r1(T;—t) Kkrs—r1(T;—s)
ey (t) = e™x (s) — K1+ ki) (€™ — e™7) — Kk e — ek
k(1) K (s) ﬁ:mk(erFok){(l e ( ) = r | I}
. 0k02Pk2 ket KES\ kpt—ro(Ti—t) _ krps—ra(Ti—s)
Kok (K2 + Ky ) (e o) e ‘ I}
0k03Pk3

gk (K3 + Kk) {(53 + Fir) (eﬁkt - 6'%8) — Kk [e“kt*ns(Trt) _ enksf,{gm,s)} }

t
—i—ak/ e”k“dW,?Ti (u),

ie.
o (t) = e ™9 (s)
_Iill‘i(:k(illpj—l/ik) {(51+ ) (1= 7 07) — gy [errBmt) — emmlmamm T}
- /izﬁzlzizp—]flik) {(kz + ) (1= 7™ 07)) — gy [ernallint) —emmnlims)mmalliza) ]}
i (s ) (1= ) — g [0 — el
+op, /t e’“k(t’“)dW,?Ti (u)
= e "0y (s) = My — Mya — Mys + o /t e AW (), (A.33)
where
Mis = T {4y (1 PH0) o0 — ) ()

Since any [t0’s integral, with a deterministic integrand, possesses a normal distribution with
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zero mean and variance equal to its quadratic variance, then:
Bay, [z () | Fs] = ey (5) — Myg — Myy — My, (A.35)

where My, is defined by equation (A.34), and

aé [z (1) |Fs] = Eq, { [xk (t) — Eqg, (zk (t) |]-"S)} ’ |.7-"S}

T,
t 2
— aiEQTi { {/ e—m(t—u)dW];fi (u)} |fs}

t
= az/ e~ 2 (=) gy
S

_ 02 6—2Hk(t—u) ¢
k 2I€k s

= JE[1- e (A.36)

with £k =1,...,3.
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Appendix B

Matlab codes for the selected examples

The purpose of this Appendix is to present the Matlab algorithms used in the selected examples.
Given space constraints, only the codes referring to the pricing of Swaption 1 defined in Chapter

5 are presented.

B.1 Edgeworth expansion approximation

%Given the parameters established for the three-factor Gaussian model, this
%routine prices swaptions using the Edgeworth expansion approximation
%[Collin-Dufresne and Goldstein (2002)].

clear; clc;

format long;

Y%Declaration of variables:

n = 4; J#Number of swap payments

tau = 2; %Time-to-maturity of the swaption
fr = 2; hFrequency of the swap payments

X = [0.01; 0.005; -0.02]; %Vector of state variables at t=0
delta = 0.06; %Delta

K= 1[1; 0.2; 0.5]; %Vector of Ks

S = [0.01; 0.005; 0.002]; WVector of Sigmas
R=1[1-0.2-0.1; -0.2 1 0.3; -0.1 0.3 1];%Matrix of Rhos

'_h
]

length(X); JsNumber of model factors
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tic; %Timer initiation

Tt tototototo o o o o o o o To o o o o o o o o o o oo o oo o oo oo To o o o o o o o o o o o o o o o oo oo oo to o To oo To oo o o o o o o o o o

%Computation of the discount factors - Appendix Al

c=1;
for j = tau:(1/fr):tau+(n/fr)
s = 0;

for k = 1:1:f

Bk(c,k) = (1-exp(-K(k,1)*j))/K(k,1);
for 1 = 1:1:f
a = (((S(k,1)*s(1,1)*R(k,1))/(K(k,1)*K(1,1)))
*(j-((1-exp(-K(k,1)*j))/K(k,1))-((1-exp(-K(1,1)*j)) /K(1,1))
+((1-exp (- (K(k,1)+K(1,1))*j))/(K(k,1)+K(1,1)))));
s = sta;
end
end

A(c,1) = -deltaxj+s/2;
P(Cyl) eXp(A(Csl)_Bk(Cs:)*X);

c = ct+l;

end

oo Tolo oo To oo o To o oo o ToTo o oo ToTo o o foTo o o o ToTo o oo ToTo o o o To T o o To To o o o To To o o o To T o o o To o o o o To o o o To T o o o To T o

%Computation of the expected value and variance of Xk(TO), for k = 1,...,3,

Junder the QTi forward measure - Appendix Al

c =1;

for j = tau:(1/fr):tau+(n/fr)
s = 0;
for k = 1:1:f

for 1 1:1:f
s = s+((S(k,1)*S(1,1)*R(k,1))/(K(1,1)*K(k,1)*(K(1,1)+K(k,1))))
*((K(1,1)+K(k,1))*(1-exp(-K(k,1)*(tau-0)))-K(k,1)
*(exp(-K(1,1)*(j-tau))-exp(-K(k,1)*(tau-0)-K(1,1)*(j-0))));
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end

Mij(c,k) = s;

VAR(c,k) = ((S(k,1)72)/(2¥K(k,1)))*(1-exp(-2xK(k,1)*(tau-0)));
end
c = ct+l;

end

oo o o o To o ToTo o To o To o o o o o o o o o o o o o oo oo o ToToToToToTo oo oo oo fo o o o o o o o o ol o To o To T T To oo oo oo oo oo

%Implementation of the Edgeworth expansion approximation

cl =1;

for ¢ = 0.04:0.001:0.08 %Swaption contract strikes
C(1,1:n-1) = (c/fr); hAuxiliary payment vector
C(1,n) = 1+(c/fr); hAuxiliary payment vector

hComputation of the first moment of the distribution - Equations
%(3.16) and (3.18)
c2 =1;
for i1 = (1/fr): (1/fr): (n/fr)
s = 0;
for k = 1:1:f
G(k,c2) = ((1-exp(-K(k,1)*(tau+il-tau)))/K(k,1));
N(k,c2) = G(k,c2)*exp(-K(k,1)*tau);
for 1 = 1:1:f
al = (((S(k,1)*S(1,1)*R(k,1))/(K(k,1)*K(1,1)))
*((tautil-tau) - ((1-exp(-K(k,1)*(tau+il-tau)))
/K(k,1))-((1-exp(-K(1,1)*(tau+il-tau)))/K(1,1))
+((1-exp(-(K(k,1)+K(1,1)) *(taut+il-tau)))/(K(k,1)
+K(1,1)))));
s = s+al;
end
end
A(1l:n+1,c2) = -deltax(tau+il-tau)+s/2;
NX(1:n+1,c2) = N(:,c2)’*X;
CAUX(1,c2) = C(1,il1*fr);
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c2 = c2+1;

end
c2 = 1;
for j = tau:(1/fr):tau+(n/fr)
c3 =1;
for il = (1/fr):(1/fr): (n/fr)
sl = 0;
s2 = 0;
for k = 1:1:F
sl = s1+(G(k,c3)*xMij(c2,k));
for 1 = 1:1:f
s2 = s2+(G(k,c3)*G(1,c3)*sqrt (VAR(c2,k))
*sqrt (VAR(c2,1))*R(k,1));
end
end
M(c2,c3) = s1+s2/2;
c3 = c3+1;
end
c2 = c2+1;
end

LAUX = A+M-NX;
for j = 1:1:n+1
MOMENTS (j,1)=exp (LAUX(j, :))*CAUX’ ;

end

%Computation of the second moment of the distribution - Equations
%#(3.16) and (3.18)
c2 = 1;
for i1 = (1/fr):(1/fr): (n/fr)
for i2 = (1/fr):(1/fr): (n/fr)
s = 0;
for k = 1:1:F
G(k,c2) = ((1-exp(-K(k,1)*(taut+il-tau)))/K(k,1))+((1
—exp(-K(k,1)*(tauti2-tau)))/K(k,1));
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N(k,c2) = G(k,c2)*exp(-K(k,1)*tau);
for 1 = 1:1:f
al = (((8(k,1)*S(1,1)*R(k,1))/(K(k,1)*K(1,1)))
*((tautil-tau)-((1-exp(-K(k,1)*(tau+til-tau)))
/K(k,1))-((1-exp(-K(1,1)*(tau+il-tau)))/K(1,1))
+((1-exp(-(K(k,1)+K(1,1)) *(taut+il-tau)))/(K(k,1)
+K(1,1)))));
a2 = (((S(k,1)*S(1,1)*R(k,1))/(K(k,1)*K(1,1)))
*x((tauti2-tau) - ((1-exp(-K(k,1)*(tau+i2-tau)))
/K(k,1))-((1-exp(-K(1,1)*(tau+i2-tau)))/K(1,1))
+((1-exp(-(K(k,1)+K(1,1)) *(tau+i2-tau)))/(K(k,1)
+K(1,1)))));
s = s+al+a2;
end
end
A(1:n+1,c2) = -deltax(tau+il-tau)-deltax(tau+i2-tau)+s/2;
NX(1:n+1,c2) = N(:,c2)’*X;
CAUX(1,c2) = C(1,il*xfr)*C(1,i2*fr);

c2 = c2+1;
end
end
c2 = 1;
for j = tau:(1/fr):tau+(n/fr)
c3 =1;

for i1 = (1/fr):(1/fr): (n/fr)

for i2 = (1/fr):(1/fr): (n/fr)
sl = 0;
s2 = 0;

for k = 1:1:f
sl = s1+(G(k,c3)*Mij(c2,k));
for 1 = 1:1:f
s2 = s2+(G(k,c3)*G(1,c3)*sqrt (VAR(c2,k))
*sqrt (VAR(c2,1))*R(k,1));
end

end
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M(c2,c3) = sl1+s2/2;

c3 = c3+1;
end
end
c2 = c2+1;

end

LAUX = A+M-NX;
for j = 1:1:n+1

MOMENTS (j,2)=exp (LAUX(j, :))*CAUX’;

end

%Computation of the third moment of the distribution - Equations

%(3.16) and (3.18)
c2 = 1;

for i1 = (1/fr):(1/fr): (n/fr)
for i2 = (1/fr):(1/fr):(n/fr)

for i3 = (1/fr):

s = 0;

for k = 1:1:
G(k,c2)
N(k,c2)
for 1 =

(1/fr) : (n/fr)

Hh

((1-exp(-K(k,1)*(tau+il-tau))) /K(k,1))+((1
-exp(-K(k,1)*(tauti2-tau)))/K(k,1))+((1
-exp(-K(k,1)*(taut+i3-tau)))/K(k,1));
G(k,c2)*exp(-K(k,1)*tau);

1:1:f

al = (((S8(k,1)*S(1,1)*R(k,1))/(K(k,1)*K(1,1)))

*((tautil-tau) - ((1-exp(-K(k,1)*(tau+il-tau)))
/K(k,1))-((1-exp(-K(1,1)*(tau+il-tau)))/K(1,1))
+((1-exp(-(K(k,1)+K(1,1))*(taut+il-tau)))/(K(k,1)
+K(1,1)))));

a2 = (((S(k,1)*3(1,1)*R(k,1))/(K(k,1)*K(1,1)))

*x((tau+ti2-tau)-((1-exp(-K(k,1)*(tau+i2-tau)))
/K(k,1))-((1-exp(-K(1,1)*(tau+i2-tau)))/K(1,1))
+((1-exp(-(K(k,1)+K(1,1)) *(tau+ti2-tau)))/(K(k,1)
+K(1,1)))));

a3 = (((8(k,1)*S(1,1)*R(k,1))/(K(k,1)*K(1,1)))
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end

end

c2 = 1;

end

*((tau+i3d-tau) - ((1-exp(-K(k,1)*(taut+i3-tau)))
/K(k,1))-((1-exp(-K(1,1)*(tau+i3-tau)))/K(1,1))
+((1-exp(-(K(k,1)+K(1,1)) *(tau+i3-tau)))/(K(k,1)
+K(1,1)))));
s = s+al+a2+a3;
end
end
A(1l:n+1,c2) = -deltax(tau+il-tau)-deltax(tau+i2-tau)
-delta*(taut+i3-tau)+s/2;

NX(1:n+1,c2) = N(:,c2)’*X;

CAUX(1,c2) = C(1,i1xfr)*C(1,i2+fr)*C(1,i3*fr);

c2 = c2+1;

for j = tau:(1/fr):tau+(n/fr)
c3 =1;
for i1 = (1/fr):(1/fr): (n/fr)

end

for

end

i2 = (1/fr):(1/fr): (n/fr)
for i3 = (1/fr):(1/fr): (n/fr)
sl = 0;
s2 = 0;
for k = 1:1:f
sl = s1+(G(k,c3)*Mij(c2,k));
for 1 = 1:1:f
s2 = s2+(G(k,c3)*G(1,c3)*sqrt (VAR(c2,k))
*sqrt (VAR(c2,1))*R(k,1));
end
end
M(c2,c3) = si1+s2/2;
c3 = c3+1;

end
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c2 = c2+1;

end

LAUX = A+M-NX;
for j = 1:1:n+1
MOMENTS (j , 3)=exp(LAUX(j, :))*CAUX’;

end

%Computation of the cumulants of the distribution - Equation (3.12)
CUMULANTS(:,1) = MOMENTS(:,1);
for j = 1:1:n+1
for k = 2:1:3
s = 0;
for 1

1:1:(k-1)
S+(nChoosek(k—1,l)*CUMULANTS(j,k—l)*MOMENTS(j,l));

]
end
CUMULANTS(j,k) = MOMENTS(j,k)-s;

end

end

%Computation of the exercise probabilities [equations (3.6) and (3.7)]

%and pricing of the swaption contract under analysis

s = 0;
for i = 1:1:n
for j = 1:1:n+1
z = (CUMULANTS(j,1)-1)/sqrt (CUMULANTS(j,2));
EP(j,1) = normcdf (z)+(CUMULANTS(j,3)/(6*CUMULANTS(j,2)"(3/2)))
*((z72)-1)*((1/sqrt (2*pi) ) *exp((-z"2)/2));
end

s = s+(C(1,i)*P(i+1,1)*EP(i+1,1));
end
SWAPTION(c1,1) = s-(1%P(1,1)*EP(1,1));

%Clearing of variables

A = zeros(); M = zeros(); NX = zeros(); CAUX = zeros();
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cl = ci1+1;

end

SWAPTION
toc

B.2 Hyperplane approximation

%Given the parameters established for the three-factor Gaussian model, this
Jroutine prices swaptions using the Hyperplane approximation [Singleton and
%Umantsev (2002)].

clear; clc;

format long;

Y%Declaration of variables:

n = 4; J#Number of swap payments

tau = 2; %Time-to-maturity of the swaption
fr = 2; WFrequency of the swap payments

X = [0.01; 0.005; -0.02]; %Vector of state variables at t=0
delta = 0.06; %Delta

K= [1; 0.2; 0.5]; %Vector of Ks

S = [0.01; 0.005; 0.002]; JVector of Sigmas
R=1[1-0.2-0.1; -0.2 1 0.3; -0.1 0.3 1];%Matrix of Rhos

alfa = 0.05; hLevel of significance

f = length(X); J#Number of model factors

Y=1[1; 1; 1; 1]1; WVector for the OLS procedures
tic; %Timer initiation

oo To oo o To oo o ToTo o o o ToTo o oo ToTo o o o To o o o ToTo o oo ToTo o o o To T o o To To T o o To To o o o To T o o o To o o o o To o o o To T o o o To 1o o

%Computation of the discount factors - Appendix Al

c=1;
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for j = tau:(1/fr):tau+(n/fr)

for k = 1:1:f

= (1-exp(-K(k,1)*j))/K(k,1);

1:1:f

a = (((S(k,1)*S(1,1)*R(k,1))/(K(k,1)*K(1,1)))*(j-((1
—exp(-K(k,1)*3j)) /K(k,1))-((1-exp(-K(1,1)*j)) /K(1,1))
+((1-exp (- (K(k,1)+K(1,1))*j))/ (K(k,1)+K(1,1)))));

o

~

~\

(g}
oo
o W
R~
oo
I

S = s+a;
end
end
A(c,1) = -deltaxj+s/2;
P(c,1) = exp(A(c,1)-Bk(c,:)*X);
c = ct+l;

end

oo ToTo oo To oo o ToTo o o o ToTo o oo ToTo o o o To o o o ToTo o oo ToTo o o o To T o o o ToFo o o o To o o o To T o o o ToFo o o o To o o o To T o o o To 1o o

%Implementation of the Hyperplane approximation

cl = 1;

for ¢ = (0.04):(0.001):(0.08) %Swaption contract strikes
C(1,1:n-1) = (c/fr); hAuxiliary payment vector
C(1,n) = 1+(c/fr); hAuxiliary payment vector
c2 =1;
for j = tau:(1/fr):tau+(n/fr)

s = 0;

%Expected value and variance of Xk(TO), for k = 1,...,3,

Junder the QTi forward measure - Equations (4.11) and (4.13)

for k = 1:1:f

for 1 1:1:f
s = s+((S(k,1)*S(1,1)*R(k,1))/(K(1,1)*K(k,1)*(K(1,1)

+K(k,1))))*((K(1,1)+K(k,1))*(1-exp(-K(k, 1) *(tau-0)))
-K(k,1)*(exp(-K(1,1)*(j-tau))-exp(-K(k,1)*(tau-0)
-K(1,1)%(j-0))));

end
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EV(c2,k

) = X(k,1)*exp(-K(k,1)*(tau-0))-s;

VAR(c2,k) = ((S(k,1)"2)/(2*K(k,1)))*(1-exp(-2*K(k,1)*(tau-0)));

end

%Computation of functions A(.) and B(.) of the discount factors,

%taking into account the expected value and variance of Xk(TO),

%under the QTi forward measure - Appendix Al

c3 = 1;
for m = (1/fr):(1/fr): (n/fr)
s = 0;
for k = 1:1:F
Bk2(c3,k) = (1-exp(-K(k,1)*m))/K(k,1);
for 1 = 1:1:f
a = (((sqrt(VAR(c2,k))*sqrt(VAR(c2,1))*R(k,1))/(K(k,1)
*K(1,1)))*(m-((1-exp(-K(k,1)*m)) /K(k,1))-((1
-exp(-K(1,1)*m))/K(1,1))+((1-exp(-(K(k,1)+K(1,1))*m))
/(K(k,1)+K(1,1)))));
S = s+a;
end
end
A2(c3,1) = -delta*m+s/2;
c3 = c3+1;
end
%Equations (4.15) and (4.17), for k = 2,3
X2(c2,1) = norminv(alfa/2,EV(c2,2),sqrt(VAR(c2,2)));
X2(c2,2) = norminv(1-alfa/2,EV(c2,2),sqrt(VAR(c2,2)));
X3(c2,1) = norminv(alfa/2,EV(c2,3),sqrt(VAR(c2,3)));
X3(c2,2) = norminv(1l-alfa/2,EV(c2,3),sqrt(VAR(c2,3)));
%Computation of the second and third columns of X, to use in the
%0LS procedures
XAUX(1:2,3) = X3(c2,1);
XAUX(3:4,3) = X3(c2,2);
XAUX(1,2) = X2(c2,1);
XAUX(2,2) = X2(c2,2);
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XAUX(3,2)
XAUX (4,2)

X2(c2,1);
X2(c2,2);

%Equation (4.19)

a = @(x1) ((C(1,1)*exp(A2(1,1)-Bk2(1,1)*x1-Bk2(1,2)*XAUX(1,2)
-Bk2(1,3)*XAUX(1,3))+C(1,2)*exp(A2(2,1)-Bk2(2,1) *x1-Bk2(2,2)
*XAUX (1,2)-Bk2(2,3) *XAUX(1,3))+C(1,3) *exp (A2(3,1)-Bk2(3,1) *x1
-Bk2(3,2)*XAUX (1,2)-Bk2(3,3)*XAUX(1,3))+C(1,4) *exp(A2(4,1)
-Bk2(4,1)*x1-Bk2(4,2)*XAUX (1,2)-Bk2(4,3) *XAUX(1,3)))-1);

XAUX(1,1) = fzero(a,0);

b = @(x1) ((C(1,1)*exp(A2(1,1)-Bk2(1,1)*x1-Bk2(1,2)*XAUX(2,2)
-Bk2(1,3)*XAUX(2,3))+C(1,2)*exp(A2(2,1)-Bk2(2,1) *x1-Bk2(2,2)
*XAUX (2,2)-Bk2(2,3) *XAUX(2,3) )+C(1,3) *exp (A2(3,1) -Bk2(3,1) *x1
-Bk2(3,2) *XAUX (2,2)-Bk2(3,3) *XAUX(2,3))+C(1,4) *exp(A2(4,1)
-Bk2(4,1)*x1-Bk2(4,2) *XAUX(2,2)-Bk2(4,3) *XAUX(2,3)))-1);

XAUX(2,1) = fzero(b,0);

c = @(x1) ((C(1,1)*exp(A2(1,1)-Bk2(1,1)*x1-Bk2(1,2)*XAUX(3,2)
-Bk2(1,3)*XAUX(3,3))+C(1,2)*exp(A2(2,1)-Bk2(2,1) *x1-Bk2(2,2)
*XAUX (3,2)-Bk2(2,3) *XAUX(3,3))+C(1,3) *exp(A2(3,1)-Bk2(3,1) *x1
-Bk2(3,2)*XAUX (3,2)-Bk2(3,3) *XAUX(3,3) )+C(1,4) *xexp(A2(4,1)
-Bk2(4,1)*x1-Bk2(4,2)*XAUX(3,2)-Bk2(4,3)*XAUX(3,3)))-1);

XAUX(3,1) = fzero(c,0);

d = @(x1) ((C(1,1)*exp(A2(1,1)-Bk2(1,1)*x1-Bk2(1,2)*XAUX(4,2)
-Bk2(1,3)*XAUX(4,3))+C(1,2)*exp(A2(2,1)-Bk2(2,1)*x1-Bk2(2,2)
*XAUX (4,2)-Bk2(2,3) *XAUX(4,3))+C(1,3) *exp(A2(3,1)-Bk2(3,1) *x1
-Bk2(3,2)*XAUX (4,2)-Bk2(3,3) *XAUX (4,3) )+C(1,4) *exp(A2(4,1)
-Bk2(4,1)*x1-Bk2(4,2)*XAUX (4,2)-Bk2(4,3) *XAUX(4,3)))-1);

XAUX(4,1) = fzero(d,0);

%Computation of OLS procedures - Equation (4.20)
BETA(c2,:) = (((XAUX’*XAUX) "-1)*XAUX’*Y)’;

%Equations (4.8) or (4.9), (4.21), (4.22) and (4.23)
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if Cxexp(A2)>1
PR(c2,1) = normcdf(1,BETA(c2,:)*EV(c2,:)’,sqrt(BETA(c2,1)"2
*VAR (c2,1)+BETA(c2,2) "2*VAR(c2,2)+BETA(c2,3) "2
*VAR (c2,3)+2*BETA(c2,1) *BETA(c2,2) *sqrt (VAR(c2,1))
*sqrt (VAR(c2,2))*R(1,2)+2+BETA(c2,1)*BETA(c2,3)
*xsqrt (VAR(c2,1))*sqrt (VAR(c2,3))*R(1,3)+2*BETA(c2,2)
*BETA (c2,3) *sqrt (VAR(c2,2) ) *sqrt (VAR(c2,3))*R(2,3)));
elseif Cxexp(A2)<1
PR(c2,1) = 1-normcdf (1,BETA(c2,:)*EV(c2,:)’,sqrt(BETA(c2,1)"2
*VAR(c2,1)+BETA(c2,2) "2*VAR(c2,2)+BETA(c2,3) "2
*VAR (c2,3)+2+BETA(c2,1) *BETA(c2,2) *sqrt (VAR(c2,1))
*sqrt (VAR(c2,2))*R(1,2)+2+BETA(c2,1)*BETA(c2,3)
*sqrt (VAR(c2,1))*sqrt (VAR(c2,3))*R(1,3)+2*BETA(c2,2)
*BETA (c2,3) *sqrt (VAR(c2,2) ) *sqrt (VAR(c2,3))*R(2,3)));

end

c2 = c2+1;

end

#Pricing of the considered swaption contract
SWAPTION(c1,1) = sum(C’.*P(2:size(P,1),1) .*PR(2:size(PR,1),1))

cl = ci1+1;

end

SWAPTION
toc %Timer stoppage
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