
Instituto Superior das Ciências do Trabalho e da Empresa

- Instituto Universitário de Lisboa

Faculdade de Ciências da Universidade de Lisboa

Departamento de Finanças do ISCTE-IUL

Departamento de Matemática da FCUL

VALUATION OF EUROPEAN-STYLE SWAPTIONS

Pedro Miguel Silva Prazeres

Mestrado em Matemática Financeira

2010





Instituto Superior das Ciências do Trabalho e da Empresa

- Instituto Universitário de Lisboa

Faculdade de Ciências da Universidade de Lisboa

Departamento de Finanças do ISCTE-IUL

Departamento de Matemática da FCUL

VALUATION OF EUROPEAN-STYLE SWAPTIONS

Pedro Miguel Silva Prazeres

Mestrado em Matemática Financeira

Dissertação orientada pelo

Professor Doutor João Pedro Vidal Nunes

2010



Abstract

The present work focuses on the pricing of European-style interest rate swaptions, using the

Edgeworth expansion [Collin-Dufresne and Goldstein (2002)] and the Hyperplane approxima-

tions [Singleton and Umantsev (2002)], under multi-factor exponentially-a¢ ne models of the

term structure. In a market without arbitrage opportunities, it is shown that an interest rate

swaption can be priced as an option on a coupon-bearing bond. While the Edgeworth approx-

imation suggests a cumulant expansion of the probability density function of the price of the

underlying coupon-bearing bond, the Hyperplane approximation proposes a linearization of the

exercise region, so that the same methods used when under one-factor models can be applied.

Both methods are analyzed in detailed, and then implemented considering a three-factor

Gaussian model, and di¤erent maturities for the underlying interest rate swaps, as well as

a range of strike prices for each swaption. While there are almost no di¤erences between the

results yielded by both approximations, the Edgeworth approximation proves to be signi�cantly

slower as the time-to-maturity of the underlying swap increases. Moreover, the Edgeworth

approximation is less �exible, because it requires a closed-form solution for the moments of

the distribution of the underlying asset (i.e. a coupon-bearing bond), which are not so readily

available for non-a¢ ne term structure models.

Key words: Interest rate swaptions, coupon-bearing bonds, multi-factor exponentially-
a¢ ne term structure models, Edgeworth expansion approximation, Hyperplane approximation.
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Chapter 1

Introduction

Over the past years, the pricing of swaptions has received great attention from researchers and

practitioners. The increasing importance of swaps in �nancial markets1, the connections to

other �nancial instruments (it is a well known fact that a swaption can be priced as an option

on a coupon-bearing bond), as well as the unavailability of closed-form pricing formulas when

the interest rate dynamics are modeled using two or more factors, have fostered the need to

develop simple, fast and accurate methods for swaption pricing.

Three of the approaches suggested in the literature to the problem of swaption pricing

have gained superior notability: the Edgeworth expansion approximation [Collin-Dufresne and

Goldstein (2002)], the Hyperplane approximation [Singleton and Umantsev (2002)] and the

Stochastic Duration approximation [Munk (1999)].

The Edgeworth approximation, proposed by Collin-Dufresne and Goldstein (2002) suggests

an application of the Edgeworth expansion technique to the characteristic function, in order to

have an approximation � through the Fourier Inversion Theorem� of the probability density

function of the price of the underlying coupon-bearing bond.

On the other hand, the Hyperplane approximation, introduced by Singleton and Umantsev

(2002), proposes an approximation of the exercise probabilities of the swaption through a lin-

earization of the exercise region, being the exercise boundary approximated by a hyperplane (a

straight line, in the case of a two-factor interest rate model). The relevant exercise probabilities

are then computed using the same numerical methods used for standard pure discount bonds.

In the third approach, Munk (1999) extends the results achieved by Wei (1997), and de�nes

the concept of stochastic duration of a coupon-bearing bond as the time-to-maturity of a pure

discount bond with the same instantaneous variance of relative price changes as the coupon-

1According to the Bank of International Settlements, the notional value in single currency interest-rate
derivatives increased from 60 trillion dollars in 1999 to almost 450 trillion dollars in 2009, with the combined
market of interest-rate swaps and options representing around 89% of the total notional value.
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bearing bond. He then shows that an European-style option on a coupon-bearing bond (and

therefore, a swaption) can be priced as a multiple of the price of a pure discount bond having

the same stochastic duration of the underlying coupon-bearing bond (or interest rate swap).

As the majority of the literature concerning interest rate modelling, all the mentioned

approaches assume that the interest rate dynamics are modeled by exponentially-a¢ ne term

structure models. The a¢ ne framework became widely used among researchers and practition-

ers, given its analytical tractability, allowing the existence of closed-form solutions for interest

rate derivatives [see, for example, Du¢ e and Kan (1996)], conserving at the same time the

distinctive features that characterize term structure models (e.g. long-term mean reversion

and, at least for a number of models, heterocedastic volatility). For instance, Dai and Single-

ton (2000) test the goodness-of-�t of multi-factor exponentially-a¢ ne term structure models

to several time-series of interest rates, Cox et al. (1985) as well as Jamshidian (1989) show

the existence of closed-form solutions for options on pure discount bonds, under one-factor

square-root and Gaussian models, Longsta¤ and Schwartz (1992) extend the results of Cox et

al. (1985) to a two-factor CIR model and Du¢ e et al. (2000) demonstrate that the entire

family of exponentially-a¢ ne term structure models possesses closed-form pricing formulas for

options on pure discount bonds.

The main purpose of this work is to analyze in detail some of the proposed method for swap-

tion pricing, namely the Edgeworth expansion approximation [Collin-Dufresne and Goldstein

(2002)] and the Hyperplane approximation [Singleton and Umantsev (2002)], under the general-

istic assumption that the the underlying term structure dynamics are of the exponentially-a¢ ne

form.

The remainder of this work is structured as follows. Chapter 2 describes the term structure

framework that will be adopted, as well as the main features of the swaptions market. Chap-

ters 3 and 4 analyze the Edgeworth expansion and the Hyperplane approximation approaches,

and illustrate how to implement them under a three-factor Gaussian model of the term struc-

ture. Chapter 5 provides some numerical results, regarding the speed and accuracy of both

approximations. Chapter 6 concludes.
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Chapter 2

Preliminary results

Before moving towards the pricing of European-style swaptions, this Chapter describes the

term structure framework that will be adopted, as well as the main features of the swaptions

market.

2.1 Exponentially-a¢ ne term structure models

This section follows Björk (2004, section 22.3). Let r (t) denote the short rate, which, in a

M -factor model, is assumed to have the following dynamics:

rt = � (t) +
MX
k=1

xk (t) ; (2.1)

where r (t) = r0 and r0 > 0. Moreover, it is assumed that the processes xk (t) follow the

following stochastic di¤erential equation:

dxk (t) = �k [t; r (t)] dt+ �k [t; r (t)] dW
Q
k (t) ; (2.2)

where WQ
k (t) is a standard Brownian motion, de�ned in the risk-neutral probability measure

Q, with instantaneous correlation �kl (�1 � �kl � 1), such that

dWQ
k (t) dW

Q
l (t) = �kldt; (2.3)

where k; l = 1; :::;M . Finally, let Ft denote the sigma-�eld generated by
�
WQ
k (t)

	M
k=1
up to

time t. An interest rate model is called an exponentially-a¢ ne term structure model, if the
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functions �k [t; r (t)] and �k [t; r (t)] satisfy certain conditions, namely

�k [t; r (t)] = �k (t) r (t) + �k (t) (2.4)

and

�k [t; r (t)] =
p

k (t) r (t) + �k (t); (2.5)

such that the time-t value of a pure discount bond with maturity at time T (and unit face

value) can be written as an exponentially-a¢ ne function of the short term interest rate [Dai

and Singleton (2000)], that is if

P (t; T ) = EQ
�
exp

�
�
Z T0

t

rsds

�����Ft� (2.6)

= exp

"
A (t; T )�

MX
k=1

Bk (t; T )xk (t)

#
; (2.7)

where A (t; T ) and Bk (t; T ) are deterministic functions, satisfying the following equations:(
@A(t;T )
@t

= �k (t)Bk (t; T )� 1
2
�k (t)B

2
k (t; T )

A(T; T ) = 0
(2.8)

and (
@B(t;T )
@t

+ �k (t)Bk (t; T )� 1
2

k (t)B

2
k (t; T ) + 1 = 0

B(T; T ) = 0
: (2.9)

2.2 European-style interest rate swaptions

An interest rate swap � usually known as an IRS� is a �nancial contract by which one party

exchanges a stream of �xed interest payments for the stream of �oating-rate cash-�ows of

another party. This occurs because certain companies have a comparative advantage in �xed

rate markets, while other companies have an advantage in �oating rate markets. As so, a

company may be borrowing �xed, when it wants �oating, or borrowing �oating when it is

looking for �xed. This way, an interest rate swap transforms a �xed rate loan into a �oating-

rate loan or vice versa.

An European-syle interest rate swaption is a contract that gives its holder the right, but

not the obligation, to enter an interest rate swap at a future date T0 > t, with payments C

on dates Ti, with i = 1; :::; N , that correspond to F payments per year. In �nancial markets,

swaptions are quoted on the �xed component (generally known as leg) of the underlying swap.

There are two types of swaptions: the receiver swaption, which gives its holder the right to

4



enter a receiver swap (receive cash-�ows at a �xed rate, and pay cash-�ows at a �oating-rate),

and the payer swaption, which gives its holder the right to enter a payer swap (pay cash-�ows

at a �xed rate, and receive cash-�ows at a �oating-rate).

At time T0, the exercise decision of the swaption is taken by considering the di¤erence

between the payment rate initially �xed for the swap (C) and the spot swap rate for the

underlying swap, at time T0, here denoted as SR (T0; TN). Then, depending on the swaption

under analysis, the exercise decision can be:

1. For receiver swaptions, the exercise happens only if SR (T0; TN) < C, as its holder is able

to obtain an higher interest rate than the one quoted in the swap market. The terminal

payo¤ of a receiver swaption will be then given by:

S [T0; T0; SR (T0; TN) ; C;N; F ] = [C � SR (T0; TN)]+ �
1

F
�

NX
i=1

P (T0; Ti) ; (2.10)

2. For payer swaptions, the exercise happens only if SR (T0; TN) > C, as its holder is able

to obtain a lower interest rate than the one quoted in the swap market. The terminal

payo¤ of a payer swaption will be then given by:

S [T0; T0; SR (T0; TN) ; C;N; F ] = [SR (T0; TN)� C]+ �
1

F
�

NX
i=1

P (T0; Ti) : (2.11)

Moreover, it is a well-known fact that, at time-T0, the value of the underlying interest rate

swap is given by:

SR (T0; TN) =
1� P (T0; TN)
1
F

PN
i=1 P (T0; Ti)

: (2.12)

As so, and considering the receiver swaption with terminal payo¤ given by equation (2.10),

S [T0; T0; SR (T0; TN) ; C; F;N ] =

"
C � 1� P (T0; TN)

1
F

PN
i=1 P (T0; Ti)

#+
� 1

F
�

NX
i=1

P (T0; Ti)

=

("
P (T0; TN) +

C

F

NX
i=1

P (T0; Ti)

#
� 1
)+

(2.13)

It is easily seen that

P (T0; TN) +
C

F

NX
i=1

P (T0; Ti)
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or, more simply (considering that Ci = C
F
, for i = 1; :::; N � 1, and CN = 1 + C

F
),

NX
i=1

CiP (T0; Ti) � Y (T0) (2.14)

is in fact the value, at time T0, of a coupon-bearing bond with cash-�ow payments of Ci on

dates Ti, with i = 1; :::; N . Therefore, in a market without arbitrage opportunities, a receiver

swaption can be priced as a call option on the previously described coupon-bearing bond, with

a strike equivalent to a monetary unit, and with the same time-to-maturity of the considered

swaption. Similarly, a payer swaption can be priced as a put option on the same coupon-

bearing bond, equally with a strike price of a monetary unit, and the same time-to-maturity of

the considered swaption.

Taking this into account, the date-t price of an European-style call with maturity date

at time T0, strike price K and on a coupon-bearing bond with payments Ci on dates Ti (for

i = 1; : : : ; N) is given by

CB
h
t; T0; K; fCigNi=1 ; fTig

N
i=1

i
= EQ

"
e�

R T0
t rsdsmax

 
NX
i=1

CiP (T0; Ti)�K; 0
!�����Ft

#

=
NX
i=1

CiEQ
�
P (T0; Ti)

e
R T0
t rsds

IfY (T0)>Kg
����Ft�

�KEQ
h
e�

R T0
t rsdsIfY (T0)>Kg

���Fti
=

NX
i=1

CiP (t; Ti)EQTi
�
IfY (T0)>Kg

��Ft�
�KP (t; T0)EQT0

�
IfY (T0)>Kg

��Ft�
=

NX
i=1

CiP (t; Ti)�QTi
�
IfY (T0)>Kg

��Ft�
�KP (t; T0)�QT0

�
IfY (T0)>Kg

��Ft� ; (2.15)

where, in going from the second to the third equality of the previous equation the risk-neutral

measure Q was transformed into the well known Ti risk-neutral forward probability measure QTi
[El Karoui and Rochet (1989), Jamshidian (1991) and Geman et al. (1995)], with i = 0; : : : ; N ,

and where Y (T0) is de�ned in equation (2.14) as the date-T0 price of the underlying coupon-

bearing bond.

A closed-form solution for this problem has not yet been found for multi-factor exponentially-

a¢ ne models, since the exercise boundary is a non-linear function of the state variables, and

therefore the methodology proposed by Jamshidian (1989) for one-factor models cannot be

6



applied. As so, the pricing of European-style interest rate swaptions can only be performed

through approximation schemes. In the next sections, some of the methodologies proposed

in literature, namely the Edgeworth expansion approximation [Collin-Dufresne and Goldstein

(2002)] and the Hyperplane approximation [Singleton and Umantsev (2002)], are discussed.

Later, the results obtained from these approaches are compared, namely in terms of accuracy

and speed.
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Chapter 3

Edgeworth expansion approximation

Proposed by Collin-Dufresne and Goldstein (2002), the Edgeworth expansion for swaption

pricing suggests an approximation of the exercise probabilities �QTi [Y (T0) > K] through a

cumulant expansion of the probability density function of the date-T0 price of the underlying

coupon-bearing bond. Here, the distribution cumulants are de�ned to be the coe¢ cients cjQTi
of a Taylor series expansion of the natural logarithm of the characteristic function 'Ti (�) of

Y (T0), with i = 0; :::; N , i.e.

ln
h
'QTi

(�)
i
=

1X
j=1

cjQTi
(ik)j

j!
: (3.1)

Moreover, under the Fourier inversion theorem, the relationship between the probability

density function �QTi and the characteristic function 'QTi is given by

�QTi (y) =
1

2�

Z +1

�1
e�iky'QTi

(k) dk: (3.2)

Applying equations (3.1) and (3.2), and preserving cumulants only up to the third order,

the previous expression can be rewritten as follows:

�QTi (y) =
1

2�

Z +1

�1
exp

�
�iky + ikc1QTi �

k2

2
c2QTi

� ik
3

6
c3QTi

+O
�
k3
��
dk

� 1

2�

Z +1

�1
exp

�
�iky + ikc1QTi �

k2

2
c2QTi

� ik
3

6
c3QTi

�
dk; (3.3)

where cjQTi represents the j-th distribution cumulant (j = 1; :::;M), under the forward proba-

bility measure QTi.

8



Following Chu and Kwok [2007, equation (4.4)], integration procedures imply that

�QTi (y) �

264 1q
c2QTi

�
c3QTi

�
y � c1QTi

�
2
�
c2QTi

� 5
2

+
c3QTi

�
y � c1QTi

�3
2
�
c2QTi

� 7
2

375n
0@y � c1QTiq

c2QTi

1A ; (3.4)

where

n (x) =
1p
2�
e�

x2

2 : (3.5)

Using approximation (3.4), the expression for the exercise probability �QTi [Y (T0) > K]

follows immediately:

�QTi [Y (T0) > K] =

Z +1

K

�QTi (y) dy

�
Z +1

K

264 1q
c2QTi

�
c3QTi

�
y � c1QTi

�
2
�
c2QTi

� 5
2

+
c3QTi

�
y � c1QTi

�3
6
�
c2QTi

� 7
2

375n
0@y � c1QTiq

c2QTi

1A dy
= N (z) +

c3QTi

6
�
c2QTi

� 3
2

�
z2 � 1

�
n (z) ; (3.6)

where

z =
c1QTi

�Kq
c2QTi

: (3.7)

Given the approximation (3.6) for the exercise probabilities �QTi [Y (T0) > K], the only step

left in order to complete the algorithm is the computation of the moments and cumulants of

the distribution of Y (T0), under the forward measure QTi (with i = 0; :::; N). In other words,

for each one of the (N +1) forward measures, the algorithm determines the �rst j-th moments

(j = 1; :::;M) of Y (T0), de�ned by

mj
QTi

= EQTi
h
Y (T0)

j
i
: (3.8)

For any j, Y (T0)
j can be expressed as a simple sum of pure discount bond prices. On the

other hand, since all bond prices are of the exponential-a¢ ne form, the previous equation is

9



once again rewritten as

mj
QTi

= EQTi

24 NX
i1;:::;ij=1

�
Ci1 � :::� Cij

�
�
�
P (T0; Ti1)� :::� P

�
T0; Tij

��35
= EQTi

24 NX
i1;:::;ij=1

�
Ci1 � :::� Cij

�
�
�
eC(T0;Tij)�

PM
k=1Dk(T0;Tij)xk(T0)

�35 (3.9)

where the functions C
�
T0; Tij

�
and Dk

�
T0; Tij

�
are the sums of functions A

�
T0; Tij

�
and

Bk
�
T0; Tij

�
, i.e.

C
�
T0; Tij

�
�

NX
i1;:::;ij=1

A
�
T0; Tij

�
(3.10)

and

Dk

�
T0; Tij

�
�

NX
i1;:::;ij=1

Bk
�
T0; Tij

�
; (3.11)

for j = 1; :::;M . Finally, with the distribution moments, one can easily compute the corre-

sponding cumulants, through the following formula [see, for instance Gardiner (1997), section

2.7]:

cjQTi
= mj

QTi
�

j�1X
i=1

�
j � 1
i

�
cj�1QTi

mi
QTi

(3.12)

Next section illustrates how to implement the Edgeworth expansion approximation, under

a three-factor Gaussian model of the term structure. The Matlab algorithm for the selected

example can be found in Appendix A3.

3.1 Implementation

In this work, a three-factor Gaussian model was considered for the purpose of illustrating the

implementation of the Edgeworth expansion approximation. Following the description of the

technique outlined in the previous section, the necessary steps for its implementation are:

1. Computation of the moments and cumulants of the distribution of Y (T0).

Recalling equation (3.9), the moments of the distribution of Y (T0) can be computed

through

mj
QTi

=
NX

i1;:::;ij=1

�
Ci1 � :::� Cij

�
� eC(T0;Tij) � EQTi

h�
e�

P3
k=1Dk(T0;Tij)xk(T0)

�i
; (3.13)

10



where C
�
T0; Tij

�
and Dk

�
T0; Tij

�
are de�ned by equations (3.10) and (3.11), considering

functions A
�
T0; Tij

�
and Bk

�
T0; Tij

�
de�ned in Appendix A1. By equation (A.8), the

model factors follow normal transition density functions. As so, since the linear combi-

nation of normally distributed variables is also normallly distributed, the expected value

on the right-hand side of equation (3.13) can be calculated using the same idea as in

Appendix A1: if Z is a normal random variable with mean � and variance �2, then its

moment-generating function will be given by:

E [exp (Z)] = exp
�
�+

1

2
�2
�
: (3.14)

In this case, � and �2 are de�ned to be the expected value and variance of the random

variable Z =
�
�
P3

k=1Dk

�
T0; Tij

�
xk (T0)

�
, under the forward measure QTi, with i =

0; :::; N . Therefore:

EQTi [ZjFt] = �D1 (T0; Ti)EQTi [x1 (T0) jFt]�D2 (T0; Ti)EQTi [x2 (T0) jFt]
�D3 (T0; Ti)EQTi [x3 (T0) jFt] ; (3.15)

Using equation (A.35) yields:

EQTi [ZjFt] = �D1 (T0; Ti)
�
e��1(T0�t)x1 (t)�M11 �M12 �M13

�
�D2 (T0; Ti)

�
e��2(T0�t)x2 (t)�M21 �M22 �M23

�
�D3 (T0; Ti)

�
e��3(T0�t)x3 (t)�M31 �M32 �M33

�
; (3.16)

where Mkl is de�ned by equation (A.34). Considering the conditional variance,

�2QTi
[ZjFt] = D2

1 (T0; Ti)�
2
QTi
[x1 (T0) jFt] +D2

2 (T0; Ti)�
2
QTi
[x2 (T0) jFt]

+D2
3 (T0; Ti)�

2
QTi
[x3 (T0) jFt]

+2D1 (T0; Ti)D2 (T0; Ti) �12�QTi
[x1 (T0) jFt]�QTi [x2 (T0) jFt]

+2D1 (T0; Ti)D3 (T0; Ti) �13�QTi
[x1 (T0) jFt]�QTi [x3 (T0) jFt]

+2D2 (T0; Ti)D3 (T0; Ti) �23�QTi
[x2 (T0) jFt]�QTi [x3 (T0) jFt] :(3.17)
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Rearranging terms, equation (3.14) can be rewritten as1:

EQTi [exp (Z) jFt] = exp
(

3X
k;l=1

Dk (T0; Ti)Mkl +
1

2
�2QTi

[ZjFt]�
3X
k=1

Dk (T0; Ti) e
��k(T0�t)xk (t)

)
:

(3.18)

With the moments of the distribution, the necessary cumulants can be rapidly calculated

using equation (3.12).

2. Calculation of the approximated exercise probabilities.

After obtaining the cumulants of the distribution of Y (T0), the only step left to complete

the implementation is the calculation of the approximated exercise probabilities, for all the

considered forward probability measures. This can be easily performed through equations

(3.6) and (3.7).

1Equation (3.18) corrects equations (28), (29) and (30) in Collin-Dufresne and Goldstein (2002).
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Chapter 4

Hyperplane approximation

The Hyperplane approximation technique, introducted by Singleton and Umantsev (2002), sug-

gests an approximation of the exercise probabilities �QTi [Y (T0) > K], where the fundamental

goal is the linearization of the exercise region, so that the same methods used when under

one-factor models can be applied.

The �rst step of the algorithm, considering a three-factor interest rate model, is to compute�
x2;�=2; x2;1��=2

�
and

�
x3;�=2; x3;1��=2

�
such that

�QTi
�
x2;�=2 < x2 (T0) < x2;1��=2

�
= 1� � (4.1)

and

�QTi
�
x3;�=2 < x3 (T0) < x3;1��=2

�
= 1� �; (4.2)

where � is a given level of signi�cance (for instance, 1% or 5%). Both pairs can be easily

calculated using the univariate transition density function followed by each factor under each

one of the forward probability measures, depending on the chosen term structure model (e.g.

the normal density function for Gaussian models, the non-central chi-square density function

for models of the Cox-Ingersoll-Ross family, etc.).

After this, the next step is to �nd x1;1, x1;2, x1;3 and x1;4 so that the four computed points�
x1;1;x2;�=2;x3;�=2

�
,
�
x1;2;x2;1��=2;x3;�=2

�
,
�
x1;3;x2;�=2;x3;1��=2

�
and

�
x1;4;x1�2;�=2;x3;1��=2

�
fall

on the exercise boundary [Y (T0) = K]. Due to the non-linear nature of the exercise boundary,

the corresponding equation must be solved using a numerical algorithm.

Armed with the coordinates for the four triplets, the next step of the algorithm involves the

�tting of a hyperplane (which degenerates into a straight line, in the case of two-factor models)

�1x1 + �2x2 + �3x3 = 1 (4.3)
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to the four points, which can be performed by using standard Ordinary Least Squares proce-

dures, i.e.

� =
�
X

0
X
��1

X
0
Y (4.4)

where

� =

266664
�1

�2

�3

�4

377775 ; (4.5)

X =

266664
x1;1 x2;�=2 x3;�=2

x1;2 x2;1��=2 x3;�=2

x1;3 x2;�=2 x3;1��=2

x1;4 x1�2;�=2 x3;1��=2

377775 (4.6)

and

Y =

266664
1

1

1

1

377775 : (4.7)

Finally, the exercise probabilities can be rewritten as:

�QTi [Y (T0) > K] � �QTi (�1x1 + �2x2 + �3x3 > K) (4.8)

or

�QTi [Y (T0) > K] � �QTi (�1x1 + �2x2 + �3x3 < K) ; (4.9)

which can be solved using the same techniques used for one-factor models. The choice between

equation (4.8) or equation (4.9) depends on the location of the exercise region. A simple

method to �nd the correct sign of the inequality is as follows: for each one of the exercise

probabilities, corresponding to the (N + 1) forward measures, substitute the triplet (x1; x2; x3)

in the exercise boundary [Y (T0) = K] by (0; 0; 0). Then, if [Y (T0) > K], the correct form of

the exercise probability will be as in equation (4.8). Otherwise, if [Y (T0) < K], the correct

exercise probability will be as in equation (4.9).

Next section illustrates how to implement the Hyperplane approximation under a three-

factor Gaussian model of the term structure. Once again, the corresponding Matlab algorithm

code for the selected example can be found in Appendix A3.

14



4.1 Implementation

As in the Edgeworth approximation, the three-factor Gaussian model is used to illustrate the

implementation of the Hyperplane approximation. Therefore, following the structure outlined

in the previous section, the necessary steps for the implementation of the algorithm are:

1. Computation of
�
x2;�=2; x2;1��=2

�
and

�
x3;�=2; x3;1��=2

�
.

In order to �nd both pairs, one needs the univariate transaction density function followed

by x2 and x3. Following Appendix A1, and since the chosen term structure model belongs

to the Gaussian family, all factors follow a normal transition density function, i.e.:

�QTi [xk (T0) < XkjFt] =
1

�k
p
2�

Z Xk

�1
e
� (xk��k)

2

2�2
k dx (4.10)

where k = 1; :::; 3 and �k and �
2
k represent the expected value and the variance of xi at

time T0, under the corresponding forward measure QTi. Following Appendix A1, both

parameters are given by

�k � EQTi [xk (T0) jFt] = e
��k(T0�t)xk (T )�Mk1 �Mk2 �Mk3; (4.11)

where Mkl is given by

Mkl =
�k�l�kl

�l�k (�l + �k)

�
(�l + �k)

�
1� e��k(T0�t)

�
� �k

�
e��l(Ti�T0) � e��k(T0�t)��l(Ti�t)

�	
;

(4.12)

with k; l = 1; ::; 3 and i = 0; :::; N , and

�2k � �2QTi [xk (T0) jFt] =
�2k
2�k

�
1� e�2�k(T0�t)

�
: (4.13)

As so, using equation (4.10), basic integration procedures yield that

�QTi
�
xk (T0) > xk;�=2jFt

�
= 1� �

2
; (4.14)

and, therefore,

xk;�=2 = �
1
n�
2
;EQTi [xk (T0) jFt] ; �

2
QTi
[xk (T0) jFt]

o
; (4.15)

for k = 2; 3. Similarly,

�QTi
�
xk (T0) < xk;1��=2jFt

�
= 1� �

2
(4.16)
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implies that

xk;1��=2 = �
1
n
1� �

2
;EQTi [xk (T0) jFt] ; �

2
QTi
[xk (T0) jFt]

o
(4.17)

where �1 (�; �; �2) denotes the inverse of the univariate normal cumulative distribution

function, with expected value and variance given by � and �2, respectively, and for the

level of signi�cance �.

2. Computation of x1;1, x1;2, x1;3 and x1;4.

After the previous step, one needs to compute x1;1, x1;2, x1;3 and x1;4, in order to

obtain the triplets
�
x1;1;x2;�=2;x3;�=2

�
,
�
x1;2;x2;1��=2;x3;�=2

�
,
�
x1;3;x2;�=2;x3;1��=2

�
and�

x1;4;x1�2;�=2;x3;1��=2
�
. This is done by solving four non-linear equations (one for each

triplet) of the following form:
NX
i=1

CiP (T0; Ti) = K (4.18)

i.e.
NX
i=1

Ci � exp
"
A (T0; Ti)�

3X
k=1

Bk (T0; Ti)xk (T0)

#
= K (4.19)

where A (T0; Ti) and Bk (T0; Ti) are the functions de�ned in Appendix A1.

3. Fitting of a hyperplane to the four computed points.

As mentioned in the previous section, the �tting of a hyperplane (or a straight line, for

two-factor models), can be easily performed using standard OLS procedures, i.e.

� =
�
X

0
X
��1

X
0
Y

=

0BBBBB@
266664
x1;1 x2;�=2 x3;�=2

x1;2 x2;1��=2 x3;�=2

x1;3 x2;�=2 x3;1��=2

x1;4 x1�2;�=2 x3;1��=2

377775
0

�

266664
x1;1 x2;�=2 x3;�=2

x1;2 x2;1��=2 x3;�=2

x1;3 x2;�=2 x3;1��=2

x1;4 x1�2;�=2 x3;1��=2

377775
1CCCCCA
�1

�

266664
x1;1 x2;�=2 x3;�=2

x1;2 x2;1��=2 x3;�=2

x1;3 x2;�=2 x3;1��=2

x1;4 x1�2;�=2 x3;1��=2

377775
0

�

266664
1

1

1

1

377775 (4.20)

4. Calculation of the approximated exercise probabilities.
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With the computed �, the approximated exercise probabilities can be rapidly computed

using equations (4.8) or (4.9). As already mentioned, x1, x2, x3 and x4 follow normal

transition density functions, with expected values and variances (in each one of the con-

sidered forward measures) given by equations (4.11) and (4.13), respectively. Hence, the

distribution of

�TX (T0) = �1x1 (T0) + �2x2 (T0) + �3x3 (T0) ; (4.21)

under the forward measure QTi, is a normal law characterized by having expected value

and variance, respectively, given by

EQTi
�
�TX (T0) jFt

�
= �1EQTi [x1 (T0) jFt] + �2EQTi [x2 (T0) jFt] + �3EQTi [x3 (T0) jFt] ;

(4.22)

and

�2
QTi

�
�TX (T0) jFt

�
= �21�

2
QTi
[x1 (T0) jFt] + �22�2QTi [x2 (T0) jFt] + �

2
3�
2
QTi
[x3 (T0) jFt]

+2�1�2�12�QTi
[x1 (T0) jFt]�QTi [x2 (T0) jFt]

+2�1�3�13�QTi
[x1 (T0) jFt]�QTi [x3 (T0) jFt]

+2�2�3�23�QTi
[x2 (T0) jFt]�QTi [x3 (T0) jFt] ; (4.23)

where EQTi [xk (T0) jFt] and �
2
QTi
[xk (T0) jFt], with k = 1; ::; 3, are given by equations

(4.11) and (4.13), respectively.
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Chapter 5

Numerical results

In this work, the three-factor Gaussian model of the term structure is considered, for the purpose

of illustrating the implementation of the Edgeworth and the Hyperplane approximations, as

well as testing their accuracy and speed. The purpose of this chapter is therefore to present

the numerical results obtained from these analyses.

Three swaptions where considered in the analysis:

1. A 2-2 swaption (time-to-maturity of 2 years for the option, and 2 years for the underlying

interest-rate swap, with semiannual payments);

2. A 2-5 swaption (time-to-maturity of 2 years for the option, and 5 years for the underlying

interest-rate swap, with semiannual payments);

3. A 2-10 swaption (time-to-maturity of 2 years for the option, and 10 years for the under-

lying interest-rate swap, with semiannual payments).

All the three swaptions were considered to have strike rates ranging from 4% to 8% (at

0:1% increases), corresponding to a total of 41 contracts, for each swaption-swap maturity.

The parameter values for the numerical implementations of the three-factor Gaussian model

were obtained from Collin-Dufresne and Goldstein (2002, exhibit 1), and are as follows:

Table 5.1 - Three-factor Gaussian model parameters

x1 (0) x2 (0) x3 (0) � �1 �2 �3 �1 �2 �3 �12 �13 �23

0:01 0:005 �0:02 0:06 1:0 0:2 0:5 0:01 0:005 0:002 �0:2 �0:1 0:3

Moreover, in the Edgeworth approximation, the Taylor series expansion of the characteristic

function was assumed only up to the third order. In the Hyperplane approximation, a level of
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signi�cance of 5% was considered. Both algorithms were run on an Intel Core Duo CPU, with

1.67 GHz and 2 Gb RAM.

Concerning the accuracy of both techniques, the absolute average price di¤erences between

the results obtained with the Edgeworth expansion and the Hyperplane approximations, for

the 41� 3 contracts analyzed, were as follows:

Table 5.2 - Absolute average price di¤erences between the

Edgeworth and the Hyperplane approximations

Absolute average di¤erence

Swaption 1 (2� 2) 7:8� 10�9

Swaption 2 (2� 5) 1:2� 10�7

Swaption 3 (2� 10) 5:3� 10�7

Table 5.2 shows that there are almost no di¤erences between the results obtained with

the two approximations, even when considering underlying interest rate swaps with longer

maturities.

In terms of the speed, running times for both approximations, for the considered swaption

contracts, were as follows:

Table 5.3 - Running times (in seconds) for the Edgeworth

and the Hyperplane approximations

Edgeworth approximation Hyperplane approximation

Swaption 1 (2� 2) 0:571 1:774

Swaption 2 (2� 5) 7:844 6:452

Swaption 3 (2� 10) 1153:28 20:423

For the �rst swaption, the Edgeworth approximation was the fastest technique, mainly due

to the fact that the underlying interest rate swap has a small number of payments, which

decreases the associated computational cost. However, as the number of payments of the un-

derlying swap increases, the computational costs associated with the Edgeworth approximation

signi�cantly increase, in comparison with the Hyperplane approximation. As a result, in the

third swaption (and for the 41 considered contract strike prices), the running time for the

Edgeworth approximation was around 19:2 minutes, and only 20:4 seconds for the Hyperplane

approximation. This happens because each moment of the distribution of Y (T0) requires the
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computation of a summation with NM terms (for instance, the computation of the third mo-

ment of the distribution of Y (T0), for a swap with 20 payments, requires the computation of a

sum with 8 000 terms), thus greatly increasing the running times necessary for the computation

of higher order moments.

20



Chapter 6

Conclusions

In this work two approaches to the problem of swaption pricing were analyzed: the Edgeworth

expansion and the Hyperplane approximations. With 3 swaptions, and a range of 41 strike

prices for each swaption, no signi�cant di¤erences were found between the prices yielded by

both approximations. However, in terms of speed, the Edgeworth expansion is signi�cantly

slower as the time-to-maturity of the underlying interest rate swap increases, due to the high

computational costs associated with the computation of the moments of Y (T0), which have to

be replicated for each one of the strike prices under analysis.

Moreover, the Edgeworth approximation seems to be less �exible, since it requires a closed-

form solution for the moments of the distribution of Y (T0), which is not so readily derived for

other term structure models, as it is for the considered three-factor Gaussian model. Therefore,

an interesting extension of this analysis would be to test both approximations with other term

structure models, neither Gaussian, nor of the exponentially-a¢ ne family. However, given space

and time constraints, this topic is left for future work.
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Appendix A

Auxiliary results - Three-factor
Gaussian model

Under the risk-neutral probability measure Q, the three-factor Gaussian model assumes that
the short-term interest rate r (t) has the following dynamics:

r (t) = � (t) +
3X
k=1

xk(t); (A.1)

with r (0) = r0 and r0 > 0. Furthermore, the processes xk(t) satisfy the following stochastic

di¤erential equation:

dxk (t) = ��kxk (t) dt+ �kdWQ
k (t) ; (A.2)

where �k and �k are positive constants, and
�
WQ
1 ;W

Q
2 ;W

Q
3

�
is a three-dimensional Brownian

motion, with instantaneous correlation �kl (�1 � �kl � 1), such that

dWQ
k (t) dW

Q
l (t) = �kldt: (A.3)

Finally, let Ft denote the sigma-�eld generated by the triplet (x1; x2; x3) up to time t. Using
the stochastic di¤erential equation (A.2) and applying Itô�s lemma to the process

yk (t) = e
�ktxk (t) ; (A.4)
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one obtains:

dyk (t) = �ke
�ktxk (t) dt+ e

�ktdxk (t)

= �ke
�ktxk (t) dt+ e

�kt
�
��kxk (t) dt+ �kdWQ

k (t)
�

= e�kt�kdW
Q
k (t) : (A.5)

Integrating both sides of the previous equation between s and t (� s) yields,

yk (t) = yk (s) + �k

Z t

s

e�kudWQ
k (u) : (A.6)

Combining equations (A.4) and (A.6),

e�ktxk (t) = e
�ksxk (s) + �k

Z t

s

e�kudWQ
k (u) ; (A.7)

i.e.

xk (t) = e
��k(t�s)xk (s) + �k

Z t

s

e��k(t�u)dWQ
k (u) ; (A.8)

with k = 1; :::; 3. Recalling equation (A.1),

r (t) = � (t) + e��1(t�s)x1 (s) + e
��2(t�s)x2 (s) + e

��3(t�s)x3 (s) + �1

Z t

s

e��1(t�u)dWQ
1 (u)

+�2

Z t

s

e��2(t�u)dWQ
2 (u) + �3

Z t

s

e��3(t�u)dWQ
3 (u) : (A.9)

In order to obtain the discount factor under the three-factor Gaussian model, one can make

use of the following result: if Z is a normal random variable with mean � and variance �2, then

its moment-generating function will be given by:

E [exp (Z)] = exp
�
�+

1

2
�2
�
: (A.10)

Taking this into account, one only needs to show that, for each (t; T ) the random variable

I (t; T ) :=

Z T

t

[x1 (s) + x2 (s) + x3 (s)] ds; (A.11)

conditional to the sigma �eld Ft is in fact normally distributed. Basic integration by parts
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yieldsZ T

t

xk (s) ds = Txk (T )� txk (t)�
Z T

t

sdxk (s)

=

Z T

t

(T � s) dxk (s) + (T � t)xk (t)

= ��k
Z T

t

(T � s)xk (s) ds+ �k
Z T

t

(T � s) dWQ
k (s) + (T � t)xk (t)

= ��kxk (t)
Z T

t

(T � s) e��k(s�t)ds� �k�k
Z T

t

(T � s)
Z s

t

e��k(s�u)dWQ
k (u) ds

+�k

Z T

t

(T � s) dWQ
k (s) + (T � t)xk (t) (A.12)

Computing separately the previous expression,

��kxk (t)
Z T

t

(T � s) e��k(s�t)ds = �xk (t)T
Z T

t

�ke
��k(s�t)ds+ xk (t)

Z T

t

�kse
��k(s�t)ds

= xk (t)T
�
e��k(s�t)

�T
t
� xk (t)

�
(�ks+ 1) e

��k(s�t)

�k

�T
t

= xk (t)

�
Te��k(T�t) � T � (�kT + 1) e

��k(T�t) � (�kt+ 1)
�k

�
= xk (t)

�
� (T � t)� e

��k(T�t) � 1
�k

�
= �xk (t) (T � t)�

e��k(T�t) � 1
�k

xk (t) ; (A.13)

and, again through integration by parts

��k�k
Z T

t

(T � s)
Z s

t

e��k(s�u)dWQ
k (u) ds

= ��k�k
Z T

t

�Z s

t

e�kudWQ
k (u)

�
ds

�Z s

t

(T � v) e��kvdv
�

= ��k�k
�Z T

t

e�kudWQ
k (u)

� �Z T

t

(T � v) e��kvdv
�
+ �k�k

Z T

t

�Z s

t

(T � v) e��kvdv
�
e�ksdWQ

k (s)

= ��k�k
Z T

t

�Z T

s

(T � v) e��kvdv
�
e�ksdWQ

k (s)

= ��k�k
Z T

t

�
(T � s) e��ks

�k
+
e��kT � e��ks

�2k

�
e�ksdWQ

k (s)

= ��k
Z T

t

�
(T � s) + e

��k(T�s) � 1
�k

�
dWQ

k (s) : (A.14)
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Recalling equation (A.12) and adding up the previous terms, one obtainsZ T

t

xk (s) ds =
1� e��k(T�t)

�k
xk (t) +

�k
�k

Z T

t

�
1� e��k(T�s)

�
dWQ

k (s) : (A.15)

Since any Itô�s integral, with a deterministic integrand, possesses a normal distribution with

zero mean and variance equal to its quadratic variation, then:

EQ [I (t; T ) jFt] =
1� e��1(T�t)

�1
x1 (t) +

�1
�1
� 0 + 1� e

��2(T�t)

�2
x2 (t) +

�2
�2
� 0 +

+
1� e��3(T�t)

�3
x3 (t) +

�3
�3
� 0

=

3X
k=1

Bk (t; T )xk (t) ; (A.16)

where

Bk (t; T ) =
1� e��k(T�t)

�k
: (A.17)

Concerning the computation of the conditional variance,

�2 [I (t; T ) jFt] = EQ
�
[I (t; T )� EQ (I (t; T ) jFt)]2 jFt

	
= EQ

�
�1
�1

Z T

t

�
1� e��1(T�s)

�
dWQ

1 (s) +
�2
�2

Z T

t

�
1� e��2(T�s)

�
dWQ

2 (s)+

+
�3
�3

Z T

t

�
1� e��3(T�s)

�
dWQ

3 (s)

�2
jFt

)
:

Using Itô�s isometry, simple integration procedures imply that:

�2 [I (t; T ) jFt]

=
�21
�21

Z T

t

�
1� e��1(T�s)

�2
ds+

�22
�22

Z T

t

�
1� e��2(T�s)

�2
ds+

�23
�23

Z T

t

�
1� e��3(T�s)

�2
ds

+2�12
�1
�1

�2
�2

Z T

t

�
1� e��1(T�s)

� �
1� e��2(T�s)

�
ds

+2�13
�1
�1

�3
�3

Z T

t

�
1� e��1(T�s)

� �
1� e��3(T�s)

�
ds

+2�23
�2
�2

�3
�3

Z T

t

�
1� e��2(T�s)

� �
1� e��3(T�s)

�
ds (A.18)
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i.e.

�2 [I (t; T ) jFt]

=
�21
�21

�
s� 2e

��1(T�s)

�1
� e

�2�1(T�s)

2�1

�T
t

+
�22
�22

�
s� 2e

��2(T�s)

�2
� e

�2�2(T�s)

2�2

�T
t

+
�23
�23

�
s� 2e

��3(T�s)

�3
� e

�2�3(T�s)

2�3

�T
t

+2�12
�1
�1

�2
�2

�
s� e

��1(T�s)

�1
� e

��2(T�s)

�2
+
e�(�1+�2)(T�s)

(�1 + �2)

�T
t

+2�13
�1
�1

�3
�3

�
s� e

��1(T�s)

�1
� e

��3(T�s)

�3
+
e�(�1+�3)(T�s)

(�1 + k3)

�T
t

+2�23
�2
�2

�3
�3

�
s� e

��2(T�s)

�2
� e

��3(T�s)

�3
+
e�(�2+�3)(T�s)

(�3 + �3)

�T
t

=
�21
�21

�
T � t� 2� 2e

��1(T�t)

�1
� 1� e

�2�1(T�t)

2�1

�
+
�22
�22

�
T � t� 2� 2e

��2(T�t)

�2
� 1� e

�2�2(T�t)

2�2

�
+
�23
�23

�
T � t� 2� 2e

��3(T�t)

�3
� 1� e

�2�3(T�t)

2�3

�
+2�12

�1
�1

�2
�2

�
T � t� 1� e

��1(T�t)

�1
� 1� e

��2(T�t)

�2
+
1� e�(�1+�2)(T�t)

(�1 + �2)

�
+2�13

�1
�1

�3
�3

�
T � t� 1� e

��1(T�t)

�1
� 1� e

��3(T�t)

�3
+
1� e�(�1+�3)(T�t)

(�1 + �3)

�
+2�23

�2
�2

�3
�3

�
T � t� 1� e

��2(T�t)

�2
� 1� e

��3(T�t)

�3
+
1� e�(�2+�3)(T�t)

(�2 + �3)

�
(A.19)

Since �kl = 1, for any k = l, the previous equation can be rewritten as:

�2 [I (t; T ) jFt] =
3X

k;l=1

�kl
�k�l
�kl

[T � t�Bk (t; T )�Bk (t; T ) +Bk+l (t; T )] : (A.20)

Therefore, combining equations (A.10), (A.11), (A.16), (A.17) and (A.20) the discount

factor under the three-factor Gaussian model is given by:

P (t; T ) = EQ
�
exp

�
�
Z T

t

rsds

�
jFt
�

= EQ
�
exp

�
�
Z T

t

[� (s) + x1 (s) + x2 (s) + x3 (s)] ds

�
jFt
�
; (A.21)
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and, therefore,

P (t; T ) = exp

�
�
Z T

t

� (s) ds

�
EQ
�
exp

�
�
Z T

t

[x1 (s) + x2 (s) + x3 (s)] ds

�
jFt
�

= exp

�
�
Z T

t

� (s) ds

�
exp

�
�EQ [I (t; T ) jFt] +

1

2
�2 [I (t; T ) jFt]

�
= exp

"
A (t; T )�

3X
k=1

Bk (t; T )xk (t)

#
(A.22)

where1

A (t; T ) = �
Z T

t

� (s) ds+
1

2

3X
k;l=1

�kl
�k�l
�k�l

[T � t�Bk (t; T )�Bl (t; T ) +Bk+l (t; T )] (A.23)

and Bk (t; T ) is de�ned as in equation (A.17).

Using a change of numeraire [El Karoui and Rochet (1989), Jamshidian (1991) and Geman

et al. (1995)], it is easily shown that the state variables have the following dynamics in the

forward measure QTi:

dxk (t) =

"
��kxl (t)�

3X
l=1

�k�l�klBk (Ti � t)
#
dt+ �kdW

QTi
k (t) ; (A.24)

where

dW
QTi
k (t) = dWQ

k (t) +
3X
l=1

�k�l�klBk (Ti � t) dt; (A.25)

with i = 0; :::; N and k = 1; :::; 3.

Applying Itô�s lemma to the process

yk (t) = e
�ktxk (t) ; (A.26)

then:

dyk (t) = �ke
�ktxk (t) + e

�ktdxk (t)

= �ke
�ktxk (t) + e

�kt

("
��kxk (t)�

3X
j=1

�k�j�kjBj (Ti � t)
#
dt+ �kdW

QTi
k (t)

)

= �e�kt
"

3X
j=1

�k�j�kjBj (Ti � t)
#
dt+ �ke

�ktdW
QTi
k (t) : (A.27)

1Equation (A.23) corrects equation (26) in Collin-Dufresne and Goldstein (2002).
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Integrating both sides of the previous equation between s and t (� s) yields

yk (t) = yk (s) +

Z t

s

�e�ku
3X
j=1

�k�j�kjB�j (Ti � u) du+ �k
Z t

s

e�kudW
QTi
k (u)

= yk (s)�
Z t

s

e�ku�k�1�k1B�1 (Ti � u) du�
Z t

s

e�ku�k�2�k2B�2 (Ti � u) du

=

Z t

s

e�ku�k�3�k3B�3 (Ti � u) du+ �k
Z t

s

e�kudW
QTi
k (u) (A.28)

Through standard integration procedures, the �rst integral yields:Z t

s

e�ku�k�1�k1B�1 (Ti � t) du

= �k�1�k1

Z t

s

e�ku
�
1� e��1(Ti�u)

�1

�
du

=
�k�1�k1
�1

Z t

s

e�ku � e�ku��1(Ti�u)du

=
�k�1�k1
�1

�
e�ku

�k
� e

�ku��1(Ti�u)

(�1 + �k)

�t
s

=
�k�1�k1

�1�k (�1 + �k)

�
(�1 + �k) e

�ku � �ke�ku��1(Ti�u)
�t
s

=
�k�1�k1

�1�k (�1 + �k)

�
(�1 + �k) e

�kt � �ke�kt��1(Ti�t) � (�1 + �k) e�ks + �ke�ks��1(Ti�s)
�

=
�k�1�k1

�1�k (�1 + �k)

�
(�1 + �k)

�
e�kt � e�ks

�
� �k

�
e�kt��1(Ti�t) � e�ks��1(Ti�s)

�	
: (A.29)

Appying the same process to the remaining integrals,Z t

s

e�ku�k�2�k2B�2 (Ti � t) du

=
�k�2�k2

�2�k (�2 + �k)

�
(�2 + �k)

�
e�kt � e�ks

�
� �k

�
e�kt��2(Ti�t) � e�ks��2(Ti�s)

�	
; (A.30)

and Z t

s

e�ku�k�3�k3B�3 (Ti � t) du

=
�k�3�k3

�3�k (�3 + �k)

�
(�3 + �k)

�
e�kt � e�ks

�
� �k

�
e�kt��3(Ti�t) � e�ks��3(Ti�s)

�	
: (A.31)
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Therefore, recalling equation (A.28),

yk (t) = yk (s)�
�k�1�k1

�1�k (�1 + �k)

�
(�1 + �k)

�
e�kt � e�ks

�
� �k

�
e�kt��1(Ti�t) � e�ks��1(Ti�s)

�	
� �k�2�k2
�2�k (�2 + �k)

�
(�2 + �k)

�
e�kt � e�ks

�
� �k

�
e�kt��2(Ti�t) � e�ks��2(Ti�s)

�	
� �k�3�k3
�3�k (�3 + �k)

�
(�3 + �k)

�
e�kt � e�ks

�
� �k

�
e�kt��3(Ti�t) � e�ks��3(Ti�s)

�	
+�k

Z t

s

e�kudW
QTi
k (u) : (A.32)

Combining equations (A.26) and (A.32),

e�ktxk (t) = e�ksxk (s)�
�k�1�k1

�1�k (�1 + �k)

�
(�1 + �k)

�
e�kt � e�ks

�
� �k

�
e�kt��1(Ti�t) � e�ks��1(Ti�s)

�	
� �k�2�k2
�2�k (�2 + �k)

�
(�2 + �k)

�
e�kt � e�ks

�
� �k

�
e�kt��2(Ti�t) � e�ks��2(Ti�s)

�	
� �k�3�k3
�3�k (�3 + �k)

�
(�3 + �k)

�
e�kt � e�ks

�
� �k

�
e�kt��3(Ti�t) � e�ks��3(Ti�s)

�	
+�k

Z t

s

e�kudW
QTi
k (u) ;

i.e.

xk (t) = e��k(t�s)xk (s)

� �k�1�k1
�1�k (�1 + �k)

�
(�1 + �k)

�
1� e��k(t�s)

�
� �k

�
e��1(Ti�t) � e��k(t�s)��1(Ti�s)

�	
� �k�2�k2
�2�k (�2 + �k)

�
(�2 + �k)

�
1� e��k(t�s)

�
� �k

�
e��2(Ti�t) � e��k(t�s)��2(Ti�s)

�	
� �k�3�k3
�3�k (�3 + �k)

�
(�3 + �k)

�
1� e��k(t�s)

�
� �k

�
e��3(Ti�t) � e��k(t�s)��3(Ti�s)

�	
+�k

Z t

s

e��k(t�u)dW
QTi
k (u)

= e��k(t�s)xk (s)�Mk1 �Mk2 �Mk3 + �k

Z t

s

e��k(t�u)dW
QTi
k (u) ; (A.33)

where

Mkl =
�k�l�kl

�l�k (�l + �k)

�
(�l + �k)

�
1� e��k(t�s)

�
� �k

�
e��l(Ti�t) � e��k(t�s)��l(Ti�s)

�	
: (A.34)

Since any Itô�s integral, with a deterministic integrand, possesses a normal distribution with
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zero mean and variance equal to its quadratic variance, then:

EQTi [xk (t) jFs] = e
��k(t�s)xk (s)�Mk1 �Mk2 �Mk3; (A.35)

where Mkl is de�ned by equation (A.34), and

�2
QTi
[xk (t) jFs] = EQTi

�h
xk (t)� EQTi (xk (t) jFs)

i2
jFs
�

= �2kEQTi

(�Z t

s

e��k(t�u)dW Ti
k (u)

�2
jFs

)

= �2k

Z t

s

e�2�k(t�u)du

= �2k

�
e�2�k(t�u)

2�k

�t
s

=
�2k
2�k

�
1� e�2�k(t�s)

�
; (A.36)

with k = 1; :::; 3.
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Appendix B

Matlab codes for the selected examples

The purpose of this Appendix is to present the Matlab algorithms used in the selected examples.

Given space constraints, only the codes referring to the pricing of Swaption 1 de�ned in Chapter

5 are presented.

B.1 Edgeworth expansion approximation

%Given the parameters established for the three-factor Gaussian model, this

%routine prices swaptions using the Edgeworth expansion approximation

%[Collin-Dufresne and Goldstein (2002)].

clear; clc;

format long;

%Declaration of variables:

n = 4; %Number of swap payments

tau = 2; %Time-to-maturity of the swaption

fr = 2; %Frequency of the swap payments

X = [0.01; 0.005; -0.02]; %Vector of state variables at t=0

delta = 0.06; %Delta

K = [1; 0.2; 0.5]; %Vector of Ks

S = [0.01; 0.005; 0.002]; %Vector of Sigmas

R = [1 -0.2 -0.1; -0.2 1 0.3; -0.1 0.3 1];%Matrix of Rhos

f = length(X); %Number of model factors
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tic; %Timer initiation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Computation of the discount factors - Appendix A1

c = 1;

for j = tau:(1/fr):tau+(n/fr)

s = 0;

for k = 1:1:f

Bk(c,k) = (1-exp(-K(k,1)*j))/K(k,1);

for l = 1:1:f

a = (((S(k,1)*S(l,1)*R(k,l))/(K(k,1)*K(l,1)))

*(j-((1-exp(-K(k,1)*j))/K(k,1))-((1-exp(-K(l,1)*j))/K(l,1))

+((1-exp(-(K(k,1)+K(l,1))*j))/(K(k,1)+K(l,1)))));

s = s+a;

end

end

A(c,1) = -delta*j+s/2;

P(c,1) = exp(A(c,1)-Bk(c,:)*X);

c = c+1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Computation of the expected value and variance of Xk(T0), for k = 1,...,3,

%under the QTi forward measure - Appendix A1

c = 1;

for j = tau:(1/fr):tau+(n/fr)

s = 0;

for k = 1:1:f

for l = 1:1:f

s = s+((S(k,1)*S(l,1)*R(k,l))/(K(l,1)*K(k,1)*(K(l,1)+K(k,1))))

*((K(l,1)+K(k,1))*(1-exp(-K(k,1)*(tau-0)))-K(k,1)

*(exp(-K(l,1)*(j-tau))-exp(-K(k,1)*(tau-0)-K(l,1)*(j-0))));
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end

Mij(c,k) = s;

VAR(c,k) = ((S(k,1)^2)/(2*K(k,1)))*(1-exp(-2*K(k,1)*(tau-0)));

end

c = c+1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Implementation of the Edgeworth expansion approximation

c1 = 1;

for c = 0.04:0.001:0.08 %Swaption contract strikes

C(1,1:n-1) = (c/fr); %Auxiliary payment vector

C(1,n) = 1+(c/fr); %Auxiliary payment vector

%Computation of the first moment of the distribution - Equations

%(3.16) and (3.18)

c2 = 1;

for i1 = (1/fr):(1/fr):(n/fr)

s = 0;

for k = 1:1:f

G(k,c2) = ((1-exp(-K(k,1)*(tau+i1-tau)))/K(k,1));

N(k,c2) = G(k,c2)*exp(-K(k,1)*tau);

for l = 1:1:f

a1 = (((S(k,1)*S(l,1)*R(k,l))/(K(k,1)*K(l,1)))

*((tau+i1-tau)-((1-exp(-K(k,1)*(tau+i1-tau)))

/K(k,1))-((1-exp(-K(l,1)*(tau+i1-tau)))/K(l,1))

+((1-exp(-(K(k,1)+K(l,1))*(tau+i1-tau)))/(K(k,1)

+K(l,1)))));

s = s+a1;

end

end

A(1:n+1,c2) = -delta*(tau+i1-tau)+s/2;

NX(1:n+1,c2) = N(:,c2)�*X;

CAUX(1,c2) = C(1,i1*fr);
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c2 = c2+1;

end

c2 = 1;

for j = tau:(1/fr):tau+(n/fr)

c3 = 1;

for i1 = (1/fr):(1/fr):(n/fr)

s1 = 0;

s2 = 0;

for k = 1:1:f

s1 = s1+(G(k,c3)*Mij(c2,k));

for l = 1:1:f

s2 = s2+(G(k,c3)*G(l,c3)*sqrt(VAR(c2,k))

*sqrt(VAR(c2,l))*R(k,l));

end

end

M(c2,c3) = s1+s2/2;

c3 = c3+1;

end

c2 = c2+1;

end

LAUX = A+M-NX;

for j = 1:1:n+1

MOMENTS(j,1)=exp(LAUX(j,:))*CAUX�;

end

%Computation of the second moment of the distribution - Equations

%(3.16) and (3.18)

c2 = 1;

for i1 = (1/fr):(1/fr):(n/fr)

for i2 = (1/fr):(1/fr):(n/fr)

s = 0;

for k = 1:1:f

G(k,c2) = ((1-exp(-K(k,1)*(tau+i1-tau)))/K(k,1))+((1

-exp(-K(k,1)*(tau+i2-tau)))/K(k,1));
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N(k,c2) = G(k,c2)*exp(-K(k,1)*tau);

for l = 1:1:f

a1 = (((S(k,1)*S(l,1)*R(k,l))/(K(k,1)*K(l,1)))

*((tau+i1-tau)-((1-exp(-K(k,1)*(tau+i1-tau)))

/K(k,1))-((1-exp(-K(l,1)*(tau+i1-tau)))/K(l,1))

+((1-exp(-(K(k,1)+K(l,1))*(tau+i1-tau)))/(K(k,1)

+K(l,1)))));

a2 = (((S(k,1)*S(l,1)*R(k,l))/(K(k,1)*K(l,1)))

*((tau+i2-tau)-((1-exp(-K(k,1)*(tau+i2-tau)))

/K(k,1))-((1-exp(-K(l,1)*(tau+i2-tau)))/K(l,1))

+((1-exp(-(K(k,1)+K(l,1))*(tau+i2-tau)))/(K(k,1)

+K(l,1)))));

s = s+a1+a2;

end

end

A(1:n+1,c2) = -delta*(tau+i1-tau)-delta*(tau+i2-tau)+s/2;

NX(1:n+1,c2) = N(:,c2)�*X;

CAUX(1,c2) = C(1,i1*fr)*C(1,i2*fr);

c2 = c2+1;

end

end

c2 = 1;

for j = tau:(1/fr):tau+(n/fr)

c3 = 1;

for i1 = (1/fr):(1/fr):(n/fr)

for i2 = (1/fr):(1/fr):(n/fr)

s1 = 0;

s2 = 0;

for k = 1:1:f

s1 = s1+(G(k,c3)*Mij(c2,k));

for l = 1:1:f

s2 = s2+(G(k,c3)*G(l,c3)*sqrt(VAR(c2,k))

*sqrt(VAR(c2,l))*R(k,l));

end

end
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M(c2,c3) = s1+s2/2;

c3 = c3+1;

end

end

c2 = c2+1;

end

LAUX = A+M-NX;

for j = 1:1:n+1

MOMENTS(j,2)=exp(LAUX(j,:))*CAUX�;

end

%Computation of the third moment of the distribution - Equations

%(3.16) and (3.18)

c2 = 1;

for i1 = (1/fr):(1/fr):(n/fr)

for i2 = (1/fr):(1/fr):(n/fr)

for i3 = (1/fr):(1/fr):(n/fr)

s = 0;

for k = 1:1:f

G(k,c2) = ((1-exp(-K(k,1)*(tau+i1-tau)))/K(k,1))+((1

-exp(-K(k,1)*(tau+i2-tau)))/K(k,1))+((1

-exp(-K(k,1)*(tau+i3-tau)))/K(k,1));

N(k,c2) = G(k,c2)*exp(-K(k,1)*tau);

for l = 1:1:f

a1 = (((S(k,1)*S(l,1)*R(k,l))/(K(k,1)*K(l,1)))

*((tau+i1-tau)-((1-exp(-K(k,1)*(tau+i1-tau)))

/K(k,1))-((1-exp(-K(l,1)*(tau+i1-tau)))/K(l,1))

+((1-exp(-(K(k,1)+K(l,1))*(tau+i1-tau)))/(K(k,1)

+K(l,1)))));

a2 = (((S(k,1)*S(l,1)*R(k,l))/(K(k,1)*K(l,1)))

*((tau+i2-tau)-((1-exp(-K(k,1)*(tau+i2-tau)))

/K(k,1))-((1-exp(-K(l,1)*(tau+i2-tau)))/K(l,1))

+((1-exp(-(K(k,1)+K(l,1))*(tau+i2-tau)))/(K(k,1)

+K(l,1)))));

a3 = (((S(k,1)*S(l,1)*R(k,l))/(K(k,1)*K(l,1)))
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*((tau+i3-tau)-((1-exp(-K(k,1)*(tau+i3-tau)))

/K(k,1))-((1-exp(-K(l,1)*(tau+i3-tau)))/K(l,1))

+((1-exp(-(K(k,1)+K(l,1))*(tau+i3-tau)))/(K(k,1)

+K(l,1)))));

s = s+a1+a2+a3;

end

end

A(1:n+1,c2) = -delta*(tau+i1-tau)-delta*(tau+i2-tau)

-delta*(tau+i3-tau)+s/2;

NX(1:n+1,c2) = N(:,c2)�*X;

CAUX(1,c2) = C(1,i1*fr)*C(1,i2*fr)*C(1,i3*fr);

c2 = c2+1;

end

end

end

c2 = 1;

for j = tau:(1/fr):tau+(n/fr)

c3 = 1;

for i1 = (1/fr):(1/fr):(n/fr)

for i2 = (1/fr):(1/fr):(n/fr)

for i3 = (1/fr):(1/fr):(n/fr)

s1 = 0;

s2 = 0;

for k = 1:1:f

s1 = s1+(G(k,c3)*Mij(c2,k));

for l = 1:1:f

s2 = s2+(G(k,c3)*G(l,c3)*sqrt(VAR(c2,k))

*sqrt(VAR(c2,l))*R(k,l));

end

end

M(c2,c3) = s1+s2/2;

c3 = c3+1;

end

end

end
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c2 = c2+1;

end

LAUX = A+M-NX;

for j = 1:1:n+1

MOMENTS(j,3)=exp(LAUX(j,:))*CAUX�;

end

%Computation of the cumulants of the distribution - Equation (3.12)

CUMULANTS(:,1) = MOMENTS(:,1);

for j = 1:1:n+1

for k = 2:1:3

s = 0;

for l = 1:1:(k-1)

s = s+(nchoosek(k-1,l)*CUMULANTS(j,k-l)*MOMENTS(j,l));

end

CUMULANTS(j,k) = MOMENTS(j,k)-s;

end

end

%Computation of the exercise probabilities [equations (3.6) and (3.7)]

%and pricing of the swaption contract under analysis

s = 0;

for i = 1:1:n

for j = 1:1:n+1

z = (CUMULANTS(j,1)-1)/sqrt(CUMULANTS(j,2));

EP(j,1) = normcdf(z)+(CUMULANTS(j,3)/(6*CUMULANTS(j,2)^(3/2)))

*((z^2)-1)*((1/sqrt(2*pi))*exp((-z^2)/2));

end

s = s+(C(1,i)*P(i+1,1)*EP(i+1,1));

end

SWAPTION(c1,1) = s-(1*P(1,1)*EP(1,1));

%Clearing of variables

A = zeros(); M = zeros(); NX = zeros(); CAUX = zeros();
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c1 = c1+1;

end

SWAPTION

toc

B.2 Hyperplane approximation

%Given the parameters established for the three-factor Gaussian model, this

%routine prices swaptions using the Hyperplane approximation [Singleton and

%Umantsev (2002)].

clear; clc;

format long;

%Declaration of variables:

n = 4; %Number of swap payments

tau = 2; %Time-to-maturity of the swaption

fr = 2; %Frequency of the swap payments

X = [0.01; 0.005; -0.02]; %Vector of state variables at t=0

delta = 0.06; %Delta

K = [1; 0.2; 0.5]; %Vector of Ks

S = [0.01; 0.005; 0.002]; %Vector of Sigmas

R = [1 -0.2 -0.1; -0.2 1 0.3; -0.1 0.3 1];%Matrix of Rhos

alfa = 0.05; %Level of significance

f = length(X); %Number of model factors

Y = [1; 1; 1; 1]; %Vector for the OLS procedures

tic; %Timer initiation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Computation of the discount factors - Appendix A1

c = 1;
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for j = tau:(1/fr):tau+(n/fr)

s = 0;

for k = 1:1:f

Bk(c,k) = (1-exp(-K(k,1)*j))/K(k,1);

for l = 1:1:f

a = (((S(k,1)*S(l,1)*R(k,l))/(K(k,1)*K(l,1)))*(j-((1

-exp(-K(k,1)*j))/K(k,1))-((1-exp(-K(l,1)*j))/K(l,1))

+((1-exp(-(K(k,1)+K(l,1))*j))/(K(k,1)+K(l,1)))));

s = s+a;

end

end

A(c,1) = -delta*j+s/2;

P(c,1) = exp(A(c,1)-Bk(c,:)*X);

c = c+1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Implementation of the Hyperplane approximation

c1 = 1;

for c = (0.04):(0.001):(0.08) %Swaption contract strikes

C(1,1:n-1) = (c/fr); %Auxiliary payment vector

C(1,n) = 1+(c/fr); %Auxiliary payment vector

c2 = 1;

for j = tau:(1/fr):tau+(n/fr)

s = 0;

%Expected value and variance of Xk(T0), for k = 1,...,3,

%under the QTi forward measure - Equations (4.11) and (4.13)

for k = 1:1:f

for l = 1:1:f

s = s+((S(k,1)*S(l,1)*R(k,l))/(K(l,1)*K(k,1)*(K(l,1)

+K(k,1))))*((K(l,1)+K(k,1))*(1-exp(-K(k,1)*(tau-0)))

-K(k,1)*(exp(-K(l,1)*(j-tau))-exp(-K(k,1)*(tau-0)

-K(l,1)*(j-0))));

end
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EV(c2,k) = X(k,1)*exp(-K(k,1)*(tau-0))-s;

VAR(c2,k) = ((S(k,1)^2)/(2*K(k,1)))*(1-exp(-2*K(k,1)*(tau-0)));

end

%Computation of functions A(.) and B(.) of the discount factors,

%taking into account the expected value and variance of Xk(T0),

%under the QTi forward measure - Appendix A1

c3 = 1;

for m = (1/fr):(1/fr):(n/fr)

s = 0;

for k = 1:1:f

Bk2(c3,k) = (1-exp(-K(k,1)*m))/K(k,1);

for l = 1:1:f

a = (((sqrt(VAR(c2,k))*sqrt(VAR(c2,l))*R(k,l))/(K(k,1)

*K(l,1)))*(m-((1-exp(-K(k,1)*m))/K(k,1))-((1

-exp(-K(l,1)*m))/K(l,1))+((1-exp(-(K(k,1)+K(l,1))*m))

/(K(k,1)+K(l,1)))));

s = s+a;

end

end

A2(c3,1) = -delta*m+s/2;

c3 = c3+1;

end

%Equations (4.15) and (4.17), for k = 2,3

X2(c2,1) = norminv(alfa/2,EV(c2,2),sqrt(VAR(c2,2)));

X2(c2,2) = norminv(1-alfa/2,EV(c2,2),sqrt(VAR(c2,2)));

X3(c2,1) = norminv(alfa/2,EV(c2,3),sqrt(VAR(c2,3)));

X3(c2,2) = norminv(1-alfa/2,EV(c2,3),sqrt(VAR(c2,3)));

%Computation of the second and third columns of X, to use in the

%OLS procedures

XAUX(1:2,3) = X3(c2,1);

XAUX(3:4,3) = X3(c2,2);

XAUX(1,2) = X2(c2,1);

XAUX(2,2) = X2(c2,2);
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XAUX(3,2) = X2(c2,1);

XAUX(4,2) = X2(c2,2);

%Equation (4.19)

a = @(x1)((C(1,1)*exp(A2(1,1)-Bk2(1,1)*x1-Bk2(1,2)*XAUX(1,2)

-Bk2(1,3)*XAUX(1,3))+C(1,2)*exp(A2(2,1)-Bk2(2,1)*x1-Bk2(2,2)

*XAUX(1,2)-Bk2(2,3)*XAUX(1,3))+C(1,3)*exp(A2(3,1)-Bk2(3,1)*x1

-Bk2(3,2)*XAUX(1,2)-Bk2(3,3)*XAUX(1,3))+C(1,4)*exp(A2(4,1)

-Bk2(4,1)*x1-Bk2(4,2)*XAUX(1,2)-Bk2(4,3)*XAUX(1,3)))-1);

XAUX(1,1) = fzero(a,0);

b = @(x1)((C(1,1)*exp(A2(1,1)-Bk2(1,1)*x1-Bk2(1,2)*XAUX(2,2)

-Bk2(1,3)*XAUX(2,3))+C(1,2)*exp(A2(2,1)-Bk2(2,1)*x1-Bk2(2,2)

*XAUX(2,2)-Bk2(2,3)*XAUX(2,3))+C(1,3)*exp(A2(3,1)-Bk2(3,1)*x1

-Bk2(3,2)*XAUX(2,2)-Bk2(3,3)*XAUX(2,3))+C(1,4)*exp(A2(4,1)

-Bk2(4,1)*x1-Bk2(4,2)*XAUX(2,2)-Bk2(4,3)*XAUX(2,3)))-1);

XAUX(2,1) = fzero(b,0);

c = @(x1)((C(1,1)*exp(A2(1,1)-Bk2(1,1)*x1-Bk2(1,2)*XAUX(3,2)

-Bk2(1,3)*XAUX(3,3))+C(1,2)*exp(A2(2,1)-Bk2(2,1)*x1-Bk2(2,2)

*XAUX(3,2)-Bk2(2,3)*XAUX(3,3))+C(1,3)*exp(A2(3,1)-Bk2(3,1)*x1

-Bk2(3,2)*XAUX(3,2)-Bk2(3,3)*XAUX(3,3))+C(1,4)*exp(A2(4,1)

-Bk2(4,1)*x1-Bk2(4,2)*XAUX(3,2)-Bk2(4,3)*XAUX(3,3)))-1);

XAUX(3,1) = fzero(c,0);

d = @(x1)((C(1,1)*exp(A2(1,1)-Bk2(1,1)*x1-Bk2(1,2)*XAUX(4,2)

-Bk2(1,3)*XAUX(4,3))+C(1,2)*exp(A2(2,1)-Bk2(2,1)*x1-Bk2(2,2)

*XAUX(4,2)-Bk2(2,3)*XAUX(4,3))+C(1,3)*exp(A2(3,1)-Bk2(3,1)*x1

-Bk2(3,2)*XAUX(4,2)-Bk2(3,3)*XAUX(4,3))+C(1,4)*exp(A2(4,1)

-Bk2(4,1)*x1-Bk2(4,2)*XAUX(4,2)-Bk2(4,3)*XAUX(4,3)))-1);

XAUX(4,1) = fzero(d,0);

%Computation of OLS procedures - Equation (4.20)

BETA(c2,:) = (((XAUX�*XAUX)^-1)*XAUX�*Y)�;

%Equations (4.8) or (4.9), (4.21), (4.22) and (4.23)
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if C*exp(A2)>1

PR(c2,1) = normcdf(1,BETA(c2,:)*EV(c2,:)�,sqrt(BETA(c2,1)^2

*VAR(c2,1)+BETA(c2,2)^2*VAR(c2,2)+BETA(c2,3)^2

*VAR(c2,3)+2*BETA(c2,1)*BETA(c2,2)*sqrt(VAR(c2,1))

*sqrt(VAR(c2,2))*R(1,2)+2*BETA(c2,1)*BETA(c2,3)

*sqrt(VAR(c2,1))*sqrt(VAR(c2,3))*R(1,3)+2*BETA(c2,2)

*BETA(c2,3)*sqrt(VAR(c2,2))*sqrt(VAR(c2,3))*R(2,3)));

elseif C*exp(A2)<1

PR(c2,1) = 1-normcdf(1,BETA(c2,:)*EV(c2,:)�,sqrt(BETA(c2,1)^2

*VAR(c2,1)+BETA(c2,2)^2*VAR(c2,2)+BETA(c2,3)^2

*VAR(c2,3)+2*BETA(c2,1)*BETA(c2,2)*sqrt(VAR(c2,1))

*sqrt(VAR(c2,2))*R(1,2)+2*BETA(c2,1)*BETA(c2,3)

*sqrt(VAR(c2,1))*sqrt(VAR(c2,3))*R(1,3)+2*BETA(c2,2)

*BETA(c2,3)*sqrt(VAR(c2,2))*sqrt(VAR(c2,3))*R(2,3)));

end

c2 = c2+1;

end

%Pricing of the considered swaption contract

SWAPTION(c1,1) = sum(C�.*P(2:size(P,1),1).*PR(2:size(PR,1),1))

-1*P(1,1)*PR(1,1);

c1 = c1+1;

end

SWAPTION

toc %Timer stoppage
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