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Abstract

In this work we begin by introducing the Kuramoto model, constructing its solutions in
the thermodynamic limit and showing the close connection between statistical physics and
dynamical systems that lead to the main theoretical insights. The systematic study of
a finite population of self sustained oscillators began in the first decade of this century.
Unlike most of the papers we have found, we are not interested in the synchronization
transition in itself but rather in phase locked patterns and their relation with frequency
distribution among oscillators.

The problem of stability, as we have already mentioned, experienced great advances in
recent years. In a brief discussion we only address the problem of stability of the simplest
solution allowed by the Kuramoto model: the incoherent solution. After that we introduce
chimera states, first noticed by Kuramoto and his colleagues ([17] and references therein),
in which the introduction of a non local coupling gives origin to a split in a region with
synchronised oscillators and other with asynchronous one.

Then we proceed by exploring the literature and the results with a finite number of
oscillators, field explored with persistence only since mainly 2004 [29]. But here we are yet
in Kuramoto framework which is abandoned, in a rigorous terminology, when we pursuit
structured and not all-to-all coupling. Although we could introduce the same mean fields
quantities if well defined in each situation, this did not help us in making sense of the
results and is not an help in any analytical work.

In our analysis of a ring of coupled oscillators we construct a space that allows us to
relate the stable solutions with the eigenvectors of the laplacian of the graph in which we
work.
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Resumo

Neste trabalho começamos por introduzir o modelo de Kuramoto e realizar a construção das
suas soluções no limite termodinâmico, mostrando a relação estreita entre f́ısica estat́ıstica
e sistemas dinâmicos que levaram aos desenvolvimentos mais significativos.

O estudo sistemático das populações de osciladores com um número finito de elementos
começaram na primeira década deste século. Ao contrário de muitos trabalhos nesta área,
não estamos interessados no processo de sincronização em si mas antes em padrões de fases
que surgem em sincronia e sua relao com a distribuição das frequências próprias entre
osciladores.

O problema da estabilidade das soluções teve grandes desenvolvimento nos últimos anos.
Numa breve análise apenas atendemos ao problema da estabiliadde da mais simples solução
do modelo de kuramoto: a solução incoerente. Depois introduzimos as quimeras, estados
de sincronização descobertos por Kuramoto e que resultam da introdução de acoplamento
não local, resultando numa separação entre uma zona de sincronia e uma zona asśıncrona
num mesmo sistema. Prosseguimos analizando a literatura e os resultados conhecidos com
um número finito de osciladores, um campo explorado de forma sistemática apenas após,
grosso modo, 2004. Abandonamos o modelo de Kuramoto quando passamos ao estudo
de um número finito de osciladores e introduzimos acoplamentos estruturados saindo do
acoplamento de todos com todos. Nesta situação as quantidades de campo médio, na
horigem do êxito do modelo de Kuramoto, ficam sem utilidade evidente, ainda que caso a
caso se possam ainda definir e trabalhar.

A nossa análise num ćırculo onde os osciladores acoplam entre primeiros vizinhos e con-
struimos um espaço onde podemos visualizar a relao entre as soluções estáveis e os vectores
próprios do operador Laplaciano do grafo associado.
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Chapter 1

Introduction

Synchronization is present in almost all branches of science, engineering and social sciences
and is displayed in a variety of phenomena that appear to be rather different but neverthe-
less obey universal laws [1, 2] . Any group of systems, be it physical, biological or social
that displays some rhythm, that is, some time periodicity can, under certain circumstances
synchronize.

The broad occurrence of synchronization in nature is linked to the periodicity of the
systems behaviour. However synchronization is always what is called an emergent property
of an ensemble of units that exhibit some rhythm and are somehow in connection with
each other. The heart must beat at a given determined pace, insulin-secreting cells of the
pancreas must act in unison, and cells in the mammalian small intestine act to originate a
wave. Even individual bacteria display circadian synchrony [3, 7]. These are examples of
synchronization phenomena at a cellular level. For synchronization phenomena in biological
systems we refer to the beautiful and well informed book The Geometry of Biological Time
by Arthur Winfree, a delight to reason and knowledge.

Synchronization was discovered by the Dutch physicist Christian Huygens (1629-1695)
when he noticed that two mechanical pendulums hanging from the same wall oscillate in
phase opposition. He named it ”sympathy of two clocks”. In a letter to his father dated
from 26 February 1665 he wrote [1]:

While I was forced to stay in bed for a few days and made observations on my
two clocks [...], I noticed a wonderful effect that nobody could have thought
before. The two clocks, while hanging [on the wall] side by side with a distance
of one or two feet between, kept in pace relative to each other with a precision
so high that the two pendulums always swung together, and never varied.

In the literature, synchronization phenomena are widely illustrated: flashing fireflies, chirp
of crickets, epilepsy, menstrual period in groups of women, rhythmic applause, arrays
of lasers and superconducting Josephson junctions are some of the myriad phenomena
that display or are the result of a synchronization of cells, physical devices or biological
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populations.
The seminal works of A. Andronov [4] on self sustained oscillators, of Norbert Wiener

[5] on problems involving millions of limit cycle oscillators and showing the pervasiveness
of synchrony in nature, of Arthur Winfree [3] in the first serious and fruitful approach
to the problem and Kuramoto’s work [11] in 1984 that establishes a theoretically and
computational manageable model, can be seen as the main steps in the modern study of
synchrony.

We must note that before the mid seventies of last century, it would be very unlikely,
if not impossible at all, for a successful model to appear. In fact most of the success in the
field emerges from a close connection between theory and computational work, each one
giving insights to the other.

The very recent papers by Mirollo and Strogatz [13, 14] and by Ott and Antonsen
[15, 16] that succeeded, respectively, in establishing the stability of partially locked and
locked states of Kuramoto model, and the global stability of the system - but only for
the case of a Lorentzian distribution of frequencies - have solved the main mathematical
problems of the Kuramoto model.

In this work we begin by introducing the Kuramoto model, constructing its solutions in
the thermodynamic limit and showing the close connection between statistical physics and
dynamical systems that lead to the main theoretical insights. The assumption of an infinite
number of oscillators, that is usually called in a loose terminology the thermodynamic limit,
was, until recently [29] the framework of all the analytic studies. The systematic study of a
finite population of self sustained oscillators began in the first decade of this century ([29]
and reference [12] therein). Unlike most of the work mentioned in the literature, we are
not interested in the synchronization transition in itself but rather in phase locked patterns
and their relation with frequency distribution among oscillators.

The problem of stability, as we have already mentioned, experienced great advances in
recent years. In a brief discussion we only address the problem of stability of the simplest
solution allowed by the Kuramoto model: the incoherent solution. After that we introduce
chimera states, first noticed by Kuramoto and his colleagues ([17] and references therein),
in which the introduction of a nonlocal coupling gives origin to a split in a region with
synchronized oscillators and other with asynchronous one.

We then consider the case of a finite number of oscillators, an area which started to
receive more attention only recently [29]. Up to a point, this is still done within the
Kuramoto framework, which is then abandoned when we consider structured and not all-
to-all coupling. In this context, and although in some situations it might still be possible to
try to apply some of the concepts and techniques that were useful before, it also becomes
clear that there is still much to be understood and that some new ideas are needed. With
the final part of this thesis, we hope to have started pointing in this direction.
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Chapter 2

Standard Kuramoto Model

2.1 Kuramoto Model

The celebrated Kuramoto model [6, 9] of coupled phase oscillators has a phase equation of
the form

θ̇i(t) = ωi +
K

N

N∑
j=1

sin(θj(t)− θi(t)), i = 1, ..., N, (2.1)

where we consider N oscillators with natural frequencies ωi, i = 1, ..., N distributed with
a given probability density g(ω), and K is the homogeneous all-to-all coupling constant.

Following Kuramoto [6], we assume that the probability density g(ω) is unimodal and
symmetric about its mean frequency ω̄ =

∫
ωg(ω)dω. We can always shift the mean of

g(ω) to 0 by changing to a rotating frame at frequency ω̄. Defining a complex-valued order
parameter

r(t)eiψ(t) =
1
N

N∑
j=1

eiθj(t), (2.2)

where 0 6 r(t) 6 1 measures the coherence of the oscillators, and ψ(t) the average phase,
we can write Eq.(2.1) in a more convenient way if we multiply both sides of Eq.(2.2) by
e−iθi(t)

r(t)ei(ψ(t)−θi(t)) =
1
N

N∑
j=1

ei(θj(t)−θi(t)). (2.3)

Equating imaginary parts and using Eq.(2.1) we get

θ̇i(t) = ωi +Kr(t) sin(ψ(t)− θi(t)), i = 1, ..., N. (2.4)

In this form the mean field character of the model becomes clear with each oscillator
appearing to be decoupled from all the others, although they interact via the mean field
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Figure 2.1: Geometric interpretation of the order parameter Eq.(2.2). The phases θj are
plotted on the unit circle. Their centroid is given by the complex number reiψ, shown as
an arrow.

quantities r and ψ. This is a very familiar approach in statistical physics, where the
onset of synchrony from incoherence is viewed as a phase transition of the whole system of
oscillators described by an order parameter.

After long years of mathematical and physical dead-ends,this approach to the problem
revealed to be very fruitful combined with the analysis of the thermodynamic limit N →
+∞. In this approximation, we treat the system of oscillators in the continuum limit,
which provides a more manageable mathematical framework, sustained by the fact that
oscillators in nature appear in large quantities: large amounts of fireflies or cells in biological
pacemakers.

For a greater insight into the behaviour of the system it is also useful to represent
graphically the meaning of the order parameter, Eq.(2.2). If all oscillators are put on a
unit circle, circling around at given frequencies, we can see the order parameter r as the
length of an arrow going from the centre of the unit circle to the centroid of the set of
points that represent the oscillators. Clearly, r ∈ [0, 1] measures the coherence of the
N oscillators. In the continuum limit this picture does not lose its meaning, taking the
oscillators as continuously distributed on the unit circle.

2.1.1 Solutions of Kuramoto Model in the Thermodynamic Limit

In the thermodynamic limit N → +∞, oscillators are considered to be distributed with
a probability density ρ(θ, ω, t) where θ its the phase, ω the uncoupled frequency and t is

9



stands for time, satisfying the normalisation condition∫ 2π

0
ρ(θ, ω, t)dθ = 1, (2.5)

and the arithmetic mean in Eq.(2.2) becomes an average over phase and frequency

r(t)eiψ(t) =
∫ 2π

0

∫ +∞

−∞
eiθρ(θ, ω, t)g(ω)dωdθ. (2.6)

Now we will show that we get a variation of r(t) from 0 to 1 when K goes from 0 to ∞.
That is, the system of oscillators evolves from complete incoherence to complete synchrony
as the coupling is turned on and its strength is taken to arbitrary large values.

When K → 0, Eq.(2.4) yields θi(t) ≈ ωit + θi(0) which means that without coupling
each oscillator is free to rotate at his own frequency. Setting θ(t) = ωt + θ(0) in Eq.(2.6)
we get

r(t)eiψ(t) =
∫ 2π

0

∫ +∞

−∞
ei(ωt+θ)ρ(θ, ω, 0)g(ω)dωdθ. (2.7)

Developing the exponential and rearranging the integrals yields

r(t)eiψ(t) =
∫ +∞
−∞

(∫ 2π
0 cos(ωt+ θ)ρ(θ, ω, 0)dθ

)
g(ω)dω +

+i
∫ +∞
−∞

(∫ 2π
0 sin(ωt+ θ)ρ(θ, ω, 0)dθ

)
g(ω)dω (2.8)

Since ρ(θ, ω, 0) is integrable on [0, 2π], we are in the conditions of the Riemann-Lebesgue
Lemma, and so both terms on the right hand side of Eq.(2.8) tend to zero when t → ∞.
Thus we have seen that for K → 0 and in the limit t→∞ we get r → 0.

On the other hand, as K →∞ all the oscillators become phase locked in their average
phase, θi(t) ≈ ψ(t). In fact, if we rearrange Eq.(2.4) in the more convenient form

θ̇(t)− ωi
Kr(t)

= sin(ψ(t)− θi(t)), (2.9)

in the limit K →∞ we get sin(ψ(t)− θi(t))→ 0 or θi(t)→ ψ(t). Using (2.6) yields

r(t)eiψ(t) = eiψ(t)

∫ 2π

0

∫ +∞

−∞
ρ(θ, ω, 0)g(ω)dωdθ. (2.10)

But these integrals are equal to unity since they are integrals of densities over all range, so
we get r → 1.

We have seen that we get a variation of r(t) from 0 to 1 when K goes from K = 0 to
K = ∞ , that is, the system of oscillators evolves from complete incoherence to complete
synchrony.
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Let us now study in more detail the nature of this transition. In the thermodynamic
limit we have the continuity equation for the oscillator density ρ(θ, ω, t)

∂ρ

∂t
+

∂

∂θ
[ρ(θ, ω, t)υ(θ, ω, t)] = 0, (2.11)

which expresses conservation of oscillators of frequency ω and where the velocity υ is
interpreted as the instantaneous phase velocity of an oscillator with phase θ, given that it
has natural frequency ω,

υ(θ, ω, t) = ω +Kr(t) sin(ψ(t)− θ). (2.12)

This equation, being formally equivalent to (2.4) is its counterpart in the thermodynamic
limit. For a more convenient expression we substitute Eq.(2.12) into Eq.(2.11) getting

∂ρ(θ, ω, t)
∂t

+
∂

∂θ
{ρ(θ, ω, t)[ω +Kr(t) sin(ψ(t)− θ)]} = 0. (2.13)

Let us focus on stationary solutions. The set of Eqs.(2.5),(2.6) and (2.13) has the trivial
stationary solution

ρ(θ, ω, t) = 1
2π

r(t) = 0 (2.14)

corresponding to the incoherent state where all oscillators are drifting, with uniform prob-
ability distribution for the phases of the oscillators in the interval [0, 2π].

For finite, nonzero values of the coupling constant K, we have other possible solutions:
the partially synchronized states [6, 11, 12] for which 0 < r < 1. The construction of
these solutions starts from the following ansatz: the set of oscillators splits into a set of
incoherent, drifting oscillators, and another set of oscillators, whose average phase ψ rotates
with constant frequency Ω, so that r does not depend on time.

For the sake of simplicity let us change to a rotating frame with constant angular
velocity Ω and define a new angular variable φ = θ−Ωt, implying θ̇ = φ̇+ Ω. Looking for
solutions where φ̇, the instantaneous phase velocity of the oscillators in the rotating frame,
is equal to zero, Eq.(2.12) yields

0 = ω − Ω−Kr sinφ. (2.15)

The oscillators with Kr > |ω−Ω| asymptotically approach a stable fixed point φ∗ defined
by

sinφ∗ =
ω − Ω
Kr

, φ∗ ∈
[
−π

2
,
π

2

]
(2.16)

synchronized (it is easy to check that the other solution of Eq.(2.16) is an unstable fixed
point.) If these oscillators approach a fixed point in the rotating frame ψ(t) = Ωt they are
locked at frequency Ω in the original frame, defining a probability density

ρ(θ, ω, t) = δ
[
θ − Ωt− sin−1

( ω

Kr

)]
, |ω| 6 Kr (2.17)

11



where δ is the Dirac-delta function. Note that ρ(θ, ω, t) = ρ(φ, ω), so that Eq.(2.17) is
stationary in the rotating frame.

On the other hand, oscillators with |ω| > Kr are drifting. Let us look for stationary
solutions ρ(φ, ω) in the rotating frame for the phase distribution of this second set of
oscillators. Then ρ(φ, ω) must be inversely proportional to the speed at φ

ρ(φ, ω) =
C(ω)

|ω −Kr sinφ|
, |ω| > Kr. (2.18)

Then, for the partially synchronized states we arrived at the two branches of the solution:
The locked one, with oscillators |ω| ≤ Kr and the drifting one, with oscillators |ω| > Kr.

ρ(θ, ω, t) =


δ
[
θ − Ωt− sin−1

(
ω
Kr

)]
, |ω| ≤ Kr

C(ω)
|ω−Kr sin(θ−Ωt)| , |ω| > Kr

(2.19)

where C(ω) is to be determined using the normalisation condition for ρ(θ, ω, t), Eq.(2.5),
yielding

C(ω) =

√
ω2 − (Kr)2

2π
. (2.20)

This construction will work provided that Eq.(2.6) with ρ(θ, ω, t) given by Eq.(2.19) can
be solved self-consistently for r and Ω.

2.1.2 Evaluation of the Order Parameter and Critical Coupling

Substituting the density ρ, given by Eq.(2.19) into Eq.(2.6) we get the condition

r =
∫ 2π

0

∫ +∞

−∞
ei(θ−Ωt)

(
δ
[
θ−Ωt− sin−1

( ω

Kr

)]
g(ω) +

C(ω)g(ω)
|ω −Kr sin(θ − Ωt)|

)
dωdθ. (2.21)

Spliting the contribution of the locked and drift oscillators as first and second term we get

r =
∫ 2π

0

∫
|ω|≤Kr e

i(θ−Ωt)δ
[
θ − Ωt− sin−1

(
ω
Kr

)]
g(ω)dωdθ +

+
∫ 2π

0

∫
|ω|>Kr e

i(θ−Ωt) C(ω)g(ω)
|ω−Kr sin(θ−Ωt)|dωdθ. (2.22)

If we take Ω = ω̄, the second term vanishes, since then g(ω) = g(−ω), as we assumed in
the beginning, and ρ(θ + π,−ω) = ρ(θ, ω). So we get

r =
∫ 2π

0

∫
|ω|≤Kr

ei(θ−Ωt)δ
[
θ − Ωt− sin−1

( ω

Kr

)]
g(ω)dωdθ, (2.23)

Developing the exponential yields

12



r =
∫ 2π

0

∫
|ω|≤Kr cos(θ − Ωt)δ

[
θ − Ωt− sin−1

(
ω
Kr

)]
g(ω)dωdθ +

+i
∫ 2π

0

∫
|ω|≤Kr sin(θ − Ωt)δ

[
θ − Ωt− sin−1

(
ω
Kr

)]
g(ω)dωdθ (2.24)

To be consistent with the initial construction of r as a real quantity the imaginary part of
Eq.(2.24) must be zero, which we will verify now.

∫ 2π
0

∫
|ω|≤Kr sin(θ − Ωt)δ

[
θ − Ωt− sin−1

(
ω
Kr

)]
g(ω)dωdθ =

=
∫
|ω|≤Kr sin

[
sin−1

(
ω
Kr

)]
g(ω)dω (2.25)

If we put ζ = sin−1
(
ω
Kr

)
, which implies ω

Kr = sin ζ or ω = Kr sin ζ with ζ ∈ [−π
2 ,

π
2 ] we

get
dω

dζ
= Kr cos ζ. (2.26)

Changing the variable of integration in the right hand side of Eq.(2.25 from ω to ζ yields∫ π
2

−π
2

sin ζg(Kr sin ζ)Kr cos ζdζ

that is

Kr

∫ π
2

−π
2

sin ζ cos ζg(Kr sin ζ)dζ (2.27)

Since we assumed g(ω) to be in the fixed frame unimodal and symmetric about its mean
frequency ω̄ = Ω, g(ω) = g(−ω) in the rotating frame and Eq.(2.27) is indeed zero.

Retaining only the real part of Eq.(2.24) we can resume the finding of the critical
coupling and of an expression for r at the transition. Changing the order of integration in
the real part of Eq.(2.24) yields

r =
∫
|ω|≤Kr

∫ 2π

0
cos(θ − Ωt)δ

[
θ − Ωt− sin−1

( ω

Kr

)]
g(ω)dθdω, (2.28)

and performing the integral in θ we get

r =
∫
|ω|≤Kr

cos
[
sin−1

( ω

Kr

)]
g(ω)dω (2.29)

Now, if we put χ = sin−1
(
ω
Kr

)
, which implies ω

Kr = sinχ or ω = Kr sinχ with
χ ∈ [−π

2 ,
π
2 ] we get

dω

dχ
= Kr cosχ. (2.30)
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Changing the variable of integration in Eq.(2.29) from ω to χ yields

r =
∫ π

2

−π
2

cosχg(Kr sinχ)Kr cosχdχ

that is

r = Kr

∫ π
2

−π
2

cos2 χg(Kr sinχ)dχ (2.31)

Along with the trivial solution r = 0 corresponding to completely unlocked oscillators
we find a second branch of solutions corresponding to the partially synchronized ones

1 = K

∫ π
2

−π
2

cos2 χg(Kr sinχ)dχ (2.32)

By setting r = 0 in Eq.(2.32) we find the value of K = Kc of the coupling constant from
which this partially synchronized branch bifurcates. In fact, for r = 0, Eq.(2.32) becomes

1 = Kc

∫ π
2

−π
2

cos2 χg(0)dχ

or
1
g(0)

= Kc

∫ π
2

−π
2

cos2 χdχ,

implying

Kc =
2

πg(0)
(2.33)

For the particular case of a Lorentzian density

g(ω) =
γ

π(γ2 + ω2)
(2.34)

an explicit evaluation of the above integrals gives

r =

√
1− Kc

K
, K > Kc = 2γ (2.35)

For a general density distribution g(ω) we Taylor expand g(Kr sinχ) in powers of Kr
getting

g(0) +Kr sinχg′(0) +
(Kr)2

2
sin2 χg′′(0) +O(Kr)2 (2.36)

and substituting into Eq.(2.32) we obtain a scaling law for r

r ∼

√
(K −Kc)
g′′(0)

. (2.37)
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Figure 2.2: Second order phase transition. With K < Kc the real part of the order
parameter is zero. At K = Kc the order parameter bifurcate continuously, begin a partially
synchronized state.

The radial part of the normal form in polar coordinates for the Hopf bifurcation [10] is
given by

r =

√
−dµ
a

(2.38)

where d = α′(0), a = a(0) with µ = K − Kc in the normal form ṙ = α(µ)r + ar3. If
g′′(0) < 0 as in the case of a Gaussian or Lorentzian distributions, we have a supercritical
Hopf bifurcation.

Without coupling constant K all oscillators are free to move at their own frequency.
Eventually, as K increases it reaches a critical value Kc above which some oscillators begin
to synchronize, and where the effective coupling constant Kr(t), as can be seen by Eq.(2.4),
undergoes a positive feedback, being greater for a greater number of entrained oscillators.

At Kc we face a phenomenon similar to a second order phase transition with an order
parameter given by Eq.(2.2). This link between statistical physics and dynamical systems
showed to be very fruitful. As Kuramoto wrote [11]

It is expected that the supercritical bifurcating solution is stable, and the sub-
critical one is unstable. Again, this fact appears to be difficult to prove. Physi-
cally, why the sign of g′′(0) determines the direction of branching of the non-zero
solution may be qualitatively understood as follows. If g is concave at ω = ω0,
then the ”nucleation” of synchronized oscillators, once initiated, will be speeded
up due to the increasing number density of the oscillators just participating in
the nucleation. As a result, the cluster growth will not be suppressed until its
size reaches a fairly large value.
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2.1.3 Stability of The Incoherent Solution

Here we will address briefly the stability problem of the incoherent solution expressed by
Eq.(2.14). Although in recent years there have been major advances in understanding the
stability of the partially locked [13] and locked [14] solutions, the global stability analysis of
system has been made only for the case of a Lorentzian distribution of proper frequencies
[15]-[16].

It’s worth noting that the incoherent and the partially synchronized solutions are mean-
ingful only in the thermodynamic limit, although for a finite number of oscillators we will
see, in certain conditions, a behaviour similar to partially synchronized solution.

Lets consider a small perturbation away from the incoherent state

ρ(θ, ω, t) =
1

2π
+ εη(θ, ω, t), ε� 1 (2.39)

The normalization condition Eq.(2.5) implies that∫ 2π

0
η(θ, ω, t) = 0, (2.40)

and introducing the perturbed incoherent state Eq.(2.39) in the continuity equation (2.11)
we get the evolution equation

ε
∂η

∂t
− ∂

∂θ

[
(

1
2π

+ εη)υ
]

= 0 (2.41)

We are interested in the lowest order in ε. Observing from Eq.(2.6) that r(t) is O(ε) and
using Eq.(2.12) we get

r(t) = εr1(t) +O(ε2) (2.42)

where

r1(t)eiψ(t) =
∫ 2π

0

∫ +∞

−∞
eiθ(t)η(θ, ω, t)g(ω)dωdθ. (2.43)

From Eq.(2.12) we get ∂υ
∂θ = −εKr1(t) cos(ψ(t) − θ(t)). At O(ε) the evolution equation

(2.41) becomes

∂η(θ, ω, t)
∂t

− ω∂η(θ, ω, t)
∂θ

+
K

2π
r1(t) cos(ψ(t)− θ(t)) = 0. (2.44)

Since η(θ, ω, t) is real and 2π-periodic in θ we will seek solutions of Eq.(2.44) on the form

η(θ, ω, t) = c(ω, t)eiθ(t) + c∗(ω, t)e−iθ(t) + η⊥(θ, ω, t) (2.45)

Where ∗ denote complex conjugate and η⊥(θ, ω, t) contain all harmonics largest than the
first.
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Before we proceed let us show that the only contribution of η to the final term of
Eq.(2.44) is throug c(ω, t) and his complex conjugate.

To see this note that r1(t) cos(ψ(t)−θ(t)) = Re
[
r1(t)eiψ(t)e−iθ(t)

]
. Substituting Eq.(2.45)

into Eq.(2.43) yields

r1(t)eiψ(t) = 2π
∫ +∞

−∞
c∗(ω, t)g(ω)dω (2.46)

and

r1(t) cos(ψ(t)− θ(t)) = 2πRe
[( ∫ +∞
−∞ c∗(ω, t)g(ω)dω

)
e−iθ

]
= π

( ∫ +∞
−∞ c∗(ω, t)g(ω)dω

)
eiθ + c.c. (2.47)

where c.c. denotes the complex conjugate of the preceding term. Now is clear that the last
term of Eq.(2.44) depends only on c(ω, t) and its complex conjugate.

Inserting Eq.(2.45) and Eq.(2.47) into Eq.(2.44) and equating the coefficients of eiθ(t)

on both sides of the resulting equation we get the evolution equation for the fundamental
mode c(ω, t)

∂c(ω, t)
∂t

= −iωc(ω, t) +
K

2

∫ +∞

−∞
c(t, ν)g(ν)dν. (2.48)

The right hand side of Eq.(2.48) defines a linear operator A which has both a discrete
and a continuous spectrum. The discrete spectrum is given by solutions to

1 =
K

2

∫ ∞
−∞

g(ω)
λ+ iω

dω (2.49)

For g(ω) even and nonincreasing in [0,+∞] there is either no discrete spectrum (for K ≤
Kc), or a unique and positive real discrete spectrum which tends to 0 as K → K+

c .
Thus the incoherent solution is always linearly neutrally stable.

2.2 Chimeras

When we talk about chimeras we mean anything that seems fantastic or composed of
incongruous parts. In Greek mythology, a chimera was a fire-breathing monster having a
lion’s head, a goat’s body, and a serpent’s tail. A mathematical chimera - the one that
interests us - is an array of identical oscillators that split into two domains: one coherent,
or synchronized, and the other incoherent.

This splitting cannot be ascribed to the inhomogeneity of the oscillators themselves as
in the previous sections where each oscillator had its own frequency [17]. Kuramoto first
reported chimeras (the name was given by himself) back in 2003 when studying arrays of
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identical limit cycle oscillators that were coupled nonlocally [18]. In fact, most of the work
on coupled oscillators until a few years ago has focused either on local (nearest neighbours)
or all-to-all (global) coupling. So, from a theoretical point of view, nonlocal coupling was
the natural path to follow in the research. On the other and, nonlocal coupling arises in
diverse systems throughout physics, chemistry and biology [19].

The simplest system that supports a chimera state, a continuous ring of coupled phase
oscillators [17, 18, 19] can be described by

θ̇(x, t) = ω −
∫ π

−π
G(x− x′) sin[θ(x, t)− θ(x′, t) + α]dx′ (2.50)

with the usual notation. The frequency ω plays no role in the dynamics, in the sense that
one can set ω = 0 by shifting θ by the amount ωt, and the kernel G(x−x′) provides nonlocal
coupling between the oscillators and it is assumed to be even, non-negative, decreasing with
the separation |x− x′| along the ring, and normalised to have unit integral.
We proceed by using a generalisation of Kuramoto’s self-consistency method [19]. Let Ω
denote the angular frequency of the rotating frame in which the dynamics become as simple
as possible and let

φ(x, t) = θ(x, t)− Ωt (2.51)

denote the phase of an oscillator relative to this frame. So φ̇(x, t) = θ̇(x, t)− Ω. Knowing
this Eq.(2.50) can be rewritten in terms of the new phase φ

φ̇(x, t) = ω − Ω−
∫ π

−π
G(x− x′) sin[φ(x, t)− φ(x, t) + α]dx′. (2.52)

We can now introduce a time and space dependent complex-valued order parameter

R(x, t)eiΦ(x,t) =
∫ π

−π
G(x− x′)eiφ(x′,t)dx′ (2.53)

Multiplying both sides of the order parameter by e−i(α+φ(x,t)) and equating imaginary parts

R(x, t) sin(φ(x, t)− Φ(x, t) + α) =
∫ π

−π
G(x− x′) sin[φ(x, t)− φ(x′, t) + α]dx′. (2.54)

With Eq.(2.54) we can rewrite the governing equation (2.52) as

φ̇(x, t) = ω − Ω−R(x, t) sin[φ(x, t)− Φ(x, t) + α] (2.55)

and we can see that equation (2.55) is formally equivalent to equation (2.4) which suggests
that we can proceed using the self-consistency arguments of mean field theory, although
the system is not globally coupled.
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Now we pay attention to stationary solutions, in which R and Φ are functions only of the
space variable. The oscillators with R(x) ≥ |ω−Ω| asymptotically approach a stable fixed
point φ∗(x), defined implicitly by

ω − Ω
R(x)

= sin[φ∗(x)− Φ(x) + α] (2.56)

and if these oscillators approach a fixed point in the rotating frame (see Eq.(2.51) for the
definition of φ), they are locked at frequency Ω in the original frame. And the oscillators
with R(x) < |ω − Ω| are the ones that are drifting.

As we are working with stationary solutions, these oscillators must distribute themselves
according to a stationary probability density ρ(φ, x). This requires that ρ(φ, x) be inversely
proportional to the speed at φ

ρ(φ, x) =
C(x)

|ω − Ω−R(x) sin[φ(x)− Φ(x) + α]|
. (2.57)

With the normalisation constant chosen such that that
∫ π
−π ρ(φ, x)dφ = 1, Eq.(2.57) be-

comes

ρ(φ, x) =

√
(ω − Ω)2 −R2(x)

2π|ω − Ω−R(x) sin[φ(x)− Φ(x) + α]|
. (2.58)

We must stress that the resulting motion of both the locked and drifting oscillators
must be consistent with the assumed stationarity for R(x) and Φ(x).

To calculate the contribution that both locked and drifting oscillators make to the order
parameter, Eq.(2.53), we see that

sin(φ(x)− Φ(x) + α) =
ω − Ω
R(x)

.

and using the trigonometric identity sin2 φ+ cos2 φ = 1 we get

cos(φ(x)− Φ(x) + α) = ±
√
R(x)2 − (ω − Ω)2

R(x)
(2.59)

for any solution φ(x) of Eq.(2.56).
To find out the contribution of the locked oscillators to the order parameter Eq.(2.53

we can use the trigonometric identity cosφ = sin(π2 −φ) to see that in Eq.(2.59) the stable
fixed point of Eq. (2.55) corresponds to the plus sign. Then

ei(φ
∗(x)−Φ(x)+α) =

√
R2(x)− δ2 + iδ

R(x)
, (2.60)

where δ = (ω−Ω), and so the contribution of the locked oscillators to the order parameter
(2.53) and taking into account the assumed stationarity of R(x) and Φ(x), becomes
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R(x)eiΦ(x) = e−iα
∫
D1

G(x− x′)eiΦ(x′)

√
R2(x′)− δ2 + iδ

R(x′)
dx′ (2.61)

where D1 = {x′ : R(x′) ≥ |δ|} and we have subtracted α and Φ from Eq.(2.60) to maintain
the identity.
The contribution of the drifting oscillators can be calculated [18, 19] replacing eiφ(x′) in
Eq.(2.53) by its statistical average

R(x)eiΦ(x) =
∫
D2

G(x− x′)
∫ π

−π
eiφρ(φ, x′))dφdx′. (2.62)

Where D2 = {x′ : R(x′) < |δ|}. Substituting Eq.(2.58) for ρ into Eq.(2.62) and evaluating
the integral yields

∫ π

−π
eiφ

√
(ω − Ω)2 −R2(x′)

2π|ω − Ω−R(x′) sin[φ− Φ(x′) + α]|
dφ =

i

R(x′)
(δ −

√
δ2 −R2(x′)) (2.63)

Therefore the contribution of the drifting oscillators to the order parameter Eq.(2.53)becomes

R(x)eiΦ(x) =
∫
D2

G(x− x′)
√
R2(x′)− δ2 + iδ

R(x′)
dx′ (2.64)

Thus we obtained

R(x)eiΦ(x) =


e−iα

∫
D1
G(x− x′)eiΦ(x′)

√
R2(x′)−δ2+iδ

R(x′) dx′, for locked oscillators

∫
D2
G(x− x′)

√
R2(x′)−δ2+iδ

R(x′) dx′, for drift oscillators
(2.65)
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Chapter 3

Kuramoto Model With a Finite
Number of Oscillators

3.1 Existence and Stability of Solutions

From now on we will focus on systems with a finite number of oscillators. The consideration
of the limit N → ∞ allows for several conclusions to be drawn, and this is realistic for a
great many number of phenomena. However, and since 2004 [29], a great deal of attention
has been devoted to finite populations of oscillators both in theoretical and computational
aspects. Because the analysis of the model in the thermodynamic limit cannot simply be
transposed to the case with a finite number of oscillators, and analytical results are hard
to obtain, most research focuses on simulations [30].

We will need a more accurate terminology. Following [29] we reserve the term phase
locking to a state where the phase differences between all the oscillators are constant, full
synchronization to a state defined as phase locking with phase differences equal to zero
and partial entrainment to a state where we have at least two oscillators with a constant
phase difference.

We introduce the phase differences φj as

φi(t) = θi(t)− θ1(t), i = 1, ..., N (3.1)

and we can rewrite Eq.(2.4) as

{
θ̇1 = ω1 +Kr(t) sin(ψ(t)− θ1(t)
φ̇i = ωi − ω1 +Kr(t)[sin(ψ(t)− φi(t)− θ1(t))− sin(ψ(t)− θ1(t)], i = 2, ..., N

(3.2)
In a state of phase locking, which according to the definition corresponds to φi(t) being a
constant, the order parameter Eq.(2.2) can be written as
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( 1
N

N∑
j=1

eiφj
)
eiθ1(t) (3.3)

From now on we will denote 1
N

∑N
j=1 e

iφj as r`eiα. With this new notation slightly adapted
from [29], we can write the order parameter Eq.(2.2) in the phase locking situation as

r(t)eiψ(t) = r`e
i(α+θ1(t)) (3.4)

From Eqs.(3.2) and (3.4), a phase locking solution satisfy{
θ̇1 = ω1 +Kr` sin(α)
0 = ωi − ω1 +Kr` sin(α− φi)−Kr` sin(α), i = 2, ..., N

(3.5)

If we sum up all N − 1 equations in (3.5) we will get

ω1 +Kr` sin(α) =
1
N

N∑
j=1

ωj +
1
N
Kr`

N∑
j=1

sin(α− φj) (3.6)

and this yields

θ̇1(t) =
1
N

N∑
j=1

ωj +
1
N
Kr`

N∑
j=1

sin(α− φj) (3.7)

If we take in to account our notation for r`eiα and the fact that, by definition r` ∈ [0, 1],
then the following definition holds

r` =
1
N

N∑
j=1

cos(φj − α) (3.8)

If we notice that
∑N

j=1 sin(α − φj) = Im
(∑N

j=1 e
iαe−iφj

)
and that

∑N
j=1 cos(φj − α) =

Re
(∑N

j=1 e
iφje−iα

)
and using the notation previously introduced of expressing

∑N
j=1 e

iφj

as eiα, we get Im
(∑N

j=1 e
iαe−iφj

)
= Im[1] = 0 and Re

(∑N
j=1 e

iφje−iα
)

= 1 .

Eq.(3.7)then yields

θ̇1(t) =
1
N

N∑
j=1

ωj . (3.9)

Defining a new quantity, the mean natural frequency, $ as
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$ =
1
N

N∑
j=1

ωj (3.10)

we can write the phase ψ(t) of the complex order parameter Eq.(2.2), in the case of phase
locking as

ψ(t) = θ1(t) + α, ⇒ ψ(t) = $t+ β (3.11)

with β = α+ θ1(0).
So, in phase locking solutions all oscillators have a phase velocity equal to the mean

natural frequency, which is a result that we could guess.

3.1.1 Conditions For The Existence of Phase Locking Solutions

Substituting Eq.(3.9) in Eq.(3.5) yields

0 = ωi −$ +Kr` sin(α− φi), i = 1, ..., N (3.12)

Defining a new quantity δi = ωi −$, phase locking solutions satisfy

sin(φi − α) =
δi
Kr`

, i = 1, ..., N (3.13)

which yields a solution if and only if

Kr` ≥ |δi|, i = 1, ..., N (3.14)

Using the trigonometric identity sin2(x) + cos2(x) = 1 and Eqs.(3.8) and (3.13) we get a
set of self-consistent equations in r`

r` =
1
N

N∑
j=1

±

√
1−

( δj
Kr`

)2
(3.15)

We arrived at sufficient and necessary conditions for the existence of phase locking solu-
tions: A solution r`(K) of Eq.(3.15) is a phase locking solution if and only if Eq.(3.14) is
satisfied. Phase locking solutions of Eq.(3.15), (K, r`), are only possible for K greater than
a threshold value Kc.

We can see this in a straightforward way looking to Eq.(3.15). The left hand side must
be in [0, 1], so the right hand side must have values in the same interval. Since Eq.(3.14)
must allways hold in locking condition, and for given δj , r` and N , we have a threshold Kc

above which the right hand side of Eq.(3.15) is between [0, 1].
Other outcome that results from Eq.(3.13), somehow residual but interesting enough,

is that in the phase locking situation, a great δi implies a great φi: The phase difference
to oscillator 1 increases with the oscillator proper frequency.
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3.1.2 Stability of the phase locking solution

Lets consider N oscillators described by Eq.(2.1). Substituting θi(t) by θ∗i (t) +$t yields

θ̇∗i = δi +
K

N

N∑
j=1

sin(θ∗j − θ∗i ), i = 1, ..., N (3.16)

where δi = ωi−$,
∑N

i=1 δi = 0, θi = θ∗i +$t and we define θ∗ = [θ∗1 · · · θ∗N ]T and remember
that for a phase locking solution θ̇i(t) = $, or, in the new coordinates θ̇∗i (t) = 0. First we
must note that the system of equations (3.16) is invariant under translations.

θ∗ → θ∗ + α[1 · · · 1]T , for any α ∈ < (3.17)

So, each equilibrium point of 3.16 belongs to a curve of equilibrium points, all of them
representing the same phase locking solution.

In [29] after the linearization of Eq.(3.16) is shown that the Jacobian of the linearization
has a eigenvalue zero. The computation of the Jacobian yields

J =
K

N
(A+ bbT + ccT ) (3.18)

with


A = −diag(a1, · · · , aN ) with ai = ±Nr`

√
1−

(
δi
Kr`

)2

b =
[
±
√

1−
(

δ1
Kr`

)2
· · · ±

√
1−

(
δN
Kr`

)2]T
∈ <N

c =
[
δ1
Kr`
· · · δNKr`

]T
∈ <N

(3.19)

Then in [29] they proceed to consider phase locking solutions with |δi|
Kr`

< 1 and show
that phase locking solutions satisfying Eq.(3.15) with at least one minus sign are locally
unstable. Finally the analysis is restricted to Eq.(3.15) with only positive signs and the
following necessary and sufficient condition for stability is established:

N∑
j=1

1− 2
(

δj
Kr`

)2

√
1−

(
δj
Kr`

)2
> 0 (3.20)
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Chapter 4

Finite number of oscillators with
structured coupling

4.1 Synchronization in complex networks and known results
in regular topologies

To the extent of our knowledge, most of the work in the study of a finite number of
oscillators are found to be on all-to-all coupling, small-world and scale-free networks ([30],
and references therein).

Since the seminal works of Watts and Strogatz [20, 21] and Barabási and Albert [22] lot
of research has been done on networks shown small-world and scale-free properties. These
networks resembles a wide range of natural phenomena or artificial constructions. From
World-Wide-Web to epidemic spreading, the study of these complex networks showed to
be a fruitfull path. An important issue concerning these networks is the interplay between
structure and dynamics, in which the study of synchronization play an important role [23].

In a series of papers, Ermentrout et. al. [24, 25, 26, 27], done a extensively work
on chains of weakly coupled oscillators with nearest neighbouring coupling, except in [27]
where was introduced couplings beyond nearest neighbours.

To the best of our knowledge,their work, motivated by some undulate phenomena in
mammalian small intestine, was the first serious work that deal with a finite number
of oscillators and nearest-neighbour coupling and that could be partially integrated in
Kuramoto model framework. They never mention Kuramoto’s work because they couldn’t
do so: Kuramoto work [11] appear in the same year of the first paper.

Recently we have the work of A. Pikovsky and P. Rosenau [28] that intend to bridge
two fields in nonlinear physics: synchrony and solitons and, using a ring as the topology of
oscillators, a feature that we also make use, restrict their attention to dispersive coupling.
Let us briefly use some results and techniques that appear in [24] with our terminology.

Lets consider a chain of N +1 phase coupled limit cycle oscillators with small coupling.
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With the usual notation we get the set of equations

θ̇1 = ω1 +K sin(φ1) +O(K2)
φ̇i = K[δi + sin(φi+1) + sin(φi−1)− 2 sin(φi)] +O(K2), i = 1, ..., N (4.1)

with the boundary conditions sin(φ0) = 0 and sin(φN+1) = 0. To lowest order in K the
equations for φ̇i are independent of θ1. Letting τ = Kt we get φ̇ ≡ dφ

dτ = 1
K φ̇ and so the

Eq.(4.1) for φi becomes

~̇φ = ~δ + ~G ~B (4.2)

where ~φ = (φ1, ..., φN )T , ~δ = (δ1, ..., δN )T , ~B = (sin(φ1), ..., sin(φN ))T , and ~G is the matrix
with components Gii = −2 and Gi+1,i = Gi,i+1 = 1 .

As we will see this resembles ours own approach, although this one is not useful to us
since it is missing the boundary conditions..

4.2 Motivation for our choices and first analytical results

Here we work extensively with Gaussian distributions. Both in natural sciences and in
social phenomena [31], a Gaussian distribution is vastly found to be the distribution that,
within an approximation as good as you want gives the frequency of an ensemble of self
sustained oscillators taken randomly from the entire population.

Moreover we set on 30 oscillators in this work. Our interest on a finite number of self-
sustained oscillators was encouraged by the fact that, as much as we know, a great deal
of work was done with two, three, four or even five oscillators (see [32, 33] and references
therein). However these works were made to the intent of study the process of synchro-
nization or desynchronization itself and not to present and study the phase behaviour and
its relation, if we have one at all, with the proper frequencies of oscillators. On the other
hand we want to surpass the limitation of a number of oscillators near to two or three, but
not going to a number that could be only worked by statistical tools.

We choose a ring as the topology displayed by the oscillators. Since the works with a
finite number of oscillators are residual when compared to that with an infinite number of
oscillators, and even more residual if the coupling is nearest-neighbouring and not all-to-all,
the ring is the simpler topology to work with.

Lets consider a ring with N oscillators. Writing down the governing equations yields

θ̇i = ωi +K[sin(θi+1 − θi) + sin(θi−1 − θi))], i = 1, ..., N (4.3)

with boundary values conditions θN+1 = θ1 and θ0 = θN . With the usual notation φi =
θi+1 − θi and δi = ωi+1 − ωi with i = 1, ..., N we get

26




φ̇i = δi +K[sin(φi+1) + sin(φi−1)− 2 sin(φi))], i = 1, ..., N∑N

i=1 φi = 0 (mod 2π)
φN+1 = φ1

(4.4)

These are the set of equations describing the evolution of φ with time in a ring of N
oscillators.

To get insight in our system behaviour we will briefly see the discrete and linear limit
and the continuous one. In the limit of small φi for which sin(x) ' x we get a set of linear
equations describing the system in the linear and discrete limit

φ̇i = δi +K(φi+1 + φi−1 − 2φi), i = 1, ..., N∑N
i=1 φi = 0 (mod 2π)

φN+1 = φ1

(4.5)

and we can seek the fixed points of Eq.(4.5) solving

A~φ = ~δ, ~φ = [φ1, ..., φN ]T and ~δ = [δ1, ...δN ]T (4.6)

being A the laplacian of a ring. The linearised equation is the discrete laplacian, or, put
in another way, is simply the laplacian operator applied to the ensemble of φi which in
operatorial form is expressed by the Eq.(4.6).

Now we easily see that A~φ = ~δ has the form of a eigenvalue equation A~ν = ai~ν
where ai~ν = ~δ and ~ν = ~φ. To each input ~δ we get a ~φ and so in the linear and discrete
approximation each ~φ is a eigenvector of the laplacian and each ~δ can be decomposed in
ai~δ′ where ai is an eigenvalue of the laplacian and ~δ′ a eigenvector.

The laplacian for the ring graph on N vertices (oscillators) has the eigenvectors [35]

(x(u), y(u)) =
(

sin
(2πKu

N

)
, cos

(2πKu
N

))
, for 0 ≤ K ≤ N

2
(4.7)

with eigenvalues 2− 2 cos(2πK
N ).

In the case of an odd ring, the eigenvector associated with the larger eigenvalue have the
structure (+a,−b,+c,−c,+b,−a, 0) and (+a,−a,+a,−a,+a,−a) for even rings. And the
eigenvector associated with the lowest eigenvalue other than zero is always of the general
form (+a,+b,+c,−c,−b,−a, 0) for the odd ring and (+a,−a,−b,−a,+a, b) for the even
one, where a, b ∈ R.
We can see from this that the largest eigenvalue has associated eigenvector with a greater
asymmetry than the lowest one, In fact, as we will see, in a convenient space we can, to
a certain extent, predict what phase measure (a measure in that space) we will get for a
given proper frequency distribution in the ring.
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On the continuous limit we get, form Eq.(4.5), the non homogeneous diffusion equation

φ̇ = δ +K
∂2φ

∂φ2
(4.8)

That the phase difference φ in a chain of oscillators in the continuum limit is described by
a non homogeneous diffusion equation is well known in the literature, e.g.[25].

Before we proceed by this way we’ll see some features of a system of 30 oscillators with
a nearest neighbouring coupling.

4.2.1 Parameters of integration and graphics display

We use the free software XPPAUT [34] to integrate Eq.(2.1) using a second order Runge-
Kutta with a time step of 0.05 and a time of integration of 200, getting 4000 steps. We
could see in fig.(4.1) that the network quickly converge to its final phase distributions.

Figure 4.1: Ring in which each oscillator is coupled to its nearest-neighbour and with the
three frontal oscillators. Integration of Eq.2.1 with 30 oscillators and a Gaussian distribu-
tion of frequencies N(2, 0.1). We see a rapid convergence to the final distribution of the
phases.

Each oscillator get its frequency from a Gaussian distribution of mean 2 and variance
0.1. As is well known the mean have no role in our system because we can always shift it
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to a standard mean. The variance, and the coupling constant K on the other hand must
be carefully chosen.
The oscillators are to be similar, that is, with a low dispersion of proper frequency. As
we increase the variance, the synchrony is easily lost. In fig.(4.2) we increase the variance
in a controled way to each oscillator in a known distribution. We can see that the final
phase pattern become much more ”loose”, e.g., the phase difference to oscillator 1 increase
rapidly and we become to the edge of synchrony, which eventually could be lost if we in-
crease a little more the variance. We can also lost synchrony for a given topology if we
decrease the coupling strength bellow its critical value. In fig.(4.3) we decrease K in such
a way that synchrony is lost.

Figure 4.2: Chain with nearest-neighbour coupling. Integration of Eq.2.1 with 30 oscillators
and a Gaussian distribution of frequencies N(2, 0.1). Then we shift each frequency by 0.1
and synchrony is almost lost.

So, to the sake of simplicity and uniformity in the analysis of the results we set on the
same distribution N(2, 0.1). In some cases we are not interested on which frequency is
assigned to each oscillator, and we do not refer the attribution of frequencies. However, as
the work proceed we found necessary to see what frequencies are assigned to each oscillator,
and we make it explicit.
Following [29] we plot the relative phase of each oscillator to oscillator 1. As we have a
finite number of oscillators, we can always order them and label one of them as the first.
As we saw in chapter 3 theoretical analysis also followed this procedure.
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Figure 4.3: Two chains with unidirectionally coupled oscillators coupled by oscillators 14
and 15, the heads of each chain. Integration of Eq.2.1 with 30 oscillators with frequency
distribution N(2, 0.1).

A last remark on the interpretation of graphics. Fig.(4.4) show a static wave-like phase
distribution. In fact we always must bear in mind that the plot is a ”picture” on phase
distribution after 4000 steps of integration, with the certainty, e.g. Fig.(4.1), that the
system rapidly converge to its final phase distribution. What we see is a phase difference
with respect to the what we label as first oscillator.

4.3 First numerical results and their analysis

We must stress that what we see is a static phase distribution relative to oscillator labelled
with number 1. In a ring this procedure, though useful, is completely arbitrary. So we
must try to see the system in its dynamics and not as a static one.
The coupling constant K is a key parameter in the Kuramoto model. She transform an
ensemble of independent limit cycles oscillators into a new system weakly coupled that
eventually evolve to a new state: synchrony. We are able to see how K affect phases
distribution for the same distribution in Fig.(4.4).

As K increase the phase difference to oscillator 1 become increasingly small. This
is what we might expect for K account for the coupling strength between a system of
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Figure 4.4: Ring with nearest-neighbour coupling. Integration of Eq.2.1 with 30 oscillators.
Same frequency distribution for four different coupling constant. As K increase the phase
difference to the reference oscillator become lesser and lesser.

oscillators that without K would behave as independent systems.
Frequency distribution is other parameter that determines the phase distribution. Each
oscillator have its proper frequency that is picked up from a Normal distribution of given
mean and variance.
We can infer from our integrations that for a different frequency distribution we have a

completely different phase portrait. The phase relationship of oscillators with each others
depends entirely, for fixed K, of the assignment of proper frequencies to the oscillators
with Fig.(4.5) being an example. This dependence of the final phase distribution with the
particular assignment of a frequency to a oscillator is also stressed when we permute some
frequencies in a given frequency distribution.
In Fig. (4.6) we use some given frequency distribution and then we permute the frequency
assigned to oscillator 3 to that of the oscillator 21 (red dots), and then we add another
permutation by assigning to oscillator 18 the frequency of the oscillator 3. Even with only
one permutation we obtain a completely different phase portrait.
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Figure 4.5: Ring with nearest-neighbour coupling. Integration of Eq.2.1 with 30 oscillators.
Same frequency distribution for four different coupling constant. As K increase the phase
difference to the reference oscillator become lesser and lesser.

Figure 4.6: Ring with nearest-neighbour coupling. Integration of Eq.(2.1) with 30 oscillators
using the same coupling constant with different frequency distributions..
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4.3.1 Analitical results and insights from numerical integrations

The role of eigenvectors in describing our system

Our approach to the problem gained by the numerical insights take us to use the stable
fixed points obtained by solving Eq.(4.6) as guesses to cubic approximation of the sine
function, which in turn we use as guesses to the full sine version of Eq.(4.6) which is:

0 = δi +K[sin(φi+1) + sin(φi−1)− 2 sinφi], i = 1, ..., N∑N
i=1 φi = 0 (mod 2π)

φN+1 = φ1

(4.9)

We choose as a space to make sense of the behaviour of our system the two dimensional

space formed by V 1 =
√∑N

i=1 δ
2
i in abscissa and the output V 2 =

√∑N
i=1 φ

2
i in ordinates

axes, each one normalised to the number of oscillators.

Figure 4.7: Ring of 9 oscillators with nearest-neighbour coupling. Give an eigenvector, say
the associated with the largest eigenvalue of the laplacian of the ring, we iterate it with a
step of 0.02, and obtained the blue curve. The red curve is the iteration of the eigenvec-
tor associated with the lowest eigenvalue, and the other two curves are the eigenvectors
associated with the intermediate eigenvalues.

Some remarks are necessary at this point. In our work we use, as models to get insight
in the behaviour of the system, rings with number of oscillators that go from 5 to 9, and
even 11. We did not, as expected, see any difference but computational time consuming.
However we must remark that the symmetries of eigenvectors of laplacians of odd and even
number of oscillators are different. With 30 oscillators we can get some results that are
equal but at the expense of a prohibitive computational time.
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In the linear approximation, as we saw in chapter 4.2, the eigenvectors of the Laplacian of
the graph with a finite number of oscillators are fixed points of the system. Their impor-
tance becomes patent when, on one hand we found that the eigenvector associated with
the lowest eigenvalue, other than zero, is the upper bound of stable fixed points, that we
can obtain solving Eq.(4.9) and the eigenvector associated with the eigenvalue is the lower
bound to the stable fixed points, as shown in Fig.(4.7) and (4.8). On the other hand,
we find that exists a bijection between the phase portrait obtained using the eigenvector
associated with the larger eigenvalue and the phase portrait that we get with a frequency
assignment with the greatest asymmetry, (0,−1, 0,−1, 0,−1, 0,−1).
The same bijection, as we can see in figures (4.9) through (4.12) happens with the eigen-
vector associated with the lowest eigenvalue that is different from zero, and a frequency
assignment with great symmetry, of the kind: (a, b, a, c,−a,−b,−a, c).

Figure 4.8: Ring of 9 oscillators with nearest-neighbour coupling. Fixed points found solving
Eq.4.9. We use a iteration of the eigenvectors associated with the largest and lowest eigen-
values of the Laplacian graph, and a random generation of 5000 vectors from a Gaussian
distribution N(0, 0.5) .

Figure 4.9: Ring of 8 oscillators with nearest-neighbour coupling. Plot of the eigenvector
associated with the largest eigenvalue of Laplacians’ graph.

Other feacture of the system under study emerge from Eq.4.9 itself. Remembering the
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Figure 4.10: Ring of 8 oscillators with nearest-neighbour coupling. Fixed pointsfoundsolving
the dynamic equations. As frequency distribution we use the vector (0,-1,0,-1,0,-1,0,-1) with
variations along all vector .

Figure 4.11: Ring of 8 oscillators with nearest-neighbour coupling. Plot of the eigenvector
associated with the lowest eigenvalue of Laplacians’ graph .

Figure 4.12: Ring of 8 oscillators with nearest-neighbour coupling. Fixedpoints foundsolving
thedynamicequations. As frequencydistribution we use the vector(0,0,0,0,-1,-1,-1,-1) which
concentrate all variation in one point .
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Figure 4.13: Ring of 30 oscillators with nearest-neighbour coupling. Plot of the eigenvectors
of the graph associated with the largest (asymmetric curve) and lowest eigenvalue .

equation, δi+K[sin(φi+1)+sin(φi−1)−2 sinφi] = 0 with the condition
∑N

i=1 φi = 0 (mod 2π)
we get that for sufficiently small δi, we get

sin(φi+1) + sin(φi−1)− 2 sinφi = 0, i = 1, ..., N∑N
i=1 φi = 0 (mod 2π)

φN+1 = φ1

(4.10)

Implying 
sinφi = 1

2 [sin(φi+1) + sin(φi−1)], i = 1, ..., N∑N
i=1 φi = 0 (mod 2π)

φN+1 = φ1

And since, on on hand −1 ≤ sinφi ≥ 1 and on the other each φi have two possible combi-
nations of φi+1 and φi−1 we have two stable solutions as can be seen in Fig. (4.14) and (4.15)

4.3.2 Remarks on some results

What we have accomplished

Throughout our work we proceed along with the fruitfully way of theoretical insights gained
by numerical results, and new ideas to numerical exploration gained by theoretical ideas.
In working out we found more and more questions that must be addressed.

At this point we can tell, with a certain degree of certainty, that given a vector of
frequencies and a ring of, e.g., 30 oscillators, say something about if it would synchronize,
and if it synchronize, in what region of our space (V 1, V 2) we will found φ.

Lets consider the graph and the eigenvalues and associated eigenvectors of its Laplacian.
If V 1 of a given vector is lower than the V 1 found through the eigenvector associated with

36



Figure 4.14: Ring of 9 oscillators with nearest-neighbour coupling. In the left graph: Fixed
points found solving Eq.4.9. Iteration of the eigenvector associated with the lowest eigen-
value of the Laplacian graph. In the right graph: Control over the great eigeivalue of the
linearised matrix to ensure in each iteration that he is negative .

Figure 4.15: Ring of 7 oscillators with nearest-neighbour coupling. In the left graph: Fixed
points found solving Eq.4.9. Iteration of the eigenvectors associated with the lowest (blue)
and larger (red) eigenvalues of the Laplacian graph. In the right graph: Control over the
great eigenvalues of the linearised matrix to ensure in each iteration that they are negative
.
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the maximum eigenvalue and greater than the V 1 calculated with the eigenvector associated
with the lowest eigenvalue, we can conclude, if V 1 is not to large that it would synchronize.

Moreover we can tell, given two vectors and analysing their symmetry, the relation
between their output V 2 in (V 1, V 2) space. The vector with lower V 2, approaching the
eigenvector associated with the largest eigenvalue would be the one with great asymmetry.

problems to explore

In our work we were not able to define a region in (V 1, V 2) space that bound all vectors
that would synchronize, given a definite topology and a coupling constant K.

Although we have gained a good insight on the behaviour of the system we did not
explore how the variation on the coupling constant would be seen in the space we choose
to work.

We ended without exploit other couplings than nearest-neighbours in a ring and, only
in the beginning we saw some others topologies. Moreover the non linear region need to
be carefully exploited.

Finally it will be useful, at least to a better understanding of the system, how other

spaces other than (V 1, V 2), namely (W1,W2), with W1 =
√∑N

i=1Max(δi), and W2 =√∑N
i=1Max(φi) would lead us to different approaches.
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Chapter 5

Conclusions

The emergent properties shown by a system of phase coupling oscillators with a structured
coupling are a rich and dynamic subject of active research. The rationale presented by
most researchers in this area are biological processes. From cells to the realm of biological
organs research in chains of phase coupled oscillators are an active field.
We did not find such a rationale in the research on rings of coupled oscillators. However
the difference between chains and rings are only on the boundary conditions. We have seen
that chains and rings of coupled oscillators are very sensitive to distributions of proper
frequencies. If we take the distributios of proper frequencies to be the initial conditions
of our systems, is expected that, to a certain extent, biological systems evolve in order
to adjust these distributions to attain a better or easier synchronization. In fact we have
seen a wide range of possibilities such as synchronization of frequencies, synchronization of
frequencies and phases, different spatial patterns of synchronization and synchronization
with phase locking but with a spatial split, named quimeras.
Is expected that biological oscillators in the evolutionary process could adjust their initial
conditions in such a way that this adjustment leads the system to one state or another.
We can mention some analogous processes in human behaviour:
The formation of rhythmic applause. This synchronization process in the concert hall
offers a wonderful example of social self-organisation. In [31] one of the conclusions is that
synchrony is a voluntary act of the individuals;
In some sporting activity as gymnastics, or swimming, synchronous movements are required
in order to enhance performance. Sportsmen are trained to adjust their rhythms allowing
synchronization.
The circadian rhythms. These processes are characterised by a period of about 24-hours,
and are generated in nearly all living organisms. Macroscopically, we can say that there
exists synchrony between human physiology and the world around us acting as a master
oscillator [2]. Under normal conditions of living on a regular schedule, seeing sunlight,
sleeping at night, and so on, the entire body is synchronized to the 24-hours day, driven
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mainly by the cycle of light and darkness. A change in these habits can perturb this
synchronous behaviour and manifestations such as sleep or digestive troubles are observed
especially when we change time zones in long-distance travel.
So is expected that this sensitivity to proper frequencies distributions in rings of phase
coupled oscillators induces some changes in proper frequencies of cells or individual in
order to attain the desired pattern.
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Appendix A

Figure A.1: Circle with nearest-neighbour coupling. Integration of Eq.2.1 with 30 oscilla-
tors. Frequency distribution N(2, 0.1). Variation of the coupling constant and its effect on
phase distribution.
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Figure A.2: Circle with nearest-neighbour coupling. Integration of Eq.2.1 with 30 oscil-
lators. Variation of the frequency distribution and its effect on phase distribution. All
frequency distribution comes from N(2, 0.1).

Figure A.3: Circle with nearest-neighbour coupling. Integration of Eq.2.1 with 31 oscilla-
tors. Two different frequencies distribution N(2, 0.1). We can see, as expected, that 30
oscillators is not a singular case.
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Figure A.4: Circle with nearest-neighbour coupling. Integration of Eq.2.1 with 30 oscilla-
tors. K=2. Effect of frequency permutations.

Figure A.5: Circle with nearest-neighbour coupling. Integration of Eq.2.1 with 30 oscilla-
tors. K=2. Effect of frequency permutations.
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Figure A.6: Circle with nearest-neighbour coupling. Integration of Eq.2.1 with 30 oscilla-
tors. K=2. Effect of frequency permutations.

Figure A.7: Chain of 30 oscillators with unidirectional nearest-neighbour coupling. Inte-
gration of Eq.2.1. Effect of frequency permutations.
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Appendix B

Figure B.1: Ring of 7 oscillators with nearest-neighbour coupling. In the left graph: Fixed
points found solving Eq.4.9. Iteration of the eigenvectors associated with the lowest (blue)
and largest (red) eigenvalues of the Laplacian graph. In the right graph: Control over the
largest eigenvalues of the linearised matrix to ensure in each iteration that they are negative
.

Figure B.2: Ring of 8 oscillators with nearest-neighbour coupling. In the left graph: Fixed
points found solving Eq.4.9. Iteration of the eigenvectors associated with the lowest (blue)
and largest (red) eigenvalues of the Laplacian graph. In the right graph: Control over the
largest eigenvalues of the linearised matrix to ensure in each iteration that they are negative
.
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Figure B.3: Ring of 9 oscillators with nearest-neighbour coupling. In the left graph: Fixed
points found solving Eq.4.9. Iteration of the eigenvectors associated with the lowest (blue)
and largest (red) eigenvalues of the Laplacian graph. In the right graph: Control over the
largest eigenvalues of the linearised matrix to ensure in each iteration that they are negative
.

Figure B.4: Ring of 7 oscillators with nearest-neighbour coupling. Fixed points found
solving Eq.4.9. Iteration of the eigenvectors associated with the lowest (red) and largest
(blue) eigenvalues of the Laplacian graph. Overlap of all different permutations of both
eigenvectors (yellow). Permutation of a vector N(0,0.3) (gray) .

Figure B.5: Left graph: Ring of 5 oscillators with nearest-neighbour coupling. Fixed points
found solving Eq.4.9. Iteration of the eigenvectors associated with the lowest and largest
(blue) eigenvalues of the Laplacian graph. 2000 outputs of a N(2, 0.5) (red). Right graph:
enlargement of the left graph .
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