
University of Aveiro
Department of
Electronics, Telecommunications and Informatics,

2012

José Daniel Soares
Caetano

Computação de Funções Elementares em FPGA

Graph-Based FPGA Computation of Elementary
Functions

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/16694044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Aveiro
Department of
Electronics, Telecommunications and Informatics,

2012

José Daniel Soares
Caetano

Graph-Based FPGA Computation of Elementary
Functions

Dissertation presented to University of Aveiro to fulfil the requirements to
obtain the grade of Master Degree in Electronics and Telecommunications
Engineering, under scientific supervision by Dr. Iouliia Skliarova from the
Department of Electronics, Telecommunications and Informatics of Univer-
sity of Aveiro and Prof. Jaakko Astola and Prof. Radomir Stankovic from
Tampere University of Technology.

The jury

President Prof. Dr. Arnaldo da Silva Oliveira
Assistant Professor from University of Aveiro

Prof. Dr. António José Duarte Araújo
Assistant Professor from Faculty of Engineering of the University of Porto

Prof. Dr. Iouliia Skliarova
Assistant Professor from University of Aveiro

Acknowledgements To my family who always supported me, to my friends that helped me
through rough times and to Sara.

Keywords Field-Programmable Gate Array, Spectral Transform, Arithmetic Decision
Diagrams, Fixed-polarity Arithmetic Transform

Abstract Since C.Y.Lee first proposed the idea of representing switching circuits as
decision diagrams, there has been some interest in developing these diagrams
in order to make them more compact and effective. One of the main ap-
plications of this technique is to represent circuits that perform elementary
functions, such as cosine, sine, square root, etc. In this thesis, we try to
prove that by choosing the right polarity for an Arithmetic Decision Dia-
gram we can compactly and effectively represent a switching function and
implement it in hardware. This thesis proposes algorithms that can com-
pactly implement a given elementary function in hardware by finding the
best possible polarity for the respective Arithmetic Decision Diagram.

Palavras-chave Field-Programmable Gate Array, Transformação Espectral, Diagramas de
Decisão Aritméticos, Transformada Aritmética de Polaridade Fixa

Resumo Desde que C.Y.Lee propôs a ideia de representar funções de comutação sob a
forma de diagramas de decisão, tem havido algum interesse em desenvolver
estes diagramas de modo a torná-los mais compactos e eficientes. Uma
das principais aplicações desta técnica é representar circuitos que realizem
funções elementares, como é o caso do seno, coseno, raíz quadrada, etc.
Nesta tese tentamos provar que escolhendo a polaridade certa para um Dia-
grama de Decisão Aritmético é possível representar compacta e eficazmente
uma função de comutação e implementá-la em hardware. Esta tese propõe
algoritmos que conseguem implementar compactamente uma dada função
elementar em hardware encontrando a melhor polaridade possível para o
respetivo Diagrama de Decisão Aritmético.

Contents

Contents i

List of Tables iii

List of Figures v

I Introduction 1

1 Introduction 3
1.1 Setting . 3
1.2 Motivation . 3
1.3 Goals . 3
1.4 Structure of the Thesis . 4

II Function Representation 5

2 Functional Expressions 7
2.1 Shannon Expansion Rule . 7
2.2 Reed-Muller expansion Rules . 8

2.2.1 Fixed Polarity RM-expressions . 9
2.3 Word-Level Expressions . 9

2.3.1 Arithmetic Transform . 10

3 Decision Diagrams 13
3.1 Binary decision diagrams . 13
3.2 Multi-terminal decision diagrams . 16
3.3 Functional decision diagrams . 17

3.3.1 Kronecker decision diagrams . 21
3.4 Arithmetic transform decision diagrams 22

III Implementation 27

4 Implementation 29
4.1 Stages of the Creation of the NFG . 29
4.2 Segmentation . 29

i

4.3 Arquitecture of the NFG . 31
4.4 Segment Index Encoder . 32
4.5 FPGA Testing . 33
4.6 Results . 34

IV Conclusions 37

5 Conclusions 39

Bibliography 41

A VHDL Templates 43
A.1 Coefficients Table . 43
A.2 Z to X Converter . 45
A.3 Encoder for sin(x) [-pi/2, pi/2], n=4 . 46

ii

List of Tables

2.1 Boolean and arithmetic operations. 11

3.1 Truth-table for the 2-variable 2-output function in Example 3.2. 17

4.1 Processing time of the iterative polarity search algorithm. 35
4.2 Results for optimal polarity. 35
4.3 Results for zero polarity. 35
4.4 Resources occupation and maximum combinational delay for n=8. 36
4.5 Resources occupation and maximum combinational delay for n=9. 36
4.6 Resources occupation and maximum combinational delay for n=10. 36

iii

iv

List of Figures

2.1 Truth-table for the 2-variable XOR function and its corresponding SOP
expression. 7

3.1 Decision Tree for f in Example 3.1 . 14
3.2 Simplified version of the tree in figure 3.1 14
3.3 Decision diagram of the function in Example 3.1 15
3.4 Shannon node. 15
3.5 Binary Decision Tree for n=2. 16
3.6 MTBDD for the function in Example 3.2. 17
3.7 Positive and negative Davio nodes. 18
3.8 pD-FDT for f in example 3.3. 19
3.9 nD-FDT for f in example 3.3. 20
3.10 FDD of the tree in figure 3.8. 21
3.11 FDD of the tree in figure 3.9. 22
3.12 ACDT for the function f in example 3.4 using the polarity vector H =

(0, 0, 0) . 23
3.13 ACDT for the function f in example 3.4 using the polarity vector H =

(1, 0, 1) . 24
3.14 ACDD corresponding to the ACDT in figure 3.13. 25

4.1 Flowchart depicting the stages in the creation of an NFG. 30
4.2 Douglas-Peucker segmentation algorithm. 31
4.3 Overview of the NFG architecture. 32
4.4 Algorithm for building the ACDD from the arithmetic spectrum. 33
4.5 Node block. 33
4.6 Software flowchart depicting the processes from the input of the function

up to the writing of the data into the .vhd files. 34

v

vi

Part I

Introduction

1

Chapter 1

Introduction

1.1 Setting

The use of binary decision diagrams to represent switching circuits is as old as the
1950’s, when C.Y. Lee[1] first proposed the idea based on the Shannon expansion. Over
the following decades many advances in this technology have been achieved, namely by
S.B. Akers[2] and Randal E. Bryant, whose paper Graph-Based Algorithms for Boolean
Function Manipulation[3] is cited on most literature about the subject. Following the
BDD’s success in representing Boolean functions, many attempts have been made to
extend its range to integer or real valued functions[4]. Over the most recent years the
group lead by Prof. Tsutomu Sasao has been trying to realize elementary functions
using data structures that have evolved from the traditional BDDs, like Multi-Valued
Decision Diagrams[5], Edge-Valued Decision Diagrams[6], spectral transforms[7], and
combinations of these structures.

1.2 Motivation

Numeric functions are widely used in computer graphics, digital signal processing,
communication systems, robotics, etc. [8]. In these applications, Numerical Function
Generators (NFGs) are often required as a way to enhance processing times. There
has been an increasing interest in using arithmetic decision diagrams to create compact
NFGs, and some studies have been made on the subject [9] [7]. As far as we know, no
study has been published that presents algorithms to build NFGs using general purpose
software, such as MATLAB, instead of specialised software for decision diagrams. The
use of FPGA technology for testing is very practical, since its reconfigurability allows us
to quickly change the function implemented in hardware, and thus allowing to quickly
test many implementations of NFGs.

1.3 Goals

The task at hand is to realize a Numerical Function Generator that will take as input
any real function f(x) that is bounded over a domain [a,b] as well as the precision and
accuracy desired for the system. For this purpose the function will be segmented and
linearised and an Arithmetic Transform Decision Diagram, a type of spectral transform

3

4 1.Introduction

decision diagram, will be used to map each value of x, the function argument, to the
corresponding segment. The NFG will be implemented in FPGA using VHDL language.

1.4 Structure of the Thesis

This thesis is divided in 4 parts. Besides this introduction, we have:

• Part II - Function Representation - In the first chapter of this part we will
briefly explain the mathematical concepts that support decision diagrams, and we
will derive the expressions of some of the relevant expansion rules in this project’s
context. The second chapter shows several types of decision trees, since their
earlier concept up to the arithmetic decision tree, and the rules to reduce them
into decision diagrams, along with some examples justifying their reduction.

• Part III - Implementation - In this part we present algorithms that implement
a Numerical Function Generator in FPGA, using Arithmetic Decision Diagrams.
We show the steps that go from the input in MATLAB up to the testing in FPGA,
and see the details about some of the most important algorithms. The results are
discussed, as well as the limitations of this implementation.

• Part IV - Conclusions - This part closes this dissertation. A summary of the
project and the main conclusions are presented, as well as some possible improve-
ments that could yield better results.

José Daniel Soares Caetano Master Degree Dissertation

Part II

Function Representation

5

Chapter 2

Functional Expressions

Combinational electronic circuits can be conveniently expressed as switching func-
tions. These functions, on their turn, can be represented in many ways using truth-
tables, Karnaugh maps, Boolean algebra, among other techniques. From a truth-table
representation of a function it is possible to write it as a Sum-Of-Products (SOP) by
disjuncting the minterms that cause the function to yield the value “1”[10]. This disjunc-
tion of minterms is called the disjunctive normal form. Figure 2.1 shows an example of
a 2-variable XOR function represented by a truth-table and its corresponding Sum-Of-
Products expression.

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 0

f = x1x2 + x1x2

Figure 2.1: Truth-table for the 2-variable XOR function and its corresponding SOP
expression.

2.1 Shannon Expansion Rule

Shannon has shown that a switching function can be represented as

f = xif0 ⊕ xif1

with
f0 = f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

and
f1 = f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

Such representation is called the Shannon expansion[11]. The complete SOP for
the function can be achieved by recursively applying the Shannon expansion to all its
variables.

7

8 2.Functional Expressions

EXAMPLE 2.1 Take a function f(x1, x2). We first apply the Shannon expansion to
x1 and then to x2. Note that the final result is independent of the order in which the
expansion is applied.

f(x1, x2) = x1f(0, x2)⊕ x1f(1, x2)

= x1(x2f(0, 0)⊕ x2f(0, 1))⊕ x1(x2f(1, 0)⊕ x2f(1, 1))

= x1 x2f(0, 0)⊕ x1x2f(0, 1)⊕ x1x2f(1, 0)⊕ x1x2f(1, 1),

which is the complete SOP for f.
The SOP can also be obtained from the function’s matrix notation with the help of

the Kronecker product ⊗ defined as

A⊗B =


a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB

 (mp by nq),

where A is an m× n matrix and B is a p× q matrix.
In matrix notation, defining X(1) =[xi xi] for i = 1,...,n, B(1) as the identity matrix

[1 0
0 1] and F as

[
f(0)
f(1)

]
we can represent the Shannon expansion as

f =

(
n
⊗
i=1

X(1)

)(
n
⊗
i=1

B(1)

)
F.

2.2 Reed-Muller expansion Rules

If we assume we are working in modulo 2, xi can be replaced by the exclusive sum
of xi and the logic constant 1. Rewriting the Shannon expansion using this property we
can derive

f = xif0 ⊕ xif1

= (1⊕ xi)f0 ⊕ xif1

= 1 · f0 ⊕ xif0 ⊕ xif1

= 1 · f0 ⊕ xi(f0 ⊕ f1).

With this derived expression, called the positive Davio (pD) expansion we can repre-
sent the function as the polynomial f = c0⊕c1xi with coefficients c0 = f0 and c1 = f0⊕f1.

We can instead choose to use the relation xi = 1 ⊕ xi to obtain the negative Davio

José Daniel Soares Caetano Master Degree Dissertation

2.Functional Expressions 9

(nD) expansion from the Shannon expansion.

f = xif0 ⊕ xif1

= xif0 ⊕ (1⊕ xi)f1

= xif0 ⊕ 1 · f1 ⊕ xif1

= 1 · f1 ⊕ xif0 ⊕ xif1

= 1 · f1 ⊕ xi(f0 ⊕ f1)

= c0 ⊕ c1xi.

Once again we can recursively apply the Reed-Muller expansion rules to all variables
in a function. Using the transform matrices R(1) = [1 0

1 1] and R(1) = [0 1
1 1] for the

positive and negative expansions respectively we get

f =

(
n
⊗
i=1

X(1)

)(
n
⊗
i=1

R(1)

)
F

and

f =

(
n
⊗
i=1

X(1)

)(
n
⊗
i=1

R(1)

)
F.

2.2.1 Fixed Polarity RM-expressions

When applying the Reed-Muller rules to all variables in a function we are not re-
stricted to either pD or nD on all variables. We can choose which variables we prefer
using one or other according to our goals. The polarity we choose to each variable is
usually defined in a polarity vector H = (h1, . . . , hn), where each hi ∈ {0, 1} refers to
the polarity of the variable xi. If hi = 0 the i-th variable is represented by the positive
literal xi. Otherwise, if hi = 1 the i-th variable is represented by the negative literal xi.

2.3 Word-Level Expressions

So far we have only worked with bit-level expressions, which means expressions whose
output is a single bit. The coefficients we get when applying expansion rules to this kind
of expressions are always in the boolean range (0 or 1). By treating the logic constants 0
and 1 as real numbers (0 and 1 respectively) we can extend the range of these expressions
to the rational domain. An important application of this concept is the representation of
multi-output functions. Example 2.2 shows how the use of word-level expressions allows
us to treat a multi-output function as if it had a single output.
EXAMPLE 2.2: Consider a system of functions

(f2(x1, x2, x3), f1(x1, x2, x3), f0(x1, x2, x3)),

where

f0(x1, x2, x3) = x2x3 ⊕ x1

f1(x1, x2, x3) = x1 ∨ x2x3

f2(x1, x2, x3) = x2(x1 ∨ x3)

José Daniel Soares Caetano Master Degree Dissertation

10 2.Functional Expressions

We can form a matrix F whose columns are the truth-vectors of f2, f1 and f0.

F =



0 0 0
0 1 1
0 1 1
1 1 0
0 0 0
0 0 1
1 1 0
1 1 1


=
[
F2 F1 F0

]
.

We can read each row from the matrix F as if it were an integer number written in
binary representation to get

0
3
3
6
0
1
6
7


= 22



0
0
0
1
0
0
1
1


+ 2



0
1
1
1
0
0
1
1


+ 1



0
1
1
0
0
1
0
1


= 4F2 + 2F1 + F0.

This matrix can then be processed by word-level transform rules.

2.3.1 Arithmetic Transform

The Arithmetic Transform can be viewed as the integer version of the Reed-Muller
Expansion. To derive its expression from the Shannon expansion we must first look at
the relation between boolean operations and arithmetic operations in table 2.1 to get to
the deduction that follows.

f = xif0 ⊕ xif1

= (1− xi)f0 ⊕ xif1

= (1− xi)f0 + xif1 − 2(1− xi)f0xif1

= 1 · f0 − xif0 + xif1 − 2xif0f1 + 2xif0f1

= 1 · f0 + xi(f1 − f0)

In this case, the property x1 = 1−x1 was used to get the positive polarity Arithmetic
Transform. We can choose to rearrange that property to x1 = 1− x1 to get the negative
polarity Arithmetic Transform instead, which gives us

f = 1 · f1 + xi(f0 − f1).

Once again the matrix representation can help us applying this rule to all variables in
the function. In this case, the variable matrix will be XA(1) = [1 xi] and the transform
matrix A−1(1) =

[
1 0
−1 1

]
for the positive polarity Arithmetic Transform and XA(1) =

José Daniel Soares Caetano Master Degree Dissertation

2.Functional Expressions 11

Boolean Arithmetic
x1 1− x1
x1 ∧ x2 x1x2
x1 ∨ x2 x1 + x2 − x1x2
x1 ⊕ x2 x1 + x2 − 2x1x2

Table 2.1: Boolean and arithmetic operations.

[1 xi] and A−1(1) =
[
0 1
1 −1

]
for the negative polarity Arithmetic Transform. Again, by

setting a vector H = (h1, . . . , hn) we can create a fixed polarity Arithmethic Expression.
Thus, the arithmetic expression is defined as

f =

(
n
⊗
i=1

XAh(1)

)(
n
⊗
i=1

Ah
−1(1)

)
F.

XAh and Ah
−1 mean that these matrices can take the positive or negative form de-

pending on the value of the hi variable for the current iteration.

In this chapter we’ve seen many ways to analytically represent a switching function
using the properties of the Shannon expansion. The arithmetic expansion is an example
of how to extend the representation to word-level, which allows a multi-output function
to be represented as a single expression. The flexibility in polarity choice allows us to
find more compact expressions that will translate in simpler hardware implementations
of said functions.

José Daniel Soares Caetano Master Degree Dissertation

12 2.Functional Expressions

José Daniel Soares Caetano Master Degree Dissertation

Chapter 3

Decision Diagrams

Decision diagrams are data structures used for graphical representation of discrete
functions. Before discussing decision diagrams, let us first define decision trees. Decision
trees are composed by vertices (also called nodes) and edges. Nodes are usually graph-
ically represented by a circle or a square containing the name of a variable, a constant
value or a character indicating what time of transform or expansion is performed at that
node. Edges are lines or arrows connecting nodes hierarchically paired with a label which
can consist of a constant value, the name of a variable or a logical expression. Let us
start by an example of a simple Binary decision diagram.

EXAMPLE 3.1: Consider the logic function f(x3, x2, x1) = x1x3 ∨ x2. From this
function’s truth table we see that its function vector is F = [00110111]T . Now, looking at
figure 3.1 it is intuitive to notice that the terminal nodes (the last row of nodes) matches
F and that the output for each combination of inputs can be reached by, at each node,
following the edge associated with the value of the current variable.

3.1 Binary decision diagrams

Example 3.1 is an example of a simple Binary decision tree. The difference between
trees and diagrams in this context is that a tree is a direct representation of all the possible
choices of input, without any kind of simplification, while a diagram is the result of a
process of simplifying the tree according to specific rules. Looking at example 3.1 it is
easy to see that for {x1 = 0, x2 = 0},whatever value variable x3 takes, the outcome will
be the same. Therefore, that part of the tree can be omitted without any consequences.
The same can be said about {x1 = 0, x2 = 1} and {x1 = 1, x2 = 1}. In figure 3.2 we
can see the simplified version of the tree from figure 3.1.

13

14 3.Decision Diagrams

x 1

x 2

0

x 2

1

x 3

0

x 3

1

x 3

0

x 3

1

0

0

0

1

1

0

1

1

0

0

1

1

1

0

1

1

Figure 3.1: Decision Tree for f in Example 3.1

Figure 3.2: Simplified version of the tree in figure 3.1

José Daniel Soares Caetano Master Degree Dissertation

3.Decision Diagrams 15

We can still go further and delete the repeated nodes at the same level. In this case,
in the 4th level (last row) there are three instances of a node “1” and two instances of a
node “0”, which can be reduced to the diagram in figure 3.3.

0 1

x 2

0 1

x 2

1x 3

0

x 1

0 1

0 1

Figure 3.3: Decision diagram of the function in Example 3.1

Figure 3.4: Shannon node.

José Daniel Soares Caetano Master Degree Dissertation

16 3.Decision Diagrams

The Shannon expansion can be represented in BDDs by changing the labels in the
nodes and edges. Figure 3.4 shows a Shannon node, a graphical representation of the
Shannon expansion.

It is easy to see that the operation performed at the node is indeed the Shannon
expansion, written before as

f = xif0 ⊕ xif1.

We can build a complete decision tree by applying the Shannon expansion to all
variables in the function. For n=2 variables, the respective tree is shown in figure 3.5

Figure 3.5: Binary Decision Tree for n=2.

3.2 Multi-terminal decision diagrams

BDDs are used to represent functions whose outputs are logic values. To handle
integer-valued functions, such as the ones described in section 2.3, Multi-terminal binary
decision diagrams can be used.

EXAMPLE 3.2 Table 3.1 shows the truth-table for a 2-variable, 2-output function.
Its outputs f0 and f1 can be combined into fz and represented graphically as in figure
3.6.

José Daniel Soares Caetano Master Degree Dissertation

3.Decision Diagrams 17

x1, x2 f0 f1 fz
0 0 1 0 2
0 1 1 1 3
1 0 0 1 1
1 1 0 0 0

Table 3.1: Truth-table for the 2-variable 2-output function in Example 3.2.

Figure 3.6: MTBDD for the function in Example 3.2.

3.3 Functional decision diagrams

Functional Decision Diagrams[12] are an extension of BDDs that aim on reducing
the number of nodes generated for a certain function. FDDs use the properties of the
Reed-Muller expansion to graphically represent a given function. A FDD can be created
using either the pD or nD-expansion rules. Figure 3.7 shows the positive and negative
Davio nodes that perform the functions f = 1 ·f0⊕xi(f0⊕f1) and f = 1 ·f0⊕xi(f0⊕f1)
respectively. It is important to notice that this kind of node always evaluates its edge
labelled “1”, since this term of the equation (1 · f0) needs no condition to be true.

José Daniel Soares Caetano Master Degree Dissertation

18 3.Decision Diagrams

Figure 3.7: Positive and negative Davio nodes.

EXAMPLE 3.3 Consider the function f(x3, x2, x1) = x1x3 ∨ x2 from example 3.1.
We will begin by applying the pD expansion to the function.

f =

(
n
⊗
i=1

X(1)

)(
n
⊗
i=1

R(1)

)
F

= X(3) ·



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


·



0
0
1
1
0
1
1
1



= X(3) ·



0
0
1
0
0
1
0
1



The vector resulting from R(3)·F is called spectrum of the function regarding the
transform used. In this case it is represented as SR. The spectrum is used to fill the
terminal nodes in the decision tree. This fact is valid for all transforms. In the case of
figure 3.1 the spectrum coincides with the function vector F because the transform matrix
is the identity matrix. Figure 3.8 shows the FDT resulting from the pD transform.

By following the edges from the terminal “1” nodes up to the root node we can find
the Positive Polarity Reed-Muller Expression (PPRM) for the function.

f = x2 ⊕ x3x1 ⊕ x3x2x1

José Daniel Soares Caetano Master Degree Dissertation

3.Decision Diagrams 19

Figure 3.8: pD-FDT for f in example 3.3.

which is exactly function f after applying the property a ∨ b = a⊕ b⊕ ab.
We could instead have chosen the nD expansion to get the spectrum as follows:

f =

(
n
⊗
i=1

X(1)

)(
n
⊗
i=1

R(1)

)
F

= X(3) ·



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1


·



0
0
1
1
0
1
1
1



= X(3) ·



1
0
0
1
0
0
1
1



José Daniel Soares Caetano Master Degree Dissertation

20 3.Decision Diagrams

which would result in the FDT in figure 3.9.

Figure 3.9: nD-FDT for f in example 3.3.

The resulting Negative Polarity Reed-Muller Expression(NPRM) is

f = 1⊕ x3x2 ⊕ x2x1 ⊕ x3x2x1.

From example 3.3 we can see that choosing different polarities for the same transform
we get expressions with different number of minterms. This fact is more visible after
reducing the trees to diagrams. The reduction rules for FDDs are defined in [13] and are
the folowing:

1. If the variable-labelled edge of a node points to “0”, that node can be suppressed,
since the value 0 does not contribute to the expression.

2. If two nodes in the same level are isomorphic (the sub-graphs constituted by the
two nodes and their descendants are equal) one of the nodes and respective sub-
graph can be deleted and each edge that pointed to it now points to the node that
remained.

José Daniel Soares Caetano Master Degree Dissertation

3.Decision Diagrams 21

Figure 3.10: FDD of the tree in figure 3.8.

In figure 3.10 the rules above have been applied to the tree in figure 3.8. The 2
leftmost nodes in the 3rd level have been suppressed due to rule 1 and the edges that
pointed to them now point directly to “1” and “0”. The 2 rightmost nodes in the same
level are isomorphic and have bee combined into one, according to rule 2. The same rules
have been applied to the tree in figure 3.9 to get the diagram in figure 3.11

The number of minterms in the PPRM or NPRM is can be predicted by counting
the number of edges that end in the terminal node “1” in FDD. Although not directly
related, as with the number of minterms, the number of nodes in the FDD also varies
with the choice of polarity.

3.3.1 Kronecker decision diagrams

The goal of using FDDs is to create more compact representations of functions. We
have seen that different polarity choices yield different results in terms of number of nodes
in the diagram and number of minterms in the expression. We can, however, try to refine
the polarity choice by allowing the assignment of different polarities to each variable in a
function as seen in section 2.2.1. To define the polarity assigned to each variable we can

José Daniel Soares Caetano Master Degree Dissertation

22 3.Decision Diagrams

Figure 3.11: FDD of the tree in figure 3.9.

use a Decision type list (DTL) that can take the form DTL= (pD, pD, nD), for example,
or use, for simplicity, the H vector defined in section 2.2.1.

3.4 Arithmetic transform decision diagrams

In section 2.3 we introduced Word-level expressions, namely the Arithmetic transform
defined as

f =

(
n
⊗
i=1

XAh(1)

)(
n
⊗
i=1

Ah
−1(1)

)
F,

A−1(1) =

[
1 0
−1 1

]
XA(1) =

[
1 xi

]

José Daniel Soares Caetano Master Degree Dissertation

3.Decision Diagrams 23

for hi = 0 and

A−1(1) =

[
0 1
1 −1

]
XA(1) =

[
1 xi

]

for hi = 1.

Its corresponding decision diagram is called Arithmetic transform decision diagram
(ACDD). It takes integer numbers as terminal node values and performs operations over
the rational field (see table 2.1).

EXAMPLE 3.4: Let f be a function with n=3 variables defined by the function vector
F = [0, 1, 2, 2, 2, 1, 2, 1]T . Its arithmetic spectrum for the polarity vector H = (0, 0, 0) is

A000 = [0, 1, 2,−1, 2,−2,−2, 1]T

from which we can build the ACDT in figure 3.12.

Figure 3.12: ACDT for the function f in example 3.4 using the polarity vector H =
(0, 0, 0) .

Looking at figure 3.12 it is easy to notice that the polarity chosen for this example
didn’t produce a very efficient decision tree. Knowing that the rules to reduce ACDTs
are the same as the ones to reduce FDTs, we can see that the only possible reduction for
the tree in this example would be to merge some of the terminal nodes.

José Daniel Soares Caetano Master Degree Dissertation

24 3.Decision Diagrams

EXAMPLE 3.5 Taking the function from the previous example, let’s now try to find
the spectre for the polarity vector H = (1, 0, 1), which is

A101 = [1, 1, 0, 0, 0,−2, 1, 1]T .

With this spectrum we can build the tree in figure 3.13,

Figure 3.13: ACDT for the function f in example 3.4 using the polarity vector H =
(1, 0, 1) .

which can be reduced to the ACDD in figure 3.14.

José Daniel Soares Caetano Master Degree Dissertation

3.Decision Diagrams 25

Figure 3.14: ACDD corresponding to the ACDT in figure 3.13.

Example 3.5 shows us how important it is to choose the right polarity when using
the arithmetic transform. In this case, choosing the right polarity allowed us to reduce
the tree to less than half of the nodes it originally had. Finding the right polarity is an
iterative process, and may cost a lot of time for functions with a large number of variables.

The functional expressions from chapter 2 directly translate to the decision diagrams
presented in this chapter. Besides the polarity choices discussed for functional expres-
sions, the reduction of decision diagrams has a major influence in the complexity of the
hardware implementation. For instance, the number of resulting non-terminal nodes will
correspond to the number of modules in the network that constitutes the circuit, and
the number of edges will determine the number of interconnections. The reduction rules
presented in this chapter aim for the reduction of the number of nodes, which will provide
more compact implementations of these diagrams in hardware.

José Daniel Soares Caetano Master Degree Dissertation

26 3.Decision Diagrams

José Daniel Soares Caetano Master Degree Dissertation

Part III

Implementation

27

Chapter 4

Implementation

To test the efficiency of a good polarity choice for ACDDs and their ability to effec-
tively represent a logic function, we will try to replicate the Numerical Function Generator
built in [14] using ACDDs instead of MTBDDs to implement the segment index encoder.
The purpose of this NFG is to generate combinational circuits that compute mathemat-
ical functions in a compact and fast way. The NFG takes as input any real function
f(x) bounded over a domain [a,b] as well as the precision and accuracy desired for the
system. The function will be first partitioned into segments and linearised according to
the method described in [15]. An ACDD will be found that conveniently maps each input
x into its corresponding segment, and a segment index encoder will be built based on
the ACDD. The rest of the circuit will be constructed based on the coefficients obtained
from the segmentation.

4.1 Stages of the Creation of the NFG

.
Many different steps need to be taken when creating an NFG. In this particular case,

those steps are illustrated in figure 4.1. First, a MATLAB function receives the inputs
by the user which define the function to be generated, as well as its domain, precision,
accuracy and acceptable error. This function will compute the right coefficients as well
as an appropriate ACDD to implement it. The results of this function will be printed
in VHDL templates previously generated. A simulation tool allows us to verify if the
results correspond to the ones expected. In the development stage of the project this
allowed us to correct some imperfections both in the templates and in the MATLAB
functions. If the configured templates are deemed good to go, a synthesis tool converts
the VHDL code into a bit stream that will configure the FPGA where the NFG will be
implemented. A design report is generated by the synthesis tool that allows us to verify
the resources occupied and the maximum combinational delay between the NFG inputs
and outputs.

4.2 Segmentation

The problem of segmenting a function can be solved in two ways, implying we have
a maximum approximation error. One can opt for a uniform segmentation in which all

29

30 4.Implementation

Figure 4.1: Flowchart depicting the stages in the creation of an NFG.

segments will have the same length, dictated by how small a certain segment has to
be to fulfil the approximation error required. This technique requires that we store in
memory the length of the segments,the value of f at the starting point of each segment,
which will be called c0 and the slope c1 of the linear function that approximates the
segment. This will require a total of (1+2×#segments)×precision bits to be stored in
memory. Although each segment only needs 2 × precision bits, this technique can lead
to an unnecessarily large number of segments in functions that have a fast growth in a
small part of their domain and remain relatively stagnant in most of it. An alternative
technique is to use non-uniform segmentation, in which we try to make each individual
segment as long as possible, while respecting the approximation error. This will require
that we also store in memory the starting point of each segment, since their lengths will
no longer be constant. A particular segment’s length can be inferred by subtracting its
starting point to the starting point of the next segment, or the end of the function’s
domain, be it the last segment. This will require a total of (3×#segments)× precision
bits to be stored in memory. Although each individual segment takes more memory than
the ones that result from uniform segmentation, this technique will in most cases require
a much smaller number of segments, resulting in a net memory space saving.

The method chosen to perform the non-uniform segmentation was proposed by D.H.
Douglas and T.K. Peucker in [15]. This algorithm is not optimal in some cases, but it
is simple and robust, and can be applied to any function in this project’s context. [14]
has a very good description of the algorithm that has been adapted in figure 4.2

Notice that this algorithm has an output v called vertical correction value. This

José Daniel Soares Caetano Master Degree Dissertation

4.Implementation 31

Input: Numerical function f(x), domain [a, b] over x, accuracy m and acceptable
approximation error εa.

Output: Segments [s0, e0], . . . , [sl−1, el−1] and vertical correction values v0, . . . , vl−1.
Process: Recursively compute segments. Set the current segment to [a, b]

1. Approximate f(x) in the current segment [s, e] by the linear function g(x) =

c1x+ c0, where c1 =
f(e)−f(s)

e−s and c0 = f(s)− c1s.
2. Find a value pmax of the variable x that maximizes f(x)−g(x) in [s, e], and

let maxfg = f(pmax)− g(pmax), (maxfg ≥ 0).
3. Find pmin that minimizes f(x) − g(x) in [s, e] and let minfg = f(pmin) −

g(pmin), (minfg ≤ 0).
4. Let p = pmax if |maxfg| > |minfg|, and let p = pmin otherwise.
5. Let error =

|maxfg−minfg|
2 and v = (maxfg+minfg)

2 .
6. If error ≤ εa, then declare [s, e] to be a complete segment. If all segments

are complete, stop.
7. For any segment [s, e] that is not complete, partition [s, e] into two segments

[s, p] and [p, e], declare each as the current segment, and go to 1.

Figure 4.2: Douglas-Peucker segmentation algorithm.

value is used to improve the approximation by shifting it vertically when f(x) is convex
ot concave in the given segment. Using the outputs from the Douglas-Peucker algorithm
we can now derive the necessary coefficients to implement the function in hardware. For
each segment i the function can be rebuilt as

g(i) = c1ix+ c0i

with

c1i =
f(ei)− f(si)

ei − si
and c0i = f(si)− c1isi + vi.

In order to save memory space in the hardware implementation we can substitute c0i
into gi(x) to yield

gi(x) = c1i(x− si) + f(si) + vi,

which does not require the coefficient c0i to be stored in memory. If we also store
f(si)+ vi as a single coefficient we will save a total of (2×#segments× precision) bits.

4.3 Arquitecture of the NFG

Figure 4.3 shows the architecture for NFG realizing gi(x) = c1i(x− si) + f(si) + vi,
where n is the precision used in the design and l is the number of segments obtained
by the Douglas-Peucker algorithm. The input z is the domain of the function, [a, b]
divided in 2n equidistant points encoded in n-tuples starting from (00 . . . 00), (00 . . . 01)
up to (11 . . . 11). Using this encoding allows to treat z as an unsigned variable, which in
turn will cause the segment encoding function to be a monotonically increasing function,

José Daniel Soares Caetano Master Degree Dissertation

32 4.Implementation

Figure 4.3: Overview of the NFG architecture.

making its implementation simpler, and any incorrection will be easier to notice during
its development.

Apart from z and the segment number i, every variable and coefficient in this NFG
is treated as a signed, n-precision, m-accuracy fixed-point binary number.

4.4 Segment Index Encoder

The segment index encoder detects to which segment the input z corresponds its
output is read by the coefficients table to decide which are the right coefficients to be
used by the arithmetic blocks of the NFG. To build it, we create a table of correspondence
between each input and its segment and treat it as if it were the function vector of a
word-level expression. Then, we apply all possible polarities of the Arithmetic Transform
to this function vector and find the one that gives us the spectre with the least non-zero
coefficients. This step is the lengthiest of all this process, and the one that limits the
precision we are allowed to use in the representation, as the number of Kronecker products
required is n × 2n. Although the time it takes to compute the Kronecker product itself
depends on the number of variables, as do other parts of the program, the number
of iterations required is the main cause of high execution times for a large number of
variables.

After we find the spectre with the least non-zero coefficients the proposed algorithm
builds an ACDD as a k×3matrix, k being the number of nodes, where each row represents
a node, the first column being a tag that identifies the node, and the last two columns
being pointers to its left and right children, respectively. The algorithm is represented
in figure 4.4.

This algorithm will not add a new node to the tree if an equal node is already there.
This will guarantee that isomorphic nodes will be shared. The condition in point 2 makes

José Daniel Soares Caetano Master Degree Dissertation

4.Implementation 33

Input: 1× n vector Seq = SpectrumT

Output: k × 3 matrix Tree.
Process: Recursively compute which nodes will belong in the reduced diagram. Set

Tree= [].
1. If length(Seq) > 1, A = Seq(1 : length(Seq)/2), B = Seq(length(Seq)/2+

1 : end). If Seq has length 1, go to 4.
2. If B is filled with zeros, replace each pointer to Seq with a pointer to A,

Set Seq = A and go to 1.
3. If condition 2 does not verify, add the row [Seq,A,B] to the Tree. Declare

both A and B as the current Seq, and go to 1.
4. If length(Seq) = 1, we have arrived at a terminal node. Add the row

[Seq,′X ′,′X ′] to the tree.

Figure 4.4: Algorithm for building the ACDD from the arithmetic spectrum.

sure we suppress nodes whose variable-labelled edge points to zero. As we can see, this
algorithm immediately builds a reduced diagram from the spectrum without having to
build the tree first and then reducing it.

4.5 FPGA Testing

The algorithms and procedures detailed in this chapter are performed in MATLAB
software and implemented and tested in a Nexys 2 FPGA development kit [16]. The
general structure of the NFG, the arithmetic blocks, and the templates for the segment
index encoder, z to x converter and coefficients table are coded in VHDL, as well as
the node block seen in figure 4.5, that will be replicated in the encoder to build the
ACDD. The templates for the coefficients table and the z to x converter can be found in
Appendix A.1 and A.2 respectively. The tags –Start and –Finish are used by MATLAB
to find the place to insert the respective values.

Figure 4.5: Node block.

José Daniel Soares Caetano Master Degree Dissertation

34 4.Implementation

The MATLAB function implemented will, after performing all the procedures already
described, write the coefficients c1i, si and f(si) + vi in the VHDL template for the
coefficients table and write the correspondence table between z and x in the z to x
converter template. As for the segment index encoder, it will first check the polarity
vector H and negate the variables zi when hi = 1 and then create a decision diagram by
replicating and connecting node blocks according to the matrix tree, generated previously.
The terminal nodes will be treated as constants and will be connected directly into their
parent nodes. Appendix A.3 shows the encoder generated for a 4 variable implementation
of the sin(x) function. Figure 4.6 gives us an overview of the processes executed in
software.

Figure 4.6: Software flowchart depicting the processes from the input of the function up
to the writing of the data into the .vhd files.

4.6 Results

In this section some results will be presented and discussed. Table 4.1 shows the
processing times for the polarity search algorithm for a varying number of variables. As
stated in section 4.4, the execution time grows at a rate higher than n× 2n, as the time
to compute the Kronecker product also increases with the number of variables. For 12
variables, this algorithms takes over 17 minutes (up from 2 for n=11), which makes it
unreasonable to test it for any larger number.

Tables 4.2 and 4.3 show some results for the optimal polarity, as chosen by our
algorithm, and for zero polarity (H = (0, 0, . . . , 0)). From these results we can see that,
in fact, the polarity choice algorithm is what is taking most of the processing time, as
seen by the difference between the 2 tables for the same functions. An interesting thing
to notice is that, although in most cases the optimal polarity produces a lower number
of nodes, there are 2 instances where the opposite occurs. This shows that the criterion
used to choose an “optimal” polarity is not entirely correct. Our assumption that the
least number of non-zero coefficients produces smaller diagrams may not hold true, due
to the position in which these coefficients may occur. Lets think, for example, that a

José Daniel Soares Caetano Master Degree Dissertation

4.Implementation 35

Number of variables Processing time (s)
5 0.0117
6 0.0322
7 0.0857
8 0.2718
9 2.3226
10 17.5825
11 135.9343
12 1060.2

Table 4.1: Processing time of the iterative polarity search algorithm.

certain polarity yields 50% zero coefficients, but they all occur in terminal nodes that are
connected to the left edge of their parent nodes. In this extreme case, the rule 1 stated
in chapter 3.3 can not be applied to this diagram, while another polarity may yield
more non-zero coefficients, but they may occur in more suitable places. These processing
times were obtained using an Intel Core i5 CPU @ 2.3GHz with 4Gb of RAM, running
the 64-bit version of the Windows 7 operating system.

Function Processing time (s) Number of nodes Number ofn=8 n=9 n=10 n=8 n=9 n=10 segments
sin(x) [−π

2 ,
π
2] 0.7658 3.12 19.4063 29 52 64 7

cos(x) [−π
2 ,

π
2] 0.8008 3.2391 20.2206 65 103 107 8√

x [0, 1] 0.6793 3.0241 19.7362 9 9 12 5
ln(x) [1

100 , 1] 0.7940 3.1979 19.9687 46 60 117 9

Table 4.2: Results for optimal polarity.

Function Processing time (s) Number of nodes Number ofn=8 n=9 n=10 n=8 n=9 n=10 segments
sin(x) [−π

2 ,
π
2] 0.5258 0.8395 1.8297 44 71 105 7

cos(x) [−π
2 ,

π
2] 0.0.5511 0.8967 1.9794 59 100 159 8√

x [0, 1] 0.4398 0.6940 1.4745 16 16 33 5
ln(x) [1

100 , 1] 0.6436 1.0034 2.4481 80 115 318 9

Table 4.3: Results for zero polarity.

From table 4.4 we can see that the resources occupied by the 8 variable implemen-
tation are minimal for optimal polarity, since in the worst case for optimal polarity only
2% of the total resources are used. For that same worst case, the delay would allow this
circuit to operate at speeds up to 26MHz. As expected, the number of occupied resources
increases with the number of nodes. The maximum delay can also be roughly correlated
to the number of nodes, although it actually depends on the disposition of the nodes in
the tree. This means that the maximum delay will be dictated by the maximum number
of nodes in a certain path from the root of the tree to each terminal node, since each
node induces additional delay in that path.

Tables 4.5 and 4.6 show the results for 9 and 10 variable implementation. The

José Daniel Soares Caetano Master Degree Dissertation

36 4.Implementation

n=8 Optimal polarity Zero polarity

Function Slices Delay (ns) Slices Delay (ns)Number % Number %
sin(x) [−π

2 ,
π
2] 58 1 31.898 80 1 32.335

cos(x) [−π
2 ,

π
2] 110 2 38.377 105 2 37.423√

x [0, 1] 27 1 26.487 29 1 21.375
ln(x) [1

100 , 1] 63 1 32.648 185 3 44.841

Table 4.4: Resources occupation and maximum combinational delay for n=8.

difference in occupation between the optimal and the zero polarity implementation is
increasingly noticeable as the number of variables increases. The worst case for optimal
polarity still only takes 4% of the total resources available, and allows the circuit to
operate at 23.9MHz.

n=9 Optimal polarity Zero polarity

Function Slices Delay (ns) Slices Delay (ns)Number % Number %
sin(x) [−π

2 ,
π
2] 79 1 33.185 130 2 38.052

cos(x) [−π
2 ,

π
2] 152 3 39.491 158 3 41.868√

x [0, 1] 28 1 25.375 29 1 29.352
ln(x) [1

100 , 1] 95 2 37.947 331 7 46.705

Table 4.5: Resources occupation and maximum combinational delay for n=9.

n=10 Optimal polarity Zero polarity

Function Slices Delay (ns) Slices Delay (ns)Number % Number %
sin(x) [−π

2 ,
π
2] 114 1 38.762 227 4 45.549

cos(x) [−π
2 ,

π
2] 174 3 39.334 319 6 44.874√

x [0, 1] 42 1 30.947 53 1 33.929
ln(x) [1

100 , 1] 211 4 41.688 860 18 50.189

Table 4.6: Resources occupation and maximum combinational delay for n=10.

In this chapter we presented an example of the implementation of an NFG using
ACDDs. This is one of many examples where the arithmetic transform can be used to
represent switching functions. In this particular case an elementary function was seg-
mented and linearised and an ACDD was used to map its arguments to the corresponding
segment. All the coefficients and the structure of the diagram were obtained in MATLAB
and the circuit was implemented in FPGA.

José Daniel Soares Caetano Master Degree Dissertation

Part IV

Conclusions

37

Chapter 5

Conclusions

The interest in developing compact NFGs using Decision Diagrams has been growing
in recent years. The group led by Prof. Sasao in particular has made some relevant
advances in this technology [5] [6] [7] [17]. However, we are interested in creating algo-
rithms for general-purpose software that can properly compute the necessary coefficients
to implement an NFG in FPGA.

The algorithms developed for MATLAB were mostly satisfactory, being able to create
functional NFGs for the various functions that were tested. For the user, the process is
almost transparent. All it takes is to input the function, the domain, the precision and
accuracy desired and the maximum acceptable error, and the outputs are automatically
printed into the VHDL templates, ready for synthesis.

The diagram reduction algorithm is particularly efficient, being able to directly map
the diagram from the Arithmetic Spectrum, with no need to build a tree first and per-
forming reductions a posteriori. There is, of course, room for improvement in this project.
The iterative polarity search algorithm is inefficient in terms of time consumption, as not
always yields the best possible polarity. To improve the time consumption, a recursive
algorithm could be used instead, such as the one being developed by D. Jankovic, R.
Stankovic and C. Moraga [18] [19]. The criterion for the choice of polarity has been
shown to not always be optimal. We could, for instance, chose the polarity yielding the
lower number of distinct non-zero coefficients. Such criterion would also not be optimal,
which can be seen by looking, for example, at the spectres A = [0102]T and B = [1230]T .
This criterion would choose spectre A, but we can see that its diagram could not be
reduced, while spectre B’s rightmost node could be suppressed. A possible improvement
would probably involve predicting the positions where the non-zero coefficients would
be, which would slow our algorithm even further. The limitation in precision prevents us
from comparing our results with those published by other authors, but we believe that
with a more efficient polarity search algorithm we could compete with NFGs built using
software specialised for that purpose, since we are obtaining really low hardware resource
consumption.

39

40 5.Conclusions

José Daniel Soares Caetano Master Degree Dissertation

Bibliography

[1] C. Y. Lee. "Representation of Switching Circuits by Binary-Decision Programs".
Bell Systems Technical Journal, 38:985-999, 1959.

[2] Sheldon B. Akers. “Binary Decision Diagrams”, IEEE Transactions on Computers,
C-27(6):509-516, June 1978.

[3] Randal E. Bryant. "Graph-Based Algorithms for Boolean Function Manipulation".
IEEE Transactions on Computers, C-35(8):677-691, 1986.

[4] Lai, Y.F., Pedram, M., Vrudhula, S.B.K., “EVBDD-based algorithms for integer
linear programming, spectral transformation, and functional decomposition,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol.13, No.8,
1994, 959-975.

[5] Sasao, T., Butler, J.T., Nagayama, S., “A systematic design method for two-
variable numeric function generators using multiple-valued decision diagrams”, IE-
ICE TRANS. INF SYST., VOL.E93-D, NO.8 AUGUST 2010.

[6] S. Nagayama and T. Sasao, “Representations of two-variable elementary functions
using EVMDDs and their applications to function generators”, 38th International
Symposium on Multiple-Valued Logic, pp.50.56, Dallas, U.S.A., May 2008.

[7] Sasao, T., Butler, J.T., Nagayama, S., “Numeric Function Generators Using Piece-
wise Arithmetic Expressions”, 41st IEEE International Symposium on Multiple-
Valued Logic, 2011

[8] J.-M. Muller, “Elementary Function: Algorithms and Implementation”, Birkhauser
Boston, Inc., Secaucus, NJ, 1997.

[9] R. Stankovic and J. Astola, “Remarks on the complexity of arithmetic representa-
tions of elementary functions for circuit design,” Workshop on Applications of the
Reed-Muller Expansion in Circuit Design and Representations and Methodology of
Future Computing Technology, pp. 5?11, May 2007.

[10] Edward A. Bender, S. Gill Williamson, 2005, “A Short Course in Discrete Mathe-
matics”, Dover Publications, Inc., Mineola, NY, ISBN 0-486-43946-1.

[11] Shannon, C.E., “A symbolic analysis of relay and switching circuits”, emphBell Sys.
Tech. J., Vol. 28, No. 1, 1949, 59-98.

[12] Kebschull, U., Schubert, E., Rosenstiel, W., “Multilevel logic synthesis based on
functional decision diagrams,” EDAC 92, 1992, 43-47.

41

42 BIBLIOGRAPHY

[13] Minato, S., “Zero-suppressed BDDs for set manipulation in combinatorial problems,”
Proc. 30th ACM/IEEE DAC, June 1993, 272-277.

[14] Sasao, T., Butler, J.T., Nagayama, S., ”Numerical function generators using LUT
cascades”, IEEE Transactions on Computers, Vol. 56, No. 6, pp. 826-838, Jun. 2007

[15] D.H. Douglas and T.K. Peucker, “Algorithms for the Reduction of the Number of
Points Required to Represent a Line or Its Caricature,” The Canadian Cartographer,
vol. 10, no. 2, pp. 112-122, 1973.

[16] Digilent Nexys2 Board Reference Manual. 2011. Digilent. 11 July 2011
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_ rm.pdf.

[17] Sasao, T., Nagayama, S., “Complexities of Graph-Based Representations for Ele-
mentary Functions”, IEEE Transactions on Computers, Vol. 58, No. 1, pp. 106-119
Jan. 2009

[18] D. Jankovic, R. Stankovic, C. Moraga, “Arithmetic Expressions Optimisation Using
Dual Polarity Property,” Serbian Journal of Electrical Engineering, Vol. 1, No. 1,
November 2003, 71 - 80

[19] D. Jankovic, R. Stankovic, C. Moraga “Optimization of Polynomial Expressions by
Using the Extended Dual Polarity”, IEEE Transactions on Computers, Vol. 58, No.
12, Dec. 2009

José Daniel Soares Caetano Master Degree Dissertation

Appendix A

VHDL Templates

A.1 Coefficients Table

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.all;

entity coef_table_backup is
generic(prec : integer := 8;

segments : integer:= 32;
addrBusSize : integer := 3);

port(segment : in std_logic_vector((addrBusSize - 1) downto 0);
coef_FsV : out std_logic_vector((prec - 1) downto 0);
coef_S : out std_logic_vector((prec - 1) downto 0);
coef_C : out std_logic_vector((prec - 1) downto 0));

end coef_table;

architecture RTL of coef_table_backup is

constant NUM_WORDS : integer := segments;

subtype TDataWord is std_logic_vector((prec - 1) downto 0);
type TMemory is array (1 to (NUM_WORDS)) of TDataWord;
signal FsV_memory : TMemory:=(--Start1
--Finish1
others => (others => ’0’));

signal S_memory : TMemory:=(--Start2
--Finish2
others => (others => ’0’));

signal C_memory : TMemory:=(--Start3
--Finish3
others => (others => ’0’));

begin
coef_FsV <= FsV_memory(to_integer(unsigned(segment)-1));

43

44 A.VHDL Templates

coef_S <= S_memory(to_integer(unsigned(segment)-1));
coef_C <= C_memory(to_integer(unsigned(segment)-1));

end RTL;

José Daniel Soares Caetano Master Degree Dissertation

A.VHDL Templates 45

A.2 Z to X Converter

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.all;

entity sw_to_arg is
generic(prec : integer := 8;

acc : integer:= 5);
port(X : in std_logic_vector((prec - 1) downto 0);
arg : out std_logic_vector((prec - 1) downto 0));

end sw_to_arg;

architecture RTL of sw_to_arg is

subtype TDataWord is std_logic_vector((prec) downto 0);
type TMemory is array (0 to 2**prec-1) of TDataWord;
signal args : TMemory:=(--Start
--Finish
);

begin

arg <= args(to_integer(unsigned(X)));

end RTL;

José Daniel Soares Caetano Master Degree Dissertation

46 A.VHDL Templates

A.3 Encoder for sin(x) [-pi/2, pi/2], n=4

library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.NUMERIC_STD.all;
entity tree_encoder is
port(X: in std_logic_vector(1 to 4);
segment : out std_logic_vector((2 - 1) downto 0));
end tree_encoder;
architecture RTL of tree_encoder is
signal x1 : std_logic;
signal x2 : std_logic;
signal x3 : std_logic;
signal x4 : std_logic;
signal long_seg : std_logic_vector((4- 1) downto 0):=(others=>’0’);
signal res_node10001000 : std_logic_vector((4 - 1) downto 0):=(others
=>’0’);
signal res_node1 : std_logic_vector((4 - 1) downto 0):=(others=>’0’);
begin

x1 <= X(1);
x2 <= X(2);
x3 <= X(3);
x4 <= X(4);

node_block1000100010000000 : entity WORK.node_block(Behavioral)
generic map(prec=>4,acc=>2)
port map(Xi=>x1,left_edge=>res_node10001000,right_edge=>res_node1,
f=>long_seg);

node_block10001000 : entity WORK.node_block(Behavioral)
generic map(prec=>4,acc=>2)
port map(Xi=>x2,left_edge=>res_node1,right_edge=>res_node1,f=>
res_node10001000);

res_node1<="0100";
segment <= long_seg(3 downto 2);

end RTL;

José Daniel Soares Caetano Master Degree Dissertation

Acronyms

ACDD Arithmetic decision diagram

ACDT Arithmetic decision tree

BDD Binary decision diagram

BDT Binary decision tree

DTL Decision type list

FDD Functional decision diagram

FDT Functional decision tree

FPGA Field-programmable gate array

MTBDD Multi-terminal decision diagram

NFG Numerical function generator

NPRM Negative-polarity Reed-Muller expression

PPRM Positive-polarity Reed-Muller expression

SOP Sum of products

VHDL VHSIC hardware description language

	Contents
	List of Tables
	List of Figures
	I Introduction
	Introduction
	Setting
	Motivation
	Goals
	Structure of the Thesis

	II Function Representation
	Functional Expressions
	Shannon Expansion Rule
	Reed-Muller expansion Rules
	Fixed Polarity RM-expressions

	Word-Level Expressions
	Arithmetic Transform

	Decision Diagrams
	Binary decision diagrams
	Multi-terminal decision diagrams
	Functional decision diagrams
	Kronecker decision diagrams

	Arithmetic transform decision diagrams

	III Implementation
	Implementation
	Stages of the Creation of the NFG
	Segmentation
	Arquitecture of the NFG
	Segment Index Encoder
	FPGA Testing
	Results

	IV Conclusions
	Conclusions
	Bibliography
	VHDL Templates
	Coefficients Table
	Z to X Converter
	Encoder for sin(x) [-pi/2, pi/2], n=4

