
A Framework for Requirements Engineering for Context-Aware Services

Anthony Finkelstein Andrea Savigni

Department of Computer Science
University College London

Gower Street
London WC1E 6BT

United Kingdom
E-mail:{A.Finkelstein|A.Savigni }@cs.ucl.ac.uk

Abstract

Context-aware services, especially when made available
to mobile devices, constitute an interesting but very chal-
lenging domain. It poses fundamental problems for both
requirements engineering, software architecture, and their
relationship. We propose a novel, reflection-based frame-
work for requirements engineering for this class of applica-
tions. The framework addresses the key difficulties in this
field, such as changing context and changing requirements.
We report preliminary work on this framework and suggest
future directions.

1. The Rationale

The purpose of this section is to highlight the key prob-
lems associated with requirements engineering in the area
of context-aware services. In order to properly classify con-
cepts, we will adopt Michael Jackson’s terminology, as in-
troduced in [10] and briefly reviewed in Sect. 2.1. Par-
ticularly the critical distinction he maintains between the
“world” and the “machine”. That terminology will be used
throughout the paper.

In this paper, by “context-awareness” we mean the abil-
ity of a particular service to adapt itself to a changing
context. One classical example is mobile commerce (m-
commerce) applications, which should run equally well on
full-fledged Web browsers running on desktop computers,
on graphic Personal Digital Assistants (PDAs), on Wire-
less Application Protocol (WAP)-enabled mobile phones,
and possibly even on low-end mobile phones, maybe using
Short Message System (SMS).

Requirements engineering in the area of context-aware
services, especially when these are targeted towards mobile
devices, poses new and very challenging problems, that can

be summarised aschanging contextandchanging require-
ments.

A changing context means essentially that one cannot,
while analysing requirements, rely on reassuring assump-
tions about the world. A changing world complicates the
machine by orders of magnitude. In the case of context-
aware mobile services, changing context may entail:

• changing location. This means not only that the ab-
solute location of a device can change, but also that
the relative locations of two devices must be taken into
consideration;

• changing bandwidth for networked devices, most often
in unpredictable ways;

• changing display characteristics e.g., graphics PDAs,
text-only mobile phones, colour vs. monochrome dis-
plays, etc.;

• changing usage paradigm. For example, from a user
perspective having a full-screen, button-centred PDA
is very different from using a scroll-centred mobile
phone;

• target platforms unknown in advance. Note that this
problem isnot implied by any of the preceding points.
Platforms may be unknown in advance, and the ser-
vice should anyway be able to dynamically adapt itself
to this aspect of the new context. This means of course
performing a very hard abstraction job in order to ex-
press the common set of characteristics in a general,
uniform way.

This very volatile context of course influences require-
ments. A key distinction, adapted from Axel van Lam-
sweerde’s work (see Sect. 2.2), is made here betweengoals
andrequirements. We define a goal as a fixed objective of
the service, whereas a requirement, in our view, is a more

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


volatile concept that can be influenced by the context. For
example, in a m-commerce service, a goal can be “max-
imise usability of the system”, which is a very abstract ob-
jective that the system should tend to [6]. By contrast, a re-
quirement can be: “the display must show both the current
state of the shopping basket and a set of available options”.
This requirement of course makes sense only if the display
is large enough.

One more, fundamental issue related to such services
is that they usually belong to the “new economy”. This
means in general that these systems have an extremely short
time-to-market, which in turn means that traditional, heavy-
weight methodologies – such as the Rational Unified Pro-
cess (RUP) [5] – are not applicable.

For all these reasons, we argue that a new approach is
needed to tackle this kind of services. Such an approach is
the subject of this paper, and will be described as follows.
Section 2 will provide the reader with some background in-
formation. Section 3 outlines the reflective approach that
will be used throughout the work. Section 4 explains the
framework itself, while Sect. 5 sets out some of the key
challenges it poses. Finally, Sect. 6 sketches some possible
ways to move towards an implementation of the framework.

2. Background

The goal of this section is to give a very brief overview of
the two main influences behind this paper, namely Michael
Jacksons’s “world and machine” work [10], and Axel van
Lamsweerde’s “Kaos” [6].

2.1. The World and the Machine

[10] represents a cornerstone in understanding the rela-
tionships between a software artifact and the surrounding
world. Jackson identifies four facets of relationships be-
tween the world and the machine:

• the modelling facet, in which the machine simulates
the world;

• the interface facet, where the world touches the ma-
chine physically;

• the engineering facet, where the machine controls the
world;

• the problem facet, where the shape of the world and of
the problem influences the shape of the machine and
of the solution.

The discussion of the engineering facet turned out to be
particularly useful to us, and particularly the distinction be-
tween requirements, specifications, and programs. Require-
ments are concerned solely with the world, programs are

concerned solely with the machine, specifications are the
bridge between the two. Section 4 will use these concepts
in working out the boundaries between world and machine
within our framework.

2.2. Goal-oriented Requirements Engineering

The seminal works by Yue [17] and van Lamsweerde [6]
opened a new direction in requirements engineering: the
goal-orientedapproach. The key achievement of this new
approach is that it makes explicit thewhyof requirements.
Quoting van Lamsweerde, “[before goal-oriented require-
ments engineering] the requirements on data and operations
were just there; one could not capturewhy they were there
and whether they were sufficient” [16].

van Lamsweerde’s goal-oriented requirements engineer-
ing approach provides for three levels of modelling:

• the meta level, that refers todomain-independent ab-
stractions. This model contains concepts such as
goal , requirement , object , entity , and so
on;

• the base level, containing domain-dependent concepts,
such asservice , telephone , bandwidth , etc.
The structure of the meta-level model constitutes a
meta-level guide on how to conduct a requirements en-
gineering activity. For example, sincegoal andcon-
straint are linked by aoperationalisation
link, every concept in the base level that is an instance
of a meta-level conceptconstraint must be linked
to an instance of a meta-levelgoal by an instance of
a meta-leveloperationalisation link;

• the instance level, containing specific instances of the
domain-level concepts.

3. The Reflective Approach

“Computational reflection is the activity performed by
a computational system when doing computation about its
own computation” [11]. A reflective system maintains,at
run-time, data structures that materialise some aspects of
the system itself.

The problem of allowing a program to reason upon, and
possibly change, itself is not new, and has been studied ex-
tensively especially in the programming languages commu-
nity. For example, languages such as LISP and Prolog al-
low programs to be manipulated as data. More recently,
so-called “open languages” (such as OpenC++ [4] or Open-
Java [14]) allow programmers to influence the translation
process, thus actually providing for the definition of new
languages.

2



For our purposes, reflection means that an explicit, run-
time representation of system behaviour is maintained,
which reifies the actual system behaviour in the sense that
changes in the latter are materialised in the meta-level de-
scription. Similarly, changes in the meta-level description
reflect back into the underlying system’s behaviour. This
“closed loop” approach is calledcausal connection. A re-
flective system is structured into a (potentially unbound)
number of logical levels: thereflective tower[13]. In prac-
tice, there are seldom more than two of them.

Reflective systems are based on two concepts: consis-
tency between internal and external representations of the
system, and separation between meta computation and com-
putation. The consistency is guaranteed by causal connec-
tion: computations performed in the base level are reified
by the meta level, whereas changes in the meta level reflect
back into the base-level. The separation between meta com-
putation (i.e., computation whose domain [11] is the base-
level) and computation (whose domain is the world) is es-
sential in order to achievetransparency: new functionality
can be added to an existing system in a transparent way i.e.,
without the existing system noticing. This is especially true
of functionality implementing non-functional requirements,
such as fault-tolerance and security.

Why do we regard a reflective approach as such a fun-
damental issue? First of all, let us make one point clear:
reflection, at least in our view, is amechanism, not a goal.
More precisely, it is a mechanism for manipulating meta
data in a clean and consistent way. Now, reflection is key
in this field because manipulating meta data is essential in
this context of highly-dynamic services, as these must be
able to dynamically adapt themselves to changing context
and changing requirements.

4. The Framework

Figure 1 shows the key concepts of the proposed frame-
work.

Context

Environment Service

Service Description

Requirements

Reification (monitoring)

Goals

Determine

OperationaliseInfluence

ReificationReflection

Constrains

Figure 1. The overall framework.

The rest of this section is devoted to a detailed explana-
tion of the framework constituents. This explanation will

follow a precise path that moves from the outside inward
i.e., from the outer world towards the boundaries with the
machine, and finally inside the machine itself. Therefore,
we will start from what is available in the world: goals
and environment. We will operationalise goals into require-
ments, and represent environment information into a con-
text; all of this still belongs in the world. Later we will
move from requirements and context towards a service de-
scription, which is the bridge between the world and the ma-
chine (what Michael Jackson calls “specification”). Even-
tually we move inside the machine with the notion of a ser-
vice. Note that throughout the paper we will stick to the
notion of the machine as pure software; in other words, we
will consider devices (PDAs, mobile phones, etc.) as part
of the world.

4.1. Goal

A goal is an objective the system should achieve through
cooperation of agents in the software-to-be and in the envi-
ronment [6]. In our view goals areimmutablei.e., they do
not change with the changing context. They represent the
ultimate objective the service is meant to achieve. Changing
the goals would mean changing the service itself. Along the
lines of [6], a goal is not immediately achievable through
actions performed by one or more agents; in other words, a
goal is a somewhat abstract and long-term objective.

4.2. Environment

By “environment” we mean whatever in the world pro-
vides a surrounding in which the machine is supposed to
operate. Taking the environment into account is crucial be-
cause it strongly influences the behaviour of the machine.
Recall the example of the m-commerce service. In this case
the environment comprises such things as bandwidth, loca-
tion (absolute and relative), service availability, characteris-
tics of the device, and many more issues.

An alternative definition of environment might be:
“whatever over which we have no control”. If the band-
width is low, the connection is erratic, the PDA’s display is
small, the person carrying the mobile phone is driving on
a mountain road with many tunnels, this is something that
cannot be solved by software. The job of a software engi-
neer can be summarised as a struggletowardsthe goalde-
spitethe environment; all we can do with the environment
is know it and describe it in the best possible way, but we
cannot change it.

4.3. Context

Context is defined as the reification of the environment.
Note that in this case there is no reflection whatsoever (i.e.,

3



no downwards arrow) because, as explained in the previous
section, the environment is not modifiable. A context thus
provides a manageable, easily manipulatable description of
the environment. Most important, such description is con-
tinuously, dynamically updated to take into account the fact
that the environment also continuously changes.

4.4. Requirement

A requirement represents one of the possible ways of
achieving a goal. A requirement operationalises a goal, in
that it represents a more concrete, short-term objective that
is directly achievable through actions performed by one or
more agents. One key assumption that we make is thatre-
quirements can change during system execution, which dif-
ferentiates them from goals. In fact, due to a changing envi-
ronment, the context may change in such a way that the op-
erationalisation of the goals is no longer valid. This calls for
monitoring of the context with respect to the goals: changes
in the context may yield the necessity for changes in the
requirements.

In very informal terms, one may say that requirements
are a trade-off between the noble goals and the actual real-
ity. For example, the goal of an m-commerce service might
be to provide for a highly interactive user experience. Given
this goal, if the context is favorable (e.g., high bandwidth,
large colour display, Java Virtual Machine implementation
available on the PDA) a requirement might be “use a col-
orful Java applet to represent the state of the shopping bas-
ket”, whereas if the connection is slow or there is no JVM
available, the requirement may be mitigated into “use a 16-
colour animated gif”.

4.5. Service Description

A service description is the meta-level representation of
the actual, real-world service. As such, it is obviously influ-
enced by the requirements, hence theDetermine box in
Fig. 1. A service description might seem redundant, as one
may think of going directly from requirements to service.
Why is an intermediate component needed? The answer
lies in the reflective approach and in the need for contin-
uously monitoring the service. In fact, the service can be
influenced by the environment, and can therefore change in
unpredictable ways. These changes can lead to inconsisten-
cies between the service and the requirements. This calls for
monitoring of the former with respect to the latter. A ser-
vice description is a meta-level description of a service. If a
suitable formalism is devised for this description, the latter
can easily be compared against the requirements in order to
establish whether a runtime violation [8] has occurred.

Now, suppose such a violation is detected. We argue that
the “reflective way” is a clean and consistent manner of per-

forming run-time changes to the underlying level (which is,
at last, the actual system as perceived by the user). This
approach consists in manipulating the service description in
order to reconcile the service with the requirements. The
causal connection, in particular the downwards link (reflec-
tion) provides for the consistency between the service de-
scription and the service itself. Architectural reflective tech-
niques can be employed to that aim [2, 3, 15].

Since the service description describes the behaviour of
the service, it can be regarded as a system specification in
the sense used in [10]. Thus, it serves as the bridge between
the world and the machine.

4.6. Service

Finally, the service is the heart of the machine. It pro-
vides the actual behaviour as perceived by the user. It is
worth pointing out that, even though it is only this service
that actually interacts with the user, it is the last link in the
chain described above; in other words, the actual value de-
livered to the user is not the service alone, but also the whole
hidden reflective infrastructure.

It is also worth pointing out that, apart from goals that
are specified off-line and never changed (recall, changing
goals means changing what the service provides, and this
means at the very least pulling the service down), all the
remaining items appearing in Fig. 1 have a run-time image,
as emphasised in Fig. 2, where the run-time components are
greyed. Finally, Fig. 3 emphasises (in grey) the meta-level

Context

Environment Service

Service Description

Requirements

Reification (monitoring)

Goals

Determine

OperationaliseInfluence

ReificationReflection

Constrains

Figure 2. The run-time components.

components i.e., all those components that, even having a
run-time image, are not directly visible to the end user.

5. The Challenges

The problems examined in the previous section represent
a formidable challenge for any software engineer. More
precisely, the following points must be addressed.

4



Context

Environment Service

Service Description

Requirements

Reification (monitoring)

Goals

Determine

OperationaliseInfluence

ReificationReflection

Constrains

Figure 3. The meta-level components.

5.1. Representing context information at run-time

One of the key issues in these systems is that context
is continuously changing. Therefore, requirements, in the
first place, and system behaviour must adapt themselves to
the changing context. In order for this to be feasible, the
context (and its changes) must be represented at run-time.
This representation must take place in a way that is both
readily understandable by humans and easily manipulatable
by machines.

5.2. Bringing requirements information to run-time

In order to be able to perform run-time service descrip-
tion monitoring against requirements, these must be readily
accessible at run-time (see Sect. 4.5) [9].

In addition, as explained in Sect. 4.4, requirements typi-
cally change over time, so this representation must not sim-
ply be a read-only view, but must rather be an evolvable
one.

5.3. Bringing architecture information to run-time

This is admittedly one of the most controversial points. It
is widely accepted in the software engineering community
that a suitable software architecture design phase should al-
ways precede the actual implementation. However, in most
cases all information about system architecture is lost in the
running system [15]. In other words, a running systemim-
plementsa specification; however, this specification is scat-
tered throughout the code, and no explicit representation of
it exists at run-time.

6. Implementation Issues

6.1. Describing the Meta Levels

One key question to be answered is: “How to describe
the meta levels in an easy and powerful way?” One particu-
larly promising way is the use of XML for such description.

The main reasons behind such a choice are sketched in the
sequel:

• XML is a world standard. A description implies a for-
malism, so why not choose a standard one?

• no need to build custom parsers. A number of products
implementing the standard DOM and SAX APIs are
widely available, often at no cost;

• a number of standards, APIs, and products are avail-
able to easily and efficiently manipulate XML files,
first of all XSLT;

• a lot of work has been (and is being) done at
UCL in this field; in particular, the work on consis-
tency checking of distributed documents (that yielded
xlinkit [12]) could prove a very useful starting
point in determining whether the runtime system be-
haviour is still aligned with the requirements.

6.2. Where Does All This Belong?

An interesting question to ask is: Where does all the
framework belong? Or, in other words, should every sin-
gle service take care of this on its own? Can all, or at least
some, of the framework be collected in a separate product
which can be implemented once and for all and customised
at will? If so, which parts are strictly service-dependent and
which can be made common?

We do not yet have a definitive answer to these questions.
However, our current thought is that it should be possible to
provide a service-independent set of mechanisms for repre-
senting context in a significant class of context-aware ser-
vices. The mechanisms by which such a context is popu-
lated in any particular case is clearly a matter for the device
vendor.

On the service description side, the situation is more
complex, and service description schemes drawn from ex-
isting middleware frameworks [1, 7] may be the right direc-
tion.

Acknowledgments

This work was partially funded by UWA (Ubiquitous
Web Applications), a EU-funded, Fifth Framework Pro-
gramme project that the authors are carrying on in coop-
eration with a number of academic and industrial partners
from six European countries. The work described in this
paper is intended as an initial contribution to the project.

We are also grateful to Licia Capra, Wolfgang Em-
merich, and Cecilia Mascolo for the fruitful discussions that
influenced some of the views in this paper.

5



References

[1] L. Capra, W. Emmerich, and C. Mascolo. Reflective Middle-
ware Solutions for Context-Aware Applications. Submitted
for publication.

[2] W. Cazzola, A. Savigni, A. Sosio, and F. Tisato. Archi-
tectural Reflection: Bridging the Gap Between a Running
System and its Architectural Specification. InProceedings
of the 2nd Euromicro Conference on Software Maintenance
and Reengineering and 6th Reengineering Forum, Florence,
Italy, March 8-11 1998.

[3] W. Cazzola, A. Savigni, A. Sosio, and F. Tisato. Rule-Based
Strategic Reflection: Observing and Modifying Behaviour at
the Architectural Level. InProceedings of Automated Soft-
ware Engineering – ASE’99 14th IEEE International Con-
ference, pages 263–266, Cocoa Beach, Florida, USA, Oct
12-15 1999.

[4] S. Chiba. A Metaobject Protocol for C++. InProceedings
of OOPSLA95, pages 285–299, October 1995.

[5] R. S. Corporation. The Rational Unified Process.
http://www.rational.com/products/rup/ .

[6] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed Requirements Acquisition.Science of Computer
Programming, 20:3–50, 1993.

[7] W. Emmerich.Engineering Distributed Objects. John Wiley
& Sons, April 2000.

[8] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard.
Reconciling System Requirements and Runtime Behavior.
In Proceedings of IWSSD’98 - 9th International Workshop
on Software Specification and Design, Isobe, Japan, April
1998. IEEE Computer Society Press.

[9] S. Fickas and M. S. Feather. Requirements Monitoring
in Dynamic Environments. InProceedings of the Second
IEEE International Symposium on Requirements Engineer-
ing, pages 140–147. IEEE Computer Society Press, 1995.

[10] M. Jackson. The World and the Machine. InProceedings of
the 17th International Conference on Software Engineering,
pages 283 – 292, Seattle, Washington, USA, April 24 – 28
1995.

[11] P. Maes. Concepts and Experiments in Computational Re-
flection. In Proceedings of OOPSLA87, Sigplan Notices.
ACM, October 1987.

[12] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein.
xlinkit : a Consistency Management and Smart Link
Generation Service. Technical Report RN/00/66, University
College London – Department of Computer Science, De-
cember 2000. Submitted for publication.

[13] B. C. Smith. Reflection and Semantics in Lisp. InConfer-
ence Record of the 14th Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 23–35, Salt Lake
City, Utah, USA, January 1984.

[14] M. Tatsubori and S. Chiba. Programming Support of De-
sign Patterns with Compile-time Reflection. InOOPSLA98
Workshop on Reflective Programming in C++ and Java,
pages 56–60, Vancouver, Canada, 1998.

[15] F. Tisato, A. Savigni, W. Cazzola, and A. Sosio. Architec-
tural Reflection. Realising Software Architectures via Re-
flective Activities. InProceedings of the 2nd Engineering

Distributed Objects Workshop (EDO 2000), Davis, Califor-
nia, USA, November 2–3 2000. To appear.

[16] A. van Lamsweerde. Requirements Engineering in the Year
00: A Research Perspective. InProceedings of ICSE’2000
- 22nd International Conference on Software Engineering,
Limerick, 2000. ACM Press. Invited Paper.

[17] K. Yue. What Does It Mean to Say that a Specification is
Complete? InProceedings of IWSSD-4 – the Fourth Inter-
national Workshop on Software Specification and Design,
Monterey, CA, USA, 1987.

6


