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ABSTRACT: Global navigation satellite system (GNSS) positioning is widely used in land vehicle and pedestrian
navigation systems. Nevertheless, in urban canyons GNSS remains inaccurate due to building blockages and
reflections, especially in the cross-street direction. Shadow matching is a new technique, recently proposed for
improving the cross-street positioning accuracy using a 3D model of the nearby buildings. This paper presents a
number of advances in the shadow-matching algorithm. First, a positioning algorithm has been developed,
interpolating between the top-scoring candidate positions. Furthermore, a new scoring scheme has been developed
that accounts for signal diffraction and reflection. Finally, the efficiency of the process used to generate the grid of
building boundaries used for predicting satellite visibility has been improved. Real-world GNSS data has been
collected at 22 different locations in central London to provide the first comprehensive and statistical performance
analysis of shadow matching. Copyright © 2013 Institute of Navigation.

INTRODUCTION

The poor performance of global navigation
satellite systems (GNSS) user equipment in urban
canyons is a well-known problem in terms of both
accuracy and solution availability [1-3]. In contrast,
a great number of day-to-day navigation requests
are made in urban areas by city residents. Advanced
intelligent transportation systems, for example, rely
on positioning systems for their ability to direct
individual cars in order to maximize traffic flow
and prioritize emergency vehicles [4]. Vehicle lane
detection in lane guidance systems, location-based
advertising, augmented-reality applications, and
step-by-step guidance for visually impaired and
tourists all require sufficient positioning accuracy
to perform their functions [5-8]. However, the
availability and accuracy of GNSS in urban areas
limits the use of these applications [3].

The problem of GNSS performance in urban
canyons arises when the direct line-of-sight (LOS)
signals from many of the satellites are blocked. The
blockage is likely to happen where there are tall
buildings or narrow streets. The buildings effectively
cast GNSS shadows over the adjacent terrain.
Without direct signals from four or more satellites,
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an accurate position solution cannot be determined.
Sometimes, a degraded position solution may be
obtained by making use of signals that can only be
received by reflection off a building; these are known
as non-line-of-sight (NLOS) signals [9, 10].

As well as affecting the number of available GNSS
signals, an urban canyon also affects the geometry of
satellites, which causes lower accuracy in the cross-
street direction. This is because signals with lines
of sight going across the street are much more likely
to be blocked by buildings than signals with lines of
sight going along the street. As a result, the signal
geometry, and hence the positioning accuracy, will
be much better along the direction of the street than
across the street [2]. Figure 1 illustrates this.

For improving navigation performance in highly
built-up areas, a variety of navigation sensors have
been used to enhance or augment GNSS. Road
vehicles typically combine GNSS with odometers,
and map-matching algorithms, while pedestrian
navigation users may combine GNSS with cell phone
signals, Wi-Fi, and/or dead reckoning using inertial
sensors, magnetic compass and barometric altimeter
[11, 12]. However, these approaches improve the
continuity and robustness of the position solution,
but not the cross-street accuracy.

As 3D building models are becoming more
accurate and widely available [13, 14], they are
increasingly treated as a new data source for urban
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Fig. 1-In urban canyons, the satellites at across-street direction are likely to be blocked

by buildings.

navigation and used to improve positioning
performance in urban canyons. Satellite visibility
can be predicted using 3D city models (3D
geographic information systems or 3D maps)
[3, 14-20]. Predicted satellite visibility by 3D city
models can then be used for NLOS or multipath
detection and elimination [13, 21-25]. The path
delay of NLOS may also be modeled as a function
of the user position, enabling NLOS signals to be
used for position determination [23]. Furthermore,
3D city models are also applied to enhance map
matching [24] and image matching in land vehicle
navigation [26].

A new approach has recently be proposed to
improve the cross-street accuracy using GNSS,
assisted by knowledge derived from 3D building
models close to the user of navigation devices
[2, 27]. In shadow matching, satellites visible from
different locations are predicted and compared with
the measured satellite visibility to determine
position. A preliminary shadow-matching algorithm
was developed that demonstrated the ability to
distinguish pavement from vehicle lane, and identify
the correct side of street using real-world GPS and
GLONASS measurements [28, 29]. However, only
direct line-of-sight (LOS) signals are predicted in
the earlier algorithm, whereas the user equipment
can also observe diffracted and reflected signals.
This mismatch can degrade shadow-matching
performance.

In this work, a number of improvements have been
made. First, a new scoring scheme, a key element of
the algorithm to weight candidate user locations, is
proposed. The new scheme takes into account the
effects of satellite signal diffraction and reflection
by weighting the scores based on diffraction
modeling and signal-to-noise ratio (SNR).
Furthermore, an algorithm similar to k-nearest
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neighbors (k-NN) is developed to interpolate the
position solution over an extensive grid. The process
of generating this grid of building boundaries is also
optimized. Finally, instead of just testing at two
locations as in the earlier work, real-world GNSS
data has been collected at 22 different locations in
this work, providing a more comprehensive and
statistical performance analysis of the new shadow-
matching algorithm.

The improved shadow-matching algorithm is
described in the second section, employing a set of
new scoring schemes to acknowledge signal
diffraction and reflection. The third section then
describes the testing of the algorithm using real-
world GPS and GLONASS measurements, and
compares performance of the shadow-matching
algorithm using different scoring schemes. Finally,
conclusions are drawn and future work discussed.

SHADOW MATCHING OPTIMIZATION

This section describes the full implementation of
the shadow-matching algorithm and discusses how
it was optimized. We first explain the existing
shadow-matching algorithm and then give a
comprehensive implementation of the algorithm,
which consists of two phases — the offline phase
and online phase. Each step in the two phases is
further introduced, with emphasis on optimization
in grid generation of building boundaries and a set
of proposed new scoring schemes.

The Existing Shadow-Matching Algorithm

The principle of shadow matching is simple [2].
Due to obstruction by buildings in urban canyons,
signals from many GNSS satellites will be receivable
in some parts of a street, but not others. Figure 2
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Fig. 2-The shadow-matching concept: using direct signal reception to localise
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illustrates this, noting that the boundary between
the two regions is fuzzy due to diffraction effects at
building edges [14]. Where each direct signal is
receivable can be predicted using a 3D city model.
Consequently, by determining whether a direct
signal is being received from a given satellite, the
user can localize their position to within one of two
areas of the street. By considering other satellites,
the position solution may be refined further. At each
epoch, a set of candidate user positions is generated
close to the user’s low-accuracy conventional GNSS
positioning solution. At each candidate user position,
the predicted satellite visibility is matched with the
real observations. The candidate position that has
the best match between the prediction and the real
observations is deemed the shadow matching
positioning solution. This process can be conducted
epoch by epoch, so the GNSS user can be either
static or dynamic.

The Improved Shadow-Matching Algorithm

The new shadow-matching algorithm has two
phases — the offline phase (the preparation step)
and the online phase, consisting of five steps, both
illustrated in Figure 3. An off-line phase is conducted
to generate a grid of building boundaries. In the
beginning of the online phase, the user position is
first initialized, e.g., wusing standard point
positioning (SPP) with GNSS pseudo-ranges. The
second step defines the search area for the shadow-
matching position solution. For the third step, the
satellite visibility at each grid position is predicted
using the building boundaries generated from the
3D city model. After that, the similarity of satellite
visibility between prediction and observation is
evaluated using a scoring scheme, providing a score
for each grid point in the search area. Finally, the
shadow-matching positioning solution is generated
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by a modified k-nearest neighbors algorithm, which
averages the grid points with the highest scores.
Each of the steps is described in more detail below.

e Step 0: Generate a Grid of Building Boundaries

In the off-line phase, building boundaries at a grid
of locations are generated. A building boundary
means, from a GNSS user’s perspective, that the
building’s edge is determined for each azimuth (from
0 to 360°) as a series of elevation angles. The results
from this step show where the building edges are
located within an azimuth-elevation sky plot. Once
the building boundary has been computed, it may
be stored and reused easily in the online phase to
predict satellite visibility by simply comparing the
elevation of a satellite with the elevation of the
building boundary at the same azimuth.

From the perspective of mobile devices, limited
computational power, memory, and battery life are
of great importance. To overcome these limits, the
proposed method is designed to move the most
computationally intensive tasks from the mobile
devices to the server. Thus, the designed algorithm
exchanges real-time computational load for a
one-off processing requirement at the server side.
Specifically, this is achieved by representing the 3D
model in a specially designed form - building
boundaries at a grid of positions. The logic behind
the strategy is that the vast amount of data in a 3D
city model is not of direct interest to the shadow-
matching algorithm, only the locations of the
building edges matter from a user’s perspective.
Thus, utilizing this knowledge, only building
boundaries at each candidate position are abstracted
from the 3D model. This method saves computation
load because individual mobile devices do not need
to compute the building boundaries on the fly. Instead,
they can simply request building boundaries at a
certain range of locations, or cache a desired region.

Using stored building boundaries, fewer than fifty
comparison and addition operations are required to
calculate an overall shadow matching score for one
candidate position with two GNSS constellations.
Therefore, shadow matching may be performed in
real time on a mobile device with several hundred
candidate positions where necessary.

Without any data compression, about 300 bytes
are required to store a building boundary with a 1°
resolution. If a 2x2m grid spacing is used for
the candidate positions, a 1km long 20m wide
street will contain 5000 grid points, requiring
1.5 MB of data storage. By exploiting the similarities
both between neighboring azimuths in the same
building boundary and between building boundaries at
neighboring grid points, substantial data compression
should be achievable; possibly up to a factor of ten.
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Therefore, a standard 4 GB flash drive could store
building boundary data for 2500-25000 km of road
network. For comparison, the Greater London
metropolitan area contains about 15000 km of road.
However, as shadow matching is only useful in
streets where conventional GNSS positioning is
poor, the database need only contain building
boundary data for these streets, maybe 10% of the
total. Therefore, it should be practical to preload a
mobile device with shadow-matching data for
several cities, which could be kept up-to-date via
the internet.

A software toolkit for generating the grid of
building boundaries from a 3D city model was
developed in C++. Figure 4 shows the process.

The process can be broken into four steps. First, a
one meter by one meter horizontal grid of points,
covering the 3D city model area, is generated. The
height is set to be 1.5m above the terrain height
measured in the 3D city model. Second, a pre-
processing step is developed to eliminate indoor
points from the generated grid in the first step,
because the current shadow-matching algorithm is
designed to work outdoors. Outdoor points are
distinguished from indoor ones by testing whether
the elevation angle of the sky at each azimuth is 90
degrees. Further details of the algorithms testing
line-of-sight visibility can be found in a previous
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Fig. 4-The process generating the grid of building boundaries.
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paper [3]. Third, buildings that are unlikely to block
satellite signals are eliminated from the search area,
based on checks of their relative location from the
candidate position of interest. Finally, the highest
elevation angle for a visible sky at each azimuth is
tested to determine the building boundary at each
outdoor candidate position.

Figure 4 also illustrates the optimization of the
process of building boundary generation. Without
optimization, it takes an estimated 53 days to perform
the process at a 1 m by 1 m grid of candidate positions
across a 500 m by 500 m area, using a computer with a
CPU speed of 2.67GHz. In order to improve the
efficiency, only buildings that are close to the
candidate position and in the direction of interest are
tested. Figure 5 illustrates this search area. It should
be noted that the parameters used in this example are
manually selected based on knowledge of the 3D city
model used in this work. Appropriate changes should
be made if using another type of city model. After
optimization, the time required to generate building
boundaries at the same grid of points was reduced to
less than 4 days, a 92.5% reduction in time compared
to the original algorithm.

e Step 1: Position Initialization (Online Phase)

In the first step of the shadow-matching
algorithm, standard point positioning (SPP) using
GNSS pseudo-ranges is conducted to acquire an
initial user position. In an urban environment, the
accuracy is often poor. Consistency checking may be
used to identify non-line-of-sight signals and remove
them from the position solution [1, 30]. Other
available positioning methods (e.g., Wi-Fi or cell
network solution) may be introduced into this step
when the GNSS SPP is poor or unavailable.

e Step 2: Determine the Search Area for
Candidate Positions from the Building
Boundaries at a Grid

Candidate
Paosition

30 meters

50 meters

300 meters

‘_—_—_—_

The azimuth of
interest

Fig. 5-The optimization used in building boundary generation by
refining city models according to location of candidate user position
and azimuth of interest. (Aerial perspective, the figure is not drawn
to scale).
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The second step defines the search area in which
candidate positions are located for the shadow-
matching position solution. A search area is defined
based on an initial position generated in the first
step. In the current implementation, the search area
comprises the area within a fixed-radius circle
centered at the initialized position. Indoor locations
are excluded from the search area where the
building boundaries grid is generated in the offline
phase. For the version of shadow matching
presented here, the circle radius was determined
empirically. However, more advanced algorithms
can be developed to use the knowledge from the
initialization process to optimize the search area.

For instance, if the initial position is generated
using a conventional GNSS solution, the signal
geometry, and hence the positioning accuracy, will
be much better along the direction of the street than
across the street. This is because an urban canyon
affects the geometry of the available GNSS signals.
Signals with lines of sight going across the street
are much more likely to be blocked by buildings than
signals with lines of sight running along the street.
Therefore, the conventional GNSS solution has
lower accuracy across-street and higher accuracy
along-street, which is complementary to the
shadow-matching algorithm.

Thus, the along-street component of the SPP
solution can be used as a reference to define the
search area and thus generate candidate user
positions that vary more in the across-street
direction. This is illustrated in Figure 1, with the
green area representing the search area centered at
the initial position and the grid representing
candidate positions. A more advanced shadow-
matching algorithm would vary the size of its search
area based on an assessment of the quality of the
initial position.

e Step 3: Predict Satellite Visibility at Each
Candidate Position

In the third step, performed at each candidate
position, each satellite’s elevation is compared with
the building boundary elevation at the same
azimuth. When a satellite elevation is below the
building boundary, the buildings block any satellite
signals, assuming there are no holes in them
allowing signals to travel through. Thus, the
satellite is predicted to be visible if the satellite is
above the building boundary; otherwise, the satellite
is predicted to be invisible. This is illustrated in (1)
and Figure 6.

L 0200 (om) O

R R A )
where Vs, denotes the predicted visibility of the
satellite s at the candidate position p, 6% denotes

nu
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Azimuth ¢

Fig. 6-Illustration of building boundaries, azimuth elevation
angle.

the elevation of satellite s, @ denotes user antenna, n
denotes the local navigation frame, u denotes line-of-sight
unit vector, and 82 (¢% ) denotes the elevation of building
boundary at azimuth ¢, from the perspective of the user
position [12].

The diffraction effect is also modeled in this work.
A three-degree diffraction zone is modeled for building
boundaries both horizontally and vertically [3].
Thus, in this model, from the perspective of a GNSS
receiver, buildings are three degrees lower and
narrower than their actual height and width. If the
line-of-sight (LOS) falls within the diffraction region,
the signal is predicted to be diffracted. Otherwise, it
is predicted to be invisible. This is illustrated in
Figure 7, with the blue lines representing the building
boundaries and the red lines representing the
diffraction region.

e Step 4: Satellite Visibility Scoring Using Scoring
Scheme

For the fourth step, the similarity of the satellite
visibility between predictions and observations is
evaluated. The candidate positions with the better
matches will then be weighted higher in the shadow
matching positioning solution. There are two stages

0
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27 90
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210~ 150
180

Fig. 7-An example of diffraction modelling.
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for calculating a score for a candidate position. First,
each satellite above the elevation mask angle is
given a score, calculated based on the predicted and
observed visibility, using a scoring scheme. Second,
the position scoring function, evaluates the overall
degree of match between predicted and observed
satellite visibility for each possible user position.
This is illustrated in (2).

fpos(p) = :nzlfsat(sapa SS) )

where f,,,5(p) is the position score for grid point p, f,:
(s,p) is the score of satellite s at grid point p, m is the
number of satellites above the mask elevation angle,
and SS is the scoring scheme which defines a score
based on predicted and observed satellite visibility.

By the end of this step, each candidate position
should have a score to represent the degree to which
it matches the observed satellite visibility, and thus
how likely it is that each candidate position is close
to the true location.

The existing scoring scheme SSss is shown in
Figure 8a. Only direct line-of-sight (LOS) signals
are considered using this scoring scheme, whereas
the user equipment can also observe diffracted and
reflected signals. This mismatch can degrade
shadow-matching performance.

Thus, the scoring scheme has been improved to
acknowledge diffraction effects via diffraction
modeling. Diffraction occurs at the edge of a building
(or other obstacle) when the incoming signal is
partially blocked, noting that the path taken by a
GNSS signal is several decimeters wide. There are
two approaches to predicting the effect of diffraction
on satellite visibility using a 3D city model. The first
one would be to numerically determine the
diffraction field based on every physical factor,
including the surface of the building, the angle of
incidence of the signal, and the properties of the
GNSS user equipment. This method is impractical
because the necessary information about the
building materials and antenna characteristics is
difficult to obtain and the computational complexity
is high. The second, much simpler, approach has
been adopted here. This simply extends the building
boundary used for satellite visibility determination
by adding a diffraction region to model the
diffraction effect around the building edge. Thus,
wherever the LOS intersects the diffraction region,
the signal is classified as potentially diffracted
instead of blocked [3, 14, 31]. Both horizontal and
vertical edges are considered for diffraction
modeling. Here, a 3°wide diffraction region was
modeled. The improved scoring scheme SSs; is
shown in Figure 8b.

As diffractions and reflections both normally result
in weaker signal reception, the signal strength is also
built into the new scoring scheme — SS35, as shown in
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Figure 8c. In this scheme, a weak signal is deemed
likely to be reflected or diffracted, thus it is given a
lower weight compared to a strong signal. The
boundary to distinguish weak signal from strong signal
should be based on the signal to noise ratio (SNR).

Finally, by joining both diffraction modeling and
signal strength based scoring, a new SS33 scoring
scheme is introduced, as shown in Figure 8d. It
should be noted that the scores in these scoring
schemes are based on both theory and experimental
data. We believe that a high weight for weak signals
predicted to be diffracted gives good results because
diffracted signals are typically weaker than direct
line of sight. Weak signals that are not predicted to
be diffracted are given a low weighting because they
are likely to be NLOS signals that cannot currently
be predicted. Changes to the scores may be needed
when using GNSS receivers of other types.

In the third section, a comprehensive comparison
will be conducted to evaluate the influence of
different scoring schemes on the performance of
shadow matching.

e Step 5: Positioning Using Scores at Candidate
Positions

The last step of the shadow-matching algorithm is
to generate a positioning solution using scores from
each candidate position. Shadow matching uses
the pattern-matching positioning method [12]. As
the process of Wi-Fi fingerprinting is similar to the
process in shadow matching, the algorithms used
in Wi-Fi fingerprinting may be investigated for
their potential implementation in shadow matching.
Potential algorithms include, but are not limited
to, k-weighted nearest neighbors, the Bayesian
inference received signal strength (RSS) location
method, and the particle filter.

Vol. 60, No. 3

In this work, a method similar to k-nearest
neighbors is used to estimate the location, averaging
the grid positions of highest scores. With the current
scoring system, scores take integer or half-integer
values. Therefore, several grid points typically share
the highest score. The points in the grid with highest
scores are thus equivalent to the nearest neighbors.
For [ highest-scoring points, the location estimate
is determined using (3) and (4) for the northing and
easting projected coordinate components, N, and
E,, respectively:

M~

N, :% N, 3)

1

i

M~

E.=7 T @)

1

where N; and E; are, respectively, the northing and
easting coordinates of the i** high-scoring candidate
positions. Note that [ varies from epoch to epoch
depending on how many candidate positions share
the highest score.

COMPARISON OF VISIBILITY PREDICTION
SCORING USING EXPERIMENTAL DATA

The different scoring schemes were tuned and
compared using experimental data to improve
the accuracy and reliability of shadow matching.
The next subsection introduces the 3D city model
of the Aldgate area of central London, used in
the shadow matching experiments. Real-world
data sets are collected at sites within the city
model area, scattered on major roads and minor
roads, at and between junctions. Subsequent text
describes the methods and logics behind implementations
of each step of shadow matching with details of
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selected experimental sites coming next. The
experimental results are compared and analyzed in
the final subsections.

City Models

A real 3D city model of the Aldgate area of central
London, supplied by ZMapping, Ltd has been used.
The model has a high level of detail and decimeter-
level accuracy. Figure 9 shows an aerial view of the
city model used in this work.

The software toolkit developed for this study
stores and processes 3D city model data using
Virtual Reality Modeling Language (VRML), an
international standard format. Model data in
other formats can be transformed to VRML.
Buildings in VRML format are represented by
structures, which in turn comprise polygons
(normally triangle meshes).

Shadow Matching Implementation

In the offline phase, a 1m by 1m grid has been
generated, and the building boundaries determined
at each grid point as defined earlier in the paper. They
are stored in a specially defined format in a database.

In the online phase, position initialization is not
conducted because this study focuses on comparing
the different scoring schemes. Different methods used
in positioning initialization can result in very different
initial positions, so in order to prevent initialization
errors from contaminating the following scoring step,
the search area for each site is centered at the true
position. The search area for each site is defined as

everything within a radius of 20m, except for the
indoor points. Four scoring schemes are deployed at
every site in the satellite visibility scoring step.
The modified k-nearest neighbors algorithm is used
to determine the positioning solution of the
shadow-matching algorithm using (3) and (4).

Experimental Site Selection

To compare the performance of shadow matching
using different scoring schemes, experiments were
conducted at 11 pairs of sites, resulting in GNSS
data at 22 locations in central London on 23/07/
2012. In each pair, two survey-grade GNSS receivers
(Leica Viva) were set up on opposite sides of each
street (Leadenhall Street, Billiter Street, and
Fenchurch Street), standing on a footpath close to
the traffic lane. GPS and GLONASS observation
data were recorded at a 1Hz rate simultaneously
for 10 min at each pair of locations. For the purpose
of increasing the reliability of the experiments, each
site was visited twice at an interval of approximately
4hr, allowing the satellite geometry to change
completely. The first round is denoted r1, the second
round is denoted r2. Thus, in total, 7 hr and 20 min of
GNSS data was recorded in 44 observation periods
at 22 different locations. A summary of the
experimental sites is shown in Table 1; their
locations are presented in Figure 10.

Signal to Noise Ratio (SNR) Empirical Value

The signal to noise ratio (SNR) is introduced as an
indicator of satellite signal quality in the shadow-matching

Fig. 9—Part of the 3D model of London used in the experiments.
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Table 1—A summary of experimental sites

Site Name 1st Round 2nd Round
G001, ROO1 09:05-09:15 13:07-13:17
G002, R002 09:35-09:45 13:19-13:29
G003, R003 09:10-10:00 13:31-13:41
G004, R004 10:05-10:15 13:44-13:54
G005, R0O05 10:18-10:28 13:58-14:08
G006, R0O06 10:33-10:43 14:11-14:21
G007, RO07 10:45-10:55 14:23-14:33
G008, R008 10:59-11:09 14:36-14:46
G009, R009 11:14-11:24 14:49-14:59
G010, R0O10 11:31-11:41 15:03-15:13
G011, RO11 11:47-11:57 15:15-15:25

system. An empirical analysis was first conducted to
observe the level of SNR in the experimental data.
This is because SNR can vary significantly between

different types of GNSS receiver. The SNR of the
L1 C/A code signal recorded by the Leica Viva GNSS
receiver is shown in Figure 11. Figure 11a shows a
period of observation with typical ‘strong’” SNR
values; Figure 11b shows the same period of
observation, but with typical ‘weak’ SNR values.
The figure also shows that when the signal is strong,
the SNR value typically remains stable (normally
around 50 dB-Hz), whereas when the signal is weak,
it changes dramatically and the value tends to be
lower (normally below 40 dB-Hz).

SNR values of all satellites recorded by two
identical Leica Viva receivers in the experimental
period show that the SNR mainly ranges between
25dB-Hz and 55 dB-Hz with an average of 40 dB-Hz.
Thus, in those scoring schemes that account for the

Fig. 10-The experimental sites in urban canyons. It shows the experimental sites location in the satellite image

in real world.
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Fig. 11-a: A period observation of typical strong signal (SNR on L1 of GPS PRN 2, on experimental site
ID GO01_r1); b: A period observation of typical weak signal (SNR on LI of GLONASS 18, on

experimental site ID GOO1_rl).

Vol. 60, No. 3

Wang et al.: GNSS Shadow Matching: Optimized Scoring Scheme 203



observed signal quality, signals with SNR > 40 dB-Hz
are regarded as strong and signals with SNR <40
dB-Hz are regarded as weak.

Score Map of Candidate Positions

At the true position of each experimental site, a
20m radius circle is used to generate candidate
positions. The pre-calculated candidate grid of
building boundaries is loaded in the on-line phase
of shadow matching. At each observation epoch,
comparison is made between the predicted and
observed satellite visibility. Each of the four score
schemes is applied to the results for comparison. To
illustrate the distribution of scores at the grid points,
Figure 12 shows an example of score map for
experimental sites G011 (left) and R0O11 (right).

In Figure 12, the score of candidate positions
ranges mainly in the across-street direction. As
G011 and RO11 are located at different sides of a
street, it is clearly demonstrated that the shadow
matching algorithm is sensitive to changes in the
across-street direction, but less sensitive in the
along-street direction. This is in line with
expectations and complements conventional GNSS
positioning, which is generally more precise in the
along-street direction. There are some locations
where the space between buildings falls within the
search area, but the highest scoring points are
mostly on the correct street. In order to evaluate
the performance across all of the experimental data,
statistical analysis was conducted.

Statistical Analysis

Mean absolute deviation is used for each
experimental site to evaluate the performance of
shadow matching. This is transformed from local
coordinates (Northing and Easting) to the along
street and across street directions. In order to
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compare shadow matching using the different
scoring schemes, the mean absolute deviation at
each site is shown for each scoring scheme in
Figure 13. It should be noted that the statistics
cover a 10min observation period, during which
the constellation geometry changes slowly, so the
results are highly correlated over time. When
separate statistics are calculated for the two
different observation periods at the same site,
results may be considered independent. Therefore,
these are shown separately in Figure 13. A few
sites are missing from the results because fewer
than four satellites were observed, meaning that
an SPP solution could not be computed and the
GNSS receivers used for this experiment would
not record the measurements due to the design of
their software.

It is shown in Figure 13 that the along street
absolute mean deviation is typically higher than
the across street one. As shadow matching was
designed to improve the across-street positioning,
and may be combined with conventional GNSS and
other possible techniques [32], this is not considered
to be a problem.

Further statistics have been computed to average
the mean absolute deviation using each scoring
scheme. The results are shown in Figure 14.
Although the along-street performance in Figure 14
using a 3x2 scoring scheme is better than other
scoring schemes, the across-street accuracy is more
important because that is where conventional GNSS
performance is poor.

Similarly, Figure 15 also compares different
scoring schemes for their effects on shadow matching
performance in terms of success rate for achieving
across-street positioning error within a certain
number of meters. It can be seen from both graphs
that the different scoring schemes have a relatively
small influence on the performance of shadow
matching, which means that shadow matching
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Fig. 12-Shadow-matching score map of experimental sites G011 (a) and RO11 (b) using 3x3
scoring scheme SS33 (at epoch 11:55:40 23 July 2012). The circles represent the candidate
positions. The red bar is where the shadow-match positioning solution is. Refer to Fig. 10
for the true location of each site. For illustration purposes, a 50 meter-radius circular search

area centered at each truth position is used.
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performance is not very sensitive to the scoring
schemes. However, there is a small improvement
using the new SS3; scoring scheme. For example,
in Figure 14, the new scoring scheme improves the
across street accuracy with an average mean
absolute deviation of 1.61m, with a 9.4% reduction
compared to the original SSs, scoring scheme.

As the street is around 10 m wide, a positioning
accuracy better than 5m is considered good enough
to determine the correct side of the street, while a
positioning accuracy better than 2m is considered
good enough to distinguish the footpath from a traffic
lane. Figure 15 shows success rate in terms of
achieving across-street error within 1, 2, 3, 4, and
5m. It shows that the success rate for determining
the correct side of a street is 89.3% with the SSs3
scoring scheme being 3.6% better than using the
previous SSg2 scheme; the success rate of
distinguishing the footpath from a traffic lane is
63.6% of the time with SS3; being 6.8% better than
using SS 29.

CONCLUSIONS AND FUTURE WORK

This paper presents the first shadow-matching
results with an extensive search grid. An algorithm
similar to k-nearest neighbors (k-NN) has been
developed to interpolate the position solution over
the grid. A new scoring scheme, a key element of the
algorithm to weight candidate user locations, has
been proposed. The new scheme takes into account
the effects of satellite signal diffraction and reflection
by weighting the scores based on diffraction modeling
and signal-to-noise ratio (SNR). The process of
generating this grid of building boundaries has also
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Fig. 16-Conventional GNSS positioning solution using weighted least square (WLS) at site G003 (green
triangles denote the WLS solutions; purple circles denote the shadow matching solutions).

been optimized to reduce the computational load.
Real-world GNSS data has been collected at 22
different locations in this work, providing a
comprehensive and statistical performance analysis
of the new shadow-matching algorithm.

In the experimental verification, the new scoring
scheme achieves an average cross street accuracy of
1.61m, a 9.4% improvement over the previous
scheme. The success rate for determining the correct
side of a street is 89.3%, a 3.6% improvement, while
the success rate for distinguishing the footpath from
a traffic lane is 63.6%, a 6.8% improvement.

Conventional GNSS positioning performs relatively
poorly in the across street direction, and better along
the street. Figure 16 compares the conventional GNSS
positioning solution using weighted least square
(WLS) with shadow matching solutions at point
GO003_rl. It shows that the across-street positioning
error of the conventional GNSS solution (WLS) can
reach 20m, whereas the across-street positioning
error of shadow matching solutions is less than 5m.
As shadow matching has across-street accuracy of
only a few meters, it is highly complementary to
conventional GNSS positioning methods.

In future work, shadow matching using GPS and
GLONASS data from a smartphone will be tested.
Four-constellation shadow-matching performance will
also be predicted by combining GPS and GLONASS
data from two different epochs, separated in time.
The Bayesian inference received signal strength
(RSS) location method and the particle filter may be
investigated for the shadow matching positioning
algorithm. Further investigations will be conducted
to improve the shadow-matching algorithm.

To obtain an accurate and reliable position
solution in challenging urban environments, shadow

206 Navigation

matching must be combined with conventional
GNSSS positioning, NLOS signal detection, and other
techniques that exploit the 3D mapping, such as
height aiding. This concept is known as intelligent
urban positioning (IUP) and is introduced in [32].
IUP may also be extended to incorporate other
techniques, such as Wi-Fi, Bluetooth Low Energy,
and MEMS inertial sensors.
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