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Abstract

In many coordinated activities documents are produced and maintained in a distributed
fashion, without the use of a single central repository or file store. The complex relation-
ships between documents in such a setting can frequently become hard to identify and
track.

This thesis addresses the problem of managing the consistency of a set of distributed and
possibly heterogeneous documents. From the user perspective, the process of consistency
management encompasses checking for consistency, obtaining diagnostic reports, and op-
tionally taking action to remove inconsistency. We describe an approach to execute checks
between documents and providing diagnostics, and demonstrate its validity in a number
of practical case studies.

In order to be able to check the consistency of a set of distributed and heterogeneous
documents we must provide mechanisms to bridge the heterogeneity gap, to organise
documents, to find a way of expressing consistency constraints and to return appropriate
diagnostic information as the result of a check. We specify a novel semantics for a first order
logic constraint language that maps constraints to hyperlinks that connect inconsistent
elements. We present an implementation of the semantics in a working check engine,
and a supporting document management mechanism that can include heterogeneous data
sources into a check. The implementation has been applied in a number of significant case
studies and we discuss the results of these evaluations.

As part of our practical evaluation, we have also considered the problem of scalability.
We provide an analysis of the scalability factors involved in consistency checking and
demonstrate how each of these factors can play a crucial role in practice. This is followed
by a discussion of a number of solutions for extending the centralised check engine and
an analysis of their strengths and weaknesses, as well as their inherent complexities and
architectural impact.

The thesis concludes with an outlook towards future work and a summary of our contri-
butions.
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1 Introduction

Many businesses produce documents as part of their daily activities: software engineers
produce requirements specifications, design models, source code, build scripts and more;
business analysts produce glossaries, use cases, organisation charts, and domain ontology
models; service providers and retailers produce catalogues, customer data, purchase orders,
invoices and web pages.

What these examples have in common is that the content of documents is often semanti-
cally related: source code should be consistent with the design model, a domain ontology
may refer to employees in an organisation chart, and invoices to customers should be con-
sistent with stored customer data and purchase orders. As businesses grow and documents
are added, it becomes difficult to manually track and check the increasingly complex re-
lationships between documents. The problem is compounded by current trends towards
distributed working, either over the Internet or over a global corporate network in large
organisations. This adds complexity as related information is not only scattered over
a number of documents, but the documents themselves are distributed across multiple
physical locations.

This thesis addresses the problem of managing the consistency of distributed and possibly
heterogeneous documents. “Documents” is used here as an abstract term, and does not
necessarily refer to a human readable textual representation. We use the word to stand
for a file or data source holding structured information, like a database table, or some
source of semi-structured information, like a file of comma-separated values or a document
represented in a hypertext markup language like XML [Bray et al., 2000]. Document
heterogeneity comes into play when data with similar semantics is represented in different
ways: for example, a design model may store a class as a rectangle in a diagram whereas
a source code file will embed it as a textual string; and an invoice may contain an invoice
identifier that is composed of a customer name and date, both of which may be recorded
and managed separately.

Consistency management in this setting encompasses a number of steps. Firstly, checks
must be executed in order to determine the consistency status of documents. Documents
are inconsistent if their internal elements hold values that do not meet the properties
expected in the application domain or if there are conflicts between the values of elements
in multiple documents. The results of a consistency check have to be accumulated and
reported back to the user. And finally, the user may choose to change the documents to
bring them into a consistent state.

The current generation of tools and techniques is not always sufficiently equipped to deal
with this problem. Consistency checking is mostly tightly integrated or hardcoded into

12



1.1. Overview of Contributions 13

tools, leading to problems with extensibility with respect to new types of documents.
Many tools do not support checks of distributed data, insisting instead on accumulating
everything in a centralized repository. This may not always be possible, due to organi-
sational or time constraints, and can represent excessive overhead if the only purpose of
integration is to improve data consistency rather than deriving any additional benefit.

This thesis investigates the theoretical background and practical support necessary to
support consistency management of distributed documents. It makes a number of contri-
butions to the state of the art, and the overall approach is validated in significant case
studies that provide evidence of its practicality and usefulness.

1.1 Overview of Contributions

This thesis makes a number of contributions to the state of the art. We provide a way
to specify constraints that express relationships between elements in multiple documents,
regardless of their storage location or their content. By building on an intermediate
encoding and not incorporating location information these constraints take into account
document heterogeneity and provide location transparency.

We specify a novel semantics [Nentwich et al., 2001b, Nentwich et al., 2001a] for the con-
straint language that maps formulae in the language to hyperlinks that highlight consistent
or inconsistent relationships between documents. This powerful diagnostic is particularly
effective in the distributed setting where hyperlinks are often used as a native navigation
mechanism.

We move away from centralisation and demonstrate a lightweight architecture for manag-
ing the consistency of loosely maintained distributed documents [Nentwich et al., 2002].
This architecture is novel in that it raises consistency checking to the level of a first-class
and standalone service, not a feature of any particular tool.

We include an assessment of the scalability of the proposed architecture, and an evaluation
of a mixture of techniques such as incremental checking and distributed checking for
addressing potential scalability limitations.

Finally, we demonstrate the applicability, and practicality of our work in substantial case
studies [Nentwich et al., 2003b].
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1.2 Statement of Originality

It is not always possible or productive to conduct research in isolation. During the course
of producing this thesis I have had the fortune of having several students to support me
in prototyping various ideas. They have been identified in the acknowledgements. In
addition to this support, I have been able to build on foundations laid by others. This
section serves to distinguish their contributions from the novel contributions I lay claim
to in this thesis.

The approach to checking presented in this thesis has its roots in [Ellmer et al., 1999].
I was part of the research group that took on its continuation. This work specifically
introduces the concept of relating XML documents using a constraint language, using
document universes for structuring input and, crucially, the idea of connecting inconsistent
elements using hyperlinks. It proposes a method of annotating the consistency rules with
link generation strategies, for example “generate an inconsistent link if the rule is false”.

The work presented in this thesis has adopted the technique of selecting elements and of
generating hyperlinks for diagnostic purposes. It does however make significant advances
that make the technique much more powerful and useable. In particular: the proposed
language is based on first order logic and not a proprietary mechanism for specifying pairs
of elements to be connected via hyperlinks. This has two important consequences: firstly,
users now concentrate on specifying a constraint rather than expressing which elements
are to be connected via a link – the link generation is transparent and handled by the
link generation semantics. And secondly, it is possible to specify constraints, and thus
generate links, between any number of elements rather than the source-destination pairs
envisaged in the original paper. This raises the level of expressiveness considerably and
enables the application of the system to complex documents such as those found in software
engineering.

The document set and rule set mechanisms referred to in this thesis derive directly from the
document universe mechanism. They have since been refined by Licia Capra in conjunction
with Wolfgang Emmerich and Anthony Finkelstein to allow recursive set inclusion. I have
further refined them to provide an abstraction mechanism that allows the inclusion of
heterogeneous data sources such as databases or Java source files into a check. Anthony
also produced the running example that is used throughout the thesis.

Danila Smolko has worked on consistency checking using mobile agents [Smolko, 2001]. His
thesis includes an algorithm for analysing XPath expressions for the purpose of incremental
checking. The algorithm attempts a simple static analysis of diff paths and rule paths, and
failing that falls back to a slower evaluation method. The incremental checking techniques
presented in this thesis proceed entirely on the level of static analysis, distinguishing the
cases of element addition, deletion and change, and thus go significantly beyond Danila’s
earlier approach.
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All other concepts and ideas in this thesis are entirely the result of my own research.

1.3 Thesis Outline

The content of the thesis is arranged as follows: The following two chapters will introduce
the problem and neighbouring areas of research in more detail and outline, at a high level,
our proposed approach. Chapter 2 explores the problem space and surveys related work,
and Chapter 3 provides the overview.

Following the introductory chapters, we will move toward a formal definition of docu-
ments in Chapter 4 and use this to specify our novel semantics for creating links between
inconsistent documents, in Chapter 5.

The thesis then explores the practical side of providing a consistency checking service,
starting with the presentation of the implementation of our semantics in Chapter 6. Chap-
ter 7 puts this implementation to the test in a number of case studies. In Chapter 8 we
look at some of the limitations of our implementation, their impact on scalability, and
possible solutions. This will complete the main body of the thesis – from the definition of
the problem, a sketched high-level approach, a formal definition, practical implementation
and substantial evaluation.

The remaining chapters revisit our survey of related work with some remarks in the light
of the content of the thesis, provide a roadmap for future work, and state our conclusions.



2 Motivation

This thesis concerns itself with the problem of managing consistency between distributed,
structured or semi-structured documents. It is our goal to find a solution that will help the
user to track inconsistency, that will work in many application domains, and is amenable
to straightforward implementation and evaluation.

In this chapter we will sketch the problem in more detail, define the scope of our work,
including the types of documents we expect to manage, and look at the main research
problems that have to be overcome in order to make progress towards a solution in the
remainder of the thesis.

We will also embed the problem in the existing body of work on consistency management
and related areas in Computer Science. This will help us to put our work into context,
contrast it with previous work and further explain what is novel about our approach. A
detailed comparison with related work will follow in Chapter 9 after the main discussion.

2.1 What is a Document?

“Document” is an overloaded term that is used differently by different people: a typical
PC user will probably be thinking of a word processor document containing free form text;
a web designer may be thinking of an XHTML [Group, 2002] file; and graphic designers
may refer to their pixel graphics files as documents.

Clearly these types of documents are very different in nature, ranging from natural lan-
guage, to markup, to graphical information. Dealing with inconsistency in natural lan-
guage, between graphical information, and marked up or semi-structure data requires very
different approaches, due to the difference in structural rigidity.

In our research we have focused on documents that contain structured or semi-structured
data. That means that information in these documents is sufficiently grouped, or struc-
tured, to enable us to identify fragments of information and refer to them. This type of
information encompasses the usual “text” forms of semi-structured, marked up documents
like XML [Bray et al., 2000], database tables, source code files, and so on.

Another important characteristic of the types of documents we are interested in is that
they are commonly used to store information that corresponds to some model, be it implicit
or expressed formally:

• A Java source code file follows the Java grammar, as specified in BNF form.

16
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• A product catalogue corresponds to the business model of what makes a product
and a catalogue

• An XMI [OMG, 2000b] file usually conforms to the UML [Object Management Group, 1997]
meta-model, or some other appropriate meta-model.

The clearly identifiable parts of these documents have something in common: their data
items carry static semantics in the application domain. We want to check that these
semantics actually hold.

2.2 Distribution and Consistency Checking as a Service

When related information is spread across a number of documents, the complexity of
managing document relationships increases. In activities like software engineering, or
business activities involving a large number of people, the number of documents can in-
crease quickly, creating a consistency management problem.

Distribution occurs in two different ways in this scenario. Firstly, it refers to the scattering
of information from a common, logical model across multiple documents. Secondly, it refers
to the potential physical distribution of the documents themselves across multiple hosts.

Take the example of a UML model and a set of Java source code files. The documents
are part of an overall model of a system, the UML model is a design model, and the Java
source code an implementation model. The two are obviously related, and even if we do
not wish to enforce consistency, executing a consistency check between them will help us
track differences until we decide to take action.

Which tool is responsible for a consistency check across such heterogeneous specifications?
Is it the UML tool or the Java source code manipulation tool, or both? Many modern
development environments get around this particular problem by implementing support
for both, and assuming responsibility for consistency, but what if we wish to add addi-
tional models later, for example our own proprietary information? What if we want to
retain some openness to execute currently unforeseen types of consistency checks in the
future? Where do we turn when we want to check our marked up requirements docu-
ment, deployment or build scripts against the source code or UML model for traceability
purposes?

We propose that it can be beneficial to treat consistency checking as a service in its
own right; a service that sits between tools and executes consistency checks between
heterogeneous documents. This makes clear the point of responsibility for checking, and
removes the need to modify tools. Provided that the service can deal with heterogeneous
notations, this also eliminates the need to integrate document models into a common
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model and centralize them – a powerful means of ensuring consistency, but one that is
not always appropriate due to the effort involved in achieving the integration, and the
organisational politics involved in agreeing on such a model.

We also propose to distinguish the processes of checking consistency, reporting results
and making changes to documents. This is an application of the “tolerant” approach to
inconsistency, which has been proposed in previous research [Balzer, 1991] – we will have
more to say on this area in a later section. A tolerant approach to inconsistency tracks and
monitors inconsistency, but does not enforce its removal. By providing a checking service
that tracks inconsistent relationships between documents we can keep the user informed
and let them make their own judgment on when to take action, rather than forcing a
particular process or way of working onto them.

The effect of adopting a tolerant approach is amplified in a distributed setting where
documents may be owned by different people, and verbal communication may in any case
be required before action can be taken. We believe that it is also a manifestation of a
generally sound engineering principle: that of separation of concerns. If a stricter approach
to inconsistency should be required, this could always be achieved by providing an editing,
triggering and monitoring framework around a tolerant consistency checking mechanism,
while keeping the two encapsulated in dedicated components. In a sense, this makes the
tolerant approach more general, because it can be specialized with additional components
to increase strictness.

In summary, we believe that in certain settings of distributed, heterogeneous documents, a
standalone consistency checking service that supports a tolerant approach to dealing with
inconsistency can provide tangible benefits, and will be useful as a light-weight solution
to tracking complex relationships between documents.

2.3 Document Heterogeneity

Even under the assumptions set out previously, namely that we are dealing with struc-
tured or semi-structured documents that contain suitably accessible information, we must
address the problem of document heterogeneity. Any approach that neglects this is liable
to become domain specific or tool dependent.

Document heterogeneity must be addressed on two levels: syntactic heterogeneity, the
physical representation of documents, for example as a text file or a database table, and
semantic heterogeneity, which refers to the differences in the models we are trying to check
against one another.

Syntactic heterogeneity can be addressed by falling back onto a common data representa-
tion. We will use open standards for this purpose and represent documents in XML. This
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decision, the rationale behind it, and why we think that this does not lead to a loss of
generality, will be discussed in Section 3.2.

Semantic heterogeneity is a harder challenge. Even if we represent documents in XML as
a common physical format, we will still have to be able to relate different XML structures
to one another. For example, a Java class may be represented either by its simple name,
or fully qualified with its package name; information presented in a simple string in one
document may have to be aggregated from multiple locations in another document, and
so on.

Semantic heterogeneity can be addressed by either translating all input into a common
model such as first order logic during the course of a check, or by creating a consistency
checking mechanism that can directly relate information represented in different models.
The former approach is probably more exhaustive and could be used to establish guar-
antees of completeness, but it also brings a large upfront cost that can make it infeasible
if only certain parts of documents are ever checked for consistency. We opt instead for
the second, by providing a constraint language that relates information in heterogeneous
models. This makes our approach suitable for situations where a light-weight check of
certain properties of documents is valuable and up-front costs need to be kept low.

2.4 The Consistency Management Process

We have already suggested that under our tolerant view of inconsistency, editing, con-
sistency checking, and making changes to, or repair documents, are separable activities.
These activities can be flexibly performed by the user, in a process that would resemble
Figure 2.1.

Figure 2.1: The Consistency Management Process

In this thesis, we will concentrate on providing components to assist with the checking
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and reporting of inconsistency. As part of the consistency management process:

1. Users edit their documents. During this modification phase consistency is not con-
sidered an issue. At some point, for example during a baselining phase in software
development, or a trade settlement run in a financial system, somebody initiates a
consistency check.

2. The checker component provides a report, which contains diagnostics that express
the current consistency status of the set of documents. Based on this consistency
status, the user can make a choice to either repair the documents or to go back to
editing.

3. If the user chooses to repair the documents, they use a tool to make the relevant
changes. This may have to be preceded by face to face communication and perhaps
even a conflict resolution process. We will not discuss these issues further in this
thesis, but will instead concentrate on providing a solid checking infrastructure to
support these activities.

Because we have clearly separated the different activities involved in consistency manage-
ment, this process can be flexibly adapted to practical needs. The notion of tolerance
towards inconsistency is highlighted by the absence of any mechanism that forces tran-
sition between the phases, or any sort of ordering. This does of course imply that in a
real deployment some care must be taken that the results of a check reflect the current
editing status of the document. We see this as the responsibility of a higher level workflow
that could be built around these building blocks. In this thesis, however, we will mainly
concern ourselves with providing the theoretical means and infrastructure for the building
blocks themselves.

2.5 Related Work

Consistency management is an important topic in many areas of computer science. These
areas are quite diverse, ranging from static semantic checking in compiler construction to
integrity maintenance in deductive databases. Because of this ubiquity, it is not possible to
even attempt an exhaustive survey. Instead, this chapter discusses those areas of research
where there has been a long term interest in the management of consistency and where it
has been addressed most explicitly in scientific publications.

It is not possible at this point to attempt a comparison of our approach to previous work
in any amount of detail. Instead, we will concentrate on identifying the main research
questions and the weltanschauung behind each area of related research. Chapter 9 will
add depth to this summary through closer comparison.
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Consistency Management
in Software Engineering

Software Development
Environments

Databases

Viewpoints

"Tolerating" Inconsistency

Inter-Viewpoint Consistency

"Consistency Rules"

Multiple Perspectives

Tool Integration
Language Integration

Integrity Enforcement

Consistency Enforcement
Incremental Checking

Federated Databases Conflict Resolution
Formal Checking Techniques

Figure 2.2: Consistency Management in Computer Science

Figure 2.2 is an overview to accompany the following discussion. It broadly classifies re-
lated research into four areas. This classification is a simplified guide. It is not exhaustive,
nor are the areas mutually exclusive, for example the work on viewpoints and software
development environments has frequently overlapped. For each area we discuss the most
influential ideas. The following will be a systematic and largely historically ordered walk-
through of the field, beginning with software development environments.

2.5.1 Software Development Environments

Software development environments are the offspring of research on programming envi-
ronments. The aim of a programming environment is to encapsulate the process of editing
and compiling programming languages in a tool in order to increase feedback and limit
the possibility of syntactic and static semantic mistakes. Inconsistency occurs when a user
enters information that violates syntactic or semantic constraints.

Inconsistency is generally regarded as a “show stopper” in programming language compila-
tion. Programming environments consequently evolved the concept of a “syntax-directed
editor”, an editor that would only allow the construction of legal source code according to
a grammar. In this way, the possibility of making a mistake is eliminated altogether. From
the early days, programming environments have thus included mechanisms for producing
such editors automatically from language grammars.

The Cornell Synthesizer Generator [Reps and Teitelbaum, 1984] uses specifications based
on ordered attribute grammars [Knuth, 1968] to automatically produce editors for pro-
gramming languages. The editor maintains an attributed abstract syntax tree in memory,
which is kept in a consistent state by checking user input against the attribute gram-
mar. CENTAUR [Borras et al., 1988] uses a language called TYPOL [Despeyroux, 1988]
for the specification of semantics and keeps multiple views of a program consistent by
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checking if a change can be translated into a legal change on the abstract syntax tree.
MultiView [Altmann et al., 1988] also uses abstract syntax trees, stored in a database, to
provide multiple syntax-directed views of programs.

The idea of using abstract syntax trees for internal representation and providing static
semantic checks was subsequently widened to include checks between heterogeneous lan-
guages. Software development environments can relate multiple abstract syntax trees
using static semantic constraints and check if a construct in one language violates one in
another. They also provide more comprehensive development support including features
such as version control and project management.

Software development environments produced in research include the Eureka Software
Factory [Schäfer and Weber, 1989], Gandalf [Habermann and Notkin, 1986] and GOOD-
STEP [GOODSTEP Team, 1994]. The latter allows the specification and checking of sta-
tic semantic constraints between heterogeneous document types [Emmerich et al., 1995].
IPSEN [Nagl, 1996] also has some support for consistency checks between multiple views,
but relies on the user to manually specify references between view elements.

These software development environments retain some of the characteristics of program-
ming environments. In particular, it is assumed that abstract syntax trees for all doc-
uments are in memory, or are at least cached through an intelligent secondary storage
mechanism. In practice this means that they tend to be built on a central repository,
typically an object database. They also retain to some extent the view that inconsistency
must be controlled at all times. GOODSTEP is a good example as it contains a built-in
triggering system that provides a recheck after every editing operation.

Some modern, industrial successors of these early software development environments have
moved away from such constraints in favour of a more tolerant approach to inconsistency.
eclipse [IBM, 2003] is a good example, it checks for consistency of Java code bases on
saving and provides a “task” view that warns of errors – but does not enforce resolution.
This seems similar to the “design critic” feature in Argo/UML [Robins et al., 1999], which
also maintains a user-modifiable list of consistency problems and more general issues. The
consistency checking mechanism in both cases, however, still relies on a user workspace
to contain all documents, and on in-memory abstract syntax tree representations being
available at all times. It is thus not particularly extensible, as proprietary code has to be
written into the tools to add support for additional types of documents.

In summary, research on programming environments concentrated on providing support
for manipulating programs, with syntax directed editors that eliminate the possibility of
introducing errors. Software development environments can be seen as an extension of this
work to multiple heterogeneous document types, with additional features that support day
to day software development. In both areas, we find reliance on a central repository, and
mostly proprietary and not particularly extensible consistency checking mechanisms.
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2.5.2 Viewpoint-Oriented Software Engineering

A Viewpoint [Finkelstein et al., 1992] is a specification fragment that describes part of a
software system using a particular software engineering notation. Research on viewpoints
emerged at about the same time as that on software development environments, but
provides a looser approach to language integration.

The overall aim of Viewpoint-Oriented Software Engineering is to tackle the problem of
coordinating the input of a large number of individuals in the design of large and complex
software systems. The complexity of such systems typically leads to a requirement to
specify them from different angles using different notations, for example to capture both
the static and dynamic properties of a system. The problem of integrating such notations
is known as the multiple perspectives problem.

It follows that inconsistency can arise in the viewpoints framework in two ways: a view-
point can contain inconsistencies (intra-viewpoint inconsistency) or it can contain infor-
mation that contradicts another viewpoint (inter-viewpoint inconsistency). It was envis-
aged that multiple viewpoints would be related using inter-viewpoint consistency rules
[Nuseibeh et al., 1993, Easterbrook et al., 1994]. Alternatively, all viewpoints could be
converted into a common first order logic representation [Finkelstein et al., 1994] and a
theorem prover could be used to find contradictions in the combined logical specification.

The Viewpoints framework makes relatively few architectural assumptions about the dis-
tribution of documents. This is partly because it was never convincingly implemented
or evaluated in practice. It did however take a step in the opposite direction of software
development environments as far as its treatment of inconsistency was concerned. Incon-
sistency was not viewed as an error that had to be prevented, but as something that had
to be detected and highlighted. It did not prescribe elimination but deferred the resolution
of inconsistency to a later stage. This tolerant view of inconsistency has been influential
and has since permeated into other areas of research that can be broadly classified as
“consistency management in software engineering”.

2.5.3 Consistency Management in Software Engineering

The tolerant treatment of inconsistency first introduced by [Balzer, 1991] was found to
be a good approach to managing consistency in software engineering, where documents
are complex and difficult to keep consistent at all times. Consistency management has
since become a research topic of its own. The research agenda in [Finkelstein, 2000] shares
many of our goals and provides a good overview of the problem space.

[Nuseibeh et al., 2000] discusses a high level framework for managing inconsistency in soft-
ware development. This work is part of an ongoing interest in how to deal with inconsis-
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tency in software engineering artefacts [Nuseibeh and Russo, 1998, Nuseibeh et al., 2001].
It sets out the typical requirements, heterogeneity, the evolution of documents at differ-
ent rates, and document complexity. An abstract architecture is specified that outlines
the services necessary for consistency management: the location and identification of the
cause of inconsistencies, the classification of inconsistencies, and actions for inconsistency
handling. Work in this area has carefully addressed the organisational structures and
processes necessary to support consistency management, as well as identified the high-
level components that are needed to support it. Evaluation was however always based
on manual methods that were geared towards specific specification languages. The work
in this thesis can be seen to provide the concrete means to make these ideas feasible in
practice.

[Zave and Jackson, 1993] propose to translate software engineering specifications into a
common semantic model, represented in first order logic. Consistency checking between
specifications can then be performed by taking the conjunction of their logical represen-
tation and detecting contradictions. The paper acknowledges that it will be difficult in
practice to translate entire documents into logic, and even more difficult to prove proper-
ties about them. Instead, it is proposed that only properties that will lead to interaction
between specification types are translated. It is not at all clear to us that it will be possible
to easily identify such interacting properties as new types of documents are added.

Similar work in the area of viewpoints [Hunter and Nuseibeh, 1998] deals with the transla-
tion of specifications into first order logic, and the subsequent detection of inconsistency. A
quasi-classical logic is used that enables the continuing analysis of specifications in the pres-
ence of inconsistency, circumventing the ex falso quodlibet property of classical logic. This
idea, of ongoing reasoning in the presence of inconsistency, has proved popular in a number
of application areas where formal analysis is required. [Easterbrook and Chechik, 2001]
discusses a framework for model checking the composition of multiple, possibly inconsis-
tent state models. Inconsistency is addressed by means of a lattice-based multi-valued
logic, which enables the exploration of different merge scenarios, and subsequent resolu-
tion. [Huth and Pradhan, 2001] discuss further the problem of sound refinement of partial,
view-based specifications, and how to reduce three-valued logics that can tolerate inconsis-
tency in order to be able to apply standard model checking techniques. These approaches
all share the common goal of allowing continuing analysis of, or reasoning with formal
specifications in the presence of inconsistency. They benefit from the assumption that
specifications are either already available as formal models, or can be translated into for-
mal models. This makes it possible to provide powerful diagnostics such as action traces.
In application domains such as safety critical systems, strong and proven diagnostics are
imperative to enable developers to either eliminate, or control inconsistency. On the other
hand, for simple documents translation into a formalism is perhaps more effort than is
necessary, and being able to relate documents while retaining their native models may be
desirable.
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There are a number of neighbouring areas in software engineering that deal with model
analysis, and the analysis of dynamic semantics, for example the work on model check-
ing [Clarke et al., 2000]. In model checking, and in model analysis systems like Al-
loy [Jackson, 2002], a specification is taken and transformed by a proof system or trace
algorithm into an internal model over which counter-examples can be generated. The
generation of an internal state model usually implies resolving non-deterministic choices,
which leads to the “state explosion problem”. In Alloy, implied iteration over infinite
models causes a similar problem, requiring the user to specify a maximum search horizon
of instances. Inconsistencies in models are not reported back by pointing to a particular
part of a specification, but by providing a trace, or an instantiated counter-example that
shows how inconsistency arises. As we will see later, this differs from what we do in that
we can point quite clearly to the document locations that cause inconsistency – because
we have no notion of time, no implied state space, nor a notion of an implied model to
worry about. Essentially, because we are attacking the smaller problem of static seman-
tics, rather than dynamic semantics or anything that requires a proof system, we are able
to provider firmer diagnostics.

2.5.4 Databases

Integrity has always been an important concept in database research, where the traditional
view is that strong guarantees ought to be given on data consistency. In practice, this
means eliminating inconsistency or preventing it from occurring in the first place through
normalization of the data model. This view of eradication somewhat shifts the task of
a consistency checker from detecting and pinpointing inconsistency to simply disallowing
updates that would introduce inconsistency. A typical database system would rely on a
mechanism such as ECA Triggers [Widom and Ceri, 1996] to recheck referential integrity
and integrity constraints whenever a transaction modifies data, and issue a rollback or
commit.

Federated databases [Ceri and Widom, 1993] are a means of making a collection of other-
wise autonomous and centralized databases appear as a single entity. Research in the area
has consequently aimed at extending the traditional referential integrity and transaction
models from a single to multiple databases. The assumptions and design choices made
in these systems – existence of transaction processing logic on each host, simple integrity
constraints, enforcement of consistency – make them rather unsuitable for loosely man-
aged distributed and heterogeneous documents. Later work [Grefen and Widom, 1997,
Grefen and Widom, 1996] has successfully eliminated the need for heavyweight mecha-
nisms such as global transactions, but still requires a certain amount of processing ca-
pability on each host. Furthermore, the assumption is that all data will be hosted in a
relational database, which makes it difficult to include heterogeneous data into a check.
We will discuss these questions further in Chapter 9.
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2.6 Chapter Summary

In this chapter we have taken a more detailed look at the problem we are trying to solve.
We will be working with structured or semi-structured documents that conform to some
kind of model, or grammar. We will assume that documents may be heterogeneous on
both a syntactic and semantic level, and that they may be distributed over a number of
hosts on a network.

In order to retain domain independence, flexibility, and extensibility as well as supporting
a tolerant approach to inconsistency, we have argued that consistency checking in this
setting should be treated as a service that sits between tools and is invoked on request by
a user.

We have then embarked on a tour of some of the research that forms the background of
the thesis. We looked at the transition from programming environments that supported
the editing of single document types to software development environments, which aimed
to integrate a number of heterogeneous tools over proprietary, centralized data structures
like abstract syntax trees or graphs.

The viewpoints framework is a loosely coupled system for capturing software engineering
specifications in a number of heterogeneous languages. It features a notion of consistency
checking and advocates a tolerant approach to inconsistency, in which consistency is mon-
itored but not enforced. This interest in “lazy” consistency management has spun off a
number of research projects in the area of software engineering, including the work on
continued reasoning in the presence of inconsistency in formal models.

Finally, we have seen that databases have been successfully adapted to distributed sce-
narios using the federation approach. Research in this area initially relied on heavyweight
mechanisms like global transactions and eventually moved to provide more lightweight
communication protocols that allowed the construction of consistency monitors using lo-
cal transactions only. The focus in this research was always to extend traditional database
notions of integrity to allow a seamless transition to a distributed scenario.

With the necessary background established, we can now provide a high level overview of
our approach to consistency management.



3 Overview

We have presented the problem of consistency management and introduced the notion of
consistency checking as an open, tool-independent service. In this chapter, we will set the
scene for the remainder of the thesis by sketching our approach for a service.

The following overview looks at the main characteristics of our service: the use of XML
as a means of overcoming heterogeneity; the specification of constraints between multiple
documents; and the reporting of inconsistency through a novel evaluation semantics that
produces hyperlinks between inconsistent documents, and elements in the documents.
Towards the end of the chapter, we will present a simple running example that will be
referenced throughout.

3.1 A Consistency Checking Service

In the previous chapter we argued for the creation of a tool-independent, non-proprietary,
open and extensible consistency checking service. This service should be able to deal
with heterogeneous, structured and semi-structured documents, and monitor and track
inconsistency between them.

We envisage that such a service could operate as follows:

• We retrieve documents and load them into memory, translating them into an XML
representation in the process. This translation, which is discussed further in Sec-
tion 3.2, acts to remove syntactic heterogeneity barriers.

• A constraint language, based on first order logic but adapted to work with XML,
is used to establish constraints between multiple documents. This defines a simple
notion of consistency – documents that obey constraints are consistent, and those
that do not are inconsistent.

• We provide an evaluation semantics for the constraint language that effectively pin-
points where in documents constraint violations occur.

In order to effectively identify and report inconsistency we have defined a semantics for
our constraint language that creates hyperlinks called consistency links between elements
in documents –we will see later how documents are structured and elements in documents
are identified. A consistency link is an n-ary hyperlink that carries a status attribute. The
status attribute indicates whether the linked elements are in a consistent or inconsistent
relationship. For example, if a constraint specifies that element a in document A has to
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be equal to element b in document B, we will link a to b using an “inconsistent” link in
case of a violation.

We will see later that these links act as “witnesses” to constraint violations, recording
the locations of inconsistent elements and persisting them in a set of links. Such a set
of links acts as a snapshot of the state of consistency of a set of documents with respect
to constraints. Hyperlinks have long been used as an effective means of navigating be-
tween distributed, semi-structured information and we use them to establish a diagnostic
mechanism that is well suited to our problem.

We will also explore several ways to make use of the links to report consistency violations
to the end user: by visualizing the links in a web browser; by providing textual reports
that display data from the documents; or by inserting the links into the checked documents
to enable direct navigation between inconsistent elements.

We have fully implemented our service and evaluated it in several case studies that evidence
the usefulness and diagnostic power of our consistency link semantics. The implementation
is contained in an encapsulated component and is largely architecture independent, making
it deployable as a simple tool, or as an integrated service in an enterprise architecture.

3.2 XML as a Syntactic Representation

The checking service will have to be able to reference and manipulate elements in different
types of documents in order to address heterogeneity. We use the eXtensible Markup
Language (XML) [Bray et al., 2000] as an underlying syntactic representation. While we
could use other data models to the same effect, XML provides a number of advantages.

XML has become very popular for data interchange. It is an open standard and has been
rapidly adopted and implemented by the software industry. Users can create their own
markup elements and attributes. The relationships of the markup elements, such as which
elements can be contained in others, can be controlled by providing a grammar, in the
form of a Document Type Definition (DTD) or XML Schema [Fallside, 2001]. XML files
can then be checked, or validated, against the grammar to protect processing applications
from syntax errors.

XML has simplified the creation of markup languages and this has led to its adoption in a
variety of application domains. For example, in Software Engineering, XMI [OMG, 2000b]
is a standard encoding for Meta Object Facility [Object Management Group, 2000a] in-
stances, including the UML [OMG, 2000a]; business to business messaging is covered by
ebXML [Eisenberg and Nickull, 2001]; and financial institutions are working on a standard
format for derivative trade data, the Financial Products Markup Language [Gurden, 2001].
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Most importantly for us, XML comes with a set of additional technologies that facilitate
the processing of XML files. We will briefly take a look at the technologies we are using, the
Document Object Model (DOM) [Apparao et al., 1998], XPath [Clark and DeRose, 1999]
and XLink [DeRose et al., 2001].

The Document Object Model (DOM) is an application programming interface (API). It
specifies a set of interfaces that can be used to manipulate XML content. XML content
is represented in the DOM as an abstract syntax tree structure. The interfaces contain
methods for manipulating nodes in the tree, traversal and event handling. The DOM
provides a convenient mechanism for representing XML documents in memory and is
implemented by most major XML parsers and XML databases.

Since the initial specification of XML, several languages have emerged as “core” languages
that provide additional hypertext infrastructure to applications that have to deal with
XML. XPath is one of these core languages. It permits the selection of elements from
XML documents by specifying a tree path in the documents. For example, the path
/Catalogue/Product would select all Product elements contained in any Catalogue el-
ements in an XML file. The language includes mechanisms for traversing the tree along
different axes. There are axes for navigating to the children of a node, as in the example,
the parent node, ancestor nodes, sibling nodes and various XML namespace related axes.

XPath location paths can be absolute, like /Catalogue/Product, relative to a context
node, like Product or relative to a variable, for example $x/Product. Relative paths have
to provide an execution context that contains either a context node or provides variable
resolution. XPath also permits the restriction of nodes along each step of the path accord-
ing to predicates, boolean expressions that must be true if a node is to be selected. For
example, the path /Catalogue/Product[@name=’X’] would select only those Product ele-
ments whose attribute name is equal to the literal string ’X’. In practice, XPath processors
like Jaxen [McWhirter, 2004] or Xalan [Apache Software Foundation, 2004] often return
DOM constructs as a result, for example Nodelist objects that represent a node set. We
will use XPath in this way throughout the thesis.

XLink is a another core infrastructure language. It is the standard linking language for
XML and provides additional linking functionality for web resources. HTML links are
highly constrained, notably: they are unidirectional and point-to-point; have a limited
range of behaviours; link only at the level of files unless an explicit target is inserted in the
destination resource; and, most significantly, are embedded within the resource, leading
to maintenance difficulties.

XLink addresses these problems allowing any XML element to act as a link, enabling the
user to specify complex link structures and traversal behaviours and to add metadata
to links. Fig. 3.1 shows some XML markup that uses XLink to turn an element into a
link. The Product element has an xlink:type attribute attached to it – XLink aware
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processors will now recognise this element as a link. The element contains two elements
of type locator, which will be recognised as link endpoints. This link now links together
the first and second Product element in oldcatalogue.xml. Most importantly, it links
together two elements in a file without inserting any links directly into the file, that is it
is an external link with respect to those files.

<Catalogue>

<Product xlink:type="extended">

<Name>Haro Shredder</Name>

<Code>B001</Code>

<Price currency="GBP">349.95</Price>

<Combines xlink:type="locator"

xlink:href="oldcatalogue.xml#/Catalogue/Product[1]"

xlink:label="component 1"/>

<Combines xlink:type="locator"

xlink:href="oldcatalogue.xml#/Catalogue/Product[2]"

xlink:label="component 2"/>

</Product>

</Catalogue>

Figure 3.1: Sample XLink

Since such “extended links” can be managed separately from the resources they link, it is
possible to compile “linkbases”, XML files that contain a collection of XLinks. Linkbases
can then be selectively applied to establish hyperlinks between resources. The XLink
language contains further constructs for specifying behaviour during link traversal and
traversal restriction, which this thesis makes no use of.

By representing all documents as DOM trees during a check and using XPath to reference
nodes in the trees we can specify constraints between any type of structured or semi-
structured document, regardless of its native representation. All that is required is a
simple translation step before the check. We will also be able to point to inconsistent
elements in documents using XLink. XML and its related technologies thus enable us to
choose an effective, open and standardised approach to overcoming syntactic heterogeneity.

No Loss of Generality Whenever a particular technology is chosen as a key enabling
factor, it is important to step back and analyse potential risks and the impact of future
change. Technology evolves at a rapid pace and eventually XML will be superseded.

It will become clear that the approach proposed here is not at all dependent on XML,
XPath and the other related technologies. Any structured representation could be em-
ployed instead, as long as it provides the following mechanisms:

• A sufficiently powerful grammar to be able to describe a wide variety of document
types.
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• An addressing mechanism that can be used to point to and select elements from
documents – replacing XPath.

• A notion of a unique identifier for each element in the document.

As long as we can select elements from documents, we will be able to express constraints
between them. We will also be able to provide targets for changes generated by a repair
action generator. The use of XML as a particular implementation mechanism is thus not a
limiting assumption. Without loss of generality, the languages and semantic specifications
in this thesis will therefore be expressed by making direct use of mechanisms provided by
XML. This will simplify the discussion and eliminate the need to specify formalisms on
an abstract level that subsequently has to be mapped to an implementation.

3.3 Introducing a Running Example

In the following, we will frequently have to give examples of consistency constraints, par-
ticularly in the definition of our formal semantics. We introduce a running example here
to use on such occasions, so that we have sample documents and constraints to refer
to. This section also serves to provide a simple example of how inter-document consis-
tency relationships arise, before we move on to more complex real world scenarios in later
sections.

“Wilbur’s Bike Shop” sells bicycles and makes information about their company available
on the Internet and on a corporate intranet. Wilbur’s use XML for web publication and
information exchange. The information collected by Wilbur’s is spread across several web
resources:

• a product catalogue – containing product name, product code, price and description;

• advertisements – containing product name, price and description;

• customer reports – listing the products purchased by particular customers;

• service reports – giving problems with products reported by customers.

Wilbur’s has only one product catalogue, but many advertisements, customer reports and
service reports. Figure 3.2 gives an overview of Wilbur’s resources. The information is
distributed across different web servers, and edited by different staff members. Examples
of each type of file can be found in Appendix A.

It should be clear that much of this information, though produced independently, is closely
related. For example: the product names in the advertisements and those in the catalogue;
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Figure 3.2: Wilbur’s resources

the advertised prices and the product catalogue prices; the products listed as sold to a
customer and those in the product catalogue; the goods reported as defective in the service
reports and those in the customer reports; and so on.

Relationships among independently evolving and separately managed resources can give
rise to inconsistencies. This is not necessarily a bad thing but it is important to be aware
of such inconsistencies and deal with them appropriately. In view of this, Wilbur’s would
like to check their resources to establish their position. Some of the questions Wilbur’s
would like to answer include:

• Are all the products that are listed in Adverts also present in the product catalogue?

• Do the advertised prices and the catalogue prices correspond?

• Are the products listed as sold to a customer in the product catalogue?

• Did we sell goods reported as defective to the customer reporting the problem?

In the remainder of the thesis we will demonstrate how consistency of Wilbur’s various data
sources can be managed in a structured fashion; how their constraints can be expressed
formally and how they can be checked; and how problems can be reported and presented
to the user.
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3.4 Chapter Summary

This overview has introduced the workings of our proposed consistency checking service:
we translate documents into XML for the purpose of a check; we use a language that
can express inter-document constraints to constrain the documents; and we evaluate con-
straints to provide consistency links that link together inconsistent elements in documents.

We have discussed the role of XML as a mechanism for overcoming syntactic heterogeneity.
It allows us to dispense with syntactic integration problems and concentrate on the more
difficult problem of semantic heterogeneity. At the same time, we have argued that the
approach proposed in this thesis builds on very basic mechanisms such as unique identifiers
and element addressing, and is thus not dependent on XML.

The final section has introduced a running example that will be used from this point
forward to facilitate the discussion of novel concepts before turning to more complex
examples.

With this overview in place, the following chapter takes us through some necessary ground-
work that will lead to a formal definition of our document and path model, which we will
later use in the definition of our novel evaluation semantics.



4 A Model for Documents and

Constraints

In this chapter we provide the foundations for the formal investigation of our consistency
checking semantics, by specifying a model for documents, paths in documents, and a
constraint language. The chapter can serve as a rough overview of our model of documents
on first reading, and as a reference for the semantic definition on more detailed reading.

Our consistency checking service falls back onto a common syntactic representation for
documents during the course of the check. We have chosen XML as a convenient way
of representing documents. In order to manipulate XML in memory we make use of the
Document Object Model (DOM) [Apparao et al., 1998].

The DOM is a model for the in-memory representation of XML documents as trees. Using
it to represent documents brings with it a number of advantages: it gives us immediate ac-
cess to the already rich set of languages expressed in XML; it lets us use related standards
like XPath [Clark and DeRose, 1999] for accessing elements and manipulating the docu-
ments; and it lets us use XML parsers like Xerces [Apache Software Foundation, 2003] to
validate and load documents. Potential disadvantages include the relatively large size of
DOM trees, due to the extra information like namespace prefixes that could be discarded
from syntax trees, and perhaps the lack of type information. We decided that neither of
these problems outweigh the significant advantages of choosing an open representation.

From this point onward, the thesis makes frequent reference to the DOM and XPath.
In particular, we will be referring to these standards in the definition of our constraint
language at the end of this chapter. We thus include a simplified abstract model of both,
and a basic semantics for the evaluation of XPath.

The model and semantics borrow heavily from [Wadler, 1999], reusing most of the set
names and functions for the DOM and some of the definition of XPath. It has been
necessary to repeat many of the data type and function definitions in order to be able to
add crucial missing features such as support for variables. The differences between our
model and semantics, and Wadler’s paper, as well as features from the XPath specification
that we have omitted to simplify the discussion, will be highlighted in the appropriate
sections.

34
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4.1 Basic Data Types

XPath and the DOM use a number of basic data types. We have added Number here to
what is defined in [Wadler, 1999] in order to make our coverage of XPath more complete.

Definition 4.1. Σ is an alphabet.

Definition 4.2. String = Σ∗ is the set of all strings over Σ. ε is the empty string.

Definition 4.3. V ariable ⊂ String is the set of all legal variable names. We will leave
this unspecified, but assume it is a subset of the set of strings.

Definition 4.4. Number is the set of decimal numbers. We use this set name in order
to stay in line with the XPath specification.

Definition 4.5. Boolean is the set {>,⊥} where > represents the truth value true and
⊥ represents the truth value false.

4.2 Document Object Model

We will now define a simplified abstract model of a DOM tree that will later help us to
define a semantics for XPath. It will also assist us in defining the check semantics for our
constraint language.

DOM trees in our model consists of a set of nodes, represented by the data type Node:

Definition 4.6. Node is the set of all nodes in DOM trees.

Definition 4.7. NodeSet = ℘(Node) is the set of all sets of nodes.

We will assume that nodes are implicitly uniquely identified by their location in memory.
When we compare two nodes for identity using =, we are thus comparing their unique
identifiers. For a pair of nodes x and y, x = y if and only if x is in fact referring to the
same node as y.

<Catalogue>

<Product>

<Price currency="GBP">20</Price>

</Product>

</Catalogue>

Figure 4.1: Sample XML Document

A node is either an element node, which may contain further nodes, a text node or an
attribute node. In Figure 4.1, Catalogue is an element node, and is also the root node,
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currency is an attribute node, and the content of Price is a text node. Every node,
except the root node, has exactly one parent node. For any given node, exactly one of
these functions returns >:

isElement : Node→ Boolean

isAttribute : Node→ Boolean

isText : Node→ Boolean

isElement returns > if and only if its parameter is an element node, and ⊥ otherwise.
isAttribute and isText work the same way for attribute and text nodes, respectively.

The following function returns > only for the root node:

isRoot : Node→ Boolean

Nodes in the tree are related using the following basic functions:

parent : Node→ NodeSet

children : Node→ NodeSet

attributes : Node→ NodeSet

root : Node→ Node

parent returns a set containing the parent node of a node, or ∅ if the node is the root
node – a node can never have more than one parent node, we return a set to make the
following definitions easier. children returns a set containing all element or text child
nodes of a node or ∅ if there are none. attributes returns the set of all attribute nodes
of an element node – in the DOM, attributes are not children of a node, but are treated
separately, – or ∅ if there are none. Finally, root returns the root node of the document
that the node is contained in. We use these basic functions to define two useful additional
functions:

descendants : Node→ NodeSet

descendants(n) = children(n) ∪ {x | x = descendants(y), y ∈ children(n)}

siblings : Node→ NodeSet

siblings(n) =

{
(children(p) \ n | {p} = parent(n)), parent(n) 6= ∅
∅, otherwise
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descendants returns all text and element nodes reachable from the parameter node by
transitively applying children. siblings returns the set containing all nodes that have the
same parent as the parameter node, excluding the node itself, or ∅ if there are no such
nodes.

Several invariants constrain the relationship of the functions defined above. Root nodes
have no parents and therefore also have no siblings:

∀n ∈ Node(isRoot(n)→ parent(n) = ∅)
∀n ∈ Node(isRoot(n)→ siblings(n) = ∅)

A node is a parent of another if and only if that node is a child or attribute of the node:

∀x, y ∈ Node(parent(x) = {y} ←→ (x ∈ children(y) ∨ x ∈ attributes(y)))

Only element nodes have attributes or children:

∀n ∈ Node(children(n) 6= ∅ → isElement(n))

∀n ∈ Node(attributes(n) 6= ∅ → isElement(n))

Every node in a DOM tree has a name and a value. We will access these using the two
functions name and value.

Definition 4.8. name : Node→ String returns the name of a node. The name depends
on the type of the node:

• Element nodes – the name is the tag name of the element.

• Attribute nodes – the name is the attribute name.

• Text nodes – the name is ε.

Definition 4.9. value : Node→ String returns the value of a node. The value depends
on the type of the node:

• Element nodes – the value is the concatenated value of all child nodes that are
text nodes. In practice, the child nodes are traversed in document order. For this
discussion, the order is insignificant.

• Attribute nodes – the value is the attribute value.

• Text nodes – the value is the text content.
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Looking back at Figure 4.1, the name of the root node is "Catalogue" and its value is
ε. The name of the price element’s attribute is "currency" and its value is "GBP". The
name of the text node contained in the price element is ε and its value is "20". The value
of the price element itself is also "20", since that is the concatenated value of all its text
node children.

In summary, we have defined a DOM tree as a set of nodes that are related using a number
of navigational functions. Each node in the tree has a name and a value, and is uniquely
identified by its location in memory. The definition deliberately omits syntactic details
such as XML namespaces, and a plethora of navigational functions, because neither are
relevant to the following discussion.

4.3 XPath Abstract Syntax

XPath [Clark and DeRose, 1999] is a language for accessing the contents of XML docu-
ments. When applied to DOM trees, it can be used for specifying paths in the trees in
order to identify or retrieve sets of nodes. It supports simple expressions that can be used
to combine basic data types and node values to compute a result.

As an example, /Catalogue/Product points to all element nodes named Product that
are children of all nodes named Catalogue, which also has to be the root node. Applying
this XPath expression to our sample document in Figure 4.1 in the previous section would
select a node set containing a single Product element. XPath also supports navigation
other than downward navigation to child nodes. The direction of navigation is called an
axis in XPath. For example, /Catalogue/Product/sibling::* makes use of the sibling
axis to find all siblings of the Product element. In the case of our example, this would
return an empty set.

The basic navigational unit of XPath is called a step and consists of an axis, which defaults
to the child axis, and a node test. For example, sibling::* is a step, sibling is the
axis and * is a wildcard node test. A step is evaluated relative to a context, which is
the current retrieved set of nodes. Before evaluating a path, the context is empty. When
evaluation is complete, the context becomes the result set. For example, before evaluating
/Catalogue/Product the context is ∅. After the first step, it changes to {Catalogue}.
The step Product, which selects all child nodes called Product is now applied to this
context and the resulting new context, {Product} is returned as the result.

XPath also features an expression language that contains the boolean logical connec-
tives, arithmetic operators, and an extensive string manipulation and arithmetic func-
tion library. An XPath expression, which may be a path, a literal or a combination
of a number of paths and literals using arithmetic operators, can be evaluated to re-
turn either a string, number or boolean value. XPath makes use of these expressions in
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predicates that are used to restrict the nodes selected at each step in a path. For exam-
ple, /Catalogue/Product[@currency="GBP"] selects only those Product elements whose
currency attribute equals GBP. In other words, predicates are used to filter the context
node set after each step.

In the remainder of the thesis we will frequently have to refer to XPath expressions as
part of formal definitions. We have defined a simplified abstract syntax of XPath that will
enable us to concentrate on the basic features without having to worry about syntactic
sugar. The abstract syntax discards a number of features of XPath that are irrelevant
to our discussion: we use the generic term function for XPath functions, rather than
defining the whole function library, the expression language is significantly reduced and
only includes the basic arithmetic and boolean operators, and we restrict the navigational
axes to parent, child, ancestor, sibling and descendant.

Definition 4.10. XPath Abstract Syntax

s : String

v : V ariable

n : Number

p : Path ::= /p | //p | $v | $v/p | $v//p | p1|p2 | p1/p2 | p1//p2 | p[e] |
s | ∗ | @s | @ ∗ | text() |
ancestor :: s | ancestor :: ∗ | sibling :: s | sibling :: ∗ |
. | ..

e : Expr ::= e1 + e2 | e1 − e2 | e1 and e2 | e1 or e2 |
not e | e1 = e2 | s | n | p | function(e)

We will now give a meaning to this abstract syntax using a denotational semantics and
the definition of DOM trees given in the preceding section.

4.4 XPath Semantics

This section introduces a denotational semantics for XPath that defines how paths and
expressions are evaluated over a DOM tree. We will take as our input an expression,
referred to as Expr in the abstract syntax, a “context node” that defines where the evalu-
ation starts, and a variable context that contains bindings of variable names to previously
retrieved nodes. We will evaluate the expression to a member of the set Result, which is
the set of possible results of evaluating an XPath expression:

Definition 4.11. Result = String ∪Number ∪Boolean ∪NodeSet.

It will be necessary to convert results of path evaluations to specific data types. For
example, when evaluating a predicate on a particular step we need to convert the result
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of evaluating an expression to a boolean in order to determine whether to include the
step’s node in the result. These conversions will be performed by the functions toString,
toBoolean and toNumber; we have no use for a function toNodeSet.

Definition 4.12. Conversion Functions

toString : Result→ String

toNumber : Result→ Number

toBoolean : Result→ Boolean

We will define toString informally as follows: strings are converted to strings using the
identity function; to convert a number the function concatenates the string representation
of each digit in the number and inserts a decimal point as appropriate if the fractional
part is non-zero, e.g. 5 becomes "5" and 3.2 becomes "3.2"; booleans are converted as
follows: > becomes "true" and ⊥ becomes "false"; and finally, node sets are converted
by concatenating the result of applying value (the string value, Definition 4.9) to each
node in the set.

toNumber is defined as follows: strings that are representations of numbers are converted
to the numbers they represents, otherwise they are converted to 0. Numbers are converted
using the identity function; booleans are converted as follows: > becomes 1 and ⊥ becomes
0; finally, for a node set n, toNumber(n) = |n|, that is we return the cardinality of the
set.

Finally, we will define toBoolean: for any String s, toBoolean(s) = (s = “true”); for any
number n, toBoolean(n) = (n 6= 0), therefore toBoolean(5) = > but toBoolean(0) = ⊥;
booleans are converted into booleans using the identity function; and for any node set n,
toBoolean(n) = (n 6= ∅), that is the result is true if and only if the set is non-empty. This
concludes the definition of results and conversion functions. We now need to introduce
variables.

Paths can be relative to variables, where a variable is an identifier for a node set. For
example $x/Product would select the union of all Product elements that are children of
the nodes in the set of nodes identified by x. In order to handle variable assignment and
lookup, we need to define a binding context and the two functions bind and lookup.

Definition 4.13. A binding context is a function ρ : BindingContext = V ariable →
NodeSet that maps a variable name to a set of nodes. For a given variable name v, ρ(v)
returns the set of nodes to which v has been bound or ∅ if it has not been bound. Since
ρ is a function, duplicate bindings for the same variable name are not possible.

Definition 4.14. bind is a function that introduces a new variable binding into a binding
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context. It is a higher-order function that takes an existing binding context as a parameter:

bind : V ariable×NodeSet×BindingContext→ BindingContext

bind(v, n, ρ) = ρ1, where ρ1(v1) = if (v1 = v) then n else ρ(v1)

Definition 4.15. lookup is used to look up variables in a binding context. We introduce
this simply to make the semantics more readable:

lookup : V ariable×BindingContext→ NodeSet

lookup(v, ρ) = ρ(v)

We can now define the main evaluation function S, which takes a path, a context node
and a binding context and returns a node set that contains the result of evaluating the
path. We will also define the function E , which evaluates an expression given a context
node and binding context and returns a Result. The signature of these functions is:

S : Path→ Node→ BindingContext→ NodeSet

E : Expr → Node→ BindingContext→ Result

When defining the functions we will use the semantic notation S[[p]]n,ρ where p is the
syntax constract being defined, and the subscript parameters represent the environment
necessary for the definition.

The following examples illustrate the definition that follows below. S[[//p]]n,ρ selects all
nodes that match the path p anywhere in the tree by making all descendants of the root
element the context for evaluating p. The path p1 | p2 is evaluated by evaluating p1 and p2

separately and then taking the union of the resulting node sets. p1/p2 is a straightforward
child axis step and is evaluated by evaluating p1 over the context node, and then making
each node in the result of this evaluation the new context node and evaluating p2. S[[p[e]]]n,ρ

selects a set of nodes using the path p and then uses the function E [[e]], which we will define
next, to filter the resulting node set – only nodes for which the expression e is true remain
in the set. S[[s]]n,ρ is a terminal point for the recursion of S and selects all children of the
context nodes whose name matches the string s. S[[@∗]]s,p selects all attribute nodes of the
context node. The next few definitions provide navigations over the sibling and ancestor
axes, and finally S[[.]]n,p selects the context node and S[[..]]n,p selects the parent node of
the context node.
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Definition 4.16. Path Selection

S : Path→ Node→ BindingContext→ NodeSet

S[[/p]]n,ρ = S[[p]]root(n),ρ

S[[//p]]n,ρ = {n2 | n1 ∈ descendants(root(n)), n2 ∈ S[[p]]n1,ρ}
S[[$v]]n,ρ = lookup(v, ρ)
S[[$v/p]]n,ρ = {n2 | n1 ∈ lookup(v, ρ), n2 ∈ S[[p]]n1,ρ}
S[[$v//p]]n,ρ = {n3 | n1 ∈ lookup(v, ρ), n2 ∈ descendants(n1), n3 ∈ S[[p]]n2,ρ}
S[[p1|p2]]n,ρ = S[[p1]]n,ρ ∪ S[[p2]]n,ρ

S[[p1/p2]]n,ρ = {n2 | n1 ∈ S[[p1]]n,ρ, n2 ∈ S[[p2]]n1,ρ}
S[[p1//p2]]n,ρ = {n3 | n1 ∈ S[[p1]]n,ρ, n2 ∈ descendants(n1), n3 ∈ S[[p2]]n2,ρ}
S[[p[e]]]n,ρ = {n1 | n1 ∈ S[[p]]n,ρ, toBoolean(E [[e]]n1,ρ) = >}
S[[s]]n,ρ = {n1 | n1 ∈ children(n), name(n1) = s}
S[[∗]]n,ρ = {n1 | n1 ∈ children(n), isElement(n)}
S[[@s]]n,ρ = {n1 | n1 ∈ attributes(n), name(n1) = s}
S[[@∗]]n,ρ = {n1 | n1 ∈ attributes(n)}
S[[text()]]n,ρ = {n1 | n1 ∈ children(n), isText(n1)}
S[[ancestor :: s]]n,ρ = {n1 | n ∈ descendants(n1), name(n1) = s}
S[[ancestor :: ∗]]n,ρ = {n1 | n ∈ descendants(n1)}
S[[sibling :: s]]n,ρ = {n1 | n1 ∈ siblings(n), name(n1) = s}
S[[sibling :: ∗]]n,ρ = {n1 | n1 ∈ siblings(n)}
S[[.]]n,ρ = {n}
S[[..]]n,ρ = parent(n)

Next we will define the semantics for E , which evaluates expressions and returns a Result.
This function is used by S to evaluate predicates and we will also make use of it directly
in later sections.

E defines an interpretation for a number of different constructs: the arithmetic operators
+ and − are handled by evaluating the parameters, turning them into numbers, and then
applying the usual arithmetic functions; the boolean operators take on the usual boolean
logic interpretations; equality comparison is handled by converting both parameters into
strings and then comparing the strings for equality; and expressions that are simple paths
are evaluated by using S to select a node set.

Function invocation using function(e) is not refined any further at this point. We expect
that function is a function with the signature function : Expr → Result, but for reasons
of readability, and because it is not necessary for our discussion, we do not fully introduce
the concept of a function context here. We will simply assume that all functions are side
effect free – that is, they do not change the document – and terminate. Many of the
functions in XPath take more than one parameter, but they all return a Result. The
XPath function library includes:
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• String manipulation, e.g. substring : (Expr,Number)→ String, which returns the
substring of a string (or another result that has been converted to a string) starting
from the given index.

• Boolean functions, e.g. true() : Boolean, which always returns >.

• Node set functions, e.g. count : NodeSet → Number which returns the cardinality
of a node set.

• Number functions, e.g. round : Expr → Number, which rounds the result of con-
verting the evaluated expression to a number up to the nearest integer.

Definition 4.17. Expression Evaluation

E : Expr → Node→ BindingContext→ Result

E [[e1 + e2]]n,ρ = toNumber(E [[e1]]n,ρ) + toNumber(E [[e2]]n,ρ)
E [[e1 − e2]]n,ρ = toNumber(E [[e1]]n,ρ)− toNumber(E [[e2]]n,ρ)
E [[e1 and e2]]n,ρ = toBoolean(E [[e1]]n,ρ) ∧ toBoolean(E [[e2]]n,ρ)
E [[e1 or e2]]n,ρ = toBoolean(E [[e1]]n,ρ) ∨ toBoolean(E [[e2]]n,ρ)
E [[not e]]n,ρ = ¬toBoolean(E [[e]]n,ρ)
E [[e1 = e2]]n,ρ = toString(E [[e1]]n,ρ) = toString(E [[e2]]n,ρ)
E [[s]]n,ρ = s

E [[n]]n,ρ = n

E [[p]]n,ρ = S[[p]]n,ρ

E [[function(e)]]n,ρ = function(e)

This concludes our definition of XPath and its associated evaluation semantics. We have
defined the two types Path, which represents a path in a document, and Expr, which
combines paths, literals, numbers, boolean operators, arithmetic operators and functions
into a simple expression language. The two semantic functions S, which selects a set of
nodes given a Path, and E , which evaluates an expression, define the meaning for these
constructs.

In the following section we will extend the definitions of S and E to handle path evaluation
over a forest of DOM trees. We will then use these extended definitions in our constraint
language semantics.
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DOM and XPath Summary

• String, Number and Boolean are the basic data types.

• A DOM tree consists of a set of nodes, represented by Node. A node is either an
element node, a text node or an attribute node.

• Every node has a unique identity, a name and a value.

• XPath provides paths for selecting nodes from documents and expressions for simple
computations and logical comparisons.

• Paths are either absolute, or relative to variables and are evaluated to a node set
using the semantic function S.

• Expressions evaluate to a string, number, boolean or node set using the semantic
function E . Conversion functions can be used to convert each of these types to a
string, number or boolean.

• Variables are handled using a binding context and the two functions bind and lookup.

4.5 Constraint Language

We have put in place the foundations to represent documents in a common format as
DOM trees, and to query them for sets of nodes using XPath. We can now specify what it
means for a set of documents to be consistent by relating nodes in the documents through
constraints. By definition, elements that do not obey these constraints are causing an
inconsistency.

The choice of constraint language is not entirely straightforward, as evaluating formulae
in a language and providing suitable feedback becomes progressively more difficult as the
expressive power of the language increases. An earlier approach [Zisman et al., 2000] was
based on a simple language that expressed a relationship between a set of “source” and
a set of “destination” elements. We have also experimented with a restricted language
that expressed constraints between two sets of elements, for example “for every element
in set A, there must be an element in set B”. While it was easy to specify diagnostics for
these languages – inconsistent elements in the sets could easily be pointed out – it soon
became clear that the expressive power of such languages was insufficient for a number of
application domains, most notably in software engineering. The UML [OMG, 2000a] is a
good counter-example as its validation requires expressiveness beyond propositional logic.
We thus chose instead a language based on first order logic as our constraint language
as we were hopeful that it would be expressive enough for our purposes, a hypothesis we
have since confirmed in a number of case studies.
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We will introduce our constraint language using the running example. The question “Are
all the products that are listed in adverts also present in the catalogue?” can be represented
more formally as an assertion: For all Advert elements, there exists a Product element in
the Catalogue element where the ProductName subelement of the former equals the Name
subelement of the latter. If this condition holds, a consistent relationship exists between the
Advert element and the Product element. Otherwise, the Advert element is inconsistent
with respect to our rule as there is no matching Product element.

Definition 4.18. Constraint Language Abstract Syntax

p : Path

e : Expr

v : V ariable

f : formula ::= ∀v ∈ p (f) | ∃v ∈ p (f) |
f1 and f2 | f1 or f2 | f1 implies f2 | notf |
e1 = e2 | same v1 v2

Definition 4.18 gives an abstract syntax of our constraint language. The language is a
function-free first order predicate logic that expresses constraints over finite sets. These
sets contain elements and attributes of XML documents. Since XPath permits variable
references, formulae can make reference to variables bound in superformulae. This allows
predicates to be used for testing properties of nodes currently bound by a quantifier. We
can express our semi-formal assertion more formally in this language:

∀a ∈ /Advert (∃p ∈ /Catalogue/Product ($a/ProductName=$p/Name))

Note that the paths in the constraint refer to elements from different documents, while
not explicitly referring to which documents the constraint is applied to. This is a matter
for the evaluation semantics that we apply to the language. This evaluation semantics,
which we will discuss in the next chapter, will extend our notion of path evaluation to
multiple documents.

To ensure constraint integrity, we place some additional static semantic constraints on
formulae in the language that cannot be captured in the abstract syntax. We will state
these informally here:

Definition 4.19. For any quantifier formula, the variable v must not be equal to a variable
bound in an outer formula. This is to prevent double bindings, which would lead to
accidental overwriting of the binding context.

Definition 4.20. If a path expression is relative to a variable v, that variable must have
been bound by a quantifier in an outer formula.
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Definition 4.21. For formulae of the form e1 = e2, any path expressions contained in
e1 or e2 must be relative to a variable. For example, $a/ProductName=$p/Name is legal,
while /Advert/ProductName=$p/Name is not. We made this choice because we wanted
to restrict distributed path evaluation over multiple documents to quantifiers, to simplify
implementation. It also eliminates any implicit quantification if the path points to entries
in multiple documents, which would be better captured as an explicit quantifier.

Since the only iteration constructs in the language are quantifiers that iterate over finite
sets of elements retrieved from documents, we cannot directly express constraints that
require any form of infinity. For example, the constraint for all elements x, the children of
x are prime numbers would require quantification over the integers to express the latter
half of the constraint and thus cannot be expressed directly in this language. Such a case
would have to be handled by implementing a predicate that performs a primality test, using
a Turing-complete programming language. Nevertheless, as will be shown in the following,
the power of the constraint language is great enough to express a wide range of static
semantic constraints, including those of the Unified Modeling Language [OMG, 2000a].

Constraint Language Summary

• The constraint language combines first order logic with XPath in order to relate
nodes in DOM trees.

• The language includes universal and existential quantifiers, boolean connectives and
predicates.

4.6 Chapter Summary

This chapter contains the groundwork for the formal definition of our consistency checking
semantics. It defines a model for XPath and the Document Object Model, and gives a
semantics for evaluating paths over DOM trees.

Though most of it is based on [Wadler, 1999], we believe that this extended treatment
of the DOM and XPath will be valuable as reference material in its own right for the
semantic definition of other types of systems that deal with XML input.

We have also introduced the abstract syntax of a constraint language that relates elements
in DOM trees. In the following chapter we will look at consistency checking as the process
of evaluating constraints written in this language and providing diagnostic results. We will
do this by combining the abstract syntax with the document and path models presented
here.



5 Checking Semantics

In this chapter we get to the core theoretical contribution of our investigation: how to
evaluate constraints between documents and provide a rich diagnostic result that enables
users to identify inconsistency, and trace it effectively should it involve multiple documents.

We will first define a standard boolean semantics for evaluating constraints over multiple
DOM models. This boolean semantics will follow the standard definition of first order
logic, and adapt it to apply to a set of DOM trees.

Following an illustration of the shortcomings of the boolean semantics as a diagnostic
mechanism, we will move on to defining a novel evaluation semantics for our constraint
language that connects inconsistent elements in documents through hyperlinks called con-
sistency links. By using a denotational semantics as a formal basis, and notions from game
semantics [Hintikka and Sandu, 1996] for explanation, we cover the entire language and
provide examples for each construct.

Towards the end of the chapter we will cover some of the assumptions and design decisions
that went into defining our evaluation semantics. We will also investigate its relationship
to the standard boolean interpretation, providing proofs that the de Morgan’s laws as well
as other standard equivalences hold.

5.1 Boolean Semantics

In order to clarify the meaning of the constructs of the constraint language, and to assist
the later definition of our hyperlink semantics, we first define a boolean interpretation that
returns true when a formula holds for a set of documents and false otherwise.

The abstract syntax in Definition 4.18 on page 45 does not contain any notion of a docu-
ment, or the location of a document – it refers to elements using paths without specifying
where those paths are applied. This is intentional: it makes the language location trans-
parent and hence formulae in the language can be applied without modification when
documents are relocated. Rather than hardcoding names or locations, documents are
included depending on their content. This is done using the paths in the constraints: ab-
solute paths like /Catalogue/Product are executed on each document, and the union of
the resulting node sets is taken as the result. Paths that are relative to variables executed
only on those documents that contain the nodes pointed to by the variable.

To define this more precisely, we introduce the notion of a document set, which represents
a forest of DOM trees. A document set is a node set that contains only root nodes:

47
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Definition 5.1. DocumentSet ⊂ NodeSet, ∀s ∈ DocumentSet (∀n ∈ s(isRoot(n)))

We also define the functions Sd and Ed, which perform XPath selection and expression
evaluation by applying the previously defined functions S and E over a document set. Sd

returns the union of applying S over all trees in the set. In the case of Ed, the definition
is exactly the same as for E for basic expression computation. When paths have to be
evaluated within Ed, Sd is used instead of S. We use n0 as a dummy context node
in Ed where expression evaluation is required to simplify the notation. We know from
Definition 4.21 (page 46) that paths in expressions will be relative to a variable anyway,
and the variable will point to the context node set.

Since there will only be one document set to be checked at any given time, we will omit
passing this set as a parameter to Sd and Ed1 in order to improve readability, and instead
assume that the set is identified by the global variable D.

Definition 5.2. D refers to the document set that is being checked, D ∈ DocumentSet

Definition 5.3. Sd and Ed

p : Path

e : Expr

Sd : Path→ BindingContext→ NodeSet

Sd[[p]]ρ =
⋃

di∈D(S[[p]]di,ρ
)

E : Expr → BindingContext→ Result

Ed[[e]]ρ = Sd[[e]]ρ, if e ∈ Path

= E [[e]]n0,ρ, otherwise

As an example, suppose our document set is the set of documents owned by Wilbur’s bike
shop that we have included in Appendix A. Assuming that ρ0 is the empty binding context,
Sd[[/Advert]]ρo

would return the set {Advert} where Advert is the root node of the advert
file. Sd[[/Advert | /Catalogue]]ρo

would return {Advert, Catalogue} where Catalogue is
the root node of the catalogue file. If there was more than one advert file then the root
nodes of all advert files would be included in both node sets.

We can now proceed to specify the boolean interpretation of our constraint language:
the function B : formula → BindingContext → Boolean returns true if and only if
a formula holds over all documents in the document set. B is normally invoked with a
formula and the empty binding context ρ0 as a parameter. ρ0 maps all possible variable
names to the empty set.

1Note that the subscript d in Sd and Ed is a label to differentiate the functions from S and D rather
than a parameter.
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<document>
<elementA>15</elementA>
<elementB>15</elementB>
<elementC>12</elementC>

</document>

Figure 5.1: Example Document for = and same

Definition 5.4 below defines the boolean semantics. The definition follows the usual inter-
pretation of the quantifiers ∀ and ∃ and the boolean connectives. We will briefly examine
the way in which each formula construct is evaluated: ∀ is evaluated by first evaluating
the path expression, then binding the variable to each node in the resulting set in turn,
using the subformula to evaluate the result given the new binding context. The overall
result is true if and only if the subformula returns true for all assignments to the variable.
∃ is evaluated similarly, but the result is true if and only if there is at least one variable
assignment for which the subformula is true. and, or, implies and not use the normal
boolean connectives to combine the result of evaluating the subformulas.

= and same are the two predicates in the language, and their interpretation differs. = is
intended as a value comparison whereas same compares the identity of nodes in the tree.
Consequently, = uses E to evaluate the two expressions, converts the resulting value into
strings and compares those strings. By contrast, same uses the binding context to look
up two node sets and checks whether these node sets contain exactly the same nodes.

To illustrate the difference between = and same, consider the following example: assume
the variable x is bound to elementA in the document shown in Figure 5.1 and y is bound
to elementB. Then $x = $y is evaluated as follows: Ed[[$x]]ρ is evaluated by Sd[[$x]]ρ,
since $x is a path expression. Sd[[$x]]ρ uses lookup to find the current assignment to x

and returns the node set {elementA}. toString is then applied to this node set, which
takes the concatenation of value applied to each node. The value of elementA is 15, since
that is the concatenation of the values of all text node children. Therefore Ed[[$x]]ρ = 15,
and similarly Ed[[$y]]ρ = 15. It follows that $x = $y evaluates to >. The evaluation of
same, however, proceeds by looking up the node sets bound to $x and $y and compares
the nodes directly. Since lookup(x, ρ) = {elementA} and lookup(y, ρ) = {elementB},
and clearly {elementA} 6= {elementB}, same returns ⊥ for these two parameters. The
following definition of B defines the full boolean interpretation for formula.
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Definition 5.4. Constraint Language Boolean Interpretation

p : Path

e : Expr

v : V ariable

f : Formula

B : formula→ BindingContext→ Boolean

B[[∀v ∈ p (f)]]ρ =
∧

ni∈Sd[[p]]
ρ

B[[f ]]bind(v,{ni},ρ)

B[[∃v ∈ p (f)]]ρ =
∨

ni∈Sd[[p]]
ρ

B[[f ]]bind(v,{ni},ρ)

B[[f1 and f2]]ρ = B[[f1]]ρ ∧ B[[f2]]ρ
B[[f1 or f2]]ρ = B[[f1]]ρ ∨ B[[f2]]ρ
B[[f1 implies f2]]ρ = B[[f1]]ρ → B[[f2]]ρ
B[[not f ]]ρ = ¬B[[f ]]ρ
B[[e1 = e2]]ρ = toString(Ed[[e1]]ρ) = toString(Ed[[e2]]ρ)
B[[same v1 v2]]ρ = lookup(v1, ρ) = lookup(v2, ρ)

We will take a look at one more example, which applies B to a formula that contains
a quantifier and a subformula. The formula is ∀x ∈/document/* ($x = 15). Evaluation
proceeds as follows (the detailed evaluation of the equality comparisons has been omitted):

B[[∀x ∈/document/* ($x = 15)]]ρ =
V

ni
(B[[$x = 15]]bind(x,{ni},ρ)) | ni ∈ Sd[[/document/*]]ρ0

= B[[$x = 15]]bind(x,{elementA},ρ0)∧
B[[$x = 15]]bind(x,{elementB},ρ0)∧
B[[$x = 15]]bind(x,{elementC},ρ0)

= > ∧> ∧⊥
= ⊥

Since the value of elementC is not equal to 15, the formula fails. In addition to demonstrat-
ing the boolean evaluation of a formula, this example clearly demonstrates the diagnostic
weakness of boolean interpretations: very little information is available at the end of the
evaluation about the elements that have contributed to an inconsistency. Clearly, in this
example the value of elementC is a cause of inconsistency, and we would like it to be
identified as such. With more complex formulae that relate multiple elements, it may be
a combination of elements that causes an inconsistency and in such a case the boolean
evaluation may hide even more information.

If a tolerant approach to inconsistency is chosen, it may even be irrelevant if the formula as
a whole evaluates to false: take as an example a constraint that checks a property of several
hundred entries in a product catalogue. If one or two of the products are inconsistent, this
may well be tolerable. The overall failure of the constraint is irrelevant, what is important
is that we can identify and monitor those items that are inconsistent so we can defer
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resolution to a later stage, or decide not to act at all.

It is these shortcomings of the boolean interpretation that we will address in the next
section on link generation.

Boolean Semantics Summary

• During formula evaluation, paths are executed over a set of documents. The result
is the union of the node sets selected from the documents.

• The functions Sd and Ed extend S and E from the previous chapter to distributed
documents.

• The semantic function B returns > if a formula holds for a document set D, or ⊥
otherwise.

5.2 Link Generation Semantics

The example at the end of the last section demonstrates that the expressive power of a
constraint language is only one factor in determining its usefulness in practice; it is equally
important to be able to produce good diagnostics for detected inconsistencies. To draw
an analogy, a good compiler does not simply state that a source file violates the static
semantics of a language, but points out the line number and perhaps even identifies the
statement that causes the problem. It will also specify which semantic rule has been vio-
lated. Because we have chosen to take a tolerant view of inconsistency, inconsistency does
not have to be resolved immediately. It thus becomes even more important to provide pre-
cise information to document owners to enable them to monitor and pinpoint inconsistent
information with a minimum of effort.

We use hyperlinks called consistency links to relate consistent or inconsistent elements.
If a number of elements form a relationship under which a constraint is satisfied, they
are connected via a consistent link. If they form an undesirable relationship with respect
to some constraint, they are connected via an inconsistent link. This form of diagnosis
is motivated by, and fits in well with, the use of XML as an intermediate encoding and
enables us to use XLink to point exactly to the location in a document that is involved in
an inconsistent relationship. It is also very suitable in the distributed setting – hyperlinks
are an established mechanism for connecting distributed documents. XLink’s linkbase
feature allows us to retain the precise diagnostic information without making invasive
document changes, since links can be maintained outside the documents.

The idea of connecting inconsistent elements using consistency links is based on earlier
research [Ellmer et al., 1999]. Compared to this earlier work, which was based on a rela-
tively restricted constraint language, the problem of finding a semantics to map from first
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order logic to consistency links is more complex. The remainder of this section discusses
this semantics, beginning with a definition of consistency links.

5.2.1 Consistency Links

A consistency link consists of a list of nodes that we call its locators and a status. We
represent locators as a list rather than a set to make it possible to connect a node to itself.
This requires the node to be present multiple times in the list.

The status of a link is either consistent, meaning the nodes pointed to by the locators are
in a consistent relationship with respect to a formula, or inconsistent if they are in an
inconsistent relationship. What exactly it means for a node to be included in the list of
locators will become clear from the semantics below.

Every locator points to exactly one node in a DOM tree. For notational convenience,
we will not distinguish here between nodes and references to nodes – we have previously
defined nodes only within the context of a DOM tree, but this slight informality does
not affect the discussion. Links, and hence consistency relationships, are not restricted to
connecting two elements, but can form relationships between n elements, where n ≥ 0.
Using the notation [A] in type signatures to denote lists of elements of type A, [] as the
empty list, and [a, b, c] as a list containing the nodes a, b and c, we define consistency links
as follows:

Definition 5.5. Locators = [Node]

Definition 5.6. Status = {Consistent, Inconsistent}

Definition 5.7. Link = Status× Locators

We have thus defined a consistency link as a tuple consisting of a status and a list of
locators. Here are some sample links over the elements of Figure 5.1 on page 49: As-
sume that a rule states that all elements have to have the value 15. Then we can use
(Inconsistent, [elementC]) as a link that identifies elementC as an inconsistent node.
Assume another rule states that all pairs of elements in the document must have distinct
values. Then (Inconsistent, [elementA, elementB]) might express that elementA is in-
consistent with elementB. Finally, we could have a constraint that at least one element
must have the value 361. Then a link of the form (Inconsistent, []), with no locators,
would represent that we could not find such an element.

One of the consequences of holding locators in lists, which are ordered constructs, rather
than sets is that the locators [elementA, elementB] differ from [elementB, elementA]. It
will be useful to distinguish between these cases, because as we will see, the order of the
locators will be tied to the formula constructs that create them. If an application, for
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example our reporting tool, wishes to treat these links as equivalent, it can still strip one
of them out.

Our evaluation semantics will make use of several auxiliary functions to manipulate con-
sistency links. The first of these functions is flip, which inverts the status of the links in
a set of links. This should be self-explanatory from the definition:

Definition 5.8. flip : ℘(Link)→ ℘(Link)

flip(links) = {fliplink(l)}, where l ∈ links and

fliplink((Consistent, locs)) = (Inconsistent, locs)
fliplink((Inconsistent, locs)) = (Consistent, locs)

Next, the function join combines a link l with a set of links: the locators of l are con-
catenated with the locators of each link in the set in turn, forming a new set of links.
Furthermore, each link in the new set assumes the consistency status of l. If the set of
links passed as a parameter is empty, a set containing only l parameter is returned. For
any two lists a and b, let a+b be the concatenated list containing all elements of a followed
by all elements of b. Then:

Definition 5.9. join : Link × ℘(Link)→ ℘(Link)

join((s1, l1), links) =

{
{(s1, l1 + l2) | (s2, l2) ∈ links}, links 6= ∅
{(s1, l1)}, otherwise

Example 1. Here are some examples of how join works: assume L is the set of links

{(Consistent, [elementA]), (Inconsistent, [elementA, elementB])}

Then join((Consistent, [elementC]), L) returns

{(Consistent, [elementC, elementA]), (Consistent, [elementC, elementA, elementB])}

For an empty set of links:

join((Consistent, [elementC]), ∅) = {(Consistent, [elementC])}

Our semantics will make heavy use of join. In order to prevent cluttering we will use the
symbol ◦ as its infix representation:

Definition 5.10. link ◦ links = join(link, links)

Finally, we extend the notion of join to sets. The function setjoin combines two sets of
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links by applying join to each link in the first set and the entire second set. If either set is
empty, the other set is returned as the result. If both sets are empty, the result is empty:

Definition 5.11. setjoin : ℘(Link)× ℘(Link)→ ℘(Link)

setjoin(l1, l2) =


⋃

li∈l1
(li ◦ l2), l1 6= ∅ ∧ l2 6= ∅

l1, l1 6= ∅ ∧ l2 = ∅
l2, l1 = ∅ ∧ l2 6= ∅
∅, otherwise

Similar to join, we define the infix operator ◦s as a more convenient representation of
setjoin:

Definition 5.12. l1 ◦s l2 = setjoin(l1, l2)

Example 2. If l1 = {(Consistent, [elementA]), (Inconsistent, [])} and l2 = {Consistent,

[elementB]}: l1◦sl2 = {(Consistent, [elementA, elementB]), (Inconsistent, [elementB])}

Consistency Link Summary

• A consistency link consists of a status and a list of locators. The status is either
Consistent or Inconsistent. The locators point to nodes in DOM trees.

• flip inverts the status of all links in a set of links.

• join prepends the locators of a link to all links in a set of links and overrides their
status with that of the single link. ◦ is the infix form of join.

• setjoin takes two sets of links and applies join to each link in the first set and the
entire second set. ◦s is the infix form of setjoin.

5.2.2 Link Generation Semantics

The following definition of the function L : formula → BindingContext → ℘(Link) is
the core theoretical contribution of this chapter. L provides an alternative to B for inter-
preting formulae in our constraint language. It expresses results in terms of consistency
links rather than true of false.

We will again use a denotational semantics to define L, in order to ensure consistency
with our previous definitions of B, and our semantics of XPath. Because the notation is
somewhat involved and does not lend itself to straightforward articulation, we will however
make use of a further means to aid the discussion.
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The language of games, which has been used successfully in the area of game seman-
tics [Hintikka and Sandu, 1996], has turned out to be a very powerful means for supple-
menting the definition of L. Game semantics have been used to define alternative semantics
of first order logic before [Pietarinen, 2000] and are thus suitable also for our purposes.

We will stop short of providing a formal game semantics – our denotational semantics
provides the formal framework and basis for proof, — but instead leverage some game-
related concepts as metaphors to simplify the discussion. The following is an overview
of the vocabulary that we will make reference to, please refer to [Abramsky, 2004] for an
excellent and more formal discussion:

• Game semantics treats the evaluation of a formula f against a model M , with a set
of free variables s, as a game between two players. In our case, the model is the
document set D, and there are no free variables – they are all bound by quantifiers.

• One of the players is the “verifier”, denoted by V, who wants to prove that a formula
holds over D. His opponent is the “falsifier”, F, who wants to prove the opposite.
Whoever succeeds wins the game. The following statements are equivalent: “V has
a winning strategy for f over D”, “the boolean evaluation of f over D is >”.

• When it is a player’s turn to move, he decides which action to take according to a
“strategy”. Informally, this strategy is defined by the function L.

• Where quantifiers lead to variable assignments, the players may use the assignments
as “witnesses” to support their case. In our case, the players will provide locator
entries into consistency links.

• Game semantics also defines the notions of game composition and role switching
for subgames. We will not need to formalise these. We will use role switching for
formulas involving negation, where we will simply invert the record of the winner of
the subgame, by flipping link statuses.

In the definition of the quantifiers and boolean connectives, we will in fact see that we
will go slightly beyond looking for a “winning strategy”: we will attempt to find as many
winning strategies as possible, always balancing the need to identify the most witnesses
with the need not to overwhelm the eventual user with irrelevant information.

With this initial introduction in place, we can now turn to the definition of L. This will
be done by showing for each formula construct:

• A formal semantic definition of L for the construct.

• A description that provides a game-oriented interpretation of the modus operandi
of L and clarifies the notation.
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• One or more examples to demonstrate how the interpretation of the formula handles
consistent and inconsistent data, and how it behaves in certain boundary cases.

The specification of the semantics is followed by a discussion of some of the properties
of L, such as the applicability of the boolean laws and its relationship to the boolean
interpretation B.

The function L was designed in order to meet practical needs, and later revised to refine
the quality of the generated links. During this process, design decisions have been made
that have sometimes resulted in a formally slightly less straightforward mapping but have
yielded good results. In order to preserve readability, we have delegated discussion of these
design decisions and possible alternative definitions to a separate subsection following the
definition.

<Catalogue>
<Product>

<Code>B001</Code>
<Price currency="GBP">349.95</Price>

</Product>
<Product>

<Code>B002</Code>
<Price currency="GBP">179.95</Price>

</Product>
<Product>

<Code>B002</Code>
<Price currency="EUR">50.95</Price>

</Product>
</Catalogue>

Figure 5.2: XML document for constraint examples

We will need to refer to an example document during our definition. The XML document
in Figure 5.2 is an abbreviated version of Wilbur’s product catalogue. It contains a list of
Product elements, each with a code, price and currency. When discussing the examples
we will refer to the first product element simply as Product1, the second as Product2 and
the third as Product3.

The function L

The function L : formula→ BindingContext→ ℘(Link) takes a formula and a binding
context, which will be set to be empty initially, evaluates the formula against the document
set D – the model – and returns a set of consistency links.

In our game interpretation, L prescribes the steps which the verifier V and falsifier F
should take in order to create a “winning strategy”, that is a strategy where the overall
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boolean outcome of the formula is demonstrated to be > or ⊥, respectively. We will use
the short notation “win V” to record a win for the verifier, and “win F” to record a win
for the falsifier.

Both the verifier and falsifier will try to assemble “witnesses” along the way, nodes in the
documents that support their assertions. The following is an introductory overview of the
player’s behaviour for some selected constructs:

• ∀ v ∈ p (f): F selects nodes using p and binds them to the variable v in an attempt
to make B[[f ]] evaluate to ⊥ under the binding. If such a node is found, it is recorded
as a witness – stored in a link – and F wins. Otherwise, F concedes and returns no
witnesses.

• ∃ v ∈ p (f): The opposite of the above. V gets to choose and wants B[[f ]] evaluate
to > under some assignment. If this is possible, the node bound to v is stored as a
witness and V wins. Otherwise, V concedes and returns no witnesses.

• f1 and f2: F gets to choose, and will choose the formula for which B evaluates
to ⊥. The witnesses for the evaluation of that subformula are passed on. If both
evaluate to > or both to ⊥, F combines the witnesses and concedes or claims a win,
respectively. The other boolean operators will be handled similarly.

• not f : F and V switch roles for the subgame played over f . We execute this switch
by flipping the consistency status of links, which essentially turns witnesses produced
by one player into witnesses for the other.

• Any predicate, for example e1 = e2: these are the base cases –V wins if B returns
> for the predicate, otherwise F wins. No witnesses are returned.

The definition of L now begins with the interpretation of the universal quantifier ∀:

L[[∀v ∈ p (f)]]ρ =


{(Consistent, [])}, B[[∀v ∈ p (f)]]ρ = >⋃

ni∈Sd[[p]]
ρ

((Inconsistent, [ni]) ◦ L[[f ]]bind(v,{ni},ρ) |
B[[f ]]bind(v,{ni},ρ) = ⊥), otherwise

Figure 5.3: Definition of L for ∀

Description The choice of play for ∀ is delegated to the falsifier F. F is trying to find an
assignment to the variable v from the nodes selected using Sd[[p]]ρ such that the subformula
f evaluates to ⊥ under B.

The definition in Figure 5.3 contains a lot of notational detail. The behaviour of L differs
depending on whether the formula evaluates to > under the boolean interpretation B. If
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it does, F cannot assemble witnesses that support his claim that the formula is violated,
and must concede. A consistent link with no entries is recorded and returned as a result.
At this stage, we could also generate a link with all nodes that match p, rather than an
empty link. This decision will be discussed later in Section 5.2.6 from page 73.

If B evaluates to ⊥, then for some assignments to v, B[[f ]] is ⊥. F iterates through these
assignments, and uses L recursively to obtain witnesses in the form of consistency links.
He then generates a link to the currently assigned node and combines it with the links
produced by the subformula using ◦ and the node bound to the variable. F returns a set
of links, all of which record the alternative witnesses that he has produced in conjunction
with the witnesses produced by recursive evaluation.

Example 3. This example checks if all products are priced in GBP:
∀ p ∈/Catalogue/Product($p/Price/@currency=’GBP’)

Firstly, the path /Catalogue/Product is evaluated and produces the node set {Product1,

P roduct2, P roduct3}. For the first two elements, B returns >, but for the last it returns
⊥. F thus chooses Product3 as a witness and produces an inconsistent link (Inconsistent,

[Product3]) that is combined with the links returned by =. For the sake of the discussion,
it is necessary to preempt the semantics of L in the case of =, which is to always return
a link with a status reflecting the result of B, and an empty set of locators.

The final result is {(Inconsistent, [Product3])}, because joining the link to the empty set
of locators returned by = returns a set containing only one link. We can also record this
evaluation as a game tree, where internal nodes are labeled with the player who is to move,
leaf nodes show who wins if a branch is followed, and the arcs show the chosen variable
assignments:

p = Product1 p = Product2 p = Product3

win win win 

Example 4. We will now take a look at how links are combined using ◦ with two nested
universal quantifiers. In order to come up with a realistic constraint, we will make use of
implies and same, the semantics of which we will define later: for now suffice it to say
that in the inconsistent case the evaluation of implies returns an inconsistent link with
no locators, due to the definition of the predicates.

Our example formula expresses the constraint that no two products may have the same
code:
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∀x ∈ /Catalogue/Product(
∀y ∈ /Catalogue/Product(

$x/Code=$y/Code implies same $x $y))

Both path expressions evaluate to the same node set, as in the previous example, {Product1,

P roduct2, P roduct3}. Below is the game tree for this evaluation of L. It is pruned at the
point where the implication occurs, and annotated with who would win if the game were
to continue along each branch:

x = Product1 x = Product2 x = Product3

y = Product1 y = Product2 y = Product3 y = Product1 y = Product2 y = Product3

win win win win win win 

y = Product1 y = Product2 y = Product3

win win win 

There are two branches here that lead to a win for F when evaluating the first quantifier.
This is because on the second level of these branches – the two right-most ones, – F can
make a winning choice for at least one child branch.

When x is bound to Product2 and y to Product3 we get an inconsistency as the two nodes
are different but have the same code. The set of links returned by L on the second level,
when x is bound to Product2, is {(Inconsistent, [Product3])}. This is combined with on
the top level with a link to Product2 to form {(Inconsistent, [Product2, P roduct3])}.

When x is bound to Product3, we get the set of links {(Inconsistent, [Product3, P roduct2])}.
We have thus identified Product2 and Product3 as inconsistent with one another and all
other pairs as consistent.

L[[∃v ∈ p (f)]]ρ =


{(Inconsistent, [])}, B[[∃v ∈ p (f)]]=⊥⋃

ni∈Sd[[p]]
ρ

((Consistent, [ni]) ◦ L[[f ]]bind(v,{ni},ρ) |
B[[f ]]bind(v,{ni},ρ) = >), otherwise

Figure 5.4: Definition of L for ∃

Description For ∃, we assign the choice of assignment to the verifier V. V attempts
to find assignments of nodes from Sd[[p]]ρ to v, such that B returns > for the subformula
under the assignment.

If B returns ⊥ for the formula as a whole, V will not be able to find an assignment and
must concede. L returns an empty consistent link in this case.
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If B is >, then V can use L recursively to gather consistency links that contain witnesses.
He generates a link to the currently assigned node and combines it with the set of links
returned by the subformula using ◦. The set union of all links produced in this way is
returned as the result.

This definition for ∃ highlights an interesting property of our semantics: the task for V
and F is never to simply find a winning strategy, but to find all winning strategies within
the evaluation context.

Example 5. Suppose we want to check whether a product with a given code exists any-
where in our document set. This can be expressed as: ∃ p ∈/Catalogue/Product($p/Code
=’B001’). Only Product1 has this code so the game tree looks as follows:

p = Product1 p = Product2 p = Product3

win win win 

The verifier notes that when v is assigned Product1 this makes the boolean result of the
child predicate > and hence leads to a win. L thus generates a link to Product1, which
is combined with the empty consistent link returned by evaluating L on the predicate, to
yield {(Consistent, [Product1])}.

B[[f1]]ρ B[[f2]]ρ L[[f1 and f2]]ρ
> > L[[f1]]ρ ◦s L[[f2]]ρ
> ⊥ L[[f2]]ρ
⊥ > L[[f1]]ρ
⊥ ⊥ L[[f1]]ρ ◦s L[[f2]]ρ

Table 5.1: Definition of L for and

Description The definition of L for the logical connectives and, or and implies is most
easily presented in a tabular form. Table 5.1 shows the linking semantics for and depending
on the boolean results of evaluating the two subformulae f1 and f2.

It is the falsifier, F, who gets to make the choice in the case of and. If only one subformula
evaluates to ⊥ under B, F of course picks the links produced by L for this subformula,
since this leads to a win.

If both subformulas evaluate to > or both evaluate to ⊥, F combines the links produced
for the subformulae using ◦s. In a sense, F is playing “fair” here because he is producing
witnesses – though they are consistent links, witnesses for his opponent – even in the case
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where there is no winning choice, where both subformulae evaluate to >. This is necessary
because the and construct may be contained in an outer formula involving negation. In
this case, the witnesses would be converted again to being witnesses for F.

An alternative way to look at this definition is that the semantics for the logical connectives
chooses the links of the subformula that contributes the most information to the overall
result: a subformula contributes information if changing its boolean result would change
the overall boolean result produced by the logical connective. The reasoning behind this
approach is that while we want to point out as much information as possible about an
inconsistency, at the same time we have to discard as much irrelevant information as
possible. If both subformulae evaluate to >, then changing either subformula could make
the result ⊥. Similarly, if both evaluate to ⊥, changing either has no effect on the overall
result. The subformulae contribute an equivalent amount of information, and hence we
combine their links.

Example 6. We can use and to build up a more complex constraint. For example, we can
check that there exists a product with the code B001 and that all products use the currency
GBP: (∃ p ∈/Catalogue/Product($p/Code =’B001’)) and (∀ p ∈/Catalogue/Product($p/
Price/@currency =’GBP’)).

We already know from Example 5.2.2, for ∃, that V has a winning strategy for the first
subformula, where L returns {(Consistent, [Product1])}. For the second subformula,
Product3 has the currency set to EUR, violating the subformula, and is entered into a
link as a witness by F. The game tree shows this graphically:

p = Product1 p = Product2 p = Product3

win win win 

p = Product1 p = Product2 p = Product3

win win Vwin 

At the top level, it is F’s turn to choose, and according to the definition of L, he chooses
the subformula that evaluates to ⊥. This is represented by the right branch, where F has
a winning strategy.

The links produced for the first subformula are thus discarded, as per L, and those
produced for the second are returned as the result: {(Inconsistent, [Product3])}. This
matches our intuitive expectations: we do not want to see the links produced for the first
subformula because the elements identified in it have not contributed to the inconsistency.
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B[[f1]]ρ B[[f2]]ρ L[[f1 or f2]]ρ
> > L[[f1]]ρ ◦s L[[f2]]ρ
> ⊥ L[[f1]]ρ
⊥ > L[[f2]]ρ
⊥ ⊥ L[[f1]]ρ ◦s L[[f2]]ρ

Table 5.2: Definition of L for or

Description The semantics for or is quite similar to that for and, except that now we
point to the subformula that evaluates to > under B. It is V’s turn to play, and V of
course chooses the option where he has a winning strategy.

If both subformulas evaluate to >, V combines the result of applying L to both using ◦s –
the witnesses in the form of links are combined. If both evaluate to ⊥, or uses a similar
“fair” approach to and and again combines and forwards the links.

From the alternative, information-driven point of view, if one subformula evaluates to ⊥
under B, and the other to >, then the latter contains more information: if we changed its
result to ⊥, the formula as a whole would fail. Where both subformulae evaluate to the
same result, changing either would not affect the overall result and we combine the links.

Example 7. Suppose we check that a product with code B001 or one with code B002

exists: (∃ p ∈/Catalogue/Product($p/Code =’B001’)) or (∃ p ∈/Catalogue/Product($p/
Code =’B002’)). It is V’s turn at all steps during the evaluation, leading to the following
tree:

p = Product1 p = Product2 p = Product3

win win win 

p = Product1 p = Product2 p = Product3

win win Vwin 

Both subformulae evaluate to >, and this is evidenced by the set of links produced for the
first, {(Consistent, [Product1])}, and the second {(Consistent, [Product2]), (Consistent,

[Product3])}.

After combining the sets using ◦s we get the result set

{(Consistent, [Product1, P roduct2]), (Consistent, [Product1, P roduct3])}
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These sets reflect the combination of alternative choices that V can make in the branches
of the game.

L[[not f ]]ρ = flip(L[[f ]]ρ)

Table 5.3: Definition of L for not

Description Since the definition of implies will entail some negation, we will first discuss
not. not leads to a reversal of the winner/loser situation. Whoever was the winner for f will
become the loser for not f and vice versa. This is classically represented in game semantics
using a ”role switch” and a subgame. Since we are using games only for illustration, we
will not formalise role switches and subgames. Instead, the definition of L uses flip to
change the consistency status of links produced for f . In game terms, any witnesses for
F then become witnesses for V and vice versa.

Example 8. Take again the example constraint ∀ p ∈/Catalogue/Product($p/Price/
@currency=’GBP’). The set of links produced for this was {(Inconsistent, [Product3])}.
In this set, Product3 is a witness for the violation of the formula.

The set of links for not ∀ p ∈/Catalogue/Product($p/Price/@currency=’GBP’) is then
{(Consistent, [Product3])}. This makes sense – the formula has been negated and now
Product3 has become a witness for the consistency of the document set against the for-
mula.

B[[f1]]ρ B[[f2]]ρ L[[f1 implies f2]]ρ
> > L[[f2]]ρ
> ⊥ flip(L[[f1]]ρ ◦s L[[f2]]ρ)
⊥ > flip(L[[f1]]ρ)
⊥ ⊥ flip(L[[f1]]ρ)

Table 5.4: Definition of L for implies

Description The classical boolean definition of implies is such that it returns >, unless
the premise – the first subformula – is > while at the same time the conclusion – the
second subformula – is ⊥. This definition makes implies the only asymmetric construct
in our language.

Under the classical boolean definition, for any formulas σ and φ, σ → φ is equivalent to
¬σ∨φ. It is natural then to let V choose the strategy for L, similar to the definition of or.
We will have to think carefully however when it comes to the witnesses that V chooses,
because the asymmetric definition of implies indicates that it is somehow different from
or.
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The first row of the table shows the case where both subformulae evaluate to > under B.
V could thus choose the links returned by L for either subformula as witnesses. However,
since we could flip the boolean result for f1 without affecting the overall result, we regard
the witnesses for f2 as containing more information. V thus chooses the links returned
for f2. This is the same result that would be obtained by L for (not f1) or f2.

The second row is the only row for which the boolean result is ⊥. Changing the result for
either subformula would change the overall result to >, so V combines the witnesses in
the links. Since f1 evaluates to > under B, it will contain consistent links. When the links
are combined using ◦s, the overall set will thus contain only consistent links. We therefore
use flip to make all links in the set inconsistent. Without proof, this is again the same
result that would be obtained for (not f1) or f2.

The last two rows are the cases where the premise is ⊥ under B. In these cases, V chooses
the witnesses for the premise, and flips their consistency status: by violating B in the
premise, they have become witnesses for V. In the case of the third row, this definition
marks a departure from the previous boolean equivalence with (not f1) or f2. Under that
equivalence, we would have to combine the links for f1 and f2, instead of linking to the
links produced for the premise. This is a deliberate departure that is designed to reinforce
the intuitive rule, ex falso quodlibet, – anything follows from an incorrect premise, and
the witnesses for the conclusion seem irrelevant. Even if the outcome of the conclusion
is altered, the overall result will be unaffected. This slight departure from the boolean
interpretation, which has produced good results in our case studies, is a reflection of the
increased amount of information our semantics provides, thus amplifying the consequences
of defining implies as an asymmetric operator.

We will now look at how this definition is applied in a number of examples.

Example 9. Suppose we express the property that if a product exists with code B001

then a product exists whose price is given in GBP: (∃ p ∈/Catalogue/Product($p/Code
=’B001’)) implies (∃ p ∈/Catalogue/Product($p/Price/@currency =’GBP’)).

Evaluation of the first subformula yields {(Consistent, [Product1])} and of the second
{(Consistent, [Product3])}. We chose the second set of links as the overall result:

{(Consistent, [Product3])}

Example 10. If we alter the formula, changing the second subformula to ∀, we will end
up with an inconsistent result: (∃ p ∈/Catalogue/Product($p/Code =’B001’)) implies

(∀ p ∈/Catalogue/Product($p/ Price/@currency =’GBP’)). In this case, the conclu-
sion is violated by Product3 and evaluation of the second subformula gives the result
{(Inconsistent, [Product3])}.
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According to the semantics, we thus combine the sets produced by the subformulae to
and flip the status of the result to give {(Inconsistent, [Product1, P roduct3])}. This link
expresses that Product1 has introduced an inconsistency (by having a node value equal
to ’B001’) and so has Product3 (by having a currency not equal to ’GBP’).

Example 11. Finally, we will look at an example where the premise evaluates to ⊥:
(∃ p ∈ /Catalogue/Product($p/Code =’unknown’)) implies (∀ p ∈/Catalogue/Product(
$p/Price/ @currency =’GBP’)).

For the first subformula we now get the result {(Inconsistent, [])}. It does not matter now
that one of the products fails the test on the currency since the premise is not fulfilled.
Instead, we flip the links from the first subformula and return {(Consistent, [])} as our
result.

L[[e1 = e2]]ρ =
{
{(Consistent, [])}, B[[e1 = e2]]ρ = >
{(Inconsistent, [])}, otherwise

Table 5.5: Definition of L for =

Description The semantics for = is to always return a link with the correct status, but
an empty set of locators. This decision was prompted by the following observations:

• Any location path that occurs in = must be relative to a variable introduced by
a quantifier in any case – see Definition 4.21 on page 46. Thus it will be possible
to unambiguously evaluate $x/Name by following the locator introduced by the
quantifier and evaluating the relative path “Name”. Any further locators introduced
by the equality predicate would be redundant.

• The expressions e1 and e2 do not necessarily have to refer to location paths, they
could also be numbers or strings. For example, assuming that $x is bound to some
node, $x/Name=5 is a valid formula. In cases like these, where an expression does
not evaluate to a node set, there are no nodes to link to.

L[[same v1 v2]]ρ =
{
{(Consistent, [])}, B[[same v1 v2]]ρ = >
{(Inconsistent, [])}, otherwise

Table 5.6: Definition of L for same

Description same returns a link with no locators for similar reasons to =: the two
parameters v1 and v2 refer to variables that must have been bound by a quantifier that
precedes the predicate. That quantifier would already introduce links to the nodes bound
to the variables if necessary, thus any further links would be redundant.
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Summary of L

• The function L evaluates a formula over a document set and returns a set of consis-
tency links.

L[[∀v ∈ p (f)]]ρ =


{(Consistent, [])}, B[[∀v ∈ p (f)]]ρ = >⋃

ni∈Sd[[p]]
ρ

((Inconsistent, [ni]) ◦ L[[f ]]bind(v,{ni},ρ) |

B[[f ]]bind(v,{ni},ρ) = ⊥), otherwise

L[[∃v ∈ p (f)]]ρ =


{(Inconsistent, [])}, B[[∃v ∈ p (f)]]=⊥⋃

ni∈Sd[[p]]
ρ

((Consistent, [ni]) ◦ L[[f ]]bind(v,{ni},ρ) |

B[[f ]]bind(v,{ni},ρ) = >), otherwise

B[[f1]]ρ B[[f2]]ρ L[[f1 and f2]]ρ
> > L[[f1]]ρ ◦s L[[f2]]ρ
> ⊥ L[[f2]]ρ
⊥ > L[[f1]]ρ
⊥ ⊥ L[[f1]]ρ ◦s L[[f2]]ρ

B[[f1]]ρ B[[f2]]ρ L[[f1 or f2]]ρ
> > L[[f1]]ρ ◦s L[[f2]]ρ
> ⊥ L[[f1]]ρ
⊥ > L[[f2]]ρ
⊥ ⊥ L[[f1]]ρ ◦s L[[f2]]ρ

B[[f1]]ρ B[[f2]]ρ L[[f1 implies f2]]ρ
> > L[[f2]]ρ
> ⊥ flip(L[[f1]]ρ ◦s L[[f2]]ρ)
⊥ > flip(L[[f1]]ρ)
⊥ ⊥ flip(L[[f1]]ρ)

L[[not f ]]ρ = flip(L[[f ]]ρ)

L[[e1 = e2]]ρ =

{
{(Consistent, [])}, B[[e1 = e2]]ρ = >
{(Inconsistent, [])}, otherwise

L[[same v1 v2]]ρ =

{
{(Consistent, [])}, B[[same v1 v2]]ρ = >
{(Inconsistent, [])}, otherwise
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5.2.3 On the Relationship of L and B

It is useful to know what kind of result to expect from the linking semantics when the
boolean interpretation of a formula returns > or ⊥. Indeed, the recursive definition of
L relies on certain properties: in Table 5.4 on page 63, which gives the definitions of
implies, the case where the premise is > and the conclusion ⊥ relies on the first subformula
returning only consistent links. It then uses flip in the expectation of returning a set of
inconsistent links. This expectation is supported by the following two theorems.

Theorem 5.1. For any formula f , B[[f ]] = > if and only if L[[f ]] contains only consistent
links.

Theorem 5.2. For any formula f , B[[f ]] = ⊥ if and only if L[[f ]] contains only inconsistent
links.

Proof. Both theorems can be shown to hold using structural induction over the abstract
syntax of the formula language. Since they are interdependent, we will prove both at the
same time using mutual induction. We will first show that L follows from B, and then the
reverse.

Consider the implications, if B[[f ]] = > then L[[f ]] contains only consistent links, and if
B[[f ]] = ⊥ then L[[f ]] contains only inconsistent links. Our bases cases are the definitions
of = and same as they are non-recursive. Both are defined to return a link with a status
reflecting the boolean result directly, and thus both theorems hold. For the following
recursive cases, consisting of the quantifiers, the boolean connectives and not, we will use
the induction hypothesis that the theorems hold for the subformulas and show they hold
after L is applied to the whole formula.

Consider the quantifiers: If B[[∀ v ∈ p (f)]] = > then L[[∀ v ∈ p (f)]] = {(Consistent, [])}.
If B[[∀ v ∈ p (f)]] = ⊥ then there is at least one assignment to the variable for which an
inconsistent link will be generated. For ∃, if B[[∃ v ∈ p (f)]] = > then for at least one
assignment to the variable a consistent link will be generated. If B[[∃ v ∈ p (f)]] = ⊥ then
L[[∃ v ∈ p (f)]] = {(Inconsistent, [])}. Therefore, if the induction hypothesis holds for the
subformulae, it will hold for the quantifiers. Now consider the logical connectives.

For and, if B[[f1 and f2]] = > then B[[f1]] = > and B[[f2]] = >. Under the induction
hypothesis, the set of links returned for f1 and f2 contains only consistent links. We use
◦s to combine the two sets. The definition of ◦s assigns each link in the result set a status
from a link in the first set. By induction, therefore, all links in the result set will be
consistent. If B[[f1 and f2]] = ⊥, we have three cases to consider: exactly one subformula
evaluates to ⊥ or both evaluate to ⊥. If only one subformula evaluates to ⊥, the definition
of L returns the links for that subformula. Under the induction hypothesis, these links
are all inconsistent. If both subformulae evaluate to ⊥, under the induction hypothesis
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they return either empty sets or sets of inconsistent links. From the definition of ◦s it
again follows that the result contains only inconsistent links. Therefore, by induction, the
theorems hold for f1 and f2.

The definition of or mirrors the definition of and and hence the proof is a corollary. Assume
then that B[[f1 implies f2]] = >. This means that either B[[f1]] = > and B[[f2]] = > or
B[[f1]] = ⊥ and f2 evaluates to either result. In the first case, the definition of L returns
L[[f2]], which, under the induction hypothesis, contains only consistent links. In the second
case, we take the links produced by L[[f1]], which are all inconsistent under the induction
hypothesis, and flip their status. They will thus all be consistent. Now consider the case
where B[[f1 implies f2]] = ⊥. Then B[[f1]] = > and B[[f2]] = ⊥. The definition of L
uses ◦s to combine the links returned for f1, which are all consistent under the induction
hypothesis, with those returned for f2, which are all inconsistent under the induction
hypothesis. Since ◦s assigns the status of the links in the first set to all resulting links,
all links returned by the function will be consistent. The definition of L then applies flip

to the set of links and hence all resulting links will be inconsistent. By induction, the
theorems hold for f1 implies f2.

The remaining case is not. The definition of not flips the status of all links produced by
the subformula, so the result follows trivially under the induction hypothesis.

We will now look at the converse statements, “if L[[f ]] contains only consistent links then
B[[f ]] = >” and “if L[[f ]] contains only inconsistent links then B[[f ]] = ⊥”. We will again
use mutual induction, starting with the predicate base cases.

The base cases are trivial from the definition. If a set with a consistent link is generated,
it is because the boolean result was > and vice versa for inconsistent links.

The quantifier cases are also trivial: for ∀ the definition shows that sets containing consis-
tent links are generated if the boolean result is true, and vice versa for inconsistent links.
Note that the definition of ◦s assigns the status Inconsistent, of the link produced by the
quantifier, to all links in the result set. The definition of ∃ is along similar lines.

Now consider and - we can show that the theorem holds by reductio ad absurdum: suppose
L[[f1 and f2]] contains only consistent links, but at the same time B[[f1 and f2]] = ⊥. The
latter is the case if exactly one of the subformulae returns ⊥, or both return ⊥. Assume
B[[f1]] = ⊥ and B[[f2]] = >. From the definition of and, we can see that we return
L[[f1]] as the result - but through the induction hypothesis we know that all links in
L[[f1]] are inconsistent because the boolean result is ⊥, and similarly for the case where
B[[f1]] = > and B[[f2]] = ⊥. Now consider the case where B[[f1]] = ⊥ and B[[f2]] = ⊥. The
induction hypothesis tells us that both L[[f1]] and L[[f2]] return only inconsistent links,
and through the definition of ◦s we know that the overall result contains only inconsistent
links. We have thus failed to find a case where L[[f1 and f2]] contains consistent links
and B[[f1 and f2]] = ⊥. To prove the reverse case, assume that L[[f1 and f2]] contains
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only inconsistent links and at the same time B[[f1 and f2]] = >. The boolean result will
only be > if both subformulae evaluate to >. In this case, the definition of and joins the
links produced by the subformulae, which contain only consistent links by the induction
hypothesis - hence the overall result will only contain consistent links.

The proof for the disjunctive or mirrors that of and, so we will look at implies. Assume
L[[f1 implies f2]] contains only consistent links, but at the same time B[[f1 implies f2]] =
⊥. From the boolean definition we infer that the latter can only be the case if B[[f1]] =
> and B[[f2]] = ⊥. In this case we would return flip(L[[f1]] ◦s L[[f2]]). Our induction
hypothesis tells us that the links in L[[f1]] are all consistent - hence through the definition
of ◦s and flip, all links in the result set are inconsistent and our assumption is rejected.
Consider the reverse case where L[[f1 implies f2]] contains only inconsistent links, but
B[[f1 implies f2]] = >. There are three cases to consider: if B[[f1]] = > and B[[f2]] = >
we return L[[f2]], which under the induction hypothesis contains only consistent links. If
B[[f1]] = ⊥, and B[[f2]] is either > or ⊥, we return flip(L[[f1]]). Since L[[f1]] contains only
inconsistent links under the induction hypothesis, and flip inverts their status, we again
obtain only consistent links. The result holds by reductio ad absurdum.

Finally, consider not. Assume a case where L[[not f ]] contains only consistent links and
B[[not f ]] = ⊥. Then, by the boolean definition B[[f ]] = > and by the induction hypothesis,
L[[f ]] contains only consistent links. flip inverts the links to make them all inconsistent –
the result holds by reductio ad absurdum. The result for the case of inconsistent links is
analogous.

5.2.4 A Special Case

For practical, as well as historical reasons with the way that the formula language has
evolved from a simple constraint between two sets, to more complex boolean constraints
between two sets, to its current first order logic form, our implementation assigns a different
semantics to L[[∀ v ∈ p(f)]] where the ∀ is the outermost formula construct. We point this
out here to ensure consistency of the results reported in the case study with the semantic
definition.

Whereas the previous definition generates an inconsistent link to nodes under whose as-
signment to the variable the subformula returns ⊥, the new definition also generates
consistent links when the subformula evaluates to >.

The constraint ∀ p ∈/Catalogue/Product($p/Price/@currency=’GBP’), shown as an ex-
ample in the definition of ∀, would then evaluate to {(Consistent, [Product1]), (Consistent,

[Product2]), (Inconsistent, [Product3])}. This gives us the ability to identify both consis-
tent and inconsistent data items at the same time.
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We have introduced this special semantics for two reasons:

• Because an earlier incarnation of the semantics restricted formulae to start with ∀,
with a similar distinction between universal quantifiers that occur as the outermost
construct or on the inside, and this semantics has produced good results in our case
studies.

• Because many of the constraint we have expressed start with ∀, as a means of
choosing an element as a context for the subformula. For example, one might say
“for all classes, a certain constraint holds” or “for all products, a certain constraint
holds”. In these cases, we can provide valuable extra information by identifying both
the consistent and inconsistent nodes.

5.2.5 Some Properties

This section shows that our linking function L has properties that are similar to the usual
boolean laws, including relationships between the quantifiers and de Morgan’s laws. We
retain some of the intuitive character of the standard boolean semantics.

Theorem 5.3. L[[∀ v ∈ p (f)]]ρ = L[[not(∃ v ∈ p (not f))]]ρ

Proof. Suppose B[[∀ v ∈ p (f)]]ρ = >.

1. L[[∀ v ∈ p (f)]]ρ = {(Consistent, [])} by the definition of L for ∀.

2. L[[not(∃ v ∈ p (not f))]]ρ = flip(L[[∃ v ∈ p (not f)]]ρ) by the definition of L for not.

3. Since B[[∀ v ∈ p (f)]]ρ = >, f evaluates to > for all assignments to v.

4. Therefore, not f evaluates ⊥ for all assignments to v.

5. From 2, 4, and the definitions of L for ∃ and flip: flip(L[[∃ v ∈ p (not f)]]ρ) =
flip({(Inconsistent, [])}) = {(Consistent, [])}.

6. The result in 1 equals the result in 5.

Now suppose B[[∀ v ∈ p (f)]]ρ = ⊥.

1. Some nodes n1, ..., nn cause the subformulae f to evaluate to ⊥.

2. L[[∀ v ∈ p (f)]]ρ =
⋃

ni
(Inconsistent, [ni]) ◦ L[[f ]]bind(v,{ni},ρ), from 1 and the defini-

tion of ∀.

3. The same set of nodes n1, ..., nn from 1 causes not f to evaluate to >.
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4. L[[not(∃ v ∈ p (not f))]]ρ = flip(L[[∃ v ∈ p (not f)]]ρ), from the definition of L for
not.

5. flip(L[[∃ v ∈ p (not f)]]ρ) = flip(
⋃

ni
(Consistent, [ni])◦L[[f ]]bind(v,{ni},ρ)), from 3, 4

and the definition of ∃.

6. flip((s, l)◦links) = flip({(s, l+li) | (si, li) ∈ links}), for any status s, list of locators
l and set of links links, from the definition of ◦.

7. flip({(s, l + li) | (si, li) ∈ links}) = {fliplink((s, l + li)) | (si, li) ∈ links}, from 6
and the definition of flip (fliplink is locally defined in the definition of flip).

8. flip(
⋃

ni
(Consistent, [ni]) ◦ L[[f ]]bind(v,{ni},ρ)) = flip(

⋃
ni
{(Consistent, [ni] + lj) |

(sj , lj) ∈ L[[f ]]bind(v,{ni},ρ)}), from 5 and 6.

9. flip(
⋃

ni
{(Consistent, [ni] + lj ]) | (sj , lj) ∈ L[[f ]]bind(v,{ni},ρ)}) =⋃

ni
{fliplink((Consistent, [ni] + lj ])) | (sj , lj) ∈ L[[f ]]bind(v,{ni},ρ)} =⋃

ni
{(Inconsistent, [ni] + lj ]) | (sj , lj) ∈ L[[f ]]bind(v,{ni},ρ)}, from 7, 8 and the defini-

tion of fliplink.

10.
⋃

ni
{(Inconsistent, [ni] + lj) | (sj , lj) ∈ L[[f ]]bind(v,{ni},ρ)}=⋃

ni
(Inconsistent, [ni]) ◦ L[[f ]]bind(v,{ni},ρ), from the 9 and definition of ◦.

11. The result in 2 is equal to the result in 10.

Theorem 5.4. L[[∃ v ∈ p (f)]] = L[[not(∀ v ∈ p (not f))]]

Proof. Omitted as it proceeds along exactly the same lines as the previous proof.

Theorem 5.5. L[[not(not f)]] = L[[f ]]

Proof. Let L[[f ]] = l. Then L[[not f ]] = flip(l) and L[[not(not f)]] = flip(flip(l)). flip

does not change the number of links in l and does not affect the locators of any links. For
any link, it changes the status from consistent to inconsistent, or vice versa. The result
follows.

Lemma 5.13. flip(l1 ◦s l2) = flip(l1) ◦s flip(l2) if all links in l1 and l2 have the same
status.

Proof. Consider the boundary cases: flip(l◦s∅) = flip(l) = flip(l)◦sflip(∅) and flip(∅◦s
l) = flip(l) = flip(∅) ◦s flip(l), from the definition of ◦s.

Now take any non-empty sets of links l1 and l2. Assume all links in l1 and l2 have the
status s. Then all links in l1 ◦s l2 have the same status s by the definition of ◦s. Therefore,
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all links in flip(l1 ◦s l2) have the opposite status, s̄. All links in flip(l1) have the status
s̄ and so do all links in flip(l2). Therefore all links in flip(l1) ◦s flip(l2) have the status
s̄. Furthermore, the links in l1 ◦s l2 have the same locators as those in flip(l1) ◦s flip(l2)
as the concatenation of the locators does not depend on the links’ status. Therefore, the
links in flip(l1 ◦s l2) have the same locators and status as the links in flip(l1) ◦s flip(l2)
and hence the sets of links are equivalent.

Theorem 5.6. de Morgan’s law: L[[not(f1 and f2)]] = L[[(not f1) or (not f2)]]

Proof. Consider the four cases:

• B[[f1]] = > and B[[f2]] = >: L[[not(f1 and f2)]] = flip(L[[f1]]◦sL[[f2]]). By Lemma 5.13,
and Theorem 5.1, which guarantees the two link sets contain links with the same
status, flip(L[[f1]] ◦s L[[f2]]) = flip(L[[f1]]) ◦s flip(L[[f2]]).

Since B[[f1]] = >, B[[not f1]] = ⊥ and hence L[[(not f1) or (not f2)]] = L[[(not f1)]] ◦s
L[[(not f2)]] by the definition of or. L[[(not f1)]] ◦s L[[(not f2)]] = flip(L[[f1]]) ◦s
flip(L[[f2]]), equivalent to and.

• B[[f1]] = > and B[[f2]] = ⊥: L[[not(f1 and f2)]] = flip(L[[f1 and f2]]) = flip(L[[f2]])
from the definition of and. L[[(not f1) or (not f2)]] = L[[not f2]] from the definition
of or, and L[[not f2]] = flip(L[[f2]]) as before.

• B[[f1]] = ⊥ and B[[f2]] = >: corollary to previous case.

• B[[f1]] = ⊥ and B[[f2]] = ⊥: corollary to first case.

Theorem 5.7. de Morgan’s law: L[[not(f1 or f2)]] = L[[(not f1) and (not f2)]]

Proof. Again consider four cases:

• B[[f1]] = > and B[[f2]] = >: L[[not(f1 or f2)]] = flip(L[[f1]] ◦s L[[f2]]). By Lemma
5.13, and Theorem 5.1, flip(L[[f1]] ◦s L[[f2]]) = flip(L[[f1]]) ◦s flip(L[[f2]]).

Since B[[f1]] = >, B[[not f1]] = ⊥ and hence L[[(not f1) and (not f2)]] = L[[(not f1)]]◦s
L[[(not f2)]] by the definition of and. L[[(not f1)]] ◦s L[[(not f2)]] = flip(L[[f1]]) ◦s
flip(L[[f2]]), equivalent to or.

• B[[f1]] = > and B[[f2]] = ⊥: L[[not(f1 or f2)]] = flip(L[[f1 or f2]]) = flip(L[[f1]])
from the definition of or. L[[(not f1) and (not f2)]] = L[[not f1]] from the definition
of and, and L[[not f1]] = flip(L[[f1]]) as before.

• B[[f1]] = ⊥ and B[[f2]] = >: corollary to previous case.
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• B[[f1]] = ⊥ and B[[f2]] = ⊥: corollary to first case.

5.2.6 Discussion and Alternatives in the Semantic Definition

We have considered some alternatives for our semantic definition that should provide useful
background about its current state. Section 5.2.4 has already shown that some amount of
practical experience has been fed back into the design of the language and the following
discussion is also motivated by practical concerns.

In the definition of L for ∃, we link to nodes for which the given subformula evaluates to
>. If we cannot find any such nodes, we produce a link of the form (Inconsistent, []) to
signify that no node could be found that made the subformula true. This is not the only
choice at this point and some alternatives were considered. Take the example formula
∃ p ∈/Catalogue/Product(Code=”unknown”). We have four choices:

1. Provide a link of the form (Inconsistent, []) as in our semantics.

2. Create a link of the form (Inconsistent, [Product1, P roduct2, P roduct3]) to list the
nodes that were considered as part of the check.

3. Create several links, (Inconsistent, [Product1]), (Inconsistent, [Product2]) and
(Inconsistent, [Product3]).

4. Create a link that identifies the set of nodes we have checked using some identifier,
perhaps the path: (Inconsistent, /Catalogue/Product).

Each of these approaches has advantages and disadvantages. The first, and the one eventu-
ally chosen, is simple and intuitive, and makes the semantics easy to define. As a downside,
it does not always return the maximum amount of information because it throws away
any links generated by subformulae as irrelevant. Consider a formula of the form, “there
exists a class where all attributes start with an x”. Now suppose we cannot find such a
class. Then for all classes, at least one attribute will not have started with an x. Our
semantics will not link to these inconsistent attributes but will, by virtue of producing a
single inconsistent link, record the fact that the constraint was false for all classes.

Now consider the second approach. According to our semantics, in the constraint from the
previous paragraph the locators pointing to the inconsistent attributes will be combined
with the single locator that points to all nodes. It would be preferable to combine only
the locator pointing to a single class with those pointing to its attributes. This problem
aside, storing all locators in a single link also makes the number of locators a link carries
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dependent on the number of elements matched in the documents rather than the number
of nested quantifiers. This makes it impossible to predict in advance the types of links
that will be generated. This in turn makes static analysis hard, and makes it extremely
difficult to use the links for follow-on tasks like repair generation.

The third approach overcomes the limitation on static analysis that the second suffers. It
also yields good links with the example rule: each class is combined with the attributes
that need to be changed to remove the inconsistency. The final, fourth approach, was
rejected as too complex as it would make the concept of a locator polymorphic.

The motivation to choose the first approach over the third, which seems to offer more
diagnostic value with little additional complexity stems from practical considerations.
Firstly, by far the majority of rules we have seen in practice are simple and do not encounter
the problem discussed here. Secondly, it is not clear that it is necessarily intuitive to call
a node inconsistent because it fails the existential quantifier’s test: when we say “there
exists a node with a certain property x”, and we cannot find such a node, it does not
necessarily make sense to call all nodes that we have tested inconsistent – it may be that
the inconsistency is caused by the absence of a new node. And thirdly, by linking to all
nodes that are inconsistent we introduce a fairly large number of links. Suppose we want
to test that for all entries in a document, there exists another entry in a set of thousands of
documents, such that their identifiers match. For every entry in the document that does
not have a match we would create thousands of links rather than just a link identifying
the entry.

It was mainly the first reason, the structure of the majority of the rules we have seen in
practice, and the third, preventing an explosion in the number of links, that have led us
to choose the first approach.

It has also been pointed out to us that our approach is a departure from the intuitive de-
finition of universal and existential quantification as a conjunction or disjunction, respec-
tively. For example, given the formula ∀ p ∈/Catalogue/Product(f), and three elements
Product1, Product2, Product3, we may expect the result of evaluation to be the same as
that of L[[f ]]Product1

and L[[f ]]Product2
and L[[f ]]Product3

, using a shortcut notation for bind-
ing the product elements to p. This equivalence does not hold – the definition of L for ∀ is
to return a consistent link with no locators in the consistent case, whereas the conjunction
would combine the links produced by subformulae. In the inconsistent case, the existing
definition would create a link to the violating Producti, whereas the conjunction would
again only combine the link created by the subformulae – since only quantifiers introduce
locators, we would be losing a witness. Since quantifiers are usually used to iterate over
larger sets of nodes and it is rare to find an and combining more than two elements of the
same type, we believe that this inequality does not introduce any problems in practice.
We are also keen to retain the feature that only quantifiers, which are explicit iteration
constructs that assign bindings to variables, should introduce locators. This is intuitive
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for constraint writers and enables the specification of reporting components that can refer
to locators using variable references – a feature that would otherwise be hard to achieve if
boolean connectives introduced locators, since we would have to identify break locations
using paths through the game trees instead.

We have also considered an alternative in the definition of the logical connectives and and
or. These connectives combine the link sets of their subformulae using ◦s if the boolean
result of evaluating the subformulae is equivalent, that is both evaluate to > or both
evaluate to ⊥. It would have also been possible to simply return the union of the result
sets of the overall result. This difference is best illustrated using an example.

Suppose we evaluated the formula (∀ p ∈/Catalogue/Product($p/Price/@currency=’GBP’
)) or ((∀ p ∈/Catalogue/Product($p/Code=’B002’)). This formula evaluates to ⊥ and our
linking semantics would yield the set of links {(Inconsistent, [Product3, P roduct1])}. If
we redefined it to use set union instead of ◦s we would get {(Inconsistent, [Product3]),
(Inconsistent, [Product1])}.

This raises two questions: what does it really mean for nodes to be included in a set of
locators, and which of the representation above make more sense? Suppose we take the
first link to read “Product3 is inconsistent with Product1”. If we take the inclusion of the
nodes in the same set of locators to mean that they are consistent with one another, we
seem to contravene the intention of the constraint: the constraint writer wanted one or
the other to hold independently but we have somehow established a connection between
them.

It seems to make more sense to interpret the locators to mean that Product3 and Product1
simultaneously contribute to an inconsistency, but not necessarily because of a relationship
between each other. The important thing is that the list of locators contains all the items
that have been associated with an inconsistency so a choice can be made which one to
alter if necessary.

Now consider the result we would get if we chose union instead of ◦s for our semantics,
{(Inconsistent, [Product3]), (Inconsistent, [Product1])}. One could argue that this result
captures the independent contribution of the two elements to the overall inconsistency
better. However, if we now change one of Product1 or Product3, we would cause both
links to disappear because the formula would become >. It seemed preferable that all
the information whose modification would have an impact on the status of a link should
be contained in the link itself, and that dependencies between links should be avoided if
possible.
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5.3 Chapter Summary

In this chapter we have provided two evaluation semantics for the constraint language spec-
ified in the last chapter. The evaluation semantics specify how constraints are evaluated
over multiple DOM trees to provide inconsistency reports.

We have seen that the standard boolean interpretation of our constraint language is not
rich enough to provide diagnostics that help us to track inconsistency between multiple
documents. Our novel consistency link semantics overcomes this by accumulating infor-
mation during evaluation that effectively records which elements have acted as “witnesses”
to constraint violations.

The relationship between the boolean and link generation semantics has been established
by showing that a number of common properties that hold for the former still hold for
the latter. In particular, we have seen that if a boolean evaluation of a constraint is true,
we expect to see consistent links, and vice versa for the inconsistent case. Our linking
semantics thus acts as expected from languages based on first order logic, while at the
same time providing the additional level of detail in diagnostic information that we have
been seeking.

The following chapter will deal with more practical issues that arise with the implemen-
tation of the semantics as part of a consistency checking service.



6 Implementation

We have implemented our link generation semantics in a consistency check engine. The
engine was first prototyped in Haskell to clarify implementation details in the semantics,
and then implemented in Java to deal with actual input data.

The implementation required some additional mechanisms and design decisions: con-
straints have to be presented in some concrete syntax and fed into the check engine,
and results have to be returned. We will look at examples demonstrating XML represen-
tations of our constraint language and linkbase outputs. Documents and the constraints
that are to be applied to them have to be managed: we will look at our document set and
rule set mechanisms, as well as “fetchers”, which are used to translate non-XML data into
an XML format for checking.

Our check engine is encapsulated in a single component and can thus be deployed in a
number of architectures. We will take a look at a web based architecture, as well as a
message queuing architecture that checks documents as part of a message flow. These
examples are mainly intended to show the adaptability of a properly encapsulated, light-
weight consistency checking service.

Finally, we will concern ourselves with a practical presentation of the checking output.
Consistency links between elements represent, in a sense, the raw diagnostic output of the
check engine, but are not always readily accessible to the user. They can, however, be
used to visualise relationships between documents, to automatically provide consistency
reports that use link locators to display information from documents, or to drive consis-
tency reporting directly in document manipulation tools. We will look at several practical
processing components we have built that make use of consistency links.

6.1 XML Constraints and Links

We use XML as a concrete syntax for our language and the resulting linkbase. Encoding
the language in XML has a number of advantages: it is easy to parse using off the shelf
tools, it blends more uniformly into the environment since all other documents are assumed
to be in XML or transformable into XML, and it enables us to use related technologies
like XSLT [Clark, 1999] to transform the constraints for presentation to the user.

A presentation of the entire language in XML would not add significantly to the discussion.
Instead, the grammar is given in Appendix B and we will look at a constraint from the
running example. Figure 6.1 shows the now familiar constraint “for all Advert elements,
there exists a Product element in the Catalogue such that their names match” in XML.

77
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<consistencyrule id="r1">

<header>

<description>

Each advert must refer to a product

defined in the catalogue

</description>

</header>

<forall var="a" in="/Adverts">

<exists var="p" in="/Catalogue/Products">

<equal op1="$a/ProductName/text()"

op2="$p/Name/text()"/>

</exists>

</forall>

</consistencyrule>

Figure 6.1: Constraint in XML

A consistency rule consists of two parts: the first part is a header that contains a
description element and various metadata annotations. No metadata is shown in the
figure, but the language basically permits the use of arbitrary metadata tags, for ex-
ample author information or comments. The second, starting in the example with a
forall element contains the actual constraint. Rules can contain one further optional
element that enables the user to control link generation behaviour. By default, both con-
sistent and inconsistent elements are linked, but this behaviour can be overridden using a
linkgeneration element.

<xlinkit:LinkBase

xmlns:xlinkit="http://www.xlinkit.com"

docSet="file://DocumentSet.xml"

ruleSet="file://RuleSet.xml">

<xlinkit:ConsistencyLink

ruleid="rule.xml#/id(’r1’)">

<xlinkit:State>consistent</xlinkit:State>

<xlinkit:Locator

xlink:href="advert1.xml#/Advert[1]"/>

<xlinkit:Locator

xlink:href="catalogue.xml#/Catalogue/Product[1]"/>

</xlinkit:ConsistencyLink>

</xlinkit:LinkBase>

Figure 6.2: Sample linkbase in XML

The consistency links that are generated as a result of a check are also presented in XML,
in the form of XLink linkbases. Figure 6.2 shows a sample linkbase containing only one
XLink, which was produced as the result of checking the constraint in Figure 6.1 The
link indicates that it is connecting two consistent elements. It contains two locators that
reference the elements using a URL and an XPath expression. The remaining attributes
required in an XLink have been omitted here as they are defined by default in the linkbase
DTD.
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6.2 Document Management

The selection of documents and rules to be checked against each other has to be managed.
It is not feasible to always check every document against every rule and it is certainly
not necessary to check every document every time. In the running example, people re-
sponsible for marketing may be interested in the status of adverts, whereas a customer
relations department may be interested in the status of customer reports. Some support for
partitioning documents and rules is needed to support flexible consistency management.

A document set references documents that are loaded from underlying data sources and
a rule set references rule files that contain several consistency rules. A document set can
then be submitted to be checked against a rule set.

<DocumentSet>

<Document href="catalogue.xml"/>

<Set href="Adverts.xml"/>

<Set href="Customers.xml"/>

<Set href="Services.xml"/>

</DocumentSet>

Figure 6.3: Sample document set

Fig. 6.3 shows a sample document set. Document sets form a hierarchy of documents
and possibly further document sets. In the figure, the Document element is used to add
the catalogue file directly into the set while the Set element includes further sets. At
check time, the hierarchy is flattened and resolved into a single set. To find out whether
a document needs to be checked against a rule, we check if the XPath expressions in the
rule can be applied.

In order to abstract from the underlying storage mechanisms and to include data that is
not natively stored in XML into a check, we provide fetchers. A fetcher liaises with some
data store and provides a DOM tree representation of its content. By default, data are
retrieved from XML files either from the disk or through an HTTP URL request using
the FileFetcher, however user-defined fetchers can override this behaviour.

As an example, we have implemented a JDBC fetcher, which executes a query on a data-
base and translates the resulting table into a DOM tree. Figure 6.4 shows a version of
Wilbur’s document set where the service reports have been put into a relational database.
The fetcher attribute in the Document element overrides the default behaviour to select
the JDBCFetcher. Several additional parameters have to be specified. The reference ele-
ment gives a name for the root element of the output XML document, the query contains
an SQL query that selects table data from the database, and the key element contains a
comma-separated list of column names that make up a key for the table data.



6.2. Document Management 80

<DocumentSet>

<Document href="catalogue.xml"/>

<Set href="Adverts.xml"/>

<Set href="Customers.xml"/>

<Document fetcher="JDBCFetcher"

href="jdbc:mysql://www.xlinkit.com/testdb?user=wilbur">

<fetcher:reference>report</fetcher:reference>

<fetcher:query>select * from report</fetcher:query>

<fetcher:key>productcode,description</fetcher:key>

</Document>

</DocumentSet>

Figure 6.4: Document set with JDBC fetcher

+-------------------------+-------------+--------------------------+

| productname | productcode | description |

+-------------------------+-------------+--------------------------+

| HARO SHREDDER | B001 | Found a problem in ... |

| HARO TR2.1 | B002 | Found a problem while... |

+-------------------------+-------------+--------------------------+

<report>

<row>

<productname>HARO SHREDDER</productname>

<productcode>B001</productcode>

<description>Found a problem in ...</description>

</row>

<row>

<productname>HARO TR2.1</productname>

<productcode>B002</productcode>

<description>Found a problem while...</description>

</row>

</report>

Figure 6.5: Relational table XML representation

The JDBC fetcher class executes the SQL query on the relational database and transforms
the resulting table into a DOM tree. Fig. 6.5 shows a sample table of service reports
fetched from Wilbur’s database by executing the JDBC query from the document set.
Shown below the table is the XML representation, containing one row element for every
row stored in the table and using the column name data from the data dictionary for the
element names inside the rows.

The key information that has to be provided to the fetcher demonstrates that, in general,
any fetcher that accesses non-XML data has to provide its own concept of a unique iden-
tifier. The unique identifier can be used by the fetcher to create hyperlink locators that
do not contain XPath expressions but instead use the native referencing mechanism. In
the case of the JDBC fetcher the link locators consist of values for the key fields, thus
uniquely identifying a row in the table data.
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<RuleSet>

<header>

<description>

All rules for Wilbur’s bike shop

</description>

</header>

<RuleFile href="bike_rule.xml"

xpath="/consistencyruleset/consistencyrule"/>

</RuleSet>

Figure 6.6: Sample rule set

Rule sets are managed in a similar fashion. A rule set contains references to rules and
further rule sets. Fig. 6.6 shows a sample rule set. A RuleFile element is used to
specify a rule file to load and an xpath attribute specifies which rules from that file
to actually include. The path /consistencyruleset/consistencyrule will match all
consistencyrule elements included in the rule file. If that is not desired, a more specific
path such as /consistencyruleset/consistencyrule[@id=’r1’] could be used, which
only loads the rule whose id attribute is equal to r1.

The document and rule set mechanisms haven proven themselves to be very valuable in
practice. By using a referencing scheme and not including the rules themselves directly
into a check, we enable a “pick-and-choose” approach to checking. This affords the user
considerable flexibility and promotes constraint reuse. For example, it becomes possible
to vary the strictness of a check by including subsets from a set of rules, or to vary the
rules to be used depending on the state of a workflow engine.

6.3 Architecture and Deployment

In the abstract, our proposed checking architecture is very simple, Figure 6.7 shows its
basic operation. Document sets and rule sets are submitted for checking, documents are
loaded as DOM trees using fetchers, and linkbases are produced as output.

Due to its simplicity, this abstract architecture can be straightforwardly deployed in a
number of different ways. Figure 6.8 shows the architecture of a public, freely accessible
service that we have provided for people to check their own documents over the Internet.
The check engine is implemented as a Java Servlet [Coward, 2001] and executes on the
Apache Tomcat servlet engine. Users are presented with a web form where they enter the
document set and rule set URL and submit the check request.

When the form is submitted, a new servlet instance is created to deal with the request. The
servlet uses the Xerces XML parser from the Apache XML project to parse the documents
and rule files. After checking the rules, the servlet writes an XML file containing the
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Figure 6.7: Checking component abstract architecture

generated links to the web server’s local storage. It then generates a result page that
contains the URL of the link base and returns it back to the browser client. The input
form also gives the user a choice of whether to return the raw XML file containing the
links or to add a processing directive for it to be translated into HTML using a style sheet.
We will see this and further options for visualisation in Section 6.4.

Another deployment model we have implemented was to hook our checker into a messaging
infrastructure. Messaging middleware has become very popular in large organisations that
have extensive back-office processing and integration environments. Messaging standards
such as the Java Message Service (JMS) [Hapner et al., 1999] provide asynchronous and
persistent message delivery. Software engineers can make use of the middleware primitives
to construct loosely connected architectures that resemble processing pipelines, while at
the same time exploiting the strong delivery guarantees of the middleware.

Figure 6.9 shows how the checking component plugs into a JMS system. The checker is im-
plemented as a Message-Driven Enterprise JavaBean [Matena and Hapner, 1999]. When-
ever a set of documents needs to be checked, it is put on the checker input queue. The
container then sends it on to the bean as a JMS text message. The bean performs the
check and hands the resulting linkbase to a Classifier. Depending on the status of the
links in the linkbase, the Classifier can decide which message queue to route the result to.
It can also ask a Formatter to provide a suitable output format for the target message
queue. For example, we may want to route the entire set of documents on for further
processing if there is no problem, or route the linkbase if we do find an inconsistency.

This messaging deployment is interesting because it opens up the way to using consistency
checking as an intelligent routing mechanism. Advanced architectures could be built that
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Figure 6.8: Web checking service architecture

route documents to different destinations depending on whether they fail rules, or even if
they fail any particular rules. Initial conversations with stakeholders in industry suggests
that this may indeed be a fruitful area for additional work, and could help industries that
strive for increased automation while having to deal with data quality issues.

6.4 Advanced Diagnosis

The hyperlinks generated by the check engine are of high diagnostic value because they pre-
cisely connect the elements involved in an inconsistency. For practical purposes linkbases
are of more limited value as they do not present the results in terms of the checked data.
We have investigated some options for post-processing the result produced by the check
engine in order to improve feedback.

6.4.1 Using the Linkbase Directly

The first option is to render the linkbase into a more interactive HTML format. Fig-
ure 6.10 shows a screenshot of a prototype implementation of such a system. The linkbase
is rendered into three browser frames by a Java Servlet. The top frame displays the hy-
perlinks. The user can then select a pair of locators in the link, and the servlet juxtaposes
the referenced elements at the top of the bottom two frames. This permits the user to
compare the values of the elements in order to determine the cause of the inconsistency.
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The value of this dynamic linkbase display is primarily to users familiar with the XML
encoding of their data, and to rule writers who can quickly inspect the effects of executing
a rule.

Figure 6.10: Dynamic linkbase view

The hyperlinks in a linkbase can also be used directly. By reinserting the links into the
files that they are referencing, we can use the check engine results for automatic link
generation. The hyperlinked files can then be styled and rendered for web publication.
The case study in Section 7.1 shows how this can work in practice.
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6.4.2 Report Generation

We have implemented a report generator called Pulitzer. Pulitzer takes as its input a
linkbase and produces an XML or HTML report as its output. We will demonstrate the
operation of Pulitzer using our running example.

<report:reportsheet

xmlns:report="http://../Pulitzer/ReportSheet/1.0"

xmlns:xlink="http://www.w3.org/1999/xlink"

output="html">

<html>

<body>

<h1>Wilbur’s Bikeshop Integrity Report</h1>

<hr/>

<h2>Advert problems</h2>

<ul>

<report:includefragment xlink:href="report_inc.xml#id(’r2’)"/>

</ul>

..

</body>

</html>

</report:reportsheet>

Figure 6.11: Wilbur’s Pulitzer report sheet

Suppose Wilbur’s decide to publish inconsistency reports about their documents as HTML
pages on the web. They would first define a report sheet that sets up the overall layout
of the report and includes report fragments that contain diagnostic messages for specific
constraints. We have separated these mechanisms in order to enable reuse of diagnostic
messages. Figure 6.11 shows part of Wilbur’s report sheet. The root element of the report
sheet specifies whether HTML or XML is the desired output format. The content of
the element is open to the user, but includefragment elements can be used to instruct
Pulitzer to insert diagnostic messages at specific places.

<report:fragments xmlns:report="http://../Pulitzer/Report/1.0">

<report:fragment id="r2" ruleid="rule.xml#//consistencyrule[2]">

<report:linkdescription status="inconsistent">

<li/>Product %@=gettext($locator[1]/ProductName/text())%

is advertised, but not present in the catalogue.

</report:linkdescription>

</report:fragment>

...

</report:fragments>

Figure 6.12: Report fragments for the running example

Figure 6.12 shows the report fragment describing the sample rule used in Section 5.2. The
fragment specifies which rule it is describing and contains a linkdescription element
that is applied to every inconsistent link. This element may contain arbitrary markup, as
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well as Pulitzer commands escaped by the %@= escape sequence. In the figure, the gettext
command is used to obtain data relative to the first link locator in the linkbase from the
referenced advert document.

Figure 6.13: Generated report in a web browser

The report sheet can now be applied to a linkbase. Figure 6.13 shows a screenshot of the
generated report in a browser window.

Pulitzer is a generic tool for turning linkbases into other XML representations. As such,
it is useful for presenting the results of a check in a format that other applications can
understand. This is important, as documents are frequently manipulated using tools rather
than directly in XML editors. By transforming the linkbases into a format that these tools
understand, we can render the checking process and XML encoding transparent.

6.4.3 Link Folding

It is possible, using a linkbase processor, to take the “out-of-line” links that the check
engine generates and to “fold” them into the documents that they are pointing to.

<xlinkit:ConsistencyLink ruleid="curr_rule.xml#//consistencyrule[1]">

<xlinkit:State>consistent</xlinkit:State>

<xlinkit:Locator xlink:href="curricula.xml#/.../Course[1]"/>

<xlinkit:Locator xlink:href="computer_architecture.xml#/syllabus/identity[1]"/>

</xlinkit:ConsistencyLink>

Figure 6.14: Out of line link in linkbase

The linkbase processor makes copies of all documents referenced in the linkbase and in-
serts hyperlinks into these copies. For each hyperlink, it visits all locators and inserts
back-references at the element that the locator points to. For example, the linkbase link
in Figure 6.14 points to elements in curricula.xml and computer architecture.xml.
Processing this link causes a new link to be inserted in a copy of curricula.xml, pointing
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to the identity element in the other file, as shown in Figure 6.15. Similarly, a link is
inserted in computer architecture.xml, providing the reverse reference.

In the general case, where a link has an arbitrary number of locators, the processor inserts
all locators except the one pointing to the modification point itself. For example, if a link
points to locations in file A, B and C, a link is inserted in A pointing to B and C, a link
is inserted in B pointing to A and C, and a link is inserted in C pointing to A and B.

<Course value="Standard">

<Name>Computer Architecture I</Name>

<Code>1B10</Code>

<Theme>Architecture</Theme>

<Type level="F" requirement="C"/>

<Dept>CS</Dept>

<xlink

xlink:href="computer_architecture.xml"

xlink:role="destination" xlink:title=""

xlink:type="simple"

xmlns:xlink="http://www.w3.org/1999/xlink/namespace/"/>

</Course>

Figure 6.15: Link inserted into document using linkbase processor

This approach can be used in a number of ways: it enables the use of our checker as
an automatic link generator. Documents can be linked by checking constraints, then
processed, and finally style sheets can be applied to create automatically hyperlinked web
portals. Since the links are generated in response to constraints, they are guaranteed to be
correct. We will see in Section 7.1 that this approach has several advantages over manual
link authoring.

We can make use of inconsistent links in a similar fashion. Instead of providing links that
are guaranteed to be correct, we can establish a “web of inconsistency”. We can apply
style sheets or augment third party applications with proprietary processing so as to allow
users to navigate between inconsistent parts of documents.

6.4.4 Tight Tool Integration

Another option is to exploit the plug-in and scripting mechanisms present in many modern
document editing tools in order to display inconsistency reports. If the data import
facilities of a particular tool are not rich enough to process hyperlinked input files, this
may be the only available option.

The obvious advantage of this approach is that it offers a high degree of transparency.
Consistency links and diagnostic messages can be interpreted and displayed in a fashion
that is suitable for the application, including reacting to user events typical for the ap-
plication. As an example, a UML editor could provide a popup over each model element
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that takes the user to elements that are participating in an inconsistent relationship.

The downside of tight integration is the relatively high overhead in implementing such
a system. In addition the implementation is proprietary to each tool, and a separate
implementation is needed for each tool.

6.5 Chapter Summary

This chapter presents a few of the implementation details of our check engine. We have
given an example of a constraint in XML form. We have also looked at the rule and
document management mechanisms that we have provided: document sets, which group
documents as a unit for check submission, and rule sets, which group rules to apply to
documents. We have introduced fetchers as simple programs that transform non-XML
input to XML in the course of retrieving data for checking.

We have shown that architecturally, our check engine can be deployed in a number of
guises, whether it be a command line application that checks a document set against a
rule set, a servlet that is provided with documents over the Internet, or a message process-
ing component that retrieves documents for checking and routes them on depending on
the result. Adapting the checking component for different architectures is rather straight-
forward, as it is a well-encapsulated component with a clearly defined interface – to take
some documents and constraints, and produce a check result.

Finally, we have investigated some ways of transforming the output of the check engine
from its raw linkbase format for further presentation or processing: visualisation compo-
nents can help the user to navigate between the linked portions or documents, reporting
can use the links to provide diagnostic messages, linkbases can be “folded” back into doc-
uments to provide automatic hyperlinking, and they can also be used for tool integration,
to provide diagnostic messages in tools that are used for document manipulation.

This chapter has thus afforded us a look at what has gone into a practical implementation
of our linking semantics inside our check engine, and, most importantly, has demonstrated
that both architecturally, and in terms of its processing output, it is flexible and can be
readily adapted for diverse applications. None of the implementations we have completed
has been overly difficult, mostly due to the use of open and standardised technology. This
gives us hope that our design decisions, coupled with the notion of consistency checking
as a service, will not be overly complicated for practitioners to adopt and will integrate
without too much effort into their own systems.



7 Case Studies

We have seen how to derive a novel form of diagnostics, in the form of consistency links,
and how these diagnostics can be put to use in the implementation of a simple consistency
checking service. The critical question for judging the validity of this approach must be
whether it can cope with the heterogeneity, distribution and diagnostic requirements of a
real-life setting.

We have applied our checker in a number of case studies, in such diverse areas as finance,
software engineering, bio-informatics and university curriculum information. By choos-
ing a wide range of domains we reassure ourselves that our approach can indeed handle
varying requirements and is flexible and adaptable. In this chapter we will look at two
comprehensive examples, the checking of a university curriculum and a detailed investiga-
tion of the problem of managing heterogeneous software engineering artifacts in the area
of Enterprise JavaBeans development.

7.1 Case Study: Managing a University Curriculum

The Department of Computer Science at University College London introduced a new
curriculum and associated course syllabi. In order to provide high quality information
in the wide variety of different representations required, it decided to adopt XML as a
common format. The system has to hold a curriculum and provide links to the syllabi for
students, depending on which degree programme they are pursuing. Figure 7.1 shows a
sample abbreviated syllabus file for a course. Each course syllabus is held in a separate
XML file. The overall curricula for degree programmes are all kept combined in one file.
For each degree programme, the mandatory and optional courses are listed, grouped by
the year in which they can be selected.

The process of syllabus development is highly decentralised, with different people providing
additions and corrections to course syllabi. Curriculum files contain information related
to the individual syllabus files. For example, course codes mentioned in the curriculum
files have to be part of a syllabus definition. The study also called for a “study plan”
feature, simple XML files in which students could list the courses they were taking. These
study plans also had to be consistent with the curriculum, referencing existing courses and
including the correct mix of optional and mandatory courses. Altogether, ten rules were
initially identified as necessary to preserve the consistency of the system. The complete
set of English language rules can be found in Appendix C.

It is desirable for navigation purposes to provide hyper-links from the curriculum to indi-
vidual courses. However, manually adding links from the curriculum file to all 48 syllabus

89
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<syllabus>

<identity>

<title>Concurrency</title>

<code>3C03</code>

<summary>The principles of concurrency

control and specification</summary>

</identity>

<subject>

<prerequisites descr="">

<pre_code>1B11</pre_code>

</prerequisites>

</subject>

</syllabus>

Figure 7.1: Sample shortened syllabus file in XML

files would be error prone as files get deleted and courses renamed. It is preferable to use
the semantically equivalent information in the files (e.g. the course codes) to generate the
hyperlinks automatically. We used the check engine to achieve both goals.

Figure 7.2 shows the time used for checking each rule against all 52 documents. The
syllabus files were all around 5 kilobytes in size and the curriculum is 110 kilobytes in size.
Checking was performed on a 700 Mhz Intel Pentium 3 machine with 128Mb of RAM,
running Mandrake Linux 8.0 with kernel 2.4.9 and the IBM JDK 1.3. The total checking
time was 11.1 seconds, with the most complex rule taking 8 seconds to check. In total,
410 consistent and 11 inconsistent links were generated.

The exceptional checking time on rule 5 was caused by a transitive closure operation.
Transitive closure is not a part of the XPath function library, so we had to implement
a simple extension function. The implementation was only for prototyping purposes and
uses a rather naive algorithm, leading to the long check time.

The second goal of the case study was to provide a fully linked HTML version of the
department’s curriculum to be browsed by staff and students. One of the rules for the
curriculum is that every course listed in the curriculum must have a syllabus definition. If
the rule is satisfied, a consistent link is generated from the course entry in the curriculum
to the syllabus defining the course. We used XTooX, an XLink linkbase processor, to
fold all consistent links from this rule back into the XML file containing the curriculum.
We then only had to provide a simple XSL stylesheet that transforms the XML file and
simple links into an HTML representation. Figure 7.3 shows the “production version” of
the curriculum website.

The final goal was to highlight inconsistencies in the relationships between the syllabus
and curriculum files. Due to the large number of files, mistakes are easily possible and
the check during the case study resulted in five real errors being highlighted. Figure 7.4
shows a screenshot of the inconsistency report that was generated by applying a report
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Figure 7.2: Syllabus study timings

sheet to the linkbase generated by the check – see Section 6.4 for details on report sheets.
The report messages highlight those courses that reference prerequisite courses that were
not defined as part of the curriculum.

This case study is unusual in that it used the check engine both as a link generator and
for its original purpose as a consistency checker. By generating hyperlinks between the 52
files in an automated fashion, the error prone and tedious manual linking activity could
be eliminated, and a simple web portal constructed and regenerated quickly. The incon-
sistency reports help with the management of the plethora of files. They are convenient to
edit individually, but the sheer volume of files meant that it had previously been hard to
maintain an overview of the consistency of the collection as a whole. We were thus able,
using our architecture, to avoid the need to integrate into a repository and were able to
support the existing infrastructure and working practices.

7.2 Case Study: Software Engineering

Our second case study looks at the problem of checking the consistency of software engi-
neering documents. Software engineering provides a challenging benchmark as the docu-
ments and the constraints they have to obey tend to be quite complex in both structure
and size. We have chosen for the study the problem of checking the various artefacts that
are produced during Enterprise JavaBeans [DeMichiel et al., 2001] development.

In order to bring structure to the discussion, we first attempt a categorisation of the
consistency constraints that arise during software development. From these we derive
a set of requirements for consistency management services in this particular application
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Figure 7.3: Automatically generated links in the curriculum

scenario. The case study then demonstrates how our checker can be used to address
these requirements during the development of systems based on Enterprise JavaBeans.
We show checks between design, implementation and deployment information and provide
an evaluation of the results.

7.2.1 Constraints in Software Engineering

Throughout a software development lifecycle, many types of consistency constraints ap-
pear, including horizontal constraints between artefacts at the same stage of the lifecycle
and vertical constraints between stages, for example between the design and implementa-
tion. Developers are aware of such constraints, yet they are rarely explicitly expressed let
alone automatically checked. Instead, ad-hoc techniques such as inspection and manual
comparisons are used to maintain consistency. It is our goal to aid developers in the task
of managing consistency, by providing them with a more systematic approach and tools
for automation. In order to achieve this, we first categorise the types of constraints that
occur in practice, and then derive a set of requirements for tools that provide support for
these types of constraints.

In our categorisation, we use the Unified Modeling Language (UML) [OMG, 2000a] as
a guiding example. The UML is widely used in software development. It combines a
graphical notation with a semi-formal language, based on the OMG’s Meta-Object Facility
(MOF) [Object Management Group, 2000a]. The language and notation provide support
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Figure 7.4: Curriculum inconsistency report screen shot

for capturing a system from a variety of perspectives, including static perspectives such
as class diagrams and dynamic ones such as sequence diagrams.

Specification languages used in software engineering typically come with a set of static
constraints that valid specifications have to obey. These constrain the relationships be-
tween the elements of the underlying semantic models of the language. We call such
constraints standard constraints, because they are generally standardised when a speci-
fication language is formally defined. For example, the UML has a syntax, and models
expressed in it have to obey static semantic constraints. The UML specification expresses
these constraints in the Object Constraint Language (OCL) [OMG, 2000a]. If any of the
constraints are violated, by definition inconsistency is introduced into the model.

When putting any specification language, including the UML, to practical use it very
frequently transpires that the expressive capabilities provided by the language are not
sufficient for a particular purpose and require extension or adaptation. The specification
language may not be semantically rich enough to capture all the information necessary,
for example many design languages obscure architectural information or design patterns.
Conversely, the language may be overly expressive and insufficiently concise for a par-
ticular practical purpose, for example many languages lead to specifications that are too
complex to be shown to stakeholders. These problems can sometimes be circumvented
by restricting the language or introducing naming conventions for specification artefacts.
Such restrictions or conventions will invariably give rise to additional semantics not catered
for by the language. It is thus important to properly specify the extension method, and to
ensure that it is applied consistently. This can be accomplished by introducing extension
constraints that supplement the standard constraints of a language.

In the case of the UML, it was recognised that the basic metamodel of the UML was not
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rich enough to express the architectural properties of distributed systems that build on
middleware. The UML standard foresees such problems and includes a general extension
framework centered around stereotypes and tagged values, which can be used to annotate
model elements in a UML model with additional information. Certain extensions are pe-
culiar to a domain, such as the domain of systems built on middleware, and have been
standardised: the UML Profile for EJB [Matena and Hapner, 1999] lists a set of stereo-
types and tagged values for designing systems built on top of Enterprise JavaBeans. In a
similar fashion, the OMG’s UML Profile for CORBA [Object Management Group, 2000b]
provides features for CORBA-based systems [Object Management Group, 2001]. These
extension frameworks also supply a set of constraints that specify the properties that
model elements annotated with the standardised stereotypes have to obey.

Standard
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UML Standard
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UML – Java

Constraint Types Example Instance

Integration
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Figure 7.5: Constraints types with examples

Two further classes of constraints often appear at different stages of the development
lifecycle. For example, if we wish to check that the implementation of a system is consistent
with the design, we have to introduce additional constraints that relate them. Or if we wish
to refine the classes in our UML class diagrams into Z schemas, we need constraints between
the Z specification and the UML model. In both examples, constraints arise naturally as
the different specification or implementation languages denote the same elements of the
semantic model. We refer to these constraints as integration constraints. Integration
constraints also arise when specification languages are restricted to interoperate cleanly
with one another: when using the UML to design a Java-based system, we may want to
check that the design does not include any multiple inheritance between classes.

Finally, developers frequently introduce additional constraints for their specifications. For
example, software development organisations may introduce conventions that they want
their software engineers to adhere to, the most prominent example being naming conven-
tions. These custom constraints may be defined to ensure consistency between different
products produced by the company, or be specific to a certain project. Such constraints
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are mostly informally specified and checked manually. Figure 7.5 gives an overview of the
types of constraints that we have identified, and gives a UML-based project as an example
instance.

7.2.2 Tool Support

Effective use of specification languages in the construction of large and complex systems
requires CASE tools, which often include mechanisms for checking the constraints of the
language they are built to support. A good CASE tool will let its user check on demand
whether a specification is consistent with respect to the constraints or will provide inter-
active checking as changes are made. The majority of CASE tools currently on the market
provide rather static support for consistency checking, and most support only standard
constraints. Providing support for checking all four types of constraints, standard, ex-
tension, integration and custom constraints, is not trivial and gives rise to a number of
problems.

The first problem is flexibility. Many CASE tools still handle only standard constraints,
and in many cases they are hard-coded into the tool. It is impossible to support the three
other types of constraints with such tools. These tools generally treat all constraints as
equal and apply them all at once. It is not possible for the user to choose to ignore certain
constraints or to delay the resolution of inconsistency.

To take an example from the UML, the constraint that no inheritance cycles must be
present in a class diagram expresses a concept fundamental to object-oriented technology
and must hold in all models. By contrast, the constraint that requires all attributes in
classes to have valid types is often consciously violated. The UML is used for a variety of
purposes, ranging from high-level domain analysis models to detailed designs. It does not
make sense to apply the same set of constraints to all models – some flexibility in choosing
constraints is required. While there are commercial tools that offer options for delaying the
resolution of problems – Argo/UML’s [Robins et al., 1999] critic systems, which is based
on earlier resarch on cognitive support in software development is one example,– many
UML tools still take a static approach to inconsistency handling. This lack of flexibility
represents a barrier if all four types of constraints are to be supported.

In addition, there is still a large number of CASE tools that enforce their constraints,
further undermining the flexibility needed in software development. This behaviour im-
poses a process on the developer, who has to add objects to the specification in a certain
order so as to maintain consistency at all times. It would be preferable to provide a
checking service that notifies developers of inconsistency, but gives them the option not
to address it. This tolerant approach to inconsistency becomes more important as de-
velopment artefacts at different stages of the lifecycle are checked against each other, as
maintaining total consistency at all times between stages is both unnecessary and time
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consuming [Nuseibeh et al., 2000].

Secondly, checking integration constraints is a rather more difficult problem than checking
any of the other types of constraints. Since specifications expressed in different languages
are to be checked against each other, the problem of language heterogeneity must be
addressed. It is possible to provide support for integration constraints in each individual
CASE tool, by adding support for addressing objects in all other languages, but this
approach is clearly unworkable. It thus makes sense to provide a checking service that
does not reside in any one tool, but between tools. Such a checking service can bridge
the heterogeneity gap between the tools by either reducing all specification languages to a
common vocabulary such as first order logic – a difficult process that may cause prohibitive
overhead – or by providing a mechanism for expressing relationships between artefacts in
different languages directly.

Thirdly, proper support for integration and custom constraints requires the problem of
distribution to be addressed. Developers working on a large and complex system often
do not store their specifications, implementation and deployment artefacts in one cen-
tral repository. In order to fully support integration constraints between heterogeneous
artefacts, we thus have to assume that these artefacts may be distributed, and perform a
distributed consistency check. This kind of mechanism is clearly beyond the state of the
art of current tools, most of which do not even provide mechanisms for splitting up and
distributing individual specifications, let alone heterogeneous artefacts.

Finally, many constraint languages have been designed to be very expressive, at the cost
of making it hard to provide diagnostic feedback. For example, most tools that provide
support for OCL can only supply information on whether a constraint has been violated
or not. OCL constraints are attached to model elements, so a constraint can be either
true or false for that particular element. This is inadequate as it imposes the burden of
finding the cause of inconsistency on the developer – it does not state why, for example
due to the presence of other information, the inconsistency has occurred.
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colour

reg

Figure 7.6: Inconsistent UML model

As an example, the UML includes a constraint that prescribes that no attribute name
in a class must be equal to a role name on the opposite end of an association connected
to the class – constraint 3 for Classfiers in Section D.1. If this constraint is violated, as
in Figure 7.6, and the only diagnostic information available is a pointer to the class, the
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developer is left to inspect all associations connected to the class. When these associations
are shown in different diagrams, or not shown at all – UML elements do not have to be
present in diagrams in order to be part of a model – or their number is large, this can
delay the developer. Even worse, if multiple heterogeneous and distributed specifications
are checked against each other, the overhead of browsing through all of them in search of
what caused the inconsistency will be prohibitive. It is necessary in this setting to provide
diagnostics that pinpoint exactly the combination of elements in all specifications that
cause an inconsistency.

7.2.3 Consistency in EJB Development

We now examine in detail how the different types of constraints we have identified arise
in practice and how they can be addressed. In this case study we use the check engine to
check the standard, extension, integration and custom constraints that arise in different
stages, and between stages, of the development life-cycle of a system based on Enterprise
JavaBeans. We precede the study with a short overview of Enterprise JavaBeans.

Enterprise JavaBeans [Matena and Hapner, 1999] is a popular technology for component-
based software development. Components are implemented as beans that reside in a
container. The fundamental idea underlying EJB is that the container should provide
all the infrastructure services for the bean, such as transaction management, persistence,
replication and communication with the underlying middleware, so that the developer can
concentrate on implementing business logic.

Implementing an EJB requires the developer to supply the following artefacts: A remote
interface specifying the methods the bean supplies to client objects, a home interface
specifying the methods the bean supplies to its container, and a bean implementation,
containing the business logic and event methods that are called when the life cycle status
of the bean changes, for example when it is created and destroyed. A distinction is
made here between entity beans, which represent persistent data, and session beans, which
implement control flow.

When the bean is ready to be deployed into the container, the developer must further
provide a deployment descriptor, expressed in XML, that describes the type of the bean
and its quality-of-service contract with the container – for example whether persistence of
the bean’s data will be managed by the bean or by the container.

In the case study, the Unified Modeling Language (UML) [OMG, 2000a] was used as the
design language of choice. While the UML is semantically rich enough to express the
implementation details of an EJB-based system, the expressiveness of the design model
can be improved by clearly identifying the features supplied by the EJB architecture, that
is by making the architecture explicit. It is possible by these means to distinguish the
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Figure 7.7: EJB-Profile compliant UML design of a single bean

high-level components supporting the EJB architecture from implementation details.

The UML Profile for EJB [Greenfield, 2001] – the “EJB profile” or just “profile” from here
on – identifies a set of stereotypes that can be used to label model elements that represent
EJB artefacts, and the relationships between them. Figure 7.7 shows a fragment of a
UML model annotated in this way. Since the stereotypes expose new semantics for the
model, they cannot be combined arbitrarily, but have to obey the constraints set out in
the profile.

UML Design

Standard and
Profile

Constraints

Java Sources

Deployment
Information

Supplementary
Checks

Figure 7.8: Consistency checks for EJB development

Given the UML model, the implementation and the deployment information, we can now
specify a framework for managing the consistency of the system as artefacts are added,
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changed and removed during the lifecycle. Figure 7.8 shows the checks that we want to
perform: we want to check the UML model internally, first by checking that the standard
constraints set out in the UML specification are obeyed, and then that the extension con-
straints of the EJB profile hold; we wish to check the integration constraints between the
UML model and the deployment descriptor and implementation, between the deployment
descriptor and the implementation, and additional custom constraints inside the imple-
mentation. We will discuss each of these types of checks using an example taken from the
study.

<description>

The AssociationEnds must have a unique name within the Association

</description>

<forall var="a" in="//Foundation.Core.Association">

<forall var="x" in="$a/Foundation.Core.Association.connection/

Foundation.Core.AssociationEnd">

<forall var="y" in="$a/Foundation.Core.Association.connection/

Foundation.Core.AssociationEnd">

<implies>

<equal op1="$x/Foundation.Core.ModelElement.name/text()"

op2="$y/Foundation.Core.ModelElement.name/text()"/>

<same op1="$x" op2="$y"/>

</implies>

</forall>

</forall>

</forall>

Figure 7.9: Example of a UML standard constraint

Our first check will determine if the UML model is a valid model. The UML specification
sets out the constraints that have to hold for each metaclass in the model. In order to
enable us to constrain the models, we have to make them available in an XML format. We
chose XMI 1.0 [OMG, 2000b] for this purpose as it is implemented by a number of CASE
tools. We have expressed a subset of those constraints – those of the Foundation.Core
package, which deals with static information such as class diagrams – for use in this case
study. There are 34 constraints in total, they are listed in Appendix D.1. These constraints
are clearly standard constraints. Figure 7.9 gives an example of such a constraint expressed
in our constraint language.

We then check the constraints of the EJB profile against our model. We have chosen to
express a subset of those constraints for this case study. This subset specifies the relation-
ships of EJB elements that make up the “external view” of a system: remote and home
interfaces, EJB methods, and “primary key classes” that provide the key attributes for
entity beans. We have written most constraints in this subset, apart from the constraints
on EJB methods and RMI interface inheritance. These constraints are no more complex
than the ones we have expressed and would not add significant value to this study. The
complete list of constraints we have expressed, 16 in total, is given in Appendix D. These
constraints are extension constraints since they supplement or customize the UML for
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<description>

The (EJB entity home) class must be tagged as persistent.

</description>

<forall var="c" in="$classes">

<implies>

<exists var="s" in="id($c/Foundation.Core.ModelElement.stereotype/

Foundation.Extension_Mechanisms.Stereotype/

@xmi.idref)[Foundation.Core.ModelElement.name/

text()=’EJBEntityHomeInterface’]"/>

<exists var="t" in="$c/Foundation.Core.ModelElement.taggedValue/

Foundation.Extension_Mechanisms.TaggedValue[

Foundation.Extension_Mechanisms.TaggedValue.tag/

text()=’persistence’ and

Foundation.Extension_Mechanisms.TaggedValue.value/

text()=’persistent’]"/>

</implies>

</forall>

Figure 7.10: Example of an EJB profile extension constraint

use in a particular application domain. Figure 7.10 gives an example of an EJB profile
constraint.

<description>

Each attribute listed as a ’cmp-field’ for an entity bean in the

deployment descriptor must be an attribute of the bean implementation

class

</description>

<forall var="c" in="$entitydescr">

<forall var="b" in="$javaclasses[concat(../package/@name,’.’,@name)=

$c/ejb-class/text()]">

<forall var="f" in="$c/cmp-field">

<exists var="v" in="$b/var[@name=$f/field-name/text()]"/>

</forall>

</forall>

</forall>

Figure 7.11: Example of a deployment descriptor – implementation integration constraint

We also check the UML design against the Java implementation and against the deploy-
ment descriptor, and the Java implementation directly against the deployment descriptor.
These are all examples of integration constraints as they restrict the content of software
development artefacts depending on the contents of additional artefacts. In the case of
these checks, there is no standard to guide us. Indeed, we expect these checks to vary
depending on the needs of developers or project managers. We have consequently only
provided nine samples of the kinds of relationships that could be checked; they are also
listed in Appendix D. Figure 7.11 shows a sample constraint that checks if every field
in an entity bean that has been declared as a container-managed persistent field in the
deployment descriptor is present as a variable in the class implementing the bean.
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<description>

Every remote interface is implemented by a bean class that resides

in the same package

</description>

<forall var="i" in="/java/interface[extends/@name=’EJBObject’]">

<exists var="c" in="/java/class[../package/@name=$i/../package/@name

and (implements/@name=’EntityBean’ or

implements/@name=’SessionBean’)]"/>

</forall>

Figure 7.12: Example of a custom constraint

Finally, we have specified some additional checks for the Java implementation. These
checks are internal to the implementation, but do check relationships between multiple
Java files. To take one example, we have specified the constraint that for each remote
interface there must be a bean implementation class that implements the interface. This
constraint is not checked by the Java interface implementation mechanism because EJB im-
plementation classes do not implement their remote interface. This is because clients of an
EJB do not directly invoke the bean itself through the interface, but instead make calls to a
proxy object. It is this proxy object, which is automatically generated, that implements the
remote interface. A further discussion of this pattern can be found in [Marinescu, 2002].

Figure 7.12 shows the constraint expressed in the constraint language. We have expressed
two sample constraints, they are given in Appendix D. These constraints are not stan-
dardised and do not depend on the contents of further artefacts, and are thus custom
constraints – although one could imagine that they could become extension constraints in
the future.

7.2.4 Evaluation

In order to realize the checks outlined in Figure 7.8, we have to map them onto the
mechanisms provided by the checker. This mapping is straightforward, Figure 7.13 shows
how the documents and constraints are managed using the checker. We will first discuss
the mapping process and then present the results of checking the constraints against our
case study system.

We load the UML model, the deployment descriptor and the Java files into DocumentSets.
The UML model can be straightforwardly loaded as an XMI file and the deployment
descriptor can also be easily loaded since it is already represented in XML markup.

In order to include the Java files into the check, we have to provide an additional fetcher
that can parse Java classes and turn them into DOM trees. This was done by using
the CUP [Hudson, 1999] Java parser generator to process a standard grammar for Java
whose productions had been annotated with commands to emit nodes for the tree. Fig-
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Figure 7.13: EJB consistency checks

ure 7.14 shows an XML file that was generated by parsing a small Java class, turning
it into a DOM tree and serializing it to XML. We do not convert the entire Java file,
including the code inside the methods, because we do not require this information in our
checks. If such information was desired, recent approaches from compiler construction like
XANTLR [Trancon y Widemann et al., 2001] could be used instead.

The different types of checks that we wish to perform map nicely onto RuleSets: each
arc in Figure 7.8 becomes a rule set in the implementation. Each rule set references a
number of rule files that contain the actual rules. The rule sets can then either be checked
individually, as indicated in the figure, or assembled into one combined rule set to check
all the rules.

Expressing the constraints was not straightforward at first, due to the complexity of XMI.
While the logic of the constraints was straightforward, the path expressions tended to
become quite verbose. Fortunately, many constraints reference the same model elements
in the XMI file, making it possible to reuse most path expressions. Projects with under-
graduate students have also shown that expressing constraints over XMI, while presenting
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<?xml version="1.0" encoding="UTF-8"?>

<java>

<package name="uk.ac.ucl.aivetac.session.formjob"/>

<class name="FormJobWorkFlowBean">

<implements name="SessionBean"/>

<method name="findHome"/>

<method name="allProjects"/>

<method name="allProtocols"/>

<method name="allReports"/>

<method name="setSessionContext"/>

<method name="ejbActivate"/>

<method name="ejbPassivate"/>

<method name="ejbCreate"/>

<method name="ejbRemove"/>

</class>

</java>

Figure 7.14: Java structure representation in XML

a steep learning curve in order to understand the internal format of XMI, leads to a cer-
tain familiarity over time, allowing most students to write constraints within a couple of
weeks. We encountered no problem at all expressing any of the other constraints involving
the deployment descriptor or Java sources, which have straightforward XML encodings.
These constraints were all expressed within a matter of minutes.

We have evaluated our constraints against a complete and working EJB-based system that
was built to provide a web front-end for statistical evaluations of drug trials. The system
consists of 9 EJBs, 4 session beans and 5 entity beans. The design model was annotated
with the required stereotypes of the EJB profile, was 2.5 MB in size and contained 41
classes. The implementation comprised 40 Java source files. The checks were performed
on an idle Intel Pentium 4 machine running at 1.4Ghz and using the IBM JDK 1.2.

We first checked the UML model separately before checking the remaining constraints.
This check, against all 34 rules, and including loading and parsing the UML model, took
26 seconds averaged over three runs. The check generated 324 inconsistent links. Many
of those inconsistencies were caused by associations having association ends with equal
names, a constraint that is often violated in design models that show high level views,
by leaving association ends unnamed. Other inconsistencies were caused by features not
present in the XMI files produced by Rational Rose, such as the distinction between
methods and operations. No other significant inconsistencies were found.

We then proceeded to check the extension, integration and custom constraints between the
UML model, the deployment descriptor and the Java files. Checking all 26 rules against
all 42 files took 23 seconds, including parsing the Java files and loading the UML models.
By far the greatest amount of time was spent on checking rules that related to the UML
model, due to the complexity of the XPath expressions needed to get information from
XMI. None of the rules involving only Java sources or the deployment descriptor took
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longer than 380 milliseconds each to check.

Checking the extension, integration and custom constraints generated 94 inconsistent links.
92 of those were caused by the model not being entirely EJB-profile compliant: the meth-
ods in the home and remote interfaces did not carry any EJB method stereotypes. One
other inconsistency occurred because the primary key for one entity bean was specified to
be a primitive type, rather than a class type, as required by the EJB specification. And
finally, a variable that had been declared in the deployment descriptor as a persistent field
for an entity bean was missing in the bean implementation.

The quality of the links produced by the link generation semantics can be seen by looking
at what kinds of links are produced by the sample rules we have shown in the previous
subsection:

• The AssociationEnds must have a unique name within the Association (Figure 7.9).
For associations that violated that rule, the generator produced a ternary link that
connects the association and the two association ends with equal names.

• The (EJB entity home) class must be tagged as persistent (Figure 7.10). For classes
that violated that constraint, the generator produced a link from the class to the
stereotype declaring the class as an EJB entity home interface. This makes sense
because in the absence of a persistence tag, the inconsistency is caused by the stereo-
type being present.

• Every remote interface is implemented by a bean class that resides in the same

package (Figure 7.12). If no such bean class exists for a particular remote interface,
an inconsistent link that points to the remote interface is generated.

<xlinkit:ConsistencyLink ruleid="javadeploy_inter.xml#//consistencyrule[@id=’r2’]">

<xlinkit:State>inconsistent</xlinkit:State>

<xlinkit:Locator

xlink:href="/config/ejb-jar.xml#/ejb-jar/enterprise-beans[1]/entity[1]"/>

<xlinkit:Locator

xlink:href="/entity/protocol/ProtocolBean.java#/java/class[1]"/>

<xlinkit:Locator

xlink:href="/config/ejb-jar.xml#/ejb-jar/enterprise-beans[1]/

entity[1]/cmp-field[3]"/>

</xlinkit:ConsistencyLink>

Figure 7.15: Sample inconsistency - field from deployment descriptor not implemented

As an example of what these links look like in their XLink form, Figure 7.15 shows the
link the checker generated when the constraint in Figure 7.11 was violated: The entity

declaration in the deployment descriptor is linked to the ProtocolBean class implemen-
tation, and the cmp-field (Container-Managed Persistence field) in the descriptor. The
cause of the inconsistency is thus immediately obvious by looking at the rule description
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text and this link: the linked field in the deployment descriptor should have been added
to the linked class, or removed from the descriptor.

This case study demonstrates that our checker can be used to check all four types of
constraints we have identified; that it can cope with heterogeneous notations; that dis-
tribution of specifications can be addressed through a structured document management
mechanism. It shows how our novel semantics for first order logic, which produces hyper-
links instead of boolean results, generates powerful diagnostics that connect inconsistent
elements across specifications. And what is more, it demonstrates that inconsistencies in
the design have not led to any problems in the working EJB system, which justifies our
tolerant approach to inconsistency.



8 Scalability

In our research work we have tried to strike a balance between theoretical investigation
and demonstration of practical feasibility. Since our background is largely in software
engineering, we think that an investigation of scalability is an important part of assessing
the applicability and limitations of our approach.

Scalability is a difficult problem to address in practice. Our check engine scales in a
number of factors, such as document size or number of rules, and it is unlikely that we
can come up with a solution that works well no matter what size of problem is presented
to it. Instead we want to investigate approaches that can be used in particular scenarios
and determine the effort involved in their realisation.

Previous experience shows us that addressing scalability frequently comes at a price, be it
implementation complexity, architectural overhead or management overhead for the user.
The purpose of this chapter is to quantify these costs. It is hoped that this will provide
good guidance both for future research in the area, as well as for guiding estimates for
delivery in practice.

8.1 Scalability in Practice

Our linking semantics was initially implemented as a centralized engine that loads all doc-
uments into memory and then evaluates the constraints. This has a number of advantages:
architecturally, the engine imposes little infrastructure overhead, since it is represented by
a single encapsulated component that is easy to deploy; the implementation of the engine
itself is also straight-forward as it reads the documents into memory and evaluates the
constraints there. For the majority of applications we have encountered, this approach is
sufficient.

On the other hand, we have found specific applications that highlight the scalability limi-
tations of such a centralized architecture:

1. The EJB case study presented in Section 7.2 exhibited long check times, mainly due
to rule complexity. The check time had to be reduced in order to provide a more
rapid response to developers.

2. We were presented with a requirement for validating a large number of derivative
trades in a financial setting. The goal was to generate high throughput of single
document validation.

106
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3. We attempted to check several thousand newsfeed data files [Rivers-Moore, 2002].
The files themselves were small, but the huge number of files meant that it was again
not possible to fit all of them into main memory at the same time to run a check.

4. A UML model that contained several thousand classes was too large to fit into
volatile memory as a DOM tree.

These practical problems highlight two areas where scalability limitations are exposed:
run-time complexity and storage complexity. As far as main memory usage is concerned,
we can distinguish between two extremes: a small number of large documents, as in the
case of the UML model, and a large number of small documents like the newsfeed data.
It is important to address these extremes as they clearly occur in practice and cannot be
handled by a centralized check engine.

Run-time complexity is mainly influenced by the complexity of the constraints and the
number of documents. In many cases, such as the last two problems highlighted above, we
can make use of information about the application domain in order to bring down check
times. In the EJB case study it was clear that successive checks would be evaluating
the same set of constraints on more or less the same set of documents. We may thus
conjecture that checking only the constraints that apply to the changes made since the
previous check, rather than the full set of constraints, can lead to time savings.

In the trade validation setting, we were presented with a large volume of different docu-
ments that all had to be checked independently against the same constraints. The most
straightforward approach in this case was to replicate the centralized checking components
so as to introduce parallelism, leading to higher throughput.

8.2 Analysis

Storage Complexity Storage complexity is affected by the number and size of docu-
ments. Since we are loading all documents into memory at the same time, the worst case
complexity is the product of document number and average size:

Proposition 8.1. Storage complexity for the centralized check engine is O(d ∗ n) in the
worst case, where d is the number of documents and n the average number of nodes per
document.

Remark. Holds trivially if we take a node to be the storage unit.

If we hold either factor constant, storage complexity grows linearly with the other. In
practice, storage complexity becomes relevant when the virtual memory available on the
machine executing the check is not sufficient to hold all documents in a document set –
we then have no way of carrying out a check.
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Run-time Complexity Run-time complexity can be examined at varying levels of de-
tail: for checking a whole set of rules, or for any single rule. For a set of rules, we will
have to check all rules against all documents in the worst case:

Proposition 8.2. Overall run-time complexity is O(r∗d) in the worst case for d documents
and r rules.

Remark. Follows trivially if we take a rule to be the unit of execution.

We can break up the factor r by looking at more detail for the run-time complexity of
evaluating a single rule. The complexity of the rule itself, in terms of the number of
nested subformulas, would seem to be a scalability dimension, but our case studies show
that most constraints do not usually become more complex than a few nested quantifiers.
The more interesting result is that informal experiments with profiling software on our
implementation have shown that up to 90% of rule evaluation time is spent evaluating
XPaths.

Path expressions exhibit runtime performance that decreases with the size of documents.
We can thus expect longer check times as we add more, and bigger documents to a
check. The type of path expression makes a difference too. Simple expression like
/Catalogue/Product take slightly longer to evaluate on large documents, as every step
in the path has to be compared to every node on the relevant level of the document tree,
hence the complexity is a product of the number of steps and the breadth of the tree. More
generic path expressions that require descendant traversal exhibit even worse behaviour.
The expression //*, which selects all nodes in the tree, requires a full traversal and hence
grows linearly with document size.

The check engine implementation already features path caching mechanisms to cut down
on the number of evaluations that have to be performed, with good results. As far as
scalability is concerned, however, we would like to be able to cut down on a very coarse
grain level on the number of rules and paths that have to be evaluated – the next section
is an example of how we can go about doing this.

8.3 Incremental Checking

Our case study in Section 7.2 has demonstrated that our checker can cope with software
engineering documents in terms of expressiveness of the constraint language and in terms
of the diagnostics it produces. We did however encounter problems with performance.
While a check time of 23 seconds is not prohibitive, for reasons that we will discuss below,
it can certainly be improved. The root cause of the problem is that the basic check engine
always performs a full evaluation of all rules against all documents.

One strategy to improve performance is to only recheck those parts of documents relevant
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to changes made since the last check. To test whether this strategy can be applied in our
checker, and to get some idea of the effort required to realise it, we have specified and
implemented a simple incremental checking algorithm that supports a subset of XPath.
The following is a discussion of our findings for applying the incremental checker in the
context of the case study.

8.3.1 Background

The idea of incremental checking has been applied in the area of compilers and software
development environments. Some software development environments take the idea to
its extreme, aiming to execute an incremental check after every editing operation. It is
important to distinguish upfront the goals and features of these environments from the
goals and features of our checker so as to set a proper context for evaluation.

Most software development environments and modern CASE tools assume that the envi-
ronment is under total control of the artefacts under modification. In practice, this often
means that they are kept in memory and synchronized occasionally with central reposito-
ries. Essentially, these environments provide good speed of access and strict consistency
guarantees by trading off some flexibility in editing.

By contrast, we assume that specifications are arbitrarily distributed and that editing and
checking are separate processes - checks are then performed at the request of a user rather
than automatically. Checks take longer to execute as documents have to be retrieved,
but they can be executed flexibly. We envisage that developers will make several changes
between checks, and that check times therefore do not have to meet timing constraints
that are quite as strict as those required for an interactive system.

Another difference to note is that environments like eclipse, or research environments
like ESF – see the discussion on page 21 for reference – implement coded static semantic
checks. Event mechanisms provide triggers on document changes, and custom code is used
to execute checks on abstract syntax trees. In our architecture, constraints are declarative
and no matter whether we execute a full or incremental check, our algorithm has to analyse
constraints. This makes our approach more generic, and makes it harder to specify an
exhaustive algorithm. Since we execute checks at discrete time intervals, we also do not
have access to the documents in memory – our checker is stateless between checks. This
means that we cannot retain some of the caching information that these environments
keep in memory in order to speed up incremental checks.

Against this background we will now discuss how incremental checking can be achieved
in our architecture. This is followed by a discussion of the “path intersection” algorithms
that determine rule applicability, and an evaluation in the context of the EJB case study.
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8.3.2 Overview

When we execute a full consistency check, we check a document set against a rule set. Our
incremental checker takes as additional input a linkbase – the result of a previous check –
and a representation of the changes that have been made to any documents, as supplied
by versioning systems. The output is a new linkbase that reflects the updated consistency
status.

Our approach to incremental checking is to determine which rules need to be rechecked.
This is a course grain approach because we are not attempting to recheck parts of a rule,
but treat rules as a unit of execution. Our main reasons for proceeding in this way are
that we do not need any additional information other than the rules themselves and a list
of changes in the form of a diff, and we do not have to change the way rules are evaluated.
This seems desirable as it limits the architectural overhead of realizing the incremental
checking system.

Traditional versioning systems like CVS [Berliner and Polk, 2001] provide a textual differ-
ence computation between versions of documents. Similarly, document changes in XML
documents can be computed using a tree difference algorithm [Tai, 1979]. We use our own
algorithm, which provides linear time complexity at the expense of not always producing
the minimum diff tree. Figure 8.1 shows the basic types of changes the algorithm detects:
change of text content, change of attributes – attributes are not children of a DOM node
in the strict sense, so they have to be treated differently from text content, – deletion of
subtrees and addition of subtrees.

<?xml version="1.0" encoding="UTF-8"?>

<treediff>

<changepcdata newvalue="Access Denied" oldvalue="Access Requested"

xpath="/XMI/XMI.content[1]/..../Foundation.Core.Operation[1]/

Foundation.Core.ModelElement.name[1]"/>

<changeattr xpath="/XMI/XMI.content[1]/..../Foundation.Core.Attribute[3]">

<attribute name="xmi.id" newvalue="S.016" oldvalue="S.10016"/>

</changeattr>

<delsubtree xpath="/XMI/XMI.content[1]/..../Foundation.Core.Class[2]"/>

<addsubtree xpathparent="/XMI/XMI.content[1]/..../

Foundation.Core.Namespace.ownedElement[1]"

xpathleftsibling="/XMI/XMI.content[1]/..../

Foundation.Core.Class[3]">

<Foundation.Core.Class>

....

</Foundation.Core.Class>

</addsubtree>

</treediff>

Figure 8.1: Treediff output of changes to UML model

Given the documents, rules, changes and the previous linkbase, the incremental checker
performs the following tasks:
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1. “Intersect” the paths used in the rules with the paths in the tree difference – “diff
paths” from here – so as to build up a list of rules that have to be rechecked.

2. Remove links that reference any selected rules from the old linkbase.

3. Run a check of the selected rules.

4. Insert the links created by the check into the linkbase and return the new linkbase.

The intersection of rule paths with diff paths is non-trivial, due to the complexities of the
XPath language. The next section presents this concept in detail.

8.3.3 Intersection

In order to determine whether any particular rule needs to be re-checked, we perform a
static analysis of overlaps between the paths in the rule, and all diff paths identifying
change locations. We call this process “intersection”. If any rule path intersects with a
change location identified by a diff path, the rule needs to be rechecked. As we will see,
what exactly is meant by “intersects” depends on whether a change represents a subtree
addition to a document, a deletion, or a node value change. Before getting into this
discussion, however, we need to discuss some assumptions.

The purpose of this study was to determine how a rule-level, coarse grain incremental
checking algorithm would perform, and to determine its complexities. We thus chose a
subset of path expressions that we wanted to permit in rules, and only one type of change –
node value change – in order to get some results without getting into too much detail.
The assumptions were chosen to cover just enough of XPath to meet the needs of the case
study: by supporting the types of paths specified below we can cover all EJB profile, Java
and deployment descriptor rules.

We considered the following subset of XPath:

• Absolute paths like /ejb-jar/enterprise-beans are permissible, including wildcard
steps like /ejb-jar/*/description

• Absolute paths with descendant steps like //enterprise-beans/description are
also permissible, but we do not allow wild cards

• No other XPath axes, like ancestor are allowed. Eliminating sideways and upward
navigation greatly simplifies the discussion.

• No recurring element names are allowed in paths, for example in a hypothetical path
/x/y/z/y, the element y occurs twice. The reason for this is rather involved and is
explained in the pseudo-code implementation in 8.3.4. It is mentioned here for the
sake of completeness.
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• Position indicators are dropped. For example, /ejb-jar/enterprise-beans[2]

would be simplified to /ejb-jar/enterprise-beans. This is perfectly permissible
as the latter is a more generalized path of the former: any node the matches the first
path would also match the second. Thus, when a rule points to /ejb-jar/enter

prise-beans and a diff path identifies /ejb-jar/enterprise-beans[2] we will find
a match, as expected.

With the context of a rule, some paths will be relative to variables, and hence do not
meet the assumptions set out above. We pre-process paths like $x/description/text()

by “flattening” them into absolute paths. To “flatten” variables, we look at the path used
by the quantifier that introduced the variable and substitute it for the variable reference.
This is applied recursively to produce a list of paths for a rule: for example, in the rule
∀x ∈/ejb-jar($x/description/text()=’Old’) we would flatten the variable path to
/ejb-jar/description/text().

The XPath language comes with its own predicate mechanism that permits the restriction
of XPath expressions by testing properties of nodes during tree traversal. For exam-
ple, /ejb-jar[description/text()=’Old’] would select only those ejb-jar elements
whose child description contains the text value Old. XPath specifies a boolean logic
for use inside predicates, and permits the use of simple functions such as functions for
string comparison. We extract any paths referenced by a predicate, be they contained
in a function or directly as above, and append them to the containing step to which the
predicate applies. Pre-processing the path above would yield two paths: /ejb-jar and
/ejb-jar/description/text().

The last pre-processing step deals with simple parent navigation. Some of the rules in the
EJB case study make use of a simple upward step, for example /java/class/../package.
This type of path can be broken up into two separate paths for intersection: /java/class
and /java/package.

With these assumptions out of the way, we will now sketch a simple approach to determin-
ing which rules apply, depending on whether an addition, deletion or change has occurred.
For the purpose of this description we specify the change algorithm in detail in the next
section.

We will take a quick look at the three types of document modifications in turn. Consider
Figure 8.2, which shows a document tree after a new subtree has been added. The nodes
n5, n6 and n7 have been added. Any rule that accesses one of these nodes via a path, say
/n1/n3/n5, /n1/ ∗ /n5 or //n7, will have to be rechecked. Rules that access other nodes,
such as n4 or n3, will not be affected because no change has been made to these nodes.

To compute the intersection, we first have to create diff paths to all nodes in the added
subtree – the diff algorithm supplies the addition location together with the nodes, but we
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n1

n2 n3

n4 n5*

n6* n7*

Figure 8.2: Illustration - subtree addition to document

need paths to all nodes. Then, to test a straightforward rule path like /n1/n3/n5 we have
to determine whether it matches a diff path exactly – all diff paths are absolute paths, and
we check whether all steps match and the paths end with the same step. Wild card steps
in rule paths match any diff path step. For descendant rule paths like //n3/n5 we have
to scan forward in the diff path to see if n3 is present and then continue the matching as
normal with n5.

Now consider the case of node deletion. Figure 8.3 shows a document tree where node n5

has been marked as the root of a subtree to be deleted. The figure shows the document’s
state before deletion. In this case, any rules that potentially access nodes n5, or the
descendants n6 and n7 have to be rechecked. The problem is, the diff only tells us that n5

has been deleted, not which subelements were deleted.

n1

n2 n3

n4 n5*

n6 n7

Figure 8.3: Illustration - subtree deletion from document

To determine whether deletion affects a rule path we could take the following approach:
determine whether a rule path traverses to the deleted node – here, n5 – or beyond. Rather
than attempting to find a precise match, as in the case of addition, we would need to find
out whether a path traverses through the change location. For example, the rule path
/n1/n3/n5/n7 traverses through n5, as does the path //n7.
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Descendant rule paths like //n7 actually lead to an interesting problem with deletions:
how are we to determine whether n7 can potentially occur under a deleted node, if the
only thing we know is the path to the deleted node itself, /n1/n3/n5? The answer is, we
would have to make use of the document’s grammar, and such a grammar would have to
be made available. It could tell us, using a depth first search, whether there is a potential
path from n1 to n7 through the deleted node n5.

Finally, consider the third case, node value change. This is illustrated in Figure 8.4. A
node value change occurs when a text node or attribute node is changed – in the figure
node n4 has been changed.

n1

n2 n3

n4* n5

n6 n7

Figure 8.4: Illustration - node value change

With node value changes, we need to check all rule paths that access text or attribute
nodes, that is, whose last step is text() or @attr, for any attribute attr. Similar to
additions we attempt to match diff paths against all rule paths precisely. For example,
/ejb-jar/description/text() would be accessed by rules that use exactly the same
path, or by /ejb-jar/*/text().

8.3.4 An Algorithm for Intersecting with Changes

After sketching the three algorithms, we proceeded to implement the algorithm for inter-
secting rules with document change diff paths. We chose this type of document modifica-
tion, rather than addition or deletion, because it seemed to us to be the most straightfor-
ward to implement and give us a picture of the validity and limitations of our approach.

In this section we give a pseudo-code description of the intersection algorithm. The algo-
rithm takes a list of node change locations and a list of paths from a rule, and returns
a boolean indicating whether the rule needs to be rechecked. We will start by defining a
simple structure for paths for use in the algorithm. This structure differs from the full def-
inition of XPath given earlier in the thesis because it conforms to the limiting assumptions
we have placed on paths in the previous section.
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A step in a path is a tuple consisting of an axis, Axis = {child, descendant}, and a node
name, which is a string: Step = Axis× String. The string ∗ is a wildcard that can occur
in paths in constraints, and matches any node name. A path is defined as an indexed list
of steps.

Definition 8.3. Axis = {child, descendant}

Definition 8.4. Step = Axis× String

Definition 8.5. Path = [Step]

The number of steps in a path p is denoted by its cardinality, |p|. For any path p, p[i] is
the i-th step of the path, the index ranging from 1 to |p|. The utility functions axis and
name, given without specification, both take a step and return its axis and node name,
respectively.

The intersection algorithm takes a list of paths from a rule, pre-processed as described in
Section 8.3, and a list of diff paths. It returns > if the rule has to be rechecked.

Definition 8.6. does-rule-apply

function does-rule-apply
input : rulepaths : ℘(Path), diffpaths : ℘(Path)
output: > if any rule path intersects exactly with a diff path, ⊥ otherwise

forall rulepath ∈ rulepaths do
forall diffpath ∈ diffpaths do

if intersect-exact(rulepath,diffpath) then return >;
end

end
return ⊥;

The algorithm, intersect-exact, takes a diff path, which will be an absolute path containing
only named node steps, and a rule path, which may contain descendant and wildcard steps,
and returns > if they “match exactly”. This means:

• We will consider each child step in the paths in turn, and ensure that they match
by node name

• If a descendant axis occurs in the rule path, we scan forward to see if we find a
matching node name somewhere in the diff path

• At the end of the algorithm, we need to have reached the end of both paths

Definition 8.7. intersect-exact
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function intersect-exact
input : rulepath : Path, diffpath : Path
output: > if rulepath maches diffpath exactly, ⊥ otherwise

{Use two counters to mark the position in each path}
rstep← 1;
dstep← 1;

while dstep ≤ |diffpath| and rstep ≤ |rulepath| do
if axis(rulepath[rstep]) = child then

if name(rulepath[rstep]) = ∗ or name(rulepath[rstep]) = name(diffpath[dstep])
then

rstep← rstep + 1;
dstep← dstep + 1;

else
return ⊥;

end
else if axis(rulepath[rstep]) = descendant then
{Scan forward in the diff path until we find a matching step}
while dstep ≤ |diffpath| do

if name(rulepath[rstep]) = name(diffpath[dstep]) then
break ;

else dstep← dstep + 1;
end

{If we scanned over the end, there was no matching step}
if dstep = |diffpath|+ 1 then return ⊥;

{Otherwise, we can proceed to the next step}
rstep← rstep + 1;
dstep← dstep + 1;

end
end

{Finally, return true if we reached the end of both paths}
return dstep = |diffpath|+ 1 and rstep = |rulepath|+ 1;
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Here are some examples of paths that match according to this algorithm, diff path first in
every case: /a/b matches /a/b because the paths are equivalent; /a/b/c matches //b/c

because we can scan forward to b and from there on complete the path using simple steps;
/a/b matches /a/* because a wildcard matches any named node step.

Examples of paths that do not match include: /a/b and /a/c because the second step has
a different name; /a/b and /a/b/c because the rule path continues beyond the diff path;
/a/b and //c because the element c does not occur in the diff path; and /a/b/c and //b

because the diff path continues beyond the rule path.

We had previously mentioned a particular limitation on the paths that we support: no
element names can be repeated along a diff path, for example /x/y/z/y/u repeats y. The
reason is that if a descendant path of the form //y/u were processed against this diff
path, the scanning algorithm would match the first y in the diff path and then report a
mismatch of z against u.

This is not a fundamental problem, the limitation was chosen because a more complex
algorithm was not necessary for the case study. The problem could be overcome by
implementing a more complex algorithm that maintains a stack of diff paths, putting the
original path on the stack by default. Then, when a descendant match such as //y is
encountered, the algorithm could put duplicates onto the stack, storing a position counter
with every possible match location, that is, the first or the second y in the diff path. A
more thorough investigation would have to be performed if this approach was implemented
in practice.

Complexity Overall, regardless of the type of change that is made, we get the following
worst case behaviour:

Theorem 8.1. For any particular rule, determining whether the rule applies takes in the
time of O(r ∗ d) path comparisons in the worst case, where r is the number of paths in the
rule and d is the number of diff paths.

Proof. The worst case occurs when the rule does not have to be re-checked. It is clear
from Definition 8.6 that for r rule paths and d diff paths, the algorithm will execute r ∗ d

intersections before returning.

Remark. If we were to take into consideration node deletions, the number of grammars
needed to match descendant axes would also have to be taken into account. We have not
investigated this, but can conjecture that with g different grammars we would obtain a
worst case complexity of O(r ∗ d ∗ g).

Path comparisons for node value changes are mainly linear in the worst case:
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Theorem 8.2. For a diff path with nd steps and a rule path with nr steps, intersection
takes O(nd) comparisons in the worst case.

Proof. Consider the algorithm in Definition 8.7. For any diff path with nd steps, the first
part of the outer loop condition ensures that it does not execute more than nd times.

We cannot comment further on the complexity of any intersection algorithm dealing with
addition or deletion at this stage, this would require more investigation in further detail.
It is likely that in the case of addition, adding a big subtree would cause problems with
a naive approach, since we would have to create a diff path to every node in the subtree,
followed by a comparison with all rule paths. Perhaps a more complex algorithm that
implements a kind of depth first search traversal into the added subtree would be useful.
For deletion, the size and number of grammars would have to be taken into account, since
processing descendant axes would require a depth first search of grammars.

8.3.5 Evaluation

In order to determine the impact of the approach presented above, we have implemented
the intersection algorithm for text and attribute changes. An initial implementation in
Haskell was used to fine-tune the algorithm to flatten and intersect the different types of
paths correctly, and was later ported to Java to process XML documents.

In our evaluation we wanted to find out how different changes affect rule selection, i.e.
whether a small number of changes really leads to a small number of rules being selected,
since this seems to be the key factor in determining whether any incremental checking
approach at the rule level will be useful. This turns out to be difficult with our case study,
since the number of UML rules is far greater than the number of Java and deployment
descriptor rules. Furthermore, every single EJB profile rule over the UML model makes
reference to a stereotype to test whether a UML class is an EJB class. Stereotype changes
are therefore likely to be “high-impact” changes that require a lot of re-checking.

The number of changes in the diff file is also not as good a guide as the number of
types of changes. For example, the path /ejb-jar/enterprise-beans[1] and the path
/ejb-jar/enterprise-beans[2] are equivalent as far as the matching algorithm is con-
cerned and are simplified into /ejb-jar/enterprise-beans. We have thus decided to
classify types of changes as they would occur in a development life cycle with frequent
re-checking: changes to Java code, changes to deployment descriptors and changes to the
UML model. With each set of changes, we expect the intersection algorithm to select only
the rules that are relevant to the type of artefact that is being changed.

We have labeled the sets of changes “small”, “medium” and “large” or S, M and L. These
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are not intended as absolute values, or as indicating the impact we expect, but represent
an approximation of the number of types of changes they contain. The sets are composed
as follows:

• “Deployment (S)” contains two changes to home interface names

• “Deployment (M)” contains Deployment (S) and a change to the name of a bean –
a high impact change as the UML-Deployment rules make use of that property

• “Java (S)” contains a change to the name of a class

• “Java (M)” contains Java (S) plus a change to a package name and the name of a
variable in a class

• “UML (S)” contains a class name change

• “UML (M)” contains a class name change, an interface name change and a tagged
value tag name change

• “UML (L)” contains UML (M), plus an operation name change and a stereotype
name change

The fact that all changes are name changes does not make much of a difference - any node
value could be changed.
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Figure 8.5: Number of rules selected for different change sets

Figure 8.5 shows the results of running our selection algorithm against the rules and the
different sets of diffs, and the full set of rules on the rightmost bar for comparison. It meets
our expectations in that changes to the types of documents that have a smaller number
of rules, that is Java files and deployment descriptors, also result in a small number of
rules being selected. For the UML models we get a progressively larger number of rules,
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reaching a full selection of all UML rules, though not the Java rules, as soon as the
stereotype change is included in the change set.
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Figure 8.6: Check time for different change sets

While the algorithm seems to scale nicely in terms of the complexity of changes, the real
world criterion for assessing the system as a whole must be the time taken for a re-check.
Figure 8.6 shows the time taken for a re-check of each change set, and a comparison with
the full check time. The checks were run three times on the same machine used in the
earlier evaluation section, and an average value was taken as the result. For changes to
Java files, we achieve a significant speed-up, bringing the total check time for the full check
down to about 6 seconds from 23. The deployment descriptor check is also significantly
improved, although for the medium set some rules that reference the UML model are
chosen, and the complex paths in those rules slow down evaluation.

The only area where our algorithm seems to make almost no impact is where UML rules
are selected. If we compare Figure 8.5 and Figure 8.6 we are faced with a problem: why
is it that even though our algorithm manages to significantly cut the number of rules, we
still get more or less the same performance for the overall check? The minor improvement
that we get over the full check is simply the time that is taken up by the Java rules.

Almost all UML rules make reference to fairly complex paths initially, for example “//Foun-
dation.Core.Class” to select all classes in the model. These paths take a very long time
to evaluate – evaluating six complex paths, for finding all classes, stereotypes, dependen-
cies and so on, takes significantly longer than evaluating the formulae. The reason is that
the paths require a complete tree traversal of the rather large model tree to pick our their
elements. While the selection for the small UML set selects only seven rules, these rules
nevertheless include all six complex paths. The result is that the evaluation of the small
set is only very slightly faster than for the medium set, and all sets are almost as slow as
the full evaluation.
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In essence, complex paths set a threshold for check times, and this is difficult to ad-
dress – but it gives us a possible lead for future work: if we manage to bring down
the evaluation time for paths that require full tree traversal, we can achieve a signifi-
cant performance improvement, as the scaling characteristics from Figure 8.5 will kick in.
We have already made some preliminary investigations into this problem. A path like
“//Foundation.Core.Class”, which uses only navigation down the tree, can actually be
evaluated during parsing using an event-based approach like SAX [Megginson, 1998]. This
approach would let us evaluate all complex paths at the same time, using only one tree
traversal.

8.3.6 Conclusions

Despite the encouraging results in some cases, for example to changes in Java files, the
overall conclusion from this chapter is that incremental checking at the rule level is com-
plex – we covered only a subset of XPath for this study, but supporting full XPath may
be quite difficult, – and not as effective as it should be. As soon as a stereotype name
was changed, complex UML rules had to be rechecked in full, virtually eliminating any
gains. As explained above, the check times in Figure 8.6 may be improved through clever
path evaluation. Perhaps a more fine grained approach to incremental checking, which
can recheck parts of a rule, is needed.

What made our approach to incremental checking tempting was that it required no changes
to the architecture - no additional state information has to be saved. However, without
additional information, more fine grained incremental checking will be difficult. If we
associated further information with documents, we could “mark” all nodes that a rule
touches. It might then be possible to recheck only nodes that have changed rather than the
entire rule. Since we cannot modify documents stored in a distributed fashion, we would
have to store this information on the machine executing the check in some serialized form,
creating maintenance overhead. This is one of the key differences between our approach
and a software development environment: if all artefacts are in memory and available as
an abstract syntax graph it becomes much easier to store the required information for
incremental checks.

It is also possible that some of the complexities with subtree addition and deletion, which
we have not quantified in our investigation, may be easier to deal with once more detailed
checking state is retained.

There is probably still some scope for our current approach to be applied in practice,
though it would require some very specific conditions in order to be effective: if rules
accessed quite different document locations, this would make it less likely that any given
change selects a large number of rules; and it would probably suit scenarios with large
numbers of rules, where rechecks are executed often, leading to a small proportion of rules
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being selected at any given time.

8.4 Replication

In some cases, what is required is not scalability with regards to growing document size
or rule complexity, but simply raw speed. We performed a study on validating financial
trade data that listed trade throughput as its main requirement.

The Financial Products Markup Language (FpML) [Gurden, 2001] is a markup language
for financial derivative products. Since there was no satisfactory way of specifying static
semantic constraints that check the validity of such products, we produced a list of con-
straints in our constraint language [Dui et al., 2003]. The rule set comprised 30 constraints
and included rules that required plug-in operators for date calculations.

Validating a single FpML trade on a single, idle 1.7 GHz Intel-based machine against the
30 constraints took slightly over 300 msec, averaged over three runs. This check time
is sufficient for processing about 300000 trade document in a 24 hour period. In some
financial settings, where large amounts of trades are completed every day, this figure is
not satisfactory.

The requirement of one particular system was to be able to process 600000 trades in 24
hours. The trades would have to be read off a message queue, and results be sent on
to a delivery queue. Furthermore, it was a critical requirement that the trades were to
be validated on inexpensive hardware, specifically Intel processor based machines rather
than expensive server equipment – note that “expensive” in this setting refers to hardware
architectures with more than two processors, which are not yet commoditized at the time
of this writing – or mainframes.

Since the trade documents can be validated independently from each other, it was possible
to replicate the “centralized” checking instances and let them work in parallel – note that
this is not equivalent to the scenario in Section 8.5, where all documents have to be checked
against one another.

8.4.1 Architecture

Figure 8.7 shows the architecture of our replicated checking system. Each replica is hosted
on a single physical machine. The task of the replicas is to read trades off the document
queue, check them and put the result linkbases on the result queue.

Each replica consists of two main components, a message buffering layer and a checking
layer. The message buffering layer runs in a separate thread and polls the messaging
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Figure 8.7: Replicated checker architecture

system for available trade messages. The checking layer executes as stateless session beans
inside an EJB container.

Message Buffering Layer The message buffering layer decouples the checker from
the messaging bus and tries to make sure that there are always messages available for the
checking layer. The component initially pulls 20 messages off the queue, and if the number
of messages in the buffer falls below 15, attempts to poll for more.

This layer was introduced after it became clear in preliminary trials that dequeuing and
checking single messages introduced a performance bottleneck: if documents are retrieved
individually between checks, the system is delayed by the transmission of the trade doc-
uments over the network. To get around this, we want to continue to pull documents off
the network as much as possible while checks are executing in parallel.

Checking Layer The checking layer runs in a parallel thread of execution to the message
buffering layer. Individual checking instances are hosted as stateless session beans inside
a J2EE Application Server. There is no pressing need to run them inside a J2EE server,
but this eliminated the overhead of writing further multi-threading code so as to take
advantage of a dual-processor machine that we had at our disposal.

Ideally it would not have been necessary to separate the checking and message buffering
layers, and we would have preferred to rely on the replication mechanism of an EJB
container to replicate native Message-Driven Beans (MDBs). Unfortunately, we had no
container at our disposal that implemented this replication facility. We also encountered
some problems with implementing a system of replicated stateless session beans. While the
container was able to replicate session beans transparently, the load balancing algorithms
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showed a tendency to starve slower machines so that scalability broke down after adding
more than two machines to the systems. This led us to what is essentially a polling
architecture, in which hosts download messages at a rate that is commensurate with their
speed.

8.4.2 Evaluation

In our experiment, we wanted to achieve a target throughput rate of 600000 trades per
day. Furthermore, we wanted to find out whether the architecture would accommodate
a mixture of inexpensive hardware gracefully, in particular we wanted to accommodate
different levels of processing powers in each machine. This was important as we did not
have machines with exactly matching specifications at our disposal, and because in a real
world setting it must be possible to add machines with better specifications when the
throughput requirements increase.
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Figure 8.8: Document throughput vs. number of replicas

Figure 8.8 shows how the throughput of the system grows as replicas are added. Each
experiment was performed using otherwise idle replicas. 2000 trades were randomly mod-
ified to eliminate caching by the message queuing system, and enqueued in the document
queue. The time taken to clear the queue and terminate checking was measured and then
extrapolated to calculate the per-day volume. Each experiment was repeated three times
and the average time was taken as the result.

The first replica was a 600 Mhz laptop running Linux. The second was a badly configured
SUN Ultra server, which checked fewer trades than the laptop and was thus suitable as a
replacement for PC hardware. The third and fourth replicas were 1.7 Ghz Athlon PCs.
The large difference in speed between the first two and last two replicas can be noticed in
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the super-linear increase in performance between the two and three-replica scenario.

With four replicas running we managed to check a volume equivalent to 617000 trades per
day, which meets our evaluation target. The figure clearly shows that adding successive
replicas led to a roughly linear increase in checking power. In particular, we can see that
adding machines of different speeds does not in any way starve the slower replicas or
throttle the faster ones. If either were the case, there would be no super-linear increase
between replica two and three. Further evidence can be drawn from the fact that adding
replica four, which has the same hardware specification as replica three, leads to an increase
equivalent to that caused by adding replica three.

8.4.3 Conclusion

This case study demonstrates that it is possible to achieve a scalable checking architecture
for checking large volumes of independent documents using relatively simple means. Our
architecture with its message buffering and checking layer can smooth out differences in
machine specification and network overhead to provide roughly linear scalability.

Clearly, this case study also has its limitations. We have not investigated the effects of
adding a very large number of checker replicas into the system. The scalability of our
architecture is limited by two important factors: network bandwidth and the message
queues.

Network bandwidth becomes a bottleneck as soon as there are enough replicas retrieving
documents so quickly that the network cannot deal with the traffic. The queueing systems,
in quite a similar vain, are also a single point of access and thus a potential bottleneck.
Since message queueing systems provide certain quality of service guarantees, there is
a CPU overhead associated with enqueuing and dequeuing processes on the server side.
When the number of replicas becomes too large the queuing servers get overwhelmed.
This problem can be addressed by replicating the queues. Application servers like BEA
WebLogic [BEA, 2004] provide facilities for doing this in a way that is transparent to
queue receivers.

8.5 Distributed Checking

Memory scalability limits can sometimes be encountered when checking a large number of
documents. In scenarios where a check is extended to many machines that hold multiple
documents, a centralized checking service faces problems: the documents all have to be
downloaded initially, even though the check is quite likely going to only access parts of
the documents, and there may be too many documents to fit into the main memory of the
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checking machine.

In this section we discuss how to overcome this problem using a distributed checker – taking
the check to the documents. We first discuss the architecture, design and implementation
of the checker and then evaluate it in a case study where we checked a collection of up to
3000 newsfeed documents supplied by Reuters.

8.5.1 Requirements

Before embarking on the design of the architecture, we established several properties and
features we wanted to put in place.

Middleware independence Since it was not altogether clear which type of middleware
or which particular middleware implementation would offer the best performance, it was
imperative that the architecture was flexible in this respect.

No distributed Document Object Model Most implementations of the DOM do
not offer proper support for serialization. Serializing a node in a DOM tree would lead to
the transfer of the whole tree over the network, since the tree is a fully connected data
structure. This is clearly inefficient. Moreover, this approach would force us to rely on
Java Remote Method Invocation (RMI) for object transfer, which was unlikely to provide
the required performance.

Limited change impact At the time when we began this project, the centralized check-
ing engine was taking the first steps on the road to becoming a commercial product. If
the distributed checker was to be of any practical use in a product line, it had to be an
add-on that customized the centralized checker, not a complete rewrite. The goal was
not to touch the existing checking code at all and leave most of the internal architecture
intact.

Low administration overhead Many distributed systems suffer from problems of
practicality because of the sheer administration overhead they entail on each machine
that is added to the system. We wanted to be able to provide lightweight components
that can be executed standalone on client machines by specifying a list of documents for
them to process.

The result is an architecture where documents are held by workers and do not need to
be centrally loaded, and where a rather fine-grained communication mechanism is used to
transfer node information during a check.
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8.5.2 Architecture

In order to eliminate the necessity of transferring all documents to a centralized check en-
gine, our architecture breaks down into the existing checking component, a “supervisor”
component that forwards XPath expressions on behalf of the check engine and collects
results, and “workers” that load documents and evaluate XPath expressions. The docu-
ment set is partitioned between the workers either manually, as in our study, or could be
assigned by the supervisor. Figure 8.9 shows an overview of the architecture.
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Figure 8.9: Distributed checker architecture overview

Within this architecture, the checking process comprises 4 phases:

1. Worker Discovery Before a check can be initiated, the workers are started on
the hosts that will participate. The supervisor is then started, looks up the workers
using a naming service and assigns a unique identifier to each worker.

2. Document Loading Once all workers have been registered, the supervisor issues
a command to load the documents. Documents are loaded in parallel on all workers.
The workers report back when they are ready to execute queries.

3. Check During the check, requests for XPath evaluation by the check engine are
forwarded to the supervisor. Absolute expressions such as /newsitem/text are sent
to all workers and the union of the results collected by the supervisor. Relative
expressions like $x/Name need to be executed on the worker where the document
node referenced by the variable x actually resides. The supervisor thus determines
which worker to contact – we will see later how this is achieved – and sends a query
to this worker only.

4. Teardown When the check is complete, the supervisor instructs the workers to
unload their documents and the application terminates.
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8.5.3 Design

When we refined our architecture into a more detailed design, we had to overcome two
major problems: how to interface with the existing checking engine to distribute XPath
evaluation without changing the existing code, and how to return results back from the
workers without serializing DOM trees. We will illustrate our design through a discussion
of these problems.

In the existing checking engine, each subformula is represented by an object. Those that
require XPath evaluations, for example quantifiers, liaise with an XPath processor class.
The result of an XPath evaluation is either a list of DOM nodes, or a primitive data type
such as a string. This result is then interpreted by the formula.

For example, the quantifier formula ∀x ∈ /newsitem/text (σ) would be evaluated as
follows: the quantifier calls the XPathProcessor class to evaluate /newsitem/text. The
processor class evaluates the expression over all DOM trees in memory, collates the results,
and returns a list of DOM nodes. The quantifier class then iterates over this node list,
binding the variable x to each node in turn, and evaluating σ for the current binding.

The checker abstracts from the underlying path processor using the Factory design pat-
tern [Gamma et al., 1995]. Our distributed checker can thus register its own path proces-
sor. This processor does not perform any evaluation at all, but simply forwards the queries
and binding context to the supervisor.

The second problem, reporting results back, is harder to overcome. Since path expressions
are evaluated on the worker, we face the problem of having to send lists of DOM nodes
back over the network to the supervisor and hence the check engine – a violation of our
requirements.

We get around the problem by assigning unique identifiers to nodes that are selected in
an XPath query. Each worker maintains two hash tables, mapping unique identifiers to
nodes in trees and vice versa. When a query is complete, the worker sends back tuples of
the form (workerId,nodeId). The amount of data that has to be sent over the network
is greatly reduced because the tuples contain only two long integers.

Since the existing check engine does not know how to treat nodes identified by unique
identifiers, the supervisor has to masquerade the tuples behind the DOM Node interface.
The result returned to the check engine then looks like a normal DOM node, and can be
bound to variables in the binding context. These “fake” nodes can not be manipulated as
freely as normal DOM nodes, but since the only manipulation is further path processing
this is not a problem.

We will look at the evaluation of a relative path in order to clarify the interaction involved
in an XPath evaluation. Figure 8.10 gives an overview of this process:
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$x/text()
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NodeList

Binding
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($x,(4,9434))

((4,9603)
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Figure 8.10: Distributed XPath evaluation

1. The check engine asks the XPath processor factory for an XPath processor. The
factory returns a pointer to the supervisor.

2. The check engine sends the query $x/text to the supervisor, along with the current
binding context.

3. The supervisor looks up the node pointed to by $x. This will be a “fake” node
produced by a previous evaluation, so the supervisor inspects the tuple inside, which
is (4,9434). From this result the supervisor deduces that the node resides on the
worker with identifier 4. It sends a query request containing the XPath expression
and variable binding over the network.

4. Worker 4 receives the query. It resolves the node identifier 9434 using its hash map
to obtain the actual node in the DOM tree. The worker then executes the path
expression, which evaluates to two result nodes. The unique identifiers 9603 and
9604 are allocated for the two result nodes, and the result set ((4,9603),(4,9604))
is returned to the supervisor.

5. The supervisor wraps each tuple in a fake DOM node, and returns a node list to the
check engine.

6. Formula evaluation proceeds in the existing check engine.

This design has a number of clear advantages, in particular it meets our requirement for
leaving the existing check engine unchanged, and it sends only a very minimal amount of
information over the network.

8.5.4 Implementation and Evaluation

In our case study we wanted to use the checker as a link generator to link related stories
in newsfeed files. Figure 8.11 shows a fragment of a newsfeed file. We want to create links
between all newsfeed items that have the same topic code listed for them. Figure 8.12
shows the rule that relates newsfeed files according to their topic code.
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<newsitem itemid="804563" id="root"

date="1997-08-17" xml:lang="en">

<text>

....

</text>

<copyright>(c) Reuters Limited 1997</copyright>

<metadata>

<codes class="bip:topics:1.0">

<code code="GCAT">

<editdetail attribution="Reuters BIP Coding Group"

action="confirmed" date="1997-08-17"/>

</code>

</codes>

</metadata>

</newsitem>

Figure 8.11: Newsfeed item fragment

<forall var="x" in="/newsitem/metadata/codes[@class=’bip:topics:1.0’]">

<exists var="y" in="/newsitem/metadata/codes[@class=’bip:topics:1.0’]">

<and>

<not><same op1="$x" op2="$y"/></not>

<equal op1="$x/code/@code" op2="$y/code/@code"/>

</and>

</exists>

</forall>

Figure 8.12: Newsfeed rule

We had a total of 3000 newsfeed files, each of which was 5kb in size. The files were
distributed over a set of machines with varying specifications, ranging from SUN worksta-
tions with 128MB of memory to a dual-processor Intel Machine with 1GB. We initially
selected JavaSpaces [Waldo, 1998] as a middleware as it had a simple interface and was
straightforward to use. After running into problems with performance, we compared
JavaSpaces to CORBA [Object Management Group, 2001] in a benchmark that simu-
lated the type of messages we expected to send over the network. Since CORBA, using
the OpenORB [exolab.org, 2001] Java implementation, was more than 20 times faster in
this experiment, and was available on many platforms, we selected it as our middleware.

In order to assess the scalability of the architecture we tried to check sets of 500, 1750 and
finally 3000 documents. We also varied the number of workers involved in a check from
one to three and five. Two of the workers were general purpose PCs with 128MB of RAM,
and the other three were shared servers with RAM varying between 384MB and 1GB. All
experiments were repeated three times and the average times were taken as the result.

Table 8.1 shows the document loading time with a varying number of workers and varying
numbers of documents. It was not possible to check 1750 or 3000 documents with one
worker, and similarly 3000 documents with two workers, as both the physical memory
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Workers / Docs 500 1750 3000
1 13987 - -
3 8691 28756 -
5 5439 18369 61833

Table 8.1: Document loading times in milliseconds

limitations of the general purpose PCs and the shared memory availability of the servers
prevented the checker from loading the documents. As is to be expected, the loading
times decrease when the number of workers increases, as the workers load the documents
in parallel.

Workers / Docs 500 1750 3000
1 10106 - -
3 9705 80366 -
5 11338 81605 249650

Table 8.2: Check times in milliseconds

Table 8.2 shows the check times, without document loading, for a varying number of
workers. The first thing to note about the numbers is that they do not seem to decrease
with the number of workers. The reason for this is that the check engine spent most of
its time evaluating the relative expressions like $x/code/@code, which have to be sent
to a specific worker and thus cannot be evaluated in parallel. By contrast, the absolute
expression in the quantifiers needs to be evaluated only once, rather than for each variable
binding, and is evaluated fairly quickly.

The second point to observe is that the result for five workers seems to be slightly worse
than for three, even though we expect it to be roughly the same by the explanation just
given. The reason for this is that one of the workers that were added was a shared server
that was running short on memory, causing it to start swapping during a check. The delay
of one second should thus be regarded as a statistical error.

Finally, the figures clearly show that increasing the numbers of documents is expensive.
The time per document increases from around 20 in the case of 500 documents to over 80
with 3000 documents. This increase is inherent in the quadratic complexity of the rule
given in Figure 8.12, which performs a pairwise comparison of all documents.

We conclude our evaluation with a look at the network overhead encountered by the check
engine. Table 8.3 shows the percentage of time the check engine spent waiting for network
communication to complete as a portion of the total check time. The amount of time spent
waiting decreases as the number of documents increases, because the quadratic complexity
of the rule means that the check engine spends significantly more time in evaluation as
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Workers / Docs 500 1750 3000
1 41.43% - -
3 38.03% 14.11% -
5 46.76% 14.74% 15.70%

Table 8.3: Distribution overhead

the number of documents increases. The slight increase with five workers is again caused
by the overloaded worker running out of memory.

8.5.5 Conclusion

This case study demonstrates an improvement in scalability in the number of documents,
using a distributed architecture with fine grained communication. Using standard middle-
ware technology and careful design we were able to distribute the checker with minimal
impact on our implementation – the original checking code remained untouched through-
out the study and distribution was kept transparent. By choosing CORBA, an industry
standard, as our middleware, administration overhead on the workers could be kept rela-
tively low: the CORBA libraries were packaged as part of the workers and no configuration
was necessary on individual hosts.

We have also seen in our evaluation that there is obviously a penalty associated with
distribution. A network overhead of up to 50% is the price to pay for the memory/speed
trade-off provided by this distributed architecture. It is unclear at this point whether this
architecture can truly scale to very large collections of documents. Increasing the collection
of documents from 3000 to 300000, as would be required for validating news reports dating
back several years, may not be feasible with this experimental implementation as the
amount of network communication may lead to very long check times.

It would be interesting to try to exploit this architecture further by checking multiple rules
in parallel. Our experiments have shown that the majority of XPath requests sent over
the network are relative to a variable, which means that they are sent to only one worker.
As a consequence, most workers are idle most of the time. By checking multiple rules at
once, we could increase worker saturation.

8.6 Dealing With Very Large Documents

One area that we have not yet fully investigated is how to deal with very large documents:
some documents are simply too large to be held in memory. The document object model
adds a certain amount of overhead to the persistent representation of XML, which for our
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documents typically leads to an expansion of two to five times the document size. We
have encountered an example of a document that could not fit into virtual memory in the
area of software engineering.

In a case study on checking the Foundation/Core constraints of the Unified Modeling
Language we were presented with an industrial model that was 27 MB in size. The model
contained 2407 classes. Attempts to check the model on machines with 256 MB of RAM
resulted in the check engine running out of memory.

Since it is not possible to hold such a large document in volatile memory, we have to rele-
gate it to secondary storage. Some XML databases like Infonyte’s PDOM [Infonyte, 2002]
provide facilities for efficiently indexing, storing and accessing XML documents in sec-
ondary storage. Some of them provide a “cached” DOM tree that incrementally fetches
portions of the document out of the database as the tree is navigated. Nodes that are not
accessed frequently are discarded from main memory and refetched on the next database
access.

By utilising an XML database with DOM tree support we could relegate documents to
secondary storage when it becomes necessary without affecting the remainder of the check
engine. Since the check engine and path processors operate on the DOM tree, the entire
operation would remain transparent. All that is required is that the document is inserted
into the database before the check.

We have done some preliminary work on an implementation of the database communi-
cation mechanisms. Initial results have been encouraging, showing that the check engine
does not need to undergo extensive modification in order to support the alternative mem-
ory management mechanism. It was also possible to load the 27 MB UML document
without encountering memory problems. However, we cannot at this point provide an
estimate of the communication overhead encountered due to secondary storage access and
communication with the database. We will aim to investigate this mechanism further and
report on it at a later stage.

8.7 Chapter Summary

In this chapter we have examined the scalability factors of the check engine: rule com-
plexity, the number of rules, the number of documents and document size. We have then
investigated a number of options for addressing these factors.

Our case studies were centered around scenarios that called for quite different approaches:
the fast rechecking times required by software engineering documents called for incre-
mental rechecking, whereas memory limitations were better addressed by a distributed
architecture that uses fine-grained communication to pass fragments of documents across
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the network, or by falling back to secondary storage. This shows that scalability of con-
sistency checking is not a one-dimensional problem and that it is important to prepare in
advance a number of solutions for addressing possible scalability problems.

This chapter also shows that it is mostly not necessary to come up with novel concepts
to address scalability but that existing ideas can be adapted, albeit with some effort.
Incremental checking is not a new idea and gained widespread acceptance in software
development environments; secondary storage as a caching mechanism was also widely
used in software development environments that used object databases to hold documents;
and replication of components has become so widespread that it is a standard feature in
Enterprise JavaBeans containers.

The different approaches explored here are independent: it would be relatively straightfor-
ward to combine an incremental checker with the distributed architecture if this should be
deemed beneficial. We hope that we have aided this task by investigating each individual
solution, and its intricacies, in detail.

The main conclusion that must be drawn from this chapter is that some scalability factors
are more difficult to address than others. It was relatively straightforward to increase
throughput of single documents using a replicated architecture - all we had to do was to
make use of an application server and write some wrapper code. By contrast, creating a
production quality incremental checking system would be difficult indeed: because con-
sistency checks are executed individually and no state is retained in memory, determining
which parts have to be rechecked is very difficult. Even when making limiting assumptions
on the paths in rules, and concentrating just on rule selection, we had to go to some effort
to establish a simple prototype. Further research in this area could perhaps concentrate on
what auxiliary state information – maybe a list of all nodes “touched” by a path processor
during the original check – could be saved alongside a linkbase to make this task easier.

This chapter, in the end, achieves the remit that we have set for it: we have identified
the dimensions of scalability that can be addressed with straightforward solutions, and
investigated others where we found architectural, or implementation difficulties. It is
hoped that these investigations will act as guidance both for future work, and as a reference
for further implementation in practice.



9 Related Work Revisited

In the light of the presentation of our contributions in the preceding chapters, we will now
revisit the discussion of related work that we began in Chapter 2. In particular, it is now
possible to point out in more detail interesting similarities and differences between the
approach taken in our research and that in previous work.

There are many interesting parallels and similarly many differences between our ap-
proach and that taken in software engineering environments [Schäfer and Weber, 1989,
Habermann and Notkin, 1986, GOODSTEP Team, 1994, IBM, 2003]. The syntax of the
documents we manipulate is normally specified using an XML DTD or Schema, the SDEs
use proprietary grammar notations; we construct DOM trees as an internal manipula-
tion during a check, SDEs typically maintain an abstract syntax tree; and we generate
hyperlinks between inconsistent elements where SDEs maintain a semantic graph by con-
necting syntax trees. All of this serves to illustrate that we are trying to steer clear of
the proprietary mechanisms that these tools utilise, towards open and reusable standards.
The advantages of this are clear: many tools already support these open standards, so
integration is greatly facilitated and we do not face the monolithic task of wrapping tools
and adapting them to a proprietary formalism [Emmerich, 1997]. Furthermore, we can
make use of existing tools for processing documents and path expressions to achieve a
more lightweight implementation. The second important difference is that SDEs build on
centralised data structures. While our DOM trees are loaded onto a single machine, this
is only necessary during the execution of the check – we do not force users to maintain
their documents in a centralised fashion at all times.

Our work stands in the tradition of Viewpoints [Finkelstein et al., 1992] in a number of
ways: the loosely coupled management of data, the tolerant approach to inconsistency, and
the attempt to manage heterogeneous documents without tight integration. The notion
of consistency rules [Easterbrook et al., 1994] between heterogeneous documents was also
mentioned in this area. Although a lot of theoretical work on viewpoints and the associated
consistency checking scheme exists, no generic implementation was ever provided. Early
ideas on translating all specifications into a common representation like first order logic
have never been shown to be practical. Our work combines the theoretical foundations
combined with a lightweight and practical implementation on top of which a viewpoint
framework could be established.

Research on federated databases is aimed at “enabling databases to cooperate in an au-
tonomous fashion” [Ceri and Widom, 1993]. As data is distributed over many databases,
these systems introduce mechanisms such as global queries and global constraint check-
ing. Initial research in the area was built on very heavyweight mechanisms like global
transactions [Simon and Valduriez, 1986]. Later work by [Grefen and Widom, 1997] and
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[Grefen and Widom, 1996] is aimed at overcoming these requirements. By specifying a
dedicated consistency manager on each host that is contacted by the underlying database
when a transaction makes a change, and by establishing communication between the con-
sistency managers through a constraint checking protocol, the need for global transactions
is eliminated. Very elegant optimisations like the elimination of remote communication
are possible by analysing the state before the commitment of a transaction and checking
if the constraint requires a remote lookup [Gupta and Widom, 1993].

These approaches still differ significantly in their world view from what we are trying
to achieve. They share our desire to validate distributed data on a global scale, but
offer limited support for heterogeneity. Their view is that all data will be in relational
databases, which somewhat facilitates the task of integration but makes it hard to check
against proprietary tools and documents. They also assume that there will be at least local
transaction processing available on each host, and that triggers will provide notification
when changes are made by a transaction. In a loosely coupled scenario, documents may
be stored simple as files on a file system, with no application in firm control. Furthermore,
it may not be necessary to execute a check on every modification and we would prefer to
leave the choice of process to the user.

Support for loosely couple distributed data is discussed in [Chawathe et al., 1996]. The
authors recognise the need to adopt a tolerant approach to inconsistency as enforcement
becomes too difficult in a distributed setting. The problem of heterogeneity is addressed
by specifying an interface for manipulating data items on each host. Interfaces provide
operations such as read, write or notify. We have chosen a similar approach, but we do
not build on programmatic interfaces. Instead, we translate data into XML internally
during a check, a more open and non-proprietary approach. Our work diverges in both
its views on monitoring – we see monitoring as a separate issue – and the diagnostics we
provide. While the paper correctly recognises accurate diagnosis as being of importance
in the distributed setting, it makes no concrete suggestions for how feedback can be given
to the user. By contrast, our linking semantics have been shown to be useful and precise
in a number of case studies.

Traditional database integrity notions have been extended to cope with semistructured
data [Buneman et al., 2000] and XML content in particular [Fan and Simeon, 2000]. The
fundamental goal of this work and hence the approach is different. Like their prede-
cessors in traditional database systems, these approaches focus on the prevention of in-
consistency. They are also geared towards constraining single documents and feature
no notion of distribution. The problem of verifying constraints on websites is discussed
in [Fernandez et al., 1999] and applied in [Fernandez et al., 2000]. It is important to dis-
tinguish between the goals of these approaches and our own goals: Our constraints check
if a set of data is consistent, whereas the approaches in the paper check if any instance

of a schema graph will satisfy a given constraint. If the schema graph does not satisfy
the property, modifications are suggested that will lead to valid instance graphs. Since
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we wish to tolerate inconsistency to introduce flexibility and because it is sometimes not
possible to change the schemas of documents, for example when standardised schemas
are used, we cannot adopt this approach but instead focus on detecting inconsistencies in
instance documents.

Query languages have been used to specify constraints [Henrich and Däberitz, 1996]. In
the context of XML, such an approach would be feasible by using an XML query language
such as XQuery [Chamberlin et al., 2001]. We regard this as a lower level approach since
this would in effect be asking the user to implement the checking semantics themselves
instead of specifying a declarative constraint. There are also no distributed XML databases
that could collaborate to answer a distributed query, as would be required by a multi-
document constraint.

There are some parallels between our check engine and Schematron [Jelliffe, 2000]. Schema-
tron is an XML validator that employs XPath and XSLT [Clark, 1999] to traverse docu-
ments and check constraints. It combines a boolean logic, namely that provided by XPath,
with a simple reporting facility to provide a simple and elegant validation language. The
overall focus of our work is however different from Schematron as we are aiming to sup-
port checks between multiple distributed documents. While such checks can be achieved
in Schematron using XPath’s document function, there would be no location transparency
and the boolean logic would not be expressive enough to appropriately support semantic
heterogeneity.



10 Future Work

We believe that this thesis addresses an interesting open problem and provides a solution
that strikes a balance by being both practically motivated and implemented, and theoret-
ically sound. This thesis necessarily presents only a snapshot of our research, and many
avenues for investigation remain. We will thus give a brief outlook for areas of future
research.

We have obtained many of our evaluation results from practical case studies in differ-
ent application domains such as software engineering, financial data or news data. The
need to be able to access legacy data sources in a seamless fashion through fetchers,
the ability to be able to specify plug-in predicates, and the requirement for strong re-
porting mechanisms all appeared as the result of practical trials. We have also been
fortunate to receive feedback from other research groups that used our tools for different
purposes: for integration into a process engine to launch consistency checks automati-
cally at different stages in a process [Cass and Osterweil, 2002], to check the semantics of
KAOS [van Lamsweerde et al., 1991] requirements specifications or to check the seman-
tics of the Little-JIL process definition language [Cass et al., 2000]. The feedback we have
received from these projects has helped us to improve and stabilise the check engine. The
tools are currently undergoing commercialisation to be sold into vertical markets and it is
hoped that this process will yield further interesting requirements.

We are keen to try out the check engine in yet more areas. There are many application do-
mains that could benefit from more rigorous consistency management, for example protein
databases in bio-informatics are notoriously underconstrained, the financial industry has a
need for checking inter-trade consistency between multiple trades and reference databases,
and in software engineering research the problem of constraints on software architectures
has recently appeared.

In our case studies we found that constraints were quite frequently not “equal citizens”. It
may be necessary to check one constraint as a precondition to another. For example, before
we check that a value in one document correctly refers to a value in another document,
we may want to check that this value uses the correct representation in the first place.
We do not currently provide an automated dependency mechanism between constraints
and it would be interesting to address this problem by annotating the constraints using
metadata.

In certain business settings, the users equipped with the knowledge to be able to express
constraints between documents are not necessarily XML literate – we have encountered
this problem in practice in financial services, where business analysts expressed discomfort
with having to express their constraints in XML. We are investigating options for providing

138



139

a higher-level representation of our constraint language, perhaps one closer to natural
language. Using an ontology that links business terms to their XML representation, we
should be able to abstract from the underlying XML, and to later automatically compile
constraints back into their executable representation. Such a compiler may also be useful
for adding higher level constraints to CASE tools. For example, we could annotate models
in UML editing tools, and later compile the constraints to execute over persisted XMI
files.

We would like to integrate our checker directly into a number of tools in order to deter-
mine how expensive such an integration exercise would be. Several projects have already
begun that will attempt to perform integration with CASE tools, and are performing pilot
projects on integration into enterprise architectures.

Once a check has been executed and results have been provided, users may want to modify
documents to eliminate inconsistency. In these cases, we may want to guide the users to
ensure that any changes they make are effective: a change to a document that has nothing
to do with a constraint violation will not eliminate the inconsistency. This act of guiding
the user is what we broadly classify as document repair, and we have already made some
inroads in this area. In [Nentwich et al., 2003a] we discuss how repair actions can be
generated by specifying another denotational semantics over constraints. These repair
actions, which are essentially parameterised document modification steps, can be shown
to be both correct and complete, and thus give the user confidence and guidance in their
modifications to documents. There are several technical and formal issues still to be
overcome in this area, mostly caused by the complexity of XPath, and we will need to
apply the approach in larger case studies before we can be confident of its practicality and
usefulness. Nevertheless, this looks like a very exciting area for future research, and one
that we will be keen to pursue.



11 Conclusions

This thesis addresses the problem of managing the consistency of distributed documents.
We have overcome some of the limiting assumptions found in previous work, such as the
need for integration or a central repository, the requirement for a heavy-weight trans-
actional system, the programming rather than declarative specification of consistency
constraints, and the insistence on eradicating inconsistency at the earliest possible op-
portunity. Instead, our approach pulls together other fruitful ideas from previous research
in software engineering, most notably the tolerant treatment of inconsistency and the re-
lation of heterogeneous views using consistency constraints. We have demonstrated that
these concepts can indeed be implemented and deployed.

We have argued that there are benefits to be had from realizing consistency manage-
ment through tool-independent services. This yields an encapsulated component that can
be reused and is not tightly coupled to any particular tool. It also enables us to move
away from proprietary formalisms that complicate integration and make it harder to ad-
dress document heterogeneity. By building on a standard syntactic representation such
as XML we overcome syntactic heterogeneity issues, and by utilizing a suitably expres-
sive constraint language we can specify constraints that bridge the semantic gap between
document types.

We hope that this thesis has also demonstrated that formalism and practical applicability
are not as mutually exclusive as they are commonly perceived to be. We have used a
denotational semantics to define a new interpretation of our constraint language with
practical issues firmly in mind: we wanted to be able to point precisely to the elements
that are involved in an inconsistency, and have done so by providing an interpretation that
constructs hyperlinks between inconsistent elements. Since the denotational semantics
essentially represents a simple mapping from the formula language, it was straightforward
to implement.

In order for a thesis with roots in software engineering to become useful for practical
purposes, the problem of scalability has to be considered. In our case studies with software
engineering documents, financial data and news documents we encountered scalability
problems among different dimensions of scalability. This thesis has made an attempt at a
rough classification of the different dimensions of scalability, and at an analysis of how they
affect run-time performance and storage requirements. We have seen that quite distinct
techniques are necessary to address the different dimensions of scalability. We have been
able to draw on a rich background from software engineering and database research to
adapt existing ideas to our architecture, and in the course found some problem areas
where this was difficult due to the inherent statelessness and flexibility of our approach.
The scalability results presented here will certainly be useful as a means of quantifying the
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effort and cost involved in implementing different types of scalable architectures around
the service model.

The formalisms and tools presented here make it possible for the first time to manage
heterogeneous documents in a truly distributed fashion while retaining some control over
their internal and inter-document consistency. We have since formed a company, Sys-
temwire, that is taking these ideas forward into the commercial world. The most accurate
test of the validity of our approach will perhaps be the success of this company.



A Wilbur’s Bike Shop Documents

Sample advert

<Advert>

<ProductName>ARO SHREDDER</ProductName>

<Price currency="sterling">349.95</Price>

<Description>Freestyle Bike. Super versatile frame for dirt,

street, vert or flat. New full cromoly frame. Fusion MegaTube

axle extenders.</Description>

</Advert>

Sample customer report

<CustomerReport>

<CustomerIdentity>

<FirstName>Licia</FirstName>

<FamilyName>Capra</FamilyName>

<Reg_Number>3645</Reg_Number>

</CustomerIdentity>

<Purchase>

<ProductName>HARO SHREDDER</ProductName>

<ProductCode>B001</ProductCode>

</Purchase>

<Purchase>

<ProductName>Shimano LX Mountain Bike Crank Set</ProductName>

<ProductCode>A102</ProductCode>

</Purchase>

<Purchase>

<ProductName>Rock Shox Indy SL Suspension Fork</ProductName>

<ProductCode>A107</ProductCode>

</Purchase>

</CustomerReport>

Sample service report

<ServiceReport>

<CustomerIdentity reg_number="3645"/>

<Report>

<ProductName>HARO SHREDDER</ProductName>

<ProductCode>B001</ProductCode>

<ProblemDescr>Found a problem in ...</ProblemDescr>

</Report>

</ServiceReport>
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Product catalogue fragment

<Catalogue>

<Product>

<Name>HARO SHREDDER</Name>

<Code>B001</Code>

<Price currency="sterling">349.95</Price>

<Description>Freestyle Bike.</Description>

</Product>

<Product>

<Name>HARO TR2.1</Name>

<Code>B002</Code>

<Price currency="sterling">179.95</Price>

<Description>BMX / Trail Bike.</Description>

</Product>

...

</Catalogue>

Consistency Constraints

<consistencyruleset>

<globalset id="adverts" xpath="/Advert"/>

<globalset id="products" xpath="/Catalogue/Product"/>

<consistencyrule id="r1">

<header>

<description>

The product name of an advertised product must be in the catalogue

</description>

</header>

<forall var="a" in="$adverts">

<exists var="p" in="$products">

<equal op1="$a/ProductName/text()" op2="$p/Name/text()"/>

</exists>

</forall>

</consistencyrule>

<consistencyrule id="r2">

<header>

<description>

All Adverts must match a product in the catalogue with the same price

</description>

</header>

<forall var="a" in="$adverts">

<forall var="p" in="$products">

<implies>

<equal op1="$a/ProductName" op2="$p/Name"/>
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<equal op1="$a/Price" op2="$p/Price"/>

</implies>

</forall>

</forall>

</consistencyrule>

<consistencyrule id="r3">

<header>

<description>

All products listed as sold to a customer must be in the catalogue

</description>

</header>

<forall var="p" in="/CustomerReport/Purchase">

<exists var="c" in="$products">

<and>

<equal op1="$p/ProductCode/text()" op2="$c/Code/text()"/>

<equal op1="$p/ProductName/text()" op2="$c/Name/text()"/>

</and>

</exists>

</forall>

</consistencyrule>

<consistencyrule id="r4">

<header>

<description>

All products for which a problem has been reported must have been sold to

the customer who reported the problem.

</description>

</header>

<forall var="s" in="/ServiceReport/Report">

<exists var="c" in="/CustomerReport/Purchase">

<and>

<equal op1="$s/../CustomerIdentity/@reg_number"

op2="$c/../CustomerIdentity/Reg_Number/text()"/>

<equal op1="$s/ProductCode/text()" op2="$c/ProductCode/text()"/>

</and>

</exists>

</forall>

</consistencyrule>

</consistencyruleset>



B Constraint Language XML Syn-

tax

This appendix contains an XML Schema [Fallside, 2001] for the initial implementation of
our constraint language in XML form. Our consistency check engine reads constraint files
corresponding to this schema as its input.

The language contains all the constructs specified in the abstract syntax in this thesis, plus
additional information for documenting constraints, controlling link generation and an ad-
ditional predicate: the operator predicate provides call-outs to ECMAScript [ECMA, 1999]
functions that take a number of nodes from DOM trees and return true or false as a result
- an extension mechanism that can be used to perform complex computation or commu-
nicate with legacy systems.

Figure B.1: Constraint Language XML Schema Overview

Figure B.1 is a graphical overview of the schema produced by an XML Schema editor.
The following text is the XML representation of the schema in its standard form.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="http://www.xlinkit.com/ConsistencyRuleSet/5.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.xlinkit.com/ConsistencyRuleSet/5.0"

elementFormDefault="qualified"

attributeFormDefault="unqualified">
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<xs:element name="consistencyruleset">

<xs:complexType>

<xs:sequence>

<xs:element name="consistencyrule" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element ref="header" minOccurs="0" />

<xs:element name="linkgeneration" minOccurs="0">

<xs:complexType>

<xs:choice maxOccurs="unbounded">

<xs:element name="consistent" minOccurs="0">

<xs:complexType>

<xs:attribute name="status" use="optional"

default="on">

<xs:simpleType>

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="on" />

<xs:enumeration value="off" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="inconsistent" minOccurs="0">

<xs:complexType>

<xs:attribute name="status" use="optional"

default="on">

<xs:simpleType>

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="on" />

<xs:enumeration value="off" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

</xs:element>

<xs:group ref="formulaGroup" />

</xs:sequence>

<xs:attribute name="id" type="xs:ID" use="required" />
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</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="header">

<xs:complexType>

<xs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element name="author" type="xs:string" />

<xs:element name="description">

<xs:complexType mixed="true">

<xs:sequence>

<xs:any namespace="http://www.w3.org/1999/xhtml"

processContents="skip" minOccurs="0"

maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="project" type="xs:string" />

<xs:element name="comment" type="xs:string" />

<xs:any namespace="http://www.xlinkit.com/Metadata/5.0"

processContents="skip" />

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:complexType name="quantifierType">

<xs:group ref="formulaGroup" minOccurs="0" />

<xs:attribute name="var" type="xs:string" use="required" />

<xs:attribute name="in" type="xs:string" use="required" />

<xs:attribute name="mode" use="optional" default="exhaustive">

<xs:simpleType>

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="exhaustive" />

<xs:enumeration value="instance" />

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

<xs:complexType name="binOperatorType">

<xs:group ref="formulaGroup" minOccurs="2" maxOccurs="2" />
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</xs:complexType>

<xs:complexType name="binPredicateType">

<xs:attribute name="op1" type="xs:string" use="required" />

<xs:attribute name="op2" type="xs:string" use="required" />

</xs:complexType>

<xs:element name="forall" type="quantifierType" />

<xs:element name="and" type="binOperatorType" />

<xs:element name="or" type="binOperatorType" />

<xs:element name="implies" type="binOperatorType" />

<xs:element name="iff" type="binOperatorType" />

<xs:element name="not">

<xs:complexType>

<xs:group ref="formulaGroup" />

</xs:complexType>

</xs:element>

<xs:element name="exists" type="quantifierType" />

<xs:element name="equal" type="binPredicateType" />

<xs:element name="notequal" type="binPredicateType" />

<xs:element name="same" type="binPredicateType" />

<xs:element name="operator">

<xs:complexType>

<xs:sequence>

<xs:element name="param" minOccurs="0"

maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="name" type="xs:string"

use="required" />

<xs:attribute name="value" type="xs:string"

use="required" />

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>

</xs:element>

<xs:group name="formulaGroup">

<xs:choice>

<xs:element ref="forall" />

<xs:element ref="exists" />

<xs:element ref="equal" />

<xs:element ref="notequal" />

<xs:element ref="same" />
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<xs:element ref="and" />

<xs:element ref="or" />

<xs:element ref="implies" />

<xs:element ref="iff" />

<xs:element ref="not" />

<xs:element ref="operator" />

</xs:choice>

</xs:group>

</xs:schema>



C Curriculum Case Study Rules

1. Every course must have a syllabus

2. The year of the course in the curriculum corresponds to the year in the syllabus

3. There must not be two courses with the same code

4. Each course listed as a pre-requisite in a syllabus must have a syllabus definition

5. A course cannot be a pre-requisite of itself

6. Every course in a studyplan is identified in the curriculum

7. A student cannot take the same course twice

8. 1st year BSc/CS and MSCi: 6 compulsory half-units must be present

9. 1st year BSc/CS and MSCi: 2 optional half-units must be present

10. 1st year BSc/CS and MSCi: no more than 1 optional half-unit can be non-programme
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D EJB Case Study Data

D.1 UML Foundation/Core Constraints

D.1.1 Association

[1] The AssociationEnds must have a unique name within the Association
[2] At most one AssociationEnd may be an aggregation or composition
[3] If an Association has three or more AssociationEnds, then no AssociationEnd may be
an aggregation or composition
[4] The connected Classifiers of the AssociationEnds should be included in the Namespace
of the Association

D.1.2 AssociationClass

[1] The names of the AssociationEnds and the StructuralFeatures do not overlap
[2] An AssociationClass cannot be defined between itself and something else

D.1.3 AssociationEnd

[1] The Classifier of an AssociationEnd cannot be an Interface or a DataType if the
association is navigable from that end
[2] An Instance may not belong by composition to more than one composite Instance

D.1.4 BehavioralFeature

[1] All parameters should have a unique name
[2] The type of the Parameters should be included in the Namespace of the Classifier

D.1.5 Class

[1] If a Class is concrete, all the Operations of the Class should have a realizing method
in the full descriptor
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D.1.6 Classifier

[2] No Attributes may have the same name within a Classifier
[3] No opposite AssociationEnds may have the same name within a Classifier
[4] The name of an Attribute may not be the same as the name of an opposite Associa-
tionEnd or a ModelElement contained in the Classifier
[5] The name of an opposite AssociationEnd may not be the same as the name of an
Attribute or ModelElement contained in the Classifier
[6] For each Operation in a specification realized by a Classifier, the Classifier must have
a matching Operation

D.1.7 Component

[1] A Component may only contain other Components

D.1.8 Constraint

[1] A Constraint cannot be applied to itself

D.1.9 DataType

[1] A DataType can only contain Operations, which all must be queries
[2] A DataType cannot contain any other model elements

D.1.10 GeneralizableElement

[1] A root cannot have any Generalizations
[2] No GeneralizableElement can have a parent Generalization to an element which is a
leaf
[4] The parent must be included in the namespace of the GeneralizableElement

D.1.11 Interface

[1] An Interface can only contain Operations
[2] An Interface cannot contain any ModelElements
[3] All Features defined in an Interface are public
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D.1.12 Method

[1] If the realized Operation is a query, then so is the method
[2] The signature of the Method should be the same as the signature of the realized
Operation
[3] The visibility of the Method should be the same as for the realized Operation

D.1.13 Namespace

[1] If a contained element, which is not an Association or Generalization has a name,
then the name must be unique in the Namespace
[2] All Associations must have a unique combination of name and associated Classifiers
in the Namespace

D.1.14 StructuralFeature

[1] The connected type should be included in the owner’s Namespace

D.1.15 Type

[1] A Type may not have any methods
[2] The parent of a type must be a type

D.2 EJB Constraints

D.2.1 Design Model - External View Constraints

EJB Remote Interface

[1] The Class must specialize a model elements that represents the Java Interface,
javax.ejb.EJBObject
[2] All of the Operations contained by the Class must represent EJB Remote Methods
[4] The Class must be the supplier of a UML Usage, stereotyped as <<instantiate>>,
whose client represents the EJB Home Interface of the same EJB Enterprise Bean



D.2. EJB Constraints 154

EJB Home Interface

[1] The Class must specialize a model elements that represents the Java Interface,
javax.ejb.EJBHome
[2] All of the Operations contained by the Class must represent EJB Home Methods
[4] The Class must be the client of a UML Usage, stereotyped as <<instantiate>>,
whose supplier represents the EJB Remote Interface of the same EJB Enterprise Bean

EJB Session Home

[1] The Class must not be tagged as persistent
[2] The value of the EJBSessionType tag must be either Stateful or Stateless
[3] The Class may not contain any Operations that represent EJB Finder Methods
[4] The Class must contain at least one Operation that represents an EJB Create Method
[5] If the value of the EJBSessionType tag is Stateless, then the Class must contain exactly
one Operation that represents an EJB Create Method. The type of its return Parameter
must be the supplier of a UML Usage, stereotyped as <<instantiate>>, whose client is
the Class

EJB Entity Home

[1] The Class must be tagged as persistent
[2] The Class must contain exactly one Operation that represents an EJB Primary Key
Finder Method. The type of its return Parameter must be the supplier of a UML Usage,
stereotyped as <<instantiate>>, whose client is the Class
[3] The Class must be the client of a UML Usage, stereotyped as <<EJBPrimaryKey>>,
whose supplier represents an EJB Primary Key Class. The supplier must be the type of
the in Parameter of the Operation that represents the EJB Primary Key Finder Method

EJB Primary Key Class

[2] The Class must contain implementations for Operations named hashCode and equals
[3] The Class must be the supplier of a UML Usage, stereotyped <<EJBPrimaryKey>>,
whose client represents an EJB Entity Home

D.2.2 Design - Implementation Sample Checks

[1] Each remote interface declared in the UML model is implemented as a Java interface
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extending EJBObject
[2] Each home interface declared in the UML model is implemented as a Java interface
extending EJBHome
[3] Each bean class realizing a session bean home interface is implemented as a Java class
implementing the SessionBean interface
[4] Each bean class realizing an entity bean home interface is implemented as a Java class
implementing the EntityBean interface

D.2.3 Design - Deployment Information Sample Checks

[1] Each EJB Implementation Class declared in the UML model corresponds to an entry
in the deployment descriptor
[2] If the name of an entity bean in the model matches a bean in the deployment descrip-
tor, the bean in the deployment descriptor must be declared as an entity bean
[3] If the name of an session bean in the model matches a bean in the deployment de-
scriptor, the bean in the deployment descriptor must be declared as an session bean

D.2.4 Implementation - Deployment Information Sample Checks

[1] Each bean listed in the deployment descriptor has an implementation for the given
bean class, home interface and remote interface
[2] Each attribute listed as a container managed persistence field (’cmp-field’) for an entity
bean in the deployment descriptor must be an attribute of the bean implementation class

D.2.5 Implementation - Internal Checks

[1] For every remote interface there is a bean class that resides in the same package
[2] For every remote interface, there is a bean class in the same package that implements
all the methods declared by the interface.
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Oriented Specification and Incremental Evaluation of Static Semantic Constraints. Tech-
nical Report 24, ESPRIT-III Project GOODSTEP, http://www.dbis.informatik.uni-
frankfurt.de/REPORTS/GOODSTEP/GoodStepReport024.ps.gz.

[exolab.org, 2001] exolab.org (2001). OpenORB. http://openorb.exolab.org/.

[Fallside, 2001] Fallside, D. C. (2001). XML Schema Part 0: Primer. Recommendation
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/, World Wide Web Consor-
tium.

[Fan and Simeon, 2000] Fan, W. and Simeon, J. (2000). Integrity Constraints for XML.
In Symposium on Principles of Database Systems, pages 23–34.

[Fernandez et al., 1999] Fernandez, M., Florescu, D., Levy, A., and Suciu, D. (1999). Ver-
ifying Integrity Constraints on Web Sites. In Proceedings of the 16th International Joint
Conference on Articial Intelligence, pages 614–619.

[Fernandez et al., 2000] Fernandez, M., Florescu, D., Levy, A., and Suciu, D. (2000).
Declarative Specification of Web Sites with Strudel. VLDB Journal, 9(1):38–55.



Bibliography 159

[Finkelstein, 2000] Finkelstein, A. (2000). A Foolish Consistency: Technical Challenges
in Consistency Management. In Proceedings of the 11th International Conference on
Database and Expert Systems Applications (DEXA), pages 1–5, London, UK. Springer.

[Finkelstein et al., 1994] Finkelstein, A., Gabbay, D., Hunter, H., Kramer, J., and Nu-
seibeh, B. (1994). Inconsistency Handling in Multi-Perspective Specifications. IEEE
Transactions on Software Engineering, 20(8):569–578.

[Finkelstein et al., 1992] Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and
Goedicke, M. (1992). Viewpoints: a framework for integrating multiple perspectives in
system development. Int. Journal of Software Engineering and Knowledge Engineering,
2(1):21–58.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design
Patterns: Elements of Reusable Software. Addison Wesley.

[GOODSTEP Team, 1994] GOODSTEP Team (1994). The GOODSTEP Project: Gen-
eral Object-Oriented Database for Software Engineering Processes. In Ohmaki, K., ed-
itor, Proc. of the Asia-Pacific Software Engineering Conference, pages 410–420, Tokyo,
Japan. IEEE Computer Society Press.

[Greenfield, 2001] Greenfield, J. (2001). UML/EJB Mapping Specification 1.0. Technical
Report JSR-000026, Java Community Process.

[Grefen and Widom, 1997] Grefen, P. and Widom, J. (1997). Protocols for Integrity Con-
straint Checking in Federated Databases. Distributed and Parallel Databases, 5(4):327–
355.

[Grefen and Widom, 1996] Grefen, P. W. P. J. and Widom, J. (1996). Integrity Constraint
Checking in Federated Databases. In Conference on Cooperative Information Systems,
pages 38–47.

[Group, 2002] Group, X. W. (2002). XHTML 1.0 The Extensible HyperText Markup
Language (Second Edition). Technical report, World Wide Web Consortium.

[Gupta and Widom, 1993] Gupta, A. and Widom, J. (1993). Local Verification of Global
Integrity Constraints in Distributed Databases. In Proceedings of the 1993 ACM SIG-
MOD International Conference on Management of Data, pages 49–58.

[Gurden, 2001] Gurden, G. (2001). FpML Version 1.0. http://www.fpml.org.

[Habermann and Notkin, 1986] Habermann, A. N. and Notkin, D. (1986). Gandalf:
Software Development Environments. IEEE Transactions on Software Engineering,
12(12):1117–1127.

[Hapner et al., 1999] Hapner, M., Burridge, R., and Sharma, R. (1999).
Java Message Service Specification. Technical report, Sun Microsystems,
http://java.sun.com/products/jms.



Bibliography 160
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