
Using Scenarios to Predict the Reliability of Concurrent
Component-Based Software Systems

Genáına Rodrigues1, David Rosenblum1 and Sebastian Uchitel2

London Software Systems
1Department of Computer Science

University College London
Gower Street
WC1E 6BT

United Kingdom
{g.rodrigues,d.rosenblum}@cs.ucl.ac.uk

2Department of Computing
Imperial College London

180 Queen’s Gate
SW7 2RH

United Kingdom
su2@doc.ic.ac.uk

Abstract. Scenarios are a popular means for capturing behavioural requirements
of software systems early in the lifecycle. Scenarios show how components in-
teract to provide system level functionality. If component reliability information
is available, scenarios can be used to perform early system reliability assessment.
In this paper we present a novel automated approach for predicting software sys-
tem reliability. The approach involves extending a scenario specification to model
(1) the probability of componentfailure, and (2)scenario transition probabilities
derived from an operational profile of the system. From the extended scenario
specification, probabilistic behaviour models are synthesized for each compo-
nent and are then composed in parallel into a model for the system. Finally, a
user-oriented reliability model described by Cheung is used to compute a relia-
bility prediction from the system behaviour model. The contribution of this paper
is a reliability prediction technique that takes into account the component struc-
ture exhibited in the scenarios and the concurrent nature of component-based
systems. We also show how implied scenarios induced by the component struc-
ture and system behaviour described in the scenarios can be used to evolve the
reliability prediction.

1 Introduction

Software reliability engineering is an important aspect of many system development
efforts, and consequently there has been a great deal of research in this area [15,10].
One important activity included in software reliability engineering isreliability pre-
diction [11]. There has been much recent work in reliability engineering that has ad-
dressed reliability modeling and prediction of architecture- and component-based soft-
ware [8,19]. Components both simplify and complicate reliability prediction. They sim-
plify because accurate component reliability estimates may be available to aid reliabil-
ity prediction early in the development lifecycle. They complicate due to the need for
a sound compositional approach to reliability prediction. A promising compositional
approach to predicting reliability of component-based systems early in the lifecycle is
to base the prediction on scenarios of system usage.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scenarios have been widely adopted as a way to capture system behavioral require-
ments.Message Sequence Charts(MSCs) [9] and their UML counterpart, Sequence
Diagrams (SDs) [16] are widely accepted notations for scenario-based specification.

There has been some previous work on using scenarios to predict the reliability of
component-based software [4,27], but they use imprecise, coarse-grained, sequential
models of system architecture as the basis for prediction. In this paper, we present a
novel scenario-based approach to reliability prediction in which a more precise, fine-
grained, concurrent system architecture model is synthesised for computing a reliability
prediction. The approach starts with a set of scenarios and a high-level message se-
quence chart (HMSC). The HMSC is annotated withscenario transition probabilities
derived from an operational profile of the system [14], which accounts for the relative
frequency with which system usage results in a transition from one scenario to another.
We synthesise from the scenarios a deterministic probabilitistic behaviour model for
each system component. Each component model is then extended to model the proba-
bility of componentfailure. The resulting probabilistic models are composed in parallel
and used to predict the reliability of the component-based system according to Cheung’s
user-oriented reliability model [3].

The contribution of this paper is a reliability prediction technique that takes into
account the component structure exhibited in the scenarios and the concurrent nature of
component-based systems. We also show how as a result of this implied scenarios can
impact the result of reliability analysis.

The paper is structured as follows: In Section 2, we briefly present some back-
ground information about the different elements of our approach. In Section 3 we de-
scribe in detail our scenario-based method for predicting software system reliability
and an extensive illustration of our approach. In Section 4 we show how implied sce-
narios detection can be used to improve reliability prediction for concurrent software
systems. In Section 5 we compare our approach to other efforts for analysing reliability
of component-based software and discuss the main differences between our approach
and other scenario-based reliability analysis models. Finally, in Section 6 we present
our conclusions and discuss several future directions for our work.

2 Background

In this section we briefly review the two main concepts on which we base our method
for predicting the reliability of component-based software: scenario specifications, and
Cheung’s user-oriented software reliability model. Note that we adopt Szyperski’s defi-
nition of component as a unit of independent development and deployment. We further
view components as being large-grained system entities (as opposed to small-scale com-
ponents such as GUI widgets) for which one may reasonably expect to have reliability
data, which in turn can be established through reliability testing [6].

2.1 Scenarios

Scenario notations such as Message Sequence Charts [9] are used at early stages of
development to document, elicit and describe system behaviour. Scenarios are partial

descriptions of how components interact to provide system level functionality. Asce-
nario specificationis formed by composing multiple scenarios possibly from different
stakeholders.

The underlying notion of scenario composition is that simple scenarios can be used
as building blocks to describe new, more complex, scenarios. Simple sequences of be-
havior are described usingBasic Message Sequence Charts(BMSCs). A BMSC is
formed by vertical lines representing component time lines and horizontal arrows rep-
resenting interactions between components. In this paper, we interpret each interaction
as a synchronous communication between components. Because a BMSC can represent
concurrent activity among the components it portrays, it denotes a partial ordering of
activities, which in turn under an interleaving semantics determines a corresponding set
of finite sequences of interactions.

Three fundamental constructs for combining BMSCs arevertical composition(where
two BMSCs can be combined sequentially),alternative composition(defining that the
system could alternatively choose one of the BMSCs to follow) anditerative composi-
tion (which composes a BMSC sequentially with itself). Thehigh-level MSC(HMSC)
is a widely adopted syntactic construct for describing scenario composition. An HMSC
is a directed graph, whose nodes refer to BMSCs and whose edges indicate the accept-
able ordering of the BMSCs. HMSCs allow stakeholders to reuse scenarios within a
specification and to introduce sequences, loops and alternatives of BMSCs. The seman-
tics of an HMSC is the set of sequences of interactions that follow some maximal path
through the HMSC.

Throughout this paper we use a variant of the Boiler Control system example pre-
sented by Uchitel et al. [25]. As shown in Figure 1, the Boiler Control system consists
of four components:Sensor, Control, DatabaseandActuator. In the top portion of the
figure, we depict the HMSC specification of the Boiler, which composes five BMSCs:
Initialise, Register, Analyse, TerminateandEnd, which are depicted in Figure 1, ex-
cluding the upper-left corner where the HMSC is. Note that the variables appearing in
curly brackets in the figure are an extension to MSCs that we explain in Section 3.

2.2 The Cheung User-Oriented Reliability Model

In order to predict software system reliability, we need a reliability model that expresses
system reliability as a function of the reliability of the components and the frequency
of utilization of those components. Using Cheung’s approach [3], the reliability of the
system can be computed as a function of both the deterministic properties of the struc-
ture of the program and the stochastic properties of the utilisation and failure of its
components.

Essentially, the Cheung model is a Markov reliability model that uses a program
flow graph to represent the structure of the system. Every nodeNi in the flow graph
of the Cheung model represents a program module and a direct branch(Ni, Nj) rep-
resents a possible transfer of control fromNi to Nj . A probability Pij that transition
(Ni, Nj) will happen is attached to every directed branch.Ri is the reliability of node
Ni. The original transition(Ni, Nj) in the flow graph is then modified intoRiPij,
which represents the probability that the execution of moduleNi produces the correct

Initialise

ActuatorControlDatabase

{Rcontrol}{Rdatabase}

Sensor
start

{Rsensor} {Ractuator}

Register

ActuatorControlDatabaseSensor

pressure

{Rcontrol}{Rdatabase}{Rsensor} {Ractuator}

Analyse

ActuatorControlDatabaseSensor
query

data
command

{Rcontrol}{Rdatabase}{Rsensor} {Ractuator}

End

ActuatorControlDatabaseSensor
shutdown

{Rcontrol}{Rdatabase}{Rsensor} {Ractuator}

Terminate

ActuatorControlDatabaseSensor
stop

{Rcontrol}{Rdatabase}{Rsensor} {Ractuator}

EndTerminateAnalyse

Register

Intitialise

{PTS
 InitReg

}

{PTS
RegReg

 }

{PTS
AnaReg

}

{PTS
RegAna

} {PTS
RegT

}
{PTS

TInit
}

{PTS
TE

}

 PTS
 InitReg

= 1.0, PTS
 RegReg

= 0.7, PTS
RegAna

 = 0.2, PTS
 RegTer

= 0.1, PTS
 AnaReg

= 1.0, PTS
 TerEnd

= 0.5, PTS
 TerInit

 = 0.5

 Rsensor = 0.99, Rdatabase = 0.999, Rcontrol = 0.95, Ractuator = 0.99

Fig. 1. The Message Sequence Chart Specification for the Boiler Control System, with
Example Probability Values.

result and control is transferred to moduleNj . The reliability of the program is, there-
fore, the probability of reaching the correct termination of the program flow graph from
its initial state in the following way: LetN = {C,F,N1, N2, ..., Nn} be the states of
the model, whereN1 is the start state of the program control flow graph, theNi are
intermediate states,Nn is the last (non-absorbing) state reached in any successful exe-
cution of the system, andC andF are absorbing states representing the terminal states
Correct (to which there is a transition fromNn) andFault. Let the transition matrix be
M ′ whereM ′

ij represents the probability of transition from state i to state j:

M
′
=

C F N1 N2 . . . Nn

C
F
N1
N2

.

.

.
Nn

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 1− R1 0 R1P12 . . . R1P1n

0 1− R2 0 R2P22 . . . R2P2n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Rn 1− Rn 0 0 . . . 0

LetM be the matrix obtained fromM ′ by deleting the rows and columns corresponding
to the absorbing statesC andF . Let S be a matrix such that:

S = I + M + M2 + M3 + =
∞∑

k=0

Mk = (I −M)−1

whereI is the identity matrix with same dimension ofM . Cheung shows that the system
reliability is Rel= S(1, n) × Rn, which is the probability of successfully transitioning

from N1 to Nn in any execution times the probability of successfully reachingC from
Nn. Equivalently, Cheung shows thatS(1, n) can be computed as

S(1, n) = (−1)n+1 |M |
|I −M |

(1)

where|M | and|I − M | represent the determinant ofM andI − M , respectively. We
refer the reader to Cheung [3] for further details on the description and derivation of
these formulae.

In the next section, we show how we weave the concepts presented in this section
into a method for predicting the reliability of component-based software.

3 Reliability Analysis Using Scenarios

In this section we describe a method to predict software system reliability as a function
of component reliability estimates. We annotate a scenario specification with proba-
bilistic properties and use a probabilistic labelled transition system (LTS) synthesised
from the scenario specification for the software reliability prediction. The method is
depicted in Figure 2 as five major steps: (1) annotation of the scenarios, (2) synthesis
of the probabilistic LTS, (3) construction of the stochastic matrix, (4) system reliability
prediction, and (5) implied scenario detection.

1. Annotated MSCs 2. Synthesis of Annotated
LTS

4. System Reliability
Estimate5. Implied Scenarios Detection

3. Stochastic Matrix
Construction

NegativePositive

1. Annotated MSCs

2. Synthesis of
Probabilistic LTS

4. System Reliability
Prediction

5. Implied
Scenarios
Detection

3. Stochastic Matrix
Construction

Negative

Positive

Fig. 2.The Reliability Prediction Method.

Four key assumptions underlie our method:

1. The transfer of control between components has the Markov property, meaning that
the transition from one execution state to another is dependent only on the source
state and its available transitions and not on the past history of state transitions.
This is a traditional assumption that simplifies in work on reliability analysis and it
greatly simplifies the computation of reliability estimates.

2. Failures are independent across transitions. Again, this assumption simplifies the
computation of reliability estimates.

3. A message from componentC to componentC ′ represents an invocation byC
of a service offered byC ′. The reliability with which this service is performed is
thus the reliability ofC ′, RC′ . Additionally, the execution time of the invocation
is assumed to be so short as not to be a factor in the component’s reliability. In

other words,RC′ is the probability of successful completion of an invocation of
any service offered byC ′, irrespective of the execution time of the service. This
assumption is simply a modeling choice that is made without loss of generality. For
instance, we could just as easily accommodate method-level reliabilities, and/or
communication reliabilities (as is done, for instance, in Yacoub et.al [27])

4. There is only one initial and one final scenario for the system in the HMSC. Mul-
tiple initial and final scenarios can be combined by introducing asuper-initialand
a super-finalscenario, analogously to thesuper-initial stateandsuper-final state
proposed by Wang et al. [26].

3.1 The Annotated Scenarios

In the first step, we annotate the scenarios (i.e., the HMSC and BMSCs) with two
kinds of probabilities,the probability of transitions between scenariosPTSij andthe
reliability of the componentsRC .

The transition probabilityPTSij is the probability that execution control transfers
directly from scenarioSi to scenarioSj . This information would be normally derived
from an operational profile for the system [14]. Thus, from scenarioSi, the sum of the
probabilitiesPTSij for all successor scenariosSj is equal to one. As thePTSij relates
to the transition between scenarios, these probabilities are annotated on the correspond-
ing edges of the HMSC, as shown on the HMSC of Figure 1.

The component reliabilitiesRC are annotated on the BMSCs, as also shown in Fig-
ure 1. Without loss of generality, this paper uses coarse-grained, single values for the
overall component reliabilities; in general, we could associate reliabilities with individ-
ual messages and/or segments of component timelines.

For the purposes of illustrating our method on the Boiler example, we use the values
depicted in Figure 1 for thePTSij . The values for thePTSij are based on the assump-
tion that the system executes the scenarioRegister(which causes sensor readings to be
entered into the database) far more frequently than the scenariosAnalyseandTerminate,
and that when it does executeTerminatethere is an equal probability of reinitialising
and shutting down.

The values on Figure 1 for the reliability of the components reflect the assumption
that theDatabaseis a highly reliable commercial software product, that theSensorand
Actuatorare components whose hardware interface to the sensed/actuated phenomena
will eventually fail, and thatControl is a complex software subsystem that still contains
latent faults.

3.2 Synthesis of the Probabilistic LTS

The second step of our method is to synthesise a probabilistic LTS from the annotated
scenario specification. This step is an extension of the synthesis approach of Uchitel et
al. [24], which consists of the following steps:

1. For each componentCi and each BMSCSj , a labelled transition system(LTS)
Ci Sj is constructed by projecting the local behaviour ofCi within Sj . In partic-
ular, each message with an actiona thatCi sends or receives inSj is synthesised

as a transition with actiona in Ci Sj , and the sequence of transitions inCi Sj

corresponds with the sequence of messages sent or received byCi in Sj .
2. For each componentCi, the set of LTSs constructed forCi in step 1 are composed

into acomponent LTSfor Ci according to the structure of the HMSC, with hidden
transitions (τ actions) linking the final state ofCi Sj to the start state ofCi Sj′

whenever there is a transition fromSj to Sj′ in the HMSC. The resulting LTS
includes a new start state corresponding to the start state of the HMSC.

3. Each component LTS constructed in step 2 is reduced to a trace-equivalent deter-
ministic, minimal LTS. This is consistent with the delayed choice semantics of the
ITU MSC standard [9].

4. The architecture model for the system is taken as the parallel composition of the
minimised component LTSs constructed in step 3.

Our extension of this approach exploits recent probabilistic extensions to the LTS
formalism [2] and involves enhancements to each step listed above. The enhancements
have the effect of mapping the probability annotations of the scenario specification into
probability weights for transitions in the synthesised architecture model. In step 1, for
each transition in aCi Sj representing the invocation of a service offered byCi, an
additional transition from the same source state is added with the target state being the
global ERROR state. The resulting pair of transitions forms a probabilistic choice, with
the former transition having probabilityRCi and the latter transition having probability
1−RCi .

In step 2, the scenario transition probabilitiesPTSij are mapped to probability
weights on the hidden transitions linking theCi Sj . Figure 3 illustrates the LTS of
componentControl that would be synthesised as a result of applying steps 1 and 2 of
our synthesis method. Each shaded area contains an LTS synthesised in step 1 from

O0 O3

O1
O2

(PTSTinit) τ

(PTSintReg) τ

(PTSAnlReg) τ(PTSRegReg) τ
(PTSRegAnl) τ

start stop

query data

Rctrl

command

(PTSRegT) τ
1-Rctrl

Control_Initialise Control_Terminate

Control_Register

Control_Analyse

1 2 3 -1

11 O4
shutdown

(PTSTE) τ

Control_End1

τ

Fig. 3.Probabilistic LTS Synthesised for ComponentControl.

a BMSC of Figure 1 and thus models the behaviour ofControl within that BMSC.
The transitions linking these different LTS are synthesised in step 2 and correspond
to the transitions between BMSCs defined in the HMSC of Figure 1. Note that the
probability weights on theτ transitions are the same as the corresponding transitions in
the HMSC of Figure 1. Note also that becausedata is a message received byControl in
scenarioAnalyse, it is synthesised as two transitions, the “successful” transition being

weighted with probabilityRctrl and the transition to the ERROR state (labelled−1
in the figure) being weighted with probability1 − Rctrl. This action only applies to
transitions labelled withdataas it is an application of assumption three we explained
earlier in this section. Note that the final state of the model is state1 in the top right part
of the figure.

Continuing with our extensions, in step 3, the probability weights must be handled
correctly in the process of reducing each component LTS to its deterministic, minimal
form. Intuitively, the elimination of aτ transition results in the merging of the transi-
tion’s target state with its source state, with the outgoing transitions of the target state
becoming outgoing transitions of the source state. Since there may be multipleτ tran-
sitions from the original source state (each with probability weight less than one), the
probability weight of an eliminatedτ transition must be “pushed” to the newly accumu-
lated outgoing transitions, with the new weight on each such outgoing transition equal
to its old weight times the weight on the eliminatedτ transition. In the presence ofτ
self-loops (such as theτ self-loop on state 0 ofControl Registerin Figure 4), it can be
shown that such transitions can be eliminated entirely without any of the above merging
or pushing of its weight. At the end of the elimination of outgoingτ transitions from a
state, the weights on the outgoing transitions of the resulting state may not sum to one,
in which case the weights must be normalised so that they do sum to one.

Using the example parameters presented previously in Figure 1, the resulting min-
imised LTS for componentControl is depicted in Figure 4.

(1) start

(0.333) stop

(0.667) query (0.95) data

(0.05) data

(1) command

(0.5) start

(0.5) shutdown (1) endAction

-1 0 1 2 3 4 5 E

Fig. 4.Minimised Component LTS for ComponentControl.

Finally, in step 4, the system architecture model is constructed as the parallel com-
position of the LTSs synthesized for each component. The probability weights of the
composed LTS are computed according to the notion ofgenerative parallel composition
defined by D’Argenio et al. [5]. At the end of this step, it follows that for each node of

the synthesized architecture model,
n∑

j=1

PAij = 1, wheren is the number of states in

the LTS architecture model andPAij is the probability of transition between stateSi

andSj of the composed LTS. Otherwise,PAij = 0 if the transition(Si, Sj) does not
exist.

The architecture model for the Boiler Control system resulting from the application
of all four steps of our extended synthesis method is depicted in Figure 5. For the sake
of readability, we present the model in textual form as a specification expressed in FSP
(Finite State Processes), the modelling notation of the LTSA tool (Labelled Transition

System Analyser) [23]. FSP serves both as a modelling notation for end users, and as
an intermediate form used in the automated synthesis of LTS models. As shown in the
figure, a side-effect of the synthesis is the use of the auxiliary actionendActionas the
final action in a terminating path through the LTS.

ArchitectureModel = Q0,
Q0 = ((0.01) control.sensor.start -> ERROR

 | (0.99) control.sensor.start -> Q1),
Q1 = ((0.001) sensor.database.pressure -> ERROR

 | (0.999) sensor.database.pressure -> Q2),
Q2 = ((0.001) sensor.database.pressure -> ERROR

 | (0.809) sensor.database.pressure -> Q2
 | (0.152) control.database.query -> Q3
 | (0.038) control.sensor.stop -> Q10),

Q3 = ((0.05) database.control.data -> ERROR
 | (0.95) database.control.data -> Q4),

Q4 = ((0.005) control.actuator.command -> ERROR
 | (0.521) control.actuator.command -> Q5
 | (0.474) sensor.database.pressure -> Q9),

Q5 = ((0.964) sensor.database.pressure -> Q2
 | (0.036) control.sensor.stop -> Q6),

Q6 = ((0.005) control.sensor.start -> ERROR
 | (0.005) control.sensor.shutdown -> ERROR
 | (0.495) control.sensor.start -> Q1
 | (0.495) control.sensor.shutdown -> Q7),

Q7 = ((1.0) endAction -> Q8),
Q8 = STOP,
Q9 = ((0.006) control.actuator.command -> ERROR

 | (0.616) control.actuator.command -> Q2
 | (0.378) sensor.database.pressure -> Q9),

Q10 = ((0.005) control.sensor.start -> ERROR
 | (0.005) control.sensor.shutdown -> ERROR
 | (0.495) control.sensor.shutdown -> Q7
 | (0.495) control.sensor.start -> Q11),

Q11 = ((0.855) sensor.database.pressure -> Q2
 | (0.145) control.database.query -> Q12),

Q12 = ((0.05) database.control.data -> ERROR
 | (0.95) database.control.data -> Q13),

Q13 = ((0.005) control.actuator.command -> ERROR
 | (0.471) control.actuator.command -> Q1
 | (0.524) sensor.database.pressure -> Q9).

Fig. 5.The FSP of the Architecture Model.

3.3 Computing the Reliability Prediction

In this final step of our prediction method, the architecture model synthesised in the
previous step is interpreted as a Markov model, and we apply the method of Cheung
to compute the reliability prediction. In particular, the transition probability weights
of the architecture model are mapped into a square transition matrixM ′ whose row
entries sum to one. This is used as the matrixM ′ described in Section 2.2, withN =
{E,−1, 0, 1, ..., n − 1} the set of states in the synthesised LTS,E the terminal state of
correct execution (corresponding to stateC described in Section 2.2),−1 the terminal
fault state (stateF of Section 2.2), andn − 1 the state from which a transition to state
E is made upon actionendAction(stateNn of Section 2.2). Note that the numeric state
labels produced by LTSA may need to be renumbered so that the state leading to state
E is the highest numbered state, as required by Cheung’s model.

In Figure 6 we depict the transition matrix derived from the synthesised architecture
model presented in Figure 5; note that this is actually the reduced matrixM , with the
rows and columns for statesE and−1 eliminated as in Section 2.2. Additionally, we
point out for the fact that the rows in the sparse matrix in Figure 6 will sum to one if
we add the transitions to theERRORstate. Applying the Cheung model to that matrix,
we compute the reliability prediction for the Boiler Control system asRel= 0.649 =
64.9%.

0 0.99 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.999 0 0 0 0 0 0 0 0 0 0 0
0 0 0.809 0.152 0 0 0 0 0 0 0.038 0 0 0
0 0 0 0 0.95 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.521 0 0 0 0.474 0 0 0 0
0 0 0.964 0 0 0 0.036 0 0 0 0 0 0 0
0 0.495 0 0 0 0 0 0 0 0 0 0 0.495 0
0 0 0 0 0 0 0 0 0.95 0 0 0 0 0
0 0.471 0 0 0 0 0 0 0 0.524 0 0 0 0
0 0 0.616 0 0 0 0 0 0 0.378 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.495 0.495 0
0 0 0.855 0 0 0 0 0.145 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 6.The Matrix Derived from the Synthesized Boiler LTS.

4 Implied Scenarios

Scenarios describe two aspects of a system. On the one hand, they describe a set of sys-
tem traces the system is intended to exhibit. On the other, it describes the components
that will provide system level functionality and their interfaces (the messages these
components can use to interact between each other to provide system level functional-
ity). In the example in Figure 1, we see that the Boiler Control System is expected to
exhibit a trace”start, pressure, query, data, command ...”and that component Control
interacts withDatabaseonly through messagesqueryanddata.

It has been shown [1,25] that given a scenario specification, it may be impossi-
ble to build a set of components that communicate exclusively through the interfaces
described and that exhibit only the specified traces when running in parallel. The addi-
tional unspecified traces that are exhibited by the composed system are all called im-
plied scenarios and are the result of specifying the behavior of a system from a global
perspective yet expecting it to be provided by independent entities with a local sys-
tem view. If the interaction mechanisms do not provide components with a rich enough
local view of what is happening at a system level, they may not be able to enforce the in-
tended system behavior. Effectively, what may occur is that each component may, from
its local perspective, believe that it is behaving correctly, yet from a system perspective
the behavior may not be what is intended.

ActuatorControlDatabaseSensor

start

pressure

query

stop
start

Fig. 7. Implied Scenario Detected

The Boiler Control System of Figure 1 has implied scenarios, Figure 7 shows one of
them. From the specification it is simple to see that after initialisingSensorthere must
be some pressure data registered into theDatabasebefore any queries can be done.
However, in the implied scenario of Figure 7 a query is being performed immediately
after start.

Why is this occurring? The cause is an inadequate architecture for the traces speci-
fied in the MSC specification. TheControlcomponent cannot observe when the Sensor
has registered data in theDatabase, thus if it is to query theDatabaseafter data has been
registered at least once, it must rely on the Database to enable and disable queries when
appropriate. However, as theDatabasecannot tell when theSensorhas been turned on
or off, it cannot distinguish a first registration of data from others. Thus, it cannot enable
and disable queries appropriately. Succinctly, components do not have enough local in-
formation to prevent the system execution shown in Figure 7. Note that each component
is behaving correctly from its local point of view, i.e. it is behaving according to some
valid sequence of BMSCs. The problem is that each component is following a different
sequence of BMSCs! TheSensor, Control andActuator are going through scenarios
Initialise, Register, Terminate, Initialise, Analysis, Register. However, theDatabaseis
performingInitialise, Register, Analysis, Register.

Implied scenarios indicate gaps in a scenario-based specification. They can repre-
sent intended system behaviour that was missing from the inherently partial scenario
specification or undesired behaviour that should be avoided by changing the architec-
ture of the system. Hence, implied scenarios need to be validated (identifying them as
positive or negative system behaviour) and the scenario specification elaborated accord-
ingly.

The existence of an implied scenario means that the reliability prediction for the
Boiler Control System described above has been applied on a scenario specification that
has a mismatch between behaviour and architecture. The behaviour model constructed
in the previous section to predict reliability can exhibit behaviour (an implied scenairo)
that has not yet been validated and that, acording to whether it described intended or
unintended system behaviour, can impact system reliability.

As an example, suppose that the rate at which the sensor checks pressure informa-
tion and saves it in the database is high enough that the probability of occurence of the
trace in Figure 7 is negligible. Then reliability should be predicted on the behaviour
model of Figure 5 constrained in such a way that the implied scenario cannot occur. We
can use the approach described in [25] to build such a constraint.

If we calculate the reliability of the resulting constrained model in the same way as
described in Section 3 then we obtain86.2%.

On the other hand, the implied scenario may be undesired behaviour that needs to
be avoided through a change in the architecture of the system. In this case, different or
additional components will be needed, and the reliability performance will have to be
recalculated from scratch.

Either way shows that implied scenarios can impact the reliability prediction signif-
icantly and that they should be validated before reliability is calculated.

More generally, the existence of implied scenarios as a result of the close relation
that exists between behaviour and architecture in scenario-based specifications supports
our claim that taking into account behaviour and architecture when performing reliabil-
ity prediction is important.

5 Discussion and Related Work

Several previous architecture-based approaches to reliability engineering of component-
based systems have been reported. They can be divided into two main categories,state-
basedapproaches andpath-basedapproaches. Goševa-Popstojanova and Trivedi pro-
vide a comprehensive survey of the various approaches [8]. For the sake of brevity, we
provide here a brief view of the approaches of greatest interest to the scope of this work.

State-based models [3,7] use a control flow graph to represent the system architec-
ture. In such models it is assumed that the transfer of control among the components
can be modelled as a Markov chain, with future behaviour of the system dependent only
on the current state and not on past behaviour. Gokhale et al. use a regression test suite
to experimentally determine the architecture of the software and the reliabilities of its
components. As described in Section 2, Cheung’s model takes into account the relia-
bility of each component and the operational profile. In general, relying the analysis of
the software reliability on provided state-machines may not be accurate. In our model,
the system states are generated by the LTSA based on the precision of a model checker.
Although scenarios are provided as a basis for the analysis, we explore the expressive-
ness of the given scenarios by checking if the existence of implied scenarios that could
impact negatively during the system execution.

Path-based models [20,27] compute the reliability of the system by enumerating
possible execution paths of the program. The scenario-based method of Yacoub et
al. [27] is perhaps closest in spirit to our own approach. In many ways their method
is a hybrid approach in which a state-based model of the system is constructed from a
scenario specification (a set of basic scenarios plus a graph representing the composition
of basic scenarios), and then paths through the model are enumerated until a threshold
execution time is reached along each path. Their approach reveals the pitfalls of using
imprecise, coarse-grained behaviour models of system architecture. The model used in
their approach is thecomponent dependence graph(CDG), a state-machine model in
which the states represent execution inside a particular component (with one state per
component), and the transitions represent the transfer of control from one component
to another (with a transition from one component to another representing a merge of all
messages sent by the former to the latter in the scenarios). Because the representation of

component behaviour in the CDG is at the level of whole components, it is an inherently
sequential model of system behavior in which one component executes at a time, mean-
ing that any concurrency inherent in the scenario specification is lost. Furthermore, a
CDG can exhibit sequences of component transitions not found in the scenarios from
which it is derived. In a sense such sequences are implied scenarios, but they arise not
as an artefact of components having limited local knowledge of global behaviour. In-
stead, they are merely a consequence of modelling the system architecture imprecisely
at the granularity of whole components rather than at the granularity of the component
interactions specified in the scenarios. Finally, it can happen that a component in a CDG
is represented by an absorbing state, even though the scenario specification itself is able
to progress beyond any interactions with the “absorbing” component. Indeed, we at-
tempted to model the Boiler Control system using the approach of Yacoub et al., with
the result that theActuator was an absorbing component from which we had to add
transitions artificially to other components in order to construct a model that was able
to progress to the final state.

In previous work we show how reliability engineering of component-based software
systems can be carried out following a model-driven approach [17,18]. It would be fair
to say that the Unified Modeling Language (UML) has had a considerable influence to
make viable model driven analysis approach such as [22], where design and analysis
of software architecture can be specified, visualized, constructed and documented us-
ing one common notation. Since its first version, UML has been enriched in order to
become more precise syntactically and semantically. The ultimate goal is to support au-
tomated or semi-automated transformation of design models to code, raising the level
of abstraction at which automated code generation is applied. A major challenge for
model-driven development will be finding ways of enforcing or preserving properties
established early in development, particularly non-functional properties such as relia-
bility predictions.

Other work can be situated in the area of a model-driven analysis technique: [12,13,4].
These approaches also propose a framework for automatic generation of reliability
models from software specifications, bringing reliability analysis to early stages of the
software lifecycle. Istv́an et al. [12,13] shed some light on ways to fully automate de-
pendability analysis, applied to the Fault-Tolerant CORBA, using graph transformations
into their VIATRA framework. The work from Singh et al. [21] provides a prediction al-
gorithm to analyse the reliability of the system prior to its construction. Their approach
requires the user to provide global behavior scenarios other than the local behavior of
the components interactions. However, this feature may turn out to be unsuitable for the
system modularity and therefore hindering systems maintainability.

6 Conclusion and Future Work

In this paper, we have presented a framework to quantitatively assess software relia-
bility using scenario specifications, thus applicable to early phases of the software life
cycle. Our major contribution lies on a reliability prediction technique that takes into
account the component structure exhibited in the scenarios and the concurrent nature of
component-based systems.

In the approach we present, we have extended scenario specification to model the
probability of componentfailure, andscenario transition probabilitiesderived from an
operational profile of the system. From the extended scenario specification, probabil-
isitic behaviour models were synthesised for each componenet and then composed in
parallel into a model for the system. The Cheung model for software reliability was
then used to compute a reliability prediction from the system behaviour model. The
importance of implied scenarios detection in the software reliability analysis was then
addressed so that the intended system behaviour could be enforced despite the local
view of the components. We numerically showed how the detection of implied scenar-
ios can improve the reliability assurance of the software system.

For future work, we will use our framework to enhance software system reliability
using software architecture models. In doing this, we can use our framework for the
purpose of model driven development to construct deployment profiles and generate
implementation code configured to the desired reliability assurance for software sys-
tems. Another promising direction includes the use of the synthesized component LTS
to predict component reliability. This may be useful when there are uncertainties asso-
ciated with a components operational profile coming out from lack of implementation
artifacts. In Section 4 we presented initial evidence of how important is to consider im-
plied scenarios when assessing provided scenario specifications for reliability. However,
additional work is needed to explore methods and techniques that can fully reveal the
effect of implied scenarios on system reliability. Finally, we plan to apply our approach
on case studies of larger, more realistic systems in order to evaluate its scalability and
the accuracy of the predictions it produces.

Acknowledgment

David Rosenblum holds a Wolfson Research Merit Award from the Royal Society.
Sebastian Uchitel was partially funded by EPSRC grant READS GR/S03270/01 and
Genáına Rodrigues was funded by CAPES, under grant number 108201-9. We would
like to thank Rami Bahsoon, Philip Cook and the anonymous referees for their helpful
suggestions on improving the manuscript.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence charts. InProc. of
the22nd ICSE, pages 304–313. ACM Press, 2000.

2. T. Ayles, A. Field, J. Magee, and A. Bennett. Adding performance evaluation to the LTSA
tool (tool demonstration). InProc. 13th Performance Tools, September 2003.

3. R. C. Cheung. A User-Oriented Software Reliability Model. InIEEE Transactions on Soft-
ware Engineering, volume 6(2), pages 118–125. IEEE, Mar. 1980.

4. V. Cortellessa, H. Singh, and B. Cukic. Early reliability assessment of uml based software
models. InProceedings of the3rd WOSP, pages 302–309. ACM Press, 2002.

5. P. R. D’Argenio, H. Hermanns, and J.-P. Katoen. On generative parallel composition. In
C. Baier, M. Huth, M. Kwiatkowska, and M. Ryan, editors,Electronic Notes in Theoretical
Computer Science, volume 22. Elsevier, 2000.

6. P. Frankl, R. Hamlet, B. Littlewood, and L. Strigini. Evaluating testing methods by delivered
reliability. IEEE Transactions on Software Engineering, 24(8):586–601, 1998.

7. S. Gokhale, M. Lyu, and K. Trivedi. Reliability Simulation of Component Based Software
Systems. InReliability Simulation of Component Based Sofware Systems, pages 192–201.
Proc. of the9th ISSRE, 1998.

8. K. Gǒseva-Popstojanova and K. S. Trivedi. Architecture-Based Approach to Reliability As-
sessment of Software Systems. InPerformance Evaluation Journal. Elsevier Science, 2001.

9. ITU. ITU-T Recommendation Z.120 Message Sequence Charts (MSC’99). Technical report,
ITU Telecommunication Standardization Sector, Geneva, 1996.

10. M. R. Lyu.Software Reliability Modeling. World Scientific Publishing Company, 1991.
11. M. R. Lyu. Handbook of Software Reliability Engineering. IEEE Computer Society Press

and McGraw-Hill, 1996.
12. I. Majzik and G. Huszerl. Towards dependability modeling of FT-CORBA architectures. In

Proc.4th EDCC, Toulouse), pages 121–139. Springer–Verlag, 2002.
13. I. Majzik, A. Pataricza, and A. Bondavalli. Stochastic Dependability Analysis of System

Architecture Based on UML Models. In R. de Lemos, C. Gacek, and A. Romanovsky,
editors,Architecting Dependable Systems, LNCS–2667, pages 219–244. Springer Verlag,
2003.

14. J. D. Musa. Operational profiles in software-reliability engineering.IEEE Softw., 10(2):14–
32, 1993.

15. J. D. Musa, A. Iannino, and K. Okumoto.Software reliability: measurement, prediction,
application. McGraw-Hill, Inc., 1987.

16. Object Management Group. Unified Modeling Language Specification version 2.0:Super-
structure. Technical report, http://www.omg.org/docs/ptc/03-08-02.pdf, 2003.

17. G. Rodrigues. A Model Driven Approach for Software Systems Reliability. InProc. of the
Doctoral Symposium of the26th ICSE, May 2004 - Edinburgh, Scotland. IEEE Computer
Society, May 2004.

18. G. Rodrigues, G. Roberts, and W. Emmerich. Reliability Support for the Model Driven
Architecture. In R. de Lemos, C. Gacek, and A. Romanovsky, editors,To Appear in: Archi-
tecting Dependable Systems II –LNCS. Springer Verlag, 2004.

19. R. Roshandel and N. Medvidovic. Toward Archtitecture-Based Reliability Estimation. In
ICSE/WADS 2004, Edinburgh, UK., pages 2–6. IEEE Computer Society, May 2003.

20. M. Shooman. Structural Models for Software Reliability Prediction. InProc. of the2nd

ICSE, pages 268–280, 1976.
21. H. Singh, V. Cortellessa, B. Cukic, E. Gunel, and V. Bharadwaj. A bayesian approach to

reliability prediction and assessment of component based systems. InProc. of the12th

IEEE ISSRE, pages 12–21. IEEE, 2001.
22. J. Skene and W. Emmerich. A Model Driven Architecture Approach to Analysis of Non-

Functional Properties of Software Architecture. InProc. of the18th ASE. Toronto, CA.
IEEE Computer Society, Oct. 2001.

23. S. Uchitel, R. Chatley, J. Kramer, and J.Magee. LTSA-MSC: Tool Support for Behaviour
Model Elaboration Using Implied Scenarios. InProc. of9th TACAS, Warsaw, Apr. 2003.

24. S. Uchitel, J. Kramer, and J.Magee. Synthesis on Behavioral Models from Scenarios. In
IEEE Transactions on Software Engineering, volume 29(2), pages 99–115. IEEE, Feb. 2003.

25. S. Uchitel, J. Kramer, and J.Magee. Incremental Elaboration of Scenarios-Based Specifi-
cations and Behavior Models Using Implied Scenarios. InACM Transactions on Software
Engineering and Methodologies, volume 13(1), pages 37–85. ACM Press, Jan. 2004.

26. W. L. Wang, Y. Wu, and M. H. Chen. An Architecture-Based Software Reliability Model.
In Proc. Pacific Rim International Symposium on Dependable Computing. Washington, DC
, USA, pages 143–150. IEEE Computer Society, 1999.

27. S. M. Yacoub, B. Cukic, and H. H. Ammar. Scenario-Based Reliability Analysis of
Component-Based Software. InProc. of the10th ISSRE, Boca Raton, FL, USA. IEEE, Nov.
1999.

	Using Scenarios to Predict the Reliability of Concurrent Component-Based Software Systems
	Genaína Rodrigues1, David Rosenblum1 and Sebastian Uchitel2
	Introduction
	Background
	Scenarios
	The Cheung User-Oriented Reliability Model

	Reliability Analysis Using Scenarios
	The Annotated Scenarios
	Synthesis of the Probabilistic LTS
	Computing the Reliability Prediction

	Implied Scenarios
	Discussion and Related Work
	Conclusion and Future Work

