
Genetic Programming and Evolvable Machines, 5 (3): 251-257, September 2004

Genetic Programming for Mining DNA Chip
data from Cancer Patients

W. B. Langdon and B. F. Buxton

Computer Science, University College, Gower Street, London, WC1E 6BT, UK
{W.Langdon, B.Buxton}@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/staff/W.Langdon, /staff/B.Buxton
Tel: +44 (0) 20 7679 4436, Fax: +44 (0) 20 7387 1397

Abstract. In machine learning terms DNA (gene) chip data is unusual
in having thousands of attributes (the gene expression values) but few
(< 100) records (the patients). A GP based method for both feature
selection and generating simple models based on a few genes is demon-
strated on cancer data.

1 Introduction

The problem of over fitting is a dominant concern with machine learning ap-
proaches to DNA chip data. These medical data are characterised by class im-
balance, non-linear response, high noise, large numbers of attributes and few
examples. Last year [Pomeroy et al., 2002] published DNA chip data for 60
cancer patients. Their attempts to model the data using unsupervised learning
techniques (self organising maps) were unsuccessful at predicting patient sur-
vival (page 441) however they claim statistically significant success using near-
est neighbour and other supervised learning techniques. [Li et al., 2001] obtained
good results using three nearest neighbours after selecting genes with a multi-
run evolutionary approach on similarly sized DNA expression data. ([Valafar,
2002] surveys both supervised and unsupervised data mining techniques used
with microarray data.)

Genetic programming (GP) has been used with DNA chip data previously.
For example [Gilbert et al., 2000] used it with time sequences of expression levels
in yeast to ascribe functions to genes. However here we consider much smaller
static expression data sets to classify, either the patient as a whole or specific
tissues (e.g. cancer tissues). Classifications might in future suggest particular
treatments. Also identification of predictive genes may aid understanding of
causes and hence treatments of diseases. While [Moore et al., 2002] showed GP
can be used to fit DNA expression data, we show it can be used to find very
simple models, with consequently little danger of over fitting. There follows an
experiment which shows linear discrimination using two genes found by GP (from
a total of 7129) gives similar performance to that given in [Pomeroy et al., 2002].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Cancer DNA chip data

[Pomeroy et al., 2002]’s “Gene Expression-Based Classification and Outcome
Prediction of Central Nervous System Embryonal Tumors” data was copied from
http://www-genome.wi.mit.edu/mpr/publications/projects/CNS/Pomeroy
et al 0G04850 11142001 datasets.zip. Gene descriptors and patient
identification were removed from Dataset C MD outcome.gct and Dataset C
MD outcome.xls, which were then merged and transposed. There are 7129 signed
integer gene expression values for each of the 60 patients, of whom 39 survived.

3 Leave One Out Cross Validation

n-fold cross validation allows one to estimate how well a learning technique will
perform on unseen data without reserving a sizeable volume of data for testing.
The data is divided into (say n = 5) equal numbers of records, known as folds.
The learning system is trained on all records except one fold. Its performance
on the remaining records is measured. Then the same system is trained again
but this time leaving out another fold. The performance of the learning system
is estimated by taking the mean of the (five) performance measurements. As
always, care must be taken that their is no cross contamination which might
allow knowledge about patterns in the test data (i.e. the test folds) to leak into
the training process.

Since there are only a very few training examples, we go to the extreme
of having as many folds as their are records (60). I.e. the GP is trained sixty
times using 59 patient records. Leave one out gives an almost unbiased estimate
but its variance may be high [Kohavi, 1995]. Each time the performance of the
evolved model is measured by seeing if it can predict the survival of the remaining
patient. Because genetic programming is a stochastic process, the GP is run ten
times (cf. [Carvalho and Freitas, 2003]), making a total of 600 runs for each stage
in the experiment.

4 Genetic Programming

The individuals in the GP population consist of five trees. At crossover one
of the five is chosen and size fair crossover [Langdon, 2000] occurs only be-
tween that tree in first and second parents. The remaining four trees are copied
unchanged from the first parent [Langdon, 1998]. The GP’s prediction is posi-
tive if the sum of the floating point values returned by the five trees is greater
than or equal to zero. While, in this work, having multiple trees, does not di-
rectly increase the power of the representation, it may help by making it easier
for different parts of the individuals to evolve to specialise in solving differ-
ent parts of a problem. [Soule, 1999], [Rodriguez-Vazquez and Oliver-Morales,
2003] and ourselves [Langdon and Buxton, 2001a; Langdon and Buxton, 2001b;
Langdon et al., 2001] report some success with it. Gene expression values are
represented as floating point numbers. We retained our use of area under the
(convex hull of) the receiver operating characteristics (ROC) curve as the fitness

2

measure [Langdon and Buxton, 2001c]. But for speed and simplicity only a single
threshold point on the curve was used. This collapses fitness to 1

2 (TP+(1−FP)),
where TP=true positive rate and FP=false positive rate. I.e. the mean of the
accuracy on the positive examples and the accuracy on the negative. See Table 1
for other GP parameters.

Table 1. GP DNA Chip gene mining

Objective: Find a simple rule predicting patient survival from gene expression data
Function set: Max Min MaxA MinA MUL ADD DIV SUB IFLTE
Terminal set: DNA chip expression values.
Fitness: 1

2
fraction of survivors predicted + 1

2
fraction treatment failures correctly

predicted
Selection: generational (non elitist), tournament size 7
Wrapper: < 0⇒ patient survival is predicted
Pop Size: 500
Program size: up to 1000. In two gene runs, all programs were size 5 or 9.
Initial pop: Each individual comprises five trees each created by ramped half-and-

half (2:6). Each initial tree limited to 300
Parameters: 50% size fair crossover, crossover fragments ≤ 30 [Langdon, 2000]

50% mutation (point 22.5%, constants 22.5%, shrink 2.5% subtree 2.5%)
Termination: generation 50

5 Mining Genes from Genetic Programming
The first group of 600 GP runs produced 600 best of run models. Together they
contained 6970 of the 7129 DNA chip attributes. Some attributes were used
much more than others. We selected the 404 genes which occurred in ten or
more best of run individuals ([Moore et al., 2002] used nine as a cut point in
similar data). We re-ran the GP a second 600 times.

All the 404 genes were used by at least one of the 600 best of run individuals.
However again the distribution of genes across models was highly non uniform
with only two genes occurring in more than 100 models, see Figure 1. Genes
U08998 at and U41737 at occurred in 182 and 193 best of run models. The
first gene (TAR RNA binding protein (TRBP) mRNA, U08998 at) is known to
promote the formation or development of cancerous tumours [Benkirane et al.,
1997] but [Pomeroy et al., 2002, supplemental] says it is not amongst the top
marker genes selected by signal-to-noise (mean) ratio (it is in the middle of the
top 200). The second gene (Pancreatic beta cell growth factor (INGAP) mRNA,
U41737 at) is not amongst [Pomeroy et al., 2002, supplemental]’s top 200 but
may be involved in the onset of diabetes [Rafaeloff et al., 1997]. [Pomeroy et al.,
2002] heavily thresholded the data for these two genes (cf. Figure 2) which may
explain why they were not identified. However their consistently low expression
values do raise questions about data pre-processing and the practicality of using
either gene in diagnostics tests.

3

0

20

40

60

80

100

120

140

160

180

200

N
o.

 ti
m

es
 g

en
e

ap
pe

ar
s

in
 b

es
t g

en
er

at
io

n
50

 m
od

el
 (6

00
 s

ta
ge

 2
 ru

ns
)

Gene

mean

 U82306_at

 U79256_at
M38591_at

U08998_at

J04760_at L17131_rna1_at

X83412_at

U41737_at

Fig. 1. Number of best of run GP models in 600 second stage GP runs which
included each of the 404 genes selected by the first stage from the total of 7129
genes. Genes more than 4σ from mean are labelled.

We felt that applying the full power of genetic programming to noisy data
was liable to generate overly complex models. Instead in a final 600 runs we
severely limited the GP’s expression and learning abilities. The model size and
function set were both limited so models could only contain either no functions
at all or a single IF statement and only the initial random generation was used.

The leave one out estimate of the accuracy of the random two gene models
is 68%. [Pomeroy et al., 2002] claims 47/60 (78% accuracy) with a k=5 nearest
neighbour classifier using 8 genes. While their classifiers may be better, they are
more complex. Also, with only 60 cases, we cannot show the difference between
68% and 78% is significant (σ = 6%).

Three quarters of all cases (147 of 192) where the random models made
incorrect predictions can be traced to 15 cases which are significantly (p < 0.01)
harder than the overall leave one out estimate of accuracy (68%) would suggest.
These are shown with solid markings in Figure 2. In 39 of the remaining 45 cases
the random two gene models made the correct prediction more often than not.

Figure 2 shows the patient data. It is clear that the cases which prove hard
on the leave one out two gene trials are hard because they lie within clusters of
patients with the opposite outcome. Figure 2 also shows the decision boundaries
of two typical random two gene models. Over the range of the data, one is linear

4

-400

-300

-200

-100

0

100

200

-1400 -1200 -1000 -800 -600 -400 -200 0 200 400

P
an

cr
ea

tic
 b

et
a

ce
ll

gr
ow

th
 fa

ct
or

 (I
N

G
A

P
) m

R
N

A
 (U

41
73

7_
at

)

TAR RNA binding protein (TRBP) mRNA (U08998_at)

decision boundary (leave out 37.0)

decision boundary (leave out 6.0)
survived, prediction correct

treatment failed, prediction wrong
survived, prediction wrong

treatment failed, prediction correct

Fig. 2. Expression of two genes from 7129 used to predict outcome of cancer
treatment [Pomeroy et al., 2002]. The piecewise linear decision boundary is the
best of 500 random programs using just these two genes (from the first of ten runs
leaving out patient record 6). Solid shapes indicate cases which are significantly
harder to predict. The linear boundary produced when leaving out a different
record (37) is shown dotted. It predicts survival if 2×U08998 at + U41737 at <
−43 and makes only one more error. Dashed rectangle indicates threshold (20)
used by [Pomeroy et al., 2002], only nine patient records are not affected by such
thresholding.

and the other is piecewise linear. While there many possible views of the data,
the intermixing of survivors (squares) and non-survivors (triangles) in Figure 2
suggests that gene expression data cannot be 100% predictive and that there are
other important factors.

6 Discussion

In general optimal selection of features (genes in our case) requires exponential
effort, even for simple fixed interaction between features. Since optimal selection
is not feasible, heuristics are used. Traditionally either forward or backward
feature selection are used. They use a fixed interaction rule between features
(typically linear) and sequentially process features one at a time. Either all
features are included and the set is trimmed one feature at a time or no features
are initialy included, then the most informative is added, followed by the next

5

(given those already selected) and so on. There is no scope for going back and
re-considering features that have already been discarded (or selected).

Genetic programming is an alternative heuristic. Instead of a fixed combina-
tion rule, it allows almost any means of combining a number of features. (GP is
also free to select the number of features.) At any one time, there isn’t a single
set of selected features, but instead a population of individuals using features.
Evolution is free to add/remove multiple features (rather than one) and can
re-consider previous selection/removal decisions as new combinations are tried.

We have rerun the experiments with different settings. Naturally in detail
each run is very different. While, with ten replications of each validation fold,
no significant difference in the two main genes was found, a different GP study
might give different models (of similar performance).

It is clear from this, and similar, data sets that there are many ways to make
predictions from non-linear combinations of subsets of genes whose accuracies
are not significantly different. GP is a general powerful, noise tolerant, way of
finding them, which can yield easily interpretable functions, rather than black
boxes.

7 Conclusions

The enormous width of DNA gene chip data makes over fitting an ever present
danger, particularly with powerful machine learning approaches. Genetic pro-
gramming, in combination with leave one out cross validation and a principled
objective function (which takes into account the class imbalance often found in
Biological data sources) has been used to evolve many non-linear functions of
gene expression values. The goal has been to whittle down the thousands of data
attributes (gene expression measurements) into a few predictive ones.

We were surprised to find only one or two genes are needed to make predic-
tions and by the simplicity of the models found by genetic programming. These
results strongly suggest deterministic algorithms which only allow linear inter-
action but which are able to deal effectively with thousands of data attributes
will also do well on this dataset. However the low data values given for the ex-
pression of the two genes raise questions about the pre-processing required when
performing gene chip experiments. Other experiments (also on treatment out-
come in animal and Human studies) confirm GP as a potentially valuable gene
selection technique when extracting knowledge from DNA chip data.

Acknowledgements

I would like to thank Matthew Trotter and David Corney.

Source Code

C++ code can be obtained from ftp://cs.ucl.ac.uk/genetic/gp-code/

6

ftp://cs.ucl.ac.uk/genetic/gp-code/

References

Benkirane et al., 1997. Monsef Benkirane, Christine Neuveut, Rene F. Chun,
Stephen M. Smith, Charles E. Samuel, Anne Gatignol, and Kuan-Teh Jeang. Onco-
genic potential of TAR RNA binding protein TRBP and its regulatory interaction
with RNA-dependent protein kinase PKR. EMBO Journal, 16(3):611–624, 1997.

Carvalho and Freitas, 2003. Deborah R. Carvalho and Alex A. Freitas. A hybrid deci-
sion tree/genetic algorithm method for data mining. Information Sciences Journal,
2004. In press.

Gilbert et al., 2000. Richard J. Gilbert, Jem J. Rowland, and Douglas B. Kell. Ge-
nomic computing: explanatory modelling for functional genomics. In Darrell Whitley
et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2000), pages 551–557, Las Vegas, Nevada, USA, 10-12 July 2000. Morgan
Kaufmann.

Kohavi, 1995. Ron Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proceedings of IJCAI, pages 1137–1143. Morgan
Kaufmann, 1995.

Langdon and Buxton, 2001a. William B. Langdon and Bernard F. Buxton. Genetic
programming for combining classifiers. In Lee Spector et al., editors, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 66–73,
San Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann.

Langdon and Buxton, 2001b. William B. Langdon and Bernard F. Buxton. Genetic
programming for improved receiver operating characteristics. In Josef Kittler and
Fabio Roli, editors, Second International Conference on Multiple Classifier System,
volume 2096 of LNCS, pages 68–77, Cambridge, 2-4 July 2001. Springer Verlag.

Langdon and Buxton, 2001c. William B. Langdon and Bernard F. Buxton. Evolving
receiver operating characteristics for data fusion. In Julian F. Miller et al., editors,
Genetic Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS, pages
87–96, Lake Como, Italy, 18-20 April 2001. Springer-Verlag.

Langdon et al., 2001. William B. Langdon, Steven J. Barrett, and Bernard F. Buxton.
Genetic programming for combining neural networks for drug discovery. In Rajkumar
Roy et al., editors, Soft Computing and Industry Recent Applications, pages 597–608.
Springer-Verlag, 10–24 September 2001. Published 2002.

Langdon, 1998. William B. Langdon. Genetic Programming and Data Structures: Ge-
netic Programming + Data Structures = Automatic Programming!, volume 1 of Ge-
netic Programming. Kluwer, Boston 1998.

Langdon, 2000. William B. Langdon. Size fair and homologous tree genetic program-
ming crossovers. Genetic Programming and Evolvable Machines, 1(1/2):95–119, April
2000.

Li et al., 2001. Leping Li, Clarice R. Weinberg, Thomas A. Darden, and Lee G. Ped-
ersen. Gene selection for sample classification based on gene expression data: study
of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics,
17(12):1131–1142, 2001.

Moore et al., 2002. Jason H. Moore, Joel S. Parker, Nancy J. Olsen, and Thomas M.
Aune. Symbolic discriminant analysis of microarray data in automimmune disease.
Genetic Epidemiology, 23:57–69, 2002.

Pomeroy et al., 2002. Scott L. Pomeroy, Pablo Tamayo, Michelle Gaasenbeek, Lisa M.
Sturla, Michael Angelo, Margaret E. McLaughlin, John Y. H. Kim, Liliana C. Goum-
nerovak, Peter M. Black, Ching Lau, Jeffrey C. Allen, David Zagzag, James M. Olson,

7

ftp://cs.ucl.ac.uk/genetic/papers/WBL_gecco2001_roc.ps.gz
ftp://cs.ucl.ac.uk/genetic/papers/WBL_gecco2001_roc.ps.gz
ftp://cs.ucl.ac.uk/genetic/papers/wbl_mcs2001.ps.gz
ftp://cs.ucl.ac.uk/genetic/papers/wbl_mcs2001.ps.gz
ftp://cs.ucl.ac.uk/genetic/papers/wbl_egp2001.ps.gz
ftp://cs.ucl.ac.uk/genetic/papers/wbl_egp2001.ps.gz
http://www.wkap.nl/prod/b/0-7923-8135-1
http://www.wkap.nl/prod/b/0-7923-8135-1
ftp://cs.ucl.ac.uk/genetic/papers/WBL_fairxo.pdf
ftp://cs.ucl.ac.uk/genetic/papers/WBL_fairxo.pdf

Tom Curran, Cynthia Wetmore, Jaclyn A. Biegel, Tomaso Poggio, Shayan Mukher-
jee, Ryan Rifkin, Andrea Califanok, Gustavo Stolovitzkyk, David N. Louis, Jill P.
Mesirov, Eric S. Lander, and Todd R. Golub. Prediction of central nervous sys-
tem embryonal tumour outcome based on gene expression. Nature, 415:436–442, 24
January 2002.

Rafaeloff et al., 1997. Ronit Rafaeloff, Gary L. Pittenger, Scott W. Barlow, Xiao F.
Qin, Bing Yan, Lawrence Rosenberg, William P. Duguid, and Aaron I. Vinik. Cloning
and sequencing of the pancreatic islet neogenesis associated protein (INGAP) gene
and its expression in islet neogenesis in hamsters. Journal of Clinical Investigations,
99(N):2100–2109, May 1 1997.

Rodriguez-Vazquez and Oliver-Morales, 2003. Katya Rodriguez-Vazquez and Carlos
Oliver-Morales. Divide and conquer: Genetic programming based on multiple
branches encoding. In Conor Ryan et al., editors, Genetic Programming, Proceed-
ings of EuroGP’2003, volume 2610 of LNCS, pages 224–234, Essex, 14-16 April 2003.
Springer-Verlag.

Soule, 1999. Terence Soule. Voting teams: A cooperative approach to non-typical prob-
lems using genetic programming. In Wolfgang Banzhaf et al., editors, Proceedings
of the Genetic and Evolutionary Computation Conference, volume 1, pages 916–922,
Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

Valafar, 2002. Faramarz Valafar. Pattern recognition techniques in microarray data
analysis: A survey. Annals of New York Academy of Sciences, 980:41–64, December
2002. Special issue Techniques in Bioinformatics and Medical Informatics.

8

	Introduction
	Cancer DNA chip data
	Leave One Out Cross Validation
	Genetic Programming
	Mining Genes from Genetic Programming
	Discussion
	Conclusions

