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ABSTRACT

Here we report on the assessment results of the third experiment to evaluate the state of the art in protein model refine-

ment, where participants were invited to improve the accuracy of initial protein models for 27 targets. Using an array of

complementary evaluation measures, we find that five groups performed better than the na€ıve (null) method—a marked

improvement over CASP9, although only three were significantly better. The leading groups also demonstrated the ability to

consistently improve both backbone and side chain positioning, while other groups reliably enhanced other aspects of pro-

tein physicality. The top-ranked group succeeded in improving the backbone conformation in almost 90% of targets, sug-

gesting a strategy that for the first time in CASP refinement is successful in a clear majority of cases. A number of issues

remain unsolved: the majority of groups still fail to improve the quality of the starting models; even successful groups are

only able to make modest improvements; and no prediction is more similar to the native structure than to the starting

model. Successful refinement attempts also often go unrecognized, as suggested by the relatively larger improvements when

predictions not submitted as model 1 are also considered.
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INTRODUCTION

The scope and accuracy of comparative modeling have

been increasing steadily over time, but generating predic-

tions that are consistently closer to the native structure

than they are to the original templates still proves very

challenging. Despite significant improvements in align-

ment accuracy and more recently in the modeling of

large insertions, progress in the so-called “end game” in

prediction—adapting purely template-based models to

accurately represent the observed time averaged native

structure—has been slow. Protein refinement methods

developed since CASP9 have focused on a broad range of

strategies including molecular dynamics (MD), fragment-

based approaches, knowledge-based approaches, elastic

network models, and hydrogen bond network optimiza-

tion.1–16 Perhaps the most promising advances have

come in the design of novel parallel supercomputer

architectures comprising substantial numbers of

application-specific integrated circuits, which now allow

atomistic MD simulations to run for as long as 100

ls.17,18 In combination with increasingly accurate

physics-based force fields such as CHARMM, which have

been used to successfully fold structurally diverse sets of

fast-folding proteins,19–22 the major problems limiting

the application of MD to protein refinement can now be

mitigated to some extent. In view of the recent excite-

ment that these early results have generated, it was disap-

pointing that these methods were not tested in CASP10.

Nevertheless, it is worth noting that distributed comput-

ing projects such as Folding@home have also achieved

similar aggregate ensemble simulation timescales,23 while

collaborative multiplayer online games such as Foldit

have demonstrated that the integration of human visual

problem-solving and strategy development capabilities

are a powerful approach to tackle computationally-

limited problems.24
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Other than technological development, another

problem in the field has been a lack of robust and

large-scale benchmarking—which clearly mirrors the

issues faced in the early days of CASP. We can only

hope that focussing community attention on the end-

game problem will have the same level of long term

benefit as seen in the template-based modeling (TBM)

areas. However, even simple logic tells us that the end-

game problem is going to be at least several orders of

magnitude harder than the TBM problem, so we may

need to be patient.

In an attempt to address the lack of progress in pro-

tein model refinement, CASP8 saw the launch of a

separate assessment category to identify effective meth-

ods and to track advances. For the third time, there-

fore, the CASP experiment has included a refinement

category where the best server TBM predictions are

subsequently released as refinement test cases. Groups

attempt at improving these structures blindly, with

occasional hints about problematic regions. This

refinement task differs slightly from the standard defi-

nition in the Refs. 1–17 in that the starting models

have often already been refined by the original servers.

Refinement predictors therefore face the significant

challenge of trying to add further value to the predic-

tion, beyond the capabilities of the best TBM groups.

For a few targets, the same predictors who produced

the starting model also attempted refinement, which

clearly produces a problem of diminishing returns for

these groups.

Here, we describe the assessment results of the predic-

tions entered at the CASP10 structure refinement cate-

gory. Models for 27 targets were available to analyze this

time, which is close to double the number of CASP9 and

targets.18 Encouragingly, there was also a large increase

in the number of registered groups—from 32 to 50—

suggesting that the initiative is drawing increasing atten-

tion from the community.

In contrast to the free modeling (FM) and TBM cate-

gories in CASP, the released models are usually quite

close to the native structures, with differences in back-

bone conformation, side chain packing as well as local

geometry. This necessitates the use of numerical evalua-

tion measures that are more sensitive to subtle changes,

whilst also capturing all of the different aspects with

which we can assess model quality. Because such fea-

tures can be optimized separately, we scrutinized model

quality through different lenses to properly separate

individual efforts and the extent of their success. To this

end, we combined an array of standard evaluation

measures but strongly emphasized improvement in

main chain atom coordinates relative to the native

structure. This is reasonable, as it is of little benefit to

end users, if the stereochemistry is improved only at the

expense of greatly reducing the main chain accuracy of

the models.

MATERIALS AND METHODS

Target selection

One of the major concerns in CASP9 was the low

number of refinement targets, which made it difficult to

reach statistically sound and general conclusions. For

CASP10, assessors and organizers therefore endeavored

to expand the benchmark set, and succeeded in the

release of 28 starting models. Table I lists summary data

about the 27 targets that were left in the assessment, after

the organizers canceled target TR724 during the predic-

tion season.

After careful visual inspection, we selected as refinement

challenges those TBM targets or their structural domains

(1) that were relatively small, with less than �250 amino

acids and few missing residues; (2) that exhibited limited

crystal contact distortions if they were solved by X-ray

crystallography; (3) that had a tight conformational

ensemble if they were studied by NMR spectroscopy. For

proteins meeting such conditions, we sifted the corre-

sponding server models to select a suitable starting model,

which passed stereochemistry and quality checks using

Molprobity19 and ProSA20 and which were close—but

not too close—to the experimental structure.

This last test was based on both GDT-HA21 and

FlexE22 scores relative to native, because LGA23 align-

ments are based on rigid-body superposition and there-

fore can only partially take into account protein intrinsic

flexibility or energy landscape. In contrast, FlexE is based

on an elastic network model and uses the deformation

energy as measure of the similarity between two struc-

tures. We used FlexE scores to discard model that were

deemed within the thermal ensemble of the target struc-

ture—that is when the estimated energy difference was

�0.89 kcal/mol/residue.

Finally, we attempted to vary as much as possible the

source of the initial models, as to avoid biases against

groups participating in both TBM and refinement catego-

ries. Unfortunately, in some cases our choice of initial

model was limited to those from a small number of the

best performing 3D modeling servers, but we ended up

picking at most five predictions from the same group—

namely 330 (BAKER-ROSETTASERVER). One starting

model (for TR663) was not generated by any of the servers.

This model was generated by the assessor’s group using

additional distance constraints from the actual experimen-

tal structure. Our original plan was to extend the range of

targets using structural data available to the assessors but

not yet released to predictors that is to come up with start-

ing models when none of the servers had produced accu-

rate enough results. In practice, however, it quickly became

apparent that we would probably have sufficient starting

models selected from real server predictions, and so further

“hybrid” models like TR663 were not required. We kept

TR663 in the benchmark because there was no evidence

that the data for this target were skewed in any way.
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Model quality evaluation measures

The Protein Structure Prediction Center estimated how

well submitted 3D models fitted the corresponding target

structures, as well as other stereochemical features

observed in the PDB.24 All structural alignments were cal-

culated with LGA21 in sequence-dependent mode, while

model stereochemistry was assessed with MolProbity.19

The results of such preliminary analyzes can be found

at http://predictioncenter.org/download_area/CASP10/

SUMMARY_TABLES/TR_all.tar.gz. Similar to the previous

round of the experiment, we mainly focused on:

� GDT-HA score, which is the average of the percentage

cd of predicted Ca atoms within d Å from the corre-

sponding experimental positions. The cd values result

from independent structural alignments between the

model and the target structure with distance cut-offs

of 0.5, 1, 2, and 4 Å.

� Root mean square deviation (RMSD) between the pre-

dicted Ca atom locations and the corresponding ones

in the target structure after optimal superposition.

� GDC-SC score,25 which is the weighted mean of the

percentage cd of predicted side chain atoms within d Å

from the corresponding experimental positions. For

each side chain only one atom is used in the calcula-

tion and its choice is amino-acid-dependent. In this

case, the cd values come from 10 different alignments

of the target and the model with distance thresholds

of 0.5, 1.0, 1.5, . . . 4.0, 4.5, and 5 Å.

� SphereGrinder (SphGr) score,26 which is calculated

from local comparisons of predicted and observed

atomic coordinate subsets. For each residue in the tar-

get structure, all atoms within 6 Å of its Ca in the

experimental and modeled structures are aligned and

the fraction f of predicted atoms within 2 Å of their

counterparts is retained. The final score is obtained by

averaging such intermediate values.

� MolProbity (MP) score,19 which combines the log-

scaled counts of all-atom steric clashes, atypical

rotamer conformations and unfavored backbone tor-

sion angles in each prediction.

Group ranking and comparison procedures

For each 3D model p in the set P of predictions and

for each quality measure Q 2 {GDT-HA, RMSD, GDC-

SC, SphGr, MP} described above, we first calculated the

difference DQ(p) 5 Q(p) 2 Q(s) relative to the starting

model s. Then, we converted them into robust Z-scores

on a target-by-target basis using the formula:

ZQ pð Þ5 DQ pð Þ2median DQ xð Þj x 2 Pf gð Þ
1:486 �mad DQ xð Þj x 2 Pf gð Þ

where mad �ð Þ returns the median absolute deviation

of its arguments: mad Að Þ5median a2median Að Þj a 2fð
AgÞ. Higher ZQ(p) values indicate more accurate

Table I
Summary of CASP10 Refinement Targets and Accuracy of Corresponding Starting Models

Target Residues Method Model Id GDT-HA RMSD GDC-SC SphGr MP FlexE

TR644 141 X-ray T0644TS113_1 67.73 2.71 43.46 75.18 2.53 2.87
TR655 175 NMR T0655TS335_1 49.28 4.65 28.53 51.43 3.83 10.65
TR661 185 X-ray T0661TS330_5 60.67 2.74 37.50 71.35 1.02 2.13
TR662 75 NMR T0662TS035_4 63.67 2.03 33.64 76.00 2.47 2.08
TR663 152 X-ray T0663TSXXX_X 49.34 3.37 26.26 76.97 4.05 2.78
TR671 88 X-ray T0671TS333_5 36.36 7.72 11.58 44.32 3.68 4.44
TR674 132 X-ray T0674TS486_1 71.40 3.44 44.17 74.24 2.99 2.82
TR679 199 X-ray T0679TS330_5 51.63 3.95 30.76 52.26 1.15 9.15
TR681 191 X-ray T0681TS222_3 58.12 2.27 32.74 63.87 2.89 3.28
TR688 185 X-ray T0688TS330_3 57.70 2.52 42.49 77.30 1.77 4.71
TR689 214 X-ray T0689TS463_1 71.73 1.66 42.02 87.38 3.18 1.57
TR696 100 X-ray T0696TS277_4 52.00 3.52 26.31 50.00 3.04 4.07
TR698 119 X-ray T0698TS108_4 45.38 4.65 25.68 65.55 2.73 5.40
TR699 225 X-ray T0699TS439_3 65.44 2.21 33.61 77.33 2.77 4.37
TR704 235 X-ray T0704TS286_1 49.15 2.78 23.25 73.19 3.10 2.26
TR705 96 X-ray T0705TS476_1 44.79 4.71 22.11 37.50 3.17 20.74
TR708 196 X-ray T0708TS081_2 72.83 4.63 45.51 82.14 2.65 3.95
TR710 194 X-ray T0710TS028_1 53.87 2.44 36.28 77.32 0.56 2.60
TR712 186 X-ray T0712TS333_5 81.45 1.99 55.15 88.17 2.76 3.63
TR720 198 X-ray T0720TS330_3 41.41 8.52 25.58 46.97 1.33 10.08
TR722 127 X-ray T0722TS330_1 38.58 4.42 16.14 89.76 0.99 0.97
TR723 131 X-ray T0723TS439_1 67.37 2.23 37.72 84.73 2.21 2.41
TR738 249 X-ray T0738TS424_5 74.60 1.40 50.36 93.98 2.38 0.95
TR747 90 X-ray T0747TS286_4 65.28 1.96 37.96 67.78 2.02 4.69
TR750 182 X-ray T0750TS124_1 56.73 2.12 34.80 79.67 2.47 1.76
TR752 148 X-ray T0752TS292_2 76.01 1.50 43.05 79.73 1.52 0.89
TR754 68 NMR T0754TS035_1 58.09 2.41 19.97 82.35 2.65 2.48
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predictions if and only if Q 2 {GDT-HA, GDC-SC,

SphGr}, which reflect the different nature of the RMSD

and MP score.

Similar to previous assessments in this and other cate-

gories, we tried not to discourage groups, which experi-

mented with adventurous refinement strategies and

therefore achieved low raw scores. Consequently, we

decided to clip the distributions of ZQ scores to zero—

that is to set to zero any negative ZQ for Q 2 {GDT-HA,

GDC-SC, SphGr} and positive ZQ for Q 2 {RMSD, MP}.

We finally calculated the overall score:

Sp5
4 � ZGDT-HA pð Þ2ZRMSD pð Þ1ZGDC 2SC pð Þ1 ZSphGr pð Þ2ZMP pð Þ

8

where ZRMSD (p) and ZMP (p) are subtracted in line with

the above observations.

We performed statistical comparisons of group per-

formance based on individual evaluation measures. Spe-

cifically, we tested the null hypothesis that prediction

group A does not perform better than B with a one-

tailed Wilcoxon signed rank tests on paired DQ values at

a significance level a 5 0.01 with no correction for multi-

ple testing. All these statistical analyses were carried out

with in-house R27 scripts.

Na€ıve predictions

For each target, we used the starting model itself as a

baseline prediction of protein structure refinement. For

each evaluation measure, these na€ıve predictions were

assigned target-based Z-scores using the statistics that we

had separately estimated from the participating group

3D models.

Molecular replacement

We assessed whether models could be used to solve

the phase problem in X-ray crystallography via molecular

replacement (MR). MR can make atomic coordinate

assignments to a protein of interest by fitting an approxi-

mate three-dimensional model of its structure to the

observed diffraction pattern. Traditionally, solved homol-

ogous proteins are used as search models, but compara-

tive models of the target structure have proved more

effective in a number of recent studies. Typically, algo-

rithms based on maximum likelihood and multivariate

statistics are used to score the rotation and translation

functions, producing the highest correlation when the

known and unknown structures are in similar orienta-

tions.28 We used the log likelihood gain (LLG) score to

measure how much better the model explained the data

as compared to a random atomic model. Larger values

indicate a good fit, with LLG> 60 almost always result-

ing in a solved structure.29 The LLG scores were calcu-

lated using the Phaser package from Randy Read’s

laboratory, and were kindly provided to us by Gabor

Bunkoczi via the Prediction Center.

Hydrogen bonding evaluation

As an additional test of improved model quality, we

also compared hydrogen-bonding patterns between sub-

mitted predictions and target structures relative to the

released starting models. To this end, we first assigned

hydrogen bonds (H-bonds) to all experimental and pre-

dicted structures with HBPLUS,30 and then scored each

model based on its ability to reproduce the reference list

of hydrogen bonds in the target. This binary classifica-

tion task was assessed by calculating for each prediction:

the number of H-bonds in the model that are also found

in the target (TP); the number of H-bonds in the model

that are not present in the target (FP); and the number

of H-bonds in the target that are missing in the model

(FN). From these figures we obtained precision, recall

and F-measure respectively as:

Pr5
TP

TP 1FP
Rc5

TP

TP 1FN
F152 :

Pr � Rc

Pr1Rc

For each 3D model, such statistics were derived con-

sidering both all atom pairs and main chain atom pairs

only. We then turned the F1 scores into robust Z-scores

as described above, clipped the negative values to zero,

and finally scored each group by the median of such

distributions.

RESULTS

Overall results

Figure 1 shows the aggregate results of refinement in

CASP10 across all targets submitted by all groups for

each of the five assessment metrics. For all metrics apart

from the MP score, more models are made worse than

are improved, with distributions skewed to the left, indi-

cating there are more big failures than big improvements.

These results would suggest that on average, it is not

worth refining targets since the average change in four

out of five metrics results in a worse model, although

clearly this analysis ignores variation between individual

groups. Where there is success, scores vary significantly

in the frequency with which they were improved, with

GDT-HA showing improvement in less than 22% of all

predictions, while the MP score was improved in over

53% of predictions, with side chain positioning lying in

between. Improving backbone positioning is clearly more

challenging than improving physicality and local struc-

ture, indicating that future strategies that focus on

improving the overall fold stand to benefit the most.

There is a concomitant impairment in the magnitude of

improvement, with a maximum DGDT-HA of only
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about 10 units. Given that the average GDT-HA across

all starting models is less than 60, predictors are cur-

rently only making small inroads into overall target

refinement.

There are, however, clear examples of successful pre-

dictions. Figure 2 shows three models where large

increases in GDT-HA were observed, and in most cases

all other metrics were also improved as compared to the

starting model. Visual inspection clearly reveals that both

loop and secondary structure elements have been moved

closer to the native state. These examples represent some

of the best predictions submitted in this category of

CASP10, and although no groups were able to consis-

tently improve starting models to such an extent, the

presence of these results is encouraging.

Model quality evaluation and group ranking

Similarly to the approach used by the CASP9 assessor,

we evaluated the refinement category predictions through

different measures, which examine complementary

aspects of model quality including overall fold, as well as

the distributions of interatomic contacts and of u, /,

and v dihedral angles. We discarded from all analyses 22

submissions with fewer atomic coordinates than the cor-

responding starting models—that is they had missing

residues or they were not all-atom models. Therefore,

the results discussed below relate to 47 out of the 50 reg-

istered groups—all bar 179 (Lenserver), 444 (Lenregular),

and 482 (biouv). The models labeled as the most reliable

during the prediction season—“Model 1” in the usual

CASP jargon—formed the basis for our principal evalua-

tion as detailed in Materials and Methods section. We

selected 36 teams that had tried to refine at least 23 tar-

gets and show in Figure 3 how they fare in comparison

with the na€ıve approach. The corresponding group

names and some high level statistics are reported in

Table II; more detailed information for these and statis-

tics for all other assessed predictors are available in the

Supplementary Information Table S1. A few groups

achieved higher scores than the baseline predictor of

model refinement: 049 (FEIG), 473 (Seok), 453 (Know-

Min), 222 (MULTICOM-CONSTRUCT), and 197

(Mufold).

We then investigated the stability of the final ranking

under a wide range of conditions, which may reflect dif-

ferent assessment options—see Supporting Information

Table S2. Although the conversion of raw scores—the DQ

values in our case—into target-based Z-scores is well-

established practice at CASP,31 the assessors made use of

parametric statistics in CASP8 and of nonparametric sta-

tistics in CASP9. Here, we have adopted the same rank-

ing procedure as last time, but we have also confirmed

that using mean and standard deviation to compute the

ZQ scores and to combine them has very limited effects

on the evaluation results of the top ranked groups. We

Figure 1
Kernel density plots showing aggregate results by score, from all models

submitted by all groups. Numeric values indicate the percentage of time
the model was made better or worse than the starting model for each

metric.
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arrived at the same conclusion when we considered the

options to lessen the penalization of more original and

risk-taking approaches, which are more likely to attain

poorer performance than other predictors.

In line with previous assessments, our scoring scheme

puts heavy emphasis on correct backbone atom posi-

tions, because improvements in more fine-grained fea-

tures of model quality can hardly be useful without the

former. However, we observe that 049 (FEIG), 473

(Seok), 453 (KnowMin), and 222 (MULTICOM-CON-

STRUCT) would still be top ranked, had we equally

weighted the five evaluation measures. Only 049 (FEIG)

remains consistently at the top of the ranked list, even

when we leave each evaluation measure out of the calcu-

lations. Team 473 (Seok) drops from second rank only

when GDT-HA is removed from the scoring scheme.

The results presented so far do not help us understand

whether the participants had concentrated on specific

aspects of refinement in their prediction work. To this

end, we carried out a more in-depth analysis of the top

11 predictors’ performance via head-to-head statistical

comparisons, similar to the original CASP7 TBM asses-

sor’s proposal.32 Here, we look at areas where individual

groups tend to outperform the others—see Figure 4—

rather than simply using the outcome of such hypothesis

tests for ranking purposes.

The most striking finding is that 049 (FEIG) signifi-

cantly outstrips all other groups when GDT-HA

improvements are considered; in terms of DRMSD, most

pairs of predictors appear to be statistically indistinguish-

able, because the underlying measurements tend to be

dominated by remaining errors rather than rewarding

the improved regions. Noticeably, the best groups exhibit

an exceptional ability to fix the starting models’ local

stereochemistry—a lesson that they have clearly learnt

since CASP9. Finally, 197 (Mufold) obtains DSphGr values

Figure 2
A selection of the best models submitted in CASP10. The native structure is colored magenta, the starting model is colored green (top row) and
the model is colored cyan (bottom row). Left: TR722TS149_5, DGDT-HA 7.88. Center: TR723TS049_4, DGDT-HA 9.16. Right: TR671TS085_3,

DGDT-HA 9.95. Structures were rendered using the PyMOL Molecular Graphics System.

Figure 3
Median Sp scores for groups participating in the structure refinement category. Bars are shown only for methods that attempted the refinement of
23 targets or more.
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significantly better than other teams included in this

study; however, we would like to add a word of caution,

because at this stage it is not clear yet what is the impact

of residue solvent accessibility and secondary structure

on SphGr scores.

Finally, we monitored the impact of residues charac-

terized as having high flexibility (i.e., high temperature

factors) or forming crystal contacts as judged by visual

inspection of the available experimental structural data

using PyMOL’s symmetry generation option. After

Table II
Summary Information of the Top Ranked Groups in the CASP10 Refinement Category

Group Id Group name Type Predicted targets Median Sp score

049 FEIG Human 27 0.992
473 Seok Human 27 0.674
453 KnowMIN Human 27 0.506
222 MULTICOM-CONSTRUCT Server 27 0.486
197 Mufold Human 27 0.460
198 chuo-fams-server Server 26 0.444
365 chuo-fams Human 27 0.409
434 chuo-fams-consensus Human 27 0.409
471 chuo-binding-sites Human 27 0.407
424 MULTICOM-NOVEL Server 27 0.388
490 Zhang_Refinement Human 27 0.384
468 Mufold-R Human 27 0.303
077 FLOUDAS Human 27 0.274
010 TSlab-refine Human 27 0.271
477 BAKER Human 27 0.264
149 wfFUIK Human 23 0.245
068 FOLDIT Human 23 0.237
165 Void_Crushers Human 23 0.223
085 Anthropic_Dreams Human 23 0.221
045 Zhang_Ab_Initio Human 27 0.220
108 PMS Server 27 0.205
301 LEE Human 27 0.205
079 TASSER Human 27 0.201
479 Boniecki_LoCoGRef Human 26 0.179
315 keasar Human 24 0.168
311 Laufer Human 27 0.147
284 Schroderlab Human 26 0.140
405 Mufold2 Human 27 0.127
294 chuo-repack Human 27 0.091
238 chuo-repack-server Server 26 0.088
317 SHORTLE Human 27 0.087
298 MidwayFolding Human 23 0.066
493 LEEMO Human 26 0.061
373 Kim_Kihara Human 27 0.052
141 Bates_BMM Human 27 0.042
175 FRESS_server Server 27 0.020

Figure 4
Pairwise statistical comparisons among the top 11 groups. For each group and evaluation measure, the bars represent the number of outperformed
groups (significance level of 0.01) on the set of common targets.
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discarding the flagged residues from the evaluation, we

were only able to carry out this last test on GDT-HA

scores, because we could only compute the DQ values for

measures that were based solely on alpha carbon atoms.

Here, too, the overall assessment results changed only to

a limited degree—see Supporting Information Table S2.

Figure 5
Kernel density plots showing aggregate results for the top 10 groups for all targets, using cherry-picked models. Groups are ordered by their overall
performance considering their “Model 1” for each target.
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Finally, we checked to see if the assessment measures cor-

related at all with the resolution or R-factor of the target

structures, but saw no evidence for this (data not

shown), suggesting that the underlying quality of the

experimental data itself was not likely to affect the rank-

ing in any significant way.

Figure 5 confirms that different groups perform better

at different aspects of refinement, while there is some

variation in consistency across all metrics. Groups 049

(FEIG) and 473 (Seok) are the most consistent as they

improve on (or equal) the starting model across all met-

rics more often than not, and both groups improve

GDT-HA in a clear majority of cases. Groups 477

(BAKER) and 149 (wfFUIK) improved GDT-HA signifi-

cantly less frequently but their best models improve

GDT-HA by the largest amount, with the same being

true of MP scores. 049 (FEIG), 197 (Mufold), and149

(wfFUIK) are the top groups at side chain positioning,

with 049 (FEIG) again making the largest improvements,

while 197 (Mufold) and 473 (Seok) are best at improving

SphGr scores.

Protein model refinement and ranking ability

A long established aspect of the CASP experiment is

that up to five models for the same target can be submit-

ted by each participating group, with the caveat that the

evaluation will place main emphasis on the primary

model. The data corresponding to additional models can

assist predictors in testing slightly different versions of

their methods or in exploring completely different strat-

egies—but this is something virtually impossible for

assessors to deal with in a sensible way. It is clearly

unfair to construct a ranking of groups where single sub-

mitted models from one group are compared to models

cherry-picked from a set of five from another group.

Nevertheless, we were interested in knowing whether any

of the supplementary predictions would in fact offer bet-

ter solutions to the refinement problems. For this pur-

pose, we first selected the best (cherry-picked) prediction

m̂g ;t that each group g had produced for a specific target

t. This was done by pooling together all assessed submis-

sions for t, then calculating the associated Sp scores using

this larger population of models, and finally taking m̂g ;t

as the entry from g with largest Sp score. We took the

median of the target-based Sp value distributions for

those teams predicting 23 or more targets, and we plot-

ted them in Figure 6. The underlying statistics for all

assessed groups can be found in the Supporting Informa-

tion Table S3. Overall, as might be expected, an increased

number of participants attain scores higher than the

baseline method when cherry-picking is allowed, but the

top-ranked groups remain essentially the same.

Because there is no formal requirement for predictors

to rank their five models (other than the reasonable

expectation that model 1 should be the best), it is not

possible to go too far in evaluating the ability of groups

to correctly identify the best model from a set of decoys.

However, out of curiosity we did look to see to what

extent predictors had correctly labeled their best model

as model 1. To examine this, we used the same data set

as described above, and for each group we calculated the

percentage of predicted targets for which model 1 would

have been cherry-picked a posteriori. A graphical sum-

mary of the results of this analysis for groups submitting

five models for 23 or more targets is included in Figure

7. The results of this simple analysis show that there is

no correlation between the predictors’ ability to identify

the best decoys and their refinement capability. At first

sight this may look disappointing, but it is important to

remember that predictors were not required to explicitly

rank their models. These results are most likely simply

down to the different “gaming” strategies being used, or

in some cases evidence that predictors were indeed inter-

ested in trying quite different approaches for their own

research interest. If we were to try to make any sense of

Figure 6
Median Sp scores based on the best models that each group submitted for each target. Only data for predictors trying to refine at least 23 targets

are plotted.
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the data, we might take a closer look at the level of varia-

tion in all model quality evaluation measures across all

targets, and suggest that some groups—such as 473

(Seok), 453 (KnowMin), and 222 (MULTICOM-CON-

STRUCT)—tend to make rather conservative changes to

the starting models, and these changes may be easier to

rank. Contrary to this, group 049 (FEIG) generally makes

more substantial alterations to the starting models, which

clearly increase the chance of making a significant move

closer to the native conformation, but at the expense of

giving a lower confidence level in which of these bolder

moves is best. This aspect of the CASP refinement experi-

ment certainly calls for a lot more attention in the future.

Molecular replacement

One important aspect of refinement is to ask whether

the improvements being made have any practical benefit.

We already know that the refined models are still closer to

the starting models than they are to the experimental

structure, but are there applications where even the cur-

rent fairly conservative levels of refinement are still useful?

Along similar lines to previous studies, we assessed the

feasibility of using these models for X-ray molecular

replacement (MR) in the 13 cases where the target struc-

ture was solved by X-ray crystallography and the necessary

structure factor data were available before the final meet-

ing. Table III shows the LLG scores for starting models

and the best model for each of the 13 targets for which

suitable experimental was available. Results indicate that

in all cases, the best refined models produce a higher LLG

score than the starting model, while in three cases, refine-

ment results in LLG scores >60 where the starting model

scores were <60, suggesting that the structure of these

proteins may have been solvable in a completely auto-

mated way only when using the best refined model. These

results clearly suggest that refinement can be of practical

benefit to X-ray crystallographers. Additionally, the rela-

tive fast compute time required to scan through a large

number of models in search of a good solution means

that the difficulty in identifying the best models need not

impede the use of refinement techniques for MR. In terms

of group performance, we also examined how frequently

individual groups were able to produce models with LLG

>60 (Table IV). Ten groups were able to produce at least

one model above this threshold, though the top six

groups are distinct in succeeding in producing models

with LLG >60 in between 8 and 11 of the 13 cases.

Refinement assessment ideas for future
CASPs

After we had completed the core assessment and were

happy that we had come up with a robust overall rank-

ing of groups, we spent a little time exploring other ideas

that might be polished up for use in future refinement

sections of CASP.

Evaluating hydrogen bonding

Although the GDC-SC, SphGr, and MP scores aim at

gauging relatively finer aspects of model quality than

Figure 7
Percentage of best entries correctly labeled as model 1 that each team submitted. Bars are shown only for predictors providing 5 models for 23 or

more targets. Groups are listed according to the official ranking based on model 1 data.

Table III
Molecular Replacement Results Showing LLG Scores for Starting Models

and Best Predictions

Target Starting model's LLG Best prediction Best model's LLG

TR644 146.95 TR644TS124_1 275.13
TR663 43.31 TR663TS085_2 80.10
TR671 47.29 TR671TS479_4 60.23
TR674 96.42 TR674TS028_1 174.63
TR679 29.68 TR679TS197_2 54.35
TR681 392.24 TR681TS473_3 891.81
TR688 162.88 TR688TS049_2 193.26
TR689 914.95 TR689TS108_4 1097.58
TR704 62.07 TR704TS284_4 103.99
TR705 62.06 TR705TS473_1 68.55
TR712 910.16 TR712TS049_3 1127.80
TR747 51.40 TR747TS165_2 71.51
TR752 116.31 TR752TS197_4 181.24
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GDT-HA and RMSD typically do, most of these metrics

suffer from being fairly hard to interpret by nonspecial-

ists. RMSD tends to be well understood by theoreticians

and experimentalists alike, but the other scores generally

do not give experimentalists any intuitive feel as to how

they relate to physical (or chemical) reality. In CASP7,

the TBM assessor suggested that examining the correct-

ness of H-bond assignments could help make the evalua-

tion more detailed and intuitive.32 This step was taken

further in CASP8 with the distinction between the inter-

actions involving only main chain atoms and those

established by all other pairs of atoms.25,33 One positive

aspect of this view of model quality is that experimental

structural biologists are much more familiar with aspects

of hydrogen bond geometry than they are with GDT-HA

scores, for example. There are clearly many technical dif-

ficulties in considering hydrogen bonding for model

quality evaluation. Firstly, how hydrogen bonds should

be objectively defined from a set of protein coordinates.

Secondly, the relationship between a protein fold and its

hydrogen bonding is variable. For example, a beta-sheet

rich structure will clearly be more sensitive to hydrogen

bond network disruption than a mainly helical structure.

In this pilot study, we felt that the issue of protein fold

bias was probably less of an issue. However, we acknowl-

edge that some kind of weighting depending on the mix-

ture of short-range versus long-range hydrogen bonding

would be necessary in a full-fledged investigation.

We computed precision and recall for both main chain

and side chain atom pairs by using the HBPLUS pro-

gram29 to define hydrogen bonds in both models and

experimental structures. The hydrogen bonds found in

the experimental structures were treated as the observa-

tions (binary variables) and the hydrogen bonds found

in the models treated as the predictions. A model that

has the exact same set of hydrogen bonds as the experi-

mental structure would end up with a precision of 1.0

and recall of 1.0, and therefore an F1 score also of 1.0.

main chain hydrogen bond results turned out to be well

correlated with the other measures we had used in

assessment; therefore groups attaining high Sp scores

tended to rank similarly in this test as well (data not

shown). To our surprise, however, the side chain results

appeared entirely anomalous; with many more local side

chain H-bonds in many of the models than were

observed in the experimental structures. After the CASP

meeting, it became clear that this issue mainly affects

predictions obtained from MD simulations as compared

to those from other approaches—for example, template

or fragment-based methods. It is likely that such incon-

sistencies arise from surface residues, which would other-

wise be competing with the surrounding solvent for H-

bonding potential. Possibly the differences are simply

down to the fact that the experimental structures are

time averaged and the MD models are snapshots taken

at a particular time point. Certainly, factoring residue

solvent accessibility in the analysis might help rationalize

the results and establish a more comprehensive and

meaningful picture in the future. Finally, we would like

to stress that both predicted and experimental structures

lack explicit coordinates for H atoms. HBPLUS attempts

to position hydrogen atoms in a reasonably unbiased, yet

admittedly crude way, so these findings should be treated

with caution.

Evaluating energetic changes using FlexE

One thing that we felt was slightly lacking from our

assessment was finding a sensible way to properly reward

more adventurous approaches. Of course the backbone

metrics do give some idea as to which groups made the

largest overall move towards the native structure, but

this tells only part of the story. Some quite large changes

in RMSD, for example, can be easily achieved in some

cases by making fairly simple adjustments to a model. A

good example of this would be rigid body domain

motions, where just a few main chain torsion angle

adjustments can radically change the relative orientation

of a pair of domains and greatly reduce the calculated

RMSD. Another aspect might be the relative difficulty

between making changes near the termini of a model

compared to carrying out radical changes to the core

strands in a buried sheet.

Our suggestion here is that future refinement assess-

ments might take into account some kind of analysis of

the network of interresidue distances in the native struc-

ture. Making improvements to highly connected parts of

a model should in some way be given more credit than

simply reorienting rigid bodies sharing few contacts.

Having used FlexE to measure deformation energy dur-

ing target selection, we were keen to see if it could be

used for this purpose too. This would entail using FlexE

in a nonstandard way, as normally the reference structure

for FlexE is assumed to be the experimental structure. In

our application, we asked FlexE to calculate the energy

changes between the starting model, as reference, and

each of the submitted models. Therefore, a way of

rewarding more adventurous groups would be to assign

higher weight to models that produce the higher energy

changes to the starting models. This proved rather harder

to get right than we first thought, since larger FlexE

Table IV
Number of Targets Where MR LLG Scores Were >60, Indicating a Via-

ble MR Solution Would likely be Found

Group Id Predictions with LLG> 60 Average DLLG

197 11 24.63
049 10 49.76
108 10 16.41
301 10 16.41
222 9 10.38
473 8 29.22
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scores (e.g., >5 kcal/mol/residue) resulted in models

with negative DGDT-HA in a clear majority (�88%) of

cases; a future strategy may therefore be to scale the

overall score for a given target by the FlexE score only

when DGDT-HA is positive. Where DGDT-HA was posi-

tive, FlexE scores were only >5 kcal/mol/residue in �6%

of cases for top ranked models; in two cases models with

energy differences >25 kcal/mol/residue were produced,

albeit with a maximum DGDT-HA of 3.79, while the

FlexE energy difference of the model with the highest

DGDT-HA value of 7.03 was only 4.46 kcal/mol/residue.

Averaging FlexE scores across all top ranked models,

groups 477 (BAKER) and 149 (wfFUIK) appeared to be

the most adventurous in their submitted models, with

relatively large energy changes although this came at the

expense of improving GDT-HA in only 4 or 5 cases

(Table V). The next best group was 473 (Seok), who

struck a fairly good balance between adventurous and

conservative strategies.

Although these results are interesting, we still feel that

further work is needed to get this aspect of future assess-

ments properly integrated. Getting the right balance

between conservative and adventurous strategies is just as

much a problem for assessors as it is for the predictors.

DISCUSSION

Progress since CASP9

At every CASP meeting, the same important question

is always asked: has there been progress since the last

CASP? Progress since CASP9 is hard to measure for a

variety of the usual reasons: targets vary, and in the

absence of an objective measure of target difficulty it is

impossible to determine how comparable CASP9 and

CASP10 targets are. Target difficulty has always proven

hard to quantify, even for the simpler category of TBM,

and for model refinement we really have no idea how it

might be done. Even ignoring the issues of target diffi-

culty, direct comparison with the tabulated results from

the previous assessor is complicated by the fact that we

have also modified the overall ranking score slightly since

CASP9, with negative ZQ scores now being set to zero.

Despite this, we can look at the results qualitatively, and

observe that group 049 (FEIG) has made consistent

improvements across the clear majority of targets, and

with almost double the number of targets since CASP9,

the significance of this achievement alone must be very

high. Comparing the average overall scores for the

groups that participated in both CASP9 and CASP10,

Group 049 (FEIG) is the only group showing a signifi-

cant improvement (DSp 5 0.75), with 473 (Seok) and

453 (KnowMIN) showing little or no change, and 477

(BAKER) apparently performing slightly worse. The

results for group 453 were certainly consistent with the

expectations of the method’s developers, as they con-

firmed the method itself was essentially unchanged from

CASP9. Another observation we can make is that, for the

first time, the best refinement strategy was based on

molecular dynamic simulations, with previous CASP

top-ranked refinement teams having relied upon

knowledge-based statistical potentials. It would be inap-

propriate to assign a positive or negative direction to this

change, as there is no reason to consider MD to be

inherently better (or worse) than knowledge-based

approaches. However, it certainly adds to the variety of

successful methods available, and at the very least it sug-

gests that the promise of MD in the field of protein

modeling, having disappointed for so long, may at last

be bearing fruit.

Ideas for future CASP refinement
experiments

Our experiences in assessing the CASP10 refinement

category have led us to the following suggestions for

future experiments:

– The addition of a scoring term to reward adventur-

ous groups that make higher energy changes to

structures should be considered. This would serve as

encouragement for the community to attempt larger

remodeling and to push predictions closer to the

target structure than the starting model.

– The use of MP scores is perhaps a little incongruous

with other aspects of the evaluation procedure, as it

is essentially a statistical evaluation method rather

than a method based around direct comparison with

an experimental structure. A further issue is that

groups may be over-fitting their algorithms to satisfy

the narrow requirements of Molprobity, and that a

broader range of methods aimed at assessing stereo-

chemical compatibility between models and the

experimental structures may be needed to properly

ensure progress in this area.

– Assessing improvement since the previous CASP is

very difficult, given that refinement algorithms, tar-

gets and groups have changed. Asking groups to

submit predictions using a freeze of their method

Table V
Average and Maximum FlexE Energy Scores (kcal/mol/residue) for the

Top 10 Ranked Groups Where “Model 1” DGDT-HA Was Positive

Group Id Targets with DGDT-HA> 0 Average FlexE Max. FlexE

049 24 0.31 0.91
473 16 1.15 10.34
197 9 0.91 3.22
453 15 0.29 0.99
077 7 0.51 1.40
222 12 0.15 0.34
477 4 5.51 11.79
149 5 2.60 7.32
424 8 0.33 1.28
365 11 0.06 0.09
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from the previous CASP, in addition to predictions

using their most recent methods, would allow asses-

sors to research whether a particular group had

made progress. Even if a small number of groups

participated in this way, it would provide a more

objective measure of progress as a community than

it is currently available.

– Some groups were clearly following a strategy of

selecting alternative starting models from server

models rather than actually trying to refine the

given starting model as intended. This strategy was

generally unsuccessful, mainly because we had

already picked the starting models from the best

available server models. Because CASP does not lay

down rules as to which method should be used,

these predictors cannot be blamed for deciding to

follow that strategy. Clearly, however, it is not in

the spirit of the experiment that we are trying to

carry out. At the very least this may require some

kind of clarification to predictors in the future,

though at the end of the day it is almost impossible

to police. The only complete solution would prob-

ably be for predictors to make their code available

for independent testing.

– There is some doubt as to whether the provision of

hints is useful, partly as it seems that the majority

of groups do not use them. There is also the ques-

tion of how realistic it is to be told which parts of a

model might need special attention.

– Despite good progress in selecting additional targets

compared to the past, more targets are always going

to allow deeper analysis. We feel that this time

around we had sufficient targets to do the basic job

of assessment, but still not enough targets to address

more detailed questions such as what parts of mod-

els are being modeled best by different approaches.

CONCLUSIONS

Our assessment of the CASP10 refinement category

suggests that there has indeed been important progress

since CASP9 several groups achieved better results than

the na€ıve control method, while the top ranked group

(FEIG) has demonstrated high consistency in successfully

improving almost all of the starting models. The strategy

of this predictor is relatively conservative in terms of

conformational changes, although other groups such as

477 (BAKER) were more adventurous and achieved some

success albeit at the expense of consistency. In a few spo-

radic cases, the various Foldit groups, who employed

large distributed networks of humans playing the Foldit

game for model refinement, produced the best submitted

model for a target. Unfortunately, they submitted models

further away from native than the starting model more

frequently. Most groups also demonstrated a clear

improvement in their ability to produce stereochemically

sound models, even when they were not able to improve

the overall accuracy of the starting model. Being able to

improve stereochemical quality substantially, without sig-

nificantly reducing starting model accuracy, is a useful

result when taken in isolation.

Despite these very satisfying improvements compared

to CASP9, a number of challenges clearly remain. While

five groups outperform the na€ıve method, the majority

of groups do not-that is they effectively degrade the

starting model more often than they improve it. The

absolute minimum requirement for a refinement method

is to at least “do no harm” to a given model. Also, it

must be said that successful refinement efforts generally

result in fairly modest improvements, with no groups

managing to produce models that are more similar to

the native state than to the starting model. The latter

issue suggests that much broader sampling strategies will

be needed if momentum in this category is to be main-

tained. And much like CASP9, there is still no evidence

that groups are able to pick up the best model from the

alternatives generated. In fairness, the experiment is not

set up to properly evaluate decoy selection for refined

models, and not every predictor even submits alternative

models, so we cannot make definitive statements on this

point. However, the fact that there were significantly bet-

ter models submitted that were not entered as the pri-

mary model seems to suggest that the problem of

properly scoring models in the endgame of protein mod-

eling still remains unsolved.

No matter what benchmarking strategy is taken, ulti-

mately the true test of an algorithm or methodology is

whether or not it has any practical value in the real

world. Refined models may be measurably and statisti-

cally better than the starting models, but are they better

in any truly useful way? We should therefore like to fin-

ish on a positive note by pointing out that, in general,

the top groups were indeed able to produce refined

models that are more useful than the starting models in

an important real-world application, namely that of

X-ray molecular replacement. These results are

extremely encouraging and will hopefully help drive the

community to greater successes in the model refinement

field.
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