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Epitaxial graphene mesas and ribbons are investigated using terahertz (THz) near-field microscopy

to probe surface plasmon excitation and THz transmission properties on the sub-wavelength scale.

The THz near-field images show variation of graphene properties on a scale smaller than the

wavelength, and excitation of THz surface waves occurring at graphene edges, similar to that

observed at metallic edges. The Fresnel reflection at the substrate SiC/air interface is also found to

be altered by the presence of graphene ribbon arrays, leading to either reduced or enhanced

transmission of the THz wave depending on the wave polarization and the ribbon width. VC 2013
Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4820811]

Graphene and its nanostructures have recently emerged

as a promising platform for next-generation nano-plasmonic

devices.1–6 It has been shown experimentally that patterned

graphene structures, such as graphene ribbon arrays, are ca-

pable of hosting surface plasmons with long lifetime and a

high degree of optical field confinement, owing to the excep-

tionally low ohmic loss of the material.1,2,7–9 The frequency

of the plasmon mode is continuously tuneable within the ter-

ahertz (THz) spectral range by varying the array dimension

and the carrier density in graphene. The plasmon modes can

potentially be used in a range of device applications from

tuneable THz filters and THz sensors to graphene-based in-

formation processing and communications.

Due to the localized nature of THz surface plasmon

waves in graphene, their direct experimental detection needs

to be performed in a region near the surface. Near-field mi-

croscopy provides this capability and can enable investiga-

tions of plasmon effects in graphene.4,5,10 Recently, THz

near-field microscopy with an integrated sub-wavelength

aperture probe has proven to be a sensitive tool in exploring

THz surface waves on metallic surfaces.11,12 In application

to graphene, this method potentially allows for probing the

local transmission properties (with a spatial resolution of

5–10 lm (Ref. 13)), as well as the processes of plasmon

mode excitation by the incident THz radiation and the proc-

esses of plasmon wave propagation along the surface. It is

worth noting that far-field THz spectroscopy and imaging of

graphene has already been conducted by several groups.14–16

These techniques enable non-contact characterization of the

THz conductivity of graphene and provide direct information

about the doping level and sample quality. Spatial resolution

of the far-field methods is, however, limited by diffraction.

In this letter, we report on near-field THz imaging of

epitaxial graphene mesas and ribbon arrays and provide a

side-by-side comparison with a noble metal (Au) film. We

demonstrate that the local THz transmission properties of

graphene structures are modified by the presence of confined

plasmon mode (in ribbons) and that the propagating surface

plasmon waves are excited at the edges of graphene.

Multilayer epitaxial graphene samples (3.4 nm and

7.1 nm thick) grown on the C-face of SiC23 are patterned

into mesa and ribbon array structures via electron-beam

lithography in a large writing field, followed by oxygen

plasma etching and vacuum annealing.9 The samples are illu-

minated by a horizontally polarized beam of broadband

(0.5-2.5 THz) THz pulses generated through optical rectifica-

tion in a ZnTe crystal12 and delivered via a hollow cylindri-

cal THz waveguide17 (1.6 mm in diameter), as shown in

Fig. 1(a). The waveguide provides a narrow angular spec-

trum distribution of the incident wave.17 It also preserves the

incident THz field distribution with respect to the imaged

sample. In this experimental arrangement, the near-field

FIG. 1. (a) Schematic diagram of the near-field system for THz microscopy

of graphene samples. Schematic diagram (b) and the corresponding THz

near-field image (c) of graphene ribbon arrays arranged in 400 lm� 400 lm

squares. The spacing between the squares is 100 lm. The electric field am-

plitude in (c) is normalized to the field in the center of the THz beam meas-

ured without the sample (d).
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images can be interpreted as the electric field distribution

formed near the graphene structures illuminated by a

�0.5 mm diameter THz beam (intensity FWHM), fixed with

respect to the sample.

It is important to note that in the near-field region there

are three possible contributions to the detected THz electric

field: (1) the transmitted wave, (2) the confined plasmon

mode (in ribbons) with an in-plane wave vector (q 6¼ 0) cor-

responding to the ribbon array period, and (3) the surface

plasmon wave that can be excited at the pattern edges (q
� 0). These contributions are coherent and, therefore, their

interference must be taken into account. To separate the in-

terference effects from the intrinsic transmission properties,

the detected signal is analyzed in the time domain rather

than in the frequency domain: the fields due to the surface

plasmon and the ribbon plasmon mode are expected to ex-

hibit a temporal delay with respect to the transmitted wave.

In this work, near-field images are obtained with a 10 lm

aperture probe scanning over the sample at a distance of less

than 10 lm. The corresponding spatial resolution is, there-

fore, �10 lm and any variation of graphene properties on a

smaller scale cannot be resolved.11

First, we consider the effect of graphene ribbon arrays

on the transmitted THz field using an array consisting of

7.1 nm thick and 200 nm wide ribbons separated by 200 nm.

The ribbons, 400 lm in length, form square-shaped ribbon

arrays (400 lm� 400 lm), as illustrated schematically in

Fig. 1(b). The ribbons are oriented parallel to the incident

THz pulse polarization (along the x-axis). Figures 1(c) and

1(d) show a near-field THz image of the sample and an

image of the beam profile (after sample is removed), respec-

tively, with the electric field amplitude taken at the time

delay corresponding to the pulse center. The detected field is

primarily dominated by the transmitted wave contribution.

Quantitative analysis of Fig. 1(c) reveals that the ampli-

tude of the transmitted electric field is decreased by �20% in

the areas covered by graphene, making the ribbon squares

darker in the near-field image. The Fourier transform of the

transmitted and incident pulses shows that the transmission

coefficient is frequency independent throughout the spectral

range of our measurement (0.5–2.5 THz). This result is con-

sistent with our recent work on the same sample,9 where the

plasmon mode of top graphene layers is found to be at xpl

� 4.6 THz. xpl is expected to be at an even higher frequency

for the first few layers at the SiC-graphene interface due to the

higher carrier concentration. The confined plasmon modes in

graphene ribbons1,8,9 or domain structures,3 therefore, are not

responsible for the observed transmission properties.

The local transmission varies slightly (65%) across the

graphene areas and the variation appears to be more pro-

nounced near the square edges/corners. We note that the

observed THz transmission variation is partially due to the

slightly non-uniform thickness of multilayer epitaxial gra-

phene,18 found in optical microscopy (see also Fig. 2(a)) and

atomic force microscopy measurements (not shown).

To investigate further the origin of non-uniform field

detected over the surface of graphene, near-field transmission

properties are mapped for a 3.4 nm thick control sample con-

sisting of 200 lm� 200 lm graphene mesas. Figure 2 presents

an optical image of the mesa and the instantaneous THz

near-field images at two moments within the duration of THz

pulse (Fig. 2(b)). Here, the highest contrast is observed in the

image corresponding to the amplitude of the incident field

approaching zero: Einc(t)¼ 0, e.g., at t¼ 2.23 ps. Panels (c)

and (d) in Fig. 2 compare the near-field images measured with

two different scan steps, and repeatable electric field patterns

are observed across the mesa. The patterns are partially corre-

lated with visible variations (owing to thickness variation) in

the optical image of Fig. 2(a). A similar pattern is also

observed in Figs. 2(e) and 2(f), recorded at t¼ 1.25 ps, at the

negative peak of the first cycle of the THz pulse.

The detected field in Fig. 2 contains two contributions:

the transmitted wave and surface waves excited at the mesa

edges. The evidence of surface wave excitation at the mesa

edges can be extracted from the THz space-time maps and

evaluated in comparison with this effect observed on the

noble metal surface. Figure 3(a) shows a THz image of a

200 nm thick Au reference square (left) and a 3.4 nm thick

graphene mesa (right). The thickness of the Au square is

large enough to block the THz wave completely; therefore,

any THz field detected in the Au area is due to the surface

waves excited at the edges.12

To probe the surface wave excitation, space-time scans

are taken along the horizontal and vertical directions across

both graphene and Au structures. In the case of Au, typical

surface wave signatures are observed: the space-time wave-

fronts become tilted in the Au region in the scan parallel to

the polarization of the incident field, whereas a phase shift is

present for the orthogonal scan.12,13,19 These maps indicate

that the surface waves are excited from the opposite sides of

the Au square and they are traveling along the metallic

FIG. 2. (a) Optical image of a 3.4 nm thick epitaxial graphene mesa (bottom)

and a 1 lm wide graphene ribbon array (top). The ribbons are oriented along

the vertical direction. (b) Time-domain waveform of the incident THz pulse

measured by positioning the near-field probe over the SiC substrate. Arrows

indicate two moments at which the near-field images are recorded. (c)–(f)

THz images of the mesa area in (a), showing the instantaneous electric field

at t¼ 2.23 ps (c),(d) and at t¼ 1.25 ps (e),(f). The left/right panels of

the same t represent consecutive measurements with step size 6.25 lm/

12.5 lm.
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surface. The surface waves arrive at the center of the square

with a time delay of �0.3 ps, giving rise to the phase shift in

the vertical space-time scan of Fig. 3(c).

In order to observe surface waves on graphene mesa, the

transmitted THz wave (Etr), which gives the largest contribu-

tion to the detected signal, must be subtracted from the

detected field (Edet). As the transmission coefficient exhibits

no significant frequency dependence, Etr(t) can be assumed

to be a replica of the incident field (Einc) scaled by a constant

a, Etr(t)¼ a�Einc(t), where a � 0.8 (for the graphene mesa

sample) and Einc(t) is an average THz pulse waveform meas-

ured over an area of the sample where no graphene is pres-

ent. Space-time maps of E(x, t)¼Edet(x, t) � a�Einc(t) and

E(y, t)¼Edet(y, t) � a�Einc(t) are plotted in Figs. 3(d) and

3(e). Similar to the 200 nm thick Au square, both the xt-
and yt-maps show signatures of a surface wave excited from

the opposite sides of the graphene mesa. The surface waves

propagate along the graphene surface and arrive at the mesa

center with a temporal delay. The similarity of the space-

time maps for the metallic square and the graphene mesa

indicate that the surface wave excitation at the mesa edges is

the most probable mechanism. We note that the incident field

is determined by the waveguide geometry and it has no

k-vector components that can couple to surface plasmons

directly. Therefore, the only possible mechanism is the sur-

face wave excitation at a surface discontinuity, which is the

mesa edge in our sample.

Having considered the non-resonant effects observed on

graphene mesas and ribbon arrays with small period, we now

discuss the effect of ribbon arrays for which the plasmon

mode frequency of the top graphene layers is expected to be

xpl � 2 THz, given that xpl / (W)1/2. The ribbons are

W¼ 1 lm in width and 200 lm in length, and the spacing

between the adjacent ribbons is 1.2 lm. Two principal polar-

izations of the incident THz pulse, with electric field parallel

or perpendicular to the ribbon direction, are examined (Figs.

4(a) and 4(b)). In the first case, the ribbon periodicity is

expected to exhibit no significant effect on the transmission

properties, whereas it directly affects frequency of the con-

fined plasmon mode in the latter case. Indeed, the observed

THz transmission of the 1 lm wide graphene ribbon arrays

varies noticeably for the two orthogonal polarizations. This

behavior is markedly different from that of 200 nm wide rib-

bon arrays with 200 nm spacing (Fig. 1(c)) for which we find

no noticeable difference in transmission for both polariza-

tions in the spectral range from 0.5 to 2.5 THz.

Figures 4(c)–4(f) summarize the THz space-time maps

for two line scans with the ribbon orientation parallel and

perpendicular to the incident THz field polarization. The

change in the transmission coefficient is evident in Figs. 4(e)

and 4(f), where Edet � a�Einc is plotted. For the ribbons

parallel to the field, the xt-maps exhibit reduction of the

detected field due to the presence of graphene ribbons on the

right-hand side of the map. This reduction is �27% 6 5%

compared to the SiC/air interface and it is slightly

stronger than the reduction observed for the graphene mesa

(�20% 6 5%) in Fig. 3. The difference is likely to be caused

by additional absorption or scattering on ribbon edges. When

the ribbons are oriented perpendicular to the field, however,

the transmitted field is found to be noticeably stronger

FIG. 3. (a) THz image of a 3.4 nm thick 200 lm� 200 lm epitaxial gra-

phene mesa (right) and a 200 nm thick 207 lm� 207 lm Au square (left).

The incident THz pulse is polarized along the horizontal direction. (b)–(e)

Space-time maps measured along the horizontal (b) and (d) and vertical (c)

and (e) directions through the square centers: for the Au square, maps (b)

and (c) show the detected electric field, Edet (normalized to the peak value);

for the graphene mesa, maps (d) and (e) show the difference of the detected

field and the scaled incident field, (Edet � a�Einc)/Einc, (where a¼ 0.8) to

emphasize the effect of surface plasmon waves.

FIG. 4. Optical images of 1 lm wide graphene ribbon arrays (graphene

thickness is 3.4 nm, the ribbons are 200 lm in length, and the spacing

between the adjacent ribbons is 1.2 lm) oriented parallel (a) or perpendicu-

lar (b) to the incident electric field vector. Panels (c) and (d) show the space-

time maps measured across the pattern edge, while panels (e) and (f) empha-

size the difference in electric field (Edet � a�Einc)/Einc, with a¼ 0.73 for

(e) and a¼ 1 for (f), demonstrating the reduced (e) and enhanced (f) trans-

mission through the ribbons with respect to the SiC substrate.
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compared to the field detected over the blank SiC substrate.

By adjusting the value of a, we determine that the amplitude

transmission for the ribbon array in this case is increased by

�50% compared to that of the SiC/air interface.

The reduced/enhanced transmission shows the effect of

the ribbons on properties of the SiC/graphene/air interface.

The Fresnel reflection coefficient at the SiC/air interface is

relatively high due to the large refractive index of SiC (n
� 3.0). �25% of the incident wave (intensity) is reflected at

the SiC/air interface. The ribbons oriented perpendicular to

the polarization appear to provide better impedance match-

ing for the interface and lead to a higher transmission coeffi-

cient. For this orientation, the confined plasmon mode is

expected to form in the ribbons array. The plasmon mode

may result in the observed effect of enhanced transmission.

A similar effect of enhanced transmission due to plasmons in

metals has been observed previously for sub-wavelength

hole arrays20 and slit arrays in metallic films.21 It must be

noted, however, that THz wave coupling into the near-field

probe may be different for the surface plasmon mode and for

the transverse incident wave. Further investigations are

needed for quantifying this effect.

Frequency of the surface plasmon mode can be tuned by

chemical doping, xpl / (nel)
1/4, where nel is the carrier den-

sity. Exposing graphene ribbons to moisture or solvent

(blown dry by N2) is expected to induce p-type carriers22 and

to result in a higher plasmon mode frequency (presumably

outside of our measurement frequency range). Figures

2(c)–2(f) show the THz images of the same sample as in

Fig. 4 after chemical doping, where the ribbon array, located

in the top half of the imaged area (Fig. 2(a)), exhibits no con-

trast compared to SiC surface. This observation implies that

the enhanced THz transmission of undoped graphene ribbons

(treated by vacuum annealing) might be due to the coupling

of the incident THz wave to the plasmon mode.

In summary, we have performed a THz near-field micros-

copy study of epitaxial graphene mesas and ribbon arrays and

observed surface waves excited at the edges of graphene

structures. We find that the THz transmission through gra-

phene ribbon arrays on SiC can be either reduced or enhanced,

depending on the orientation of the ribbon with respect to the

polarization of the THz wave. The enhanced transmission is

observed in the near field zone for ribbons with the expected

plasmon mode frequency of top graphene layers within the

spectral range of the incident THz pulses (0.5–2.5 THz).

Chemical doping of graphene and reducing the ribbon perio-

dicity, which lead to an increase of the plasmon mode fre-

quency, show reduced THz transmission. These intriguing

properties of graphene hold promise for new applications in

THz spectroscopy, sensing, imaging, and communications.

The application of the THz near-field microscopy technique

also opens the possibility of non-invasive probing of local

THz properties of graphene with sub-wavelength spatial reso-

lution (�10 lm in this work) and for investigations of surface

plasmon waves in graphene structures.
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