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Abstract. We present a time-dependent method based on the single particle
electron density matrix that allows the electronic and ionic degrees of freedom
to be modeled within the Ehrenfest approximation in the presence of open
boundaries. We describe a practical implementation using tight binding, and
use it to investigate steady-state conduction through a single atom device and to
perform molecular dynamics. We find that in the Ehrenfest approximation an
electric current allows both ionic heating and cooling to take place, depending on
the bias.
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One very important application of nanotechnology is to the development of
nanoscale electronic devices, possibly molecular[1, 2], that offer higher performance
and lower power consumption than present technologies. As device sizes are scaled
down, heat production becomes an increasingly important design consideration.
There are well developed modeling schemes now available to evaluate current-voltage
characteristics for nanoscale devices[3, 4, 5, 6, 7, 8, 9, 10], but there are less satisfactory
schemes for evaluating the rate of heat generation[11].

Within a Born-Oppenheimer framework, heating by an electric current occurs as
a result of transitions between electronic states induced by atomic motion (including
zero point motion in the quantum case)[12, 11]. The prevailing atomistic models
assume electrons permanently occupy well-defined states characterised by two chemical
potentials, and thus eliminate current induced heating, despite producing ionic forces.

To progress we need an approach in which ions and electrons evolve
simultaneously in a consistent manner. There exist approaches of varying
complexity[13, 14, 15]. Here, we consider the simplest in which ions move along unique
classical trajectories determined by Hellmann-Feynman[16] forces (the Ehrenfest
approximation extended to open-boundary problems). We neglect all quantum
contributions to ionic motion. As we shall see, the Ehrenfest approximation is not
adequate to model heating in all cases. However, in a paper in preparation we analyze
the reasons for the errors and propose a solution that is an extension of the method
presented here.

Here we describe a time-dependent formalism that is suitable for tight binding
(TB) models implemented using density matrices. TB is chosen beause it is the
simplest quantum mechanical model of electrons that delivers quantitative results[17].
Density matrices are used because they provide a very compact description of the
state of all the electrons[18, 19], and have proven very useful in the static description
of materials in the context of linear scaling methods[20]. Note that those parts of the
density matrix treated explicitly must have a finite range if they are to be used in
practical calculations. This restriction is elaborated on below.
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Figure 1. The circuit used to establish a current. The capacitor represents the
non-equilibrium source of charge, and the resistor the device through which we
wish to drive the current.

The physical model underpinning our method is represented in Fig. 1. A capacitor
in series with a resistor form a complete circuit. For times t < 0, an external potential
(equal to the chemical potential difference between the two plates of the capacitor)
is applied to the left side of the circuit producing an excess of electrons on the left
and a deficit on the right. Most of the charge separation appears on the capacitor to
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minimise the energy.
At time t = 0, the external potential is removed, and the electrons move so as to

eliminate the imbalance, thereby producing a current flow through the resistor and a
potential drop across it. If Ψ0 is the many-body wave function for times t ≤ 0 and
the many-body Hamiltonian for t ≥ 0 is Ĥ, then the wave function for t ≥ 0 (Ψ(t))
satisfies Ψ(t) = exp(Ĥt/ih̄)Ψ0, provided ∂Ĥ/∂t = 0. In the absence of dissipation
this leads to oscillatory solutions. However, if RC >> t >> h̄/W (W is the range
of eigenvalues of Ĥ whose corresponding vectors contribute to Ψ0), there will be a
quasi-steady-state. It this time range in which we are interested. (This approach is
similar to that developed recently by Baer and Neuhauser[21].)

In the quasi-steady-state regime most of the potential drop should occur across
the resistor. This allows us to focus on the resistor, and to treat the capacitor and
most of the wire as an external charge source and sink, which can be modeled by open
boundary conditions. This is similar in spirit to the Landauer approach[3] in which
only the transmission coefficient for the device is evaluated.

To simplify the time-dependent problem we reduce the full many-body formalism
to an effective single particle one by working with time-dependent density functional
theory (DFT)[22]. The key equations are:

n(~r, t) =
∑

n

fn|ψn(~r, t)|2

Ĥksψn(~r, t) = ih̄
∂

∂t
ψn(~r, t)

Ĥks = T̂ + V̂eI + V̂Ha[n] + V̂xc[n]

MI
d2 ~RI

dt2
= −~∇IVII −

∫
d~r n(~r, t)~∇IVeI(~r) (1)

The last equation constitutes the Ehrenfest approximation. Here, n(~r, t) is the charge
density, fn is the orbital occupancy, ψn(~r, t) is a spin-dependent wavefunction of the
Kohn-Sham hamiltonian Ĥks, T̂ is the kinetic energy operator, V̂eI is the electron-ion
interaction, V̂Ha is the Hartree (electrostatic) interaction, V̂xc is the spin-dependent
exchange and correlation potential, V̂II is the ion-ion repulsion, MI is the mass of ion I
and ~RI is its position. Note that charge self-consistency is automatically accomodated
by these equations. While it is perfectly possible to work directly with these equations
(once suitable approximations for V̂xc have been made), we prefer to work with the
single particle density matrix ρ(~r, ~r′; t), where

ρ(~r, ~r′; t) =
∑

n

ψn(~r, t)fnψ∗n(~r′, t). (2)

From Eqs (1) and (2) the equation of motion for the density matrices and the ions
are:

ih̄
∂ρ̂

∂t
= [Ĥks, ρ̂] (3)

MI
d2 ~RI

dt2
= −~∇IVII − Tr{ρ̂~∇IĤks} (4)

where we have moved to operator notation, for the density matrix.
In this paper we use the TB approximation to DFT as this allows for analytic

simplicity and computational efficiency[23, 24]. If we use orthogonal TB we can
replace operators in our previous equations with matrices. We thus continue to use
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the operator notation but with the new understanding that the operators will be
represented by TB matrices.

We separate the system into the “resistor” (now refered to as the device) and
the remainder (the environment). We break Eq. (3) into components corresponding
to device (designated by the subscript D), environment (designated by the subscript
E) and the coupling between the two. Further, we introduce a damping term for the
environment:

ih̄
∂ρ̂D

∂t
= [ĤD, ρ̂D] + (ĤDE ρ̂ED − ρ̂DEĤED)

ih̄
∂ρ̂DE

∂t
= ĤDρ̂DE − ρ̂DĤDE + ĤDE ρ̂E − ρ̂DEĤE

ih̄
∂ρ̂E

∂t
= [ĤE , ρ̂E ] + (ĤEDρ̂DE − ρ̂EDĤDE)

− 2ih̄Γ(ρ̂E − ρ̂ref ). (5)

The damping term corresponds to inelastic scattering events that take the system to
a steady state configuration described by the reference density matrix ρ̂ref . In the
steady state, when we take the limit Γ → 0, we regain the key features of the quasi-
static formalisms: the density matrix commutes with the Hamiltonian; the occupancies
of the single particle states are completely determined by the baths (represented by
ρ̂ref ).

The scattering rate Γ is closely related to a self-energy[25]. It reduces the range
of the density matrix in the environment, notably ρ̂ED which we must truncate to
make computations tractable. Truncating ρ̂ED without introducing damping results
in the violation of charge conservation.

We now find a closed form solution for the density matrix for the environment.
We assume that ĤE is independent of time (even in a self-consistent calculation this
can be achieved by taking a sufficiently large device region) and define the driver
terms ĜE and Ĝ

(0)
E by ih̄ĜE = (ĤEDρ̂DE− ρ̂EDĤDE) and 0 = [ĤE , ρ̂E(0)]+ ih̄Ĝ

(0)
E −

2ih̄Γ(ρ̂E(0)− ρ̂ref ). By making use of the interaction picture the solution for Eq. (5)
for the environment is found to be

ρ̂E(t) = ρ̂E(0) +
∫ t

0

dx Ô(x)
(
ĜE(t− x)− Ĝ

(0)
E

)
Ô†(x) (6)

where Ô(t) = e−ΓteĤEt/ih̄. The time evolution matrices, Ô(t), are most
straightforwardly evaluated from Green’s functions:

Ô(t) = e−Γt

∫
dE eEt/ih̄δ(EÎE − ĤE) (7)

where

δ(EÎE − ĤE) = d̂(E) = − 1
π

lim
η→0+

Im ĝ(E + iη). (8)

provided ĤE is real. Here ĝ(Z) is the one particle Green’s function for the environment
which can be evaluated using standard methods[26, 27].

We cannot use the closed form solution for the part of the density matrix
belonging to the device and its coupling to the environment as the relevant parts
of the Hamiltonian will vary with time due to the atomic motion we wish to study.
Instead we treat the time evolution explicitly. We can do this because this subsystem
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is small, provided the density matrix ρ̂DE is short ranged. We evolve the relevant
parts of the density matrix using the approximation f(t+∆t) ≈ f(t−∆t)+2∆tf ′(t).

Note that the above formalism is similar in spirit to a recent wave function
based method[28]. However, our use of the density matrix allows for a more natural
interface between the device and the environment as we do not have to treat individual
wavefunctions but only an integrated quantity.

To see how the method behaves, consider a very simple model system. It consists
of two semi-infinite leads attached to a device. The lead on the left is at a different
potential from that on the right. Each lead is represented by a linear chain of atoms
with one orbital per atom. Thus there are two parameters that characterise the
Hamiltonian for each lead: an on-site energy (a) and a hopping integral between the
nearest neighbour sites (b). We assume b is the same on the left and right, while the
difference in onsite energies aL − aR corresponds to the potential difference between
the two sides. We take both the initial and reference density matrices (ρ̂E(0) and
ρ̂ref ) to be that for the infinite wire with the device in its ground state in the absence
of a bias.

If we label the atoms in one lead 0, 1, 2 . . ., where 0 is next to the device, then we
can define the time evolution matrix (see Eqs. (7) and (8)):

Onm(t) = e−Γt

∫ a+2|b|

a−2|b|
dE eEt/ih̄dnm(E). (9)

This integral is evaluated numerically.
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Figure 2. The solid line is the variation with time of the matrix element of
the time evolution operator corresponding to the first atom in the environment
(O00(t)). There is no damping (Γ = 0). The decay corresponds to the propagation
of a wavepacket down the wire. The dashed line is the exponential damping factor
with Γ = 1.0fs−1.

The non-locality in time of Eq. (6) adds considerably to the cost of performing a
calculation. However, from Fig. 2 we see that the evolution operator decays rapidly
with time. We thus approximate this by a function that goes to zero after a cut-off
time. This is consistent with keeping a finite Γ in Eq. (7). If the evolution operator is
truncated in time it is truncated in space as well.

The simplest device consists of one atom. If we give this atom a high on-site
energy, it behaves as a barrier to current flow. The one-dimensional potential profile
for this system is given in Fig. 3. As a check on the method described here, we
computed the conductivity of this system using the Landauer method[3]. With a bias
of 0.1V, and a hopping integral and barrier height both of 1eV, it gives a current
of about 6.2µA. It should be noted, however, that there is no guarantee that the
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Figure 3. The energy profile for the model system. The energy axis on the left
shows the positions of the onsite energies in the left lead (aL), the right lead (aR)
and the device (aD).

time-dependent formalism will exactly reproduce the Landauer result. The orbital
occupancies in the Landauer theory are defined by two chemical potentials (fixed
by the bias and charge neutrality). In the present theory they depend on the bias,
reference density matrix, and Γ if it is large.

The time dependence of the current is shown in Fig. 4(a). We see that our scheme
leads to stable steady currents. We have tested convergence of our results with device
size and the range of the density matrix from the device into the leads. For the device
we allow only one atom to have the increased onsite energy with the remaining atoms
being lead atoms. Results are summarised in Fig. 5. The current is generally below
the Landauer value and is insensitive to the range of the density matrix from the
device into the leads. As the reference density matrix is real, the imaginary part of
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Figure 4. The variation of current into the device as a function of time. Note
that it reaches a stable steady state. For the first 30 fs no bias was applied. The
bias was then turned on over a period of 10 fs. The top panel (a) shows the
system with no self-consistency applied, the bottom (b) with self consistency, as
described in the text.
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Figure 5. The steady currents calculated as a function of the system size. Note
only one atom in the middle has the increased onsite energy of 1eV. The bias is
0.1V, the hopping integral is 1eV and h̄Γ = 0.0658 eV.

the density matrix is suppressed by the damping term, thereby reducing the current
in the leads. Damping dominates the electron dynamics when h̄Γ/W ≥ 1, where W
is the band width. In the present case h̄Γ/W = 0.016.

We have repeated a conduction calculation with charge self-consistency included.
We use a simple point monopole scheme: if the net charge on site i is Qi, then it
contributes a potential UiQi (Ui=7eV) to its own site and Qi/

√
R2

ij + 1/U2
i (where

Rij and Ui are in atomic units) to neighbouring sites. To match the potential at the
ends of the device to that in the leads we include a linear external field in the device
region of V (x) = a+ bx. The results are shown in Fig. 4(b). It can be seen that, aside
from a sunstantial increase in the noise in the system (which decays away rapidly),
there is little change in the overall behaviour.

We now come to the calculation for which the method is designed. Once a steady-
state current has been achieved, we assign a velocity to the device atom, corresponding
to a given temperature, and then perform molecular dynamics on it in one dimension.
The position of the ion is allowed to evolve according to Eq. (4). Note the environment
atoms do not move, so no heat can be transported away.
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Figure 6. The variation of the ionic kinetic energy of the mobile atom with time
for a bias of a) 0.1V and b) 1.0V. The device contains 3 atoms, and the leads 16
atoms. The initial temperature is about 600K.
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To monitor ionic heating we follow the evolution of the kinetic energy with time
(see Fig. 6). For a small bias (0.1V) the ionic kinetic energy decays with time (cooling),
while for a large bias (1.0V) the kinetic energy increases (heating). The energy (h̄ω)
associated with the vibrational frequency of the ion is 0.055 eV, and equals the Born-
Oppenheimer surface separation for allowed transitions. Hence the change in bias
increases approximately tenfold the number of possible heating transitions, producing
the observed changed behaviour.

This method is thus able to calculate some non-adiabatic effects of current flow.
However, the amount of heating that we observe for a bias of 1V is much less than we
would expect from quantum perturbation theory[12]. The explanation for this, and
a correction to remedy it, are the subject of ongoing work and will be presented in a
paper currently in preparation.
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