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Abstract

Passage-time densities are important for the detailed performance analysis of dis-
tributed computer and communicating systems. We provide a proof and demonstra-
tion of a practical iterative algorithm for extracting complete passage-time densities
from expressive semi-Markov systems. We end by showing its application to a dis-
tributed web-server cluster model of 15.9 million states.
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1 Introduction

Passage-time densities yield important performance metrics for communica-
tion and distributed computer systems. An individual passage-time can be
used to represent the elapsed time over a mission-critical sequence of system
operation. For instance, we might require the time-to-failure of a satellite com-
munications subsystem or the response-time of a typical search-engine query.

By deriving the full passage-time density for these quantities, we can further
calculate probabilistic quality-of-service guarantees from the cumulative dis-
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tribution. For example, we might need to establish that there is a probability
of less than 0.01 that the time-to-call-loss for a mobile phone base-station is
less than a minute.

In this paper, we look at an iterative technique for calculating passage-time
densities [1] in semi-Markov systems. Techniques for evaluating passage-times
in Markovian systems have existed for some time [2-4], however the practical
calculation of passage-times in a semi-Markov environment, where arbitrary
distributions of atomic events are permitted, is a recent development. In previ-
ous work [1,5] we described the iterative algorithm presented here, but had no
direct proof that the iterative scheme converged to the correct passage-time.
Here, we present a complete proof of convergence to the correct result.

We also give graphical demonstrations of convergence of individual iterates
to the analytically correct form. Finally, we show the algorithm’s practical
applicability by showing analysis of a parallel web cluster which requires ma-
nipulation of a system of 15.9 million states.

2 Background Theory

2.1 Semi-Markov Processes

Consider a Markov renewal process {(X,,T,) : n > 0} where T}, is the time
of the nth transition (7, = 0), X,, € S is the state at the nth transition and
S is the set of states in the Markov renewal process. Let the kernel of this
process be:

R(n,i,j,t) =P(Xpy1 =5, Tns1 — T <t | X, =1) (1)

for 7, j € S. The continuous time semi-Markov process (SMP), {Z(t),t > 0},
defined by the kernel R, is related to the Markov renewal process by:

Z(t) = Xn@y (2)

where N(t) = max{n : T, <t}, i.e. the number of state transitions that have
taken place by time ¢. Thus Z(t) represents the state of the system at time t.
We consider time-homogeneous SMPs, in which R(n,1,7,t) is independent of
any previous state except the last. Thus R becomes independent of n:

R(iaja t) :P(Xn-}—l = j: Tn—|—1 - Tn <t ‘ Xn - 7’) for any n >0
= pijHi;(t) (3)



where p;; = P(X,11 = j | Xn, = i) is the state transition probability from
state ¢ to state j and H;j(t) = P(Tht1 — T, < t | Xps1 = j, X = 1), is the
sojourn time distribution in state ¢ when the next state is j.

2.2 First passage-times

Consider a finite, irreducible, continuous-time semi-Markov process with N
states {1,2,..., Ny }. Recalling that Z(t) denotes the state of the SMP at time
t (t > 0), the first passage-time from a source state i at time ¢ into a non-empty
set, of target states 7 is:
P:(t) =inf{u > 0: Z(t +u) € j, N(t +u) > N(t), Z(t) = i} (4)
For a stationary time-homogeneous SMP, P;(t) is independent of ¢ and we
have:
Psz=inf{u>0:Z(u) € 5, N(u) > 0,7(0) = 1} (5)
The N(u) > 0 condition ensures that at least one transition has taken place
before the passage can be counted, as is conventional. This formulation of
the random variable P applies to an SMP with no immediate (that is, zero-

time) transitions. If zero-time transitions are permitted in the model then the
passage-time can be stated as:

Pz=inf{u>0:N(u) > Mz} (6)

where Mz = min{m € Z* : X, € 7 | Xo =1} is the transition which marks
the terminating state of the passage.

P,z has an associated probability density function fﬁ.(t) such that the passage-
time quantile is given as:

to
P(ty < Py < t3) = /t fs(t) dt (7)

In general, the Laplace transform of f;z, L;z(s), can be computed by solving a
set of Ny linear equations:

Li(s) = Zr;“k(s)Lk;(s) + > () for1 <i <N, (8)

k¢j kej

where 7. (s) is the Laplace-Stieltjes transform (LST) of R(i,k,t) from Sec-
tion 2.1 and is defined by:

P (s) = /0 “ et dR(i, k, 1) 9)



Equation (8) has a matrix-vector form, A% = b, where the elements of A are
general complex functions; care needs to be taken when storing such functions
for eventual numerical inversion (see Section 4). For example, when j= {1,2},
Equation (8) yields:

10 —rig(s) - —rin(s) \ [ Liz(s) ) rin(s) +ri5(s) )

01 —r3s(s) -+ —r5n,(5) ng(s) 731 (8) + 139(5)
001—riy(s) - —riy.(s) Ly(s) | =] () +ri(s) | (10)
00 —r35(s) -+ 1—riw(s)) \ Ly 7(s) P2 (5) + Th2(5)

When there are multiple source states, denoted by the vector Z, we can weight
the passage-time density with some initial distribution for the system. For
instance the Laplace transform of the passage-time density at steady-state is:

Lﬁ(s) = Z oszk;(s) (11)

kei

where the weight oy is the probability at equilibrium that the system is in
state k € i at the starting instant of the passage. If 7 denotes the steady-state
vector of the embedded discrete-time Markov chain (DTMC) with one-step
transition probability matrix D = [p;j,1 < 4,j < Ny, then «y is given by:

T/ amiifk€eq
ap = k/ Z]EZ J (12)
0 otherwise

The vector with components «y, is denoted by a.
2.3 [Iterative Algorithm for Evaluating Passage-times

In this section, we outline the algorithm from Bradley et al. [1] for generating
passage-time densities, that creates successively better approximations to the

SMP passage-time quantity of Equation (8). The technique considers the rth

transition passage-time of the system, Pz(f) This is the conditional passage-

time of the system having reached any of the specified target states within

r state-transitions. The unconditioned passage-time random variable, Py, is

then obtained in the limit as » — oc. We calculate the Laplace transform of

Pi(;), L%_) (s), and pick a sufficiently high value of r to give an approximation to

L;7(s) to within a specified degree of accuracy. L;z(s) can then be numerically

inverted to obtain the desired passage-time density.

This iterative method bears a loose resemblance to the well-known uniformiza-
tion technique [6-8] which can be used to generate transient-state distributions



and passage-time densities for Markov chains. However, as we are working with
semi-Markov systems, there can be no uniformizing of the general distribu-
tions in the SMP. The general distribution information has to be maintained
as precisely as possible throughout the process, which we achieve using the
general distribution representation technique described in Section 4.

Recall the semi-Markov process, Z(t), of Section 2.1, where N(¢) is the number
of state transitions that have taken place by time ¢t. We formally define the
rth transition first passage-time to be:

PY =inf{u>0:Z(u) €7,0 < N(u) <r,2(0) = i} (13)

which is the time taken to enter a state in j for the first time having started
in state ¢ at time 0 and having undergone up to r state transitions?.

Again, if we have immediate transitions in our SMP model then the rth tran-
sition first passage-time becomes (cf. Equation (6)):

Pg) =inf{u>0: M;z < N(u) <r} (14)

Its Laplace transform, Lg)(s), is in turn the ¢th component of the vector:

Fr) ey — (7, (r) (r)

L9(s) = (L2 (), L (s), .., LO(s)) (15)
representing the passage-time which terminates in j from each possible start
state. We compute this vector as:

~ ~

L) =U(I+ U + U+ -+ UCD) & (16)

where U is a matrix with elements u,, = 77,(s) and U’ is a modified version
of U with elements:

.f rd
o = Upg i p & j (17)

0 otherwise

2 This is well-defined even in the case when the set j is not reached from state i in
r transitions, when the set of u in (13) is empty, that is:

{fu>0:Z(u)e€j,0<Nu)<r Z(0) =i} =0

and since inf () = co by definition, the random variable, Pz(;) = 00.
This covers the case where the set ; is unreachable by any realisation of the system

in r transitions, which makes the cumulative distribution function, P(Pg) <t)=0,
for any finite ¢. So if no route exists to the target states in r transitions (or at all)

the resulting distribution function of Pg) is 0 for all ¢, as required.



where states in j have been made absorbing. The column vector 67 has entries:

- |1ifkey
o = (18)
0 otherwise

The physical justification behind Equation (16) is that it represents the sum of
contributions to the overall passage-time i;_r)(s) from each of the n-transition
matrices®, 1 < n < r. In Section 3, we will show that this sequence converges
as r — oo, and that its limiting value, L%?o) (s) = lim, o Lg)(s) is a solution
of the central passage equation, Equation (8).

We can generalise to multiple source states 7 using, for instance, the normalised
steady-state vector, &, of Equation (12):

r—1
My — 77 (o) — =177k 57
Ly (s) = aly (s) = ]CZ::OaUU ) (19)

or any such vector which represents some initial distribution for the system.
The worst-case time complexity for this sum is O(N?2r) versus the O(N?)
of typical matrix inversion techniques. In practice, for a sparse matrix with
constant bandwidth (number of non-zeros per row), this can be as low as
O(N,r).

Further details of efficient distributed implementation of Equation (19) can
be found in [5].

3 Proof of Convergence and Correctness
3.1 Technical Summary

In this section, we prove the convergence of the iterative scheme Equation (16):

~ ~

LO(s) = U +U' + U2 4+ UCD) §

3 The nth transition matrix is defined to be UU™ ! so as to ensure that the passage
measures at least one transition.



and show that the limiting quantity f)g,oo)(s) does, as required, satisfy Equa-
tion (8):

L<°° =S 7r5(s) )+ 3 rh(s)  cfor 1<i< N,  (20)
k@é] k‘E]

3.2 Preliminary observations

It is clear from the definition of p;; below Equation (3) that p;; are non-negative
real numbers with:

> pj=1forall j (21)
k
and the definition of 7;(s) in Equation (9) immediately yields:
rii(5) = pijhi;(s) (22)

in which hj;(s) is the Laplace-Stieltjes transform of the sojourn time distribu-

We will use the vector ¢' (similar to Equation (18)), whose elements are:

. 1ifk=1
o = (23)
0 otherwise

3.8 Conjectures

In this section, we state and prove several facts about our system, culmi-
nating in the convergence of igf)(s) as defined above. Throughout, the term
eigenvector will be used as shorthand for eigenvector of a given matrix under
right-multiplication: thus v is an eigenvector of matrix U if 9U = A\v.

Lemma 1 For any given value of s with non-negative real part, the modulus

of each complex number h;(s) is at most 1.

Proof We know that [;° H;;(t) dt = 1, because H;;(t) is a distribution func-
tion. Let s = z +iy. Then z > 0 and:

‘—‘/ "(cosyt — isinyt) H;; ()dt‘

g/ e~ Hi(1) dtg/ Hi(t) dt =1
0 0



Lemma 2 Right-multiplication by U’ does not increase the Li-norm of any
vector v:

[oU' |y < |o].  and hence  |oU™|; < |o]1 for alln >0

Note that this is a stronger statement than the spectral radius of U' being at
most 1, which follows trivially from evaluation of the infinity-norm of U'.
Proof
[6U" |+ =2 10U )kl = 3 1D viUj
k k| J
<D ol MUGl =22 [vi (Uil
k Jj

ko jgi
<D il =D ol Do i
kojgi i¢i k
=>_ [vil < X [vj| =[] (24)

ié7 J

The extension to n multiplications by U’ is clear.

Lemma 3 Any eigenvalue A of U' which has modulus 1 is non-defective, that
is, there is no vector w for which w(U' — AI)? =0 but w(U" — \I) # 0.

Proof Assume the converse. Then let @ be a principal vector of stage 1 as-
sociated with the eigenvalue in question. Then:

WU —A)?*=0 and WU —N) =79 #0
It follows that v is an eigenvector corresponding to A and:
WU = M+ 0, and hence that @U™ = \"@ + n\""1%
Then |@U™| > n|A|"'|5| — |\|"|@], and if || =1 then:
|@U™( = n[7] — |@]

which grows without bound for large n since || cannot be 0. However, |@wU™ |
is bounded above by ||| for any n, from Lemma 2 so we have a contradiction.

Lemma 4 The eigenvectors corresponding to all eigenvalues of modulus 1
have zero components corresponding to elements of j.



Proof Consider the proof of Lemma 2. For the norm of v to be maintained
under multiplication with U’ (which must happen for an eigenvector whose
eigenvalue has modulus 1), every inequality in the proof must be a strict
equality. In particular, from (24) we have:

> vl =Y |v;| which requires v; = 0 if j i
%7 i

Now we consider two subspaces of the complex vector space on which U’ acts.
Vo is the vector subspace spanned by the eigenvectors of U’ corresponding
to eigenvalues of modulus 1, and V; is the vector subspace spanned by the
eigenvectors and principal vectors corresponding to eigenvalues of modulus
strictly less than 1. Since the spectral radius of U’ is at most 1, these two
subspaces span C":, and each of them is invariant under right-multiplication
by U’ from their definitions.

We introduce a new matrix Uy satisfying:

00Uy = 0oU' for all 5o € Vy  and  9,Uy = 0 for all 9, € V; (25)
and define U; = U’ — U,. It is trivial to deduce that:

Uy =0foralloy €V, and oU; =o,U forall v, € V; (26)

Lemma 5 The matriz Uy has spectral radius strictly less than 1.

Proof Consider any eigenvector of U;. By the first part of Equation (26),
either it has eigenvalue 0 or it is a member of V;. In the latter case it is
also an eigenvector of U’, whose eigenvalue has modulus less than 1 from the
definition of V;. It follows that U; has spectral radius strictly less than 1.

Lemma 6 For any element vy € Vy, the scalar GOU’"S; 1s 0 for all n > 0.
Proof Since V) is an invariant subspace under multiplication by U’, we know
that 9oU™ € V,. Any element of V, can be decomposed into a sum of eigenvec-
tors of U’ corresponding to eigenvalues of modulus 1, and by Lemma 4 each
such eigenvector has zeros corresponding to non-zero elements of ¢7.
Lemma 7 The vector quantity UOU’”SE =0 for all n > 0.

Proof Write the elements of the vector UOU’"(Sj as [UOU'"gj]i = 5iU0U’"(§3.
Then 6°U, € V, and the property follows from Lemma 6.



Theorem 8 The limits as r — oo of the sequences:
L(T‘ ( ) 5ZU(I+U,+U,2++U,(T_1))53
are finite and satisfy Equation (8):

L(s) = Y Ui(s )+ S Un(s

kgé] kE]

Proof Let us begin by defining an additional scalar quantity:
T = [(I+U + U+ -+ U )F), =5 (I + U +U? +-- -+ U )

with limit lim, o, 7¢") = 7;. We note that we can calculate Lg,)(s) simply
via:
L( Z Ui T*7) . and so L(oo Z Uik Te

(]

Now we split the vector (5Z into two components, one from each vector subspace
Vo and V;. Thus:

5= 50 4 il
in the obvious notation, and we have:

(50 4 5+ U + U2 + -+ U D)

SMI+U +U?+-- 4+ U T_l))éﬁ by Lemma 6

S I +U, + U2+ -+ U3 by Equations (25-26)
Si(I + U +U? +-- -+ Ul(’—l))Sf by Lemma 6

I+ Uy + U2+ -+ U)o,

and since U; has spectral radius strictly less than 1, Theorem 6.2.8 of [9]
implies:

S (I+0 + U+ -+ U7 = (= 0) ™ s0 7 = [(I=U) "o}

Denoting by 7 the vector with elements 75, we can left-multiply by I — U; to
obtain: B B

=6 +U7 =6 +U'T - UpT,
and we note that UyT = lim, .o, Up(1 + U' + U? + --- + U'(T_l))éi = 0 by
Lemma 7 to deduce 7 = 87 + U'. Finally, we left-multiply by U to give:

LEJgoJ (=S U, + 3 UyUlere = Y Uiy + 3 3 U Up
J ik

j€i igj *
L7 (5) =3 Ui + 2 UL ()

j€j i¢j

10



We have shown that the iterative scheme of Equation (16) converges to a finite

quantity L(C_’o)(s) satisfying Equation (8), and thus L%’O) =1L-

i7 i7» a8 required.

4 Distribution Representation and Laplace Inversion

The key to practical analysis of semi-Markov processes lies in the efficient rep-
resentation of their general distributions. Without care the structural complex-
ity of the SMP can be recreated within the representation of the distribution
functions. This is especially true with the manipulations performed in the
iterative passage-time calculation of Section 2.3.

Many techniques have been used for representing arbitrary distributions —
two of the most popular being phase-type distributions (for example [10]) and
vector-of-moments methods [11]. These methods suffer from, respectively, ex-
ploding representation size under composition, and containing insufficient in-
formation to produce accurate answers after large amounts of composition.

As all our distribution manipulations take place in Laplace-space, we link
our distribution representation to the Laplace inversion technique that we
ultimately use. Our tool supports two Laplace transform inversion algorithms,
which are briefly outlined below: the Euler technique [12] and the Laguerre
method [13] with modifications summarised in [2].

Both algorithms work on the same general principle of sampling the transform
function L(s) at n points, s1, o, . . ., S, and generating values of f(t) at m user-
specified t-points t1, to, . . ., t,,. In the Euler inversion case n = km, where k can
vary between 15 and 50, depending on the accuracy of the inversion required.
In the modified Laguerre case, n = 400 and, crucially, is independent of m
(see Section 4.2).

The process of selecting a Laplace transform inversion algorithm is discussed
later; however, whichever is chosen, it is important to note that calculating
s;; 1 < 4 < n and storing all our distribution transform functions, sampled
at these points, will be sufficient to provide a complete inversion. Key to this
is the fact that matrix element operations, of the type performed in Equa-
tion (19), (which in time-space would be convolution and weighted sum) do
not require any adjustment to the array of domain s-points required. In the
case of a convolution, for instance, if Li(s) and Ly(s) are stored in the form
{(si, Lj(si)) : 1 <i < n}, for j =1,2, then the Laplace transform of the
convolution, Li(s)Ls(s), can be stored using the same size array and using the
same list of domain s-values, {(s;, L1(s;)La(s;)) : 1 <i <mn}.

Storing our distribution functions in this way has three main advantages.

11



Firstly, the function has constant storage space, independent of the distribu-
tion type. Secondly, each distribution has, therefore, the same constant storage
requirement even after composition with other distributions. Finally, the func-
tion has sufficient information about a distribution to determine the required
passage-time (and no more).

4.1 Summary of Euler Inversion

Our experience with numerical Laplace inversion algorithms has been very fav-
ourable [14]. If the function itself has large discontinuities, then occasionally
small Gibbs’ phenomena can be observed close to the discontinuity. However,
for functions with discontinuous derivative, or discontinuous functions which
have been convolved with smooth functions, numerical instabilities are not
noticeable.

The Euler method is based on the Bromwich contour inversion integral, ex-
pressing the function f(¢) in terms of its Laplace transform L(s). Making the
contour a vertical line s = a such that L(s) has no singularities on or to the
right of it gives:

£(t) = /0 ” Re(L(a + iu)) cos(ut) du (27)

This integral can be evaluated numerically using the trapezoidal rule with
step-size h = 7/2t and a = A/2t (where A is a constant that controls the
discretisation error), which results in the nearly alternating series:

eA/2 eA/2 oo -
ft) = fir(t) = TS Re(L(A/2t)) + =T Z(—n’“ Re <L (AJ’T?“» (28)

We note that for each argument s; of L, Re(s;) = A/2t > 0, as required for
convergence of Equation (16).

Euler summation is employed to accelerate the convergence of the alternating
series infinite sum, so we calculate the sum of the first n terms explicitly and
use Euler summation to calculate the next m. To give an accuracy of 1078
we set A = 19.1, n = 20 and m = 12 (compared with A = 19.1, n = 15 and
m =11 in [12]).

12



4.2 Summary of Laguerre Inversion

The Laguerre method [13] makes use of the Laguerre series representation:

F0) =Y alalt) 120 (29)
n=0
where the Laguerre polynomials /,, are given by:

bt = (P b - () ) (30)

n

starting with lp = e¥/2 and |; = (1 — t) e/?, and:

B 1
2

where r = (0.1)%" and Q(z) = (1 — 2)7'L((1 + 2)/2(1 — 2)).

Gn /07r Q(re™)e ™ du (31)

The integral in Equation (31) can be approximated numerically by the trape-
zoidal rule, giving:

G~ G = 5 (Q(T)+(—1)"@(—7‘)+27§(—1)"Re (Q(Te”ﬁ/n))> (32)

2nrm

Again, we note that, since r < 1, all arguments passed to the Laplace function,
L, have positive real part as required for convergence of Equation (16).

As described in [2], the Laguerre method can be modified by noting that the
Laguerre coeflicients ¢, are independent of ¢. This means that if the number
of trapezoids used in the evaluation of ¢, is fixed to be the same for every ¢,
(rather than depending on the value of n), values of Q(z) (and hence L(s))
can be reused after they have been computed. Typically, we set n = 200.
In order to achieve this, however, the scaling method described in [13] must
be used to ensure that the Laguerre coefficients have decayed to (near) 0 by
n = 200. If this can be accomplished, the inversion of a passage-time density
for any number of t-values can be achieved at the fixed cost of calculating 400
truncated summations of the type shown in Equation (19). This is in contrast
to the Euler method, where the number of truncated summations required is
a function of the number of points at which the value of f(t) is required.

5 Convergence Examples

We present two examples of our passage-time approximation in action. The
first is a purely Markovian system, for compatibility with previous Markovian

13



techniques. The second is a fully semi-Markovian example. In both cases, we
present an analytically calculated result (using Equation (8)) with which to
compare the approximations. Where we have needed to use a Laplace inversion
algorithm, we have used the Euler method from Section 4.1.

5.1 Markovian Example

Analytic solution, L_06(t)
2 iterations -------
0.1 | 4 iterations -------- b
6 iterations
8 iterations -—-~-
=
|72}
f=
[}
k=l
2
3
©
=}
<)
a
0 I I I I I s
0 2 4 6 8 10 12 14
Time, t
Fig. 1. Four iterative approximations of Lg(t)
0.06 1
Analytic solution, L_02(s)
3 iterations -------
4 iterations --------
6 iterations
L 8 iterations -—-- |
005 10 iterations -~~~
12 iterations --------
14 iterations
0.04
2
B
f=
[}
°
2 003}
=
©
Qo
[
o
0.02
0.01
o ) ) [ AR ETRTE
0 5 10 15 20

Time, t

Fig. 2. Seven iterative approximations of L (t)

We set out a Markov system as a simple semi-Markov model with DTMC
transition matrix, D, and rate matrix, S. We aim to find the passage-times

14



Los(t), from state 0 to state 6, and Lgy(t), from state 0 to state 2.

0 pr 0 1—p 000 0 50 0 sp3 0 0 0
1—p, 0 0 0 p,00 S0 0 0 0 su 0 O
1 0 0 0 000 S0 0 0 0 0 0 0
D= 0 0 0 0 001| S=[0 0 0 0 0 0 s
0 0 0 1—p;00p;s 0 0 0 si3 0 0 sug
pr 0l—p, 0O 000 ss0 0 855 0 0 0 0
0 0 0 0 010 00 0 0 0 sg 0

(33)

We use values p1 = 2/3,p0 = 1/2,p3 = 1/4,ps = 1/3,501 = 1/4,803 =
1,810 = 1/3,814 = 2/3, S90 = 1;536 = 1/2,843 = 1,846 = 4/5,850 = 1/5,852 =
2/5,s65 = 1. S is a matrix of exponential rates, so the distribution matrix
Hi;j(t) =1 — exp(—s;;t).

Figure 1 shows the passage-time results for Log(t). For such a small passage
only 8 iterations are required for a good approximation to the analytic result
to be achieved.

By comparison, Figure 2 shows the passage-time results for Lgy(t). As more

of the system is exposed to the passage calculation, it takes more iterations
(14 in total) to give good visual convergence.

5.2  Semi-Markov Example

Next, we look at a semi-Markov example of a system which employs different
types of distribution (Figure 3).

Fig. 3. A 3 state semi-Markov system with generally distributed sojourn times.

The distributions used in the transition system of Figure 3 are given by: A ~
['(a, A), B ~ Hyper (%, %; )\,u) ,C~U [%, i] , D~ (ﬁ ], where:

1
I
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. 2 A 1 u
rox(s)=(1-p) lg)\—l—s—i_gu-i-s]

* (8) — /\,LL [efs//\ . e*S/N]

The following parameter values are used: o« = 2.5, A = 1.5, p = 1.23 and
p = 0.3. Figure 4 shows the passage-time density between states 2 and 1 as
calculated using a standard linear equation solver. Again, the iterative solu-
tions are plotted on the same diagram and it can be seen that they approach
the analytic solution with relatively few iterations. Note that even though
the distribution has a discontinuous derivative (at time ¢ = 1/u), the Euler
Laplace inversion algorithm has no numerical difficulty inverting the function.

0.18

T T
Analytic solution for L_21(s)

2 iterations -------

4 iterations --------
6 iterations

8 iterations -—-~-

| 10 iterations -------

0.14 | / 12 iterations ---- -
N\ | 14 iterations

0.16

0.1 |

0.08

Probability density

0.06

0.04

0.02

0 2 4 6 8 10 12 14

Time, t

Fig. 4. Seven iterative approximations of Lo (s), plotted with the analytic solution.

As we will see, for larger systems of millions of states, as generated by higher-
level formalisms, we typically need only a few hundred iterations to achieve
convergence.
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6 System-size Passage-time Analysis

6.1 A Distributed Web-server Cluster Model

Having tested the iterative passage-time analysis technique on very small mod-
els, we demonstrate that it is scalable to large models by summarising analysis
of a 15 million state SMP model of a distributed web server [5], shown in Fig-
ure 5.

The model is specified in a semi-Markov stochastic Petri net (SM-SPN) for-
malism [15] using an extension of the DNAmaca Markov chain modelling lan-
guage [16]. Generally distributed transitions, if simultaneously enabled, are
selected by probabilistic choice; in this way, we are guaranteed an underlying
semi-Markov state space. Concurrent Markovian execution can, nevertheless,
be implemented by using the markov(s) pragma. The distributions are spec-
ified directly as Laplace transforms with certain macros provided for popular
distributions (e.g. uniform, gamma, deterministic) and can be made marking
dependent by use of the m(p;) function (which returns the current number of
tokens at place p;). Support for inhibiting transitions is also provided.

23

(t5,0.2m(ps), 1, markov(s) ) 7,0.1m(ps), 1, markov(s) )

6,1.0, 2, uniform(5, 10, s))
S8

(t2,0.1, 1, markov(s))

9
2
5

-

1, markov(s) )
v |

[ ] ] ]
I
(ts,1.0, 1, markov(s) )

m(ps)

P4 b7

@ ()

N
p1 P2 P9 s
@ (t1,1.0, 3, immediate(s) ) @

ww RR

ww RR

Fig. 5. A semi-Markov Petri Net of a parallel web server

Figure 5 represents a web server with RR clients, WW web content authors,
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S S parallel web servers and a write-buffer of BB in size. A write is buffered by
a token moving from p; to p; and the writes in the buffer, p4, are not actually
executed until all available servers have finished their respective read lookups
(i.e. the alive servers are all in place pg). Servers themselves can fail to and
recover from place ps, and while there they become unavailable for reads or
writes. A read takes place when a token moves from place pg to pg.

In the following, we consider the rate of convergence of the iterative passage-
time algorithm and the extraction of passage-time densities and cumulative
distribution functions, for the example semi-Markov systems.

6.2 Convergence of the Iterative Passage-time Algorithm

450

T T T
epsilon=1e-16: average no of iterations per s point —+—
epsilon=1e-8: average no of iterations per s point ---x---

400 |
350 |
300 |
250 |

200

Number of iterations to converge

150

100 | N g

50 I I I I I
0 200000 400000 600000 800000 1le+06 1.2e+06

Size of model

Fig. 6. Average number of iterations to converge per s point for two different values
of € over a range of model sizes.

Our iterative algorithm terminates when two successive iterates are less than
¢ apart, for some suitably small value of €. Figure 6 shows the average number
of iterations the algorithm takes to converge per s-point for both models for
two different values of e: 1078 and 1076,

The number of iterations required for convergence as the model size grows
is sub-linear; that is, as the model size doubles the number of iterations less
than doubles. This suggests the algorithm has good scalability properties for
increasing model size, although this will be highly model dependent (according
to the sparsity of the underlying transition matrices).
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Fig. 7. Analytic and simulated density for the time taken to process 100 reads and
50 page updates in the web-server model (15.4 million states).

6.3 Passage-time Densities

Here, we display passage-time densities produced by our iterative passage-time
algorithm and also those produced by simulation to validate those results.

Figure 7 shows the density of the time taken to perform 100 reads and 50
page updates in the web server model. Calculation of the 35 t-points plotted
required 2 days, 17 hours and 30 minutes using 64 slave processors [5]. Our al-
gorithm evaluated L;z(s) at 1155 s-points, each of which involved manipulating
sparse matrices of rank 15,445,919. The analytical curve is validated against
a simulation of 1 billion transition firings. We observe excellent agreement.

7 Conclusion

In this paper, we proved the convergence of an iterative algorithm for deriving
passage-time densities. This algorithm is defined over semi-Markov processes,
which are more descriptive than purely Markovian models. As such, a practi-
cally applicable algorithm with guaranteed convergence properties is a useful
extension to the field.

After proving convergence, we demonstrated the convergence of the algorithm
for some small sample systems. Finally, we showed the algorithm in action
on a practical model of a web-server cluster, a semi-Markov model of over 15
million states, and were able to show that even for such large models only a few
hundred iterations are required to get satisfactory convergence. The passage-
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time density for the web-server cluster was also verified by simulation.
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