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An analytic form for the pair distribution
function and rheology of a dilute suspension

of rough spheres in plane strain flow

By HELEN J. WILSON†

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

(Received 2 February 2005)

The effect of particle-particle contact on the stress of a suspension of small spheres
in plane strain flow is investigated. We provide an analytic form for the particle pair
distribution function in the case of no Brownian motion, and calculate the viscosity
and normal stress difference based on this. We show that the viscosity is reduced by
contact, and a normal stress difference induced, both at order c2 for small particle volume
concentration c. In addition, we investigate the effect of a small amount of diffusion on
the structure of the distribution function, giving a self-consistent form for the density in
the O(aPe−1) boundary layer identified by Brady & Morris [JFM 348, 103–139 (1997)]
and demonstrating that diffusion reduces the magnitude of the contact effect but does
not qualitatively alter it.

1. Introduction

The study of suspensions of small particles has been of interest to scientists for many
years, and is still an active area of research. Brady & Morris (1997) and Bergenholtz,
Brady & Vicic (2002) have identified the need to focus attention on the effect of strong
flows: that is, flows in which the non-dimensional flow rate is large relative to Brownian
effects.

A major factor in the current understanding of colloid rheology has been the theoretical
study of suspensions which are sufficiently dilute that only pairwise interactions need be
considered (Batchelor & Green 1972a,b; Batchelor 1977). Later work by Russel (1980)
and Bergenholtz et al. (2002) has shown that these pair-interaction calculations, which
give results correct up to second order in the volume fraction c, can shed light on the
behaviour of much more concentrated suspensions.

In this paper we will consider the strong flow, non-Brownian limit of flow of a dilute
suspension of rough particles. Using a simple effective hard-sphere model of rough particle
contact, we show that for a plane straining flow the particle pair distribution can be
calculated analytically in terms of standard mobility functions (see, for example Kim &
Karrila 1991). This provides a checkpoint for finite-Péclet number studies of straining
flows such as Brady & Morris (1997), which cannot be provided for shear flows (except in
two dimensions as in Wilson & Davis 2002) because of regions of particle trajectory space
in which particles remain bound forever. We use the particle pair distribution function to
calculate the deviatoric part of the effective stress of a dilute suspension of rough spheres
in plane strain, and show that the O(c2) coefficient in the expansion for the viscosity is
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lowered by the presence of particle roughness, and the second normal stress difference
caused at second order in c is negative (using the conventions of Brady & Morris 1997):
that is, the average of the diagonal stresses along the compressional and extensional axes
is less than the diagonal stress along the neutral axis. We also illustrate how addition
of a small amount of Brownian motion would affect these quantities, and compare these
results with finite-Péclet number results from Brady & Morris (1997).

In §2 we pose the problem rigorously, and set up our geometrical parameters. In §§3,
4 and 5 we outline the details of the calculation for the pair distribution function, con-
tact force and stress respectively. The results are presented in §6. Concluding remarks,
including a discussion of the case of large finite Péclet number, are given in §7.

2. Formulation of the problem

We consider a Newtonian fluid of viscosity µ, containing neutrally buoyant suspended
solid spherical particles of radius a at volume fraction c. The only forces acting on the
particles are hydrodynamic forces and short-range contact forces. The derivation of the
particle pair distribution and stresses will essentially follows the model of Zinchenko
(1984) and Wilson & Davis (2000) but the geometrical change, to a plane straining flow,
necessitates some detailed explanation.

2.1. Flow field

The far-field velocity is imposed as the linear function U∞ = E·x, where

E =





ε̇ 0 0
0 −ε̇ 0
0 0 0



 (2.1)

represents a planar strain flow far from any particles. The suspension takes on this
velocity only in an average sense, as the presence of rigid particles and the interactions
between them affect the local flow.

The bulk stress tensor in the suspension (where the solvent has Newtonian viscosity
µ) is given by

Σij = −pδij + 2µEij − p
(p)δij +Σ

(p)
ij , (2.2)

where the total particle stress −p(p)δij + Σ
(p)
ij (deriving from the rigidity of a particle

in its interaction with the surrounding suspension, and from inter-particle forces) is

summed over all particles, and Σ
(p)
ij is deviatoric. The isotropic contribution p(p) is the

perturbation to the pressure in the fluid caused by the presence of the particles (Brady
1993). Although resistance functions do exist for this quantity (P and Q of Jeffrey, Morris
& Brady 1993), methods for calculating them are not easily available and we will not
calculate p(p) here. For a suspension in which the solid volume fraction and shear rate
are both constant, the addition of a constant particle pressure will not affect the flow, as
for an incompressible fluid, the pure hydrodynamic pressure, p, is arbitrary, and has no
direct effect on flow; however in the presence of gradients of concentration or shear rate,
these terms could be important.

By exploiting the symmetry of the flow, with no further information we can show that
the symmetric, deviatoric particle stress must have the form

Σ(p) =





2µ∗ε̇+ 1
3N2 0 0

0 −2µ∗ε̇+ 1
3N2 0

0 0 − 2
3N2



 (2.3)
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where the second normal stress difference N2 is defined according to the convention
used by Brady & Morris (1997), when conversion is made from their axes on which
Eij = ε̇(δi1δj2 + δi2δj1). We will show analytic results for µ∗ and N2 to order c2 in the
particle concentration.

2.2. Contact Model

We will consider the simplest possible model of inter-particle contact. In this model, when
two particles come into contact, they behave according to hard-sphere repulsion. This is
included within the roll-slip models of Davis (1992) and Ekiel-Jeżewska et al. (1999). At
an inter-particle surface-surface separation hc = aζ, with ζ ¿ 1, their approach is halted
by small surface asperities. They remain in contact (with the minimum gap between
their nominal surfaces equal to hc) for as long as the net hydrodynamic forces acting on
them are compressive. Once the hydrodynamic forces act to separate the spheres, the
contact breaks and there is no contact force; the particles separate unhindered except by
hydrodynamic forces. While the particles are in contact, the contact force is parallel to the
line of centres of the two spheres, and on each sphere is equal and opposite to the normal
hydrodynamic force on that sphere. This model has just one dimensionless parameter,
ζ, with suggested physical values of 10−3 < ζ < 10−2 (from Smart & Leighton 1989)
or 3 × 10−5 < ζ < 3 × 10−3 (from Ekiel-Jeżewska et al. 1999). In generating numerical
values for macroscopic physical quantities such as viscosity, we will consider the range
0 ≤ ζ ≤ 10−2.

2.3. Calculation of stress

The detailed description of the general method of calculating macroscopic fluid stress of
a dilute suspension in a linear flow field to O(c2) (with smooth particles) can be found in
Batchelor (1967), pp. 246–253, and the changes caused by contact interactions in Wilson
& Davis (2000). Here we present only a summary of the method, introducing the changes
required for the geometry of plane strain. We expand the extra (particle) stress in powers
of the small volume concentration, c, while averaging over the volume of the suspension.

The leading-order term (which is O(c)) is derived from consideration of the extra
dissipation caused by an isolated sphere in the far-field flow U∞, and was calculated by
Einstein (1906, 1911). The O(c2) term (first calculated by Batchelor & Green 1972a,b)
is caused by binary interactions between pairs of particles. The total extra stress may be
expressed (as in Wilson & Davis 2000, equations 2.5 and 2.6) as

Σ(p) = 5cµE + 5c2µE +
9c2

64π2a5

∫

contact

Fcs(1−A(s))[nn− 1
3 I ]p(r) dr

+
15c2µ

4πa3

∫

r≥2a

[K(s)E + [(E·n)n + n(E·n)]L(s)

+ (n·E·n)[nnM(s)− ( 2
3L(s) +

1
3M(s))I ]

]

p(r) dr +O(c3), (2.4)

in which n = r/r, s = r/a, and p(r) is the pair distribution function: the scaled proba-
bility of finding a particle at x0 +r given that a particle is at x0. The scalar quantity Fc
is such that the contact force exerted on the particle at x0 by the other is Fcn, acting
along the line of centres of the particles as discussed above. Two terms have been altered
from the most general form given in Wilson & Davis (2000): Batchelor’s renormalisation
term is omitted from the integral since it does not contribute provided the angle integrals
are carried out first; and the stress contributed directly by the contact force has been
specified to forces with no tangential component. The hydrodynamic functions A, K, L
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Figure 1. Schematic quarter cross-section of the trajectories of the centre of particle 2 relative
to the centre of particle 1 in planar straining flow. The inner circle has radius 2a; the outer,
radius a(2 + ζ), where the dimensionless roughness height ζ is inflated for illustrative purposes.
The long dashed line indicates a trajectory which would have been followed in the absence of
inter-particle forces; with contact forces the trajectory is deflected onto the thick line.

and M , along with B and J , have been thoroughly investigated in previous work (see,
for example, Kim & Karrila 1991).

Apart from the contact force, the only unknown quantity in (2.4) is the pair distribution
function p(r). This is defined as the probability of finding a particle centred at x0 + r

given that there is a particle centred at x0 (normalised so that p(r)→ 1 as r →∞). In
the non-Brownian limit this function is governed by the Liouville equation (Batchelor &
Green 1972a):

∇·[ p(r)V (r)] = 0, (2.5)

where V is the velocity of the centre of particle 2 relative to the centre of particle 1 when
their instantaneous displacement is r. We use a trajectory-style analysis to calculate
the pair-distribution function analytically. This ability is the major reason why this full
calculation is possible: if Brownian motion is not neglected then approximations must be
made (as in, for example, Brady & Morris 1997, in which only the compressive quadrant
of the flow is considered).

2.4. Geometrical Analysis

We consider the interaction between two spheres, as specified above, labelled 1 and 2. We
place particle 1 instantaneously at the origin of the linear flow field U∞, and particle 2 at
r. The inter-particle separation is r, with dimensionless value s = r/a. The particles make
contact at s = sc ≡ 2+ζ (where ζ is the dimensionless roughness height). Throughout this
paper, we denote the value of a mobility function at this separation as Xc = X(s = sc).

Part of a cross-section of the trajectories swept out by the centre of particle 2 (relative
to the centre of particle 1) is shown schematically in figure 1. Particles come in in the y-
direction and leave in the x-direction. Note that, when the trajectory for smooth spheres
reaches the boundary s = 2 + ζ, it is deflected. Outside the limiting trajectory along
which the two particles just come into contact, the behaviour of the system is exactly as
it would be for perfectly smooth spheres.

The system, including the effect of particle-particle contacts, is symmetric about the
planes x = 0, y = 0 and z = 0, so we consider only the region x > 0, y > 0, z > 0,
and multiply the stress contribution from each region by a factor of 8 to regain the total
stress. The pair distribution function has a fore-aft asymmetry, and this octant contains
both fore and aft regions (see figure 1).
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At this point we introduce spherical polar coordinates (s, θ, φ) for the position of the
centre of particle 2 relative to the centre of particle 1, defined as

x = as sin θ cosφ; y = as sin θ sinφ; z = as cos θ. (2.6)

Since the particles can never be closer than s = sc, the space within which we need to
calculate p(r) is given by sc ≤ s <∞, 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2.

When the particles are well separated (s > sc), their relative velocity is given by the
standard form:

V = as[(1−B(s))E·n + (B(s)−A(s))(n·E·n)n]. (2.7)

Using (2.1), this leads to particle trajectories given by

xy = a2ξ1Φ
2(s); z = aξ2Φ(s) (2.8)

in which

Φ(s) = exp

[∫ ∞

s

(A(s′)−B(s′))

1−A(s′)

ds′

s′

]

(2.9)

and the parameters ξ1 and ξ2, which may take any values, are constant on a given
trajectory.

Particles in contact move under the influence of a contact force which simply maintains
their separation at sc without affecting their tangential motion, so the relative velocity
in contact is given by

V c = ascε̇(1−Bc) sin θ [cos θ cos 2φ eθ − sin 2φ eφ] . (2.10)

This velocity matches the free velocity (2.7) where s = sc and φ = π/4 since n·E·n = 0
there.

Referring back to figure 1, we can see that there are two types of trajectories (particle
paths): those which do not intersect the contact surface s = sc, and those which do.
Particles on the former trajectories move unaffected by contact (with velocity V of (2.7))
throughout their motion. Those on the latter trajectories move unaffected by contact until
they reach s = sc, when their velocity changes discontinuously to V c of (2.10) and they
move within the contact surface. This causes a buildup of particle density on the contact
surface. Such particles remain on the contact surface as long as the contact force required
to hold them there is compressive; that is, as long as n·E·n < 0. At the point where
n·E·n = 0 the contact force ceases and the particles once more have relative velocity
given by (2.7). However, all particles which have experienced contact leave the contact
surface on the same set of trajectories, and the density which has built up on the contact
surface is swept out on a “sheet” of high particle probability.

The shaded region of figure 1 represents positions where particle 2 cannot be found
(once steady state is attained). To get to these positions the particle would have to
pass along a portion of trajectory with s < sc, which is forbidden by the contact. This
forbidden “wake” region is divided from the region of ordinary trajectories which have
not undergone contact by the “sheet” region introduced above.

In summary, we can divide our space into regions of different types:
(i) the bulk of space, for which the particle trajectories are unaffected by microscopic

particle roughness: this includes trajectories which do not experience contact and the
incoming part of all other trajectories before they reach contact separation;

(ii) the empty wake (shaded region) which exists because the particle-particle contacts
support compressive but not tensile forces;

(iii) that part of the surface s = sc on which two particles are in contact; and
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(iv) the “sheet” in space separating the bulk region (i) from the empty wake (ii).
If we introduce a new mobility function

F (s) = scΦ(s)/(sΦc), (2.11)

then these regions are defined geometrically as follows:

Wake: sc ≤ s <∞, 0 ≤ cos θ ≤ F (s), 0 ≤ sin 2φ ≤
F 2(s)− cos2 θ

sin2 θ
(2.12)

Bulk: {sc < s <∞}−Wake (2.13)

Contact: s = sc, 0 ≤ θ ≤ π, π/4 ≤ φ ≤ π/2 (2.14)

Sheet: sc ≤ s <∞, 0 ≤ cos θ ≤ F (s), sin 2φ =
F 2(s)− cos2 θ

sin2 θ
. (2.15)

In the extensional region of the flow, a trajectory which passed through the position
(sc, θ, π/4) and forms part of the sheet region, will later pass through a position (s, θ0, φs)
and we can reinterpret the mobility function F (s) as the ratio cos θ/ cos θ0 (§3.4).

3. Pair distribution function

In the non-Brownian limit, we can solve the Liouville equation (2.5) in each of our
regions to find the particle pair distribution function p(r).

3.1. Bulk region

In the bulk (region (i)) the particle velocity, and hence the pair distribution function,
is unaffected by particle contacts. It was shown by Batchelor & Green (1972a) that, for
any material point which has come from infinity during the history of the flow, and has
not been involved in a contact, the probability density at that point may be expressed
as

p(r) = q(s) =
Φ−3(s)

(1−A(s))
(3.1)

where Φ(s) is as defined in (2.9), and q(s)→ 1 as s→∞.

3.2. Wake region

In the wake (region (ii)) there can be no particles so the pair distribution function is
p(r) = 0 and this region does not contribute to the stress.

3.3. Contact region

On the contact surface (region (iii)) we introduce a contact pair distribution function
P cδ(s− sc) = ap(r). For values of s just larger than sc, we have Vr = as(1−A)(n·E·n),
but at s = sc we have no radial velocity. This means that the Liouville equation can be
rewritten as

0 = ∇·[P cV c] + p(s+c )Vr = ∇s·[P
cV c] + ascΦ

−3
c n·E·n, (3.2)

where ∇s·u is the surface divergence of u. Using the velocity (2.10), this equation may
be solved, discarding unphysical solutions with singularities at θ = π/2, to produce

P c =
asc

3(1−Bc)Φ3
c

. (3.3)
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3.4. Sheet region

The sheet region (region (iv)) may be parametrised in terms of s and θ0 (2.15):

cos θ = F (s) cos θ0, sin 2φ = F 2(s) sin2 θ0/ sin
2 θ, (3.4)

where all points with the same value of θ0 lie on a trajectory passing through (sc, θ0, π/4).
Within this region, the particles are not in contact, so their relative velocity is given by
(2.7) and the probability distribution is governed by the Liouville equation (2.5).

Let us introduce the sheet probability density ap(r) = P sδ(sin 2φ− sin 2φs), where φs
is the value of φ which lies in the sheet for a given pair (s, θ0).

The value of this probability density at the point where the sheet leaves the contact
surface is determined by the condition that pmust be continuous at the point (sc, θ0, π/4).
The velocity is continuous at this point so the only difficulty is the change of variables
in the delta-function inherent in the probability field.

Within the sheet region, we use the standard form for a change of variables in a δ-
function:

δ(u− u) =
1

|f ′(s)|
δ(s− s)

in which u = f(s) and u = f(s). In this case we use u = sin 2φ to have, from (3.4),

f(s) =
F 2(s) sin2 θ0

sin2 θ
= tan2 θ0

[

1

1− F 2(s) cos2 θ0
− 1

]

,

f ′(s) =
2F (s)F ′(s) sin2 θ0
(1− F 2(s) cos2 θ0)2

=
2F (s)F ′(s) sin2 θ0

sin4 θ
,

and so, if the value of s on the sheet is ss,

ap(r) = P sδ(sin 2φ− sin 2φs) =
P s sin4 θδ(s− ss)

2|F (s)F ′(s)| sin2 θ0
(3.5)

and at the upstream limit ss = sc, F (s) = 1, θ = θ0, and using

F ′(sc) = −
(1−Bc)

sc(1−Ac)

gives

ap(r) =
P s sin2 θ0sc(1−Ac)

2(1−Bc)
δ(s− sc) (3.6)

and since this must equal the pair density from the contact region, the upstream boundary
condition on the sheet probability is

P s(sc, θ0, π/4) =
2a(1−Ac)

3Φ3
c sin

2 θ0
. (3.7)

Returning to our general pair density function on the sheet, we integrate the Liouville
equation (2.5) over a region s1 ≤ s ≤ s2, θ1 ≤ θ0 ≤ θ2, φ1 ≤ φ ≤ φ2, where φ1 ≤
φs(s, θ0) ≤ φ2 through the whole region. We apply the divergence theorem and note that
the only sides which can contribute to the resulting surface integral are sides of constant
s. The area element on these sides is

a2s2 sin θ dθ dφ = a2s2F (s) sin θ0 dθ0 dφ

and es is normal to the surfaces. Since s1, s2, θ1 and θ2 are arbitrary this gives (after
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integrating over φ)

P sV · es
2 cos 2φs

a2s2F (s) sin θ0 = G(θ0) (3.8)

independent of s. From (2.7) we know that on the sheet,

V · es = asε̇(1−A(s))(1− F 2(s) cos2 θ0) cos 2φs

so this becomes

1
2P

sε̇(1−A(s))(1− F 2(s) cos2 θ0)a
3s3F (s) sin θ0 = G(θ0)

and then the boundary condition (3.7) gives

G(θ0) =
a4s3c ε̇ sin θ0

3Φ3
c

.

The quantity required for later stress calculations is

∫

φ

p(r) d3r =

∫

φ

P sδ(sin 2φ− sin 2φs)

a
a3s2 sin θ dφdθ ds

=
P s

2a cos 2φs
a3s2 sin θ dθ ds =

a4s3c ε̇ sin θ0
3Φ3

cV · es
dθ0 ds

=
a3 sin θ0 dθ0

3(1− F 2(s) cos2 θ0) cos 2φs
q(s)F 3(s)s2 ds. (3.9)

4. Contact Force

Away from the contact region of the flow, the particles move unaffected by contact
and the contact force Fc is zero. Within the contact region, the force was calculated in
Wilson & Davis (2000), and for our form of E is

Fc =
3πµa2sc(1−Ac)n · E · n

Gc
=

3πµε̇a2sc(1−Ac)

Gc
sin2 θ cos 2φ (4.1)

where the mobility function G(s) was introduced by Batchelor (1977).

5. Analytic Stress Results

Having calculated the pair distribution function in each of the regions above, and
the contact force, it is straightforward to evaluate the three hydrodynamic integrals
(from bulk, contact and sheet regions) and the direct contact integral contributing to the
macroscopic rheology (2.4). In the case of the bulk and sheet regions, the contributions
can be reduced to integrals over s only; in the case of the contact region, both the
contributions can be found directly.

We will sum the contributions from the three regions, to express the results as

µ∗ = µ
[

5
2c+ kc2 +O(c3)

]

; k = 5
2 + kbulk + kHcontact + kCcontact + ksheet (5.1)

N2 = c2µε̇Ψ2 +O(c3); Ψ2 = Ψbulk +ΨH
contact +ΨC

contact +Ψsheet (5.2)
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where

kbulk =
1

4π

∫ ∞

s=sc

(

1− F 2

2

)1/2

arcsin

(

2F 2

1 + F 2

)1/2

(

60K + 5(7− F 2)L+ (1− F 2)(7 + 3F 2)M
)

qs2 ds

+
1

4π

∫ ∞

s=sc

(1− F 2)
(

5L+ (1− 3F 2)M
)

Fqs2 ds+
15

2

∫ ∞

s=sc

(

1−
2

π
arctanF

)

Jqs2 ds,

(5.3a)

kHcontact =
5s3cJc

4(1−Bc)Φ3
c

, (5.3b)

kCcontact =
3s5c(1−Ac)

2

80(1−Bc)GcΦ3
c

, (5.3c)

ksheet =
5

4π

∫ ∞

s=sc

(L+M(1− F 2))F 3qs2 ds

+
5

2π

∫ ∞

s=sc

(

1− F 2

2

)3/2

arcsin

(

2F 2

1 + F 2

)1/2 (
4K

(1− F 2)2
+

3L

(1− F 2)
+M

)

F 2qs2 ds.

(5.3d)

There is little to be gained by combining these terms so the total viscosity is not printed
here. For the normal stress difference,

Ψbulk =
1

π

∫ ∞

s=sc

[(3F 2 − 5)M − 10L]F 3qs2 ds, (5.4a)

ΨH
contact = −

2s3c(5Lc +Mc)

3π(1−Bc)Φ3
c

, (5.4b)

ΨC
contact = −

3s5c(1−Ac)
2

20π(1−Bc)GcΦ3
c

, (5.4c)

Ψsheet =
5

π

∫ ∞

s=sc

(2L+M(1− F 2))F 3qs2 ds (5.4d)

and the combination simplifies to

Ψ2 = −
2

π

[∫ ∞

sc

MF 5qs2 ds+
s3c

(1−Bc)Φ3
c

(

(5Lc +Mc)

3
+

3s2c(1−Ac)
2

40Gc

)]

(5.5)

We check the limit sc → 2, in which Φc →∞ and F (s)→ 0, to have:

k →
5

2
+

15

2

∫ ∞

2

Jqs2 ds and Ψ2 → 0, (5.6)

as required. We also note the specific asymptotic forms of the contact contributions for
small ζ (using the near-field asymptotics given by, for example, Kim & Karrila 1991):

kHcontact ∼ 3.55ζ0.22(log ζ−1)−0.29, kCcontact ∼ 5.095ζ1.22(log ζ−1)−0.29,
ΨH

contact ∼ −5.49ζ
0.22(log ζ−1)−0.29, ΨC

contact ∼ −6.486ζ
1.22(log ζ−1)−0.29,

and observe that in the small-roughness limit, the direct contributions from the contact
force are smaller than the hydrodynamic contact contributions by a factor of ζ.
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Figure 2. Plots of the c2 viscosity coefficient k against the roughness height ζ. In the figure
on the right the ζ axis is on a log scale to demonstrate that k behaves correctly as ζ → 0.

ζ kshear kstrain

2× 10−5 6.0 6.7
2× 10−3 5.9 6.2
2× 10−2 5.7 5.7
2× 10−1 5.7 4.9

Table 1. A direct comparison of values of the viscosity coefficient k for plane strain with that
for shear flow from figure 11 of Bergenholtz et al. (2002).

6. Numerical Results and Discussion

6.1. Numerical viscosity results

An example set of viscosity results is shown in figure 2, with k plotted against ζ. As ex-
pected, the limit ζ → 0 is that of smooth spheres, for which k = ksmooth ≈ 6.9. Batchelor
& Green (1972a), Zinchenko (1984) and Kim & Mifflin (1985) reported ksmooth = 7.6,
7.0 and 7.1, respectively, with the small differences due to the accuracies of the mobility
functions employed. The latter two are thought to be the most accurate, and our result
is 6.9, using a combination of the mobility data from Kim & Mifflin (1985) and far- and
near-field asymptotics.

The viscosity is always lower for rough spheres than for smooth ones, with the effect
being more marked for larger roughness heights. The physical explanation of this lowering
in stress is that the closest approach of the particles is limited, limiting the magnitude
of the lubrication stresses between the particles.

The values of the viscosity coefficient are very similar to those calculated for biaxial
expansion flows (Wilson & Davis 2000) and for shear flows (Bergenholtz et al. 2002).
In the latter case, reading from figure 11 of Bergenholtz et al. (2002) and converting
to our notation gives four values for direct comparison, which is done in table 1. The
trends in these two quantities are clearly the same; but we should not read too much
into the specific numerical values since the shear values are calculated at finite (large)
Péclet number and it is not clear from the graphs in Bergenholtz et al. (2002) that the
zero-diffusion result has been reached.
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Figure 3. Plot of the negative c2 coefficient of normal stress, Ψ2, against the roughness height
ζ. In the figure on the right the ζ axis is on a log scale to demonstrate that Ψ2 → 0 as ζ → 0.

6.2. Numerical normal stress results

The normal stress results are shown in figure 3, with −Ψ2 plotted against ζ. As expected,
the limit ζ → 0 is that of smooth spheres, for which Ψ2 = 0. For all non-zero values
of ζ the normal stress is negative, and the values are significant for relatively small
roughness heights: for a roughness height of ζ = 10−3, within the ranges predicted by
Smart & Leighton (1989) and Ekiel-Jeżewska et al. (1999), we have Ψ2 = −0.83 and
N2 = −0.83c2µε̇.

6.3. The effect of Brownian motion

In order to add a small amount of Brownian motion to our system, two modifications need
to be made. First, the equation governing the pair distribution function (2.5) becomes

∇·[ p(r)V (r)]− Pe−1∇·[D(r)·∇p(r)] = 0 (6.1)

in which lengths are made dimensionless with a, velocities with aε̇, and the diffusivity
tensor with kT/6πµa. The (large) Péclet number is defined as Pe = 6πµa3ε̇/kT and the
dimensionless diffusivity tensor is Dij = G(s)ninj + H(s)(δij − ninj) as in Batchelor
(1977). The contact boundary condition on this equation becomes a zero-flux condition
at r = asc:

pV ·n− Pe−1[D·∇p]·n = 0, (6.2)

while in the far-field we retain the boundary condition that p(r) → 1 as r → ∞ as for
the non-Brownian case. Second, an extra Brownian stress contribution is added to (2.4).
This extra stress is always O(Pe−1), so we continue to neglect it; but the changes to the
pair distribution function may be important even for large Pe.

Brady & Morris (1997) considered this system, with hard-sphere repulsion, in various
flow types, and found a boundary layer of O(Pe−1) in the compressive region. Because
they were considering many different linear flows, they neglected angular terms in (6.1)
when solving for the value of p within the boundary layer. They commented on this
approximation (Brady & Morris 1997, page 118):

The O(Pe−1) terms neglected, including the velocity divergence term, affect the
precise value of p, but do not affect the scaling with Pe;

while this is true for any specific finite value of ζ, for very small roughness heights the
size of the neglected terms may be large, and in all cases they are at least as large as
some of the terms which are retained.
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Figure 4. Plots of the c2 viscosity coefficient k against the roughness height ζ, neglecting the
effect of the sheet and wake regions.

For the specific case of plane strain flow, and using the insight provided by the cal-
culations of §3, we can solve (6.1) self-consistently (i.e. without using the radial balance
approximation) to leading order in Pe−1, obtaining the solution close to contact:

p ∼ −Pe
s2c(1−Ac) sin

2 θ cos 2φ

3Gc(1−Bc)Φ3
c

exp

[

Pe sc(1−Ac) sin
2 θ cos 2φ

Gc
(s− sc)

]

. (6.3)

Full details of this calculation are given in Appendix A.
There are several points to note about this solution. First, the dimensionless width of

the boundary layer is proportional to Gc/[Pe sc(1 − Ac) sin
2 θ cos 2φ] which is of order

Pe−1, as indicated by Brady & Morris (1997). Second, in the limit of large Pe, if we
integrate over a region which is large relative to the boundary layer but small compared
to all other distances, we obtain

∫ asc+ε

r=asc

pdr ∼
asc

3(1−Bc)Φ3
c

(6.4)

which corresponds with the result from integrating our contact pair density P c of §3.3.
Finally, we note that the width of the boundary layer is inversely proportional to

n·E·n = ε̇ sin2 θ cos 2φ

where this is negative; so at the end of the compressive quadrant where n·E·n = 0, the
boundary layer structure breaks down. It is only valid where |n·E·n| > Pe−1. We can
therefore expect that even a small amount of Brownian motion will have a large effect
on the sheet-and-wake structure we have predicted in the non-Brownian case. We cannot
predict quantitatively the form of p(r) in the extensional quadrants of the flow, but in
figures 4 and 5 we plot the values of k and −Ψ2 which would be predicted if the pair
density in the extensional region were simply q(s): that is, the stresses affected only by
the compressive region (this approximation is liable to be an over-prediction of the effect
of diffusion). These figures are exactly equivalent to figures 2 and 3 for the non-Brownian
case. In particular, we note the reduction in magnitude of the normal stress difference:
at ζ = 10−3 where we had Ψ2 = −0.83 with the sheet and wake included, we now have
Ψ2 = −0.48.

Brady & Morris (1997) studied this system for all Péclet numbers, and found that
a high-Pe asymptote was reached for Pe ∼ 104. This being so, in their figure 4 they
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Figure 5. Plots of the negative c2 coefficient of normal stress, −Ψ2, against roughness height
ζ, neglecting the effect of the sheet and wake regions.
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Figure 6. Plot of compressive region contributions to the c2 stress coefficients. The curves are
from the calculation in this paper: −Ψ2 (solid line), and k (dotted line). The points are taken
from Brady & Morris (1997), figure 4: −Ψ2 (+) and k (×).

took a Péclet number of 106 and plotted compressive region stresses against hard-sphere
separation height, plotting two quantities which in our notation are

−I2 = −
2π

15

(

ΨH
contact +ΨC

contact

)

, Iη =
4π

15

(

kHcontact + kCcontact

)

against a contact height parameter b/a − 1 = ζ/2. In figure 6 we show our equivalent
terms: that is, the same values of Ψ2 as in figure 5, and the values of k minus the
contribution from the reduced bulk region s > sc. The results from Brady & Morris
(1997) are also plotted on the same graph for comparison. It is noted that, because their
angular form of the contact pair distribution is not quantitatively correct, we do not have
quantitative agreement (our results have slightly larger magnitude in both cases); but
the power-law trend for small ζ is in agreement between our results and theirs.

7. Concluding Remarks

We have investigated analytically the rheology to O(c2) of a dilute suspension of rough
spheres in a planar straining flow. For perfectly smooth particles, the stress is Newtonian
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and can be represented by a scalar viscosity which is approximately 1+ 5
2c+6.9c2 times the

solvent viscosity for a concentration c of particles. In contrast, when particles are allowed
to come into contact through a microscopic surface roughness, a negative second normal
stress difference is caused. In addition, the hard-sphere repulsion lowers the viscosity
(which is an effect already discussed for axisymmetric strain in three dimensions (Wilson
& Davis 2000) and shear in two dimensions (Wilson & Davis 2002)). We give quantitative
results both for the artifical case of no Brownian motion, and the asymptotic limit of small
Brownian motion. These are in qualitative agreement with Brady & Morris (1997), but
within the boundary layer which they identified, we are able to fully calculate the angular
dependence of the pair distribution function, which they calculated only approximately.

The author would like to thank Robert H. Davis and John M. Rallison for helpful
discussions, Jeffrey F. Morris for providing the data from Brady & Morris (1997), and
the referees for their many helpful suggestions. This work was supported in part by the
Nuffield Foundation NUF-NAL/00620/G (2002).

Appendix. Boundary-layer structure for a system with large Pe

Here we start from the dimensionless governing equation (6.1):

∇·[ p(r)V (r)]− Pe−1∇·[D(r)·∇p(r)] = 0 (A 1)

with boundary conditions

pV ·n− Pe−1[D·∇p]·n = 0 at s = sc (A 2)

p→ 1 as s→∞. (A 3)

We define three quantities, γi, the dimensionless components of E·n, which are related
to the free velocity:

γr = sin2 θ cos 2φ (A 4a)

γθ = sin θ cos θ cos 2φ (A 4b)

γφ = − sin θ sin 2φ (A 4c)

Vr = s(1−A)γr (A 5a)

Vθ = s(1−B)γθ (A 5b)

Vφ = s(1−B)γφ (A 5c)

to rewrite (A 1) in spherical polars as

1

s2
∂

∂s
(ps3(1−A)γr) +

1

s sin θ

∂

∂θ
(sin θps(1−B)γθ) +

1

s sin θ

∂

∂φ
(ps(1−B)γφ)

− Pe−1 1

s2
∂

∂s

(

Gs2
∂p

∂s

)

− Pe−1 H

s2 sin θ

∂

∂θ

(

sin θ
∂p

∂θ

)

− Pe−1 H

s2 sin2 θ

∂2p

∂φ2
= 0 (A6)

which may also be expanded:

s(1−A)γr
∂p

∂s
+ (1−B)

[

γθ
∂p

∂θ
+

γφ
sin θ

∂p

∂φ

]

+

[

γr(3(1−A)− sA
′) +

1−B

sin θ

(

∂

∂θ
(sin θγθ) +

∂γφ
∂φ

)]

p

−
Pe−1

s2

[

Gs2
∂2p

∂s2
+ (2sG+ s2G′)

∂p

∂s
+H

∂2p

∂θ2
+
H cos θ

sin θ

∂p

∂θ
+

H

sin2 θ

∂2p

∂φ2

]

= 0 (A7)
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in which we have used A′ to denote dA/ds; and (A 2) becomes

sγr(1−A)p−GPe
−1 ∂p

∂s
= 0 at s = sc. (A 8)

A.1. Outer solution

Where there are no large gradients in p we can neglect the Pe−1 terms of (A 6) to obtain

1

s2
∂

∂s
(s3(1−A)γrp) +

1

s sin θ

∂

∂θ
(sin θs(1−B)γθp) +

1

s sin θ

∂s(1−B)γφp

∂φ
= 0 (A9)

which can be solved using p = q(s) where

q(s) =
1

(1−A)
exp

∫ ∞

s

3(B −A)

s′(1−A)
ds′, (A 10)

satisfying the outer but not the inner boundary condition.

A.2. Inner boundary-layer solution

In the compressive region where γr < 0, we assume that there is a boundary-layer of
width δ close to the contact surface. We introduce a strained coordinate z = (s − sc)/δ
and (A 7) becomes

δ−1s(1−A)γr
∂p

∂z
+ (1−B)

[

γθ
∂p

∂θ
+

γφ
sin θ

∂p

∂φ

]

+

[

γr(3(1−A)− sA
′) +

1−B

sin θ

(

∂

∂θ
(sin θγθ) +

∂γφ
∂φ

)]

p

−
Pe−1

s2

[

δ−2Gs2
∂2p

∂z2
+ δ−1(2sG+ s2G′)

∂p

∂z
+H

∂2p

∂θ2
+
H cos θ

sin θ

∂p

∂θ
+

H

sin2 θ

∂2p

∂φ2

]

= 0

(A11)

in which the first terms of the first and third lines are comparable if δ−1 = αPe. Selecting
this scaling and neglecting terms of order Pe−1, we obtain

αPe

[

s(1−A)γr
∂p

∂z
− αG

∂2p

∂z2

]

− α

(

2G

s
+G′

)

∂p

∂z
+ (1−B)

[

γθ
∂p

∂θ
+

γφ
sin θ

∂p

∂φ

]

+ γr(3(1−A)− sA
′)p+

[

1−B

sin θ

(

∂

∂θ
(sin θγθ) +

∂γφ
∂φ

)]

p = 0 (A12)

with inner boundary condition

scγr(1−Ac)p−Gcα
∂p

∂z
= 0 at z = 0, (A 13)

and an outer condition that the solution must match onto the outer solution for large z.
For convenience, we will choose

α =
sc(1−Ac)

Gc
. (A 14)

We pose an asymptotic series

p = p0 + Pe−1p1 + · · ·

and expand mobility functions as A = Ac + δzA′c + · · · to obtain, at leading order,

γr
∂p0

∂z
−
∂2p0

∂z2
= 0 (A15)
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with solution

p0 = f0(θ, φ) exp [γrz] + g0(θ, φ)

= f0(θ, φ) exp

[

sc(1−Ac)γrPe(s− sc)

Gc

]

+ g0(θ, φ). (A 16)

We cannot satisfy the outer boundary condition with this function; we can satisfy the
inner condition, and doing so gives g0 = 0.

We return to (A 12) and obtain, at order 1, the PDE:

sc(1−Ac)

Gc

[

sc(1−Ac)γr
∂p1

∂z
− sc(1−Ac)

∂2p1

∂z2

]

=

− z

[

(1−Ac − scA
′
c)γr

∂p0

∂z
−
sc(1−Ac)

Gc
G′c

∂2p0

∂z2

]

+
sc(1−Ac)

Gc

(

2Gc

sc
+G′c

)

∂p0

∂z
− (1−Bc)

[

γθ
∂p0

∂θ
+

γφ
sin θ

∂p0

∂φ

]

−

[

γr(3(1−Ac)− scA
′
c) +

1−Bc
sin θ

(

∂

∂θ
(sin θγθ) +

∂γφ
∂φ

)]

p0 (A 17)

which we may write as

s2c(1−Ac)
2

Gc

[

γr
∂p1

∂z
−
∂2p1

∂z2

]

= (β1zf0 − β2 + β3f0) exp [γrz] (A 18)

with parameters which depend only on θ and φ:

β1 = β4γ
2
r − (1−Bc)

[

γθ
∂γr
∂θ

+
γφ
sin θ

∂γr
∂φ

]

(A 19a)

β2 = (1−Bc)

[

γθ
∂f0
∂θ

+
γφ
sin θ

∂f0
∂φ

]

(A 19b)

β3 = β4γr − (1−Bc)

(

cos θ

sin θ
γθ +

∂γθ
∂θ

+
1

sin θ

∂γφ
∂φ

)

(A 19c)

β4 = scA
′
c +Ac − 1 +

G′csc(1−Ac)

Gc
. (A 19d)

Solving for p1 gives

p1 = −
Gc

s2c(1−Ac)
2γr

(

β1f0z
2

2
−

(

β1f0
γr

+ β2 − β3f0

)[

z −
1

γr

])

exp [γrz]

+ f1(θ, φ) exp [γrz] + g1(θ, φ) (A 20)

and applying the inner boundary condition gives

g1(θ, φ) =
Gc

s2c(1−Ac)
2γ2

r

(

β1f0
γr

+ β2 − β3f0

)

. (A 21)

Finally we apply the matching condition for large z, that

p0 + Pe−1p1 ∼ qc as z →∞ (A 22)

which gives

g1(θ, φ) = Peqc. (A 23)

Using (A 21) and substituting the definitions (A 19) of the angular parameters βi, and
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(A 4) of the parameters γi, this becomes a PDE for f0(θ, φ):

sin θ cos θ cos2 2φ
∂f0
∂θ
− sin 2φ cos 2φ

∂f0
∂φ
−
(

sin2 θ cos2 2φ+ 2
)

f0

= Peqc
s2c(1−Ac)

2 sin4 θ cos3 2φ

Gc(1−Bc)
. (A 24)

This equation is solved by

f0(θ, φ) = −Pe qc
s2c(1−Ac)

2

3Gc(1−Bc)
sin2 θ cos 2φ, (A 25)

giving the leading order boundary-layer solution as

p = −Pe qc
s2c(1−Ac)

2

3Gc(1−Bc)
sin2 θ cos 2φ exp

[

Pe sc(1−Ac)(s− sc) sin
2 θ cos 2φ

Gc

]

(A 26)

as in (6.3).

A.3. Scaling breakdown

The size of the boundary-layer is of order [Pe sin2 θ cos 2φ]−1, which suggests that close
to φ = π/4 where cos 2φ (and hence γr) becomes small, our scaling will break down and
other terms will come into the leading-order balance.

This occurs in fact when γr ∼ Pe
−1/3, when our two dominant terms are of order Pe1/3

and are balanced by the angular advection term

1

s sin θ

∂

∂φ
(ps(1−B)γφ). (A 27)

In this region, if we introduce two strained coordinates, y = Pe2/3(s − sc) and ψ =
Pe1/3(φ− π/4) then the leading order PDE (from (A7)) becomes

−Gc
∂2p

∂y2
− 2sc(1−Ac) sin

2 θψ
∂p

∂y
− (1−Bc)

∂p

∂ψ
= 0, (A 28)

for which a solution satisfying the boundary conditions has not yet been found.

A.4. Sheet and wake in the extensional region

Assuming that the boundary layer is advected to the separation point φ = π/4, within
the extensional quadrant of the flow this high-concentration region (the sheet) will diffuse
as s increases, since there is now no advective flux in the correct direction to maintain
steep gradients in p. The width of the diffuse sheet region scales as (Pe−1s)1/2, as we
expect for a diffusion equation, and so the largest extent (in s) over which it may still
be expected to contribute to the rheology scales as Pe.

It may, however, be possible that the effective extent of the sheet and wake together
is much less: the wake region has a dimension in the y direction of order s−1, and the
contribution could be negligible once the sheet has diffused to the edge of the wake. This
happens over a shorter lengthscale of order Pe1/3.
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