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1 Abstract

Many genes have been identified as driving
cellular differentiation, but because of their
complex interactions, the understanding of
their collective behaviour requires mathe-
matical modelling. Intriguingly, it has been
observed in numerous developmental con-
texts, and particularly hematopoiesis, that
genes regulating differentiation are initially
co-expressed in progenitors despite their an-
tagonism, before one is upregulated and
others downregulated.

We characterise conditions under which
3 classes of generic ”master regulatory net-
works”, modelled at the molecular level
after experimentally-observed interactions
(including bHLH protein dimerisation), and
including an arbitrary number of antago-
nistic components, can behave as a ”multi-
switch”, directing differentiation in an all-

or-none fashion to a specific cell-type cho-
sen among more than 2 possible outcomes.
bHLH dimerisation networks can readily
display coexistence of many antagonistic
factors when competition is low (a sim-
ple characterisation is derived). Decision-
making can be forced by a transient in-
crease in competition, which could cor-
respond to some unexplained experimen-
tal observations related to Id proteins; the
speed of response varies with the initial con-
ditions the network is subjected to, which
could explain some aspects of cell behaviour
upon reprogramming.

The coexistence of antagonistic factors at
low levels, early in the differentiation pro-
cess or in pluripotent stem cells, could be
an intrinsic property of the interaction be-
tween those factors, not requiring a specific
regulatory system.

Abbreviations: bHLH, basic Helix-Loop-
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Helix, Id, Inhibitor of Differentiation

Keywords: multistationarity, cellular dif-
ferentiation, cellular reprogramming, bHLH
dimerization

2 Introduction

It has long been recognised that cellular
differentiation could result from epigenetic
memory, controlled by the dynamical prop-
erties of the same system, present with an
identical structure in all cells (Delbrück,
1949), rather than from a progressive, ir-
reversible loss of differentiation potential; a
fundamental property of such a control sys-
tem would be the presence of positive feed-
back circuits (Thomas, 1981, Plahte et al.,
1995, Snoussi, 1998, Gouzé, 1998, Cinquin
and Demongeot, 2002, Soulé, 2003). In-
deed, pioneer experiments showed that the
genomes of some differentiated cell types
retain the capacity to regenerate a whole
organism (Gurdon, 1962, Gurdon et al.,
1975), and more recent experiments have
strengthened the view that there is exten-
sive plasticity in cell-fate determination (re-
viewed by Blau and Baltimore, 1991, Blau
and Blakely, 1999, and Theise and Krause,
2002).

Bistable switches have been given a thor-
ough theoretical investigation (Cherry and
Adler, 2000), and have been constructed
de novo (Gardner et al., 2000) or modi-
fied (Ozbudak et al., 2004). There is ev-
idence, discussed in section 2.1, that cells
undergoing differentiation sometimes face
commitment decisions which involve more
than two possible outcomes, but switches
involving more than two variables have not
been given extensive attention (we are not

aware of any generic mathematical model
that addresses cellular differentiation, with
more than two possible outcomes). In the
following, we discuss the relevance of these
high-dimensional switches to the modeling
of cellular differentiation, and investigate
the properties of different molecular mod-
els, evaluating them with the current knowl-
edge of the mechanisms of cellular differ-
entiation. In particular, we test whether
these models are able to display a coexis-
tence of antagonistic factors at low levels,
as decision-making with increased expres-
sion levels could be a relevant model of dif-
ferentiation.

2.1 Biological aspects

2.1.1 Some commitments are irre-
ducible to binary steps

Cellular differentiation is often envisioned
as a temporal cascade of decisions, by which
cells restrict their potential fate further and
further, until they reach a unique fate. It
has been argued that each of these deci-
sions is binary (Brown et al., 1988, Stern-
berg and Horvitz, 1989, Kaletta et al., 1997,
Lin et al., 1998). However, recent stud-
ies of hematopoeisis strongly suggest oth-
erwise (Rothenberg et al., 1999), and point
to models in which many cross-antagonising
factors compete with each other (see be-
low), receiving activation or inhibition from
extracellular signals, leading to the progres-
sive up-regulation of one specific factor, and
down-regulation of all others. The hypothe-
sis that decisions are more complex than bi-
nary is also supported by the fact that the
same cell type can be obtained by differ-
ent developmental pathways (Rothenberg
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et al., 1999).
Apart from hematopoiesis, two systems

have been described which seem to clearly
involve a 3-outcome decision, irreducible to
a sequence of 2 binary decisions: cells in the
C. elegans hermaphrodite germline are di-
rected to mitosis, differentiation as sperm,
or differentiation as oocyte (Ellis and Kim-
ble, 1995), and founder cells of Drosophila
mesoderm are directed to specific dorsal
muscle or pericardial cell phenotypes by
3 mutually-repressive genes (Jagla et al.,
2002).

Finally, in at least two instances of neural
development, fate choices between a great
diversity of possible outcomes have been
shown, and are unlikely to be mediated by
a series of binary commitments. This is
the case of olfactory development (Serizawa
et al., 2000, Ebrahimi et al., 2000), which
does not involve genetic rearrangements
(Eggan et al., 2004), and of the regulation
of hundreds of alternatively-spliced tran-
scripts of a single gene in the Drosophila
brain (Neves et al., 2004).

Thus, it appears that model a, depicted
in Figure 1, is not the only possibility, and
that model b of Figure 1 should also be
taken into account.

Having shown that high-dimensional
switches are necessary for the mathematical
modeling of some developmental decisions,
we now turn to the way their structure
should be modeled: differentiation factors
are often antagonistic (section 2.1.2), which
doesn’t prevent them from being sometimes
coexpressed (section 2.1.3), and modulation
of the interaction strength is a way differ-
entiation is regulated (section 2.1.4). The
basis for a mathematical formulation of the
models is provided in section 2.2.

A0

A

B0

B C D

Genes specific for cell-type

B

A

D

C

a) Binary, hierarchic decisions model

b) Simultaneous decision model

Figure 1: Arrows represent activation, and
squares inhibition. Adapted from Cinquin
and Demongeot (2002).
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2.1.2 Antagonism between differen-
tiation factors

Antagonism between genes driving differen-
tiation to different fates has been repeat-
edly established; often, enforced expres-
sion of a differentiated phenotype, whether
by specific misexpression of a gene, or fu-
sion of cells with different phenotypes, also
leads to repression of the previous phe-
notype (repression of alternative fates has
been proposed to be an essential mecha-
nism of differentiation, reviewed by Cory,
1999). The idea of competition is reinforced
by dose-dependency effects, shown for ex-
ample by comparison of heterozygous and
homozygous mutants, heterokaryon stud-
ies, or knock-down mutations (Weintraub,
1993, McDevitt et al., 1997, reviewed by
Orkin, 2000; Crittenden et al., 2002), by
monoallelic expression of a gene such as
Pax5 (Nutt et al., 1999), and by dosage ef-
fects of interacting bHLH proteins (Zhuang
et al., 1996). These effects argue that
boolean models, in which a specific master
gene would be turned on, initiate transcrip-
tion of cell-type specific genes, and repress
all other fates, are insufficient.

Competition between cell-fate determin-
ing factors has also been documented at
the molecular level, for example in the
case of neurogenesis, where bHLH proteins
play a major role in specifying neural sub-
types (Chien et al., 1996, Brunet and Ghy-
sen, 1999). Gowan et al. (2001) have
identified a network of 3 cross-repressive
bHLH proteins (although not all possible
cross-repressions have been characterised).
Briscoe et al. (2000) have also shown that a
cross-repressive gene network reads out the
Shh gradient in the neural tube. Two sets of

two cross-repressing genes have been identi-
fied, with a possibility that there is a larger,
totally cross-repressive network (all the pos-
sible interactions do not seem to have been
assessed yet). The competition can also
happen by physical interaction between the
factors, rather than by cross-repression of
transcription: in hematopoeisis, GATA-1,
which drives erythroid and megakaryocytic
differentiation (Kulessa et al., 1995, Vis-
vader et al., 1992, Iwasaki et al., 2003), and
PU-1, a transcription factor essential for
the expression of myleoid-specific genes (re-
viewed by Zhang et al., 1996), as well as B-
cell specific genes (Chen et al., 1996), sup-
press each other’s activity by physical inter-
action (Rekhtman et al., 1999, Zhang et al.,
1999, Nerlov et al., 2000). This seems to
be a general phenomenon in hematopoiesis
(Hu et al., 1997, reviewed by Cross and En-
ver, 1997, Enver and Greaves, 1998).

In addition to repressing other genes,
cell-fate determining factors often enhance
their own expression; it has been proposed
that this is a common property of ”master
switches” (Rothenberg et al., 1999).

2.1.3 Coexpression of antagonistic
factors

Coexpression of antagonistic genes has
been shown both for closely-related lineages
(for example coexpression of antagonis-
tic hematopoeisis-related genes, Miyamoto
et al., 2002, Akashi et al., 2003, Ye et al.,
2003, reviewed by Orkin, 2003, transient
prespore expression of a prestalk-specific
gene in Dictyostelium, Jermyn and Wil-
iams, 1995, coexpression of lineage-specific
genes in pancreas development, Chiang and
Melton, 2003, and coexpression of neuro-
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genic genes, Rallu et al., 2002, Pierani et al.,
2001, Briscoe et al., 2000, although the lat-
ter may be due to a transient effect of the
misexpression method), and between more
distantly-related lineages (for example ex-
pression of neural markers by hematopoietic
precursors, Goolsby et al., 2003).

A semi-quantitative analysis of the ex-
pression of many hematopoietic genes was
performed by Akashi et al. (2000), show-
ing that lineage-specific (and antagonistic)
genes were co-expressed at low levels in pre-
cursors, before respective upregulation and
downregulation (see Rothenberg, 2000, Zhu
and Emerson, 2002, for reviews). At an ear-
lier stage of development, markers for dif-
ferent germ layers are also transiently co-
expressed (Wardle and Smith, 2004).

2.1.4 Regulation of differentiation

Some proteins have been shown to have reg-
ulative effects on differentiation in many
different cellular contexts, and would thus
prove interesting to incorporate in models
of cellular differentiation.

� Id proteins, ubiquitously expressed
during development, seem to act
as inhibitors of cell differentiation,
by sequestering ubiquitously-expressed
class A bHLH proteins, preventing
class B bHLH to form A-B het-
erodimers, which are transcriptionally
active (Benezra et al., 1990, Garrell
and Modolell, 1990, Ellis et al., 1990,
reviewed by Norton et al., 1998, Nor-
ton, 2000), and by preventing DNA
binding (O’Toole et al., 2003); see Mas-
sari and Murre (2000) for a precise
classification of HLH proteins. Twist

can act in the same way (Spicer et al.,
1996), or in another, more direct way,
by binding to class MyoD (Hamamori
et al., 1997).

� Hes1, a bHLH protein, seems in many
cases to be essential in the maintenance
of an undifferentiated state (Kageyama
et al., 2000); its effect can be mediated
either by active repression, which in-
volves the recruitment of Groucho, or
by passive repression, which involves
hetero-dimerisation with other bHLH
proteins.

� The PUF family of proteins represses
the expression of many genes by regu-
lating their mRNA stability (Wickens
et al., 2002), and has been proposed
to have the ancestral function of main-
taining proliferation of stem cells; in
C. elegans, sex-determination genes are
regulated by PUF members.

� NF-κB has been shown to inhibit dif-
ferentiation of mesenchymal cells, by
destabilisation of the transcripts of
Sox9 and MyoD, two transcription fac-
tors involved in different differentiation
pathways (Sitcheran et al., 2003).

All these differentiation-inhibiting pro-
teins have a negative effect on the strength
of transcription of genes which are essential
in cell-fate determination. The models pre-
sented below suggest that modulation of the
transcription strength of proteins involved
in cell-fate determination could allow for
an initial co-existence of many antagonis-
tic factors, followed by up-regulation of one
factor at the expense of others, as the tran-
scription strength is increased.
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2.2 Mathematical models

The models studied here have an arbitrary
number of components. Each variable rep-
resents the intracellular concentration of
a differentiation factor (called ”switch el-
ement” in the following), which enhances
its own expression and represses that of
all others (the system is symmetrical, in
that any element has the same relation-
ship with all others, and in that all ele-
ments share a common set of parameters).
The models can represent different forms
of biological interactions. The terminology
used below is that of transcriptional con-
trol: each factor is supposed to be a pro-
tein, which enhances the transcription of
its own mRNA, and represses the transcrip-
tion of the mRNAs for other switch ele-
ments, with or without physical interaction
with other factors; as a simplification, the
translation step is not taken into account
in the model, and proteins are thus sup-
posed to act directly on each other’s con-
centrations. There is evidence that trans-
lational regulation can play a major role
in some cases (Wickens et al., 2000, Okano
et al., 2002). In the following models, dif-
ferent forms of post-transcriptional control
(by means of regulation of mRNA stability,
or translation of the proteins), can be rep-
resented in the same way as transcriptional
control. Downregulation of cytokine recep-
tors has been observed prior to commitment
(Kondo et al., 2000), and downregulation of
receptors promoting expression of compet-
ing factors could also be accounted for by
the following models.

3 kinds of models are studied below:

� Mutual inhibition with autocatalysis:
all switch elements repress one an-

other, and enhance their own expres-
sion. This is one of the simplest models
one can think of that is able to achieve
dominant expression of each of its ele-
ments, depending on the initial condi-
tions.

� Mutual inhibition with autocatalysis,
and leak : the same as the previous,
with a supplementary term that repre-
sents an identical, basal level of expres-
sion, which is independent of any ele-
ment of the network. This could corre-
spond for example to a gene upstream
in the differentiation hierarchy, which
”primes” the lower level of the differen-
tiation network, as has been proposed
within the hematopoietic differentia-
tion network (Ye et al., 2003, reviewed
by Orkin, 2003).

� bHLH dimerisation: based on the
class A/class B bHLH dimerisation dis-
cussed above.

The first two models can be viewed as
a generic representation of the interactions
between switch elements, while the third is
based on an explicit assumption. All are
formulated according to standard kinetics.

These models are cell-autonomous, and
do not take into account ”differentiation
cues” that cells receive. The models could
be extended to take into account either dif-
ferent initial conditions, leading to various
differentiated states, or different biases of
the network (for example by providing a
higher basal expression level of one of the
factors).
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3 Results

3.1 Mutual inhibition with
autocatalysis

Each switch element is supposed to undergo
non-regulated degradation (modeled as ex-
ponential decay, with an arbitrary speed 1),
and transcription/translation with a rela-
tive speed σ. Each element positively auto-
regulates itself, and represses expression of
others, with a cooperativity c. Calling xi

the concentration of each switch element,
the corresponding equations are, for n ele-
ments:

dx1

dt
= −x1 +

σxc
1

1 + Σn
i=1x

c
i

. . . (1)

dxn

dt
= −xn +

σxc
n

1 + Σn
i=1x

c
i

The analysis is restricted to c ≥ 1, as
there is only one steady state (0) if c < 1.
The results presented in appendix A show
that it is possible for one switch element
to be on and others off (for σ > 2), but
that if there is some cooperativity in the
system (ie c > 1), it is impossible for more
than 1 element to be on at the same time.
On the contrary, if there is no cooperativity
(c = 1), simulations show that a multitude
of equilibria exist and are stable (switch el-
ements in the ”on” state can even coexist at
different concentrations). Thus, the multi-
stability behaviour of this system is tunable
only by changes in the strength of the co-
operativity, a mechanism which seems to be
of unlikely biological relevance.

3.2 Mutual inhibition with
autocatalysis, and leak

The model is the same as previously, except
that each element has a ”leaky” expression,
modelled as a constant production term α.
The equations become:

dx1

dt
= −x1 +

σxc
1

1 + Σn
i=1x

c
i

+ α

. . . (2)

dxn

dt
= −xn +

σxc
n

1 + Σn
i=1x

c
i

+ α

The system is interesting only for c > 1
(see appendix B). If the leak is small, it
doesn’t have a major effect on the system,
except when the cooperativity is close to 1:
as shown in appendix B, it is impossible for
more than one switch element to be ”on”,
at a much higher level than the leak level
α.

Even when the cooperativity is close to 1,
it is still the case that only one variable at
the same time can dominate all others; in
order for that to happen, the transcription
strength must be sufficiently high. A simu-
lation was performed for a cooperativity of
1.1, with increasing σ (see Figure 2). All
switch elements are initially coexpressed,
and once σ becomes sufficiently high, one
switch element is upregulated, and others
downregulated.

The same pattern of coexpression fol-
lowed by exclusive expression can be
achieved with a decreasing leak (see Fig-
ure 3), with the difference that the level of
initial coexpression decreases slightly with

7



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1000  2000  3000  4000  5000
 0

 20

 40

 60

 80

 100

x_
i

si
gm

a

Time

x_1
x_2
x_3
x_4

sigma

Figure 2: Time evolution of the concentra-
tions of 4 switch elements (x1 to x4), for
the model with mutual inhibition with au-
tocatalysis, and leak, with the transcription
strength σ being gradually increased over
time. The 4 elements are initially coex-
pressed at an identical level, which increases
with σ; when σ reaches a threshold level,
one element is upregulated, and others are
downregulated. Parameters in the simula-
tion were α = 2 and c = 1.1 Low, random
noise was added to allow the system to es-
cape the equilibrium as it became unstable.

time (this level is lower than the rela-
tive maximum transcription strength σ, but
higher than the leak α). Once the leak has
become sufficiently small, exclusive upregu-
lation occurs.

We show in appendix B that our models
with mutual inhibition and autocatalysis,
with or without leak, always converge to an
equilibrium (and thus never oscillate).
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Figure 3: Time evolution of the concentra-
tions of 4 switch elements (x1 to x4), for
the model with mutual inhibition with au-
tocatalysis, and leak, with the leak level α
being gradually decreased over time. The 4
elements are initially coexpressed at identi-
cal levels (higher than the leak α because
of autocatalysis); when the leak reaches a
threshold level, one element is upregulated,
and others are downregulated. Note that
the scales for the xi and for α are differ-
ent by a factor of 11, equal to c/(c − 1) in
this simulation. Thus, it is impossible for
the curve of more than one xi to be above
that of α at equilibrium. Thus, in the boxed
region, the system is in the process of re-
sponding to the drop in α, and not at equi-
librium. Parameters in the simulation were
σ = 100 and c = 1.1 Low, random noise
was added to allow the system to escape
the equilibrium as it became unstable.
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Figure 4: Time evolution of the concentra-
tions of two switch elements (x1 and x2),
for the model with mutual inhibition with
autocatalysis, and leak. The resting con-
centration when one element is on and the
other off is roughly 100. Initial concentra-
tions differ by 10. Parameters are σ = 100,
α = 0.02, and c = 2. The trajectory is es-
sentially the same for all α < 10, and very
similar for initial concentrations differing by
only 1.

3.2.1 Effect of a perturbation

If two switch elements are given initial val-
ues close to the resting value one would have
on its own, there is a transient drop in both
values, until the higher one picks up and
extinguishes the other (see Figure 4). The
initial drop is less pronounced than for the
bHLH dimerisation model (see below).

3.3 A model for bHLH pro-
teins

Each switch bHLH protein is supposed to
bind to a common activator according to
the law of mass action, with a binding con-
stant K2, and a total quantity of activator
at. In turn, the heterodimer activates tran-
scription of the corresponding switch pro-
tein only, with Hill kinetics and cooperativ-
ity 2 (as with cooperativity 1, no interest-
ing equilibria exist, as shown in appendix
C). The equations are:

dx1

dt
= −x1 + σ

(
atx1

1+Σn
i=1xi

)2

K2 +
(

atx1
1+Σn

i=1xi

)2

. . . (3)

dxn

dt
= −xn + σ

(
atxn

1+Σn
i=1xi

)2

K2 +
(

atxn
1+Σn

i=1xi

)2

These equations simplify to:

dxi

dt
= −xi + σ

x2
i

αD2 + x2
i

,

with D = 1+Σn
i=1xi, σ, α = K2/a

2
t ∈ R+

∗
Parameter α is a measure of the harsh-

ness of the competition between switch el-
ements (it increases if K2 increases, ie if
binding to the common activator occurs at
higher concentrations, and if at diminishes,
ie if the quantity of common activator goes
down). The value of α is essential in de-
termining the behaviour of the system. As
shown in appendix C, and summarised in
section 3.3.3, switch elements can coexist
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only if α is sufficiently low, ie if the com-
petition is not too harsh (the lower α, the
more switch elements can be non-0 at equi-
librium). Figure 5 shows a simulation with
α being increased over time; switch ele-
ments are sharply turned off as α reaches
threshold values. Figure 6 shows how an
increase in α leaves only 1 switch element
on, which remains exclusively on even if the
competition level is relaxed to its original
value.

We prove in the appendix that the system
always converges to an equilibrium for α ≥
1/2; extensive simulations have also shown
this to be the case for α < 1/2.

3.3.1 Basins of attraction and times
of response

The cell fusion and reprogramming ex-
periments, described below in section 4.3,
would lead to a situation where a switch el-
ement, previously repressed, is brought to a
level comparable to that of another switch
element which was already expressed. This
corresponds to an initial situation in which
two elements are not at their resting value,
which could also describe the situation in
cells in the process of differentiating. For
the models studied here, if 2 switch ele-
ments are competing, 3 outcomes are pos-
sible: the switch element at the higher con-
centration completely represses the other,
both coexist and reach a non-zero equilib-
rium at the same value (only an element
which started at the higher concentration
can end up predominating), or both go to
0 (extinction). Figures 7 to 10 show which
equilibrium the system converges to, as a
function of the initial state, for different val-
ues of the competition parameter α (each
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Figure 5: Time evolution of the concentra-
tions of 4 switch elements (x1 to x4), in the
bHLH dimerisation model, with competi-
tion parameter α being gradually increased
over time. The horizontal lines mark the
values α = 1/42, α = 1/32, and α = 1/22.
Each time α reaches one of those thresh-
old values, one of the switch elements is
repressed. Low, random noise was added
to allow the system to escape equilibria as
they became unstable. In this simulation
σ = 100.
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Figure 6: Same as Figure 5, but with a pulse
of the competition parameter α. The initial
conditions are such that the switch elements
coexist for low α; once α has sufficiently in-
creased, only 1 switch element stays on, and
remains on with all others off, even when α
is brought back to its initial, low value.

domain from which the system converges to
the same equilibrium is a ”basin of attrac-
tion”). If there are 3 switch elements com-
peting, there are more possibilities, as 2 or 3
elements can coexist in the ”on” state. Fig-
ures 11 and 12 show the basins of attraction
of such a switch (the attraction basins be-
long to the same system, but were split on
two figures to prevent the outer ones from
obscuring the inner ones).

The speed at which the competition be-
tween the switch elements is carried out
could be crucial in determining the dynam-
ical properties of differentiation. We thus
computed the time it takes for the system
to approach its equilibrium, starting from
various initial concentrations of the switch
elements (that time is colour-coded in Fig-
ures 7 to 12). This time becomes dra-

matically higher when the initial conditions
come close to the borders of the basins of
attraction (ie when concentrations are near
a threshold around which the system con-
verges to two or more different outcomes).
The effect becomes even more pronounced
when 3, rather than 2, switch elements are
competing (Figures 11 and 12).

To show the effect in more detail, in-
dividual trajectories were plotted for a 2-
dimensional switch (Figures 13 and 14). For
cell fusion and reprogramming experiments,
the effect on the concentration of switch el-
ements depends on the dynamics of nuclear
import and export. Two types of initial
conditions were used: two switch elements
were given the concentration that one would
have at rest, if it was ”on” (Figure 13), or
two switch elements were given half that
concentration (as cytoplasmic concentra-
tions of proteins expressed exclusively in 1
of 2 equally-sized cells should be cut by half
upon fusion; Figure 14). In both cases, the
concentrations of the two switch elements,
even for that which will eventually prevail,
initially go down. The effect is more pro-
nounced for higher values of the initial con-
centrations, and for close initial values of
the two concentrations. This could explain
the transient extinction of expression of dif-
ferentiated markers upon cell fusion (see
Discussion): if there is sufficient coopera-
tivity downstream of the switch element, its
dip could be sufficient to provoke a tempo-
rary extinction of expression of the proteins
specific to the differentiated state.

3.3.2 Extinction domain

For α > σ2

4(nσ+1)
, there is an extinction do-

main around the diagonal x1 = .. = xn.
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Time to
 convergence

Figure 7: Colour-coded time of convergence
(as defined in Appendix D.2), as a function
of the initial conditions in x1 and x2. From
the initial conditions to the left of the red
region, the system converges to x2 on and
x1 off, and the opposite for the initial con-
ditions to the right of the red region. Pa-
rameters are α = 0.4 and σ = 100. x1 and
x2 range from 0 to 300.

Time to
 convergence

Figure 8: Same as Figure 7, but with a
lower value of α, giving a large domain of
convergence to an equilibrium where x1 and
x2 coexist. Domains of convergence are in-
dicated, and are separated by the two yel-
low lines. Parameters are α = 0.1 and
σ = 100. x1 and x2 range from 0 to 300.
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Time to
 convergence

Figure 9: Same as Figure 7, but with a
markedly higher value of α. There are two
main domains of convergence (to one switch
element on and the other off), and a third
domain of convergence to 0 (complete ex-
tinction of the switch), in a region very close
to the upper part of the diagonal (for clar-
ity reasons, the region is indicated as larger
than it actually is). Parameters are α = 15
and σ = 100. x1 and x2 range from 0 to
300.

Time to
 convergence

Figure 10: Same as Figure 7, with α close
to the threshold above which 0 is the only
equilibrium. The region from which the sys-
tem converges to 0 has expanded. Parame-
ters are α = 24.75 and σ = 100. x1 and x2

range from 0 to 300.

Simulations show that the domain is very
restricted until α becomes very close to its
upper threshold value, at which non-0 equi-
libria cease to exist (see Figures 9 and 10).

3.3.3 Summary of α threshold values

For the system to be able to sustain k switch
elements ”on” at the same time, the condi-
tion α < 1/k2 must be met (for σ � 1,
this condition is also sufficient). Thus, for
α > 1/4, only 1 switch element can be on
at a time. The corresponding equilibrium
value is a decreasing function of α. For
α > σ2

4(nσ+1)
, there is an ”extinction do-

main” around the diagonal x1 = .. = xn:
matching sufficiently closely the concentra-
tions of the switch elements, at whatever
value, makes the system switch off all switch

13



Time to
 convergence

Figure 11: Times of convergence as a
function of the initial condition, for a
3-dimensional switch. 4 unconnected
domains of convergence to the same
equilibrium are shown. For visibility,
the 3 other domains are shown in Fig-
ure 12. Parameters are α = 0.1 and
σ = 25. A rotation movie is available
at http://www-timc.imag.fr/Olivier.

Cinquin/High-dimensional_switches_

and_the_modeling_of_cellular_

differentiation/rotating_graphs.

html

Time to
 convergence

Figure 12: Domains in which the
same switch as in Figure 11 converges
to a state with 2 switch elements
on. A rotation movie is available at
http://www-timc.imag.fr/Olivier.

Cinquin/High-dimensional_switches_

and_the_modeling_of_cellular_

differentiation/rotating_graphs.

html
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Figure 13: Time evolution of the concentra-
tions of two switch elements (x1 and x2), for
the bHLH dimerisation model. The resting
concentration when one element is on and
the other off is roughly 8. Initial concentra-
tions differ by 0.7 (a), or 0.1 (b). Notice the
differences in scales. Parameters are α = 50
and σ = 500.
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Figure 14: Same as Figure 13, but with ini-
tial concentrations at roughly half the equi-
librium value when one element is on and
all others off. Initial concentrations differ
by 0.5 (a), or 0.1 (b).
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elements. For large σ, the extent of this do-
main is small, except in a very narrow range
of α values. Finally, for α > σ2

4(σ+1)
, a con-

dition which becomes α > σ/4 for large σ,
there are no non-0 steady states.

4 Discussion

4.1 Co-expression properties

Of the models proposed here, if the cooper-
ativity of activation is considered to be con-
stant, only the model with bHLH dimeri-
sation is capable both of exclusive expres-
sion of an arbitrary number of switch el-
ements, and coexpression at similar levels
of all elements. This behaviour is finely
tunable with the key competition param-
eter deriving from the availability of the
bHLH hetero-dimerisation partner, with
lower availability being unfavourable to co-
expression of the antagonistic factors (see
below for a further discussion).

The model with mutual inhibition, auto-
catalysis, and leak can express no more than
one switch element at a level higher than
the other ones, and is thus less amenable
to progressive elimination of unwanted fac-
tors in the course of differentiation. In order
for coexpression to occur at a significantly-
higher level than the leak, the cooperativ-
ity of the system must be close to 1. If
differentiation was controlled by a network
of this kind, initial coexpression could be
maintained either by a low transcriptional
strength in the system (which is consistent
with antagonistic factors being expressed at
a lower level in the un-differentiated state),
or, as has been suggested, by regulated
degradation of mRNAs.

Interestingly, the multistability be-
haviours of a switch based on bHLH-like
dimerisation and that of a switch based
on direct cross-repression are qualitatively
different: the former can maintain many
variables on at an equilibrium only if those
variables are sufficiently high (compared
to the transcription strength), while the
reverse is true of the latter.

We previously studied networks of cross-
repressing factors, in which the factors do
not enhance their own expression (Cinquin
and Demongeot, 2002). We did not include
this kind of model in the present study, be-
cause for one factor to be able to dominate
all the others, it had to be assumed that
the cooperativity of the network was very
high, an assumption which is possibly not
realistic.

4.2 Peaks of differentiation in-
hibitors

According to the paradigm of inhibition
of differentiation by sequestration of class
A bHLH proteins, the quantity of binding
partner should be low prior to differentia-
tion, and the competition parameter α in-
troduced earlier should thus be high. Re-
lieving inhibition of differentiation, by in-
creasing the quantity of binding partner,
and thus decreasing competition, cannot
move the bHLH dimerisation network from
a state where it supports coexpression of
many switch elements, to a state where only
one is expressed. Also, increasing the tran-
scription strength of the network σ does not
destabilise equilibria.

It is thus impossible to account for the
selection of one differentiation outcome by
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increasing the availability of class A pro-
teins (for example by downregulation of
Id proteins). However, it is still possi-
ble that the competition strength, even
in the undifferentiated state, is sufficiently
low for many switch elements to be co-
expressed. A potential mechanism to se-
lect 1 element and extinguish all others is
then to transiently increase the competi-
tion strength, for example by transient up-
regulation of Id proteins, just prior to dif-
ferentiation commitment (a corresponding
simulation is shown in Figure 6). This is
in fact what has been experimentally ob-
served on independent occasions, on a short
time scale, during in vitro differentiation
of osteoblasts (Ogata et al., 1993), neurons
(Nagata and Todokoro, 1994), myeloid cells
(Ishiguro et al., 1996), astrocytes (Andres-
Barquin et al., 1997), Schwann cells (Stew-
art et al., 1997), keratinocytes (Langlands
et al., 2000), germ cells (Houldsworth et al.,
2001), and fibroblasts (Chambers et al.,
2003). No rationale for these transient ef-
fects had been proposed so far.

When Id proteins are not up-regulated,
other proteins could play the same role of
increasing competition in the bHLH net-
work. For example, Hes-1, which also has
class A sequestering activity (Sasai et al.,
1992), is transiently upregulated upon dif-
ferentiation of an immortalised hair cell line
(Rivolta et al., 2002), an immortalised neu-
ral cell line (Ohtsuka et al., 1998), and
neuroblastoma (Grynfeld et al., 2000) (al-
though its role in the latter case is compli-
cated by the fact that it also binds Id pro-
teins and interferes with Id2/E2-2 complex
formation, Jögi et al., 2002); the transient
Hes-1 expression is concomitant with down-
regulation of the bHLH protein HASH-1.

Hes genes are dominant repressors with
many targets (Barolo and Levine, 1997),
and could also directly repress many ele-
ments of the network, which can be modeled
by a decrease in the transcription strength
σ, and has the same effect of destabilising
equilibria where many elements are coex-
pressed.

Finally, erythroid-specific genes have
been observed to be transiently downregu-
lated upon induced, in-vitro differentiation
(Lister et al., 1995), which could also be
explained by transiently-increased compe-
tition in a bHLH dimerisation network.

4.3 Dynamical properties

Analysis of the proposed dynamical sys-
tems shows that the time to convergence
can widely depend on the initial condition.
Convergence can be relatively very slow
when initial conditions are near a threshold
around which the system converges to two
or more different outcomes. This is for ex-
ample the case when 2 or more ”switch ele-
ments” are at roughly equal concentrations,
higher than that of others (the more ele-
ments in competition, the slower the com-
petition becomes). It is interesting to note
that slow effects are observed in induced-
transdifferentiation experiments, and in cell
fusion experiments.

� Fibroblasts reprogrammed to T-cell-
like cells need to be incubated for many
days before they acquire detectable
T-cell characteristics (H̊akelien et al.,
2002). This may be due to the fact that
fibroblast master genes are expressed
at a high level, and the counter-acting
T-cell master genes, introduced by per-
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meabilisation of the membranes, are
also present at a high concentration.
An effect of the relative levels of cy-
toplasmic factor concentrations could
be tested by incubation in T-cell and
fibroblast cytoplasmic extracts, mixed
at different ratios. Further investiga-
tion of master networks could involve
incubation of cells in cytoplasmic ex-
tracts of 3 or more cells-types (or tran-
sient misexpression, at controlled lev-
els, of antagonistic master genes).

� In hepatoma-fibroblasts hybrids, ex-
tinction of albumin production can
take days (Mével-Ninio and Weiss,
1981). Most interestingly, some hy-
brids show reexpression of albumin af-
ter extinction. These two outcomes
can be accounted for by the models
proposed above: when two antagonis-
tic ”switch elements” are coexpressed
at a high level (which probably corre-
sponds to the fusion experiments, as
upon fusion the protein contents of the
cells, which are of different phenotypes,
are mixed), it is possible for the system
to revert to a state where all switch
elements are turned off (total extinc-
tion), or for the two switch elements
to decrease to a low level, before the
trajectory of one of them picks up and
goes back to a high state (extinction
followed by reexpression).

� Activation of the myogenic phenotype
also takes place on the scale of days,
when muscle cells are fused to various
other cell types, a delay which was sug-
gested not to be linked to DNA dupli-
cation (Blau et al., 1985; see Blau and

Blakely, 1999, for an extensive review).

Also, it could be that the progres-
sive upregulation of differentiation-related
genes observed during hematopoietic devel-
opment is a cell-autonomous consequence of
the slow dynamics of a switch network.

4.4 Stochastic outcomes

It has been observed in the studies cited
above that heterokaryons with the same
number of nuclei coming from each donor
can have different differentiation responses.
Blau and Blakely (1999) suggested that
the differentiation outcomes are regulated
by a network of opposing factors. Within
this framework, stochastic responses to cell
fusion can readily be explained by slight
differences in the quantities of differentia-
tion factors contributed by each cell type,
which tip the balance one way or the other.
The network determining cell fate would be
most sensitive to random noise when the
factors are in roughly equal concentrations.
The sensitivity to molecular noise of the
networks proposed here would be interest-
ing to study, as it has been proposed that
some types of differentiation during devel-
opment could have a stochastic aspect (for
example in adipogenesis, Tchkonia et al.,
2002, or hematopoiesis, Enver and Greaves,
1998).

4.5 Evolvability of switch net-
works

In addition to having a coexpression be-
haviour which is easily tunable by one pa-
rameter, the generic bHLH network stud-
ied here has the advantage of being per-
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haps more easily evolvable than a network
in which every element actively represses
all others: the interaction needs only take
place between every element and a common
activator (which requires n interactions, in-
stead of n (n− 1) /2). bHLH networks have
been suggested to evolve mainly by single-
gene duplication events (Amoutzias et al.,
2004), maintaining a topology in which ev-
ery element of the network interacts with a
restricted number of ”hubs”.

5 Conclusion

The models presented here could be useful
in understanding development, as well as
cell-fate reprogramming (which can be in-
duced artificially, but has also been shown
to happen naturally, Weimann et al., 2003).
We have derived general results about the
dynamics and co-expression properties of
switch networks, and shown the flexibility
of bHLH dimerisation networks. Of the
networks studied here, which were gener-
ically formulated with usual kinetic equa-
tions, only a subset can co-express antag-
onistic elements at a similar level, higher
than the basal level: those with mutual
inhibition, autocatalysis, and leak (but
only when the cooperativity is very close
to 1, and the transcription strength suffi-
ciently low), and bHLH dimerisation net-
works (when the competition is sufficiently
weak). This restricts the classes of mod-
els which can reproduce experimentally-
observed co-expression of antagonistic fac-
tors, as well as showing how it can occur.

Strikingly, even though bHLH networks
are the most apt to coexpression of antago-
nistic elements, the selection of one element

requires a transient increase in competition,
which is not what is thought to happen over
a long time scale in the course of differen-
tiation. Transient, hitherto-unexplained in-
creases in competition have however been
observed in a few cell lines upon differenti-
ation, and could be a general phenomenon.

In order to model specific differentiation
events, these networks would probably need
to be extended to take into account combi-
natorial interactions, which could compli-
cate their behaviour. The models would
also gain from being extended to take
into account non-symmetrical networks, in
which some switch elements are stronger
than others, and stochastic kinetics.
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A Analysis of mutual in-

hibition with auto-

catalysis

A.1 Special case: no coopera-
tivity (c = 1)

We assume that σ > 1. The set of steady
states for the system defined by equations 1
is 0 and the attracting hyperplane {x | 1 +
Σn

i=1xi = σ}. Let s = Σn
i=1xi. Then s

never crosses the value σ − 1, and since

ẋi = xi

(
(σ−1)−s

1+s

)
, ẋi is of constant sign,

and each xi convergent.
Simulations show that there is a great

number of stable steady states.
For c > 1, the convergence of the dy-

namical system (defined by equations 1) to
an equilibrium, from any initial condition,
will be derived in a more general context,
in section B.1. In the rest of the appendix
we assume c > 1.

A.2 One on, all others off

A.2.1 Equilibrium existence

The steady-state equations are

∀j, x̄j (1 + Σn
i=1x̄

c
i ) = σx̄c

j,

ie

x̄c−1
j =

1

σ
(1 + Σn

i=1x̄
c
i ) or x̄j = 0

Re-arranging the first equation,

1

σ
x̄c

j − x̄c−1
j = − 1

σ
(1 + Σi6=jx̄

c
i )

Let f(x) = 1
σ
xc − xc−1. Then f ′(x) =

c
σ
xc−1 − (c − 1)xc−2. f ′(x) < 0 iff c

σ
x <

c − 1. The minimal value of f over the
positive real set is f( c−1

c
σ) = 1

σ

(
c−1

c
σ
)c −(

c−1
c

σ
)c−1

= σc−1
(

c−1
c

)c−1 ( c−1
c
− 1
)

=

σc−1
(

c−1
c

)c−1 −1
c

.

The equilibria studied here are such that
only x̄j is non-0, for some j. There are ei-
ther 0 or 2 solutions, 2 iff

σc−1

(
c− 1

c

)c−1
1

c
>

1

σ

σc > c

(
c

c− 1

)c−1

ln σ >
ln c + ln

(
c

c−1

)c−1

c
(4)

ln
(

c
c−1

)c−1
is an increasing function of c,

and limc→∞ ln
(

c
c−1

)c−1
= 1. lnc

c
is decreas-

ing for c > e ' 2.7. The right-hand side
of equation 4 has a maximum for c = 2,
of about 0.7, matched by σ = 2. Thus, for
σ ≥ 2, there are two equilibria. Both large c
and large σ are favourable to the existence
of an equilibrium with one variable domi-
nating all others.

A.2.2 Local stability analysis

It is useful, for the Jacobian term computa-
tions to follow in the rest of the appendix, to
note that if g(x) = xm

α+xm , g′(x) = αmxm−1

(α+xm)2
.

If xj is at a non-zero steady-state and
∀i 6= j, xi = 0, and if c > 1, the stability
at that steady state depends only on the
sign of the (j, j) coefficient of the Jacobian
matrix (this coefficient will be called Jj,j in
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the remainder of the appendix).

Jj,j = −1 + σc (1 + Σi6=jx
c
i)

xc−1
j

(1 + Σn
i=1x

c
i )

2

(5)

Jj,j = −1 + σc
xc−1

j(
1 + xc

j

)2 ,

with

σx̄c−1
j = 1 + x̄c

j, (6)

at equilibrium

Jj,j = −1 + c
1

σx̄c−1
j

,

the equilibrium is stable iff

x̄c−1
j >

c

σ
, ie 1 + x̄c

j > c

It is possible to give a sufficient condi-
tion for the equilibrium with the greatest
solution to equation 6 to be stable. Let

f(x) = xc − σxc−1. If f
((

c
σ

) 1
c−1

)
< −1,

then the greatest root of equation 6 will be

greater than
(

c
σ

) 1
c−1 , and the corresponding

equilibrium will be stable. A sufficient sta-
bility condition is thus( c

σ

) c
c−1

< c− 1

Numerical investigation shows that this
condition is met for σ ≥ 2.

A.3 k variables on, others off

With identical parameters, there can be no
equilibrium with 2 variables having differ-
ent, non-zero values.

At any equilibrium, variables can be
renumbered so that, in the Jacobian ma-
trix, variables at 0 form an independent
block. This block is stable, and the sta-
bility of the whole system depends only on
the block formed by non-0 variables. Thus,
in the following we suppose that no steady-
state variable has 0 for a value.

For i 6= j,

Ji,j(x̄) = −σc
x̄2c−1

(1 + kx̄c)2

With the same kind of analysis as in Cin-
quin and Demongeot (2002), the equilib-
rium is stable only if

σc
x̄2c−1

(1 + kx̄c)2 < 1−

σc (1 + (k − 1) x̄c)
x̄c−1

(1 + kx̄c)2 (7)

With the definition of the equilibrium,

σcx̄2c−1 < σ2x̄2c−2−σc (1 + (k − 1) x̄c) x̄c−1

xc <
σ

c
xc−1 − (1 + (k − 1) xc)

σ

c
xc−1 > kxc + 1

Again with the definition of the equilib-
rium,

1

c
xc−1 > xc−1,

ie c < 1, in which case no interesting equi-
libria exist.
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B Analysis of mutual in-

hibition with auto-

catalysis, and leak

If α ≥ 0, c ≥ 1, and one of these inequalities
is strict, the function f(x) = x1−c − αx−c

can take the same value for at most 2 pos-
itive values of x. Thus, there are only two
values a variable can take at a given steady
state (0 cannot be a steady state value). If
two different equilibrium values are taken
by some variables, one of these values is
higher than α c

c−1
, and the other lower.

If α > 0 and c = 1, the system only has
one equilibrium, with all variables equal.

B.1 Convergence

Let yi =
√

xi, and

P =
1

4
Σn

i=1y
2
i −

σ

4c
log
(
1 + Σn

i=1y
2c
i

)
−

1

2
log Πn

i=1y
α
i

ẏi =
ẋi

2
√

xi

2ẏi = −yi + σ
y2c−1

i

1 + Σn
i=1y

2c
i

+
α

yi

= 2
∂P

∂yi

Thus, P is a potential for the system.
If its equilibria are isolated, a gradient

system converges to a steady-state regard-
less of the initial conditions. It is shown
below that the number of solutions of the
system is finite when the cooperativity c is
an integer, and the system thus always con-
verges to a steady state (we expect this re-
sult to also hold for non-integer values of

c). The model without leak corresponds to
α = 0, and this convergence result thus also
applies to it, for c > 1.

B.2 Steady-state analysis: all
at the same value

B.2.1 Equilibrium existence

∀ j, (xj − α) (1 + Σn
i=1x

c
i ) = σxc

j

If ∀ j, xj = x̄,

nx̄c+1 − (σ + nα) x̄c + x̄− α = 0 (8)

There is at least one solution, maybe 3
(or 2 in degenerate cases) depending on the
parameters. The solutions are noted x̄l, x̄u,
and x̄h, with x̄l < x̄i < x̄h.

If f(x) = nxc+1 − (σ + nα) xc + x,
f ′(x) = (c + 1)nxc − c(σ + nα)xc−1 + 1,
f ′′(x) = c(c+1)nxc−1−c(c−1)(σ+nα)xc−2.

f ′′
(

c−1
n(c+1)

(σ + nα)
)

= 0. f ′ takes negative

values iff f ′
(

c−1
n(c+1)

(σ + nα)
)

< 0, which is

a necessary condition for the existence of 3
equilibria with all variables on.

The dynamics of the system constrained
to ∀ i, xi = x are defined by

ẋ = −x +
σxc

1 + nxc
+ α

The sign of ẋ(t) is the opposite of that of
f(x(t)). Because x̄u is such that f ′(x̄i) < 0,
it is easy to see that the steady state x̄u

is unstable for the constrained system, and
thus for the full system.

B.2.2 Local stability analysis

With a leak α, equation A.3 becomes
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x̄c <
σ

c

x̄c+1

(x̄− α)2 − 1− (k − 1) x̄c

1 + kx̄c <
σ

c

x̄c+1

(x̄− α)2

σx̄c

x̄− α
<

σ

c

x̄c+1

(x̄− α)2

x̄− α <
1

c
x̄

Thus the stability condition A.3 is met iff
x̄ < α c

c−1
(in that case, since non-diagonal

terms of the Jacobian are obviously nega-
tive, diagonal terms are also negative, and
the equilibrium is stable). Since solutions to
equation 8 can be made arbitrarily high by
increasing σ, increasing σ past a threshold
value (other parameters being equal) will
prevent the existence of a stable equilibrium
with all variables equal.

B.3 k on, k < n

Let p = n− k.

(x̄l − α) (1 + px̄c
l + kx̄c

h) = σx̄c
l

px̄c+1
l − (pα + σ) x̄c

l + (1 + kx̄c
h) x̄l −

α (1 + kx̄c
h) = 0

kx̄c+1
h − (kα + σ) x̄c

h + (1 + px̄c
l ) x̄h −

α (1 + px̄c
l ) = 0

Choosing for example the graded lexico-
graphic order over C[xl, xh], theorem 5.3.6
from Cox et al. (1996) shows that the sys-
tem has a finite number of solutions, when
c is an integer.

We have

Ji,i = −1 + cσxc−1
i

D − xc
i

D2

Ji,j = −cσxc−1
j

xc
i

D2

If xi = xj,

Ji,i − Ji,j = −1 + cxc−1
i

σ

D
= −1 + c

xi − α

xi

Consider the reordered Jacobian matrix,
with k variables ”on” with a value x̄h, and
p ”off” with a value x̄l (k + p = n).

It follows from the analysis in section C.3
that the equilibrium can be stable only if
Ji,i−Ji,j < 0 (ie xi < α c

c−1
), if the number of

variables having value xi is strictly greater
than 1.

Thus there are only two possible kinds
of stable equilibria: all variables equal, in
which case the equilibrium value is lower
than α c

c−1
, or one higher than all the other

ones (in which case the lower ones are lower
than, and the higher one greather than
α c

c−1
).

C Analysis of the bHLH

model

Without cooperativity in transcriptional
activation by the bHLH dimer, there is only
one stable steady-state:

ẋi = xi

(
−1 +

σ

α
(
1 + Σn

j=1xj

)
+ xi

)
If at some steady state k variables are on

and share a common value x̄ (variables at
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a steady state, if not 0, share a common
value),

1 =
σ

kαx̄ + x̄ + α

x̄ =
σ − α

kα + 1
,

and if xp(t0) = 0,

Jp,p =

(
−1 +

σ

kαx̄ + α

)
Jp,p =

σ − α

α (kσ + 1)
> 0,

and Jp,l = 0 for p 6= l, proving the unsta-
bility of the steady state.

In the following, it is assumed that tran-
scriptional activation occurs with coopera-
tivity 2, and the steady-state equations be-
come

x̄i = σ
x̄2

i(
D
at

)2

K2 + x̄2
i

∀ i, αD2 + x̄i
2 = σx̄i (9)

C.1 Dynamical analysis

0 is a stable steady state. If xi(0) = 0,
then ∀ t > 0, xi(t) = 0. If xi(0) > 0, then
∀ t > 0, xi(t) > 0. One can thus suppose
that ∀ i,∀ t ≥ 0, xi(t) > 0. Consider a
state in which there is one variable strictly
superior to all others (ie, a state not belong-
ing to the line x1 = x2 = .. = xn). Suppose
without loss of generality that the variable
in question is x1. Consider the function

f1(x) =
x2

1

αD2 + x2
1

˙f1(x) = 2αDx1
ẋ1 (D − x1)− x1Σ

n
i=2ẋi

(αD2 + x2
1)

2

(αD2 + x2
1)

2

2αDx1

˙f1(x) = ẋ1+

σΣn
i=2

x1xi (x1 − xi) (αD2 − x1xi)

(αD2 + x2
1) (αD2 + x2

i )

For α ≥ 1/2, the second term is positive.
We have

dx1(t)

dt
= σf1(x)− x1

We first consider the case in which ∀ t ≥
0,∀ n ≥ j > 1, x1 > xj.

Suppose that σf1(0) ≥ x(0). In this case,
ḟ1 (0) > 0, and x1 and f are strictly increas-
ing functions of time. If σf1(0) < x1(0),
then ḟ1 (0) can be negative or positive. In
the first case, x1 is decreasing as long as f1

is. If at some time t0 σf1(t0) ≥ x(t0), then
for t > t0, x1 and f1 are increasing func-
tions of time. Thus there can be at most
one change in the monotony of x1. Thus
limt→∞ x1(t) exists. Since ẍ1 exists and is
bounded on any trajectory, limt→∞ ẋ1(t) =
0. All trajectories thus converge to a steady
state where ∀j > 1, xj = x1 or xj = 0.

If ∃ t st ∀ n > j > 1, x1(t) = xj(t), the
system is brought back to one dimension.
Note that it is impossible for any variable
to outgrow x1.

C.2 Steady-state analysis:
variables on at the same
value

C.2.1 Equilibrium existence
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Variables zero at the steady state can be
discarded from the analysis. If k variables
are non-0, and are all equal, to x̄ 6= 0,

x̄2
(
1 + k2α

)
+ x̄ (2kα− σ) + α = 0 (10)

Solutions are

σ − 2kα±
√

σ2 − 4α (1 + kσ)

2 (1 + k2α)

A sufficient and necessary condition for
the existence is

4α
kσ + 1

σ2
< 1

It will be shown below that, at a stable
steady-state, there is at most 1 non-0 vari-
able which can be different from other non-0
variables. If there is such a variable, equal
to y, the equation for the value of other vari-
ables becomes

x̄2
(
1 + k2α

)
+ x̄ (2kα (1 + y)− σ) +

α (1 + y)2 = 0 (11)

Solutions are

σ − 2kα (1 + y)±
√

σ2 − 4α (1 + kσ + y) (1 + y)

2 (1 + k2α)

and the condition for a solution to exist

4α (1 + y)
kσ + 1 + y

σ2
< 1

The solutions for y are

σ − 2α (1 + kx̄)±
√

σ2 − 4α (1 + σ + kx̄) (1 + kx̄)

2 (1 + α)

C.2.2 Local stability analysis

Variables zero at the steady state can be
discarded from the analysis.

Using

ẋ2

ax2 + bx + c
=

bx2 + 2cx

(ax2 + bx + c)2 ,

one derives the diagonal term of the Ja-
cobian (with b = 2α (D − xi) and c =
α (D − xi)

2):

Ji,i = −1 + 2σαxi
D (D − xi)

(αD2 + x2
i )

2

Using the steady state equation 9,

Ji,i = −1 +
2α

σxi

(D (D − xi)) = −1+

2

σ
(σ − xi − αD)

Ji,i = 1− 2

σ
(xi + αD) = 1− 2

σ
(α + xi (1 + kα))

The diagonal terms are negative for

xi >
σ/2− α

1 + kα

The off-diagonal terms are given by

Ji,j = −σx2
i

2αxj + 2α (D − xj)

(αD2 + x2
i )

2

Ji,j = −2σαx2
i

D

(αD2 + x2
i )

2

Ji,j = −2α

σ
D
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Ji,j − Ji,i = −1 + 2
xi

σ

Thus, a necessary condition for the equi-
librium to be stable is

∀ x̄i st x̄i 6= 0, x̄i > σ/2 (12)

This is possible if and only if α < 1/k2

and σ > 2kα+
√

α
1−k2α

.
Condition 12 is stronger than the require-

ment for the diagonal element to be nega-
tive (and is thus also a sufficient condition),
and can never be met by variables equal to
the lower solution of equations 10 or 11 .

Thus, for any value of the transcription
strength σ and for any number of coexis-
tant variables k, sufficiently low values of
α make the equilibrium stable. If there is a
stable equilibrium with k variables on, there
is also a stable equilibrium with p variables
on, for 1 < p < k. For sufficiently large σ,
the necessary condition α < 1/k2 becomes
sufficient for stability (see Figure 5 for an il-
lustration of the validity of this condition).

C.3 On at different values

If at steady state, xi 6= xj and both are
non-0, then

x2
i − σxi = x2

j − σxj

(
= −αD2

)
There are thus only two possible non-0

steady-state values, noted x̄a and x̄b, with
x̄a < x̄b. Noting P (x) = x2 − σx, and sup-
posing that x̄a and x̄b exist, P ′(x̄a) < 0, ie
2x̄a

σ
< 1.

Consider the Jacobian matrix of the sys-
tem, reordered so that variables having x̄a

as a value come before those having x̄b as a
value:



k︷ ︸︸ ︷
a c · · · c

c
. . . · · · ...

...
...

. . .
...

c · · · c a

p︷ ︸︸ ︷
f1 · · · · · · f1
...

...
...

...
...

...
...

...
f1 · · · · · · f1

f2 · · · · · · f2
...

...
...

...
...

...
...

...
f2 · · · · · · f2

b e · · · e

e
. . . · · · ...

...
...

. . .
...

e · · · e b


With the appropriate eigenvectors, it is

easy to show that b− e and a− c are eigen-
values for this matrix, of order k − 1 and
p−1. Thus, if k > 1 and p > 1, a necessary
condition for stability of an equilibrium is
e > b and c > a. In particular, there can be
at most 1 variable having x̄a as a value.
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More precisely, the characteristic polynomial of the matrix is

P (x) = (a− c− x)k−1 (b− e− x)p−1 [x2 − x (a + b + (k − 1) c + (p− 1) e)

+ (p− 1) ea + (k − 1) cb + (k − 1) (p− 1) ec + ab− kpf1f2]
(13)

Suppose thus that the number of variables having values x̄a is 1. Then, a sufficient
condition for instability of the equilibrium is

(p− 1) ea + ab− pf1f2 < 0

Notice that in this case f1 = f2 = e. The sufficient condition for instability can thus be
written

e (pe− (p− 1) a)− ab > 0

Replacing with the equilibrium values,

−2αD

σ

(
p
−2αD

σ
− (p− 1)

(
1− 2

σ
(x̄a + αD)

))
−
(

1− 2

σ
(x̄a + αD)

)(
1− 2

σ
(x̄b + αD)

)
> 0

(
1− 2

σ
(x̄a + αD)

)(
(p− 1)

2αD

σ
− 1 +

2

σ
(x̄b + αD)

)
+ p

(
2αD

σ

)2

> 0

(
1− 2

σ
(x̄a + αD)

)(
p
2αD

σ
− 1 +

2x̄b

σ

)
+ p

(
2αD

σ

)2

> 0

p
2αD

σ

(
1− 2x̄a

σ

)
+

(
2x̄b

σ
− 1

)(
1− 2

σ
(x̄a + αD)

)
> 0

(
1− 2x̄a

σ

)(
p
2αD

σ
+

2x̄b

σ
− 1

)
− 2αD

σ

(
2x̄b

σ
− 1

)
> 0

2αD

σ

(
p + 1− 2

σ
(px̄a + x̄b)

)
+

(
1− 2x̄a

σ

)(
2x̄b

σ
− 1

)
> 0
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The first term is positive because the val-
ues of x̄a and x̄b are symmetrical with re-
spect to σ/2. The second term is also posi-
tive, and the sufficient condition for the in-
stability of the equilibrium is thus met.

Thus, there is no stable equilibrium with
non-0 variables having different values.

D Methods

D.1 Numerical integration

All integration was performed with a
custom-written implementation of the
4th-order adaptative stepsize Runge-Kutta
algorithm (Press, 1992), with 10−3 relative
accuracy. Source code is available at http:
//www-timc.imag.fr/Olivier.Cinquin/

ada/ada_blas_runge_kutta.html. The
data was plotted using GMV or gnuplot.

D.2 Computation of conver-
gence times

A custom program was written to do the
following, starting from a regular 200*200
grid of initial conditions (for 2D systems),
or a 50*50*50 grid (for 3D systems), with
∀i 6= j, xi 6= xj, to avoid reaching unsta-
ble steady-states: (1) integrate the system
until a steady-state is reached (as defined
by the sum of the absolute values of the
derivative vector elements begin lower than
10−4) (2) start the integration again, with
the same initial conditions, stopping when
the system gets close enough to the previous
steady-state (each variable with 10% of its
steady-state value if it’s not 0, lower than
0.15 if it is 0; moderate changes in these ar-
bitrary values do not significantly affect the

results). The stepsize of the Runge-Kutta
algorithm was kept lower than 0.3.

D.3 Simulations with time-
dependent parameters

In order for the system to leave steady
states which had become unstable because
of changed parameters, small random per-
turbations were applied (each variable was
multiplied by a random number uniformly
chosen in [0.99 .. 1.01] every 30 time units).
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