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Abstract: This paper presents an approach to urban dynamics that generalizes the traditional 
rank-size model first popularized by Zipf (1949). It argues that we need to define the rate at 
which new cities emerge and old cities disappear within the apparent macro stability posed by 
Zipf’s Law. We illustrate this with a reworking and extension of Zipf’s analysis of the US 
urban system, taking his analysis from 1790 to 1930 forward to the year 2000. In doing so, we 
introduce a variety of devices to detect urban change based on traces through the rank-size 
phase space, trajectories using a rank-time clock, and the definition of urban half-lives. We set 
this analysis within the wider context of stochastic simulation that is currently dominating 
discussion of scaling processes such as these.  
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“I will tell the story as I go along of small cities no less than of great. Most of those that were great 
once are small today; and those that in my own lifetime have grown to greatness, were small 
enough in the old days”. 

(from Herodotus, the introductory quote in Jacobs, 1969) 

1. INTRODUCTION 

Emergence is a phenomenon which is intrinsic to the way systems grow and evolve. 
Biological systems, for example, start small from some seed, and as they change, novel and 
often surprising characteristics emerge which are clearly embodied in the basic rules enabling 
their cells to support growth. Where evolution is the focus, change usually implies growth 
although occasionally systems get smaller, often declining and this too sometimes leads to 
surprising features which are said to be emergent. Cities however have not been formally 
studied, until quite recently, as emergent phenomena although a moment's reflection suggests 
that there is no ‘hidden hand’ guiding their growth, and no top-down model for their physical 
and spatial organization. This is despite a series of highly suggestive works, some like Geddes 
(1915, 1949) Cities in Evolution first written nearly 100 years old, others of more 
contemporary origin such as Dendrinos’s and Mullaly’s Urban Evolution (1985), all of 
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which attempt to articulate urban growth and form in terms of such change. Only recently as 
part of the growth of complexity theory which in turn is the modern expression of general 
systems theory, has our attention turned to how cities grow and evolve, to urban dynamics, 
and to how the patterns that we observe with respect to urban form and structure, emerge 
from a myriad of decisions from the bottom-up. 

If our first theme in this paper is emergence, then our second is city size. Our concern here is 
not simply that cities emerge from the bottom-up which is clear enough. It is that systems of 
cities display a regularity that persists through time. This regularity which is an example of 
one of the many scaling laws that characterize different features in systems like cities, is itself 
a signature of emergent phenomena. This ‘law’ called variously the rank-size rule, Zipf’s law, 
or Pareto’s law, masks a complexity that persuades us into thinking that cities are rather 
simple sets of objects whose size and distribution simply reflects the hierarchy of size that is 
consistent with systems that work on fixed resources. However the fact that such overall 
relationships persist but the cities comprising them change their position in the hierarchy quite 
radically over short periods of time as Herodotus’s quote above implies, is evidence enough 
that the way cities grow and evolve is far from simple. Indeed a significant issue is the 
emergence of new cities and the decline of existing ones but within the framework of this 
apparent aggregate stability. In this paper, we will outline the problem and present a 
preliminary approach that takes the matter a little further than that which has dominated our 
thinking about urban dynamics for the last 50 years. 

The key issue in all this is the way we represent cities as distinct entities. The very idea of a 
distribution of sizes assumes that the objects comprising such distributions are themselves 
well-defined, unambiguous with respect to the way they can be measured. Cities might have 
been like this in historical times but their physical definition has collapsed in terms of their 
strict demarcation as the world has urbanized over the last 200 years. This suggests that there 
are at least two ways of representing size distributions: first in the traditional way which we 
will follow here by identifying what we still regard as individual cities, as much defined by 
our perception of locational distinctiveness and the way they are administered as by the fact 
that they have distinct boundaries; the second by taking the entire system as urbanized and 
partitioning it into more arbitrary units each with a degree of urbanization which enables us to 
examine the distribution of the size of these units and how they change. This is the way we 
previously examined the UK urban system (Batty and Shiode, 2003) but the problem here is 
that this is not appropriate to defining how ‘new units’ – new cities – emerge over time 
because all units are cities or parts of one greater whole which is the urban system. We will 
come back to this issue as we develop our argument but it is one of the central problems in a 
theory of cities where we live in an age where everything can be seen as ‘city’. 

We will develop this argument first by outlining the conventional wisdom of how cities 
emerge, emphasizing the mechanics of emergence in which positive feedback and historical 
path dependence are key features. We will then introduce the idea of city size distributions, 
sketching the rank-size relationship and the way researchers have dealt with its dynamics 
through changing relationships through time. This sets the scene for our analysis of the way 
the US urban system has evolved since 1790. We take data for the largest 100 town and cities 
at each 10 year time slice based on the decennial census, thus examining the stability of this 
relationship in terms of rank-size and the volatility of the distributions of individual cities 
within these distributions. We develop a number of ways of looking at these trajectories and 
conclude with a measure of the ‘half-life’ of cities which implies an index of the rate of 
change. We then note some ideas as to how we might explain such dynamics through 
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simulation, linking our work to the massive body of research on how scaling distributions are 
formed and the stochastic processes that underpin to their structure. We conclude by arguing 
that although this area has been mined for the last half century or more, perhaps longer, there 
is much to do and the kinds of aggregate data that we use still contains much of interest in 
developing appropriate theories of urban dynamics. 

2. THE MECHANICS OF EMERGENCE 

The conventional wisdom about the long term evolution of world economy and society is that 
agriculture came first, then there were cities: in short that cities cannot get started until there 
is an agricultural base on which they can be sustained which in turn evolves from more 
nomadic pursuits (Childe, 1963). In fact, this view is now highly questionable. Jane Jacobs 
(1969) argues that urban pursuits do not depend upon the rural economy and that agriculture 
often exists within cities, as part of cities, and that innovations in agriculture certainly emerge 
from cities. The notion that agriculture leads to cities is too simple in that what is more likely 
is that there is continuing symbiosis between each which means that the rural is not prior to 
the urban, despite the fact that this is a deep seated assumption within contemporary society.  

The other myth that is also deep seated is that cities are somehow economically advantageous 
in that they admit economies of scale. In fact there is considerable evidence that shows that 
rates of economic growth do not increase as the size of cities increases. In fact for the last 200 
years or so in Britain, there is no relationship between the size of a city and its rate of growth, 
although there is greater variation in growth rates as city size gets smaller (Robson, 1973). 
This is quite consistent with the idea that the greatest volatility in growth occurs at the bottom 
of the urban size hierarchy in that this is where the process of weeding out places that are 
likely to become big and those that will not survive really takes place. There is a growing 
literature on rates of growth in cities which needs to be linked to the rank-size analysis. In 
essence, this implies that cities do not grow big because of any inherent economic advantage 
over small cities in terms of the rates at which they grow although once a city gets big, it 
acquires functions that imply some form of lock-in, or monopoly position. It is perhaps this 
that reduces the variation in growth rates for bigger cities. 

In complex systems, objects change through a process of positive feedback in which their size 
is a function of their growth rate at any point in time. Assuming a constant rate of change, this 
is the process that leads to exponential growth (or decline) but there is nothing magical about 
this for it is simply a consequence of a growing population which is clustered. There may be 
limits on size due to capacity (or density) but local diffusion of population simply expands the 
object in its neighborhood and as a consequence the scale of the object changes. The key issue 
is that exponential growth does not depend on these growth rates of cities increasing as the 
cities themselves become bigger: this would lead to double exponential growth which is not 
an observed characteristic of cities in the past or present. This process of growth and decline 
however is complicated by historical inertia. Often the seeds that start this process of 
urbanization are planted in somewhat random fashion, despite there being good local reasons 
for the specific location of a place such as on a river or at trading post or on the edge of a lake. 
This leads to path dependence in that once a place gets started and then gets bigger, it is 
harder for it to become smaller in quite the same way as smaller places are able.  

A simple but plausible model of the evolution of the US urban system for example which 
mirrors these conditions might be as follows: explorers and settlers from the ‘old world’ 
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reached the eastern seaboard some 500 or so years ago at random points, determined by such 
events as local tides, winds, and so on. This in turn dictated where the initial places were 
established, mainly in Virginia, New York and New England. The places that grew were New 
York, Philadelphia, Boston, Baltimore, and the area south and west of present day 
Washington DC. Local diffusion and ad hoc decisions such as the founding of the capital led 
to a general growth westwards but the seeds that were planted first in the mid-west, then 
California, and finally the south west were determined too by local conditions and indeed by 
past historical settlement by the French and the Spanish. But what is so remarkable about this 
picture is that the initial seeds still remain. Our analysis below bears this out despite 
considerable volatility in terms of changing sizes and positions in the urban hierarchy since 
the late 18th century. This is a picture of strong path dependence – of aggregate patterns being 
somewhat inert but with much greater change occurring as one descends the urban hierarchy. 
To illustrate again such persistence, there is wonderful quote by Holmes (1992) in The 
Oxford History of Medieval Europe where he says: “Most Europeans live in towns and 
villages which existed in the lifetime of St. Thomas Aquinas, many of them in the shadow of 
churches built in the 13th century. That simple physical identity is the mark of a deeper 
continuity” (page iii). 

It would seem that our argument is not so much that urban systems are marked by strong 
emergence in terms of city sizes but by inertia and persistence. In fact, the conundrum is to 
explain how particular small places become big within the more general pattern of spatial 
diffusion which occurs on all scales. This occurs as we shall see, within a strongly stable 
aggregate distribution of city sizes which might appear to act as a straight jacket on how the 
city system develops were it not for the fact that the aggregate pattern is itself an emergent 
phenomena: no one planned it. It is in this sense that we speak of emergence. We must now 
present this argument summarizing, albeit briefly, what is known about such size distributions 
and their historical evolution. 

3. THE DYNAMICS OF CITY SIZE DISTRIBUTIONS 

Zipf (1949) first popularized the fact that if one ranks cities in order of their size, the cities 
follow a regular inverse function – a rectangular hyperbola – a special case of the inverse 
power function α−x  where α  is unity. Although he demonstrated this for a variety of city size 
distributions in different countries, this fact had been known previously by others: Auerbach 
and Lotka for cities, Pareto for income distributions, and even Max Weber had noted this and 
there is some suggestion that the Physiocrats had also been aware of this. Probably Leonardo 
had known of it and if this were the case, then so did the Greeks, taking us back full circle to 
Herodotus and the quote that introduces this paper. More significantly, such relationships are 
scaling, implying self-similarity which is the signature of processes that operate on all scales 
and give rise to fractals and all that this implies. They have become of central importance to 
theories of complex systems formed by processes operating from the bottom up, and currently 
this is where all the action is on the rank-size rule, as it came to be called.  

In its strong form, Zipf’s law says that the size of a city of rank r , called rP , in the set of 
cities under consideration (often referred to as the hierarchy) is given by the size of the largest 
city 1P  divided by its rank. That is, rPPr 1=  which in more general form can be written as 

α−= rKPr  where Zipf argued that 1≈α  and 1PK ≈ . On double log paper, this relationship 
yields a straight-line and this is usually the way it has been estimated traditionally. In fact the 
fit to the top level of cities in many countries is so good that this has sustained interest in the 



 5

notion that there is a ‘law’ to be discovered. Recently Krugman (1996) said: “We are unused 
to seeing regularities this exact … it is so exact that I find it spooky. The picture gets even 
spookier when you find out that the relationship is not something new – indeed the rank-size 
rule seems to have applied to US cities at least since 1890!” (page 40). As we will show in our 
reworking of Zipf in this paper, this stability and exactness is even longer lived. 

The traditional explanation by Zipf (1949) is widely regarded as being somewhat mystical 
being based on intuitive notions of how opposing forces – unification and diversification – 
‘lead’ to the relationship. In fact he does not show how this occurs although a number of 
geographers have illustrated how the rank-size rule, in its weak form as a power law, is 
consistent with central place theory. Rapoport (1968) in a thinly disguised critique of the law, 
poses the central issue when he says: “Clearly, if objects can be arranged according to size, 
beginning with the largest, some monotonically decreasing curve will describe the data. The 
fact that many of these curves are fairly well approximated by hyperbolas proves nothing .... 
No theoretical conclusion can be draw for the fact that many (reverse) J curves look alike. 
Theoretical conclusions can be drawn only if a rationale can be proposed that implies that 
such curves must belong to a certain class.” 

In fact, Zipf’s (1949) work despite its influence is riddled with inconsistencies. He refers to 
the relationship as the rank-frequency, although rank is clearly cumulative frequency while 
frequency is size only in the sense that each individual making up the object – in this case 
each individual in the population of the city – is counted thus. More recent work however has 
sought to clarify this and there is now some consensus at least in statistical physics and 
economics concerning ways in which these distributions should be characterized (Adamic, 
1999). This focus on the statistics of these distributions has given rise to the most promising 
theories to date although these are largely concerned with finding the underlying stochastic 
mechanism generating the probability distributions in question. Simon (1955) was the first to 
do this formally although Gibrat (1931) is credited with the underlying argument which he 
developed for income distributions, although noting this also applied to city sizes.  

In essence, this stream of work which is now dominant, considers the rank-size relationship as 
being consistent with a process that generates not a power law for frequencies of cities by size 
but a log normal distribution. The long tail of the log normal, sometimes called the fat tail of 
its cumulative distribution which is the rank-size, can be approximated by an inverse power 
law and it is this that is considered as being the dominant data describing city sizes. This 
raises the problem of defining where a city begins in that at the bottom end of the lognormal, 
individual populations are the objects in question; these are judged to be qualitatively 
different from cities and thus there has been considerable effort in trying to devise generating 
mechanisms – with some success it might be noted – which cut-off the short tail using various 
thresholding arguments. We will not refer to this work in detail here for this paper is largely 
about empirical analysis where this work acts as background. But the reader should be 
referred to three key works that indicate various concerns from different disciplinary 
perspectives: from economics, see Gabaix (1999), from statistical physics, see Blank and 
Solomon (2001), and for a general review of all these fields, see Li (1999). 

The way we will proceed here is to follow the emerging conventional wisdom. We assume 
that the most parsimonious models to date are those that are based on the random incremental 
but proportionate law of growth which is consistent with there being no increasing returns to 
scale in terms of the growth rate. These are based on Gibrat’s Law of Proportionate Effect 
which generates the lognormal. Here we will not be concerned with what happens at the 
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bottom of this distribution in terms of where new cities come from but we will simply take the 
top 100 cities (for the US urban system) and examine how these change., This means that we 
can quite safely measure the stability of these city size distributions using the rank-size rule 
and this is consistent with our concern for what happens as new cities enter and leave the top 
100. However in a later paper we will update our analysis by examining models that simulate 
distributions from which we can measure the top 100 cities and this will involve us in a more 
comprehensive analysis of urban change at all levels of size. We have already attempted this 
for the UK urban system but there we assumed that the space economy was exhaustively 
subdivided into a fixed number of urban spaces – cities? – whose dynamics we then 
proceeded to analyze comprehensively (Batty, 2001). Only indirectly however do we address 
the problem of where new cities come from in this analysis; our concern here is to provide a 
new glimpse of the empirical dynamics operating in the US urban system as a first shot in 
devising better theory which we hope will follow. 

In fact, Zipf (1949) did examine the temporal dynamics of the US system in that he plotted 
the rank-size distributions for all cities greater than 2500 persons from 1790 to 1930. He did 
not fit his law to these curves although it is fairly clear visually from his analysis that his law 

1930...,,1790,)()( 1 =≈ trtPtPr  is borne out. We reproduce his plots in Figure 1 below but 
it is worth noting that he only estimated two relationships formally – both for US 
metropolitan areas greater than 50000 population in 1940: for the top 100, he estimated 

050.7log983.0log +−= rPr  and for the top 140, the same relation is given as 
112.7log036.1log +−= rPr . We will rework and extend his analysis in the treatment that 

follows. 

 

Figure 1  The Baseline: Zipf’s (1949) Analysis of US City Size from 1790 – 1930 
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4. THE EVOLUTION OF THE US URBAN SYSTEM, 1790 TO 2000 

4.1 The Basic City-Size Relationships 

The data we have used is based on the top 100 population sizes defined for incorporated 
places in common usage in the US Census and as assembled by Gibson (1998) from 1790 to 
1990. We have added to this the 2000 data which we consider to be generally similar, 
notwithstanding a couple of minor definitional differences. These places represent the most 
minimalist of city definitions in that they represent the first places that are defined as such by 
their populations changing slowly in definition during the 210 years during which we conduct 
our analysis. For example, New York City is essentially Manhattan until 1890 when the 
Bronx, Brooklyn, Queens and Staten Island are then added. We have to live with such 
changing definitions although we do consider this kind of change to be one of scale change in 
that the very definition of what constitutes a city changes radically during this period. It might 
be said that the objects in question change qualitatively during the period and our definition 
does not try to discount this. 

There are many other definitions of US cities by the Census Bureau itself but these have not 
been standardized in an appropriate series. Although of great relevance to the consistency of 
these city size relationships across different scales, connecting our analysis to these must 
await further standardization which we intend as part of future research. Tom Wagner of the 
University of Michigan is working on this problem and some preliminary results can be seen 
at http://chinadatacenter.org/Presentation/Tom_zipf.htm . Our analysis here in fact is closest 
to that undertaken by Zipf for essentially the data between 1790 and 19390 that he used is 
taken from the same units that we use here. 

In Figure 2, we show plot the basic relations on log-log paper which provides a direct 
comparator to Figure 1. The strength of the relationship over time is remarkable with the most 
obvious pattern being in the growth of the population in exorable fashion as the average size 
of the top 100 cities increases. In fact, the total number of cities over 2500 does not reach 100 
until 1840, the numbers from 1790 to 1830 being 24, 33, 46, 61, and 90. The average size of 
city population in the set changes from 8402 in 1790 to 568698 in 2000. It is not possible to 
see any substantial changes in pattern from these graphs which plot cities in rank-size space. 
It is hard for example to see the opening up of the mid-west, the far west and the south west 
as a distinct pattern shift in these relations. What is clear is that the decision to impose an 
arbitrary cut-off at 100 cities does reveal that we are only examining the tip of the iceberg 
with respect to the entire urban system although this is essential for our emphasis on the entry 
and departure of cities from the top 100. During this period, the population of the top 100 
cities has grown dramatically and we show this in Figure 3 where we have plotted the total 
population ∑ ∀=

r r ttPtP ),()( , and the population of New York City, ttP ∀),(1 , the number 
1 ranked population center throughout the period which acts, as we shall see, as a kind of 
anchor point to the system. In fact the largest cities in the data set are capacitated in that like 
New York City, they show logistic growth which reflects density limits despite a recent surge 
(1990-2000) reflecting some oscillation around these limits.  

Our estimates of the relations in Figure 2 reveal very strong correlations and remarkable 
consistency in the parameters α  and K  with these values being close to the strong Zipf 
values of 1 and 1P  at each time. We show these in Table 1. However there is a slow but sure 
drop in the value of the Zipf exponent α  which is indicative of a system that is becoming less 



 8

concentrated through time as reflected in the fact that the biggest cities remain the biggest but 
increasingly reach their capacities. This appears to have accelerated since 1960. To generalize 
these interpretations, we would need to rework this same analysis at different scales with 
different definitions of cities. In fact it is instructive to look at the intercept which is the 
predicted population of New York City. We have graphed the predicted and observed values 
of this population )(1 tP′  and )(1 tP  in Figure 4 where it is quite clear that although the model 
over predicts the population from the mid to the late 19th century, once the automobile society 
became established from the early 20th century on, there is systematic under prediction of this 
value. From Table 1, the correlations of observed with predicted for the whole set of cities are 
unerringly high but when we examine the deviation between predicted and observed values 
for the largest object in the set – New York City – which we define as 

( )[ ])()()(50)( 111 tPtPtPt −′=Γ , we see from Figure 4 that there are substantial deviations of 
up to 20 percent. This provides a somewhat different perspective on the quality of the fitted 
rank-size relationships.  

 

Figure 2  Rank-Size Space: Zipf Plots for US Cities from 1790 to 2000 

 

Figure 3  Growth of Total Population of the Top 100 Cities from 1790 to 2000 
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Table 1  Rank-Size Parameters for the Evolution of the US Urban System from 1790 to 2000 

Year r-squared 
Intercept 

1loglog PK ′= Zipf exponent α  

1790 0.975 4.660 0.876 
1800 0.968 4.797 0.869 
1810 0.989 5.005 0.909 
1820 0.983 5.080 0.904 
1830 0.990 5.244 0.899 
1840 0.991 5.416 0.894 
1850 0.989 5.689 0.917 
1860 0.994 5.943 0.990 
1870 0.992 6.102 0.978 
1880 0.992 6.244 0.983 
1890 0.992 6.384 0.951 
1900 0.994 6.477 0.946 
1910 0.991 6.568 0.912 
1920 0.995 6.668 0.908 
1930 0.995 6.750 0.903 
1940 0.994 6.776 0.907 
1950 0.990 6.827 0.900 
1960 0.985 6.799 0.838 
1970 0.980 6.789 0.808 
1980 0.986 6.734 0.769 
1990 0.987 6.730 0.744 
2000 0.988 6.763 0.737 

 

 

Figure 4  The Population of New York City, the Top Ranked City over 210 Years 
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4.2 Trajectories of Key Cities in Rank-Size and Rank-Time Space 

There are some 267 distinct cities which appear in the top 100 over the 210 year period and 
the best way to examine these is to take a representative sample based on the dominant towns 
at the beginning of the period (1790), at the end (2000) and those towns which remain in all 
the sets throughout the period. The top 5 towns in 1790 are Baltimore, Boston, Charleston, 
New York, and Philadelphia while in 2000, the top 5 are Chicago, Houston, Los Angeles, 
New York and Philadelphia. This clearly shows how the mid west, west and south west have 
opened up during the period. The other two towns that have remained in the list throughout 
the period really represent the south and have been supplanted now by Washington DC. These 
are Norfolk and Richmond, both in Virginia. Charleston however is the only town in this 
overall list of 10 which drops off the list, disappearing from the top 100 in 1910.  

Our subsequent analysis suggests that we can classify these 10 towns into five distinct groups. 
New York City is outstandingly different being the anchor for the entire system and 
unwavering in its position and dominance as is evidenced by many other considerations 
which are not part of the analysis. The second class is those eastern cities which were 
dominant in the late 18th century and have remained dominant but whose position has been 
eroded by the opening up of the rest of the country and by suburbanization and sprawl: these 
are Baltimore, Boston, and Philadelphia. The third group is the cities which enter the list later 
as population growth in the US has spread west and these are Chicago, Houston and Los 
Angeles. The fourth group and perhaps also the fifth are the colonial cities of south: the fourth 
are the two cities of Richmond and Norfolk in Virginia which generally decline in rank. 
Indeed Richmond looks as though it will fall out of the list by 2010 although Norfolk is 
probably the recipient of greater growth due to the location of the Navy and the generally 
favorable climate. Charleston, our fifth city, is a classic colonial town which disappears as 
soon as the US economy begins to spread west and industrialize. 

 

Figure 5  Traces of Ten Key Cities in Rank-Size Space 
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These features are very clear from the two phase space diagrams in which changes in their 
rank and size through time can be illustrated. First in Figure 5, we show the trajectory of each 
city in rank-size space. This is equivalent to tracing each city in Figure 2 and plotting its 
position solely with reference to itself and not with reference to the entire rank-size 
distribution. New York City is clearly an outlier but the new cities of Chicago, Houston and 
Los Angeles grow in rank status and in population through the period, moving from the 
bottom right hand side of the space to the top left. The colonial towns tend to move towards 
the edge of the phase space while the eastern seaboard cities retain their approximate rank up 
until the last 50 years but then begin to lose status while continuing to grow in population. 
These cities head off from the bottom to the top of the space. The biggest cities also lose 
population in the late 20th century although this is hard to see clearly in the diagram. 

Another way of examining these changes is to throw out size and simply concentrate on rank 
with time being fashioned using a different geometry. What we have done is to construct a 
rank-time clock which arranges the 22 time slices from 1790 to 2000 in a circular form 
reminiscent of a clock where movement through the decades is in the clockwise direction. 
Here we plot the rank of the city through time. A city which remains at a given rank traces a 
perfectly circular orbit while one which disappears from the space moves off in a clockwise 
spiral from a more central to a less central location. The colonial cities fall into this category 
while New York City’s rank at 1 places it always at the centre of the circle. A city which 
moves up the hierarchy over time also traces out a spiral trajectory but with the movement 
from the edge of the space toward the centre. We illustrate these trajectories for all 10 cities in 
Figure 6. In 6(a), we show the pattern using a clock where rank is in absolute terms. As those 
ranks which are highest are compressed to orbits at the center of the clock, and as we are 
selecting cities which are dominant, to see the action towards the centre, we need to stretch 
these orbits and accordingly we illustrate the same data in Figure 6(b) where we have used a 
logarithmic scale for the rank. Here is it quite clear for example that Philadelphia which can 
barely be seen in Figure 6(a) traces a more or less circular path over the entire period in that it 
starts and ends near the top of the list. 

This clock enables us to examine the time at which new cities enter the space and the time at 
which old cities leave. It also enables us to work out the speed at which a city is rising up the 
hierarchy or descending the same. Cities which are unchanging trace circular orbits or as in 
the case of New York City collapse into the centre as a point. Cities that more gently come 
into the space or leave it are more likely to trace regular spirals while cities that come in 
rapidly and stay in position or leave in the same way trace out lines which are straighter than 
either the spirals or the circular orbits. In this way we might be able to develop a geometric 
classification of cities without needing to plot such diagrams and in this way examine the 
entire set of cities in the top 100 lists for each time slice. This is something that would be 
worthwhile in that we would then begin to see what the mix of city types was in terms of their 
dynamics within the entire set rather than as we have done here, restrict our analysis to a 
sample that marks those which dominate the US urban system at the beginning and the end of 
the period as well as those that are most persistent. 

4.3 The Half Life of US Cities 

Our last foray into this data set begins to examine for the first time, the extent to which new 
cities enter the list at each time slice and the extent to which cities already in the list leave the 
list. To do this for any time slice t , we compute the number of cities which are in the current 
list at time t , are in a previous list at time nt − , and in a future list at time nt + . We call 
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Figure 6  Trajectories of the Ten Key Cities on the Rank-Time Clock in Absolute and 
Logarithmic Space 
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this number nttN ±, . In general assuming that we are not at the beginning of the time period 
when there are less than 100 cities in the list, that is assuming we are dealing with times from 

1840=t , then it is clear that those cities in the list at time t , are always 100, =ttN ; as the 
time from this date increases or decreases, then in general we will have 0,100, >≤± nN ntt . 
We can thus form a matrix where time runs from 1790=t  to 2000=t  which shows the 
number of cities at any time nt ±  associated with those comprising the list at any time t . 
From this we are able to compute a half life of cities. In this paper, we will not pursue this 
rigorously but simply sketch the idea from the appropriate graphics. 

We plot these numbers of cities for each time t  in Figure 7. What we see here is a typical 
pattern of decay in terms of the number of common cities with respect to the list as time 
changes away from the date in question in either direction – before or after. To give an 
example, if we take the 100 top ranked cities in 1900, then in 1910 only 90 of these cities are 
still in the list, a loss of 10, in 1920 only 84, a further loss of 6. By 2000, only 47 of these 
cities remain and if the half life is the time it takes to retain one half the original list, then this 
would actually be 1990 when exactly 50 cities remain. In the other direction, in 1890, 93 
cities are in the list, in 1880 82 cities and back in 1790 only 11 cities. The half life in this 
direction is somewhere between 1850 and 1860. In this sense the backwards half life – around 
50 years - is much less than the forwards half life – which is around 90 years but this is 
because we are dealing with a rapidly growing system which we break into in its growth 
phase.  

 

Figure 7  The Lives of US Cities from 1790 to 2000 
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We can actually compute these half lives quite accurately using equations such as that for the 
forward half life ∑∑ ++ n nttn ntt NnN ,, . In this paper, all we will do is to indicate that we can 
get an estimate of the half life for each time period if we simply examine the intersection of 
the curve formed from nttN ±,  with 50=N , thus reading off the dates nt −  and nt ′+  which 
give estimates of the backwards half life n  and the forwards half life n′ . We show this line 
on Figure 7. We can also detect from Figure 7 the fact that the system is quite asymmetric in 
terms of its growth profile. Cities enter at a faster rate in general than those leaving as the 
system builds up in the early 19th century. In the 20th century, the depression and war years 
1920-1950 seem to suggest that there is less growth and thus less change with respect to cities 
in the top 100 while in the last 40 years there appears to have been an acceleration of cities 
both entering and leaving the top lists. There is much more we might say about these 
dynamics but this will require more detailed analysis. For now we rest content to simply 
indicate the way this analysis might be taken forward. 

5. CONCLUSIONS: SIMULATING RANK-SIZE DISTRIBUTIONS 

Although we have shown that despite the apparent stability of the urban system as evidenced 
through the rank-size relationship, there is considerable volatility in that the composition of 
cities comprising these relationships which change almost entirely over a 200 year period. 
Indeed although the forward half life of cities is about 100 years, the backwards half life 
reflecting the speed at which new cities are created (in this sense enter the top 100 ranks) is 
about 50 years. We have shown that we can develop quite detailed analysis at this macro level 
which has interesting and important implications for a theory of urban dynamics but to 
progress any further we need to consider how we might engage in simulation. 

We have already attempted some rudimentary simulation based on the stochastic 
proportionate effects and examined the degree of volatility of such systems with respect to the 
entry and exit of new cities (Batty, 2001). However most of the models which attempt such 
simulation are somewhat artificial in that they do not incorporate any competition between the 
cities: cities exist independently of one another as for example in the simulations developed 
by Blank and Solomon (2001). There are some useful extensions to these models, for example 
that developed by Manrubia and Zanette (1998) but even in this case where local diffusion is 
used to spread development, there is no real competition built into the framework. A more 
important limitation however is that there is no inertia in these stochastic models. For 
example although the US urban system displays the same degree of volatility in terms of new 
cities entering and old leaving as those stochastic models, it is not possible to replicate the 
existence of cities that remain in place. New York, for example, has remained the dominant 
city throughout American history and despite pronouncements of its imminent demise, 
particularly since 9/11, this analysis suggests that its role in the system is fundamental and 
deep seated and that it is unlikely to lose this position in the foreseeable future. This kind of 
inertia is hard to replicate in stochastic models as it may well relate not simply to the internal 
dynamics of the US system but to its external dynamics, to its role as a world city and as an 
anchor point back to the old world from which America was originally spawned.  

It is not easy either to simulate the opening up of an urban space, in other words to simulate 
colonization of empty space in the way it occurred in America with a prior but very loosely 
developed settlement structure already in place. This really gets to the heart of the matter 
because there are still no models to date which actually create new events in the way new 
cities are clearly invented. What we need is some form of growth model in which tension in 
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the system creates the opportunity for new events and new events – cities – emerge to fill this 
niche. The way we have attempted this so far is to assume that such events already exist – that 
locations exist but they are not active in that they do not contain activities. In a sense this is 
unsatisfactory because the spaces already exist as dormant events or objects. Moreover this is 
complicated too by the fact that the potential array of stochastic processes that in principle can 
generate these events, begin with objects which are of minimal size, single persons for 
example which are well below the threshold of what we would consider a city. All this 
analysis is thrown back once again onto the problem of what constitutes a city. A person is 
clearly not a city but for purposes of simulation it may be necessary to consider a much wider 
domain of settlements than has hitherto been the case in thinking about city size distributions. 
This paper has raised more problems than it has resolved but future research is clear: to 
extend this analysis to a wider range of city sizes and to see those that we consider ‘proper’ 
cities as some subset of these, both with respect to empirical observations of the real city 
system and potential models that might be used in their simulation. 
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