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Abstract 
 

Hierarchy is implicit in the very term city. Cities grow from hamlets and 
villages into small towns and thence into larger forms such as ‘metropolis’, 
‘megalopolis’ and world cities which are ‘gigalopolis’. In one sense, all 
urban agglomerations are referred to generically as cities but this sequence 
of city size from the smallest identifiable urban units to the largest contains 
an implicit hierarchy in which there are many more smaller cities than 
larger ones. This organisation approximately scales in a regular but simple 
manner, city sizes following a rank-size rule whose explanation is both 
mysterious and obvious. In this chapter, we begin with a simple but well-
known model of urban growth where growth is randomly proportionate to 
city size and where it is increasingly unlikely that a small city becomes 
very big. It is easy to show that this process generates a hierarchy which is 
statistically self-similar, hence fractal but this does not contain any 
economic interactions that we know must be present in the way cities grow 
and compete. We thus modify the model adding mild diffusion and then 
note how these ideas can be fashioned using network models which 
generate outcomes consistent with these kinds of order and scaling. We 
then turn this argument on its head and describe how the same sorts of 
morphology can be explained using ideas from central place theory. These 
notions are intrinsic to the way cities evolve and we conclude by noting 
how city design must take account of natural hierarchies which grow 
organically, rather than being established using top-down, centralized 
planning. 

                                                 
† This paper is to be published in Denise Pumain (Editor) Hierarchy in Natural and Social 
Sciences, Kluwer Academic Publishers, Dordrecht, The Netherlands, forthcoming 2005. 
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 “To a Platonic mind, everything in the world is connected to everything else- 
and perhaps it is. Everything is connected but some things are more connected 
then others. The world is a large matrix of interactions in which most of the 
entries are close to zero, and which by ordering those entries by their orders of 
magnitude, a distinct hierarchic structure can be discerned.” (page 258) 

 
H. A. Simon (1977) Models of Discovery and Other Topics in 
the Methods of Science, D. Reidel Publishing Company, 
Dordrecht Holland, Boston, MA. 
 
 

 

1 The Urban Soup 
 

Conventional wisdom concerning the origins of life on earth are now largely fashioned around 

the notion that in the beginning, life began through some chance spark setting off a reaction in 

a sea of undifferentiated chemical soup, leading to the formation of the various nucleotides 

that constitute the buildings blocks of life – RNA and DNA. In the same way, we can 

speculate that societies and cities began with household units randomly located across a 

landscape where the spacing of individuals was determined by food available from hunting 

and gathering. These units of course made contact in their quest for survival and although the 

dominant mode was one in which households competed with one another for territory which 

was synonymous with survival, there was a dawning realisation that cooperation rather than 

competition could ensure greater prospects for survival. Hamlets and villages were formed 

initially to ensure strength in numbers, for protection, but in time, the social contact which 

resulted, reinforced a division of labour leading to increased prosperity. 

 

The simplest possible model is one in which some individuals in this undifferentiated urban 

soup grow more than others simply due to the fact that they continually get ahead, while 

others fall behind, often disappearing. Eventually clusters that are differentiated by size which 

we call cities, appear in this landscape, and it is these that give structure to the urban soup. 

Hierarchy is an intimate part of this structure but before we show how such hierarchies 

emerge as a natural part of the growth process, we will take one step back and show how 

cities in this artificial world first organise themselves according to size. 
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A hierarchy is a natural ordering that is initially based on size but size can be measured in 

many different ways. In cities, size is typically based on the number of individuals or 

households or workers – on populations – but it may also be based on the area over which 

such location occurs or energy is used, or the field of influence over which individuals in the 

hierarchy have control. Let us begin with the simplest of possibilities: places of the same size 

are randomly scattered over a uniform plane. In such a world, if clusters exist, then these are 

random occurrences. We will assume a process in which a place grows randomly but this 

growth rate is applied proportionately to the size of that place. So if a place i  at time t  has 

size itP  and the growth rate itε  is chosen randomly, the place grows (or declines) as 

 

 itititititit PPPP εε +=+=+ )1(1    .    (1) 

 

The consequences of this process are surprising at first until one pauses to reflect. In a system 

of many places, the distribution of growth rates will be uniform at any time t  over a range 

from small to large, which might also be from negative to positive. However the chances of 

any particular place getting a series of very high growth rates allocated to it one after another, 

and thus growing very big is increasingly small. Equally the same goes for a place getting 

increasingly small and of course in this model if a place gets too small, it disappears so there 

is some asymmetry within the process. It is very easy to work out what happens if we apply 

this growth process to a small number of objects, with random growth rates chosen from a 

given range, and then apply these using equation (1) over and over again. An increasingly 

small number of the objects grow big, most remain small, quite a lot disappear but the crucial 

issue is ‘does the resulting size distribution show any kind of order’. In a sense we have 

anticipated that it does: there are far fewer bigger objects than smaller but let us take a worked 

example, which although somewhat artificial, graphically demonstrates the point. 

 

Our example is based on a grid of objects of dimension 21 x 21 giving 441 objects or spaces 

where the initial populations are uniformly distributed with 0,,10 =∀= tiPi . The rates of 

growth itε  are chosen randomly in the range –0.1 < itε  < 0.1. The proportionate growth 

model in equation (1) quickly sorts out the objects into a size distribution and by time 

100=t , the frequency distribution shows every sign of being lognormal. In fact, we have run 
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the model for 1000 iterations which we refer to somewhat euphemistically as ‘years’ and 

during this simulation there is much movement between those objects in terms of their 

relative size. The popular way of organising such frequency distributions is by ordering them 

hierarchically in terms of size and then plotting them in this order which is against their rank. 

The so-called rank-size distribution or Zipf plot is in fact the counter-cumulative; that is, the 

rank is the number of objects above a certain size threshold, so the highest ranked population 

in the hierarchy at rank 1=r  is the population )1(itP , the second highest population )(rPit  is 

at rank 2=r  and so on down the size distribution to )(rPit . This rank-size distribution is 

plotted for 1000=t  in Figure 1, and it is immediately apparent that the signature is that of a 

lognormal distribution where the plot is visualised as a log transformation of population size 

against rank. 

 

 
 

Figure 1: Generating a Lognormal Distribution Using Proportionate Effect and Power Law 
Scaling from Proportionate Effect with a Minimum Size Threshold 

 

In fact, many researchers have shown that proportionate random growth of the kind we have 

described leads to lognormal size distributions (Pumain, 2000). Gibrat (1931) produced the 

first comprehensive argument for cities and income distributions but the English statisticians 

Fisher and Yule knew of the model and its consequences a generation earlier. If we were to 

continue the simulation beyond 1000=t , then more and more populations would converge to 

zero and ultimately, we hypothesise that in discrete systems of this kind, all activity would be 
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attracted to a single cell. In fact, in city systems, such a simulation is bounded from below by 

indivisibilities and it thus makes sense to modify our model by introducing a size threshold 

below which populations cannot fall. Then whenever a population cell i  falls below this 

number, it is restored to that number, this mechanism acting as a safety net or subsidy of sorts. 

This can also be viewed as a way of killing off a city and introducing a new one at the same 

time, thus incorporating a perfectly balancing birth and death process; formally 

 

Ψ=Ψ< itit PthenPif   .     (2) 

 

Examining the lognormal distribution in Figure 1 reveals two regimes – the long tail which is 

almost linear and the short tail which accounts for the order of the smaller settlements. It is 

tempting to think that the long tail could be approximated by a linear or scaling relation and in 

effect, if we use the cut-off mechanism just postulated then in a purely phenomenological 

sense, this is effectively cutting off this short tail. We have run the simulation again with 

equation (2) now operative and indeed the almost straight line distribution in Figure 1 is that 

which is generated by time 1000=t . The cut-off in fact works and what we end up with is a 

distribution which is no longer log-normal. In fact it is scaling as it can be approximated by a 

power function where the population size which we will now call )(rPit  varies inversely with 

the rank r  as α−rrPit ~)(  with α  the so-called scaling parameter of the distribution. As cities 

are moving up and down this hierarchy, it is tempting to think of the long tail as a ‘steady 

state’ to which cities are ‘attracted’ and indeed, theorists such as Gabaix (1999) demonstrate 

that this is indeed the case for the Gibrat process which can converge to the a pure scaling law 

with the parameter 1=α . 

 

 

2 Rank Size and the Law of Proportionate Effect  
 

What we have just demonstrated has been known as an empirical fact about cities and many 

other distributions for over one hundred years. The most popular exposition of rank order 

which conforms to a scaling relation is provided by Zipf (1949) in his remarkable book which 

examined many such distributions from word frequencies to cities. Zipf argued that these 
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distributions were not only scaling, conforming to the power law, but also that many such 

distributions – indeed the implication that all such distributions – were such that the power 

law was a pure inverse. This means that the rank of the population in continents, countries, 

and counties, at any level or scale, would conform to rrrPit /1~)( 1 =− . This is the strong 

form of Zipf’s Law. Zipf’s Law implies that city size distributions are fractal in that if one 

examines the relationship at any scale, then the distribution is the same. This is self-similarity 

in its pure form which in terms of a power law means that if the distribution is rescaled, then 

this is simply a scaling up of the original distribution. Imagine that the rank size is rescaled by 

rank to another order s , then the rank size scales as )(~~)(~)( 1111 rPrrssrrsP itit
−−−− =  

which implies that the scaling is the same over any order of magnitude (Batty and Shiode, 

2003). 

 
100=t  

 

1000=t  10000=t  

 
Figure 2: Emergence of the Rank-size Distribution Using Proportionate Effect with Cut-Off 

 

The law of proportionate effect with a lower bound is akin to a random walk with a reflecting 

barrier (Sornette, 2000). The model is simplistic, perhaps nihilistic in that it does not include 

any form of competition or interaction between the objects. This is extremely odd as cities 

compete and interact and many models of their formation emphasise such interactions. Our 

model of proportionate effect with the lower bound clearly generates distributions which 

appear to be scaling and follow Zipf’s Law, but in many ways this model is unstable. The 

time over which such distributions emerge and the volatility of the top ranked cells or places 

is sufficient to suggest that the model does not have enough inertia to mirror real places. The 

fact that it produces size distributions which concur with reality is not sufficient to mean that 

this is a good model. For example, as we move through the time periods, then the 

distributions which are generated change not in their scaling but in their shape. We can see 
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this in two ways. In Figure 2, we show the pattern of distribution after 100, 1000 and then 

10000 iterations (‘years’) which reveals the convergence to extreme distributions as the 

simulation continues. In Figure 2, the distributions for small number of interactions are much 

flatter and gentle than those for larger numbers. 

 

 
Figure 3: Power Law Scaling as the Population Distribution Emerges 

 

 

Figure 3 however shows the distributions for 10000...,2000,1000 === ttt  which clearly 

get steeper – implying the parameter α  gets larger as the population grows. In fact it appears 

that the parameter is converging on the pure Zipf case of unity although from these results this 

is inconclusive. There is a variety of theoretical evidence that suggests this is the case for 

growth by random walk with a reflecting barrier as Gabaix (1999) and Blank and Solomon 

(2000), for example, show. In Figure 3, the parameter α  rises from 1000=t  to 10000=t  as 

0.668, 0.862, 0.907, 0.977, 1.008, 0.984, 0.980, 0.978, 1.053, to 0.962 which shows the final 

value hovering around 1 with the straight line logarithmic fits all explaining more than 99 

percent of the variance for each time slice. This is a fairly remarkable result. What we have 

shown is that an almost nihilistic model with no spatial competition can generate highly 

ordered simple hierarchies which in fact mirror the empirical evidence that has been compiled 

for many cities in many places during the last 50 years. Figure 4 shows the rank size of 

incorporated places in the United States from 1970 (some 7000 places) to the year 2000 (some 
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25000). In Figure 4(a), the entire distributions are shown and these are clearly lognormal. 

When we cut-off the short tails, the remaining long tails are quite straight implying power 

laws as in Figure 4(b). In fact Figure 4 is an empirical equivalent of Figure 1, and for the four 

time slices from 1970 to 2000, the α  parameter varies from 0.986 to 0.982 to 0.995 to 1.014 

with the variance explained a little lower than the theoretical model as 0.98, 0.97, 0.97, and 

0.97. The same kind of dynamic analysis has been done for France by Guerin-Pace (1995) and 

a thorough review is presented by Pumain (2005) in a complementary chapter within this 

book 

 

 
Figure 4: Lognormal and Power Law Scaling of the US Population Based on ‘Incorporated 

Places’ 1970 to 2000 
 

Although the model produces aggregate distributions uncannily close to those we observe in 

most places, what is quite clear is that when we unpack the simulations, there are many 

inconsistencies that imply this model is nothing like as good as these results suggest. Of 

particular concern is the lack of apparent structural consistency as the simulation proceeds and 

the rankings of cells change. During the 10000 ‘year’ simulation, the number of different cells 

at the top of the rank order is 18. We have only sampled the rankings at every 50 time periods 

and thus it is likely that there are many more than 18 cells which appear at the top of the ranks 

during the simulation. To give an idea of the volatility of these ranks, we show how the top 

ranked cells 1, 6, 12 and 18 from these top orders change over the 10000 year history in 

Figure 5. These cells appear at different times as we indicate but what is quite clear is that the 

length of time they occupy the top position is small, thus implying that there is no inertia in 
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the model. This is manifestly the case and as the simulation time periods have no relationship 

to real times, then it is unclear what the 10000 model ‘years’ actually mean in terms of the 

evolution of actual urban systems such as the US system shown in Figure 4. Our guess is that 

the volatility of the distribution through time is much greater than any real system where 

change is slower and inertia greater. 

 

 
Figure 5: The 1st, 6th, 12th and 18th Top Ranked Population Cells and Their Progress Through 

the Simulation 
 

The last thing that we want to show before we try to improve the model and generate 

hierarchies which imply spatial interaction and competition, is the effect of changing the 

geographic dimensions of the space within which the simulation takes place. We have 

changed the grid from 21 x 21 to 51 x 51 and then to 101 x 101 and run the simulation with 

the cut-off for 10000 ‘years’. We show the three rank-size distributions in Figure 6 where it is 

quite clear that the slopes are similar implying that the model does indeed hold up as we scale 

the system in geographic size. This might be expected as there is no interaction between the 

parts but what is of interest is the increased size of the populations as the systems scales. This 

is a bit of a mystery but it probably occurs because there are more and more opportunities for 
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extreme growth as the spatial system gets larger, yet it requires further investigation as do 

many other aspects of these simulations. It does not however detract from the main result that 

the model scales spatially. It is surprising that so simple a model which has had so much 

effort devoted to it in terms of simulations and mathematical analysis is still far from being 

thoroughly understood. 

 

 
Figure 6: Consistent Scaling Behaviour for Different Sizes of Lattice 

 

 

3 Generating Hierarchy: Competition, Interaction and Spatial Diffusion  

 
The hierarchy generated by the model of proportionate effect is the simplest possible – a 

simple rank order or unidirectional hierarchy where the order of objects is simply one of size 

and where each object is independent of any other. This cannot be a good model for the 

growth of cities because is does not admit competition or interaction of any kind. Cities are 

completely disconnected from one another. Simon’s opening quote is largely irrelevant to this 

definition of hierarchy for nowhere in such a model are there clusters of connected activity 

which provide the kind of connectivity from which hierarchic structure can be derived. What 

we require is some form of interaction between cities or places, between the points on the 

lattice and to explore this, we will add some simple diffusion to adjacent grid cells at each 

stage of the model simulation. In short, at each time step, a fixed proportion λ  of the 

population in each cell k  diffuses to its nearest neighbours in the von Neumann 
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neighbourhood comprising the cells which are north, south, east, and west of the cell in 

question. Thus for cell i , the population at time 1+t , 1+itP , is now computed as  

 

4
)1(1

∑ Ω∈
+ ++= ik kt

ititit

P
PP λε    ,   (3) 

 

where the neighbourhood for diffusion is defined as westeastsouthnorthi kkkk ,,,=Ω . In this 

model, minimal action at a distance is admitted and within a short time interval which is 

proportional to one dimension of the lattice, every cell influences every other cell. This kind 

of diffusion is still somewhat nihilistic in that it is only based on the notion that a proportion 

of people move to be with their neighbours, without specifying any particular reason, other 

than the implication that such movement is social and/or economic. 

 

 
Figure 7: Lognormal Distributions Generated from Proportionate Effect With Diffusion 

 

 

We have run the model in equation (3) retaining the cut-off in equation (2) for 

10000...,,2000,1000=t  time periods, and this generates the rank-size distributions shown as 
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Zipf plots in Figure 7. The level of diffusion used involves setting the parameter 3.0=λ , 

implying 30 percent of the population in each cell gets redistributed into adjacent cells in each 

time period. What this leads to are not scaling distributions as the model without diffusion 

does but lognormal distributions. The cut-off is in fact discounted by the diffusion. This is a 

little different from the similar model posed by Manrubia and Zanette (1998) which is based 

on the same process but without a cut-off and with only positive growth which produces a 

scaling law. Yet in a sense, whether these kinds of model produce scaling or lognormal 

distributions is of less concern because at a phenomenological level, all multiplicative 

processes such as these variants belong to the same class of model (Sornette and Cont, 1997). 

 

The diffusion in this model is so intensive in each time period – all cells are affected, and also 

extensive due to the fact that the number of time periods is far greater than the size of the 

system which in this example is based on the 21 x 21 lattice, that it is impossible to track all 

interactions which accumulate between all pairs of cells. Action-at-distance occurs through 

the medium of adjacent cells and the number of combinations of diffusion paths is thus 

enormous. What effectively this diffusion leads to are densities which fall around the cells 

with the largest populations just as a city core attracts and diffuses activity around it. We take 

an impressionist view of the hierarchy formed where we simply plot the hierarchy by 

associating cells with their higher order centre (based on population size), deciding whether or 

not they are connected simply through adjacency. In Figure 8, we first illustrate the patterns of 

growth for the model at 10000and,1000,100 === ttt  and it is clear that the type of pattern 

produced occurs within 100 time periods and simply repeats itself – in different locations of 

course – through time. In Figure 8, we also show simplifications of these pictures by first 

identifying the top ranked cell, the next 3 followed by the next 8, then the next 24, and finally 

the next 64 around these cores. This provides a crude picture of population density which we 

can represent as a hierarchy. We do this for the pattern at 10000=t  where we simply 

associate each cell at each level with the cells above it if they are connected directly or 

indirectly to that level through cells of similar value. 
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100=t : }{ 100iP  1000=t : }{ 1000iP  10000=t : }{ 10000iP  

 
Simplifications of core population centres as hierarchies 

 
 

Figure 8: Patterns of Diffusion 
 

 

The hierarchy produced is plotted as a semi-lattice in Figure 9. It is not possible to uniquely 

associate every cell with a single cell at the next level of hierarchy due to the fact that we do 

not have network links between cells that we can cut to define separate regions. In fact this 

representation of hierarchy is much more realistic and supports the long standing notion of 

overlapping fields of influence which was articulated rather well by Alexander (1966) almost 

40 years ago in his article “A City is Not a Tree”. There is considerable structure in this 

hierarchy which is introduced through the diffusion process but this model appears just as 

volatile as the pure Gibrat process. Over the simulation period of 10000 ‘years’, of the 441 

distinct cities or cells, all these cells occur at the top of the hierarchy at some point while the 

pattern of these top ranked cells would appear quite random. We show this pattern in Figure 

10 where it is quite clear that there are no particular clusters of cells or individual cells that 

predominate over any others. It is quite clear from these simulations that there is too little 

inertia in the system to mirror our experience of real city systems for it is most unlikely that 

for the simulation times used here, all cells would at some point dominate. Other models are 

thus required. 
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Figure 9: A Hierarchy for the Pattern at 10000=t  
 

 
Figure 10: Top Ranked Cells During the 10000 ‘Year’ Simulation 

(the size of the bubbles range from 1 to 83 time periods in which the relevant cells 
dominate with an average size of 23 time periods) 
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The distributions generated from the Gibrat process with diffusion are somewhat flat and as 

the level of diffusion is reduced, the hierarchical structure begins to disappear. We have 

attempted to inject more structure into the model by departing from the Gibrat process and 

introducing agglomeration economies into the model adding a term reflecting current city 

size. Our model thus becomes  

 

ηφλε it
k kt

ititit P
P

PP i +++=
∑ Ω∈

+ 4
)1(1  ,    (4) 

 

where φ  and η  reflect the proportionality and the scaling imposed by agglomeration 

economies. We have set 2.0=φ  and 08.1=η  and with these parameters we do indeed 

succeed in sharpening the distribution of city sizes but the lognormality of these distributions 

remains as we show in Figure 11. There do not appear to be any real qualitative differences 

produced by this model. To introduce a different form of hierarchy into the urban soup, we 

require much more explicit networks of interaction exploiting results from the burgeoning 

science of networks (Watts, 2003) which we will now present. 

 

 
Figure 11: City Size Distributions for the Agglomeration Model at 1000=t  and 10000=t  
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4 Network Hierarchies: The Gibrat Interaction Model 
 

So far our models of hierarchy have focused on their evolution whereas Simon’s (1977) 

definition tends to assume that such hierarchies are already developed. To detect them, we 

thus need to observe the interconnections between the system’s parts in order to define the 

clusters of highly connected subsystems that form the whole. Our model needs to be extended 

to make explicit these interconnections and this requires us to generalise Gibrat’s model to 

networks. We do this by adding both cells and their links randomly, one in each time period. 

The mechanics of the model are contained in the following equations. In each time period, for 

a node which is already established and linked to other nodes, we consider the random 

addition of a link volume as 11 =+iktδ  where iktP  is the total number of links from node i  to 

j . The total links associated with i , the new population size of i , is 1+itP . The equation for 

total links is thus 

 

 

11 ++ += ∑ ikt
j

ijtit PP δ   ,      (4) 

 

where the number of links is updated in each time period as  

 

11 ++ += ijtijtijt PP δ   .      (5) 

 

Whether a link is added or not depends on both the size of the node and its distance to other 

nodes which is reflected in an exponentially weighted gravitational function of the form 

 

⎩
⎨
⎧ −=

= +
+ 0

)exp()(1 1
1

ijijtijt
ijt

dKPrndif βε
δ  .   (6) 

 

The term )( 1+ijtrnd ε  determines a random choice based on size of the potential interaction 

where ijd  is the distance from node i to node j and the parameter β  reflects the frictional 

effects of this distance. Essentially this process is one of preferential attachment in that links 
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are added in proportion to the size of existing links and the population that the node has 

already attracted. It has been very widely exploited recently by Barabasi (2002) and his 

colleagues who have shown that the model does indeed lead to what that call ‘scale free’ 

networks (Barabasi and Albert, 1999). 

 

This process does not show how nodes are established in the first place and thus we must add 

a mechanism for the birth of new nodes, akin to that added by Simon (1955) in his classic 

model of the rank-size process. A new node is added if a random variable )( 1+itrnd ε  is greater 

than a predetermined threshold z  which is given as 

 

⎩
⎨
⎧ >

= +
+ 0

)(1 1
1

zrndif it
it

ε
δ    ,    (7) 

 

where the value of z  is small compared to the probability for the addition of new links as 

reflected in equations (4) to (6) above. For the 21 x 21 lattice, we choose the threshold for the 

addition of new nodes as 1.0=z  and this implies that at the beginning of the process, there is 

a 1 in 10 chance that a new node is added. Of course as the process continues, this chance 

falls for if a node is chosen that is already established, this is abandoned. In terms of the 

generation of links to established nodes, then a node is first chosen randomly but in 

proportion to its size itP , and then a link to another node j  from i  is chosen in proportion to 

its inverse distance function as defined in equation (6). In this way, the network builds up 

through preferential attachment to existing nodes. The overall dimension of the system is 300 

x 300 x-y coordinate units for each grid square and thus we have set the deterrence parameter 

β  in equation (6) as 0.001 which implies an average distance of around 1000 units. 

 

In Figure 12, we illustrate the final distribution of population by node }{ 1000iP  and alongside 

this, the distribution of link volumes between nodes for all links greater than 1, those greater 

than 2 and finally those greater that 4. A hierarchical pattern is revealed by these figures and it 

would be possible to cut the link volumes at points where the cluster density falls below 

various thresholds, thus uniquely partitioning the space into different areas and then orders of 

hierarchy. We do not do this for our concern is not hierarchy per se but ways of generating 
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this. In Figure 13, we plot the size of population per node against their rank as a Zipf plot 

which is the logarithmic transform. We have not connected the points in this plot because of 

the comparative low volume levels generated in this example but the plot is mildly lognormal. 

Fitting a straight line to this gives a scaling parameter of 1.05 with 90 percent of the variation 

in this plot explained. This is remarkably close to the pure Zipf scaling where 1=α  and it is 

confirmation that this model of preferential attachment based on Gibrat (1931) does indeed 

generate the same profile as in the simpler non-network cases which we discussed above. 

 

 

Nodal Population Distribution }{ 1000iP  Network Links }0{ 1000 >ijP  

  
Network Links }1{ 1000 >ijP  Network Links }4{ 1000 >ijP  

  
 

Figure 12: Patterns of Network Connectivity 
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Figure 13: Rank-size Distribution of the Nodal Network Distribution 

 

Before we introduce our final model where we will turn back to theory and generate the rank-

size rule for hierarchies based on central place theory, we will illustrate an example of 

hierarchy for retailing within London. We have developed an index of retail intensity which is 

a linear weighted sum of some 42 separate indicators, each suitably normalised, and tagged to 

the postcode geography which at its finest scale represents retailing at an average resolution 

of some 50 metres (Thurstain Goodwin and Batty, 2002). We have interpolated a surface from 

this data and have then sliced it at some 5 different levels which provides a picture of the 

retail hierarchy which we show in Figure 14. This is an implicit hierarchy similar to those 

which can be derived from the population distributions illustrated earlier in Figures 8 and 12. 

What we do not have from this analysis is the detailed interaction pattern that links consumers 

to the retailing activity through their movements to purchase retail goods at different points or 

centres on this surface. But the pattern is consistent with all that we have seen previously and 

the distribution of retailing activity is rank size. This is only one way of implying that a 

hierarchy exists and in a sense, this is less explicit than the more formal approaches rooted in 

location theory to which we will now turn. 
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Figure 14: The Implicit Retail Hierarchy in Central London 

 

5 Central Places: Rank Size from Geographical Dependence  

Although we have illustrated models which produce quite distinct hierarchies, we have only 

introduced space as action-at-a-distance from distinct nodes. In so far as competition has 

entered the argument, this has been either through intersecting and overlapping diffusion or 

through an implicit ordering where larger places get preferential treatment relative to smaller 

places, as in the network model of the previous section. One of the first expositions of how 

geographical areas based on spheres of influence around towns and cities are consistent with 

the rank-size rule was developed by Beckmann (1958) and his argument is so clear that we 

will repeat it here, thus providing some sense of closure on our more general discussion of 

hierarchy through rank-size scaling. Beckmann (1958) defined two key elements in the way 

cities are organised with respect to their functional and spatial dependence. He first assumed 

that a city or rather a small seed which sparked off the growth of a city was proportional in 

size to the population on which it depended in its surrounding hinterland or sphere of 

influence. He then noted that each city had a ‘span of control’, which related to the number of 

lower order hinterlands which could be said to depend spatially and economically on the 
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centre city or seed at its core. This second kind of dependence leads directly to a series of 

hinterlands at different orders, increasing in number and decreasing in geographical area as 

they descend the hierarchy and it is from this that the rank of any city can be established. 

Formally, the initial dependence ξ  of the city seed np  on its wider population nP  for any 

order of city n is 

nn Pp ξ=   ,       (8) 

where the order n is from the largest city which we call N to the smallest which is defined by 

the index 1. The second spatial dependence involves the fact that the population of the higher 

order level nP  is a sum of populations at the next lower order 1−nP  defined as 

 
1

1

1 −

−

−
=

+=

n

nnn

Ps
PspP

ξ
 .       (9) 

Recurrence on equation (9) leads to  
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and at the bottom of the hierarchy where the population is at the lowest level 1PP = , then the 

exponential dependence within the hierarchy is clear 
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If we assume that the seed city is small or even zero, then 0=ξ , and equation (11) simplifies 

to PsP n
n

1−= . 

Using the reverse order which is from 1 to N, the total number of cities at each level is ms  and 

the total number up to m is given as  
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 mssssm +++++= ...1)( 32σ  ,     (12) 

where this is a diverging but geometric series whose sum is )1/()1( −− ss m . Thus the rank of 

the first city at level m  is }1)]1/()1{[( +−− ss m  and the rank of the city which is midway 

through this order – the average rank for this order – is 
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Examining components of this sum in equation (13), we can assume that 1/1 −s  is small 

relative to other terms and thus equation (13) can be simplified to  
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The rank-size relation is based on population size and rank and if we multiply the relevant 

equation for population in equation (11) (which we convert from order n  to m  as 

1+−= mNn ) with the rank in equation (14), we get 
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This equation is a constant if 0=ξ  and thus the entire argument hinges on this. To an extent 

this is arbitrary although it is easy to assume that the hinterland population dominates and the 

core or seed is near zero. If this holds, we can simplify equation (15) as Φ=+− )(1 mrP mN . 

Writing this in a more familiar way where we suppress the order indices and define 

population at a rank r as rP , we get Φ=rPr  or 

 
r

Pr
1~   ,         (16) 
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which is the pure Zipf case. Many assumptions have been made to get this far and of course 

we have not tried to generalise Beckmann’s (1958) discrete case to a continuous one. 

Nevertheless, it would appear that this kind of geographic, indeed geometric reasoning which 

assumes that space is nested hierarchically through its economic dependence does lead to 

rank-size distributions of activities such as population. At one level of course, this is all too 

obvious in that we have assumed hierarchical order and simply shown that geometric series 

which can describe such order can be manipulated to produce a rank size. This is in fact an 

indirect argument reflecting scaling. Surprisingly the Beckmann model has not been widely 

exploited and no one (as far as I know) has developed a stochastic version of it. Nevertheless, 

it does serve to remind us that there is a deep underlying rationale for the existence of rank-

size distributions which is essentially a spatial or geometric ordering in the geographical sense 

(Beckmann, 1968).  

 

6 Hierarchy in the Design of Cities 

The models we have used in this chapter to generate spatial hierarchies whose signature is the 

scaling of population are essentially stochastic and dynamic although the Beckmann (1958) 

model of the last section took a more deductive approach but whose dynamics was implicit at 

best. Yet there are other ways of generating spatial hierarchies. It is possible, for example, to 

generate such distributions as the outcome of various optimisation procedures, taking either a 

top-down static approach or even a quasi-dynamic one. By way of conclusion, and in our 

quest to square the circle and show how hierarchical systems in cities should feature in their 

design, it is worth noting that there is a long tradition in spatial interaction modelling in which 

scaling distributions of population and trip/traffic distribution can be derived using 

optimisation theory – from maximising utility-like or entropy/accessibility functions subject 

to constraints on the dispersion of such activities through their cost structures. Berry (1964) 

was one of the first to illustrate such an approach in his derivation of population distributions 

which conformed to rank size using entropy maximising techniques; and this approach was 

widely used by Wilson, Coelho, Macgill and Williams (1981) in their quest to embed 

behavioural land use-transportation models into contexts in which behaviour was considered 

as optimising either at the individual or collective plan-making level. 
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In terms of these different approaches, the rank-size distribution provides a sharp illustration 

of the problems we face in explaining the evolution of complex systems. Nothing could be 

more different than the generation of a distribution from a stochastic process where all the 

constituent elements are independent from one another and where the growth is from the 

bottom up – our first model – and the kind of top down optimisation process in which 

accessibility is maximised subject to some constraints on cost or energy expended. Yet the 

outcomes in terms of the distribution of the elements being optimised are the same. In a way, 

all this shows is that how we approach city systems conditions the techniques we use to 

generate the outcomes we expect. In terms of the design of cities which although linked to 

optimisation, originates from very different intellectual mindsets and professional concerns, 

approaches using ideas from hierarchy theory are also well established. Although many of 

these use hierarchy in terms of the structure of the problem-solving process where problems 

are partitioned into a hierarchy of sub-problems, the notion that we need equivalent 

simplifications to those we have sought here is instructive.  

We anticipated much of this in an earlier section where we quoted Alexander (1966) who 

argued that the notion of strict hierarchy was far too simplistic an organising concept for 

design. He amongst many others drawing on ideas from organically evolving systems which 

latterly have been exploited in neo Darwinism by writers such as Dennett and Dawkins, 

argued for a paradigm in which interaction rather than hierarchy was a required design 

construct. Overlapping hierarchies – semi-lattices as we illustrated in Figure 9, are much more 

appropriate vehicles for the organisation of cities into spaces at different levels of 

geographical scale. In essence, this argument suggests that strict hierarchical subdivision is 

too simplistic a concept for the design of neighbourhoods and town spaces although it has 

been widely used by architects operating in top down fashion. Overlapping hierarchies 

although simplifying interaction capture, the diversity of behaviour and are much more 

suitable pictorial vehicles for progressing good urban design. In a sense, this argument has 

also been anticipated in urban systems science; Christaller’s central place hierarchies were 

overlapping while the whole point of spatial interaction modelling and its link to retail centre 

definition has been to relax the notion of hierarchy, letting it remain implicit in the space of 

flows. 
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There are other more direct reasons for thinking of cities as overlapping hierarchies or lattices 

and this simply emerges from the fact that there are many such hierarchies. We have only 

examined the simplest here – that based on how the population in an aggregate sense arranges 

itself but once one disaggregates populations into the multiplicity of categories that define 

them, and once one adds other kinds of activities which arrange themselves hierarchically in 

space such as transport and other network systems, land uses, styles of buildings, social 

friendship nets, and so on, then the idea of overlap becomes the rule not the exception. In fact 

it is hard to escape from the fact that the best analysis should tackle this notion directly. The 

fact that most of our analysis tends to simplify the system beyond this obvious reality poses a 

dilemma. What we require are good, simple and plausible models that show us how different 

kinds of hierarchies interlock.  

In terms of city size distributions, then the challenge seems to be to build on the network 

characterisations of Gibrat’s model, possibly interlocking the network model we illustrated 

earlier in this chapter with some sort of dual but countervailing network based on friendship 

patterns rather than the economics of travel which were implicit in the model demonstrated. 

Interlocking networks which lead to interlocking but consistent and simple scaling of 

aggregate activities would seem to be the quest. We know that most distributions that we see 

in cities are scaling or near scaling, and the goal would be to show how these might be 

unpacked and linked at the network level where we are able to grapple with the diversity that 

characterises cities. In this way, our understanding of cities would be enriched and this would 

suggest ways in which we might be able to design our patterns of interaction and location 

more effectively. 
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