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Abstract

The calculation of viewsheds is a routine operation in GIS and is used in a wide range 

of applications. Many of these involve the siting of features, such as radio masts, 

which are part of a network and yet the selection of sites is normally done separately 

for each feature. The selection of a series of locations which collectively maximise the 

visual coverage of an area is a combinatorial problem and as such cannot be directly 

solved except for trivial cases. In this paper, two strategies for tackling this problem 

are explored. The first is to restrict the search to key topographic points in the 

landscape such as peaks, pits and passes. The second is to use heuristics which have 

been applied to other maximal coverage spatial problems such as location-allocation. 

The results show that the use of these two strategies results in a reduction of the 

computing time necessary by two orders of magnitude, but at the cost of a loss of ten 

percent in the area viewed. Three different heuristics were used, of which Simulated 
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Annealing produced the best results. However the improvement over a much simpler 

fast-descent swap heuristic was very slight, but at the cost of greatly increased running 

times.

Key words: Viewshed, surface specific features, topography, optimisation, multiple 

viewpoints

1. Introduction

Predicting whether one point is visible from another (intervisibility analysis) and 

predicting the total area which is visible from a single point (viewshed analysis) are 

standard tools in Geographic Information Systems (GIS) software. Viewshed analysis 

has been used in a wide range of applications, including locating telecommunication 

relay towers (De Floriani et al., 1994), locating wind turbines (Kidner et al., 1999), 

protecting endangered species (Camp et al., 1997), analysing archaeological locations 

(Lake, M., et al., 1998), evaluating urban environment planning (Lake, I., et al., 1998) 

and optimal path route planning (Lee and Stucky, 1998).

The basic algorithm for generating a viewshed from raster elevation data is based on 

the estimation of the elevation difference of intermediate pixels between the 

viewpoint and target pixels.  The determination as to whether the target pixels can be 

seen from the viewpoint is accomplished by examining each of the intermediate pixels 

between the two cells, to determine the ‘line-of-sight’.  If the land surface rises above 

the line-of-sight, the target is invisible. Otherwise, it is visible from the viewpoint. 

The line-of-sight computation is repeated for all target pixels from a set of viewpoints, 



and the set of targets which are visible from the viewpoints form the viewshed. 

(Burrough and McDonnel, 1998)

Viewshed calculations are potentially time consuming, not least because of the large 

number of pixels which need to be considered when using a gridded DEM as the 

terrain model. Therefore a good deal of work has been done to develop efficient 

viewshed algorithms (Sorensen and Lanter, 1993; Wang et al., 1996; Fisher, 1991, 

1993, 1996).  Wang et al., (1996) developed a new fast viewshed calculation 

algorithm for DEM using neighbourhood grid cells. Recent developments have made 

use of visibility graph theory (O’Sullivan and Turner, 2001), statistical sampling 

(Franklin, 2000), reverse viewshed analysis (Kidner et al., 1999; Rallings, et al., 1999) 

and least-cost computation methods for determining optimal paths (Lee and Stucky, 

1998).

In much viewshed work, there are a relatively small number of points of interest for 

which the calculations must be done. In applications which are assessing the visual 

intrusion of a development for example, this may be a single point (e.g. for a wind 

turbine), points along a line (e.g for a new road) or for points on the perimeter of an 

area (e.g.for a new housing development). In such cases the calculations can normally 

be done in real time. 

Occasionally there is no single fixed point of interest and what is needed is a map of 

the variation in visibility across an entire area. This involves the calculation of the size 

of the viewshed for every pixel in the region to produce a visibility index. Each pixel 

is considered in turn as a target. Every other pixel in the image is considered in turn as 



an observer, and an intervisibility analysis carried out to see whether the target is 

visible or not. If it is, 1 is added to the visibility score for the observer pixel. Once this

has been repeated with every pixel as a potential target, the observer pixels will 

contain a count of how many targets they could see i.e. their overall visibility. If the 

DTM has n pixels and an intervisibility calculation is performed between every pixel 

and every other pixel, this is an O(n2) operation.

One approach to speeding up these calculations is to reduce the number of observers 

or targets or both (Rana, 2003). One way to do this is to perform the analysis on a TIN 

rather than a gridded DEM, because there will be far fewer points in a TIN than in a 

gridded DEM (De Floriani et al., 1994). The technique can also be applied to 

hierarchical TIN models to provide an efficient means of calculating viewsheds at 

varying resolutions (De Floriani and Magillo, 1997). This will only produce 

satisfactory results if the TIN is a good model of the terrain, since if key features such 

as prominent mountain peaks or ridges are not represented by TIN nodes, then the 

viewshed will contain errors. An alternative is to use only a subset of the pixels as 

observers for each target. Miller and Law (1996) used this approach in calculating a 

visibility map for the whole of Scotland. Visibility was calculated at 50m resolution, 

but points at 200m resolution were used as the observers. Rana (2003) took a similar 

approach, but instead of using a regularly spaced subset of points, used only points 

located on significant features of the landscape such as peaks, pits and passes  and 

points on ridges and along valleys,. The computation times were reduced by 3 orders 

of magnitude, from nearly 8000 seconds down to 10 seconds. The absolute visibility 

index values will be underestimated when a reduced set of targets is used, but as Rana 

(2003) points out the absolute values are normally much less important than the 



overall pattern, and particularly the identification of high visibility areas. The degree 

of match between the visibility index estimated using only surface specific features 

and the true values calculated using all the targets was generally good, with 

correlation coefficients ranging between 0.67 and 0.98.

The focus of the current paper is on a visibility problem in which the computational 

complexity is an order of magnitude higher even than the visibility index calculation. 

Visibility analysis is used in siting features which are part of a network, such as radio 

telephone masts (Goodchild and Lee, 1989; Lee, 1991; De Floriani et al., 1994). It is 

clearly important to locate each mast in a location which has high visibility. However, 

it is equally important to ensure that the masts in the network cover the terrain as 

efficiently as possible. This problem can be stated in two ways. Given n masts, how 

can they be placed to achieve the maximum coverage of the terrain. Alternatively, 

how many masts are needed to achieve at least n percentage coverage of the terrain. 

Both problems introduce a combinatorial element into the problem, because as well as 

the visibility of each potential location in the area, there is a need to consider the 

combined visibilities of all possible combinations of target locations. In this paper we 

will only be considering the first of these problems, which we will refer to as the 

optimal multiple viewpoints problem.

To analyse the time complexity of this problem let us consider the simple brute force 

algorithm. The two main steps are:

1. Calculate the intervisibility between all pairs of cells in the DEM i.e. 

undertake the first half of the visibility index calculation which as we saw 



above is O(n2).

2. Select all possible combinations of v viewpoints from the n pixels, and for 

each combination, sum the number of visible pixels. The number of ways to 

select v items from n is ( )!!

!

vnv

n

− . When n is large and n >> v, this 

approximates to nv. Summing the number of visible pixels is O(n).

Of the three terms, nv is by far the largest and hence the overall complexity is O(nv). 

So the multiple viewpoint problem has exponential complexity, compared with the 

quadratic complexity of the visibility index calculation (Wise, 2002). With a problem 

of even moderate size, this suggests that the simple brute force algorithm will never 

be computationally tractable and therefore strategies are needed to reduce the 

computation. 

The first of these is to try and reduce the number of candidates to be considered as 

possible locations. Common sense suggests that some parts of the landscape are more 

likely to make good locations than others. Franklin and Ray (1994) showed that ridges 

and peaks tend to have higher visibility than other locations on average. In addition 

Lee (1992) demonstrated that the viewshed from many  points in the landscape was 

often largely contained within the viewshed from a nearby ridge which means that 

only the ridge need be considered in the analysis. Rana (2003) has also shown that the 

visibility from a given point can be reasonably estimated by considering only points 

on key topographic features in the intervisibilty calculations.



By using a smaller number of candidate viewpoints, we will clearly reduce the number 

of computations we have to perform. For the example DEM used in our work, there 

were 1600 pixels, but only 136 of these are identified as peaks. If we are trying to 

position 10 viewpoints, we will only have to test 13610 (approximately 1021) 

combinations if we use the peaks, compared with 160010 (approximately 1032) if we 

use all the pixels. This is clearly a saving in effort which is worth having. However 

the algorithm still has exponential complexity - every time we add another viewpoint, 

the size of the task goes up by an order of magnitude. This means it in addition to 

reducing the problem size, is worth exploring alternative algorithms which might 

offer better performance.

The optimal multiple viewpoint problem has many analogies with combinatorial 

problems which arise in location-allocation modelling. A classic location-allocation 

problem is the maximal coverage problem, in which a set of supply centres must be 

located such that they can satisfy demand from a number of points as efficiently as 

possible. This means that the network of supply centres must maximise the area which 

can be covered given the constraints of travels costs. There are some difference 

between this and viewshed analysis, but the underlying problem is very analogous, 

suggesting that some of the heuristics which have been developed in this field might 

be applicable.

The next two sections of the paper describe each of the two halves of the proposed 

methodology in more detail. This is then tested using a DEM for the same area in the 

Cairngorm mountains in Scotland as used by Rana (2003). The area, shown in Figure 

1, is one 20x20 km tile from the Ordnance Survey PANORAMA DEM, which has 



50m pixels. It is a relatively mountainous area, with a minimum elevation of 395m 

and a maximum of 1054. The original DEM had 401 pixels in both X and Y, which 

was too large for some of the programs used in the analysis. It was decided not to use 

a smaller area, since this gives too little variation in the terrain. Therefore the DEM 

was resampled to 500 metre resolution. This simplifies some of the detail of the 

terrain but the main pattern of ridges and valleys is maintained.

2 Use of terrain features 

In seeking to locate features such as radio masts in an area, it clearly makes sense to 

consider points with high visibility as target locations. It is surprisingly difficult to 

identify which points in the landscape will have the highest visibility without 

calculating the visibility index for all pixels. Intuitively one might expect the highest 

points to have the best visibility, but this is often not the case. Franklin and Ray 

(1994) for example found a correlation coefficient of only 0.12 between visibility and 

elevation. In the Cairngorm test area the correlation was a little higher at 0.293 but it 

is clear that elevation is still a poor predictor of visibility. However a number of 

authors have observed that topographic position, rather than absolute elevation, might 

be a key factor. Franklin and Ray (1994), Lee (1994) and Rana (2003) all observed 

that ridges and peaks tend to have higher visibility on average than other parts of the 

landscape because of their relative elevation compared with other nearby points. This 

is by no means a simple pattern however. Some points on ridges can be obscured by 

land at higher elevation along the ridge, and a peak may well be surrounded by higher 



peaks. As Rana (2003) observes, visibility is not simply a property of the point in 

question, but of its relationship with the rest of the landscape, and so it will always be 

impossible to predict visibility with a high degree of accuracy simply by considering 

local properties of the surface, such as elevation, or topographic feature type. 

However, if high visibility locations always tend to be found in certain topographic 

locations, such as on ridges, then identifying these locations could be a useful 

strategy.

In order to explore this the Landserf program [1] was used to classify every point on 

the surface into one of six morphometric types:

1. Pit

2. Valley

3. Pass

4. Ridge

5. Peak

6. Planar slope

The classification is based on modelling the form of the surface surrounding the 

central pixel using a polynomial trend surface. The coefficients of the polynomial 

equation are used to determine the slope and curvature of the surface. If the slope falls 

below a threshold, which can be set by the user, the pixel is deemed to be ‘horizontal’ 

and inspection of the curvature values decides whether it is a peak (convex curvature 

all round), a pit (concave curvature all round) or a pass (mix of convex and concave 

curvature). In the case of non-horizontal slopes, if the curvature is greater than a 



second user-defined threshold, the point is classified as either a ridge (convex slope) 

or a valley (concave slope), but if it less then the point is classified as planar. Full 

details of the method and the theoretical background behind it can be found on 

Wood’s website [1] from where a copy of Landserf may be downloaded.

This method of classifying the surface is much less sensitive to small errors in the 

DEM than other techniques (Wood, 1998). The least squares curve fitting procedure 

means that the polynomial surface is not forced to pass through every data point. In 

addition the surface can be fitted to a window of any size around the central pixel and 

a window larger than the 3x3 window often used by other techniques, means that the 

effects of small scale errors are reduced.

The 50m DEM of the Cairngorms was classified using Landserf. The slope and 

curvature parameters were left to their default values, but after some experimentation 

it was found that a window size of 9x9 produced a better looking classification than 

the default 3x3. The visibility index was calculated for every pixel and the result is 

shown in Figure 2. Visually it would appear that the higher ground of the ridges tends 

to have the higher visibility values. However, as Figure 3 shows, while the highest 

mean and absolute values are found on the peaks and ridges, the minimum values for 

all categories except peaks are very similar.

While not all peak and ridge pixels have high visibility, all points with high visibility 

do tend to be located on peaks and ridges as illustrated in Figure 4 which shows the 

location of all points with a visibility index which is two standard deviations above 

the mean.



However, we are not interested simply in the point or points with the highest 

individual visibility. We need to identify combinations of points which between them 

cover as much of the area as possible and there are two reasons why ridge points alone 

may not be good for this.

1. Neighbouring pixels along a ridge will be likely to have similar viewsheds. 

This will not always be true of course because small changes in position can 

produce large changes in the area which is visible. However, as Figure 4 

shows, there is a tendency for visibility values to show positive spatial 

autocorrelation, with neighbouring pixels have similarly high or low values. 

To illustrate the degree of overlap, Figure 5 shows the viewshed for two 

neighbouring pixels shown by the white dots. Areas shaded light grey are only 

visible from one of these two, while the areas shaded in dark grey are visible 

from both. The white areas are visible from neither. In total there is an 89% 

agreement between the viewsheds of the two points.

2. There will be parts of the landscape which will be consistently invisible from 

ridge tops (Franklin and Ray 1994). Most erosive processes which sculpt 

mountain areas tend to produce hill slopes which have a convex profile near 

the ridge, and a concave profile lower down (Carson and Kirkby, 1972). This 

is particularly true of landscapes in which fluvial and mass movement 

processes are dominant. As a result, it is very often difficult to see the slope 

immediately below the ridge. This is illustrated in Figure 6, which shows the 

combined viewsheds of the ten most visible pixels. The areas which are not 

visible are all on the hillsides immediately below the viewpoints, or down in 

the valley.



The second point suggests that a combination of points on ridges and in valleys might 

be more likely to produce an optimal result than points from ridges alone. However in 

the Cairngorm DTM, taking all the points along ridges and valleys still resulted in a 

large number of potential candidates (1079). It was therefore decided to use the two 

extreme points of the ridge and valley network (peaks and pits respectively) and the 

points at which the ridge and valley networks intersect, the passes giving a total of 

442 points altogether (Figure 7). It may seem counterintuitive to use pits as candidate 

viewpoints, but it must be remembered that these are not pits in the hydrological sense 

of pixels which are lower than all their neighbours. These pits have been identified by 

Landserf using a 9x9 pixel window, and represent the end points of the valley 

network. None of them are coincident with hydrological pits in the DEM, and the 

combined viewshed of all 53 actually covers 70.9% of the area.

3 Heuristics for the multiple viewpoint problem

One approach to designing a new algorithm for a problem is to look for ideas from an 

analogous problem. Since the multiple viewpoint problem aims to maximise visible 

areas, its objective function can be considered to be equivalent to the aim of obtaining 

maximum coverage in facility location planning. In facility location planning, there 

are a set of sources which supply material to a set of target locations. The aim is to 

allocate each target location to a source in an optimal way. A good example is the 

allocation of children to schools. If the aim is simply to minimise the travel time of 

the children, each child is allocated to the nearest school and this can be solved 



algorithmically by generating isochrones from each school. However, if we wish to 

decide where to locate a new school in an area such that has the most benefit in terms 

of average travel times this simple algorithmic approach will not work, because we 

don’t know the location from which to calculate the isochrones. In fact it now 

becomes a combinatorial problem for which heuristic solutions must be used.

In the optimal multiple viewpoint problem the function is to identify n positions (the 

viewpoints) in such a way that the percentage of the m pixels in the terrain model 

which are visible is maximised. This is equivalent to saying that we wish to position n 

facilities in such a way that the number of target locations connected to those facilities 

is maximised. Thus the viewpoints can be equated to the facilities in facility location 

planning which potentially means that heuristics developed for facility location 

planning may be applicable to the multiple viewpoint problem. There are some 

differences in the formulations of the problems however. The multiple viewpoint 

problem can be formulated as follows:

Objective function:
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∑∑
= =

n

i

m

j
ijv

1 1

Subject to:

0  ≤  
∑
=

n

i

ijv
1   ≤  n    for  j = 1, 2, 3, …, m



0 ≤  
∑
=

m

j

ijv
1   ≤  m    for i = 1, 2, 3, … n

0 ≤  
∑∑
= =

n

i

m

j

ijv
1 1   ≤  (n × m)

The objective function represents F (v1,1; v2,2; v3,3; … vn,m) in which vij is 1 if 

viewpoint i can see the cell j and 0 if not, and it is the sum of this function over all 

combinations of viewpoints which must be maximised. The first constraint states that 

there may be grid cells which all viewpoints can see. In contrast, in the general 

procedure of a location-allocation model, each demand point is assigned to only one 

facility. The second constraint states that a viewpoint can potentially see all of the grid 

cells. As a result, the total number of visible grid cells may be equal to the number of 

the grid cell.  The second and third constraints assume that in theory, all viewpoints or 

some of them can see the whole surface area with maximised visibility quality if 

located at the best site.  These differences between the viewpoint site problem and the 

general facility location-allocation problem have an effect on the search procedures of 

the visibility optimisation algorithms because some grids can be visible and then 

assigned to all of the viewpoints in the ‘allocation’ sequence.  Otherwise, like the 

general facility location-allocation procedure, some cells that are not visible are not 

assigned to the viewpoints in the ‘location’ sequence.  



Although the visibility function is analogous with the form of facility location models, 

the problem nature has a different constraint relationship.  This is illustrated in Figure 

8 in which the viewshed problem is defined for 3 viewpoints on 5 grid cells, and that 

assumes if assigned to any viewpoint, 1 or 0 if not assigned on each grid pixel.  As 

shown in Figure 8, there are some differences between the constraints. In the facility 

location problem, each demand has to be allocated to a facility but is only allocated to 

one facility. However, there may be DEM cells which are not visible from any 

viewpoint, as in the case of pixel 3. In addition it is possible for a DEM pixel to be 

visible from more than one viewpoint, as shown in the case of pixel 2. However these 

differences do not invalidate the use of spatial optimisation heuristics, because despite 

the differences in the constraints, the two problems are analogous because of the need 

to maximise a similar objective function - e.g. maximised customers or coverage, or 

minimised travel distances in location-allocation modelling.

Heuristic approaches are often employed to tackle combinatorial problems such as 

location allocation. They have numerous advantages for solving such spatial 

optimisation problems when compared with exact programming techniques including 

inexpensive computing cost, the flexibility of the objective function, and the 

identification of marginal sub-optimal solutions in large problems.  These flexible 

characteristics allow for the extensive investigation of a wide range of alternative 

decision criteria to multiple viewshed analyses.  However, the major drawback of 

heuristic techniques is that they are not guaranteed to generate optimal solutions 

compared to exact programming techniques.  To overcome this weakness, many 

efforts have been made to improve their solution performance using more efficient 

search techniques or developing robust solution algorithms.  For the former, Teitz and 



Bart Vertex Substitution Heuristic (Teitz and Bart, 1968) has been proposed because 

of its ability to find optimal solutions with a high degree of regularity (Rosing, et al., 

1979), and for the latter, recently, genetic algorithms and simulated annealing 

algorithms have demonstrated their superior search capability for converging on the 

best solutions with extensive facility location applications (e.g. Liu, et al., 1994; 

Houch et al., 1996; Murray and Church, 1995; Krzanowski, and Raper 2001).  

Three different heuristics were chosen for these initial experiments. In each case the 

goal is to select n viewpoints from among the v candidates, such that their combined 

viewsheds cover the maximum percentage of the m pixels in the DEM.

Swap Algorithm. Given the objective function of the visibility problem, the 

substitution process of the Teitz and Bart algorithm can be used straightforwardly. For 

solving the viewshed optimisation, a starting solution is generated by selecting the 

first p candidates at random. The total visible areas are calculated for each candidate 

viewpoint. At each step, each candidate that is not in the current solution is substituted 

for each of the current solution viewpoints, and the combined viewshed recalculated.  

If any substitution shows improvement, the current viewpoint location is replaced 

with the candidate that achieves the best solution.  If any improvement occurred in 

this step, new visible areas are defined.  This iteration is continued until the last 

viewpoint is evaluated.

Spatial Genetic Algorithm. Genetic Algorithms apply principles derived from 

evolutionary biology in order to solve complex optimisation problems. Potential new 

solutions are generated by processes analogous to biological genetic operators. ‘Good’ 



new solutions survive because they are better able to breed and replace each member 

of the old population by a newly bred individual. For solving the multiple viewshed 

problem, potential solutions to the problem are represented as ‘genes’ - strings of 

characters in which each character is a code representing a potential viewpoint. For 

this purpose the DEM cells are numbered from 1 to m. The gene is then a string of 4 

byte integers containing the cell identifiers for the viewpoints and the length of the 

string is simply the number of viewpoints which need to be located. The GA 

randomly generates an initial population of genes. The fitness of each gene is then 

evaluated by measuring the total area covered by the viewsheds of viewpoints 

identified in the gene. In order to create a second generation of genes, a number of 

processes are applied to the current set

1. Asexual reproduction. The probability of a gene reproducing itself (i.e. 

surviving unchanged to the next generation) is linked to its fitness - this 

ensures that better solutions are likely to survive.

2. Crossover. This is name for the production of a new gene by combining 

material from two parent genes. Again the likelihood of a gene being involved 

in this type of sexual reproduction is linked to its fitness.

3. Mutation. This is the production of new genes by random modification of 

existing ones. It ensures that the genetic process does not get too locked in to a 

small number of combinations. Without it for example, any candidate 

viewpoint which was not part of one of the original pool of genes would never 

be considered.

Unlike the switch algorithm that uses a current solution, the GA uses a candidate pool 

among which good solutions are exploited by using the genetic operators.  The search 

manner of the GA requires fewer search attempts than randomly trying variations, and 



its evolutionary rules take fewer iterations than the brute force approach that inspects 

every solution rather than exploiting outstanding solutions.

Spatial Simulated Annealing Algorithm. The Simulated Annealing (SA) algorithm 

works in way which is analogous to the annealing process in material physics which is 

used to obtain a rigid metal structure. If hot metal is cooled too quickly, the crystals in 

the material do not have time to settle into optimal structures, and the metal will be 

brittle. Annealing is the process of letting the metal cool slowly, so that the crystals 

have time to lock themselves into rigid structures. The key element of SA heuristics is 

that in the initial stages, alternative solutions will be kept even if they are slightly 

worse than previous solutions, which avoids the danger of getting stuck in a local 

suboptimum. The decision on whether to accept a new solution or not is taken 

probabilistically using the Metropolis’ criterion

e temp

t

p
cos

−
=

The probability of accepting a move, denoted by p, is related to the cost of the move 

(i.e. how much the objective function is worsened) and the temperature. By analogy 

with the annealing process, the system is initially considered to be at a high 

temperature, in which the probability of accepting a change will be high, even if the 

cost is high. As the temperature is slowly decreased, the changes become slowly less 

random until the system settles into a final, and hopefully optimal, configuration. 

Various facility location and spatial optimisation problems have been successfully 

tacked using SA heuristics (e.g. Liu et al., 1994; Murray and Church, 1995).  For the 



multiple viewpoint problem, a set of the potential viewpoints is selected at random to 

form the starting point. For each new solution, new viewpoint locations are chosen 

randomly from the neighbourhood of the viewpoints accepted in the previous 

iteration. For the annealing process, the SA heuristic reduces the temperature by 

fraction of acceptance moves and acceptance frequency of the Metropolis criterion at 

each step.  The advantage of this method is that the run length of each temperature 

and cooling schedule (temperature decrease) are easily determined and well planned 

for the optimisation solution (see Liu et al. (1994) for more details).

The time complexity of these heuristics varies, and can also depend upon the exact 

nature of the problem. Rosing et al. (1979) reported that if the size of location-

allocation problem is doubled, the computation of the swap algorithm would take over 

twice as many steps. He and Yao (2001, 2003) found that GA heuristics can display 

both polynomial and exponential time complexity behaviour in solving classical 

combination optimisation problems.  According to their experiment, the number of 

generations, crossover and mutation, and algorithm parameters are important factors 

in determining the order of GA’s computation time.  They considered in their paper 

that crossover and mutation is O(n) and selection is O(nlogn). Cheung et al. (1998) 

reported that an adapted SA algorithm for solving the optimal placement of objects 

had complexity of O(nlog2n), which was significantly improved from general SA 

approaches.  Openshaw and Openshaw (1997) measured the practical computing 

times of SA to solve census zone design problem, which takes 100 times longer than 

other spatial heuristics and would become worse as additional constraints are 

introduced in the algorithm.  However, more work is needed to understand the 

computational time complexity on different classes of problems, different problem 



sizes, and different parameter sets of these heuristics.

4. Computational results

4.1. Use of surface specific features

For the first experiments the three surface specific features - peaks, pits and passes -

were considered separately. For these experiments, the swap algorithm was used and 

the number of observers to be placed ranged from 2 to 10. 

The numerical results are summarised in table 1 with running times given for a 866 

GHz PC with 256 Mbytes of RAM. An exhaustive search was also run in which all 

1600 pixels are considered as candidates, but only for the two observer case. The 

running time was 1.14 hours (4104 seconds) and 57.6 percent of the surface was 

visible.

<Table 1 about here>

None of the features can match the coverage of the exhaustive search. The best are the 

peaks, with 46.88 percent followed by the passes at 42.31 percent. The pits perform 

quite poorly with only 26.94 percent coverage. These results are consistent with the 

earlier findings regarding the higher visibility values from ridges. 

Figure 9 compares the viewsheds produced from the exhaustive search (Figure 9a) 



and when only peaks, passes and pits are considered (Figures 9b, 9c, and 9d) for the 

two observer case. It is interesting to note that the exhaustive search results in both 

observers being placed on the tops of ridges, although neither is on a point identified 

by Landserf as a peak or a pass. The patterns for the individual surface specific 

features show some similarities in that all include a considerable proportion of the 

north facing side of the large valley which runs east-west across the lower part of the 

study region. This is at least partly an edge effect since the majority of the selected 

observer positions are north of this point. Other than that they show the patterns one 

would expect, with peaks generating a viewshed which covers the hill tops but not 

many valleys, pits producing the opposite and passes a mixture of the two.

Taking only the peaks as candidate points reduces the CPU time by two orders of 

magnitude, but at the cost of a combined viewshed which is 10% smaller. As Figure 

10 shows, this is not simply a matter of the peaks ‘missing’ 10% of the area. In fact 

13% of the area is visible from the two optimal peaks but not from the two positions 

selected by the exhaustive search. In fact 24% of the area which is visible in the full 

set case is not visible from the two optimal peaks, largely because one of the two 

points can see the large lowland area in the north west corner of the study area.

There is clearly going to be a trade off between the time taken to run a multiple 

viewpoint query and the quality of the result. The CPU times clearly show the benefits 

to be gained from reducing the number of candidate points to be considered. The 

results for the individual features suggest that exactly which points are selected as 

candidates can make a large difference to the result. Despite having nearly twice as 

many candidates to choose from, passes always produce a poorer result than peaks. 



Pits always perform poorly as candidates, although this may be partly due to the fact 

that there are far fewer of them. One conclusion from these first tests is that using 

surface specific features seems to be a promising strategy, especially in the case of 

peaks.

The next stage in the work was to see whether the inclusion of pits and passes 

increases the visible area compared with simply using the peaks as the candidate 

points. A number of other tests were run at the same time. The exhaustive search for 

two observers identified points which were on high ground, but not on a peak or a 

pass. Taken together with the earlier observations that points with high visibility tend 

to be on ridges, it was decided to run a series of tests using the highest ten percent of 

pixels as the candidates and a second series using the highest ten percent of points in 

terms of their visibility. 

Table 2 shows that in all cases the best results are achieved by considering all pixels 

as candidates. However, it also illustrates that the loss in total coverage by taking only 

selected pixels as candidates is not very large. With the two observer case, we saw 

that the coverage achieved by using just peaks was some 10% below that produced by 

an exhaustive search. However, as Table 2 shows, this difference reduces 

considerably as the number of observers to be placed increases. This cannot simply be 

due to the fact that with more observers placed you are likely to cover more of the 

area by chance alone. This is clearly a factor, but with the 10 percent highest 

elevations as candidates, the result for the ten observer case is some 11 percent below 

the result of an exhaustive search.



The selection of the candidates does not make an enormous amount of difference in 

terms of the percentage coverage achieved. The 10 percent most visible points give 

marginally the best results for the cases from two to six observers inclusive, while at 

higher observer numbers peaks become better. Interestingly the addition of pits and 

passes to peaks makes very little difference to the coverage obtained, which seems 

strange given the earlier discussion about the complementarity between the viewsheds 

for these features individually. Inspection showed that in almost all cases the 

observers were placed on peaks rather than on pits or passes. This may simply be due 

to chance, and it would require many more runs to discover whether this is a 

consistent result.

The ten percent highest elevation points are interesting because at low observer 

numbers, they produce reasonable results. However above four observers they 

consistently produce the worst solution which supports the idea that the optimal 

location search should include some consideration of either the visibility or the terrain 

position of the candidates and not simply their elevation.

<Table 2 about here>

Since there are a small number of pixels with very high visibility (as stated by 

Franklin and Ray, 1994), this suggests that these might well figure in a large number 

of solutions. It can also be supported by looking at the visibility values for the 

locations which are picked and seeing if they are high - the fact that the 10% most 

visible pixels worked so well (almost as well as peaks) suggest that highly visible 



pixels will be selected in the multiple viewpoint problem, rather than combinations of 

pixels which have lower visibility values but whose viewsheds do not overlap. As 

long as maximising total area visible is the objective function this may well be the 

case. Lee (1994) made the same observation stating that ‘those pixels that are on ridge 

lines and that are peaks tend to have larger numbers of visible pixels’ (p. 453). This 

suggests that some pixel positions may be almost always optimal, regardless of the 

number of viewpoints to be placed.  To investigate this the optimal locations for the 

problems with between 2 and 10 viewpoints are plotted together in Figure 11.  The 

figure supports the hypothesis that some of the optimal sites share same locations on 

the DEM. For example, position A in the top left of the map is an optimal location for 

all of the viewpoint problems, and other places are selected for a number of different 

location problems (points B and C).  These sites would be ideal candidates for the 

solution heuristics of course, but the difficulty is identifying them in advance, without 

running a large number of tests as has been done here. 

4.2. Comparing heuristics

So far a single heuristic has been used for all the tests, so that the focus has been on 

the selection of good candidate points. In the final section we compare the three 

heuristics described earlier to see if they differ in their speed. The previous section 

showed that there was little difference between the coverage obtained using peaks 

alone, combinations of surface specific features and highly visible pixels as the 

candidates. Because the original intention of the work was to explore the use of 



surface specific features, it was decided to use all three types of feature as the input to 

these final tests giving 442 candidate points. All three heuristics require an initial 

solution from which to start. The same solution was used for all the runs reported 

here, so that differences in the final solutions are not a product of differences in the 

initial solution. As before both the total area visible from the selected points and the 

CPU time are given for each run. For comparison, we estimate that same algorithms 

using all 1600 pixels as potential candidates, would take 56 hours to solve the 10 

observer case.

As the results show (Table 3) the SA heuristic produces the best solution in almost all 

cases, although the differences between the visible areas produced by each heuristic 

are not large. However, there is a marked difference in the computing time required by 

the methods. This becomes more marked as the problem size increases in that the 

computational performance of the Swap heuristic does not increase as much as the 

genetic and SA algorithms.  For example, for the ten viewpoint problem, the Swap 

heuristic is approximately 10 times and 20 times faster than the GA and SA heuristics, 

respectively.  This also emphasises the computationally tractable benefit of Swap 

algorithm on the terrain features because the algorithm completes ten optimal 

locations problem within 20 minutes compared to the estimated 56 hours for the run 

on the entire surface area search case (total 1600 candidates).

<Table 3 about here>

The heuristics produce similar results in terms of overall coverage, but it is also 

interesting to see whether they produce viewsheds which cover the same parts of the 



study area. A series of pairwise comparisons was undertaken to measure the degree of 

agreement between the viewshed areas produced by the three methods, and the results 

are summarised in Table 4. The proportion of agreement has been adjusted to take 

account of the fact that because the viewsheds cover a large proportion of the study 

area, some degree of overlap is inevitable on purely geometric grounds. For example, 

assume method 1 gives a viewshed of 600 pixels, leaving 1000 pixels which fall 

outside the viewshed. If the viewshed produced by method 2 is as different as it can 

be, it will cover those 1000 pixels - if it is larger in extent than this, then the 

additional pixels will overlap with those in the viewshed of method 1 and from this it 

is possible to calculate the minimum overlap which will occur purely by chance. 

Similarly, the maximum possible overlap is simply the smaller of the two viewsheds. 

The proportional overlap figures in Table 4 are therefore scaled between these 

minimum and maximum figures.  The degree of agreement takes into account the fact 

that some overlap is inevitable simply because of the size of the viewsheds, which 

cover over 50% of the study area. Hence 0 would mean there was no agreement other 

than what was dictated by the size of the viewsheds, it would mean perfect pixel by 

pixel agreement.

<Table 4 about here>

A fairly consistent pattern emerges from the results, in that there is a relatively high 

level of agreement between the Simulated Annealing and Genetic Algorithm results 

(with a perfect match in the two observer case) but a poor level of agreement between 

these two and the Swap algorithm. Since both the SA and GA methods assess a far 

larger number of potential solutions than the Swap algorithm, this would suggest that 



the solutions they reach are more likely to be optimal. However, the total area of the 

viewshed produced by these heuristics is not very much larger than that produced by 

the much quicker Swap algorithm and these results would suggest that a simple and 

rapid heuristic may well produce results which are nearly as good as more exhaustive 

methods.

6. Conclusions

One of the shortcomings of the viewshed functions in current GIS is that they are not 

able to solve optimisation problems, such as identifying an optimal set of viewpoints.  

This paper has investigated the usefulness of two strategies for tackling this problem. 

Firstly, the use of fundamental terrain features as candidate viewpoints, and secondly, 

the modification of a range of spatial optimisation heuristics developed for use in 

location-allocation problems to the multiple viewpoint problem. The initial results are 

encouraging in that using these techniques it has been possible to solve the multiple 

viewpoint problem for a small DEM on a desk top computer in a reasonable time.

However, there is considerable scope for further work in this area. First, there is 

clearly scope for more work on predicting which parts of the terrain are likely to make 

good candidate points. The use of peaks, pits and passes in these initial tests was 

based as much on pragmatic considerations as anything else. The fact that the 

exhaustive search for the two observers case selected points which were on ridges but 

not on either a peak or a pass suggests that a more sophisticated selection process is 

required. The fact that one or two points were repeatedly selected in runs placing 



different numbers of observers suggests that there might a few key points in the 

landscape and the identification of these could considerably speed up the multiple 

viewpoint problem. Secondly, other types of spatial optimisation algorithms could be 

explored to improve the optimal search capability for larger problem for which hybrid 

algorithm and parallel computing technologies can be developed (e.g. Magillo and 

puppo, 1998).

These developments open up the prospect of developing a system which is capable of 

producing solutions to the multiple viewpoint problem in a relatively short time, 

possibly even in real time. At this point the development of a graphical user interface 

for such a system would also become a topic for further work.
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Figure 1. Hillshade image and elevation map of Cairngorm test area



Figure 2. Visibility index map
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Figure 3 Visibility index mean and range for each surface type.



Figure 4. Location of highly visible points



Light grey - visible from only one of the two points

Dark grey - visible from both points

White - visible from neither point

Figure 5. Overlap visibility between viewsheds



Figure 6. The combined viewsheds of ten most visible pixels



Figure 7. The sample DEM contours and surface specific points distribution



(a) Constraint relationships in facility location-allocation problems

(b) Constraint relationships in multiple viewshed problems

where Xij and vij denote assignment of supply or viewpoint

Figure 8. The comparison of the constrains of facility location and multiple viewshed 

problems





Figure 9. Example of different viewshed results: two best viewpoint location 

problems case



Figure 10. Comparison between results for two observers case when all pixels are 

considered as potential candidates (optimal locations as black square, viewshed as 

grey shading) and when only peaks are considered as candidates (optimal locations as 

black circles, viewshed as stippled areas).



Figure 11 Mapping comparisons of optimal viewpoint locations 

Observers (n) Peak feature (136) Pit feature (53) Pass feature 

(253)

Percentage of area visible CPU time (sec) Percentage of area visible CPU time (sec)

Percentage of area visible CPU time (sec)

2 3 4 5 6 7 8 9 10 46.88 57.19 64.81 71.75 75.50 79.63 81.81 83.13 85.00 34.88 78.98 153.57 209.82 294.62 

357.56 448.58 542.99 668.06 26.94 31.81 36.31 40.38 43.63 46.69 49.94 52.25 54.50 19.00 23.57 47.84 99.86 149.62 99.09 

120.83 148.08 180.81 42.31 52.94 58.88 63.50 67.31 70.56 74.50 76.50 78.69 51.73 94.91 168.07 235.14 310.66 

419.46 519.59 647.74 812.29

Table 1. Performance results of three terrain features

Viewpoints Peak Peak+Pass Peak+Pit 10%_cov1 10%_elv2 All pixels3

2 46.9 46.9 46.9 51.1 50.2 52.2

3 57.2 57.2 57.2 62.3 59.9 63.3

4 64.8 66.3 64.8 66.3 64.3 69.1

5 71.8 71.9 72.3 73.2 67.8 73.6

6 75.5 76.6 75.5 76.3 70.5 77.7

7 79.6 79.6 79.6 79.4 73.1 80.6

8 81.8 80.9 81.8 81.1 74.4 83.1

9 83.1 83.1 83.7 83.0 75.5 85.3



10 85.0 84.9 84.9 84.5 76.4 87.0

1 10%_cov = the pixels of ten percent best visibility
2 10%_elv = the pixels of ten percent highest elevation
3 All pixels = all pixels of the study area’ DEM data

Table 2. The viewshed results of peak type versus combined feature types

Obs Swap algorithm Genetic Algorithm Simulated Annealing Algorithm

Percentage of area visible CPU time (sec) Percentage of area visible CPU time (sec)

Percentage of area visible CPU time (sec)

2 3 4 5 6 7 8 9 10 46.88 57.19 66.13 72.25 76.56 79.31 81.63 83.06 84.94 73.66 179.94 252.88 364.37 520.57 

657.9 794.82 965.2 1157.45 47.06 56.94 64.19 66.44 72.69 72.38 78.19 82.00 78.19 208.77 355.48 780.22 1283.88 

3694.51 1953.64 5898.34 9911.8 18627.2 47.06 58.56 66.31 72.00 77.13 79.63 81.81 83.81 85.56 1075.66 3492.16 

4483.9 5475.64 7172.45 11548.7 18640.25 25731.8 29740.4

Table 3. The solution and computing time results of the visibility heuristics for all the 

three terrain features 

Number of observers Swap and GA Swap and SA GA and SA

2 0.66 0.66 1.00

3 0.74 0.59 0.72

4 0.56 0.57 0.94

5 0.61 0.54 0.63

6 0.66 0.52 0.84

7 0.56 0.53 0.75

8 0.73 0.55 0.90

9 0.54 0.57 0.79

10 0.66 0.57 0.76

Table 4. Agreement between heuristics in terms of predicted viewsheds. 


