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understand the ways in which ancient cultures may themselves have understoo d and 
used their physica l environment , and in turn how their understandin g may have 
in� uenced the siting and location of monument s and settlements (Wheatley 1995, 
Llobera 1996). Attention has also begun to focus on the experience of landscap e in 
geographical information science, and the potentia l for deriving measure s of land­
scape propertie s from viewshed and other analyses of the digital elevation model s 
(DEMs) or triangulated irregular networks (TINs) representin g landscap e (Baldwin 
et al. 1996). Viewshed analysis also has a long heritag e in landscap e architectur e 
(Tandy 1967, Amidon and Elsner 1968, Lynch 1976). In that tradition , under the 
guise of ‘isovist’ analysis Benedikt and Burnham (1981) explicitly relate viewsheds 
to concept s from Gibson’s (1979) ecological theories of spatia l perception. This 
suggests that approache s based primaril y on visibility analysis may be of particula r 
relevance to psychological , cognitive , and perceptua l studies . 

A visibility graph is forme d by linking locations in an environmen t accordin g to 
whether each is visibl e from the other. The concept � rst appear s in the geographical 
information science (GISci) literature in the contex t of determining preferred routing s 
through a set of line­of­sight comm unication s transceiver s in a landscap e (De Floriani 
et al. 1994). Visibility graphs are also used in the � eld of robot navigatio n in complex 
two­ and three­dimensiona l environment s (de Berg et al. 1997). In the two­
dimensional case of navigatio n by a robot amongs t a set of polygonal obstacles the 
visibility graph is based on the set of polygo n vertices and their mutua l visibility. 
Such a graph contain s all the possible shortes t paths through such an environmen t 
and is therefor e useful . In three­dimensiona l cases further complexity is introduce d 
becaus e shortes t paths may be tangentia l to polyhedra l obstacle edges, so that these 
must also be considere d as vertices in the graph (Jiang et al. 1996, 1999), but the 
principle is the same. 

The characte r of a visibility graph is dependen t on complex metric and geometri c 
propertie s of the environmen t for which it is derived , and it is this which makes it 
an interestin g object of enquiry. A generic visibility graph connect s any set of points, 
and we can use variou s analysis technique s to construc t point measure s for these 
locations . The method we use is based on the visibility graph analysis of architectura l 
systems (Turner et al. 2001). In landscap e settings a highly connecte d graph typicall y 
results , which can be used both as a convenien t data structur e to explore visibility 
characteristic s of the landscape , and as a tool to provide further analyses not 
calculable directly from viewsheds. We show how the techniqu e can be generalise d 
to an analysis of any environmenta l space, how we can implement the method using 
a GIS, and how it can be used to explore and analyse landscapes . 

In §2 we introduc e nece ssary concepts , de� nitions , and symbols from graph 
theory . In §3 we descri be the process we have used to construc t landscap e visibility 
graphs. In §4, we descri be possibilities for progres s in visibility analysis which are 
provided by visibility graphs. A discussion of the methodolog y and suggestions for 
further work follow in §5. Tentativ e conclusions are oŒered in §6. 

2. Graphs and graph terminology 
For an introductio n to the mathematica l theory of graphs, and relevant termino­

logy refer to Wilson (1996). A graph G consist s of two sets V and E, and is often 
written G (V , E ). V (G) is a set of vertices (or nodes) {v1 , v2 , ... v }, where n is the size 

n
of the graph. E(G) is a set of edges (or links) between the vertices , where each edge 
e is an unordere d pair of vertices v and v , and may be written v v , or e

ij 
for brevity . 

i j i j
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The sub­graph s of a graph are an obviou s and useful concept . A sub­grap h H in 
G is de� ned such that V (H )k V (G) and the edge set of H, E(H ) is any subset of E(G) 
with the obviou s constrain t that edges in E(H ) may only be a subset of those edges 
in E(G) which link members of V (H ). A sub­grap h consistin g of some subset of V (G), 
X and all the members of E(G) which link members of X is said to be induced by X. 

The neighbourhood of a vertex v in V is the set of vertices N (v ) which are joined 
i i

to v by edges in E:
i 

N(v ) 5 {v : v v ×E(G)} (1) 
i j i j

which we may abbreviat e as N . The size (or degree) of N is often denote d by k .
i i i

Note that v itself is not normall y considere d a member of N — since v v is not a
i i i i 

member of E(G). In some cases it may be useful to think of the neighbourhood of v
i 

as the sub­grap h induced by N . We will denote this understandin g of the neighbour ­
i

hood by N* 
i 

. This neighbourhood sub­grap h consist s of the pair of sets given by 

N* 5 7 N , {v
i
v
j
: v ×N 9 v v ×E (G)} 8 (2) 

i i j i i j
Another importan t concept is the adjacency matrix A of a graph G. A is de� ned 
such that 

1 if v v ×E (G) 
A 5 [a

ij
] where a 5 G i j

ij 0 otherw ise 
(3) 

The adjacenc y matrix is useful in understandin g the relationshi p between 
viewshed analysis and the visibility graph. In a simple graph a 5 a

ji 
in all cases. 

ij 
However, in a directed graph this is not nece ssarily the case, and the symmetr y of 
linkages between vertices may be broken . Many manipulation s of simple undirecte d 
graphs are also possible on directed graphs, although in our presentatio n all visibility 
graphs are undirected . Nevertheless, the generalit y of our approach is not aŒected 
by this possibility. Having completed these preliminaries , we may formall y de� ne 
the visibility graph concept and discuss its constructio n in a landscape . 

3. Constructin g a landscape visibility graph 
A visibility graph is a graph where the vertex set V is some set of locations in 

the environment , and the edge set E consist s of all those pairs of locations which 
are mutuall y visible. Such a graph may be constructe d for any environmen t for any 
set of locations , suitabl y de� ned, in that environment . It may be easier to visualis e 
a visibility graph by thinkin g of it as the set of locations and all the unimpede d 
lines­of­sight between those locations . Note however, that graphs are not intrinsic ally 
geographical entitie s, and that only the relationa l information recording whether 
two locations are mutuall y visibl e is recorded in a graph. It is not in general possible 
to revers e the process of visibility graph construction —that is, many sets of locations 
in many environment s could produce the same visibility graph, so that the environ ­
ment so represente d can not be recovere d from the visibility graph. Nevertheless, 
the visibility graph does record all the visibility information in an environmen t and 
can be useful ly analysed, as we demonstrat e in the next section. 

Construction of a visibility graph for a landscap e is a two­stage process . First, a 
set of locations V must be determined. Second , each pair of locations in V must be 
considere d and their mutua l visibility determined in order to construc t the edge set 
E. The � rst step in this process is a matte r of deciding on the investigators ’ prioritie s 
or requirem ents, as there is in general no way of knowing a priori which set of 
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locations in an environmen t are of particula r interest . In an archaeologica l study, 
for example, it may be that the locations of a set of artefact s constitut e an interestin g 
set to consider . In studying the perception of landscap e it might be that the peaks, 
saddle points, troughs, points along ridge lines, and so on represen t a suitabl e vertex 
set (we brie� y examin e this possibility in §5.1 below). In the examples we consider , 
we have adopted the pragmatic approach of generatin g a vertex set by selecting 
locations on a regularl y spaced grid. Using a set of spot height locations seems likely 
to be a sensibl e ‘� rst cut’ in many cases. In a DEM this would equate to our regular 
grid, but in a TIN, it would result in an irregular network of point locations . By 
adopting the grid sampling approach in our examples we do not intend to sugges t 
that this is a preferred or best approach. The choice of the vertex set is a fertile area 
for further research , which could be useful ly informed by studies of the impact of 
diŒerent DEM interpolatio n techniques , and spot height sampling strategies. 

Having determined the set V , it remain s to construc t the edge set E, or equiva­
lently, the adjacenc y matrix A. Figure 1 shows the most straightforwar d approach. 
Such an approach is easily implemented in many curren t deskto p GIS, where a 
‘CAN­SEE’ test is a standar d visibility analysis tool which return s true if points v 
and w are mutuall y visible. This algorith m has time complexity O (n2 ) where, as 
before, n is the number of locations in the vertex set V . If the landscap e S is 
represente d by a TIN of size s, then the overal l complexity of the algorith m is O (sn2 ). 
An alternativ e approach (see � gure 2 ) calculates the adjacenc y matrix of the visibility 
graph. This is completely equivalen t to the previous approach, and also has time 
complexity O (sn2 ), but draws attention to the importan t point that the rows in a 
visibility graph adjacenc y matrix are equivalen t to the binary viewshed of the location 
which that row descri bes. Thus, the neighbourhood of a location in a visibility graph 
correspond s to the viewshed from that location. The accurac y of the correspondenc e 
depends on the density of the chosen locations in the vertex set. In a sparse vertex 
set, a vertex neighbourhood is eŒectively a punctifor m representatio n of the corres ­
ponding location’s viewshed. In a densel y distribute d vertex set (such as the regularl y 
spaced grids we have used) the correspondenc e is su� ciently close for many purpose s 
to constitut e equivalence . 

Figure 1. Algorithm CREATE_EDGE_SET for determining the edge set for a given vertex 
set and landscape. 
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Figure 2. Algorithm CREATE_ADJACENCY_MATRIX . This demonstrates the relatio nship 
between viewsheds and the visibility graph. 

Note that these approache s assum e that locations are nece ssarily mutuall y visible, 
and that the resultin g visibility graph is a simple undirecte d graph. If we wish to 
allow visibility relations which are not symmetri c then every pair­wise visibility test 
must be carried out in both directions, and the correspondin g directed edges v v

i j 
and v v stored separately. There seems to be no trivia l way of making the visibility 

j i 
graph constructio n process any more e� cient, since although landscape s are typicall y 
locally correl ated, there is no obviou s way of using this information to improve the 
e� ciency of line­of­sight or viewshed operations . In the examples considere d in this 
paper visibility graphs have been constructe d using a line­of­sight operatio n on a 
TIN representatio n of a landscape , for the pragmatic reaso n that this was the most 
e� cient operatio n available through the GIS scripting language. In general, any 
convenien t visibility analysis techniqu e can be used. The importan t point is that the 
visibility graph requires signi� cant pre­processin g to be carried out, equivalen t to 
calculating viewsheds from all the locations in the vertex set on the region under 
investigation. Often, much of the information produced by such an exhaustive 
visibility analysis process is discarded , and summarise d in terms of the viewable area 
from each location. Storin g the results in a visibility graph allows the possibility of 
further exploratory and analytical processing . 

Once constructed , a visibility graph can be convenientl y stored as a list of 
locations . Each vertex ( location) object might have the following characteristics : 

Object Vertex 
begin 

integer id 
list­of­vertex­ids neighbours 

end Vertex 
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The space complexity of this visibility graph data structur e is O (kn) where k is 
the average size of each vertex neighbourhood, as before. A more compact data 
structur e would not store each edge twice, but will be less convenientl y searched . 
Depending on the characteristic s and exten t of the region, k may be linearly depend­
ent on n (in a relatively small region covere d at high resolutio n by V ), or independen t 
of n (in a more extensiv e region where the eŒects of earth curvatur e tend to limit k). 
It is clear in any case, that this is likely to compare unfavourabl y with the storage 
complexity O (s) of an underlyin g TIN landscap e representation . The exten t of the 
storage overhea d depends on the relationshi p between n and s. 

The above data structur e is one simple possible approach. It may be more useful 
to store the line of sight relations in two lists— one of other vertices visibl e from the 
curren t one, and another of vertices from which the curren t one can be seen, and 
further duplicating the storage of edges. This will also facilitate search operation s 
on the graph. Perhaps more importantly , it is preferable that the vertices be stored 
in a rando m access data structure , such as a hash­tabl e or binary tree so that 
interactiv e exploratio n of the graph (as discusse d in the next section) is relatively 
e� cient. In a GIS it is likely that vertex geo­coordinate s will also be stored , and 
that these be used as the keys for indexin g the table or tree— for example, a quad­
tree could be used— so that spatia l search of the visibility graph is e� cient. 

4. Using a visibility graph 
As has been mentioned , constructio n of a visibility graph involve s considerabl e 

pre­processin g of a landscap e under study. The storage requirem ents are also signi­
� cant. Whether or not such processin g eŒort is worthwhile will depend on the 
purpos e of the study under way, and will be in� uenced by the additiona l bene� t 
which can be derived from exploratio n and analysis of the graph, as discusse d in 
this section. 

4.1. L andscap e exploration 
Once constructed , a visibility graph provides rapid access to the punctifor m 

viewshed of any location. This is an immediat e consequenc e of the correspondenc e 
between visibility graph vertex neighbourhoods and the viewshed visibl e from the 
location represente d by that vertex . When a GIS user selects a particula r location 
in a landscap e for which a visibility graph has previousl y been generate d and stored , 
the neighbourhood of the correspondin g vertex in the graph can be rapidly retrieved 
and displayed . This process will generall y be more e� cient than typical viewshed 
determinatio n processes . If a landscap e is represente d by a TIN of size s then the 
punctifor m viewshed for one location in a set of n distinct locations , can be deter­
mined in O (sn) time, whereas an e� ciently indexed visibility graph structur e should 
be searchabl e— and thus pre­compute d viewsheds are retrievable—in O ( log n) time. 
The signi� cance of the time saving is again dependen t on the relationshi p between 
n and s. An O ( log n) e� cient process will usually make ‘point­and­click’ exploratio n 
of the visibility characteristic s of a landscap e feasible, and rapid enough to be 
interactive . Interactiv e exploratio n of landscap e in this way is likely to promot e 
faster understandin g of its visibility characteristics . 

Related to this improve d interactiv e exploratio n capability , is the possibility of 
rapid respons e to more complex visibility queries. For example, the region in a 
landscap e which is visibl e from two or more locations is the intersection of all the 
neighbourhoods of the associate d vertices in the visibility graph. If Q is a subset of 
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the vertices in a landscap e then the region X which is visibl e from all of them is 
given by 

X (Q) 5 o N(v) (4) 

v×Q 
Similarly, the determinatio n of the cumulative viewshed Y of all locations visibl e 

from any location in some set Q in a landscap e is given by 

Y (Q) 5 pN(v) (5) 

v×Q 
which is simply the repeate d union of the neighbourhoods of the associate d vertices 
in the visibility graph. Similar querie s in a typical implementation of viewshed 
analysis may require the creation and manipulatio n of many intermediate data sets. 
Of course , the improve d e� ciency of such exploratory analysis is only possible 
becaus e all the required viewsheds have alread y been generated , and are e� ciently 
stored in the visibility graph. Whether or not the pre­processin g involve d in creation 
of the visibility graph is justi� ed or not will depend on the task at hand. It seems 
likely that more ‘interpretative ’ application s are likely to bene� t most from the 
interactivit y provided . Thus the archaeologis t seeking to ‘get a sense’ of a historica l 
landscape , or an environmenta l manager planning hiking trails in a nationa l park 
seem most likely to bene� t. Where the landscap e in question is not readily accessi ble 
the visibility graph approach is likely to be most useful , and could suppleme nt other 
approache s such as the constructio n of interactiv e virtua l environment s representin g 
the actua l landscape . On the other hand, where other consideration s intervene , such 
as site suitabilit y due to transpor t access or soil type— as for example in the choice 
of location for some facility—the number of potentia l sites is likely to have been 
su� ciently reduced beforehand to render the exploratory visibility graph process 
redundant. Thus, in their study of line­of­sight comm unication s problems , where V 
is a relatively sparse set, De Floriani et al. (1994) conclude that this computational 
and storage overhea d is not repaid, and sugges t that an approach where intervisibi lit­
ies are calculated dynamicall y as required is preferable. 

4.2. Analysis of the visibility graph 
A further bene� t of the visibility graph is the opportunity it provides for further 

analysis of the visibility characteristic s of a region. Following Turner et al. (2001 ), 
we can implement a series of measure s to investigat e visual propertie s of locations 
within the graph. 

4.2.1. Vertex neighbourhood size—viewable area 
The most obviou s immediat e analytic measure presente d by a visibility graph is 

that the size of each vertex neighbourhood is a measure of the visual accessi bility of 
the associate d locations , from the other location s represente d in the graph. The 
italicised quali� cation is important , since it indicates that no direct correspondenc e 
between visibility graph neighbourhood size and the viewable area from a location 
can be assumed . This is becaus e (i ) the vertex set in the graph may not be uniforml y 
distribute d acros s the landscape , and (ii ) many locations not included in the visibility 
graph may be visibl e from some or all of the vertices included in the graph. The � rst 
di� culty is minimised if the set of vertices are distribute d at regular interval s acros s 
the landscape . The second of these di� culties (an edge eŒect) is an unavoidabl e 
di� culty of any visibility analysis technique , unless the region analysed is ‘embedded’ 
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in a larger region by extensio n to the horizon in all directions. Locations in the 
extende d analysis region then contribut e to the determinatio n of neighbourhood size 
(viewshed area) in the visibility graph but are not themselves analysed. That is to 
say, some regions included in analysis are included to ‘make up the numbers ’ in the 
viewsheds of locations in the central region. The whole viewshed of such ‘peripheral ’ 
locations in the analysis are not themselves considere d. 

Consider the landscap e illustrated in � gure 3. Figure 4 illustrates the vertices in 
a visibility graph generate d from a regularl y spaced grid acros s region A, where each 

Figure 3. The study area. Analysis results for visibility graphs in region A are presented in 
� gures 4, 5 and 7. Results for region B are presented in � gures 8 and 9. 

Figure 4. Visibility graph neighbourhood sizes for region A. 
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vertex has been coloured accordin g to its neighbourhood size—paler greys corre­
spond to larger visibility graph neighbourhoods— and rendere d in 2.5­D so that the 
relationshi p between landscap e and neighbourhood size can be better understood . 
No clear pattern is observable in this image, although there is a tendenc y for larger 
neighbourhood sizes to be available along ridges lines. The largest neighbourhood 
sizes are associate d with the north­wester n corner of the region. This draws attention 
to the previousl y mentioned di� culty associate d with the fact that not all the 
locations visibl e from each location in the region are included in the visibility graph. 
As a result the relatively low­lying region in the north­west from which most of the 
north­wester n face of the central massif is visibl e has the largest neighbourhood sizes 
within this graph. 

Viewable area is often mapped by the method of cumulative viewshed analysis 
which does not rely on a visibility graph, so the above analysis is not novel. However, 
we now introduc e two analytical measure s of landscap e visibility patterns which are 
not readily obtaine d without generatin g the visibility graph, and so may represen t a 
more convincin g argumen t for the approach. Both are based on measuremen t of the 
graph itself, and so draw on the wider literature on graph structura l analysis (Harary 
1969, Haggett and Chorley 1969, Barnes and Harary 1983, Buckley and Harary 
1990, Wilson and Beineke 1979, Wasserman n and Faust 1994), and in particula r on 
the work of Watts and Strogatz (1998). 

4.2.2. Clustering coeYcient 
First, we conside r the clusterin g coeYcient, which is a measure based on the sub­

graph induced by the neighbourhood of a vertex in the visibility graph—N* 
i 

in the 
previousl y introduce d terminology. Using this sub­grap h we de� ne the clustering 
coe� cient c as

i 

c 5 2 · 
|E (N* 

i 
) | 

(6) 
i k

i
(k Õ 1) 

i
where k is the neighbourhood size as before, and 0 < c < 1. The clustering coe� cient

i i
is a measure of the exten t to which all the lines of sight which could exist in the 
neighbourhood of a location in the visibility graph, do exist. If most of the locations 
visibl e from a location are mutuall y visibl e then c will approach 1. If many of the 

i 
locations visibl e from a location are not mutuall y visible, then c will approach 0. 

i 
The clustering coe� cient for all n locations in a visibility graph can be calculated in 
O (nk2 ) time. Note that in the form of equatio n (6) mutua l visibility is implied by the 
factor of 2 in the expression , since this indicates that the largest number of lines of 
sight which could be present is k (k Õ 1)/2, which is only the case if all lines of sight 

i i
are mutual . An equivalen t expressio n where lines of sight are not mutua l simply 
drops the factor of 2, and count s lines of sight in both directions i.e. v v is counted 

i j 
as distinct from v v . Figure 5 shows the clustering coe� cient mapped for the same 

j i
visibility graph as before. As might be expected , ridge lines and valleys in the region 
are distinguishable . This is particularl y clear in the valley below the heights in the 
north­west corner of the region. Interestingly , more subtle concavit y and convexit y 
is also apparent, in the alternatin g north­sout h runnin g ridges south of the central 
massif. This is what we would expect, since in a perfect ‘bowl’ all locations are 
mutuall y visibl e (high clustering coe� cient ), whereas at the ‘peak’ of a cone, none 
of the visibl e locations are mutuall y visibl e ( low clustering coe� cient ). We can also 
note that the measure is less aŒected by the edge eŒects previousl y observe d with 
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Figure 5. Clustering coe� cients for region A. 

neighbourhood size. This is becaus e the measure is solely concerne d with the intercon ­
nection s of locations within the area under consideration , and becaus e it is normalise d 
with respec t to area, it can be a useful tool to investigat e geographic subsystems. 

Another, more cognitiv e interpretatio n of this measure is that it re� ects the exten t 
to which a particula r location seems to be ‘in’ its surroundings, rather than looking 
down on them from ‘outside ’. One factor in this interpretatio n is importan t to note. 
Two locations visibl e from location v may be mutuall y visible, without the line­of­

i 
sight between them being visibl e along its entire length from v . This may occur if 

i
there is some intervenin g obstacle such as a rock outcrop , or on a larger scale, a hill 
or mountain . Bearing this in mind, if we conside r the impact on the clustering 
coe� cient of introducin g a series of diŒerently shaped obstacles onto a � at plane of 
locations near the obstacle, we can begin to re� ne our understandin g of the measure . 
Figure 6 shows the clustering coe� cient determined at the same resolutio n for three 
arti� cial obstacles (coloured white) on a � at plane. The obstacles in these examples 
would all appea r the same to an observe r in corner P of the region shown. This 
similarity is re� ected in the identical distributio n of clustering coe� cient values seen 
in the region PQBACW for obstacles (i ) and (ii ). However, obstacle (iii ) produces a 
diŒerent pattern and range of clustering coe� cient values in this region. This is 
becaus e of the lines of sight beyond the back edge of obstacle (iii ) in region STU. 

Figure 6. A series of obstacles (indicated by the white region in each case) on a � at plane, 
and their eŒect on the clustering coe� cient measu re. See text for commentary. 
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These give rise to higher clustering coe� cients in PQBACW with obstacle (iii ), even 
though these lines of sight are not visible f rom P directly. To an observe r moving 
aroun d in the environment s represente d here, this diŒerence would not be apparent 
until either line QB or WC was crossed , when the diŒerences between the variou s 
obstacles would start to become apparent. Similar comm ents apply to similarities in 
distributio n and diŒerences in range in regions QRB and WCV between cases (ii ) 
and (iii ). It is also notable that locations very close to the shorte r faces AB and AC 
of all three obstacles have very similar patterns of the clustering coe� cient. 

The intriguin g point is that in an actua l landscap e— disregardin g prior knowledge 
from maps—it is the movem ent of an observe r which allows her to know the shape 
and scale of an obstacle. The clustering coe� cient, by taking into accoun t secondary 
visibility relations , may allow some of these perceptua l eŒects to be described from 
static data only. This suggests that the measure may be useful in describing the 
exten t to which the surrounding s are perceived as surrou ndings rather than as 
collections of objects. This is similar to the previousl y suggested and complementary 
interpretatio n of ‘inside’ and ‘outside ’ the landscape . 

4.2.3. Mean shortest path length 
Another possible measure of a graph structur e relates to path lengths between 

vertices. A path between two vertices v
A 

and v
B 

in a graph consist s of a sequenc e of 
distinct edges {v

A
v1 , v1v2 , ... v v 

x+1 , ...v 1v
B
} between the two. The number of edges 

x r Õ 
in the path is the path length in this case equal to r. The length of the shortes t 
possible path between two vertices is the distance between them frequently repres­
ented by d

AB
. Finding the shortes t path and hence the distanc e between two vertices 

in a graph is a familiar problem with an algorithmi c solutio n � rst propose d by 
Dijkstra (1959). Note that no geographical distanc e is included in the determinatio n 
of a graph distanc e measure— each edge ( line­of­sight ) is considere d of equal weight 
in this interpretation . If we determine the lengths of the shortes t paths from every 
vertex in a graph to every other vertex , the results can be used as a measure of the 
centrality or accessibility of each vertex in the overal l graph structure . The simplest 
way to do this is to sum all the shortes t path lengths to all other vertices , to produce 
a total path length measure for each vertex . This is calculable in O (n2 log n) time. In 
� gure 7 the total path length from each vertex to every other is plotted for the same 
landscap e as previously . This measure is di� cult to interpret , and shows no clear 
pattern relative to landscap e features . It is notable that, in contras t to the clustering 
coe� cient, a measure of this sort is particularl y subjec t to edge eŒects due to the 
need to restrict the visibility graph to some local region in the landscape . The 
measure does, however, indicate the potentia l for further analyses based on the 
visibility graph which relate to all the visibility relations amon g a whole set of 
locations in a landscape . 

5. Discussion and suggestions for further work 
The previous section demonstrates the potentia l usefulness of the visibility graph 

approach in the analysis of landscap e visibility patterns. We now examin e some of 
the issues raised by the method in more detail, and sugges t some possible avenue s 
for further research . 

5.1. Vertex selection, and scale and resolutio n issues 
The single most problemati c aspect of the propose d method is determining an 

appropriate vertex set for the visibility graph. In the examples shown so far, we have 
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Figure 7. Mean shortest path lengths for region A. 

adopted the ‘brute force’ approach of frequent sampling acros s a landscape . In the 
cases illustrated, the visibility analysis was carried out on a TIN, which was generate d 
by close � tting to underlyin g DEM data. The visibility graph vertices in turn were 
located at the centre points of the pixels in the original DEM, so that the selected 
locations are as densel y distribute d as the data on which the landscap e representatio n 
used was based. This approach has been used simply to demonstrat e the possibilities 
of the approach, and it is not at all clear that it is ideal. Practically, such an approach 
leads rapidly to very large visibility graphs. A DEM with data points every (say) 
50 m will yield 400 vertices per square kilometre. Very large visibility graphs result, 
and given the O (n2 ) complexity of any algorith m to generat e a graph the computa ­
tional requirem ents rapidly escalate— even allowing for the fact that the computa ­
tional complexity increases approximatel y linearly with n over (much) larger regions 
due to earth curvatur e and atmospheric eŒects. In the examples above for region A, 
there are 2820 vertices in the graph. With visibility graph generatio n implemented 
in a GIS macro­language , producin g this graph is an overnigh t process . Much 
improve d performanc e could be achieve d by implementin g the required routine s in 
GIS source code, and providin g the required graph data structure s in standar d GIS 
data layers. Nevertheless, there are always likely to be limits to the size of visibility 
graph which can be generated , analysed, and stored e� ciently. 

This raises the question of whether it is possible to choose the graph vertex set 
more intelligently (so that n% s) in order to reduce the computational requirem ents. 
Unfortunately, this is a di� cult question to answer— since it is di� cult to know a 
priori which locations in a region give the best ‘overview ’ of the visibility pattern, 
without examinin g all the possibilities. We have begun to investigat e this issue by 
examinin g the pattern of measure s on the visibility graphs produced for diŒerent 
‘sub­samples ’ of a region. Preliminary results are shown in � gure 8. This image has 
been produce d by combining clustering coe� cient results from four diŒerent visibility 
graphs generate d for region B in � gure 3. Each of the four visibility graphs was 
generate d by placing vertices at every second DEM data point in both directions. 
The graphs are thus oŒset from each other by one DEM cell in one or both cardina l 
directions, and analysed completely independently . The results have been recombined 
only by plotting the results in one image. It is notable that the overal l pattern of the 
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Figure 8. Clustering coe� cient for four ‘interleaved’ visibility graphs generated in region B. 
This image shows that each sub­sampled graph reveals a similar overall pattern in 
this measu re. 

clustering coe� cient measure is similar for all four graphs. This suggests that, for 
this measure at least, less intensiv e sampling of the region can give a good overal l 
impression of the visibility patterns. As an aside, it is notable that the characteristic s 
of the clustering coe� cient measure d over this larger region are clearer than in 
� gure 6. The river valley is particularl y clearly picked out as highly clustere d in 
this image. 

As an alternativ e approach to the question of the adequacy or suitabilit y of 
diŒerent selections of visibility graph vertices , � gure 9(i ) shows results for region B 
with 1000 randoml y selected locations , along with results from 2610 vertices at 

Figure 9. Comparisons of the clustering coe� cient measu re for diŒerent vertex sets in the 
same landscape: (i ) a 1000 vertex random graph (foreground blobs), and a 2610 vertex 
regular graph (background grid); and (ii ) a 228 vertex graph including local peaks 
and pits together with some random vertices (foreground blobs), and a 2610 vertex 
regular graph (background grid). All data sets have been classi� ed into quintiles with 
pale colours representing higher values. 
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regularl y spaced interval s (this is one of the graphs in � gure 8). These results are 
presente d as a single 2­D image with the clustering coe� cient for the randoml y 
selected vertices plotted as grey­scaled ‘blobs’ against a backgroun d grid coloured 
accordin g to the clustering values for the regularl y spaced locations . The grey scale 
colours are both in � ve classes based on quintile s with respec t to each data set. In 
general, there is a good visual ‘� t’ between the classi� cation of the randoml y distrib ­
uted and the regularl y spaced locations . In this example the randoml y selected graph 
can be produce d and analysed in aroun d one­sixt h of the time required for the more 
complete representatio n of the regularl y spaced graph. Since the regularly­space d 
graph shown includes only one­quarte r of all the DEM grid cells in region B, this 
result suggests that there is considerabl e potentia l for improve d selection of visibility 
graph vertices . 

Potentially, a better approach than determining some minimal resolution , or 
vertex set size which provides a consisten t ‘picture’ of the landscap e is to choose 
locations which have topologica l signi� cance. The most obviou s possibility in this 
connectio n is to use the signi� cant points in a surface network (Pfalz 1976), such as 
peaks, pits and saddle points, and points along ridge and channe l lines. It is likely 
that such points will themselves have extrem e visibility properties , so it is unlike ly 
that a set based solely on such features will be su� cient. Additional , more ‘typical’ 
locations are required . A set of vertices made up of 89 peaks and pits determined 
from simple local analysis of elevations , together with an additiona l 139 randoml y 
chosen points has been analysed. In � gure 9(ii ), the clustering coe� cient for this 
graph is plotted, as in � gure 9(i ), against a backgroun d showing the clustering 
coe� cient from a regularl y spaced 2610 vertex graph. Much more divergenc e in the 
pattern of values is evident in this case. In particular , vertices in the valleys in region 
B may have a high clustering coe� cient (coloured white) in the grid­base d visibility 
graph, but a low clustering coe� cient (coloured black) in the sparser graph. It seems 
likely that the relatively small areas visibl e from such locations are inadequately 
sampled in the sparser graph. It is clear from this that there is considerabl e scope 
for further researc h into the issue of determining a representativ e set of locations for 
analysis of the visibility patterns in a landscape , and further , that locations of obviou s 
topologica l importanc e may not be the most signi� cant in terms of visibility relations . 

5.2. Other possible analytica l measures of the visibility graph 
We have only considere d three possible measure s derivabl e from a visibility 

graph; there are many more. Any graph measure relates to some aspect of the 
structur e of the graph, and it is useful to think of these as falling into variou s 
categories . The extensiv e graph metric literature in social network analysis 
(Wasserman n and Faust 1994) consider s graph analysis methods as falling into three 
distinct categories : centrality , cohesive sub­group s, and structura l equivalenc e. The 
� rst of these is obviou s and has alread y been demonstrated by the total shortes t 
path length measure above (and to a lesser exten t by the neighbourhood size 
measure) , although there are other possible approache s (Nieminen 1974, Freeman 
1979, Stephenso n and Zelen 1989). 

Cohesive sub­group s in a graph are sets of vertices which are particularl y strongly 
interrel ated. This is clearly related to the clustering coe� cient measure described 
above. However the concept may also be extende d in variou s ways. A clique in a 
graph is a set of vertices each of which is connecte d to every other, and clique 
analysis consist s of identifying the variou s large cliques which are present in a graph. 
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Cliques in a visibility graph may refer to perceptuall y interestin g propertie s of 
particula r areas in a landscape , since they would identify sets of points all of which 
are mutuall y visible. Looser de� nitions of cohesi ve sub­group s also exist (Borgatti 
et al. 1990), and may also be of interest . The most likely interpretatio n of cohesi ve 
sub­group s in a visibility graph is that they would represen t regions in an environ ­
ment within which there is some sense of ‘enclosure’. The size of cohesi ve sub­group s 
which would be of interest is closely related to the process by which vertices in the 
graph are chosen , since sets of just three mutuall y visibl e locations are likely to be 
very comm on in all but the sparses t of vertex sets. A related de� nition which may 
be of interest here is the neighbourhood kernel K at v in a graph, which is the set 

i i 
of vertices all of which are visibl e from the vertices in N . Like the clustering 

i
coe� cient c , K relates to the experience of movemen t in an environmen t since it 

i i 
represent s a set of locations which will remain in view as a person leaves location v .

i
Structura l equivalenc e in a graph is best understoo d in terms of family trees in 

which sets of siblings are structurally equivalent —that is, they have similar relations 
to other elements in the graph. The interest in equivalenc e group s in social networks 
is obviou s (Borgatti and Everett 1989, Sparro w 1993). Whether or not sets of 
equivalen t vertices in a landscap e visibility graph would have any particula r meaning 
is unclear, although it is possible that such sets might consist of similarly located 
points, and refer to perceptua l qualitie s of landscape . Again there is a great deal of 
scope for further researc h on these issues. 

All of the measure s discusse d in the previous paragrap h may be derived locally 
for each vertex in a graph, or globally for a whole graph, in which case they describe 
the exten t to which a particula r graph exhibit s propertie s such as ‘centralisation ’ or 
‘cliquishness ’. Such characterisation is of potentia l interest in understandin g the 
overal l perceptua l qualitie s of diŒerent landscapes . Additionally , the exten t to which 
diŒerent measure s correl ate with one another in diŒerent landscape s is potentiall y 
of interest . Thus, we would normall y expect high clustering coe� cients to be associ­
ated with smaller neighbourhood sizes, but this relationshi p is likely to be diŒerent 
in diŒerent types of landscape . Equally we would expect some measure s to be more 
or less correl ated with the elevation at diŒerent locations , and variations in this 
relationshi p between diŒerent landscape s may be of interest . 

5.3. Directional visibility graphs and measures 
One evident di� culty of the measure s presente d so far is that they relate to all 

the lines­of­sight in all directions from the locations in an environment . While this 
is interestin g information to study, it is not related in any simple way to the 
information received by an individua l moving aroun d in the correspondin g real­
world environment . A person moving in a real environmen t directs her attention in 
particula r directions as she moves aroun d the environment , so that only a ‘path­
� ltered’ sub­grap h of the visibility graph is experienced. Investigatio n of how the 
paths followed by individual s are related to the propertie s of the full visibility graph 
may be of interest . Equally, generatio n of ‘path­centred’ visibility graphs and appro ­
priate measure s thereon , seems likely to be a rewarding direction for research . 

6. Conclusion s 
It is clear from the previous section that there is a great deal of scope for further 

researc h on the visibility graph concept in landscap e visibility analysis. The examples 
in this paper sugges t that further researc h may be fruitful, especially for the expanding 
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