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Purpose: In this work, a novel stochastic framework for patient positioning based on linac-mounted
CB projections is introduced. Based on this formulation, the most probable shifts and rotations of
the patient are estimated, incorporating interfractional deformations of patient anatomy and other
uncertainties associated with patient setup.
Methods: The target position is assumed to be defined by and is stochastically determined from
positions of various features such as anatomical landmarks or markers in CB projections, i.e.,
radiographs acquired with a CB-CT system. The patient positioning problem of finding the target
location from CB projections is posed as an inverse problem with prior knowledge and is solved
using a Bayesian maximum a posteriori �MAP� approach. The prior knowledge is three-fold and
includes the accuracy of an initial patient setup �such as in-room laser and skin marks�, the plas-
ticity of the body �relative shifts between target and features�, and the feature detection error in CB
projections �which may vary depending on specific detection algorithm and feature type�. For this
purpose, MAP estimators are derived and a procedure of using them in clinical practice is outlined.
Furthermore, a rule of thumb is theoretically derived, relating basic parameters of the prior knowl-
edge �initial setup accuracy, plasticity of the body, and number of features� and the parameters of
CB data acquisition �number of projections and accuracy of feature detection� to the expected
estimation accuracy.
Results: MAP estimation can be applied to arbitrary features and detection algorithms. However, to
experimentally demonstrate its applicability and to perform the validation of the algorithm, a
water-equivalent, deformable phantom with features represented by six 1 mm chrome balls were
utilized. These features were detected in the cone beam projections �XVI, Elekta Synergy®� by a
local threshold method for demonstration purposes only. The accuracy of estimation �strongly
varying for different plasticity parameters of the body� agreed with the rule of thumb formula.
Moreover, based on this rule of thumb formula, about 20 projections for 6 detectable features seem
to be sufficient for a target estimation accuracy of 0.2 cm, even for relatively large feature detection
errors with standard deviation of 0.5 cm and spatial displacements of the features with standard
deviation of 0.5 cm.
Conclusions: The authors have introduced a general MAP-based patient setup algorithm account-
ing for different sources of uncertainties, which are utilized as the prior knowledge in a transparent
way. This new framework can be further utilized for different clinical sites, as well as theoretical
developments in the field of patient positioning for radiotherapy. © 2011 American Association of
Physicists in Medicine. �DOI: 10.1118/1.3532959�
Key words: IGRT, maximum a posteriori, estimation, patient positioning, setup error
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I. INTRODUCTION

Accurate patient positioning in the framework of image
guided radiotherapy �IGRT� is an important component in
the clinical application of radiation oncology with linear
accelerators.1 Its aim is to determine the optimal position of
the patient directly before, and sometimes during, the actual
treatment fraction to fit optimally to the treatment plan,
which is based on a high-quality computed tomography
�CT�, obtained during simulation. In order to bring the pa-
tient to treatment position, the patient can be moved rigidly,
translated, and also slightly rotated with the treatment couch.
To get information about the internal structures of the pa-
tient, photon transmission imaging techniques are typically
utilized with either a cone beam CT �CB-CT� mounted or-
thogonally to the gantry of the MV beamline for kV appli-
cations or based on electronic portal imaging device for MV
applications. An intrinsic problem of patient positioning is
that interfractional changes inside the body of the patient are,
in general, of nonrigid nature, showing the necessity of a
well weighted compromise for a suitable patient setup.

Typically, one can differentiate between two principle ap-
proaches: Patient positioning based on reconstructed images
or based directly on projection images �radiographs� mea-
sured directly without reconstruction. In the first approach, a
large set of projections is utilized to reconstruct the 3D vol-
ume of the current patient’s anatomy first and in a second
step, this 3D data set is matched to the 3D volume of the
planning CT, leading to a two-step approach: Reconstruction
followed by image registration.2–4 In the second approach,
typically a few radiographs are directly used to find the target
location, such as the classical orthogonal radiography or re-
lated techniques.5–8

Both of these approaches have inherent problems, such as
reconstruction artifacts �e.g., metal or motion artifacts or ar-
tifacts due to the undersampling of projections in limited
view reconstructions� in the first approach or the presence of
background structures and scatter in the radiographs in the
second one. Therefore, both lead to challenging image regis-
tration problems which are a wide field of study and
developments.9–11

Classically, image registration algorithms are divided into
feature based �working with the identification of certain vis-
ible features� and intensity based techniques �working with
the intensity levels acquired�. The types of mappings to
match an image onto the reference data set are further clas-
sified as rigid, affine, and elastic matching.10,12 For example,
a standard case for image registration in medicine is point-
pair-matching, which solves the problem based on features
with a rigid matching algorithm, leading to direct analytical
results based on geometrical considerations.13 This approach
typically utilizes markers or anatomical landmarks as fea-
tures, thus leading to robust and fast methods. In contrast
with this, intensity based image registration is also often ap-
plied since it does not depend on artificially introduced
markers and valuable information is contained in the ac-
quired or reconstructed intensity levels.
The clinical availability of linac-mounted cone beam im-
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aging systems is widespread and their application represents
a standard approach to patient positioning in many clinics.
Accurate patient setup can be performed by image registra-
tion of the fully reconstructed CB-CT with the planning CT.
With the increased number of CB-CT scans per patient and
sometimes multiple scans per single treatment, there is a jus-
tified concern about dose from CB-CT imaging. There are
also equally valid concerns about the time per scan and prob-
lems with gantry clearance, especially for tumor sites such as
breast, extremities, or soft tissue tumors �sarcomas�, which
are located further away from the patient craniocaudal axis.

One way to overcome these difficulties is to perform a
partial CB-CT scan �with angles less than 210°� or a very
short scan, such as CB tomosynthesis14 �CB-TS� or, simi-
larly, digital tomosynthesis �DTS� �with angles less than
40°�. However, partial and short scans result in under-
sampled CT reconstructions and lead to reconstruction arti-
facts that may prohibit their efficient use for the registration
needed for patient setup.14–16 Because of these reconstruction
artifacts, in short CB-CT, CB-TS, and DTS scans, the regis-
tration of the reference �planning� data is much more difficult
than in full-rotation CB-CT. The reconstruction methods for
short scans are not established clinically and are currently the
focus of research in the patient setup area.

Furthermore, in the mentioned approaches, prior knowl-
edge is not fully utilized. Specifically, the prior knowledge,
which can be derived from multiple CT, fluoroscopy, mul-
tiple treatment CB-CT, or other imaging studies, performed
on a given patient or obtained from literature on the subject
for a given treatment site. This prior knowledge includes �a�
the range of possible setup errors which are known for a
given treatment site and patient immobilization and �b� the
possible range of deformations of patient anatomy surround-
ing the tumor. Furthermore, �c� additional knowledge about
specific reconstruction and registration algorithms might be
available, such as detection accuracy of features of interest
used for the patient setup. All this prior knowledge may pro-
vide valuable information, which in principle should lead to
better quality reconstruction and registration, but it is diffi-
cult to consistently account for it in the present algorithms.

To introduce prior knowledge to inverse problems with
intrinsic uncertainties, a stochastic Bayesian framework can
typically be utilized. This is especially true in image regis-
tration for medical applications, where a whole set of prior
information is available from clinical practice �e.g., Ref. 17�.
But also in other fields, such as in machine learning, this
concept is applied broadly, e.g., in Gaussian processes for
regression purposes.18

In the following, we present a rigid, feature based patient
positioning approach, utilizing either all or only a few radio-
graphs �CB projections�. This approach has its roots in the
estimation theory and especially applies the Bayesian formu-
lation for the inclusion of the aforementioned prior knowl-
edge ��a�–�c��. In consequence, this method can be inter-
preted as a direct extension of projection based registration
techniques, such as orthogonal projections. The formulation
is independent of any particular reconstruction or registration

algorithm and is based on a general stochastic-geometrical
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model of the patient. Thanks to this formulation, we derive
formulas for most probable shifts and rotations of the patient
required to align the patient before treatment.

Specifically, the mathematical formulation is based on the
Bayesian maximum a posteriori �MAP� estimation. The spe-
cific use of MAP techniques is widely spread in medical
physics, e.g., to increase image quality in image reconstruc-
tion �e.g., Ref. 19� or emission tomography �e.g., Refs. 20
and 21� and in segmentation algorithms �e.g., Refs. 22 and
23�, but to our knowledge it has not been used for patient
setup posed herein. In this context, the main reason for the
utilization of estimation theory is to account for the intrinsic
uncertainties �noise, spatial uncertainties, etc.� of an inverse
problem on a solid basis. The idea of utilizing MAP estima-
tion for the particular problem at hand is to include prior
knowledge in a transparent way in order to increase the ac-
curacy of the determination of rigid transformation param-
eters for patient positioning. It includes a clear stochastical
model of the uncertainties, having an intuitive understand-
able objective function, delivering a physically interpretable
weighting between prior knowledge ��a�–�c�� and actual
measurements in the radiographs and, therefore, eventually
leading to a robust algorithm. The latter can be understood
by the fact that MAP can be regarded as a direct extension of
maximum likelihood �ML� estimation including prior knowl-
edge by additive regularization terms �similar to Tikhonov
regularization�, which increase the robustness.

II. THEORY

II.A. Statement of the problem

In this work, the patient setup problem is essentially de-
fined as a target localization problem. The assumption is that
a patient is initially positioned based on an in-room laser
system and then a sequence of cone beam projections is ac-
quired along a short or longer arc or along multiple arcs
�such as in Fig. 2 for the experimental verification in Sec.
III A�. From these images and from the prior knowledge,
which is formulated here in stochastic terms, the most prob-
able shifts and rotations are determined that bring the patient
into the desired treatment position. Since the target itself may
not be identifiable in the radiographs, other anatomical fea-
tures have to be considered for localization, representing an
inverse problem.

The features considered here are as general as possible,
markers, regions containing bones or soft tissue-interfaces,
with the number of features ranging from a few �e.g., mark-
ers� to large �anatomical features in the whole imaged area�.
For instance, for nondeforming regions �such as for cranial
structures�, it is sufficient to localize three positions in two
orthogonal projections to determine the six-parameter
transformation.5 Therefore, having more than three features
or using more projections in this case creates a certain redun-
dancy. On the other hand, not all features may be accurately
localizable in all projections or some of their coordinates
may not be determinable, which is the case, for instance, for
prostate-rectum interface along the inferior-superior direc-

tion.
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Because of the possibility of interfractional nonlinear de-
formations of the patient anatomy, the geometrical relation of
the features to the target must contain these uncertainties,
which are best described by probability distributions �as
prior knowledge �b��. Furthermore, the expected patient
setup error after the initial laser alignment is typically known
for a given setup technique and treatment site �e.g., from
literature or from clinical experience� and therefore also can
be described by their respective probability distributions �as
prior knowledge �a��. In addition, the positions of the ana-
tomical features are detectable in the projections only with
certain detection errors due to the low quality of the radio-
graphs, which are also described by respective probability
distributions �as prior knowledge �c��. With such a three-fold
stochastic prior knowledge and with the projections acquired
in pretreatment position, the desired treatment target position
is determined with respect to the position in the reference
�planning� data.

First, we provide a simplified analytical exposition of the
proposed MAP method, focusing on a 2D parallel beam ge-
ometry for the estimation of the target shift only. The more
general formulation in 3D including translations and rota-
tions of the patient anatomy for cone beam geometry is pre-
sented in Appendix A. The derivations of the 2D and 3D
problem use analogical arguments.

II.B. Patient setup variables

Determination of target position will be achieved working
with features, such as implanted markers, in projections that
have deformable geometrical relations to the target. We as-
sume that these features are detectable with a certain prob-
ability.

All probability distributions of the stochastic-geometrical
model are Gaussians in this work, due to a straightforward
introduction to the theoretical framework and the possibility
of direct analytic solutions �besides reasoning from clinical
patient positioning studies, e.g., Ref. 24�. In Fig. 1, the es-
sential variables of this model are illustrated in a simple
overview. In general, we will denote random variables with

θn

U1,n

U2,n

target (XT , YT )

feature 1 (XF,1, YF,1)
feature 2 (XF,2, YF,2)

detector plane
u

source

iso
x

y

FIG. 1. Schematical view of scanned object with the random variables
introduced.
capital letters and their realizations �their concrete measur-
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able or determinable values� with small letters.
We define the detected feature positions in the projections

as our measurements. This includes the acquisition of the
projections and an �at this point� unspecified detection algo-
rithm that is able to identify the position of the features with
a certain accuracy. Out of these measurements, the target
position will then be estimated in an optimal MAP fashion.

The unknown target position after the initial patient setup
will be described by the two random variables for each co-
ordinate

XT � N��XT
,�T

2�, YT � N��YT
,�T

2� , �1�

where N�� ,�2� represents the Gaussian distribution, with
expectation value � and standard deviation � �index T for
target�. Furthermore, the relative anatomical relation between
the target and the features �independent of the current target
position in the coordinate system� will be described with the
probability distributions

XF,l � N��XF,l
,�F

2�, YF,l � N��YF,l
,�F

2� , �2�

for all features l=1, . . . ,L �index F for feature�. For both
abovementioned classes of random variables, we are assum-
ing constant standard deviations �T and �F for every coordi-
nate direction due to simplicity of the derivation �in Appen-
dix A, these assumptions will be lifted to account for more
realistic situations�. We will assume that there are N�1 pro-
jections at angles �n, n=1, . . . ,N. In every of these n projec-
tions, we define additionally a random variable describing
the detection error of the feature detection algorithm in the
projections with

�Ul,n � N�0,��U
2 � . �3�

Therefore, we are expecting that the detection of the features
in the projection does not work perfectly, representing an
additional, independent source of uncertainty, due to the low
quality of the radiographs.

In consequence, the random variable corresponding to the
feature positions in the projection at angle �n in the treatment
coordinate system for the 2D parallel beam model is deter-
mined by

Ul,n ª − �XT + XF,l� · sin �n + �YT + YF,l� · cos �n + �Ul,n

�4�

for feature l at projection n �see Fig. 1�. Since the distribu-
tions for all these random variables are defined, the distribu-
tion of the resulting measurement random variables Ul,n is
also known.

The three different sources of prior knowledge are then
identified by their corresponding random variables �and their
probability distributions�.

�a� The knowledge about the range of realistic target posi-
tions �XT ,YT� determined by the initial setup technique
�such as laser alignment by skin markers�, whose ex-
pectation values �XT

and �YT
typically are the target

position in the planning CT and �T is its expected stan-

dard deviation of the setup by laser alignment.
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�b� The knowledge about the relative �anatomical� dis-
tances between the lth feature and the target position
�XF,l ,YF,l�, which means that �XF,l

and �YF,l
are the

expected distances between the �fixed� target position
and feature l �either just determined out of planning CT
or the arithmetic mean of several imaging modalities,
see Sec. II E 2� and �F represents the plasticity of the
body �which range of relative shifts, i.e., deformations
inside the body, seem possible�.

�c� The knowledge about the detection error �Ul,n for the
lth feature in projection n, which should have the ex-
pectation value 0, since it is expected that the detection
algorithm works in average, and the standard deviation
��U which essentially describes the range of possible
misdetections.

To provide simple analytical derivations in the following
introduction to the MAP estimator, we will additionally as-
sume that the distribution of imaging angles ��1 , . . . ,�N� ful-
fills the following conditions:

�
n=1

N

sin2 �n =
N

2
, �

n=1

N

cos2 �n =
N

2
, �

n=1

N

sin �n cos �n = 0.

�5�

These conditions look arbitrary at first sight, but they are
fulfilled exactly, for example, with either an equidistant an-
gular distribution over the range of 180° or by N /2 projec-
tions at 0° and N /2 projections at 90° �for N even�. These
conditions can also be approximated reasonably by other an-
gular distributions. As a special example the case N=2 rep-
resents two orthogonal projections.

It is pointed out that these assumptions for the angular
distribution are not essential and are lifted in the general
estimator in Appendix A.

II.C. Target localization using MAP estimation

The MAP argumentation combines prior knowledge with
current measurements to estimate parameters of interest. In
our 2D parallel beam application �3D case in Appendix A�,
we specifically want to estimate the position of the treatment
target in a nonrigid body geometry during the course of frac-
tionation. The starting point for our MAP approach is the
conditional posterior probability

arg max�xT,yT� P�XT = xT � YT = yT	�
l=1

L

�
n=1

N

Ul,n = ul,n� , �6�

which can be translated into words by: Find the most likely
parameters �xT ,yT� �for the current treatment target position�
under the assumption that the detection algorithm measured
the feature positions at ul,n in the projections. This formula
can be rearranged to the equivalent expression

arg max�xT,yT� P��
l=1

L

�
n=1

N

Ul,n = ul,n	XT = xT � YT = yT�
· P�XT = xT � YT = yT� �7�
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using Bayes’ Theorem. The first factor represents the likeli-
hood, which is the basis of the closely related maximum
likelihood approach. The second factor contains information
about probable values for �xT ,yT� after the initial patient
setup, which is our prior knowledge �a�. By inserting the
mathematical derivations of Appendix B and taking the loga-
rithm, this leads to the following final minimization problem:

arg min�xT,yT�
 xT − �XT

�T
�2

+ 
 yT − �YT

�T
�2

+ �
l=1

L �xT + �XF,l
�2 + �yT + �YF,l

�2

�F
2

−
2�F

2

��U
2 �N�F

2 + 2��U
2 ��
�

n=1

N

− ul,n sin �n +
xT + �XF,l

�F
2 �2

+ 
�
n=1

N

ul,n cos �n +
yT + �YF,l

�F
2 �2 , �8�

which we call the MAP estimator for the 2D parallel beam
case, estimating the target position. This objective function is
essentially a quadratic function in the variables �xT ,yT� and
therefore can be solved analytically, which is not essential
but important for the derivation of the rule of thumb in Sec.
II D 1. We denote the estimation values then with �x̂T , ŷT�. It
can be shown that this estimator is stochastically efficient,
meaning it fulfills the Cramér–Rao-bound and therefore this
estimator is optimal.

II.D. A practical rule of thumb formula

II.D.1. Derivation

One of the major advantages of utilizing the estimation
theory is that the accuracy of the estimator can be investi-
gated in a theoretical way. In this section, a rule of thumb
formula will be presented that shows an intuitive relation of
the central parameters of acquisition and prior knowledge
with the maximal achievable estimation accuracy. Although
this formula is derived under the simplifying assumptions of
Sec. II B, it has numerically been proved to be valid also for
the translational setup error of the 3D cone beam case in Sec.
IV B. A typical quantity to investigate the performance of
estimators is the mean-squared-error �MSE�

MSE�X̂T	xT,yT
� = VAR�X̂T	xT,yT

� + �BIAS�X̂T	xT,yT
��2, �9�

with BIAS�X̂T 	xT,yT
�ªE�X̂T 	xT,yT

�−xT as the bias of the esti-

mator and VAR�X̂T 	xT,yT
� its variance. The MSE determines

the expected quadratic error in between estimated values
�x̂T , ŷT� and the real values �xT ,yT�.

In our application, the MAP estimator is biased, meaning

that BIAS�X̂T 	xT,yT
��0. In Sec. II D 2, we will show that the

unbiased version �which corresponds to the maximum like-
lihood case� has a larger MSE and is therefore overall not as
accurate. General investigations and examples on the profits
of biased estimations are illustrated by Eldar.25
To get a physically intuitive measure for the estimation
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error, we take the square root of the expectation value of the
MSE, denoted as the Bayesian root-mean-squared-error
�RMSE�

RMSE ª
�EXT,YT

�MSE�X̂T	XT,YT�� , �10�

�analog for ŶT�. Numerically, one can evaluate this expres-
sion by simulations for every type of geometry as we do it in
Sec. IV B. For our specific MAP estimator in patient posi-
tioning with the assumptions mentioned, this leads to

RMSE =� ��F
2N + 2��U

2 ��T
2

�F
2N + 2��U

2 + LN�T
2 �11�

�the same result for y-direction�, which we will denote as the
rule of thumb formula for the expected estimation error. This
formula has a central meaning for the interpretation of the
estimation situation and can be regarded as a rather general
rule of thumb for translational setup error determination by
projections with an x-ray source on a circular trajectory for a
deforming body. This formula shows the relation of the ex-
pected patient setup accuracy, represented by the RMSE, in
relation to the number of detectable features L, the number of
projections N, the uncertainty by the initial patient setup �T,
the uncertainty by interfractional organ motion between fea-
tures and target �F �essentially the plasticity of the body�,
and the detection error of features in the projections ��U.

II.D.2. Asymptotic behavior

In the following, we will investigate the asymptotic be-
havior of the rule of thumb of Sec. II D 1 to investigate the
estimation accuracy. In consequence, we will gain insight in
the use of different factors in patient positioning in general.

Case N→�. By using a large number of projections in
which we can detect L features we get

N → � ⇒ RMSE →� �F
2�T

2

�F
2 + L�T

2 . �12�

This leads to the conclusion that having a lot of projections
but not being able to adequately interpret the data �not de-
tecting enough features with a spatial relation to the target�
will lead to the maximal achievable limit of certainty of the
estimation as in Eq. �12�. Furthermore, the estimation error
RMSE is independent of ��U: Being able to detect the fea-
tures in several projections reduces the influence introduced
by the detection error, as one would expect.

This formula can be regarded as a lower limit for the
patient setup error one can achieve independently of the ac-
quisition, which is only depending on the in-principle ana-
tomical parameters L and �F, and the prior knowledge about
the initial setup �T.

Case L→�. By being able to identify an infinite number
of features, we see that

L → � ⇒ RMSE → 0. �13�

Therefore, identifying as many features as possible should be
an essential task of every detection algorithm for an accurate

patient setup. It has to be pointed out that RMSE→0 inde-
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pendently of the other quantities �e.g., amount of uncertain-
ties, number of projections, etc.�. Since it is not possible to
identify the position for an infinite number of features, a
trade-off is necessary, which we will discuss in Sec. IV B.

Case �T→�. Decreasing the certainty �increasing the
standard deviation� of the prior knowledge about the initial
patient setup leads to the corresponding ML estimation
�without any prior knowledge about the initial patient setup�.
For such a situation, we get

�T → � ⇒ RMSE →��F
2

L
+ 2

��U
2

LN
. �14�

To investigate the gain in accuracy of estimation by using
prior knowledge about the accuracy of the initial setup tech-
nique with MAP in comparison with the case with not utiliz-
ing this prior knowledge with ML, we regard the fraction

RMSEML

RMSEMAP
=�1 +

�F
2

L�T
2 + 2

��U
2

LN�T
2 � 1. �15�

This means, as long as there is any prior knowledge about
the initial setup accuracy ��T��� in a deformable body
��F�0�, the estimation is expected to benefit from it. The
third summand has the detection error ��U in the numerator
�which is typically rather small in comparison to the other
uncertainties� and if we additionally use a high N, the third
summand disappears completely. Therefore, we should re-
gard the second summand as the more essential component
of the gain.

II.E. Clinical application of MAP estimation for patient
positioning

II.E.1. General workflow

After the patient is positioned with an initial setup tech-
nique �such as in-room lasers and skin marks�, CB projec-
tions are acquired from different imaging angles. In the ac-
quired projections, the position of features, such as metallic
fiducials, is determined by a detection algorithm. It has to be
pointed out that it is not very important what specific detec-
tion algorithm is actually used, since after about 20 projec-
tions, according to Eq. �11�, the influence of the algorithms
on estimation accuracy is strongly reduced �see Sec. IV B�.

Based on the position of features and the prior knowledge
��a�–�c�� �see Sec. II E 2�, we are performing MAP estima-
tion for the target position and its rotation by solving the
minimization problem, whose full exposition is in Appendix
A. The results of minimization are the estimates of the three
coordinates of the target position in the treatment coordinate
system and the three angles of rotation. It has to be pointed
out that the objective function is almost of quadratical shape
in the translational parameters and the minimum can there-
fore be calculated efficiently. The actual transformation of
the patient is then determined by Eq. �A1� in Appendix A.

During the course of fractionation, systematic errors can
be separated from random errors of the setup technique and
the MAP estimator can be adapted accordingly. For example,

26
Bortfeld et al. proposed when systematic errors should be
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corrected �almost best after the fourth fraction�. For this rea-
son, the arithmetic mean of the differences of the reference
target position and the estimated target position of the last
fractions can be calculated. In consequence, the parameters
��XT

,�YT
,�ZT

� can be updated during the course of the treat-
ment.

Moreover, a general concept of prior knowledge in the
form of images acquired prior to treatment, fully recon-
structed CB-CT during fractionation or tomosynthetic scans
might be utilized to improve the model of the prior knowl-
edge continuously and being adaptive to systematic long-
term changes inside the body, such as the shrinking of the
target, during the course of fractionation. We suggest that
these different approaches for determining the setup error
should work together for better patient positioning. In con-
sequence, an individualized patient positioning method can
be derived easily with the aim of an even more accurate
patient setup �based on the presented model� than using one
standard technique for all patients and fractions. In conse-
quence, this method might be useful for adaptive radio-
therapy, which focuses on interfractional changes.

II.E.2. Determination of the prior knowledge

In the following, we describe how the necessary prior
knowledge can be determined out of different sources of
clinical data and imaging modalities for the general MAP
estimator in Appendix A. Different imaging techniques ac-
quired prior to treatment might be utilized for target defini-
tion �for example, multiple planning CTs, MRI, PET-CT, or
4D-CT�. This large amount of available data could be di-
rectly utilized for the positioning by MAP estimation. For
example, the anatomical plasticity of the body of the patient
�i.e., the variability of feature positions relative to the target�
can be determined if in each of those volume data sets the
positions �x ,y ,z� of the target and the features are detected
manually or with an automatic algorithm.

The expected interfractional relative distances
��XF,l

,�YF,l
,�ZF,l

� can then be estimated by the arithmetical
mean of the difference of the position of the target and the
feature along the x-, y-, and z-directions of all those imaging
modalities, denoted with �xF,l, �yF,l, and �zF,l. By having J
imaging modalities �indexed with j=1, . . . ,J�, the formulas
for the mean are

�XF,l
=

1

J
�
j=1

J

�xF,l,j, �YF,l
=

1

J
�
j=1

J

�yF,l,j ,

�ZF,l
=

1

J
�
j=1

J

�zF,l,j . �16�

Also, the expected deviations �which corresponds to �F for
the simplified estimator� and its directionality can be esti-

mated prior by the symmetric sample covariance matrix with
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�	F,l�x,x =
1

J − 1�
j=1

J

��xF,l,j − �XF,l
�2,

analog for �	F,l�y,y and �	F,l�z,z,

�	F,l�x,y =
1

J − 1�
j=1

J

��xF,l,j − �XF,l
� · ��yF,l,j − �YF,l

�,

analog for �	F,l�x,z and �	F,l�y,z. �17�

The same method can be utilized to calculate the expected
mean position and deviation of the position of the target after
the initial setup if several patient setups are performed in the
same treatment coordinate system and setup technique �e.g.,
multiple planning CTs with laser setup�. Therefore, one can
calculate ��XT

,�YT
,�ZT

� and the sample covariance matrix
	T �which corresponds to �T for the simplified estimator� in
an analogous way.

Beside the images at hand, one could use values of the
relevant quantities reported in literature �e.g., Refs. 27 and
28� to get typical accuracies of different setup techniques for
several treatment sites. Moreover, values for 	F,l and 	T can
be determined for specific setup and imaging techniques
used at a radiation oncology department based on clinical
experience and retrospective studies.

The detection accuracy of the features in the projections
depends on the detection algorithm utilized, the image qual-
ity of the radiographs, and the feature type and should be
validated for the specific application. For example, in an ex-
periment, the true position of an object could be known in
the projections and the standard deviation ��U to the actually
detected position could be calculated.

III. EXPERIMENT

III.A. Experimental idea

As an application of the MAP-based stochastic formula-
tion of the patient setup problem, we will consider a few
potential imaging schemes presented in Fig. 2, starting with a
simple �two orthogonal radiographs, in case a� to more com-
plex �cases b–f�. Taking two radiographs separated by a
smaller than 90° angle, as in case b, may be beneficial be-
cause of clearance �e.g., evaluation of seed positions during
brachytherapy�, but the problem is that with the decreased
angle the triangulation accuracy becomes worse along the
midline between the two views. In case c, we will investigate
a new scheme with two orthogonal short arcs to evaluate it
against the classical orthogonal projections. It is expected
that the accuracy of feature localization is increased in 3D
when we compare case a to case c because more information
is provided. Similar as in case b due to clearance, we want to
evaluate a short arc scan in case d �as typical for CB-TS�.
Eventually, we will compare the results to cases e and f, to
investigate if a further gain in accuracy can be achieved by

acquiring more projections.
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The aim of this verification is to assure that the method
works in principle and to compare cases a–f of Fig. 2 to each
other. Additionally, the rule of thumb of Eq. �11� will be
confirmed for real experimental data.

For verification, a deformable phantom is utilized, which
we will describe in Sec. III B in detail. The most important
information is that in this phantom, six small 1 mm chrome
balls are inserted as features. This phantom is then aligned to
the in-room laser system for the initial setup by surface
marks. Successively, in 20 scans, the position of these
chrome balls is shifted relative to each other according to a
random table, representing the plasticity of the body. Addi-
tionally, in between each scan, the position of the whole
phantom is also changed in a translational way. This repre-
sents then the phantom deformation with the additional ini-
tial setup error.

For each phantom setup, a full set of cone beam projec-
tions, as it is necessary for reconstruction, is acquired. From
this full data set, projections for shorter arcs or other subsets,
as in the cases of Fig. 2, are selected for estimation.

For applying the MAP estimation of Appendix A, we
need the position of the features in the projections as our
measurements. Therefore, we utilize a simple detection
method based on a local threshold method as a feature de-
tection algorithm utilizing standard routines of the MATLAB

system. Other algorithms can be used for this purpose, but as
we see in Sec. IV B, this might only have limited influence
on the overall accuracy.

After the measurements are determined, the MAP estima-
tion is applied to all 20 CB projection data sets. For evalua-

ˆ ˆ ˆ

A B

C D

E F

static views

short arcs

long arcs

two orthogonal static projections two static projections (20◦ or 40◦)

two orthogonal short arcs (10◦ each) one short arc (20◦ or 40◦)

one long arc (90◦) one long arc (180◦)

source

detector

FIG. 2. Different scenarios for the acquisition of CB projections. �a� Two
orthogonal projections, �b� two projections with less than 90°, �c� two small
orthogonal arcs, �d� one small arc, �e� full 90°, and �f� full 180° arc with a
dense set of projections.
tion, we compare the estimated target position �xT ,yT ,zT� to
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the setup error, which was introduced artificially by moving
the couch with the phantom. In consequence, the closer the
estimated target coordinates are to the phantom shifts, the
more accurate the estimation works.

In the statistical evaluation of the �in our case 20� data
sets, we will compare the empirical RMSEs of the cases a–f
of Fig. 2. The full evaluation of this data and its comparison
to the RMSEs out of the rule of thumb are presented in Sec.
IV A.

III.B. Phantom setup

As a deformable phantom, we utilized a cylindrical phan-
tom of a diameter 13.72 cm filled with water-equivalent gela-
tin �see Fig. 3 left�. In the walls of the bottle, bore holes
opposite to each other were drilled so that six wooden sticks
could be inserted going through the rotational axis of the
bottle. In Fig. 3 on the right, the data for these bore holes are
illustrated in a schematical overview. In these wooden sticks,
1 mm chrome balls were inserted as features that we want to
detect in the projections. Moving the wooden sticks leads to
a change of the position of the chrome balls along radial
direction. With different relative shifts of these features for
every phantom setup, the plasticity of the body in the
x-y-plane is simulated in a reproducible fashion.

In each of the 20 setups, the phantom is aligned to the
in-room laser and then the sticks are shifted; additionally the
position of the treatment couch is shifted in the x-, y-, and
z-directions. The shifts are determined by a Gaussian random
number table generated by MATLAB, fulfilling the standard
deviations of �XT

=�YT
=�ZT

=1.0 cm and �r=0.5 cm with
zero mean. In the computation of the results, the known
shifts of the couch are the gold standard �i.e., the true setup
errors� to which the MAP estimated setup errors based on
feature detections are compared. In detail, �r represents the
standard deviation for the radial shifts of the chrome balls,
which can be interpreted as �F in the rule of thumb in Eq.
�11�. In the estimation algorithm, we will utilize then in con-
sequence �XF,l

=�YF,l
=�ZF,l

=0.5 cm. In a clinical application

FIG. 3. The phantom for the experimental verification. Left: The phantom u
of the 1 mm chrome balls. The positions of the balls are calculated with
represent the plasticity of the phantom.
with patient data, these deviation parameters would be deter-
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mined out of prior imaging data or literature, as described in
Sec. II E 2.

The acquisition of the projections was performed with the
XVI System of the Elekta Synergy® linear accelerator. The
arc range of the full data set was from 282.0° to 81.0° with a
step size of 
0.51° leading to 393 projections �angles re-
ferred to the coordinate system in Fig. 6�. In the projections,
the whole phantom was visible from all angles.

The detection of the features in the projections happened
with standard routines of the MATLAB system utilizing a local
threshold method with an initial manual identification of the
features in the first projection. For this simple phantom, the
detection worked very well ���U�0.03 cm at the limit of
the pixel width� since the 1 mm chrome balls can be identi-
fied in the projections with high accuracy. To simulate a
more realistic scenario with less quality of detection, we in-
troduced an additional detection error by adding Gaussian
noise with standard deviation of ��U=0.25 cm to both pro-
jection coordinates �u ,v� �see Fig. 6 for the definition�.

The aim of the phantom experiment is to verify that the
estimation technique works with clinical data and equipment
�XVI, Elekta Synergy®�. In this context, the influence of dif-
ferent imaging directions on the estimation accuracy is in-
vestigated. Moreover, the rule of thumb of Sec. II D 1 is
confirmed as a reasonable measure of certainty. Based on the
rule of thumb, we derive clinically interesting factors, such
as the necessary number of projections N for different detec-
tion error ranges and the necessary number of detectable fea-
tures L for different plasticities of the body

IV. RESULTS

IV.A. Comparing different CB acquisition schemes

For the evaluation of the experiment, we are comparing
the imaging directions of cases a–f of Fig. 2. The results for
the empirical RMSEs along each coordinate direction and of
the rule of thumb �when reasonable� are presented in Table I.
In Fig. 4, an illustration of the detected feature positions for
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d for the measurements. Right: The schematical overview for the positions
,z�T= �r cos � ,r sin � ,z�T. The balls are shifted along radial r-direction to
tilize
�x ,y
the 20 phantom setups at an exemplary imaging direction is
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presented. In this figure, detection clusters of the feature po-
sitions occur due to the superposition of the initial setup
error of each phantom setup, the internal deformations by
displacing each marker for every setup, and the artificially
introduced detection error of every detection. To gain a
deeper insight, the detected feature positions of the first and
second setup are presented. By comparing these two data
sets, one can observe a general trend of displacement �indi-

TABLE I. Statistic evaluation of the accuracy of diffe
Shown are the empirical RMSEs as difference betwe
position determined by CB-CT reconstruction �xT,k ,
They are defined with RMSEx=�1 /20�k=1

20 �x̂T,k−xT,k

theoretical value out of the rule of thumb RMSER

asymmetry of imaging directions�.

Case Specification N

A 90° separation angle 2 0.
B 20° separation angle 2 0.
B 40° separation angle 2 0.
C 210° arc range 10 �25� 0.
D 20° arc range 10 0.
D 40° arc range 10 0.
E 90° arc range 89 0.
F 180° arc range 177 0.
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detected feature positions in a single u−v−projection at imaging angle 210.2 deg
for 20 setups, coordinates referring to iso−center, incl. add. detection noise

feature 1
feature 2
feature 3
feature 4
feature 5
feature 6
1st setup
2nd setup

FIG. 4. The detected feature positions in a projection at the imaging angle of
210.2° for the 20 phantom setups. The plot is in the u-v-coordinates of the
projection coordinate system with the imaging isocenter at its origin, as it is
defined in Appendix A �Fig. 6�. Each feature is present by a unique symbol,
eventually presenting six detection clusters of the 20 phantom setups. Ad-
ditionally, the 6 feature positions corresponding to the first phantom setup
are framed by diamonds and for the second setup by circles. The detected
feature positions of one phantom setup for all imaging angles are the input

of the MAP estimation.
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cating an allover setup error� and on top of this individual
displacements �corresponding to the internal deformations
and to the additional detection errors�.

A strong difference in the estimation accuracy along the
x-, y-, and z-directions for all acquisition schemes can be
observed. This can be explained by the way the phantom was
built. At first, no plasticity deformations of the features along
z-direction are introduced by the phantom setup and there-
fore a low estimation error should be expected, as it can be
confirmed. Second, the difference between the x- and y- di-
rections lies in the directionality of the wooden sticks along
the features can be shifted in radial direction. As it is shown
in Fig. 3 on the right, we had to spare the angular range
around the y-axis to be able to position the phantom on a
couch. Therefore, most deformations happen along the x-axis
and only a smaller fraction along the y-axis, leading to lower
estimation accuracy along the x-axis than the y-axis. In con-
sequence, the rule of thumb �which is evaluated with the
parameters �T=1.0 cm, �F=0.5 cm, ��U=0.25 cm, and L
=6� should be compared to the x-direction.

In general, the resulting estimation errors do not vary
strongly among cases a–f due to the robustness of the esti-
mator derived, but they give constructive indications which
data acquisition scenarios are more favorable.

At first, comparing the orthogonal projections of case a,
which is a classical setup technique for rigid body structures,
to smaller arcs in between the projections in case b, shows
that using just a 20° separation angle leads to a loss in esti-
mation accuracy. On the other hand, using only a 40° sepa-
ration angle can compensate these inaccuracies due to imag-
ing directions, so that for patient positioning also a smaller
arc than 90° can be suggested.

Second, by comparing the orthogonal projections of case
a to the two small orthogonal arcs of case c �10° arcs with
five projections each�, one can see the benefit in using more
projections and, in consequence, in eliminating the influence
of the detection error.

Third, by following the argumentation of using only short

maging schemes of Fig. 2, cases a–f, for 20 setups.
timated target position �x̂T,k , ŷT,k , ẑT,k� and the target

zT,k� along each coordinated for setup k=1, . . . ,20.
d analog for RMSEy and RMSEz. Additionally, the

presented for comparison �with NA due to high
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and 40° arc range with ten projections each. Comparing
these results to the corresponding case b, an increase in the
estimation accuracy can be observed, which corresponds to
the elimination of the influence of the detection error, analog
to above. Moreover, with a 40° arc range, already the accu-
racy of the two orthogonal short arcs of case c can be
achieved, leading to equivalent setups.

Fourthly, by comparing cases C and D 40° utilizing ten
projections, with a high number of projections for a full 90°
arc in case E with 89 projections and a full 180° arc in case
F with 177 projections, no essential further gain in accuracy
can be observed. Therefore, utilizing case C or D 40° might
lead to a strong reduction of projections one needs to acquire
for patient positioning compared to a full cone beam recon-
struction with 393 projections in the CB-CT System XVI
and, in consequence, a reduction of dose and time. The only
assumption for estimation is the possibility of detecting fea-
tures in the radiographs at all, and even high detection errors
can be compensated by using more projections.

IV.B. Evaluation of the rule of thumb

For practical purposes, we are evaluating the behavior of
the rule of thumb formula for different ranges for the param-
eters of the prior knowledge. We will show, therefore, the
results of the rule of thumb as solid lines and, additionally,
the empirical RMSEs for 10 000 numerical simulations �for
each parameter set� of a 3D cone beam geometry as crosses.
These empirical RMSEs based on simulations refer to the
translational error in the x- and y-directions, utilizing the
same parameters and distribution of imaging angles as for
the rule of thumb. In consequence, we verify that the change
from 2D parallel beam to 3D cone beam geometry does not
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At first, we want to illustrate how many projections are
necessary to make the estimation itself sufficiently indepen-
dent of the feature detection algorithm in the projections.
Therefore, we essentially have to investigate the influence of
the number of projections N on the RMSE. In Fig. 5 �left�,
different scenarios are presented, leading to the conclusion
that using about N=20 projections reduces the residual esti-
mation error to about 5% for an even poorly working feature
detection algorithm.

Second, the behavior of the estimation accuracy for varia-
tions of the number of detectable features in the projections
will be illustrated. In Fig. 5 �right�, a strong dependence of
the estimation accuracy on the plasticity of the body �repre-
sented by �F� and the number of detectable features L can be
observed. This means that more flexible geometries �such as
�F=1.0 cm� do need a high L �such as 30 features for a
RMSE of 0.2 cm� and almost rigid geometries �such as �F

=0.1 cm� only need L�1–5 features for good setup accu-
racy �RMSE of 0.1 cm�, which is in agreement to the high
accuracy in the work of Gall5 for cranial structures.

V. DISCUSSION

Patient positioning techniques are an important part of
fractionated radiotherapy in the framework of IGRT and the
focus of current research. Different approaches are devel-
oped for this task, such as the broadly applied reconstruction
based techniques using cone beam CT,2–4 optical
cameras,29–31 ultrasound methods,32 or positioning tech-
niques based on just a few radiographs.5–8 Typically, these
methods provide submillimeter accuracy for rigid bodies and
good contrast but lead to problems in interpretation for de-
termining the rigid transformation parameters when inter-
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ally, some of these methods have inherent problems, such as
metal and motion artifacts in CB-CT or systematically low
image quality in ultrasound and projection based methods.

In this work, we introduce a patient setup technique based
on prior knowledge, which utilizes feature positions detected
in CB projections �recorded by a CB-CT system�, without
the need of 3D CB-CT reconstruction. A novel part of this
formulation is the utilization of prior knowledge in a
stochastic-geometrical model about the initial patient setup
accuracy �e.g., by an in-room laser system and skin markers�,
the relative shifts about the features inside the body �essen-
tially the plasticity of the body�, and a model for the detec-
tion error of the features in the projections. Therefore, this
work can also be regarded as a general introduction to a
stochastic-geometrical framework for patient positioning in
which further developments might be achieved.

In this context, the technique presented can also be inter-
preted as an extension of classical feature based patient setup
by orthogonal projections for rigid body structures �such as
in Ref. 5� to deformable bodies, incorporating prior knowl-
edge.

The estimation of the translational and rotational inter-
fractional setup errors is based on the maximum a posteriori
argumentation in the Bayesian framework, which is typically
utilized to introduce prior knowledge into estimators. The
estimator for a 2D parallel beam is derived under simplifying
assumptions for which it can be shown that the Cramér–Rao-
bound is fulfilled �and that the estimator is therefore effi-
cient�. The result for the 3D cone beam model for the clinical
application is presented in Appendix A.

One of the major results is a rule of thumb that relates the
parameters of prior knowledge �such as the initial setup error
�T, plasticity parameter of the body �F, etc.� and data acqui-
sition �such as number of projections N, feature detection
accuracy ��U, etc.� to the expected resulting estimation error.
One main consequence is that for a finite number of features,
an inherent limit of accuracy can be achieved depending on
plasticity and initial setup accuracy, which cannot be in-
creased by acquiring more projections. Another point is that
detecting as many features as possible �depending on the
plasticity of the body� is a central challenge for increasing
estimation accuracy. It is also shown theoretically that utiliz-
ing prior knowledge about the initial setup error will always
benefit for the estimation.

Besides the theoretical derivations, the clinical application
of the estimator and the determination of the prior knowl-
edge out of multimodality imaging techniques are also dis-
cussed in Sec. II E 2. It is pointed out that utilizing a model
for prior knowledge also allows individualizing the patient
setup by updating this prior knowledge successively and es-
sentially separating long-term systematic errors from short-
term random errors during the course of fractionation. This
might be useful for applications in the adaptive radiotherapy.

In Sec. III A, an experimental verification of the estima-
tion is presented. It utilizes a deformable phantom which is

filled with gelatin and in which six chrome balls with 1 mm
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diameter as features can be moved in radial directions rela-
tive to each other, simulating the plasticity of a body in a
reproducible fashion. In total, 20 setups with different rela-
tive shifts of the features to each other and a global initial
setup error by shifting the whole phantom along the x-, y-,
and z-directions are performed. In every setup, cone beam
projections are acquired and the features are determined in
these projections with a semiautomatic detection algorithm.
After that, the corresponding setup errors are estimated with
the MAP estimator for different imaging directions starting
from orthogonal projections to a full set of cone beam pro-
jections in a 180° arc.

The evaluation of the phantom experiment suggests that
two orthogonal small arcs �10° each� or a small arc with 40°
lead to the same accuracy of about 0.2 cm of the patient
setup as acquisition schemes for the full data set of projec-
tions. We want to point out that for setup techniques involv-
ing, first, CB-CT reconstruction and then reconstructed im-
age registration with the planning CT, accuracies of down to
about 0.1 cm are reported.2 Current studies suggest that the
overall positioning accuracies of CB-TS algorithms �without
internal deformations� are about 0.1–0.2 cm for small
arcs.14,33,34 Therefore, the experimental accuracy of our esti-
mation method can be roughly expected to be in the range of
CB-TS based registration. However, a detailed comparison

TABLE II. Nomenclature of extended and newly introduced estimates and
parameters of the prior knowledge. For clarification of the measured values,
see Fig. 6.

Estimates Description

x̂T , ŷT , ẑT Estimated position of the target
in x-, y-, and z- directions

�̂x , �̂y , �̂z Estimated rotation of the target around
x-, y-, and z- axes

Prior knowledge Description

�XT
,�YT

,�ZT
Expected position of the target
�typically from planning CT�

	T Covariance matrix of the deviations
of the target position

�depending on initial setup technique�
��x

,��y
,��z

Expected rotation of the target �typically 0°�
��x

,��y
,��z

Standard deviations of the target rotation
�depending on initial setup technique�

�XF,l
,�YF,l

,�ZF,l
Expected anatomical distances between target

and feature l �determined by multiple planning CT
or other imaging modalities�

	F,l Covariance matrix of the deviations
of the anatomical distances between the target

and feature l �based on multiple
imaging and/or anatomical reasoning�

Measurements Description

ul,n ,vl,n Position of feature l in projection n in u-direction
�parallel to the x-y-plane� and v-direction

�parallel to the z-axis�
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of all of these methods, especially for deformable phantoms
or clinical cases, is recommended for the future research.

VI. CONCLUSION

In this work, a feature based patient positioning method is
presented utilizing cone beam projections �or radiographs�.
The stochastic formulation of this problem includes three
sources of uncertainties, such as the initial patient setup error
after laser-based adjustment of the patient position, the de-
formability of the patient anatomy compared to the reference
data, and measurement noise for the detection of the features
in the radiographs.

The principles of derivation of the maximum a posteriori
approach are presented for a 2D parallel beam model and the
final estimator for the 3D cone beam model is given in Ap-
pendix A, which can be applied in clinical practice. Addi-
tionally, a rule of thumb for the estimation accuracy is de-
rived, which provides further insight in the behavior of the
estimator depending on deformation, detection, and CB data
acquisition parameters.

The approach presented can also be interpreted as an ex-
tension of previous developed deterministic methods, which
relied only on pure geometrical considerations. In conse-
quence, the methodology can also be understood as a
stochastic-geometrical formulation of the inverse problem of
patient positioning and an introduction to a theoretical
framework for future applications.
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APPENDIX A: THE 3D CONE BEAM ESTIMATOR
FOR TARGET POSITION AND ROTATIONS

For 3D cone beam geometry with the estimation of target
translation and rotation and lifting the assumptions of Sec. II,
new parameters have to be introduced as presented in Table
II �please note that all quantities are in reference to the treat-
ment coordinate system and Gaussians are utilized as prob-
ability density functions to describe different sources of prior
knowledge�.

In this approach, an optimal rotation and shift is estimated
although nonlinear deformations may have occurred inside
the body by utilizing probability distributions. The final
transformation of the patient with the treatment couch �from
coordinates �x ,y ,z�T to �x� ,y� ,z��T� is then described with

�x�

y�

z�
� = �z��̂z��y��̂y��x��̂x��x − x̂T

y − ŷT

z − ẑT
� + �x̂T

ŷT

ẑT
� , �A1�

with the rotation matrices �x, �y, and �z of the Euler angles
around the x-, y-, and z-axes �e.g., see Ref. 5� and the esti-
mated values �x̂T , ŷT , ẑT , �̂x , �̂y , �̂z�.

With these definitions, the optimal MAP estimates for the
3D cone beam geometry are then determined by Eq. �A2�.
The objective function in this expression is almost quadratic
in the translational parameters and therefore can be solved
numerically efficiently with iterative optimization
algorithms.
arg min�xT,yT,zT,�x,�y,�z��xT

yT

zT
�

T

	T
−1�xT

yT

zT
� − 2��XT

�YT

�ZT

�
T

	T
−1�xT

yT

zT
� + 
�x − ��x

��x

�2

+ 
�y − ��y

��y

�2

+ 
�z − ��z

��z

�2

+ �
l=1

L

c − �b + ��XF,l

�YF,l

�ZF,l

�
T

	F,l
−1� · �M−1 + 	F,l� · �b + ��XF,l

�YF,l

�ZF,l

�
T

	F,l
−1�

T

, �A2�

with the arrays

M =�
�
i=1

N
�u1

2 + �v1
2

��U
2 +

1

�XF,l

2 �
i=1

N
�u1�u2 + �v1�v2

��U
2 �

i=1

N
�u1�u3 + �v1�v3

��U
2

�
i=1

N
�u1�u2 + �v1�v2

��U
2 �

i=1

N
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2

��U
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1
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N
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��U
2

�
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N
�u1�u3 + �v1�v3

��U
2 �
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N
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2 �
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N
�u3
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2

��U
2 +

1

�ZF,l

2

� , �A3�
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b = 
− �
i=1

N
��u1 + ��v1

��U
2 +

�XF,l

�XF,l

2 ,− �
i=1

N
��u2 + ��v2

��U
2

+
�YF,l

�YF,l

2 ,− �
i=1

N
��u3 + ��v3

��U
2 +

�ZF,l

�ZF,l

2 � , �A4�

and

c = �
i=1

N
�2 + �2

��U
2 . �A5�

The appearing auxiliary expressions are

�u ª� sin �n +
ul,n cos �n

SAD + ADD

− cos �n +
ul,n sin �n

SAD + ADD

0
�

T

· �z��z��y��y��x��x� ,

�A6�

�v ª�
vl,n cos �n

SAD + ADD

vl,n sin �n

SAD + ADD

− 1
�

T

· �z��z��y��y��x��x� , �A7�

� ª 
sin �n +
ul,n cos �n

SAD + ADD
� · xT

+ 
− cos �n +
ul,n sin �n

SAD + ADD
� · yT +

ul,nSAD

SAD + ADD
, �A8�

and
with a positive constant const.
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� ª

vl,n

SAD + ADD
�cos �n · xT + sin �n · yT + SAD� − zT.

�A9�

In these formulas SAD represents the source-axis-distance
and ADD the axis-detector-distance �see Fig. 6�.

APPENDIX B: TECHNICAL INTERPRETATION OF
INTERSECTION OF EVENTS

By assuming that the geometrical shifts just in between
different features do not contain information about the posi-
tion of the treatment target, expression �7� is equivalent to

arg max�xT,yT��
l=1

L

P� �
n=1

N

Ul,n = ul,n	XT = xT � YT = yT�

· P�XT = xT � YT = yT� . �B1�

Essentially, we have to insert the definition and apply the law
of total probability to the likelihood expression

0

x

y

z

θ

u

v

source

projection

SAD

ADD

FIG. 6. Visualization of the coordinate systems used for the derivation of the
MAP estimator.
P� �
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�Ul,n = ul,n + �xT + s� · sin �n − �yT + t� · cos �n�P�XF,l = s � YF,l = t�d�s,t� �B4�

to being able to interpret all occurring probabilities. After inserting the Gaussian probability distributions, this integral can be
calculated analytically, leading to

=const · exp��
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N
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