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Abstract

The result that firms competing in a Cournot oligopoly with pairwise collab-

oration form a complete network under zero or negligible link formation costs

provided by Goyal and Joshi (2003) no longer hold in multi-market oligopolies.

Link formation in one market affects a firm’s profitability in another market in

a possibly negative way resulting in the fact that it is no longer always prof-

itable in an unambiguous manner. With non-negative link formation costs, the

stable networks have a dominant group architecture and efficient networks are

charecterized by at most one non-singleton component with a geodesic distance

between players that is less than three.
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1 Introduction

In two landmark papers, Goyal and Joshi (2003, 2006) set forth the issue of using the

emerging network formation literature to discuss collaboration in R&D among a set

of oligopolistic firms. The first paper characterizes stable and efficient networks. The

second paper show that the model is an example of a more general category of models

called playing the field games. In this paper, we extend the analysis to oligopolistic

firms competing in more than one market.

Goyal and Joshi (2003) put forward the proposition that firms competing in a

homogeneous Cournot oligopoly with constant returns to scale cost functions and

forming collaborative links among themselves will form a complete network under

negligible link formation costs. The rationale is straightforward. Links lower marginal

costs of both players involved in forming a link. The firm gains in terms of gross profits

(or profits not including link formation costs) by the lowering of its marginal cost.

It loses by the lowering of its partner’s marginal costs. The gain outweighs the loss

and hence link formation is profitable. Similar results will follow if link formation

increases demand (for instance, by increasing the demand intercept) of both firms

forming a collaborative link. Such increases may be the outcome of quality enhancing

collaborations.

Now, consider the case where firms compete in more than one market. Then, the

mechanics of the effects associated with link formation are much more complicated.

Bulow et al. (1985) investigate some of these effects in a general strategic setting.

Suppose there are joint diseconomies across markets in the sense that higher quan-

tity produced in one market reduces marginal profitability associated with an unit

of production in the other. Furthermore, the market structure is such that goods

produced by competing firms are strategic substitutes. Then any strategic action

(such as collaborative link formation) designed to increase demand and reduce costs

inevitably increases the quantity produced in one market. This will (because of joint

diseconomies) reduce the marginal profitability and quantity produced in the other

market. Because of strategic substitutability, rival firms increase quantities produced

and this induces certainly a loss in the second market and possibly an overall loss for

the firm.

We investigate the stable and efficient networks that may form in the setting of
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a multi-market oligopoly with non-negative link formation costs. We assume a het-

erogeneous product market, linear demand curves and quadratic cost functions. In a

departure from Goyal and Joshi (2003), we look at quality-enchancing collaborations

rather than cost-reducing collaborations. Since multiple quality levels are incompati-

ble with the notion of a homogeneous product, we look at a market with differentiated

products. The quadratic cost functions are introduced in order to make sure that the

assumption of joint diseconomies (defined below) is valid. This play a key role in the

inter-market effects. If we use linear cost functions, the inter-market effects disap-

pear and we expect too see results that are similar to Goyal and Joshi (2003). A link

between two firms with shift the demand curves of both firms to right as a result of

quality improvements. Firms compete in two separate markets but for purposes of

simplicity, quality enhancing collaborations are restricted only to one market. The

cost function is a quadratic function of quantities produced in both markets.

It turns out that stable networks have, what Goyal and Joshi (2003) refer to

as the dominant group architecture. Namely, the firms can be partitioned into two

groups. In the first group, all firms are linked to each other. In the second group,

the firms have no links whatsoever. This is a consequence of increasing returns to

link formation. Namely, the more links a firm has, the greater the benefit of forming

an additional link. With regard to efficient networks, we cannot arrive at a precise

characterization of the networks that will result though we can derive some interesting

properties of such networks and restrict the set of networks that are efficient into a

small class. For four firms or more, efficient networks have only one component and

the geodesic distance between two connected players cannot exceed two. In other

words, dominant group architectures are possible candidates for efficient networks

but we show using examples, that stable and efficient networks need not coincide.

The rest of the paper proceeds as follows. Section 2 introduces the model and

discusses the notation and terminology. Section 3 discusses the inter-market effects

a la´ Bulow et. al. (1985). Section 4 discusses stable networks. Section 5 discusses

efficient networks. Section 7 concludes. The paper has a lot of tedious algebra most

of which has been relegated to the Appendix.
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2 Preliminaries

2.1 The Multi-market Cournot Model

Suppose there are  firms indexed  = 1 2      (where  > 2) that compete a la´
Cournot in two inter-related markets  and . Demand in  for firm  is given by

 =  −  −
X
 6=

 (1)

Demand in  for firm  is given by

 =  − −
X
 6=

 (2)

The cost function of the firm  is given by

( ) =
1

2
( +)

2 (3)

and profit of firm  is given by

 =  ·  +  · − ( ) (4)

We begin by giving a rationale of the demand function employed here. Products

here are near substitutes but vertically differentiated. Differential quality levels allow

firms to charge different prices creating a sub-market within the larger market. This

demand function was introduced by Bowley (1924)1 and used by Spence (1976) and

Dixit (1979). More recently, such demand functions have been employed for instance

by Chakrabarti and Haller (2007) in the context of targeted advertising.

The assumption of joint diseconomies is equivalent to
2



 0. In this model,

it holds because
2



= −1. The assumption of strategic substitutes is equivalent

to
2



 0. In this model, it holds because
2



= −1.

First consider market 1 in isolation by assuming a priori that  = 0 for all . Let

∗  
∗
 and ∗ denote equilibrium quantities and profits in the second stage. Then, it

1Usually, a more general formulation,  =  −  − 
X
 6=

 where 0 6  6 1 is employed. The

current formulation simplifies the exposition without changing the results.
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is straight forward to show that

∗ =
3

8

µ(+ 1) −
X
 6=



+ 2

¶2
.

Let us consider now the full fledged model. Upon solving the second stage of the

model, we get

∗ =
1

3(3 + 4+ 2)

£
(6 + 8+ 22) − (3 + 4+ 2)

¤
+

1

3(3 + 4+ 2)

£−(5 + 2)+ (4 + )
¤
;

∗ =
1

3(3 + 4+ 2)

£
(6 + 8+ 22) − (3 + 4+ 2)

¤
+

1

3(3 + 4+ 2)

£−(5 + 2) + (4 + )
¤


where  =
P
=1

 and  =
P
=1

. The calculations are in the appendix. The expression

for profit is complicated and given in the appendix.

2.2 Networks

Let the set of players be denoted by  = {1 2     }. A network  is a list of pairs
of players who are linked to each other. For simplicity, we denote the link between

 and  (where  6= ) by , so  ∈  indicates  and  are linked in the network .

The links are undirected in the sense that we do not distinguish between  and .

Let  be the set of all subsets of  of size 2. The network  is referred to as the

complete network. The set  = { ⊂ } denotes the set of all possible networks on
 . A network in which there are no links is called an empty network and is denoted

by 0.

We let  +  denote the network formed by adding the link  to the network

.  −  denotes the network formed by deleting the link  from the network . A

network payoff function  : → R+ assigns an utility to player  by virtue of being

part of a network. Let  = (1 2     ) denote the vector of utility functions.

Then  combined with  defines a network game.2

2Originally, the term network game was used to denote a transferable utility version of the game

by Jackson (2005).
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A firm ’s neighborhood () is given by { ∈ \{}| ∈ } and its cardinality
is given by () = |()|. () is called the degree of player  in network . We

also define () = ∪∈(). () refers to the set of players that have at least one

link. Let () = #() with the convention that if () = ∅, we let () = 1.3

Player  therefore is participating in the links in her link set () = { ∈  |  ∈
()} ⊂ . Let  = (

) denote the set of all possible links involving player .

Let () = 1
2

P
∈

() be the total number of links in a network .

For any  ⊂ , let  −  denotes the network formed by deleting the link set 

from the network . Similarly, for  ⊂ \,  +  denotes the network formed by

adding the link set  from the network .

A network  is regular if each player has the same number of neighbors. Namely,

for all  6= , () = ().

A path in  connecting  and  is a set of distinct players {1 2     } ⊂ ()

with  > 2 such that 1 = ,  = , and {12 23     −1} ⊂ . We refer to the

number of links on this path, here − 1, as the length of the path.
We say  and  are connected to each other if a path exists between them and

they are disconnected otherwise. The number of links on the shortest path between

two distinct players  and  is called the geodesic distance between  and .

The network 0 ⊂  is a component of  if (0) > 2 and for all  ∈ (0) and

 ∈ (0),  6= , there exists a path in 0 connecting  and  and for any  ∈ (0) and

 ∈ (),  ∈  implies  ∈ 0. In other words, a component is simply a maximally

connected subnetwork of . We denote the set of network components of the network

 by (). The set of players that are not connected in the network  are collected

in the set of (fully) disconnected players in  denoted by

0() =  \() = { ∈  | () = ∅}

Such players are known as singletons. A component 0 ⊂  is complete if for all

distinct   ∈ (0),  ∈ . A component 0 ⊂  is regular if for all distinct

  ∈ (0), () = (). The dominant group architecture  is characterized by

one complete non-singleton component with  > 2 players and −  singletons.

3We emphasize here that if () 6= ∅, we have that () > 2. Namely, in those cases the network
has to consist of at least one link.
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A network is a pairwise equilibrium network with regard to a profile of utility

functions  if

(a) for all  and  ⊂  (), () > ( − ), and

(b) for all  and  ∈ , if ( + )  () then ( + )  ().

An equivalent definition can be given as follows. Consider a non-cooperative game

where each player  has a strategy set  =
n
{} 6=

o
with  ∈ {0 1}.  = 1means

 intends to form a link with , while  = 0 means  does not intend to form such

a link. A link between two players is formed if and only if  =  = 1. A strategy

profile  = {1 2 · · ·  } induces a network  () =

( S
6=∈∈

| =  = 1

)
.

We say that the network  () is induced by the strategy profile . A network  is a

pairwise equilibrium network (or simply and equilibrium network) if

(a) There is a Nash equilibrium strategy profile that induces ;

(b) for all  and  ∈ , if ( + )  () then ( + )  ().

For any network , and  ⊂ \, we denote the marginal benefit of link formation
by

∆( ) = ( + )− ().

Obviously, for a pairwise equilibrium network, ∆( −  ) > 0 for all  ⊂  ()

and if ∆( )  0 then ∆( )  0.

Next, we define efficient networks. Consider a social welfare function  given by

sums of payoffs of all the players. Therefore,

 () =

X
=1

()

A network is efficient it is maximizes the social welfare function. More specifically,

0 is efficient if

 (0) > ()

for all  6= 0. For any network , and  ⊂ \, we denote the marginal change in
social welfare as a result of link formation by

∆ ( ) = ( + )− ().

7



Obviously, for an efficient network, ∆ ( −  ) > 0 and ∆ ( ) 6 0.

3 Inter-market Effects

We assume that firms can improve quality via collaborative links in market 1. This

enhances demand. Hence, if a firm has formed  links, then

 = 0 +  ·  (5)

It is reasonable to assume that 0  . For reasons that will be clear later, we assume

0 is sufficiently large compared to , namely,

0 

∙
(− 1)2
2

¸
 (6)

Link formation costs are given by a real number  where  > 0. To keep the model
tractable, assume that no link formation is possible in the second market. Hence,

assume a two stage game where first stage consists of a link formation game and in

the second stage, Cournot competition ensues. Define

() = 0 +  · ()
Then, the relevant network network payoff function is given by

() = ∗ (())−  · ()
where ∗ (()) is derived by expressing optimal profits 

∗
 in (36) as a function of

 = (). Let us assume for time being that  = 0.

First consider market 1 in isolation by assuming a priori that  = 0 for all . For

an incomplete network , if  forms a link with  6=  (where  ∈ ), its net profits

increase by

∆( ) =
3

4

µ


(+ 2)
2

¶"
(+ 1) ()−

X
 6=

 () +


2

#


Now, (+1) ()−
X
 6=

 () > (+1)0−(−1) (0 + (− 1)) = 2·0−(−1)2· 

0 from (6). Hence, each link unambiguously increases profitability and a complete

network is the unique pairwise stable network. This leads to the following lemma.
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Lemma 1 Let us exogenously impose the condition that  = 0 for all . Then, with

 = 0, the unique pairwise equilibrium network is given by the complete network.

Let us consider now the full fledged model. If  forms a link with  6= , its net

profits increase by

∆( ) =

∙
 () · 

18(1 + )2(3 + )2

¸ ¡
224 + 1103 + 902 − 134+ 8¢

−
∙
ÃX

 6=
 ()

!
· 

18(1 + )2(3 + )2

¸ ¡
223 + 1022 + 66− 158¢

−
∙

 · 
18(1 + )2(3 + )2

¸ ¡
144 + 703 + 182 − 190− 8¢

+

∙
ÃX

 6=


!
· 

18(1 + )2(3 + )2

¸ ¡
143 + 782 + 42− 166¢

+

∙
2

18(1 + )2(3 + )2

¸ ¡
114 + 443 − 62 − 100+ 83¢  (7)

Clearly, ∆( ) is not necessary positive. For instance, consider for all ,  =

6  = 400 0 = 100  = 005. Consider an empty network for which  = 0. In

such a network, ∆(
0 ) = −00894772 making the empty network an equilibrium

network. In a complete network, deleting a link yields a positive payoff of 00890931

and hence the complete network is not an equilibrium network. In other words, the

mechanics driving the results of Goyal and Joshi (2003) fail to hold. In the Appendix,

we derive precise conditions for the empty network to be an equilibrium network when

the costs of link formation are zero.

We give some intuition behind these results. It follows from strategic complemen-

tarity and joint economies analyzed by Bulow et al. (1985). Note that

∗


=

µ
∗
∗

¶µ
∗


¶
+
X
 6=

µ
∗
∗

¶µ
∗


¶
+

µ
∗
∗

¶µ
∗


¶
+
X
 6=

µ
∗
∗

¶µ
∗


¶
+

µ
∗


¶
. (8)
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Also,

∗ =

Ã
 −

X
=1

∗

!
∗ +

Ã
 −

X
=1

∗

!
∗ −

1

2
(∗ +∗ )

2.

Hence, for  6= ,

∗
∗

= −∗  0; (9)

∗


= ∗  0; (10)

∗
∗

= −∗  0 (11)

Also, from first order conditions of profit maximization,

∗
∗

= 0; (12)

∗
∗

= 0 (13)

resulting in two terms of (8) dropping out. In Cournot competition, quantity pro-

duced by a firm in equilibrium is decreasing in the demand intercepts of it’s rivals.

Hence, µ
∗


¶
 0 (14)

Further, Bulow et al. (1985) show that



µ
∗


¶
= 

∙µ
2



¶
·
µ

2



¶¸
.

Given

µ
2



¶
= −1 and

µ
2



¶
= −1 in this multi-market model,4

µ
∗


¶
 0 (15)

Using inequalities (15), (14), (9), (10) and (11), we can sign each term to get the

following:
∗


=
X
 6=

µ
∗
∗

¶
| {z }

0

µ
∗


¶
| {z }

0

+
X
 6=

µ
∗
∗

¶
| {z }

0

µ
∗


¶
| {z }

0

+

µ
∗


¶
| {z }

0

. (16)

4Note that inequalities (15) and (14) can be verified from (34) and (35).
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So, the aberrant sign is introduced by the presence of

µ
∗


¶
being positive. If it were

negative, then any increase in  would only boost profits and a complete network

would result in equilibrium. In fact, the precise expression for
∗


is given by

∗


= ∗

µ
1 +

(5 + 2)(− 1)
3(3 + 4+ 2)

¶
−∗

µ
(4 + )(− 1)
3(3 + 4+ 2)

¶
 (17)

Given that an increase in demand in one market no longer unambiguously increases

profit, the result follows.

4 Configuration of Equilibrium Networks

While the payoff functions are quite complicated, this game has features that were

analyzed by Goyal and Joshi (2006). We will devote some space to reproducing their

definitions and terminology. Let us assume  > 0.
Suppose from the network , we remove player  and all his links, and call the

resulting network −. Namely, − =  − (). Now, the total number of links in

this network − is given by
1

2

P
 6=

 (−) =  (−).

Definition 1 A network game is called playing the field game if the payoff function

of player  is a function of her degree  () and  (−), namely,

 () = Φ ( ()   (−))−  · ()

Definition 2 The payoff function Φ is convex in its own links if the marginal returns

Φ ( + 1 )−Φ ( ) is strictly increasing in .

Definition 3 Suppose 0  . The payoff function Φ satisfies the strategic substitutes

property if Φ ( + 1 0)−Φ ( 0)  Φ ( + 1 )−Φ ( ).

The next lemma is a reproduction of Proposition 3.1 of Goyal and Joshi (2006).

Lemma 2 For a playing the field game, if the payoff function satisfies convexity in

own links and the strategic substitutes property, then a pairwise equilibrium network

always exists. Furthermore, if the payoff function satisfies convexity in own links, the

pairwise equilibrium network is either complete or empty or has the dominant group

architecture.

11



In the appendix we show that the network games qualifies as playing the field

game. Furthermore, the payoff function satisfies convexity in own links as well as the

strategic substitutes property. In fact, if we define

∆( ) = Φ ( + 1 )−Φ ( ) 

then we show in the appendix that

∆


=
22 (114 + 443 − 62 − 100+ 83)

18 (1 + )
2
(3 + )

2
 0

and
∆


= −4

2 (223 + 1022 + 66− 158)
18 (1 + )

2
(3 + )

2
 0

Therefore, applying Lemma 2, we get the following corollary.

Corollary 1 The pairwise equilibrium network exists and is either complete or empty

or has a dominant group architecture.

We note that in the one-market Cournot model, the dominant group architecture

emerges. To see this, one can verify that the one-market Cournot game is also an

example of playing the field game and then apply Lemma 2.

5 Configuration of Efficient Networks

We shall distinguish between three kinds of efficiency. First the efficient networks

for firms is one that maximizes the joint profits of firms. This corresponds to the

usual notion of efficiency as defined by Jackson and Wolinsky (1996) because firms

are involved in the link formation process. However, one can define two other kinds

of efficiency. The efficient networks for consumers are ones that maximize the overall

consumer surplus. Overall efficiency refers in our case to networks maximizing the

sum of joint profits and overall consumer surplus. If we just use the words, efficient

networks, we are referring to efficient networks for firms.
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5.1 Efficient Networks for Firms

In this section, we shall discuss efficient networks where the social welfare function

is defined by the sum of profits of all the firms. While we do not obtain an exact

characterization of efficient networks, we can identify certain properties of such net-

works. Let Π : → R+ denote the joint profit of firms as a function of the network.

In other words,

Π() =

X
=1

()

Consider the effect of link formation between two arbitrary firms  and  in a

network . In the Appendix we show that such link formation alters the joint profit

of all firms by

∆Π( ) = 0
"
( + )−  0



ÃX
 6=



!
+ Λ0

#
− 2 (18)

where  0  0 0  0 and Λ0 are constants independent of network structure.  0 has

an upper bound less than 11 (at  = 2, its value is 10791) and is strictly decreasing

in . It has a lower bound of 2 and converges asymptotically to 2. It is important to

note that at  = 4,  0 = 35 For the discussion that follows, let us assume  > 3.

Lemma 3 (i) For any network  and player  such that   ∈  and ()  (),

∆Π( +  )  ∆Π( ).

(ii) If () = () but  > 4, ∆Π( +  )  ∆Π( ) as well.

Proof. (i) Starting from an arbitrary network  with   ∈  suppose two players 

and  form a link. This implies from (18), the increase in social welfare is proportional

to

∆Π( )

0
= 2·0+·[() + ()]−

 0



Ã
(− 2)0 + 

X
 6=

() +  · ()
!
+Λ0−2

³ 

0

´

Then, for forming yet another link say , the the increase in social welfare is pro-

portional to
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∆Π( +  )

0
= 2 · 0 +  · [() + () + 1]

−
0



Ã
(− 2)0 + 

X
 6=

() +  · (() + 1)
!
+ Λ0 − 2

³ 

0

´
=

∆Π( )

0
+ 

∙µ
1−  0



¶
+

µ
1 +

 0



¶
(()− ())

¸
=

∆Π( )

0
+ 

∙
2 +

µ
1 +

 0



¶
(()− ()− 1)

¸

Now, if ()  (), it implies () > () + 1. Hence,
∆Π( +  )

0


∆Π( )

0
completing the proof.

(ii) Now,
∆Π( +  )

0
=

∆Π( )

0
+ 

∙µ
1−  0



¶¸


Since  0 = 35 for  = 4,
 0


 1. Furthermore,  0 and hence

 0


is strictly decreasing

in , therefore
 0


 1 for all  > 4. Hence, it follows that in all cases,

∆Π( +  )

0


∆Π( )

0


The following lemma plays a key role in the results that follow.

Lemma 4 For any efficient network for firms , if  ∈  and  ∈ , then () >
(). If  > 4, ()  ().

Proof. Suppose there exists an efficient network  and  ∈  and  ∈ . Then,

∆Π(−  ) > 0. Suppose, towards a contradiction, ()  (). This implies by

Lemma 3 that ∆Π( )  0 contradicting that  is efficient. Hence, () 6 ().

Next let () = () and  > 4. Again, ∆Π( )  ∆Π( −  ) > 0 which
contradicts that  is efficient. Therefore, ()  ()

The proposition below sets forth properties that characterize efficient networks

for firms.
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Proposition 1 If  > 4: (i) The efficient network for firms cannot consist of more
than one component.

(ii) The geodesic distance between any two connected players in an efficient network

for firms is less than or equal to 2.

Proof. (i) Suppose 1 2 ∈ () where  is an efficient network and  ∈ 1 and

 ∈ 2. Now,  is linked to  and not to  which implies using Lemma 4, ()  ().

But  is linked to  but not to  which implies ()  (). Hence, we arrive at a

contradiction.

(ii) Take two players  and  such that  and  belong to () where  ∈ ().

Hence, a path exists between  and . Suppose the shortest path is {12 23     −1}
where 1 =  and  =  and  > 4.  is linked to 2 but  is not linked to 3. Hence,
from Lemma 4, we get

2()  3() (19)

Now, 4 is linked to 3 but not linked to 2. Hence,

3()  2() (20)

But (20) contradicts (19).

5.2 Efficient Networks for Consumers

In this section, we shall discuss efficient networks with regard to consumers. Namely,

these are networks that maximize the consumer surplus. Consider the total consumer

surplus of agents in both markets. It is given by

 =
X


( − ∗ ) 
∗
 +

X


( −  ∗ )
∗
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where ∗ =  − ∗ and  ∗ =  −
∗
denotes prices in both markets at equilibrium.

Let  =
P
=1

 and  =
P
=1

. Hence,

 =
X


( − ∗ ) 
∗
 +

X


( −  ∗ )
∗


=
X


(∗) ∗ +
X


³

∗´

∗

= (∗)2 +
³

∗´2

=

∙
(+ 2)− 

3 + 4+ 2

¸2
+

∙
(+ 2) − 

3 + 4+ 2

¸2

=
(2 + 4+ 5)

³
2 + 

2
´
− 4(+ 2)

(3 + 4+ 2)
2



We can express consumer surplus  as a function of the network. To this end, let

 :  → R+ denote the overall consumer surplus as a function of the network.

Now, suppose two players  and  form a link in a network  where initially  ∈ .

Then,  increases by 2 and hence,

∆( ) =
(2 + 4+ 5) (2) (2+ 2)− 4(+ 2) (2)

(3 + 4+ 2)
2

− 2

Proposition 2 The efficient network with regard to consumers is either complete or

empty.

Proof. Consider any two arbitrary links  and  where neither link belongs to the

network. Now,

∆( +  )−∆( ) =
82(2 + 4+ 5)

(3 + 4+ 2)
2

 0

Hence, if ∆( )  0, then ∆(+  )  0 as well. Hence, starting from any

arbitrary network, if forming one link increases consumer surplus, then forming all

subsequent links enhances welfare as well. Hence, we end up in the complete network.

If on the other hand, link formation costs are sufficiently high, the empty network is

efficient.

16



5.3 Overall Efficiency

Overall efficient networks have similar properties to that of networks for firms. Let

us define

 () = () +Π() (21)

for all  ∈ . Suppose two players  and  form a link in a network  where initially

 ∈ . Then, let

∆ ( ) = ∆( ) +∆Π( ) (22)

Lemma 5 (i) For any network  and player  such that   ∈  and ()  (),

∆ ( +  )  ∆ ( ).

(ii) If () = () but  > 4, ∆ ( +  )  ∆ ( ) as well.

Proof. (i) From Lemma 3, ∆Π( +  )  ∆Π( ). From Lemma 2, ∆( +

 )  ∆( ). Hence, applying (22), the result follows.

(ii) The result is similar to (i).

The result leads to Lemma 6 which is the analog of Lemma 4.

Lemma 6 For any overall efficient network for firms , if  ∈  and  ∈ , then

() > (). If  > 4, ()  ().

The proof follows from Lemma 5 in an analogous manner to that of the proof

of Lemma 4 so we skip it to avoid repetition. Now, Lemma 6 directly leads to

Proposition 3 and the proof is identical to the proof of Proposition 1, and so we skip

it to avoid repetition.

Proposition 3 If  > 4: (i) The overall efficient network for firms cannot consist
of more than one component.

(ii) The geodesic distance between any two connected players in an overall efficient

network for firms is less than or equal to 2.
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The networks defined above belong to a special category of networks called Nested

Split Graphs (NSG) for  ≥ 4. Belhaj, Bervoets, and Deroïan (2013, p.9) define a
NSG as a graph which satisfies the following condition: if  ∈  and () ≥ (),

then  ∈ . Clearly, this is equivalent to the condition in Lemma 6.

6 Some Examples

Next, for the purposes for illustration, let us consider some examples. By efficiency, we

are referring to the traditional notion, namely the efficiency of firms. Such examples

besides being interesting in themselves also help us verify the above theorems. They

can give us additional insights that are not included in the above proven theorems.5

Example 1 Let  = 3. Then there are eight possible networks, namely complete,

empty, {12}, {13}, {23}, {12 13}, {12 23}, {13 23}. Let  = 400 0 = 100  =

005  = 0. From our above lemmas the candidates for stability are complete, empty,

{12}, {13}, {23}, {12 13 23} while the candidates for efficiency include all networks.
The payoffs are summarized in the table below.

Network 1 2 3 Π

0 975694 975694 975694 2927083

{12} 975692 975692 975789 2927170

{13} 975692 975789 975692 2927170

{23} 975692 975692 975692 2927170

{12 13} 975690 975787 975787 2927260

{12 23} 975787 975690 975787 2927260

{13 23} 975787 975787 975690 2927260

 975785 975785 975785 2927360

The unique stable network is the empty network and the unique efficient network is

the complete network.

5All computations were done in Wolfram Mathematica 6.0 and available upon request.
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This example confirms that the sets of stable and efficient networks need not

coincide. Now, let us in Example 1 increase  from 005 to 5. The complete network

remains the efficient network, but now the stable networks are given by {},   ∈
{1 2 3} and the complete network. We show this in Example 2.

Example 2 Let  = 3. Let  = 400 0 = 100  = 5  = 0. The payoffs are

summarized in the table below.

Network 1 2 3 Π

0 975694 975694 975694 2927083

{12} 975899 975899 985529 2937326

{13} 975899 985529 975899 2937326

{23} 985529 975899 975899 2937326

{12 13} 976975 984985 984985 2946944

{12 23} 984985 976975 984985 2946944

{13 23} 984985 984985 976975 2946944

 985313 985313 985313 2955938

Now, let us in Example 1 further increase  from 5 to 45. We find that the

unique efficient network is the complete network and the unique stable network is

{},   ∈ {1 2 3}. We show this in Example 3 below.

Example 3 Let  = 3. Let  = 400 0 = 100  = 45. The payoffs are summarized

in the table below.

Network 1 2 3 Π

0 975694 975694 975694 2927083

{12} 1008924 1008924 1088924 3106771

{13} 1008924 1088924 1008924 3106771

{23} 1088924 1008924 1008924 3106771

{12 13} 1112778 1061528 1061528 3235833

{12 23} 1061528 1112778 1061528 3235833

{13 23} 1061528 1061528 1112778 3235833

 1104757 1104757 1104757 3314271
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The last example (Example 4) shows that the possibility exists that stable and

efficient networks might coincide.

Example 4 Let  = 3. Let  = 50 0 = 100  = 40. The payoffs are summarized

in the table below.

Network 1 2 3 Π

0 70313 70313 70313 210938

{12} 167658 167658 45066 380382

{13} 167658 45066 167658 380382

{23} 45066 167658 167658 380382

{12 13} 320806 94510 94510 509826

{12 23} 94510 320806 94510 509826

{13 23} 94510 94510 320806 509826

 199757 199757 199757 599271

The unique stable and efficient network is the complete network.

Now, let us focus on networks with four players. From the previous examples,

it should be abundantly clear that the network payoff function satisfies a condition

known as anonymity, which means that the payoff of a player in a network depends

on its position in the network rather than its identity. Hence, we shall use a generic

notation. The property also helps us reduce a total of 64 networks into 11. Let us

also look at consumer surplus depicted in the table below by  and overall welfare

depicted in the table below by  . We shall employ exactly the same parameters as

above.

Example 5 Let  = 4. Let  = 400 0 = 100  = 005  = 0. The payoffs are

summarized in the table below.
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Network     Π  

0 690204 690204 690204 690204 2760816 6961633 9722449

{} 690194 690194 690256 690256 2760900 6961560 9722460

{ } 690246 690184 690246 690308 2760984 6961490 9722470

{ } 690246 690246 690246 690246 2760984 6961490 9722470

{  } 690298 690236 690236 690298 2761068 6961420 9722470

{  } 690236 690236 690236 690360 2761068 6961420 9722470

{  } 690175 690298 690298 690298 2761068 6961420 9722470

{   } 690288 690288 690288 690288 2761152 6961350 9722500

{   } 690288 690227 690288 690350 2761152 6961350 9722500

{    } 690340 690278 690278 690340 2761240 6961270 9722510

 690330 690330 690330 690330 2761320 6961200 9722520

The empty network is stable and efficient for consumers. The complete network is

efficient for firms and overall efficient.

In this particular case where link formation costs are low, the formation of a link

seem to unambiguously lower the profits of the two players forming the link and

increase the profits of the other players. Total profits however seem to be increasing

in the number of links. As a consequence, the unique stable network is empty and

the unique efficient network is complete.

Now, let us look at consumer surplus and overall welfare. Consumer surplus is

monotonically decreasing in the number of links. As as result, the efficient network

for consumers is actually the empty network. Inspite of that, the complete network

remains the overall efficient network, because the gains for producers outweighs the

losses for consumers.

Let us now increase  from 005 to 5. The results are summarized below.

Example 6 Let  = 4. Let  = 400 0 = 100  = 5  = 0. The payoffs are

summarized in the table below.
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Network     Π  

0 690204 690204 690204 690204 2760816 6961633 9722449

{} 689803 689803 695624 695624 2760900 6954751 9725604

{ } 694509 690585 694509 701489 2781092 6948473 9729566

{ } 694509 694509 694509 694509 2778037 6948473 9726510

{  } 699661 694578 694578 699661 2761068 6942800 9731278

{  } 694578 694578 694578 707800 2791533 6942800 9734333

{  } 692550 699661 699661 699661 2761068 6942800 9734333

{   } 699016 699016 699016 699016 2796065 6937731 9733796

{   } 699016 695830 699016 705258 2761152 6937731 9736851

{    } 699555 699555 703900 703900 2806910 6933265 9740176

 703726 703726 703726 703726 2814902 6929404 9744306

The empty network is stable, but so is the partial circle {  }. The complete
network is overall efficient and efficient for firms. The empty network is efficient for

consumers.

Finally, let us increase  from 5 to 45. The results are summarized below.

Example 7 Let  = 4. Let  = 400 0 = 100  = 45  = 0. The payoffs are

summarized in the table below.

Network     Π  

0 690204 690204 690204 690204 2760816 6961633 9722449

{} 729195 729195 755016 755016 2968422 6921445 9889867

{ } 736224 864045 736224 855902 3192394 6930188 10122580

{ } 736224 736224 736224 736224 2778037 6930188 9875082

{  } 779326 813290 813290 779326 3185231 6987861 10173090

{  } 813290 813290 813290 992861 3432731 6987861 10420590

{  } 1094754 779326 779326 779326 3432731 6987861 10420590

{   } 798608 798608 798608 798608 3194433 7094465 10288900

{   } 798608 986215 798608 858501 3441933 7094465 10536400

{    } 913750 913750 820000 820000 3476500 7250000 10717500

 877358 877358 877358 877358 3509433 7454465 10963900

22



The stable network is {}, but so is the partial circle {  }. The complete

network is overall efficient and efficient for firms and consumers as well.

7 Conclusion

The dynamics of multi-market oligopolies first discussed in Bulow et. al. (1985) can

upset many results which would hold in isolated oligopoly markets. Here we take the

situation of collaborative link formation among Cournot oligopolists with zero link

formation costs. The results that a complete network materializes in equilibrium no

longer holds one we introduces participation of the same set of firms in another not

completely unrelated market. A variety of networks including the empty network can

materialize in equilibrium.

With positive link formation costs, stable networks have a dominant group archi-

tecture. Efficient networks have the interesting feature that they consist of only one

non-empty component and in that component, the geodesic distance between any two

players is two or less. An exact characterization of efficient networks in this example,

or more broadly, in playing the field games in general is an open question, and is

reserved as a future endeavour.
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8 Appendix

8.1 Derivation of the Multi-market equilibrium

First substituting (1)-(3) in (4), we get an expression for profits namely,

 =

Ã
 −  −

X
 6=



!
·  +

Ã
 − −

X
 6=



!
· − 1

2
( +)

2 (23)

Differentiating (23) with respect to  and , we get the first order conditions:




= 0;





= 0.

These result in the following two equations:

 − 2 −
X
 6=

 −  − = 0; (24)

 − 2 −
X
 6=

 − −  = 0. (25)

Let  =
P
=1

 and  =
P
=1

. Then, (24) and (25) can be rewritten as

 − 2 −  − = 0; (26)

 − 2 −−  = 0. (27)

Summing up (26) over all , we get

X
=1

 − 2 ·  −  ·  − = 0.

Summing up (27) over all , we get

X
=1

 − 2 ·−  ·−  = 0.
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Denoting  =
P
=1

 and  =
P
=1

, the above two equations can be re-written as:

− (+ 2) − = 0; (28)

 − (+ 2)−  = 0 (29)

(28) and (29) constitute a simultaneous equation system of two equations in two

unknowns which can be solved to yield

∗ =
(+ 2)− 

3 + 4+ 2
; (30)


∗
=

(+ 2) − 

3 + 4+ 2
 (31)

Substituting (30) and (31) in (26) and (27), we again get a linear system of two

equations in two unknowns, namely,

 − 2 − (+ 2)− 

3 + 4+ 2
− = 0; (32)

 − 2 − (+ 2) − 

3 + 4+ 2
−  = 0. (33)

Solving (32) and (33), we get

∗ =
1

3(3 + 4+ 2)

£
(6 + 8+ 22) − (3 + 4+ 2)

¤
+

1

3(3 + 4+ 2)

£−(5 + 2)+ (4 + )
¤
; (34)

∗ =
1

3(3 + 4+ 2)

£
(6 + 8+ 22) − (3 + 4+ 2)

¤
+

1

3(3 + 4+ 2)

£−(5 + 2) + (4 + )
¤
 (35)

Substituting (30), (31), (34), and (35) in (23), we get an expression for profits, namely,
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∗ =
h

2
18(1+)2(3+)2

i ¡
8 + 24+ 1072 + 663 + 114

¢
+
h

·
18(1+)2(3+)2

i ¡
16 + 48− 1102 − 843 − 144¢

+
h

2
18(1+)2(3+)2

i ¡
8 + 24+ 1072 + 663 + 114

¢
+

⎡⎢⎣ ·

 6=




18(1+)2(3+)2

⎤⎥⎦ ¡−8− 182− 1242 − 223¢

+

⎡⎢⎣ ·

 6=




18(1+)2(3+)2

⎤⎥⎦ ¡−8 + 142+ 922 + 143¢

+

⎡⎢⎣

 6=



2
18(1+)2(3+)2

⎤⎥⎦ ¡83 + 58+ 112¢

+

⎡⎢⎣ ·

 6=




18(1+)2(3+)2

⎤⎥⎦ ¡−8 + 142+ 922 + 143¢

+

⎡⎢⎣ ·

 6=




18(1+)2(3+)2

⎤⎥⎦ ¡−8− 182− 1242 − 223¢

+

⎡⎢⎣

 6=



2
18(1+)2(3+)2

⎤⎥⎦ ¡83 + 58+ 112¢

+

⎡⎢⎣

 6=




 6=




18(1+)2(3+)2

⎤⎥⎦ ¡−158− 100− 142¢ (36)
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Hence,

() =
h

()
2

18(1+)2(3+)2

i ¡
8 + 24+ 1072 + 663 + 114

¢
+
h

()·
18(1+)2(3+)2

i ¡
16 + 48− 1102 − 843 − 144¢

+
h

2
18(1+)2(3+)2

i ¡
8 + 24+ 1072 + 663 + 114

¢
+

⎡⎢⎣()·

 6=

()


18(1+)2(3+)2

⎤⎥⎦ ¡−8− 182− 1242 − 223¢

+

⎡⎢⎣ ·

 6=

()


18(1+)2(3+)2

⎤⎥⎦ ¡−8 + 142+ 922 + 143¢

+

⎡⎢⎣

 6=

()

2
18(1+)2(3+)2

⎤⎥⎦ ¡83 + 58+ 112¢

+

⎡⎢⎣ ()·

 6=




18(1+)2(3+)2

⎤⎥⎦ ¡−8 + 142+ 922 + 143¢

+

⎡⎢⎣ ·

 6=




18(1+)2(3+)2

⎤⎥⎦ ¡−8− 182− 1242 − 223¢

+

⎡⎢⎣

 6=



2
18(1+)2(3+)2

⎤⎥⎦ ¡83 + 58+ 112¢

+

⎡⎢⎣

 6=

()


 6=




18(1+)2(3+)2

⎤⎥⎦ ¡−158− 100− 142¢
− · () (37)

8.2 Pairwise Equilibrium Networks

First, we will show that the network game is playing the field game. There are

two arguments in the payoff function. The first one is  () and the second one is
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X
 6=

 (). First,

 () = 0 +  ·  () .

Second, X
 6=

 () = (− 1) 0 + 
X
 6=

 () 

Consider the links of player  6=  in network  given by  (). One can divide this

set into two subsets. First, the links with player , given by say  
 () which is either

 or ∅. The second is the links with players other than , given by −
 (). Let the

respective cardinalities be given by  () and − (). Therefore,X
 6=

 () =
X
 6=

 () +
X
 6=

− ()

=  () + 2 ·  (−) 

Hence,

 () = Φ ( ()   (−))−  · ()

The rest of the derivation is an exercise in tedious algebra. Let us define a set of

positive parameters.

 = 18(1 + )2(3 + )2;

1 = (8 + 24+ 107
2 + 663 + 114) ;

2 = (−16− 48+ 1102 + 843 + 144) ;
3 = (8 + 182+ 124

2 + 223) ;

4 = (−8 + 142+ 922 + 143) ;
5 = (83 + 58+ 11

2) ;

6 = (158 + 100+ 14
2) 
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Then,

Φ ( ) =
1



£
1 (0 +  · )2 − 2 ·  (0 +  · )¤

−1

[3 (0 +  · ) ((− 1) 0 +  ·  + 2 ·  · )] (38)

+
1


[ · 4 ((− 1) 0 +  ·  + 2 ·  · )]

+
1



£
5 ((− 1) 0 +  ·  + 2 ·  · )2¤

+
1



"
4

ÃX
 6=



!
(0 +  · )

#

−1


"
6

ÃX
 6=



!
((− 1) 0 +  ·  + 2 ·  · )

#
+

where  is a collection of term unrelated to  or  and hence can be treated as a

constant.

Therefore,

∆( ) = Φ ( + 1 )−Φ ( )

=
1



£
1
¡
20 ·  + 2 (2 + 1)

¢¤
−
µ
1



¶
 · 2 ·  +

µ
1



¶
 · 4 ·  +

µ
1



¶
 · 4

ÃX
 6=



!

+
1


[5 ·  (2 (− 1) 0 +  (2 + 1) + 4 ·  · )]

−1


£
3
¡
0 ·  · + 2 (2 + 2 + 1)

¢¤
−1


"ÃX
 6=



!
6 · 

#


Hence,

∆


=

µ
22



¶
(1 − 3 + 5)

=

µ
22



¶¡
114 + 443 − 62 − 100+ 83¢  0
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Finally,

∆


= 2

µ
2



¶
(25 − 3)

= −2
µ
2



¶¡
223 + 1022 + 66− 158¢  0

8.3 Efficient Networks for Firms

Consider the effect of link formation between two arbitrary firms  and  on firm

 6=  . The change in profits is given by

∆∗ = −
∙

 · 
18(1 + )2(3 + )2

¸ ¡
443 + 2482 + 364+ 16

¢

+

∙
ÃX

6=


!
· 

18(1 + )2(3 + )2

¸ ¡
442 + 232+ 332

¢
+

∙
 · 

18(1 + )2(3 + )2

¸ ¡
283 + 1842 + 284− 16¢

−
∙

ÃX
6=



!
· 

18(1 + )2(3 + )2

¸ ¡
282 + 200+ 316

¢
+

∙
2

18(1 + )2(3 + )2

¸ ¡
442 + 232+ 332

¢
. (39)
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Further, from (7), the change in profits of  gross of link formation costs are given

by:

∆∗ =

∙
 · 

18(1 + )2(3 + )2

¸ ¡
224 + 1103 + 902 − 134+ 8¢

−
∙

ÃX
 6=



!
· 

18(1 + )2(3 + )2

¸ ¡
223 + 1022 + 66− 158¢

−
∙

 · 
18(1 + )2(3 + )2

¸ ¡
144 + 703 + 182 − 190− 8¢

+

∙
ÃX

 6=


!
· 

18(1 + )2(3 + )2

¸ ¡
143 + 782 + 42− 166¢

+

∙
2

18(1 + )2(3 + )2

¸ ¡
114 + 443 − 62 − 100+ 83¢  (40)

Hence,

∆Π( ) = ∆∗ +∆∗ +
X
 6=

∆∗ − 2

=

∙
( + ) · 

18(1 + )2(3 + )2

¸ ¡
224 + 1323 + 1322 − 332− 498¢

−
∙

ÃX
 6=



!
· 

18(1 + )2(3 + )2

¸ ¡
443 + 3522 + 860+ 696

¢
_

∙
( + ) · 

18(1 + )2(3 + )2

¸ ¡
144 + 843 + 842 − 316− 474¢

+

∙
ÃX

 6=


!
· 

18(1 + )2(3 + )2

¸ ¡
283 + 2242 + 652+ 600

¢
+

∙
2

18(1 + )2(3 + )2

¸ ¡
224 + 1323 + 1322 − 332− 498¢

−2 (41)

31



Note that we can simplify (41) into

∆Π( ) = 0
"
( + )− 1



ÃX
 6=



!
(443 + 3522 + 860+ 696)¡

223 + 1322 + 132− 332− 498


¢ + Λ0
#
− 2

= 0
"
( + )−  0



ÃX
 6=



!
+ Λ0

#
− 2 (42)

where  0  0 0  0 and Λ0 are constants independent of network structure.  0 has

an upper bound less than 11 (at  = 2, its value is 10791) and is strictly decreasing

in . It has a lower bound of 2 and converges asymptotically to 2. It is important to

note that at  = 4,  0 = 35

8.4 Conditions for the Empty Network to be an Equilibrium

Network with Zero Link Formation Costs

Let  be zero. Then, substituting  = 0 and  = 0 in (22), we get

∆(0 0) =
1



£
1
¡
20 ·  + 2

¢
+ 5 ·  (2 (− 1) 0 + )− 3

¡
0 ·  · + 2

¢¤
−
µ
1



¶
(2 − 4)

+

µ
1



¶


ÃX
 6=



!
(4 − 6)

Let 1  2  · · ·  . Then, if

2 

⎡⎢⎢⎢⎢⎣
1 (20 + ) + 5 (2 (− 1) 0 + )− 3 (0 · + ) +

ÃP
 6=2



!
(4 − 6)

2 − 4

⎤⎥⎥⎥⎥⎦ 
then ∆(0 0)  0 and hence the empty network is an equilibrium network.
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