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(Received 29 January 2012; accepted 28 March 2012; published online 16 April 2012)

Using non-equilibrium molecular dynamics, we show that asymmetrically defected graphene

nanoribbons (GNR) are promising thermal rectifiers. The optimum conditions for thermal

rectification (TR) include low temperature, high temperature bias, �1% concentration of

single-vacancy or substitutional silicon defects, and a moderate partition of the pristine and

defected regions. TR ratio of �80% is found in a 14-nm long and 4-nm wide GNR at a temperature

of 200K and bias of 90K, where heat conduction is in the ballistic regime since the bulk effective

phonon mean-free-path is around 775 nm. As the GNR length increases towards the diffusive

regime, the TR ratio decreases and eventually stabilizes at a length-independent value of about

3%–5%. This work extends defect engineering to 2D materials for achieving TR.VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3703756]

Motivated by the important role that electronic diodes

play in modern industry, many studies have been conducted

in search of the thermal counterparts, i.e., thermal rectifiers,

for applications in thermal management and thermal signal

processing.1–6 So far, most proposed or fabricated thermal

rectifiers have asymmetric shape,2–5 mass density,1 or an

interface between dissimilar materials.7,8 However, the fabri-

cation of such delicate structures2,3,5 demands sophisticated

patterning process which limits their stability.9 The signifi-

cant reduction of the effective thermal conductivity (j) of

thermal rectifiers utilizing interfaces7,8 also limits the appli-

cation of such design. A nano-device made of a single mate-

rial, requiring minimum fabrication efforts and possessing

high j, is thus of great benefit to this field. Defect engineer-

ing is a promising approach in this regard. Thermal rectifica-

tion (TR) in asymmetrically defected carbon nanotubes

(CNT) has been reported in Refs. 10 and 11, where single-

vacancy (SV) defect was considered and the TR was shown

to be quite weak.10

Here we propose the pristine-defected graphene nanorib-

bon (pdGNR) as a promising thermal rectifier and systemati-

cally study the effects of design parameters. Graphene and

graphene nanoribbon (GNR) have attracted extensive atten-

tion due to their outstanding thermal, electrical, mechanical,

and optical properties.2,12–15 Compared with other materials,

the 2D nature of graphene and GNR allows for much easier

artificial introduction of defects,16 which is essential for tailor-

ing the thermal and electrical properties of pristine materials

for various applications including TR. As 2D GNRs have dis-

tinctly different thermal transport properties17 from 1D CNTs,

detailed analysis on TR in such systems is necessary and will

facilitate the exploration of high-performance thermal recti-

fiers. Here we consider GNR with length ranging from 14 nm

to 6lm. Since the effective bulk phonon mean-free-path

(MFP) in graphene is around 775 nm,18 our GNR length cov-

ers both the ballistic and diffusive phonon transport regimes.

As shown in Fig. 1(a), SV and di-vacancy (DV) can be

created by removing a single C atom or two neighboring

atoms.19 If a C–C bond is rotated by 90�, four hexagons in
the graphene lattice are transformed into two pentagons and

two heptagons, which forms the Stone-Wales defect

[SW(55–77)].16,19 These types of point defects were found

to reduce the j of pristine GNRs significantly (> 65%) with

a concentration of one defect per thousand atoms.20 Substitu-

tional silicon defect (Si) was also predicted to be stable in

GNRs and correlated with a drastic reduction of j in a first-

principles study.21 In our work, defects are created ran-

domly, based on a prescribed concentration (a), in the right

side of the GNR, as indicated by the dashed line in Fig. 1(b).

a is defined as the ratio of the number of defected nodes to

the total number of the nodes in the right side of the hexagon

network. Non-equilibrium molecular dynamics (MD) is per-

formed using LAMMPS.22 Periodic boundary condition is

applied to the width (Y) direction to eliminate the edge

effects, as the dangling edges are also defects (extended

FIG. 1. (a) Types of point defect studied in this work. (b) Simulation do-

main setup for pdGNRs. The dashed line divides the GNR into pristine

region and defected region, where defects are randomly created inside the

latter.a)Electronic mail: ruan@purdue.edu.

0003-6951/2012/100(16)/163101/3/$30.00 VC 2012 American Institute of Physics100, 163101-1

APPLIED PHYSICS LETTERS 100, 163101 (2012)

Downloaded 10 Sep 2013 to 128.46.221.64. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions



defect) in a broad sense.20 We have checked that the width

has minor effect on simulation results for GNRs wider than

3.3 nm, and hence the 4.0 nm wide GNRs used here suffer

negligible size effects in the Y direction. The outermost col-

umns of atoms at the two ends of the GNR in the length (X)

direction are fixed to avoid the sublimation of atoms, and

free boundary condition is applied to the cross-plane direc-

tion. The C-Si and C-C interactions are modeled with the

original23 and the optimized24 Tersoff potential, respec-

tively. The optimized Tersoff is adopted here due to its

improved description of the anharmonicity and acoustic-

phonon dispersions compared to other available potentials,24

which are important to thermal transport. The GNR is first

relaxed at zero pressure and constant temperature, �T , for
3� 106 time steps (0.25 fs per step) using the Nosé-

Hoover thermostat.25,26 Then, two different temperatures, i.e.,
�T þ DT=2 and �T � DT=2, are applied to regions adjacent to

the ends of the GNR using two Nosé-Hoover thermostats, and

steady state is achieved after 0.5 ns. The simulation is then

continued for another 2 ns for data collection. The heat current

resulting from the temperature bias, DT, is computed as

J ¼ dEhot

dt þ dEcold

dt

� �
=2, where Ehot and Ecold are the total energy

that has been added to or subtracted from the atoms in the hot

and cold thermostats, respectively. To quantify TR in a com-

mon manner,1–6 we designate

g ¼ Jþ � J�
J�

(1)

as the TR ratio, where Jþ is the heat current when the ther-

mostat in the pristine side is maintained at �T þ DT=2 and

that in the defected side is maintained at �T � DT=2 and vice

versa for J�.
We herein study the effect of �T ;DT; a, type of defect,

length of the GNR, and the ratio of the length of the pristine

region to that of the defected region (RL ¼ Lpristine=Ldefected),
thus covering most of the factors that may affect thermal

properties of defected GNRs greatly. To account for the ran-

domness of defects, twelve independent simulations are run

on independently generated GNRs with random defects for

each data point.

First, we evaluate g in GNRs composed of a 7 nm long

pristine region and a 7 nm long defected region. GNRs with

four types of defect, i.e., SV, DV, Si, and SW(55–77), are

studied in separate simulations with a ¼ 1:5%. We vary the

average temperature �T and use DT ¼ 90 K for all cases. As

shown in Fig. 2, TR is significant (g � 0:7 for SV and Si and

g � 0:3 for DV and SW(55–77)) at 200K, but weakens at

higher temperatures). Similar trend was also found in other

types of thermal rectifiers2,3,6,9,27 and is usually attributed to

the mismatch of the phonon spectra between the two sides of

a rectifier. When the average temperature increases, such dif-

ference becomes weaker with respect to the total vibrational

energy, and hence TR is suppressed. Comparing g of differ-

ent types of defect at the same �T , we find GNRs with SV and

Si defects rectify heat flow more strongly than those with

DV and SW(55–77) defects. Note that each DV or

SW(55–77) defect contributes two defected nodes to the car-

bon network of graphene, i.e., two defected nodes per defect.

Accordingly, with the same a (same number of defected

nodes), SV and Si defects are more scattered than DV and

SW(55–77), and hence the formers tune the phonon transport

more strongly than the latters. Reference 20 revealed that

with a ¼ 0:1%, SV defects reduce the j of GNRs by 81%,

while DV and SW(55–77) only reduce it by 61%, in consis-

tency with our work.

We plot the g of pdGNRs as a function of the MFP nor-

malized length (L/MFP) for different DT in Fig. 3(a) and find

that jgj increases as DT increases, consistent with previous

studies.28,29 Notably, jgj decreases as the GNR length

increases up to 100 nm as predicted by MD, indicating that

this type of thermal rectifier has the best rectifying power at

small size. This observation inspires us to check whether TR

should diminish at macroscopic size. Here we consider

(L � 2 lm) where heat conduction transits to the diffusive

regime, and we use the conventional Fourier equation to

evaluate TR. We fit the j of pristine and defected GNRs

(Ref. 20) as a function of temperature and numerically

solve the 1D, steady-state heat conduction equation

rxfj½x; TðxÞ�rxTg ¼ 0 with the temperature at the two ends

maintained at 300K þ DT=2 and 300K � DT=2, respec-
tively. In this regime, pdGNRs show a length-independent

TR of 3%–5% for the different DT considered here. The TR

FIG. 2. Temperature dependence of g for pdGNRs with different types of

point defect.

FIG. 3. (a) g as a function of L/MFP of the pdGNRs for different DT, where
MFP¼ 775 nm is used. Data points denoted by unfilled and filled markers

are computed by MD simulation and by solving the 1D, steady-state Fourier

heat conduction equation, respectively. (b) g as a function of a for pdGNRs

with different RL.
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mechanism becomes the same as the bulk thermal rectifier

proposed in Ref. 7, i.e., the jðx; TÞ is not a separable func-

tion of x and T. This non-diminishing, length-independent

TR in macroscopic defected GNR is distinct from that of rec-

tifiers using asymmetric shapes,2–4 which completely lose

TR at macroscopic length.30

We then consider the effect of RL :RL ! 1 means a

pristine GNR, while RL ! 0 means a homogeneously

defected GNR. Both extremes reduce to a symmetric struc-

ture and thus cannot rectify heat flow. Figure 3(b) shows that

a moderate partition (RL � 1:0) of the pristine and defected

region usually generates higher jgj than biased cases. Simi-

larly, a medium a (0:5% � 1:5%) is also preferable to the

extremes since very low a corresponds to pristine GNR and

very high a reduces j too much for both directions. Thus, as

for defect engineering, we conclude that an a on the order of

1% is needed for TR, compared with 0.1% for notably reduc-

ing j and 0.0001% for tailoring electronic properties.16

Figure 4 shows the vibrational density of states (vDOS),

which is the summation of the Fourier transform of the auto-

correlation function of atomic velocities in each polarization

(p¼X, Y, Z).28 For both forward (Jþ) and reversed (J�)
heat flow, we calculate the overlap (S) between the acoustic

region24 of the vDOS of the pristine and defected region

using the method in Ref. 28. In parallel with Eq. (1), we

compute H ¼ ðSþ � S�Þ=S� for both in-plane (X-Y) and

out-of-plane (Z) polarizations to show the change of S when

the sign of DT reverses. Consistent with previous stud-

ies,10,11,28 g and H have the same sign and show quite strong

positive correlation, which confirms the suitability of the

spectra overlap theory28 as a qualitative explanation to TR.

As a final remark, note that in contrast to other GNR-

based thermal rectifiers2,3 of asymmetric shape that induces

asymmetric boundary scattering of phonons,1 the asymmetri-

cally defected GNRs proposed here favor large width, thus

saving the need for complicated patterning process in mak-

ing the narrow and regular shapes. For very narrow GNRs,

there is very high concentration of edge defects,20 and they

dominate the thermal transport instead of the asymmetrically

introduced point defects, and hence TR is greatly reduced.

In summary, we studied the TR effect in asymmetrically

defected GNRs using classical MD simulations. Low �T , high
DT, moderate a (�1%) and RL, and short system length were

found to be optimum for high thermal rectifying efficiency

of the thermal rectifier proposed in this work. We also

revealed that SV and Si defects tune thermal transport more

strongly than DV and SW(55–77) defects with the same con-

centration and are thus preferable in making thermal recti-

fiers. The TR decreases as the GNR length increases and

eventually stabilizes at a length-independent value for mac-

roscopic length when heat conduction transits to the diffu-

sive regime. This work extends defect engineering to the

field of thermal management and thermal signal manipula-

tion with 2D thermal rectifiers.
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B 81, 125410 (2010).
7D. Sawaki, W. Kobayashi, Y. Moritomo, and I. Terasaki, Appl. Phys. Lett.

98, 081915 (2011).
8M. Hu, J. V. Goicochea, B. Michel, and D. Poulikakos, Appl. Phys. Lett.

95, 151903 (2009).
9W.-R. Zhong, W.-H. Huang, X.-R. Deng, and B.-Q. Ai, Appl. Phys. Lett.

99, 193104 (2011).
10K. Takahashi, M. Inoue, and Y. Ito, Jpn. J. Appl. Phys. 49, 02BD12 (2010).
11H. Hayashi, Y. Ito, and K. Takahashi, J. Mech. Sci. Technol. 25, 27 (2011).
12A. A. Balandin, Nat. Mater. 10, 569 (2011).
13D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phys. Rev.

B 79, 155413 (2009).
14A. K. Geim, Science 324, 1530 (2009).
15A. Vakil and N. Engheta, Science 332, 1291 (2011).
16L. D. Carr and M. T. Lusk, Nat. Nano 5, 316 (2010).
17L. Lindsay, D. A. Broido, and N. Mingo, Phys. Rev. B 82, 161402 (2010).
18S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A.

Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett. 92, 151911
(2008).

19F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).
20J. Haskins, A. Kinaci, C. Sevik, H. Sevincli, G. Cuniberti, and T. Cagin,

ACS Nano 5, 3779 (2011).
21J.-W. Jiang, B.-S. Wang, and J.-S. Wang, Appl. Phys. Lett. 98, 113114
(2011).

22S. Plimpton, J. Comput. Phys. 117, 1 (1995).
23J. Tersoff, Phys. Rev. B 37, 6991 (1988).
24L. Lindsay and D. A. Broido, Phys. Rev. B 81, 205441 (2010).
25S. Nose, J. Chem. Phys. 81, 511 (1984).
26W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
27N. Yang, G. Zhang, and B. Li, Appl. Phys. Lett. 93, 243111 (2008).
28J. Lan and B. Li, Phys. Rev. B 74, 214305 (2006).
29B. Hu and L. Yang, Chaos: Interdiscip. J. Nonlinear Sci. 15, 015119
(2005).

30Y. Wang, A. Vallabhaneni, J. Hu, B. Qiu, Y. P. Chen, and X. Ruan,

“Thermal rectification in asymmetric nanostructures of a single material,”

(unpublished).

FIG. 4. (a) vDOS of the perfect region and defected region for opposite heat

flow directions. (b) H and g for various DT.

163101-3 Wang, Chen, and Ruan Appl. Phys. Lett. 100, 163101 (2012)

Downloaded 10 Sep 2013 to 128.46.221.64. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions


	Purdue University
	Purdue e-Pubs
	4-16-2012

	Tunable thermal rectification in graphene nanoribbons through defect engineering: A molecular dynamics study
	Yan Wang
	Siyu Chen
	Xiulin Ruan

	http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=APPLAB000100000016163101000001&idtype=cvips&doi=10.1063/1

