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We develop an approach for tuning the spin splitting and g-factor of a quantum dot by coupling it to

semi-magnetic quantum dot and tuning the electric field. We show that spin splittings and g-factors

of the states of a non-magnetic quantum dot coupled to semimagnetic quantum dot can be enhanced

orders of magnitude. Evaluations are made for coupled CdTe/CdMnTe quantum dots. These effects

are caused by electric field control of repulsion of spin sublevels in the non-magnetic dot due to

tunnel coupling of quantum dots. Electric field control of spin splittings in quantum dots is of

potential interest in connection with spin qubit rotations for quantum computation.VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4705287]

I. INTRODUCTION

The search for physical implementations for quantum

bits (qubits) and quantum gates for quantum information is

attracting much research interest. The Zeeman levels of a

spin in a magnetic field provide a natural representation for

the two quantum states of a qubit. Solid state implementa-

tions offer the advantage of scalability to the large number

of gates. A spin in a quantum dot is believed to have a rela-

tively long lifetime,1–10 and quantum dots coherently

coupled by exchange have been demonstrated in several

systems,11–14 and electric fields have been used to manipu-

late single quantum dot spins and spins in coupled quantum

dots.15–20

Much work is now being directed to developing meth-

ods for the spin manipulations needed for single spin gates

and two-qubit gates. Fast optical techniques are attractive for

these manipulations. In recent work, single spin manipula-

tions,17,21,22 and also manipulations of two spins in coupled

quantum dot systems23 have been reported.

Tuning spin splitting with magnetic fields is typically

relatively slow. It has been suggested that fast spin rotations

might be achieved by tuning electron spin splitting and g-

factors with electric fields.17,24–26 This could be carried out

rapidly with fields from intense optical pulses.22 Electric

field control of small exciton spin splittings in GaAs/AlGaAs

systems has demonstrated for coupled quantum dots.27,28

In the present work, we propose an approach for the

manipulation of a spin in a quantum dot with an electric field

by using an auxiliary semimagnetic quantum dot. It is known

that the spin splitting of carrier electron states can be

enhanced by orders of magnitude via exchange coupling in

Mn doped II-VI materials such as CdMnTe, which are called

“semimagnetic” semiconductors,29,30 or in quantum dots

made from them. We propose to use quantum dots made

from such semimagnetic materials as auxiliary quantum

dots. Then, static magnetic fields are used to bring the spin

states of the semimagnetic dot into interaction with those of

the non-magnetic (target) dot, and electric fields are used to

modulate their spin splitting by changing the relative ener-

gies of the two dots. In this way, we obtain dramatic changes

in the spin splitting of the coupled dots.

The mechanism for the increase of spin splitting dis-

cussed here in non-magnetic quantum dot is electron tunnel-

ing from the non-magnetic onto the semimagnetic quantum

dot. Such tunnel coupling is of interest for implementing

quantum gates for logic operations. In quantum computing, a

challenging task is to implement one qubit operations without

affecting other qubits. Auxiliary semimagnetic dots can pro-

vide a source of local magnetic fields for individual qubits.

Single qubit operations implemented by electron spin reso-

nance pulses could take place in a small external magnetic

field, where the electric field shifts the qubit wavefunction

onto semimagnetic quantum dot having a large spin splitting.

Sizable electron spin splitting also suppresses spin decoher-

ence by suppressing one-phonon processes,7,8 and large mag-

netic fields affecting acceptors and nuclei in semimagnetic

dots suppress nuclear spin induced decoherence,31 providing

additional advantage for such quantum computing setting.

In earlier work,32 we showed that the exciton spin states

of the two dots can be coupled quantum mechanically and

that magnetic fields can tune their couplings in exciton emis-

sion experiments on coupled CdTe and CdMnTe quantum

dots grown by selective interdiffusion. The present paper is

organized as follows: we introduce a model of coupled semi-

magnetic and nonmagnetic dots in Sec. II. In Sec. III, we dis-

cuss electric field spin manipulation, and we summarize the

results and discussion in various settings to observe these

effects in Sec. IV.

II. MODEL

We consider two coupled quantum dots, a¼N,M. Dot

M is the semimagnetic (e.g., CdMnTe) and dot N is the non-

magnetic (e.g., CdTe). Dot N contains a spin due to an

excess electron carrier. We consider the two spin states of

the lowest confined electron state in each dot, and the Hamil-

tonian is taken to be
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H ¼
EN þ lgðNÞz Bz þ eFd 0 t 0

0 EN � lgðNÞz Bz þ eFd 0 t
t 0 EM þ lgðMÞ

z Bz � eFd 0

0 t 0 EM � lgðMÞ
z Bz � eFd

0
BB@

1
CCA: (1)

Here, Ea ¼ ea þ dea, where ea is the lowest orbital electronic

energy when dot a is isolated, and dea is the shift of the elec-
tron energy of the dot due to the other dot potential, a¼M,N.

t is the amplitude of the quantum tunneling of electrons with

the same spin orientation between the dots. 2d is the distance

between the two dots, and F is the electric field along the z
direction separating them. gðM;NÞ

z are the longitudinal g-factors

along z, and we include an external field, ~Bext along the z
direction. The total magnetic field ~B includes ~Bext and the in-

ternal field from the magnetization of the Mn ions.

Equation (1) includes one orbital level spin-split by the

magnetic field for each of the dots. It is assumed that the

excited orbital levels are separated by a substantial gap and

that the application of electric and magnetic fields is charac-

terized by energy scales (frequencies) smaller than this gap. In

the case of 5 nm-wide quantum wells, the characteristic gap

associated with z-direction quantization is at least 0.1 eV, and

for in-plane dot sizes �10 nm, the separation between orbital

levels from confinement to quantum dots is �30meV. There-

fore, this condition is satisfied for frequencies of external

fields of a few GHz, in cases such as the quantum dots used

here. We note that for relatively small fields (below �0.5T),

the Hamiltonian may include components of the total mag-

netic field in the transverse directions due to the fluctuations

in orientations of Mn spins.33 However, these transverse fields

have only small effects on the spin splitting, and we do not

include those. Furthermore, we also estimate that tunneling

accompanied by a spin flips is small in these systems, and do

not include spin-flip assisted tunneling here. This tunneling

can be due to band structure spin-orbit interactions or to fluc-

tuations in the orientations of Mn spins. We estimate that the

characteristic energy scale in the former is �0.1meV and of

the latter is �0.5meV at a magnetic field of 1T and a temper-

ature of 4K. These are considerably smaller than the energy

splitting from the alignment of the Mn spins.

The eigenvalues of the Hamiltonian (2) are obtained

straightforwardly, and for electric field F¼ 0 are as follows:

~E4;1 ¼ EN þ EM þ ðlgðNÞz þ lgðMÞ
z ÞBz

2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtj2 þ EN � EM þ ðlgðNÞz � lgðMÞ

z ÞBz

2

 !2
vuut ;

(2a)

~E3;2 ¼ EN þ EM � ðlgðNÞz þ lgðMÞ
z ÞBz

2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtj2 þ EN � EM � ðlgðNÞz � lgðMÞ

z ÞBz

2

 !2
vuut :

(2b)

The qualitative features of the eigenstates ~Ej, j¼ 1…4,

from Eq. (2) are illustrated in the sketch in Fig. 1. Energy

levels 3 and 4 originate from non-magnetic dot, and levels

1 and 2 originate from magnetic dot. We will be interested

in systems for which the energies EM and EN differ by sev-

eral meVs, as indicated in Fig. 1, where the semimagnetic

dot M is taken to have the higher energy at Bext ¼ 0. Such

energy differences are common for quantum dots and can

originate from different sizes, shapes, or compositions. At

non-zero Bext, the spin splitting of the semimagnetic dot is

greater than that of the non-magnetic dot. In such systems,

the g-factors of the non-magnetic and semimagnetic quan-

tum dots often have opposite signs, leading to an opposite

ordering of their spin states in small magnetic fields as

illustrated in Fig. 1. There we use a positive g-factor for

magnetic quantum dot M and a negative g-factor for non-

magnetic quantum dot N. For high enough Bext, the spin-

down state of dot M ( ~E2) approaches the spin-down state of

dot N ( ~E3), and they interact by the tunneling t. The effec-

tive interaction of the two spin-down states ( ~E2, ~E3) is

greater than that of the two spin-up states ( ~E1, ~E4), because
~E2 and ~E3 are closer in energy, and this leads to a greater

repulsion between the spin down states. As we shall see,

this repulsion can result in crossing of levels ~E3 and ~E4, so

that the spin down level ~E3 becomes the lowest state as

magnetic field increases.

FIG. 1. Sketch of energy levels of coupled quantum dots. EM and EN are

energies of isolated semimagnetic and non-magnetic dots, respectively.
~Ej, j¼ 1, 2, 3, 4 are the energies of the four states of coupled dots deriving

from the spin doublets of lowest orbital states of each quantum dot in the

absence of tunneling. Vertical dashed lines indicate dominant couplings of

states, which are due to tunneling between levels with like spin states.

Arrows indicate spin orientations of the four states. The two spin down

levels repel more strongly, which leads to state 3 becoming the ground state

at moderate magnetic fields. As discussed in the text, an electric field can be

used to change the splitting EM–EN, modifying the coupling of the two

quantum dots.
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III. ELECTRIC FIELD CONTROL

An electric field can change the relative energies of the

two isolated dots, EM � EN , and this controls the coupling of

the spin states and the mixing of states originating from the

semimagnetic and non-magnetic dots. In this way, the elec-

tric field can modulate the spin splitting and g-factors.

We now give specific calculations to illustrate the elec-

tric field tuning of spin splitting. The parameters are taken

from experiment on bulk systems. We take dot M to be com-

posed of Cd0.98Mn0.02Te with gðMÞ
z ¼ 40 and dot N to be

composed of CdTe with gðNÞz ¼ �2. Each dot is taken to be

5 nm high with a radius of 8 nm, and the width of the barrier

between two dots is 5 nm. The dots are taken to be sur-

rounded by Cd0:8Mg0:2Te barriers in the vertical direction.

The energy separation is taken to be EM � EN ¼ 20 meV,

and resulting tunneling amplitude is t¼ 3meV, which

describe well the data on photoluminescence experiments in

magnetic field in a system of coupled magnetic and non-

magnetic dots.32

Figure 2(a) gives the spin splitting of the upper spin dou-

blet at F¼ 0. At non-zero Bext, the spin splitting becomes

large, but there is no noticeable modification of the disper-

sion with Bext from the coupling between the two dots in the

range shown. There are dramatic effects in the spin splitting

of the lower doublet shown in Fig. 2(b), however. ~E3 is

driven down by the coupling to ~E2, and it passes through ~E4

at Bext � 3:3 T. As a result, the spin splitting and g-factor of

the lower doublet go to zero and then reverse its sign. The

large effect of the coupling between the dots on the lower

doublet is due to the strong dispersion (large g-factor) of the

states of the upper doublet. The splitting of the lower state,

on the other hand, is small and has a negligible effect on the

upper doublet. The changes in the spin splitting of the lower

doublet arise from the mixing with the semimagnetic dot.

A small anticrossing could occur in place of the crossing

of energy levels ~E3 and ~E4 at Bext � 3:3T in Fig. 2(b) as a

result of spin-orbit interaction and transverse spin fluctuations.

We estimate that this anticrossing is small, and we do not

include it here. Transverse fluctuations can lead to observable

effects at small magnetic fields.33 However, for fields on the

order of 1T or higher, the Zeeman splitting due to the align-

ment of the Mn spins in the external field is dominant.32,33

An electric field along the growth direction z can change

the splitting EM � EN , which in turn modifies the effects of

tunnel coupling on the spin states, because quantum states of

magnetic and non-magnetic dots move closer to resonance.

In Eqs. (2a) and (2b), the energy detuning of semimagnetic

and non-magnetic dot EM � EN at zero electric field becomes

EM � EN � 2eFd in non-zero electric field. In Fig. 3, the

energies of the four spin states are shown as functions of

electric field F at Hext ffi 3:3 T, which is near (slightly above)

the magnetic field giving the crossing of the lower doublet in

Fig. 2(b). By applying the magnetic field that brings system

close to crossing, we obtain an especially pronounced effect.

At F ¼ 0, the lower doublet ( ~E3, ~E4) has nearly zero split-

ting, and the upper doublet ( ~E1, ~E2) has a large splitting. ~E2

and ~E3 have the same spin direction, and with increasing F
they repel one another and anticross at F � 14 kV=cm. Simi-

larly, ~E1 and ~E4 have the same spin direction and anticross

at F � 26 kV=cm. As a result, the spin splitting of the lower

doublet increases from zero to a large value, and the splitting

of the upper doublet decreases to nearly zero. In effect, the

ground state doublet of the coupled dots ( ~E3, ~E4), which ori-

ginated from the non-magnetic dot at zero magnetic and

electric fields, acquires the character of the magnetic dot

with increasing F due to hybridization between the two dou-

blets. This corresponds to shifting the weight of the wave-

function onto the semimagnetic quantum dot. Thus, we find

that an electric field can control dramatically the spin split-

ting and g-factors of the ground state of these coupled dots.

The weights of the two lowest lying states (3 and 4) on

the magnetic and non-magnetic dots (M, N) are shown in

Fig. 4. At F¼ 0, both functions are centered primarily on the

FIG. 2. (a) Energies of the upper doublet of spin states vs. external magnetic

field. (b) Energies of the lower doublet of spin states vs. external magnetic

field. Energies are labeled as in Fig. 1. At magnetic field �3.3 T, state 3

becomes the ground state because of the strong repulsion of levels 2 and 3,

reversing the order of states in lower doubled compared to Fig. 1.

FIG. 3. Energies of four states of coupled quantum dots vs. electric field at

external magnetic field slightly above magnetic field 3.3 T corresponding to

crossing of Fig. 2(b).

FIG. 4. The weights of the wavefunctions of the two lowest energy levels (3

and 4) on the magnetic (M) and non-magnetic quantum, dots as functions of

electric field. B¼ 3.3 T.
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non-magnetic dot. We observe that the amplitudes of being

on magnetic and non-magnetic dot are equal in magnitude at

F� 14 kV/cm, when state 3 with spin down anticrosses with

the higher lying state 2, and for F� 26 kV/cm, when the state

4 with spin up anticrosses with the higher lying state 1 with

the same spin. For large fields, the weights are primarily on

the magnetic M dot. Thus, we see that for increasing F, the

N and M character of the wavefunctions become mixed and

change from mainly N at low fields to mainly M at high

fields.

Fig. 5 gives the absolute value of the spin splitting of

the lower doublet ( ~E3, ~E4) with increasing electric field for

Bext ¼ 2T and for Bext ¼ 6T. At F¼ 0, the spin splitting of

non-magnetic ground state doublet of the dots is small. How-

ever, we see that the spin splitting can be strongly tuned with

an electric field by using the field to change the dot relative

energies. The electric field tuning of spin splitting obtained

here is much larger than those obtained by moving the elec-

tron function between materials as in Refs. 26–28. This is

because the electric field here not merely shifts the weights

of the wavefunction into material with larger g-factor as in

Refs. 26–28 but does this near resonance between states of

the two quantum dots.

Fluctuations in the orientation of Mn spins in semimag-

netic semiconductors can give rise to variations in Zeeman

splittings and also to electron spin dephasing. However, in

magnetic fields �1 T or higher the fluctuations are sup-

pressed. There also can be deviations from the linear depend-

ence of spin splittings on field in bulk semimagnetic

materials at sufficiently high fields (�7T) due to the satura-

tion of the polarization of the Mn spins.33 However, for the

fields studied here these effects are small, and they are not

included here.

IV. CONCLUSION

Here, we have developed an approach for the tuning of

spin splitting in single nonmagnetic quantum dots. A semi-

magnetic quantum dot gives large spin splitting in the non-

magnetic quantum dot, and an electric field can tune the

splitting. This approach may provide opportunities for

designing spin rotation operations in spin qubit gates. For

example, we could envision a chain of non-magnetic quan-

tum dots each coupled to an auxiliary semimagnetic dot with

varying Mn concentrations. In this way, qubit operations

might be carried out on different pairs of quantum dots with

a single electric field.

Electric field induced tunneling onto semimagnetic dots

could provide opportunities for relatively fast qubit opera-

tions. One can envision an array of semimagnetic quantum

dots each vertically coupled to a dot from an array of non-

magnetic dots. Pairs of coupled dots can vary in their parame-

ters making their switching characteristics individual. Both

arrays are placed in a Schottky diode, which can provide fast

switching electric field. The Schottky diode scheme is one of

the configurations already used for studies of coupled quan-

tum dots in electric field.34,35 The switching frequency for the

electric field in this case can reach from 2MHz to several

GHz, as in conventional Schottky diode.36 This gives

nanosecond to ten picoseconds time scale for qubit and gate

operations. This is even faster than in recent experiments on

lateral electrostatic quantum dots.10 Furthermore, using reso-

nant tunneling diodes, one potentially can reach switching fre-

quency 700GHz (Ref. 37) (corresponding to picosecond time

scale) for electric fields with amplitude as high as 40 kV/cm.

In optical settings, the fast electric fields can come from the

AC stark effect in optical manipulations. However, speed of

manipulations by electric field is limited by the need to oper-

ate within the spin-split ground state, at characteristic frequen-

cies smaller than the gaps, and GHz scale appears to be the

limit for quantum dots systems such as described here.

Systems of the kind discussed in this work could be fab-

ricated in several materials. Coupled CdMnTe and CdTe

dots have been made by selective interdiffusion.32 Mn can

be doped into GaAs,38 and GaMnAs dots could be used to

control GaAs dots in vertical configuration AlGaAs/GaM-

nAs/GaAs/AlGaAs. Also, the effect we discuss here can be

used to control spin splitting in two coupled non-magnetic

dots, one of which has a g-factor bigger than the other. For

example, the g-factor of bulk InAs is approximately�15,

whereas narrow quantum wells of InAs have g-factors

approximately �1. Thus, quantum dots from wide InAs

quantum wells could be used to control dots confined to nar-

rower quantum wells.

ACKNOWLEDGMENTS

This work was supported in part by ONR, NSA/LPS,

and DARPA. Y.L.G. acknowledges support by NSF Grant

No. ECCS-0901754.

1T. Fujisawa, Y. Tokura, and Y. Hirayama, Phys. Rev. B 63, 081394

(2001).
2R. Hanson, B. WitKamp, L. M. K. Vandersypen, L. H. Wllems van Beve-

ren, J. M. Elzerman, and L. P. Kouwenhoven, Phys. Rev. Lett. 91, 196802
(2003).

3J. M. Elzerman, R. Hanson, B. WitKamp, L. M. K. Vandersypen, L. H.

Wllems van Beveren, and L. P. Kouwenhoven, Nature 430, 431 (2004).
4M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D.Schuh, G. Abstreiter,

and J. J. Finley, Nature (London) 432, 81 (2004).
5S. Sasaki, T. Fujisawa, T. Hayashi, and Y. Hirayama, Phys. Rev. Lett. 95,
056803 (2005).

6T. Meunier, I. T. Vink, L. H. W. van Beveren, L. H. Willems, K. J. Tielrooij,

R. Hanson, F. H. L. Koppens, H. P. Tranitz, W. Wegscheider, L. P. Kouwen-

hoven, and L. M. K. Vandersypen, Phys. Rev. Lett. 98, 126601 (2007).
7A. V. Khaetskii and Y. V. Nazarov, Phys. Rev B 61, 12639 (2000).

FIG. 5. Dependence of spin splitting of lowest lying spin doublet vs. electric

field for external magnetic fields of 2 T and 6T.

093705-4 Lyanda-Geller, Reinecke, and Bacher J. Appl. Phys. 111, 093705 (2012)

Downloaded 10 Sep 2013 to 128.46.221.64. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions



8L. M. Woods, T. L. Reinecke, and Y. Lyanda-Geller, Phys. Rev. B 66,
161318 (2002).

9A. Greilich, D. R. Yakovlev, A. Shabaev, Al. L. Efros, I. A. Yugova, R.

Oulton, V. Stavarache, D. Reuter, A. Wieck, and M. Bayer, Science 313,
241 (2006).

10R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Van-

dersypen, Rev. Mod. Phys. 79, 1217 (2007).
11J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D.

Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science 309,
2180 (2005).

12G. Ortner, M. Bayer, A. Larionov, V. B. Timofeev, A. Forchel, Y. B.

Lyanda-Geller, T. L. Reinecke, P. Hawrylak, S. Fafard, and Z. Wasilew-

ski, Phys. Rev Lett. 90, 086404 (2003); Y. Lyanda-Geller, T. L. Reinecke

and M. Bayer, Phys. Rev. B 69, 161308 (2004).
13G. Ortner, I. Yugova, G. B. H. von Hogersthal, A. Larionov, H. Kurtze,

D. R. Yakovlev, M. Bayer, S. Fafard, Z. Wasilewski, P. Hawrylak, Y. B.

Lyanda-Geller, T. L. Reinecke, A. Babinski, M. Potemski, V. B. Timo-

feev, and A. Forchel, Phys. Rev. B 71, 125335 (2005).
14E. A. Stinaff, M. Scheibner, A. S. Bracker, I. Ponomarev, V. L. Korenev,

M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, Science 311,
627 (2006).

15G. Ortner, M. Bayer, Y. Lyanda-Geller, T. L. Reinecke, A. Kress, J. P.

Reithmaier, and A. Forchel, Phys. Rev. Lett. 94, 157401 (2005).
16H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler,

G. Abstreiter, and J. J. Finley, Phys. Rev. Lett. 94, 057402 (2005).
17F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Novack, T.

Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, Nature 442, 766
(2006).

18H. W. Jiang and E. Yablonovitch, Phys Rev B 64, 041307 (2001).
19Y. B. Lyanda-Geller, I. L. Aleiner, and B. L. Altshuler, Phys. Rev. Lett.

89, 107602 (2002).
20Y. Tokura, W. G. van der Wiel, T. Obata, and S. Tarucha, Phys. Rev. Lett.

96, 047202 (2006).
21A. Greilich, S. E. Economou, S. Spatzek, D. R. Yakolev, D. Reuter, A. D.

Wieck, T. L. Reinecke, and M. Bayer, Nat. Phys. 5, 262 (2009).

22D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature 456, 218
(2008).

23D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, Nat.

Phys. 7, 223 (2011).
24F. Meier, J. Levy, and D. Loss, Phys. Rev. B 68, 134417 (2003).
25D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
26G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, and D. D.

Awschalom, Nature (London) 414, 619 (2001).
27M. F. Doty, M. Schreibner, I. V. Ponomarev, E. A. Stinaff, A. S. Bracker,

V. L. Korenev, T. L. Reinecke, and D. Gammon, Phys. Rev. Lett. 97,
197202 (2006).

28W. Liu, S. Sanwlani, R. Hazbun, J. Kolodzey, A. S. Bracker, D. Gammon,

and M. F. Doty, Phys. Rev. B 84, 121304 (2011).
29J. A. Gaj, R. Planel, and G. Fishman, Solid State Commun. 29, 435

(1979).
30J. K. Furdyna, J. Appl. Phys. 64, R29–R64 (1988).
31A. Khaetskii, D. Loss, and L. I. Glazman, Phys. Rev. B 67, 195329
(2003).

32G. Bacher, M. K. Welsh, A. Forchel, Y. Lyanda-Geller, T. L. Reinecke,

C. R. Becher, and L. W. Molenkamp, J. Appl. Phys. 103, 113520

(2008).
33G. Mackh, W. Ossau, D. R. Yakovlev, A. Waag, G. Landwehr, R. Hell-

man, and E. O. Gobel, Phys. Rev. B 49, 10248 (1994).
34R. J. Warburton, C. Schaflein, D. Haft, F. Bickel, A. Lorke, K. Karrai,

J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Nature (London) 405, 926
(2000).

35A. S. Bracker, E. A. Stinaff, D. Gammon, M. E. Ware, J. G. Tischler,

A. Shabaev, Al. L. Efros, D. Park, D. Gershoni, V. L. Korenev, and I. A.

Merkulov, Phys. Rev. Lett. 94, 047402 (2005).
36M. A. Laughton, Electrical Engineer’s Reference Book (Power Semicon-

ductor devices, Newnes, 2003), Vol. 17, pp. 25–27.
37J. M. L. Figueiredo, C. N. Ironside, and C. R. Stanley, IEEE J. Quantum

Electron. 37, 1543 (2001).
38H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and

Y. Iye, Appl. Phys. Lett. 69, 363 (1996).

093705-5 Lyanda-Geller, Reinecke, and Bacher J. Appl. Phys. 111, 093705 (2012)

Downloaded 10 Sep 2013 to 128.46.221.64. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions


	Purdue University
	Purdue e-Pubs
	5-1-2012

	Electric field tuning of spin splitting in a quantum dot coupled to a semimagnetic quantum dot
	Yuli Lyanda-Geller
	T.L. Reinecke
	G. Bacher

	http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JAPIAU000111000009093705000001&idtype=cvips&doi=10.1063/1

