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We investigate the evolution of entanglement in the Fenna-Matthew-Olson (FMO) complex based
on simulations using the scaled hierarchical equations of motion approach. We examine the role of
entanglement in the FMO complex by direct computation of the convex roof. We use monogamy to
give a lower bound for entanglement and obtain an upper bound from the evaluation of the convex
roof. Examination of bipartite measures for all possible bipartitions provides a complete picture of
the multipartite entanglement. Our results support the hypothesis that entanglement is maximum
primary along the two distinct electronic energy transfer pathways. In addition, we note that the
structure of multipartite entanglement is quite simple, suggesting that there are constraints on the
mixed state entanglement beyond those due to monogamy. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4742333]

I. INTRODUCTION

Photosynthesis is one of the most common phenomena in
nature. However, the details of photosynthetic processes are
still under investigation. Recent experimental results show
that long lived quantum coherences are present in various
photosynthetic complexes.1–3 One such protein complex, the
Fenna-Matthews-Olson (FMO) complex from green sulphur
bacteria,4 has attracted a great deal of experimental and
theoretical attention due to its intermediate role in energy
transport. The FMO complex acts as a molecular wire,
transferring the excitation energy from the light-harvesting
complex (LHC) to the reaction center (RC).4–7 In 2007,
Engel et al.8 observed long-lasting quantum beating over a
time scale of hundreds of femtoseconds by two-dimensional
nonlinear spectroscopy. Evidence for quantum beating, and
therefore long lived quantum coherence, was also found at
room temperature.9

The transport of electronic excitations through the
protein complex of FMO is an example of energy transport
in an open quantum system. The oscillations of the nuclear
positions provide a bath or an environment for the electronic
excitations. Since 2007, several theoretical frameworks have
been developed to model this phenomenon. For example,
Aspuru-Guzik et al.10–12 introduced a non-Markov approx-
imation based on the Lindblad formalism to investigate the
effects on the efficiency of photosynthesis of the combination
of quantum coherence and environmental interaction. Mean-
while, Ishizaki and co-workers13,14 utilized the hierarchical
equations of motion (HEOM) approach to reproduce suc-
cessfully the population beating in the FMO complex at both
cryogenic and physiological temperature. More recently, Zhu
and co-workers introduced the scaled HEOM approach for

studying the robustness and quantum coherence in the FMO
complex.15,16 The scaled HEOM approach has been shown
to provide reliable simulation results with considerable
reduction in computational requirements. Using the HEOM
equations, Rebentrost and Aspuru-Guzik showed that the non-
Markovianity of the system is near-maximal for physiological
conditions.17 Recently, many other approaches for the numer-
ical computation of the time evolution and quantum features
of this system have made FMO a target for benchmarking of
methods for simulating open quantum systems.18–33

Besides the modeling of population and coherence ob-
served in experiment, these models also enable computation
of the time evolution of entanglement.34, 35 The first study of
entanglement in biological systems36 studied the dynamics
of the negativity37,38 for a pair of chromophores was coupled
to a non-Markovian environment. Subsequent studies consid-
ered more chromophores, different excitation mechanisms,
and different entanglement measures. We briefly review this
work here, for a more complete overview we refer the reader
to a recent review.39 In a recent study, Mukamel made a
distinction among some apparent entanglement effects asso-
ciated with the linear response, which can be eliminated by
a coordinate transformation, and genuine entanglement that
is fundamentally quantum in nature.40 Recently, Engel et al.
found a direct evidence of quantum transport in the FMO
complex.41

In Ref. 42 two measures of entanglement relevant to
FMO are defined. The first measure is the concurrence be-
tween chromophore i and chromophore j. The concurrence is
a well-known measure of entanglement between 2 two-level
systems, and can be computed in closed form even for mixed
states, and in the case of a density matrix restricted to the
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single exciton subspace takes the simple formCij = 2|ρ ij|.42, 43
The second measure defined was a global measure related to
the relative entropy of entanglement, defined by

E[ρ] = −
N∑

i=1
ln ρii − S(ρ), (1)

where S(ρ) = −Trρln ρ is the von Neumann entropy of the
state ρ. This measure is the relative entropy of entanglement
specialized to the case where states only have support in the
zero and one exciton subspace. The definition of the relative
entropy of entanglement is

E[ρ] = min
σ
Tr(ρ ln ρ − ρ ln σ ), (2)

where the minimization is taken over all separable states σ .
In the case of states restricted to zero or one excitons, the set
of separable states becomes simply the set of diagonal density
matrices, and so this minimization can be performed exactly,
yielding the expression (1). We refer the reader to the sup-
plementary materials of Ref. 42 for more details. Both of the
measures computed in Ref. 42 rely on the fact that, in the
single exciton subspace, coherence (meaning nonzero off di-
agonal elements of the density matrix in the standard basis) is
necessary and sufficient for entanglement. Both concurrence,
the relative entropy of entanglement and an entanglement wit-
ness introduced in Ref. 42 show this clearly.

We introduce the notation that the bipartition of a system
into subsystems A and B is denoted by A|B, and when a sub-
system consists of a set of chromophores we indicate it by a
string of labels, so 12|367 is the bipartition of the subsystem
composed of chromophores one and two (12), and the subsys-
tem composed of chromophores three, six, and seven (367).

The two measures considered in Ref. 42 were computed
for an initial excitation at site one or six, at both 77 K and
300 K, to probe both physiological conditions and the con-
ditions of ultrafast spectroscopy experiments. For the system
initialized with an exciton at site 1, they show the pairwise
entanglement 1|2, 1|3, 1|5 and also the pairwise entanglement
3|4. Finite entanglement was found between all pairs of chro-
mophores in Ref. 42 – over distances comparable to the size
of the FMO complex – ≤30 Å.

The logarithmic negativity is the only measure that is
readily computable for all states, and in the case of states re-
stricted to the single exciton subspace it may be computed
across any cut of the set of seven chromophores into two
subsets.44–46 Caruso et al. computed the logarithmic negativ-
ity across six cuts 1|234567, 12|34567, 123|4567, 1234|567,
12345|67 and 123456|7 in a simulation in which a single
excitation was injected into site one.45 The entanglement of
site one with the rest 1|234567 exhibited the largest peak
value, with large oscillations taking it below the entangle-
ments across the other cuts. This may be understood as the
generation of entanglement from the delocalization of the in-
jected exciton across the complex. In subsequent work, the
logarithmic negativity was also computed (across the same
cuts) for simulations in which direct injection of a single ex-
citon is replaced by simulation of thermal injection and laser
excitation. In the case of thermal injection the entanglement
is reduced by a factor of roughly 50, concomitant with a sup-

pression of coherent oscillations. In the case of simulated
laser excitation a large pulse of entanglement is observed,
lasting about 0.15 ps.

In Ref. 47, Fassioli et al. move from consideration of the
presence of entanglement in models of FMO to characteri-
zation of its functional role in transport. It is in this context
that the variety of entanglement studies carried out could con-
nect with functionality and delocalization ideas from physi-
cal chemistry. Those authors introduce an entanglement yield,
based on an entanglement measure which is a sum of the
squared concurrences or “tangles” (defined below) over all
pairs of chromophores.

ET =
∑

m,n>m

τ (ρm,n). (3)

Because of monogamy of entanglement their measure is
bounded above by a sum of the tangles of each chromophore
with the rest.

ET ≤ 1

2

∑
n

τ (ρn). (4)

This upper bound is equal to 7/2 times the Meyer-Wallach
measure for the seven chromophore system.48 Interestingly,
those authors point out a connection of this measure, and
hence of theMeyer-Wallach measure, to a measure commonly
used by the physical chemistry community of exciton delocal-
ization: the inverse participation ratio.50

To make a connection between entanglement and trans-
port, Fassioli et al.47 define an entanglement yield – the in-
tegral of the entanglement (as given by a sum of pairwise
tangles) weighted by the probability density for exciton ab-
sorption by the reaction center. This quantity is normalized
by the quantum yield: the total probability that the exciton
is trapped by the reaction center. The contributions to this
quantity were divided into donor-donor, donor-acceptor con-
tributions, where chromophores 1, 2 and 5, 6 are designated
donors and chromophores 3 and 4 are acceptors. This study
showed that entanglement peaks on a timescale relevant for
transport, for simulations in which the initial exciton is local-
ized on site one or site six. In particular those authors ob-
serve an inverse relationship between entanglement among
donor sites and quantum efficiency, suggesting that entangle-
ment among the donor chromophores (1, 2 and 5, 6) may be
tuned to achieve the desired quantum efficiency. The authors
of Ref. 47 also introduce the idea of direct and indirect path-
ways – an indirect pathway involving transfer through chro-
mophore seven. The connection between entanglement and
transport was also made clear by the work of Ref. 51 in which
it was shown that a high probability of exciton transfer was
only achieved for large values of the entanglement.

In Ref. 52 a number of distinct measures of quantum
correlation were computed: the quantum mutual information,
quantum discord, and single-excitation relative entropy of
entanglement with respect to bipartite cuts 3|16, 12|3, and
3|124567. These authors extended the work of Ref. 42 by
proving a simple formula for the relative entropy of entangle-
ment across any bipartite cut for states restricted to the single
exciton subspace.
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It is the goal of the present work to provide a more com-
plete picture of entanglement evolution during exciton trans-
port. We also wish to further investigate the relationship of
entanglement to the different transport pathways in the con-
text of the HEOM model presented below. The paper is or-
ganized as follows. In Sec. II the detailed theoretical frame-
work of the scaled HEOM approach is introduced. In Sec. III
the method used to compute the convex roof and hence ob-
tain the entanglement is given. Section IV contains our en-
tanglement calculations. We use the monogamy bounds in
order to validate our convex roof method – the monogamy
bounds provide a lower bound on entanglement and our con-
vex roof calculations provide an upper bound. We compute bi-
partite measures of entanglement (described in detail below)
for many subsystems and bipartitions of the FMO complex,
including calculations for all 63 bipartitions of the full seven
chromophore system in order to provide a full picture of the
multipartite entanglement present during transport. We close
the paper with some conclusions and directions for future
work.

II. METHOD: SCALED HIERARCHICAL EQUATIONS
OF MOTION (HEOM)

The structure of the FMO complex was originally ana-
lyzed by Fenna andMatthews.4 The FMO complex consists of
three identical monomers arranged in a C3 symmetric struc-
ture. Each monomer works independently in the FMO com-
plex. Each monomer is formed from seven bacteriochloro-
phylla (BChla) molecules. These molecules are the “sites” or
“chromophores” referred to in the rest of the paper. Exper-
imental results show that site 1 and 6 are close to the light
harvesting complex (LHC) and site 3 and 4 are next to the
RC.4–7

For all models used in the present paper, the Hamiltonian
of the FMO complex and its interaction with the environment
is taken to be

H = HS + HB + HSB, (5)

HS =
N∑

j=1
εj |j 〉〈j | +

∑
j �=k

Jjk (|j 〉〈k| + |k〉〈j |) , (6)

HB =
N∑

j=1
Hj

B =
N∑

j=1

NjB∑
ξ=1

P 2
jξ

2mjξ

+ 1

2
mjξω

2
jξ x

2
jξ , (7)

HSB =
N∑

j=1
Hj

SB = −
N∑

j=1
|j 〉〈j | ·

∑
ξ

cjξ · xjξ = −
N∑

j=1
Vj · Fj ,

(8)

with Vj = |j 〉〈j | and Fj =
∑

ξ

cjξ · xjξ .

The terms HS , HB , and HSB describe the Hamiltonian
of the system, the bath, and the system-bath coupling, respec-
tively. The Hamiltonian is written in the single excitation sub-
space, so that the basis states |j〉 in Eq. (6) denotes that the jth

site is in its excited state and all other sites are in their ground
states. The energy of site j is denoted by εj and Jjk is the elec-
tronic coupling between site j and k. N is the number of sites,
so that N = 7 for the FMO complex. For the thermal bathHB ,
the harmonic oscillator model is applied. We assume that each
site is coupled to the bath independently. The parameters mjξ ,
ωjξ , Pjξ , and xjξ are mass, frequency, momentum, and position
operator of the harmonic bath associated with the jth site, re-
spectively. The parameter cjξ in Eq. (8) represents the system-
bath coupling constant between the jth site and ξ th phonon
mode. The system and bath are assumed to be decoupled at t
= 0.

We can obtain the time evolution of the system den-
sity matrix ρ(t) by tracing out the bath degrees of freedom
ρ(t) = TrB[ρtot (t)] = TrB[e−iHt/� ρtot (0) eiHt/�]. The corre-
lation function for a phonon bath can be written as

Cj (t) = 1

π

∫ ∞

−∞
dω · Jj (ω) · e−iωt

1− e−β�ω
, (9)

Jj (ω) =
∑

ξ

c2jξ · �

2mjξ · ωjξ

δ(ω − ωjξ ) (10)

with β = 1/kBT . We assume that Jj(ω) is the same all sites,
Jj(ω) = J(ω)∀ js. We consider the time evolution of the sys-
tem density matrix both with and without environmental in-
teraction. For the isolated system, we set J(ω) = 0 and the
time evolution of the density matrix for the system is given by

d

dt
ρ (t) = − i

�
[HS, ρ (t)] . (11)

One approach to the computation of the time evolution
of the system density matrix is the HEOM approach,
originally developed by Ishizaki and Fleming.14 We use
the scaled HEOM approach for reasons of computational
efficiency.15,16

In the scaled HEOM approach, the original spectral den-
sity function J(ω) (Eq. (10)) is replaced by a Drude spectral
density function J (ω) = 2λγ

�

ω
ω2+γ 2

where λ is the reorgani-
zation energy and γ is the Drude decay constant. Then the
correlation function in Eq. (9) can be expanded as

Cj (t > 0) =
∞∑

k=0
ck · e−vkt

with vo = γ , which is the Drude decay constant, vk = 2kπ
β�

when k ≥ 1 and vk is known as the Matsuraba frequency. The
constants ck are given by

c0 = ηγ

2

[
cot

(
β�γ

2

)
− i

]

ck = 2ηγ

β�
· vk

v2k − γ 2
f or k � 1.

Using the scaled approach developed by Shi and
co-workers16 and applying the Ishizaki-Tanimura truncat-
ing scheme53,54 to the density matrix, the scaled density
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operator becomes

d

dt
ρn = − i

�
[HS, ρn]−

N∑
j=1

K∑
k=0

njkvk · ρn

− i

N∑
j=1

√
(njk + 1)|ck|

[
Vj ,

∑
k

ρn+
jk

]

−
N∑

j=1

∞∑
m=K+1

cjm

vjm

· [Vj , [Vj , ρn]]

− i

N∑
j=1

K∑
k=0

√
njk/|ck| (ckVj ρn−

jk
− c∗

kρn−
jk
Vj ),

(12)

where the global index n denotes a set of nonnega-
tive integers n ≡ {n1, n2, . . . , nN } = {{n10, n11, . . . ,
n1K} . . . {nN0,nN1, . . . , nNK}}. The symbol n±

jk refers to
a set in which the number njk is modified to njk ± 1 in
the global index n. The sum of njk is called the tier (N ),
N = ∑

j,k njk . The global index n labels a set of density
matrices in which ρ0 = ρ{{0,0,...,0}···{0,0,...,0}} is the system re-
duced density operator (RDO), and all others are considered
as auxiliary density operators (ADOs). Although the RDO is
the most important operator, the ADOs contain corrections to
the system-bath interaction, arising from the non-equilibrium
treatment of the bath. K is the truncation level for the
correlation function (Matsuraba frequency and constant ck)
and the cutoff for the tier of ADOs was set at Nc. The scaled
approach guarantees that all elements in the ADOs decay to
zero for the upper levels in the hierarchy, while the Ishizaki-
Tanimura truncating scheme decreases the truncation error.
For a detailed derivation of this approach we refer the reader
to Ref. 15. We make use of the same parameters as,15 and
we set the truncation levels K = 0 and cutoff tier of ADOs
Nc = 4. The reorganization energy and Drude decay constant
are λj = λ = 35 cm−1 and γ −1

j = γ −1 = 50 fs.
By numerically integrating the differential equation,

Eq. (12), using Mathematica, we calculated the density ma-
trix of each time step during the evolution for 2500 fs with a
time step of 2 fs. We performed simulations with two different
initial states: site 1 initially exited and site 6 initially excited.
The time series of the system density matrix so obtained is the
data from which we calculate the entanglement between var-
ious different parts of the FMO complex. Before describing
the results of those calculations, we first describe the method
by which we compute entanglement measures for the mixed
states of the seven chromophore system.

III. ENTANGLEMENT ANALYSIS

The FMO complex, considered as an assembly of seven
chromophores, is a multipartite quantum system. As such,
useful information about quantum correlations is obtained by
computing the bipartite entanglement across any of the cuts
that divide the seven chromophores into two subsystems. Sim-

ilarly if we take the state of any subsystem of the FMO com-
plex we can compute the entanglement across any cut of the
reduced state of that subsystem.

The measures we compute in the present paper are bipar-
tite – they determine a measure of the entanglement between
two subsystems of the seven-chromophore system. Each mea-
sure alone only contains information concerning the bipartite
entanglement across the bipartition. However, the nature of
multipartite entanglement in the system is given by the bi-
partite entanglement across all possible bipartitions (see, for
example, p. 890 of Ref. 34). One may therefore construct mul-
tipartite measures from multiple bipartite measures. Meyer
and Wallach’s “Global” measure of entanglement is defined
as a sum of bipartite measures (an average entanglement of
each subsystem with the rest). Scott55 and Love56 both gen-
eralized Meyer and Wallach’s measure to include information
from further bipartitions in various averages. The first case
in which interesting multipartite entanglement may occur is
the case of three two-level systems. In this case a multipartite
measure, the tangle, may be defined.57 This first example of a
multipartite measure may again be expressed as a difference
of bipartite measures computed for different subsystems and
bipartitions.

There are 63 distinct bipartitions of the seven chro-
mophores of FMO. The bipartite entanglement across all
these measures contains all multipartite entanglement infor-
mation about the full system. Ideally, one would compute all
of these measures to obtain a complete picture of the cor-
relations present among subsystems. Instead one may take
subsystems and compute the entanglement across bipartitions
of the subsystems. For example, by computing the entangle-
ment between all pairs of chromophores. However, as Table I
shows, this leads to a large number of subsystems, and a large
number of bipartitions for each subsystem.

Evidently, averaging together information from multi-
ple bipartitions implies a loss of information, and in the
present paper we simply display the measures correspond-
ing to each bipartition directly. These calculations of bipar-
tite measures across multiple bipartitions give us information
concerning the multipartite entanglement present in the FMO
system.

TABLE I. Subsystems and bipartite cuts relevant to the FMO system. One
may take a subsystem reduced density matrix of any m ≤ 7 and consider all
the bipartite cuts of each subsystem. This leads to a combinatoric explosion
of different bipartite measures. Evidently it would be simpler to consider all
cuts of the total system. We perform such convex roof calculations for the
full seven chromophore system by restricting the convex roof to the single
exciton manifold.

m
(7
m

)
Cuts Total measures

2 21 1 21
3 35 3 105
4 35 7 245
5 21 15 315
6 7 31 217
7 1 63 63
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A. Entanglement measures

The set of monotones defined in Ref. 56 for pure states
of n qubits is

ηS = 2|S|

2|S| − 1

(
1− Tr

(
ρ2S

))
, (13)

where S is a set of k two state quantum systems (usually
qubits, but in the context of the present paper these are chro-
mophores), so that |S| = k, and ρS is the reduced density ma-
trix of those k qubits. For two qubits with S = 1 this measure
reduces to the square of the concurrence. In order to allow
easy comparison with prior work computing the concurrence
for these systems we compute the square root of these mea-
sures

√
ηS for many bipartitions of various subsystems of the

seven chromophore system. We also compute these measures
for all bipartitions of the full seven chromophore system.

B. Monogamy of entanglement

A fascinating property distinguishing entanglement from
classical correlations is monogamy. Just as the simplest ex-
ample of entanglement occurs for two qubits, the simplest ex-
ample of monogamy occurs for three qubits. If, among three
qubits ABC, the qubits A and B are maximally entangled, then
qubit C cannot be entangled at all with qubits A and B. It is
instructive to consider this from the point of view of the en-
tanglement measures (Eq. (13)). These measures are based
on subsystem purity – if qubits ABC are in a pure state and
A and B are maximally entangled then the reduced state of
qubits AB is pure, hence so is the reduced state of qubit C,
and hence qubit C is unentangled with qubits A and B. In fact,
this property extends for three qubits to the case where the
entanglement is not maximal. The monogamy constraint for
pure states is expressed in terms of the tangles measuring the
entanglement of qubit A with a subsystem B

τA|B = 2
(
1− Trρ2A

) = ηA, (14)

where ρA is the reduce density matrix of subsystem A. In
terms of the measures (Eq. (14)) we obtain

τA|B + τA|C ≤ τA|BC. (15)

This property of three qubit states was shown in Ref. 57, and
the result for n qubits was proved in Ref. 58:

n∑
i=1,i �=m

τm|i ≤ τ (m|1, . . . m − 1,m + 1 . . . n). (16)

These imply corresponding relations among the measures ηS

that are equal to tangles of one qubit S with the others.
In the context of models of exciton transport that are re-

stricted to the single exciton subspace it is worth recalling
that, in the case of pure states of three qubits, it is exactly
states that are superpositions of Hamming weight one basis
states that saturate the monogamy bound.57 In fact it has been
shown that pure generalized W states and mixtures of pure
generalizedW states with |0〉〈0| (which corresponds to states
that are incoherent combinations of the single exciton sub-
space and the vacuum in the models we consider here) satu-
rate the monogamy bounds.49 For pure states we may there-

fore obtain the entanglement of each chromophore with the
rest using the sum of the pairwise entanglements. However,
these bounds are not known to be saturated for the mixed
states of interest here. It should be noted that the entangle-
ment properties of W-class states also enable experimental
detection of entanglement in these states.59

It is natural to ask whether monogamy holds beyond re-
strictions on the entanglement of single qubits to relation-
ships between the entanglement of higher dimensional sys-
tems. Unfortunately, in general this is not the case,60 as it
can already be shown that states of qubits violate the anal-
ogous relation to Eq. (15). For the single exciton manifold
of W-class states a number of relations beyond monogamy
are known.49 The approach we take here is to determine rela-
tionships among the measures (13), if any, by the direct com-
putation of the measures. It is to the technical details of the
calculation of these measures for mixed states that we turn in
Subsection III C.

C. Convex roof extension of entanglement monotones

The measures (13) are defined for pure states. A general
mixed state of a quantum system may also be entangled,
and the measures (13) can be extended to mixed states as
follows. Given a density matrix ρ and its set of ensemble
representations

ℵ ≡
{

pi, |ψi〉 :
∑

i

pi |ψi〉〈ψi | = ρ

}
, (17)

any entanglement monotone η(|ψ〉) on pure states can be
generalized to a monotone on mixed states, E(ρ), defined by

E(ρ) ≡ infℵ

[∑
i

piη (|ψi〉)
]

, (18)

which is also an entanglement monotone. Given a density
matrix ρ = ∑

i pi |ψi〉〈ψi |, define
|φi〉√qi ≡

∑
j

Uij |ψj 〉√pj , (19)

where the Uij’s are elements of a unitary matrix. It can then
be shown that ρ = ∑

i qi |φi〉〈φi |.
Since density matrices are Hermitian they are always di-

agonalizable. We can therefore write ρ = V �V †; this ma-
trix product can equivalently be written as the summation
ρ = ∑

i λi |vi〉〈vi |, where the λi’s are the eigenvalues of �

and the |vi〉’s are the basis-independent orthonormal kets cor-
responding to the columns of V . This is called the spectral
ensemble of ρ. It is also useful to define �̃ ≡ V �1/2, so that
�̃�̃† = ρ. This object �̃ contains all the information con-
tained in a particular ensemble, and similar objects �̃�̃† = ρ

also correspond to ensembles. In fact, the unitary transform
given in terms of a summation above corresponds to the ma-
trix transformation �̃U , where U is unitary. If we define
�̃ = �̃U for some unitary matrix U, then �̃�̃† = ρ. It can
further be shown that the space of ensemble representations
of ρ is isomorphic to the unitary group.61 Hence optimization
over the space of ensembles can be reduced to an optimiza-
tion problem over the unitary group. We give details of the
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parameterization of the unitary group used in our calculations
in the Appendix.

IV. RESULTS

In this section, we compute a number of entanglement
measures for two, three, four, five, and seven qubit subsys-
tems. Our approach follows both that of Ref. 42, in which
pairwise entanglements were computed, and that of Ref. 45
in which the logarithmic negativity for several partitions of
the full seven chromophore system were computed. We com-
pute the measures

√
ηS where ηS is defined in Eq. (13) for

bipartitions of subsystems of two, three, four, and five chro-
mophores. For these calculations the convex roof optimization
was performed in the full space of density matrices of dimen-
sion 27. We then compute the measures

√
ηS for all 63 bipar-

titions of the full seven chromophore system for one initial
condition, restricting the convex roof optimization to the sin-
gle exciton manifold for reasons of computational tractability.

A. Two site subsystems

The pairwise concurrences are a natural starting point be-
cause they can be computed exactly, and have been the subject
of extensive prior study.42 We compute the reduced density
matrix of each of the 21 pairs of sites and calculate the con-
currence in these two-site subsystems.43 For the case in which
site 1 was initially excited the coherent oscillations of popu-
lation occur mainly between sites 1 and 2 before the energy
is transferred to sites 3 and 4.14,15 As a result of these coher-
ent oscillations there is large pairwise entanglement between
site 1|2.42 In the work of Ref. 42, for times <900 (500) fs at
77 K (300 K) these measures are ordered: 1|2 > 1|3 > 1|5 >

3|4. For the system of Ref. 42 initialized with a single exciton
at site 6 the entanglements 4|5, 4|7, 5|6, 3|4 are computed. For
times <100 fs these are ordered 5|6 > 4|5 > 4|7 > 3|4.

In Figure 1 we plot the entanglement evolution of the
FMO complex when site 1 is initially excited at T = 77 K.
Figure 1 shows all 21 pairwise concurrences computed by
the convex roof. For entanglements 1|2 and 1|3 we also plot
the exact concurrence – the agreement is good enough that the
difference between the convex roof and the exact calculation
is not visible. In Figure 2 we plot the same data when site 6
is initially excited at T = 77 K. For bipartitions 5|6 and 4|5
we also plot the exact concurrence – again the agreement is
good enough that the difference between the convex roof and
the exact calculation is not visible. Figures 1 and 2 show the
ordering 1|2 > 1|3 > 1|5 as the significant concurrences for
site one initially excited and 5|6 > 4|5 as the significant con-
currences when site six is initially excited. These results are
consistent with those of Ref. 42.

These results on two chromophore subsystems help us
identify a pathway involving sites 1234 as significant for ex-
citon transport when site 1 is initially excited, and a pathway
involving sites 6543 as significant for exciton transport when
site 6 is initially excited. This is consistent with prior results
on pairwise entanglement.39, 42 These results also validate our
convex roof computations, at least for the case of two chro-

FIG. 1. Evolution of pairwise concurrences in the FMO complex when site
one is initially excited at T = 77 K. All 21 pairwise concurrences computed
by the convex roof – these are equal to

√
ηS for each subsystem of two sites,

computed across the single bipartition of the pair are also shown. For entan-
glements 1|2 and 1|3 we also plot the exact concurrence – the agreement is
good enough that the difference between the convex roof and the exact cal-
culation is not visible.

mophore systems. It is perhaps unsurprising that the convex
roof optimization performs well in that setting and so we now
turn our attention to larger subsystems.

B. Three site subsystems

For any triplet of chromophores there are three biparti-
tions (for example, 1|23, 2|13, and 3|12). Figure 3 shows re-
sults for subsystems of three chromophores. We compute the
entanglement measures

√
ηS using the convex roof procedure

among the triples of chromophores 134 (for bipartition 1|34,
S = 1), 234 (for bipartition 2|34, S = 2), 123 (for bipartition
12|3, S = 3), and 124 (for bipartition 12|4, S = 4). We also
compute these same entanglements from the pairwise entan-
glements computed in Sec. IV A using the monogamy bound.
The results shown in Figure 3 illustrate the utility of the
monogamy bound49 as a method of evaluating performance

FIG. 2. Entanglement evolution in the FMO complex when site six is ini-
tially excited at T = 77 K. All 21 pairwise entanglements computed by the
convex roof are also shown. For entanglements 5|6 and 4|5 we also plot the
exact concurrence – the agreement is good enough that the difference be-
tween the convex roof and the exact calculation is not visible.
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FIG. 3. Monogamy bound and convex roof computation of entanglements
1|34, 2|34, 12|3, and 12|4. Particularly in the first 200 fs the convex roof
closely matches the monogamy bound.

of the convex roof optimization. The convex roof performs
well for three qubits, closely matching the monogamy bound.

Figure 4 shows the evolution of entanglement measures√
ηS across bipartitions 1|23, 2|13 and 3|12 among the triplet

of sites 123 in both the isolated system and the system coupled
to the environment. The left side of Figure 4 shows the evo-
lution of entanglement for the isolated system, while the right

FIG. 4. Entanglement evolution of FMO complex when site 1 is initially
excited at cryogenic temperature T = 77 K. The triplet site entanglement
among site 1, 2, and 3 and also the pairwise site entanglement between any
two of site 1, 2, and 3 are plotted. The left panel shows the dynamics of the
entanglement for the system alone while the right considers the effect of the
environment.

side are results from the scaled HEOM approach. For the iso-
lated system, the oscillations in population and entanglement
will last forever. By comparison with the open system case,
it is obvious that the environment has the effect of eliminat-
ing the coherent oscillations characteristic of closed system
quantum dynamics. Both the isolated and the system with en-
vironment hit the maximum and minimum values at the same
time during the evolution, which shows that the oscillations in
the open system case are indeed the remnants of the coherent
behavior in the closed system case. The entanglement evolu-
tion is not as smooth as Ref. 42, because the simulation data
has been sampled every 10 fs in order to perform the entan-
glement calculations.

Figure 4(b) shows
√

η1, the entanglement of subsystem
123 across partition 1|23. The pairwise concurrences across
bipartitions 1|2 of subsystem 12 and 1|3 of subsystem 13 and
the monogamy bound is also shown. The time series of

√
η1

across bipartition 1|23 reflects the coherent oscillation of the
population and the time over which these oscillations last is
the same as that in the population evolution which is around
400 fs. The entanglement

√
ηS across bipartition 1|23 is pre-

dominantly due to the pairwise entanglement evolution be-
tween site 1|2, particularly during the first few oscillations
(t < 200 fs). Beyond 200 fs, the value of the measure

√
η1,

the entanglement of subsystem 123 across partition 1|23, be-
comes slightly larger than the pairwise entanglement site 1|2,
indicating that sites one and three have become entangled at
this time.

Figure 4(d), shows
√

η2, the entanglement of subsystem
123 across the bipartition 2|13. This time series is similar to
that of 1|23, again because√

η2 is dominated by the entangle-
ment of sites 1 and 2. Another interesting phenomena is the
pairwise concurrence across bipartition 2|3, which also shows
coherent oscillations. Although the value of the concurrence
is much smaller compared with the entanglement between site
1|2, the oscillations of 2|3 share the same frequency and hit
the maximum and minimum value simultaneously.

Figure 4(f) shows
√

η3, the entanglement of the triplet
123 across the partition 3|12, which is much smaller than
the entanglement across bipartitions 1|23 and 2|13 and does
not show significant coherent oscillations. For this case, in
which site 1 is initially excited, the dominant pairwise entan-
glement is 1|2, which is consistent with the other results in
the literature.42,45, 46 Hence, one may understand the smaller
value of this measure of entanglement by noticing that it is
computed across a bipartition that does not separate sites 1
and 2.

As a result, we conclude that in this pathway: during the
coherent evolution period (first 200 fs), sites 3 and 4 are com-
peting with each other to be entangled with sites 1 and 2.
However, when the coherent evolution disappears, the entan-
glement between sites 3 and 4 becomes dominant.

In order to check the effect of temperature on the entan-
glement evolution, we plotted the entanglement evolution at
room temperature (T = 300 T) for both site 1 and 6 initially
excited. The results at 300 K are shown in Figure 5. By com-
paring with the evolution at T = 77 K shown in Figure 1, the
coherent oscillations were reduced from 4 to 2 oscillations
and the length of coherent oscillations was also reduced from
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FIG. 5. Time evolution of entanglement for multiple sites at T = 300 K. In
the upper panel the entanglement measures

√
ηS across the indicated bipar-

titions among sites 1, 2, and 3 are shown when site 1 is initially excited. For
the lower panel, site 6 is initially excited.

400 fs to <250 fs. The maximum entanglement during the
evolution was also reduced due to the increase in tempera-
ture. For example, the maximum value of the measures

√
ηS

for bipartition 1|23 of sites 123 is 0.85 at 77 K while that is
around 0.73 when T = 300 K. In addition the entanglement
goes to the equilibrium state much faster at 300 K than at T
= 77 K. It takes around 7 ps for the system to arrive at the
equilibrium state at T = 77 K, while at T = 300 K this takes
around 1.5 ps. These results all confirm that the scaled HEOM
approach correctly reproduces the known effects of increasing
temperature on the evolution of entanglement.

C. Four site subsystems

There are four distinct bipartitions of the system into
one site plus the rest and we may use the monogamy bounds
to evaluate the performance of our convex roof calculations.
However, there are also three distinct bipartitions of the four
site subsystems into pairs of sites and we also compute mea-
sures

√
ηS across these bipartitions (12|34, 13|24, 14|23).

In Figure 6 we evaluate the performance of our convex
roof optimization using the monogamy bounds. As one can
see, the difference between the upper and lower bounds is
larger than for two and three chromophore systems, but is sig-
nificantly smaller in the case shown in the lower panel where
the values of the measures

√
ηS are rather small (

√
ηS < 0.1

for 7|456).

FIG. 6. Measures of entanglement and monogamy bounds in a four qubit
system when site 1 is initially excited at temperature T = 77 K. The measures√

ηS computed for bipartitions 4|123, 7|123, and 7|456 by the convex roof
and together with the monogamy bound are shown here. We see a larger
variation in performance of the convex roof optimization here, with a smaller
difference between the upper (convex roof) and lower (monogamy) bounds
for 7|456 and 7|123 than for 4|123.

Next we examine the different roles of sites 3 and 4 in
the pathway involving sites 1234 for the case where site 1
is initially excited. It is known that the destination of this
pathway is the pair of sites 34. However, the detailed roles
of these two sites during the entanglement evolution is still
not clear. Figure 7 shows the evolution of the entanglement
measure

√
ηS for the subsystem of chromophores 1234 across

partition 4|123. The concurrence for the pair 34 across par-
tition 3|4, and the measures √

ηS for triplets 123 and 124
across partitions 3|12 and 4|12 are also shown for compar-
ison. Within the first 200 fs we see coherent oscillations in
which 3|12 and 4|12 are in antiphase, but where 4|123 is in
phase with 4|12. The concurrence 3|4 evolves in lockstep with
the measure

√
ηS across bipartition 4|123 after 200 fs. The

entanglement of 3|12 and 4|12 are also evolving comparably
after 200 fs. This behavior is suggestive of an initial period
(the first 200 fs) in which the entanglement of chromophore
4 with 123 is fixed by its entanglement with chromophores
12, and then a long-time behavior in which chromophore 4 is
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FIG. 7. Time evolution of various entanglement measures for subsystem
1234 for site 1 initially excited at T = 77 K. The concurrence for subsystem
34 across bipartition 3|4 and the measures √

ηS for subsystems 123 and 124
across bipartitions 3|12 and 4|12, respectively, are also shown. The measure√

ηS across bipartition 4|123 is also shown.

entangled with chromophore 3. This is consistent with a pic-
ture of energy transport in which a delocalized exciton passes
from chromophores 12 to chromophores 34 – eventually land-
ing at chromophore 3.

In Figure 8 we show the measure
√

ηS for subsystem
1234 across partition 12|34. This tells us the entanglement
between pairs of chromophores 12 and 34 for the case where
site 1 is initially excited. Comparison of this figure with
Figure 7 is instructive, as we see that the entanglement be-
tween the pairs of chromophores 12 and 34 is decreasing after
the first 200 fs – following the falling value of the concurrence
of the pair 13 across bipartition 1|3. This makes sense in a pic-
ture of transport in which 12 are the chromophores receiving
the exciton when it is injected and 34 receive the exciton be-
fore it passes to the reaction center.

FIG. 8. Entanglement measures for the four chromophore subsystem 1234
when site 1 is initially excited at temperature T = 77 K. The measure

√
ηS

across bipartition 12|34 was computed via the convex roof procedure and is
shown here, together with the concurrences for pairs of chromophores 13,
14, 23, and 24. We note that in this case, we see that the entanglement 12|34
evolves similarly to both the 1|3 and 2|3 concurrences.

FIG. 9. Time evolution of concurrences and measures
√

ηS for the FMO
complex when site 6 is initially excited at temperature T = 77 K. The mea-
sures

√
ηS are shown are for subsystem 4567 across bipartitions 4|567, 5|467,

6|457, and 7|456. We also show the concurrences among the pairs of sites that
determine the concurrence bounds for the measures

√
ηS across bipartitions

4|567, 5|467, 6|457, and 7|456, and the concurrence bounds themselves. The
left panel shows the isolated system evolution and the right panel shows the
open system dynamics with environment.

We now turn to the case in which site 6 is initially ex-
cited. Figure 9 shows the evolution of entanglement measures√

ηS for the subsystem 4567 in both the isolated and open
system case. Similar to the case where site 1 is initially ex-
cited, the measures

√
ηS display coherent oscillations which

persist as long as the oscillations in the population. The most
significant concurrence is that for subsystem 56 across bipar-
tition 5|6, for which the maximum value is 0.8. The second
most important pairs are sites 4|5 and 4|6, which have the
maximum concurrence around 0.4. On the other hand, the
coherent oscillations for all three pairs share the same fre-
quency and evolution trend after the first beating. For subsys-
tems 4567 the measures

√
ηS across bipartitions 6|457 and

5|467 have similar amplitude and time evolution. However,
the measures

√
ηS 3|567 and 4|567 are much smaller com-

pared with the above two. Comparison of the measures
√

ηS

computed across bipartitions 4|567, 5|467, 6|457, and 7|456
by the convex roof (which gives an upper bound) with the
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FIG. 10. Evolution of entanglement measures
√

ηS for the subsystems of chromophores 12345, 12346, and 12347 in the FMO complex at cryogenic temperature
T = 77 K for site 1 is initially excited. The measures√ηS are computed across bipartitions 5|1234, 6|1234, and 7|1234 and the corresponding monogamy bounds
are also shown. Site 1, 2, 3, and 4 are sites evolved in the population pathway under this initial condition, and this data indicates that the entanglement of this
subset (1234) of chromophores with the other three chromophores is small.

monogamy bounds (which are lower bounds) shows that the
convex roof is performing well in this case.

D. Five site subsystems

For five qubits subsystems there are five partitions of the
subsystem that divide one site from the other four, and ten par-
titions that divide two sites from the other three. We proceed
as for the four site system, using the monogamy relations to
evaluate the performance of the convex roof measure.

Figure 10 shows the evolution of entanglement measures√
ηS for subsystem 12345. The measures

√
ηS across the three

bipartitions 5|1234, 6|1234 and 7|1234 are all small (<0.25)
during the full time evolution. This shows that when site 1
is initially excited, the measures

√
ηS are only large between

sites in the pathway, which are sites 1, 2, 3, and 4. We also
plotted the monogamy bounds in Figure 10, this shows that,
unsurprisingly, the difference between the convex roof opti-
mization and the monogamy bound is larger in this case –
likely showing that the convex roof optimization is not per-
forming as well in the five qubit case as it does for three and
four qubits.

For the case in which site 1 is initially excited, we only
see significant values of the entanglement measures within
the sites 1234 in the pathway. We would like to know if this
is also the case when site 6 is initially excited. Figure 11
shows the entanglement measure

√
ηS for subsystems 14567

across bipartition 1|4567 and subsystem 24567 across biparti-
tion 2|4567. The maximum value of these entanglement mea-
sures is around 0.25, which is much smaller compared than
that for measures computed across bipartitions of the subsys-
tem 4567. This is consistent with the idea that entanglement
is concentrated among the sites evolved in a specific pathway,
with different pathways for different initial conditions.

As for the case when site 1 is initially excited, we also
examined the roles of sites 3 and 4 in the case when site 6
is initially excited (Figure 12). Just as in the case where site

1 was initially excited (Figure 7) we see an initial period
with coherent oscillations in the entanglement in which the
entanglement of 3 with the rest and 4 with the rest are in
antiphase. This is followed by a later period in which sites 3
and 4 become entangled and the entanglement of 3 with 4567
is dominated by the entanglement of 3 and 4. As a result,
the dominant pairwise entanglement changes from site 5|6 to
pair 3|4 during the transport of the exciton from the injection
site at site 6 to the final state in which it is concentrated on
sites 3 and 4.

E. Seven site calculations

The nature of multipartite entanglement in the FMO com-
plex is encoded in the bipartite entanglement across multiple
partitions. In Secs. IV A–IV D, we have attempted to build up

FIG. 11. Time evolution of entanglement measures
√

ηS in the FMO com-
plex for site 6 initially excited at cryogenic temperature 77 K. The measures√

ηS are shown for subsystem 14567 across bipartition 1|4567 and subsystem
24567 across bipartition 2|4567.
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FIG. 12. Time evolution of entanglement measures
√

ηS in the FMO com-
plex for site 6 initially excited at 77 K. (cf. Figure 7). The measures

√
ηS

are computed for subsystems 3567 across bipartition 3|567, subsystem 4567
across bipartition 4|567 and subsystem 34567 across bipartition 3|4567.

a picture of multipartite entanglement by considering entan-
glement within subsystems, and across multiple bipartitions
of many subsystems. However, the performance of the convex
roof optimization worsens as one moves from three to four to
five site subsystems, and these optimizations are not feasible
using a general treatment of the full seven site system. How-
ever, we can restrict our optimization to include ensembles
constructed only within the one-exciton subspace, and by do-
ing so calculations of the full seven chromophore system be-
come tractable.

In this subsection we present calculations of measures√
ηS for all bipartitions of the full seven chromophore sys-

tem. There are 63 such bipartitions, seven of which are parti-
tions into one chromophore plus the rest. There are 21 distinct
partitions of the FMO complex into a pair of sites and a quin-
tuplet, and 35 partitions of the FMO complex into a triple and
a quadruple of sites.

Figures 13 and 14 show the time evolution of all mea-
sures

√
ηS for the seven site system across the seven biparti-

tions into one chromophore and the other six, at 77 K with site
1 initially excited. We compute these measures by the convex
roof optimization restricted to the single exciton subspace,
and also calculate the monogamy bounds. In this data we can
see that only sites one and two exhibit significant (>0.5) val-
ues of the entanglement measures that undergo coherent os-
cillations. The remaining measures exhibit a rapid rise, but
remain well below 0.5 for the entire evolution.

From Figure 1 we see that the single pairwise concur-
rence of subsystem 12 across bipartition 1|2 exhibits coherent
oscillations and large entanglement. Hence the picture of en-
tanglement we obtain from Figures 1, 13, and 14 is that the
entanglement of chromophores one and two with the rest is
determined mainly by the entanglement of chromophore one
with chromophore two. This is consistent with the picture ob-
tained by examining small subsystems of the FMO complex
– in which chromophores one and two initially share the exci-
tion before it moves into the other chromophores in the path-

FIG. 13. Entanglement measures
√

ηS for the full FMO system at 77 K
with site one initially excited. The measures

√
ηS are shown for the parti-

tions 1|23456, 4|123567, 5|123467, 7|123456 (solid lines), together with the
corresponding monogamy bounds (dotted lines). These results illustrate the
performance of the convex roof optimization and also show that the largest of
these measures is that which gives the entanglement of chromophore 1 with
the rest, 1|23456.

way 1234 for the case in which chromophore one is initially
excited.

Figures 1, 13, and 14 give a picture of entanglement that
is determined by the set of pairwise entanglements and the
entanglement of single chromophores with the rest. Even in
this case we are seeing aspects of the multipartite nature of
entanglement in this system, as these measures refer to differ-
ent partitions of the system. However, there are many more
partitions that in general can exhibit multipartite entangle-
ment structure. The measures

√
ηS for all bipartitions of the

seven chromophore system into a pair of chromophores and

FIG. 14. Entanglement measures
√

ηS for the full FMO system at 77 K with
site one initially excited. The measures

√
ηS are shown for the partitions

2|13456, 3|124567, 6|123457 (solid lines), together with the corresponding
monogamy bounds (dotted lines). These results illustrate the performance of
the convex roof optimization and also show that the largest of these measures
is that which gives the entanglement of chromophore 2 with the rest, 1|23456.
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FIG. 15. Entanglement measures
√

ηS for the full FMO system at 77 K with
site one initially excited. These four plots show measures

√
ηS computed

across all 21 bipartitions of the seven chromophore system into a pair of
chromophores and the remaining quintuplet. Any measure that includes either
chromophore 1 or chromophore 2 (but not both) on one side of the bipartition
exhibits oscillations and the value of the measure is large. Any measure that
has both chromophore 1 and 2 on the same side of the bipartition takes lower
values and exhibits rapid growth in the first 100 fs, but never exceeds 0.5 in
value.

the other five are shown in Figure 15 for the FMO system at
77 K with site 1 initially excited. There are 21 such partitions.

The measures
√

ηS shown in Figure 15 exhibit two dis-
tinct types of behavior. Any measure

√
ηS that is computed

across a bipartition that separates sites 1 and 2 exhibits co-
herent oscillations and values of the measure that are large
(>0.5). Any measure that is computed across a bipartition
does not separate sites 1 and 2 has a rapid rise in the value
of the measure initially by the value typically remains small
(<0.5).

There remain further bipartitions of the seven chro-
mophore FMO complex, namely those that divide the system
into three chromophores and the remaining four. There are 35
distinct bipartitions of this type, and the corresponding mea-
sures

√
ηS are shown for the FMO complex at 77 K in which

site one is initially excited in Figure 16. The picture we obtain
from Figure 16 confirms that given by the previous measures
displayed in Figures 13–15. Large (>0.5) values of the mea-
sures, and coherent oscillations, occur for any measure

√
ηS

computed across a bipartition that divided chromophore one
from chromophore two. Any measure

√
ηS computed across

any bipartition that does not separate chromophores one and
two rises rapidly but remains small (<0.5) throughout the
evolution.

F. Beyond the single exciton manifold

In addition to computing the measures of entanglement√
ηS above, which are based on simulations by the HEOM

method in the one-exciton subspace, we wish to investigate
what the effect of the presence of either zero excitons or more
than one exciton in the system. We conducted a number of
tests where we reinserted the ground state density matrix ρ0

FIG. 16. Entanglement measures
√

ηS for the full FMO system at 77 K
with site one initially excited. These six plots show measures

√
ηS com-

puted across all 35 bipartitions of the seven chromophore system into three
of chromophores and the remaining four. Any measure that includes either
chromophore 1 or chromophore 2 (but not both) on one side of the bipartition
exhibits oscillations and the value of the measure is large. Any measure that
has both chromophore 1 and 2 on the same side of the bipartition takes lower
values and exhibits rapid growth in the first 100 fs, but never exceeds 0.5 in
value.

= |0000000〉〈0000000| and the two-exciton density matrix ρ2
= |0000011〉〈0000011| in order to determine how the mea-
sures of entanglement would be affected. In the first test, we
inserted the ground state ρ0 on its own, yielding the follow-
ing expression for the density matrix (where ρ1 is the density

FIG. 17. A comparison of the effects of adding in the two-exciton subspace
for different values of |α2|. The concurrence between sites one and two is
plotted for the density matrix in Eq. (21), with |α2| = 0.5, 0.1, 0.01.
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FIG. 18. A comparison of the effects of adding in the two-exciton sub-
space γ |α|2|0000011〉〈0000011| for different values of γ , with |α|2 = 0.5.
The concurrence between sites one and two is plotted for the density matrix
in (22), with ρ2 = |0000011〉〈0000011|.

matrix for the single-exciton subspace):

ρ = ρ0 + |α|2ρ1
1+ |α|2 . (20)

These results are shown in Figure 17.
In our second test, we added in the two-exciton subspace

alone, without the ground state

ρ = ρ1 + |α|2/2ρ2
1+ |α|2/2 . (21)

We then inserted ρ0 and ρ2 as follows:

ρ = ρ0 + |α|2ρ1 + |α|4/2ρ2
1+ |α|2 + |α|4/2 . (22)

FIG. 19. A curve showing how the amplitude of the concurrence between
sites 1 and 2 at 21 fs varies as a function of γ , with the density matrix
from (22), with ρ2 = |0000011〉〈0000011| and |α|2 = 0.5.

When we added in both the vacuum state and the two-exciton
subspace |0000011〉〈0000011| and varied α, we found that
for values as small as |α|2 = .01, the entanglement com-
pletely disappeared. We then experimented with adding in
both the ground state and an exponentially decaying two-
exciton subspace, ρ2 = e−γ t|0000011〉〈0000011|, and, as ex-
pected, as e−γ t goes to zero, we recover some entanglement
between sites 1 and 2, although the magnitude is still dimin-
ished by the presence of the vacuum state (23). In order to
get a sense of how quickly the entanglement recovers, we cal-
culated the concurrence for the density matrix in Eq. (22),
which includes the ground state |0000000〉〈0000000| and the
two-exciton subspace |0000011〉〈0000011| scaled by a factor
γ ∈ [0, 1]:

ρ = ρ0 + |α|2ρ1 + γ |α|4/2ρ2
1+ |α|2 + γ |α|4/2 . (23)

The results are plotted in Figs. 18 and 19.

V. CONCLUSIONS

In summary, we used the direct computation of the con-
vex roof to calculate the evolution of number of bipartite en-
tanglement in the FMO complex via the scaled HEOM ap-
proach. For the simulations in which site 1 is initially excited,
the dominant pair is site 1 and 2, while in the cases where
6 is initially excited site, 5 and 6 are most entangled. This
indicates that entanglement is dominant in the early stages
of exciton transport, when the exciton is initially delocalized
away from the injection site. In addition we observe that the
entanglement mainly happens among the sites involved in the
pathway. For the site 1 initially excited case, the entanglement
of site 5, 6, and 7 is almost zero. For the site 6 initially excited
situation, there is seldom entanglement for sites 1 and 2.

Although the final state is the same for both initial con-
ditions, the role of sites 3 and 4 during the time evolution is
different. For the initial condition where site 1 is excited, the
entanglement is transferred to site 3 and then from site 3 to site
4. While for the site 6 initially excited case, sites 4 and 5 first
become entangled with site 6 and then sites 3 and 4 become
entangled. This is due to the fact that site 3 has strong cou-
pling with site 1 and 2, while site 4 is coupled more strongly
to sites 5, 6, and 7.

The initial condition plays an important role in the en-
tanglement evolution, the entanglement decays faster for the
cases where site 6 is initially excited compared with cases
where the site 1 is initially excited. This is consistent with re-
cent models that include the nature of the excitation caused by
the incident light, and which show a strong dependence of the
amount of entanglement generated on the details of the ex-
citation process.62 Increasing the temperature unsurprisingly
reduces the amplitude of the entanglement and also decreases
the time for the system goes to thermal equilibrium, in agree-
ment with prior work.

Most entanglement measures computed previously for
FMO were chosen on the basis of ease of calculation. The
negativity and logarithmic negativity are straightforward to
compute for all states.36, 45 The global and bipartite rela-
tive entropy of entanglement can be made straightforward to
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compute by restriction to the single exciton subspace.42,52 The
bipartite concurrence and tangles can be computed easily for
pairs of chromophores.42,47 In all cases the chosen measures
or simplifications thereof enable one to avoid computing the
convex roof over different ensembles representing a mixed
state. In this paper we explored the difficulty of such cal-
culations, and find that measures that yield the bipartite en-
tanglement across cuts of 3, 4, and 5 qubit subsystems may
be computed with modest effort. We computed monogamy
bounds to obtain a lower bound on a number of measures and
the convex roof to obtain an upper bound. The closeness of
these two bounds gives a measure of how well the convex roof
is performing. For pure states in the single exciton manifold
the monogamy bounds are saturated49 – however this is not
known to be the case for the mixed states of interest here. The
convex roof technique enables us to extend the set of measures
that have been computed for FMO, and also shows that the
computation of entanglement for this system is not restricted
by the difficulty of the convex roof procedure. This procedure
could also be used, with no increase in computational cost, to
analyze entanglement in multiexcitonic models.

For the full system of seven chromophores it was neces-
sary to restrict the convex roof optimization to the single ex-
citon subspace in order to make the calculations tractable. We
performed a complete calculation of measures

√
ηS across all

63 bipartitions, which contains all information concerning the
multipartite entanglement present in the system. The results
of these calculations for site one initially excited confirm the
conclusions of calculations on smaller subsystems: the struc-
ture of entanglement in this system can be understood in terms
of pairwise entanglement. The fact that the other measures of
entanglement add no new information to the picture is per-
haps suprising. It remains to be seen whether this is a gen-
eral (but currently unproven) property of the single excitation
subspace, or whether it is a property of the particular dynam-
ics of the FMO system. We leave these questions to future
investigations.
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APPENDIX: THE CAYLEY MAP

The Cayley map is a self-inverse map from the algebra
u(N) to the group U(N). The Cayley map is a map between
a number of Lie algebras and their respective groups. It was
introduced as a map from so(N) to SO(N).63 The Cayley map
is defined by

Cay(a) = A = (I − a) (I + a)−1 , (A1)

where a is an element of the algebra being considered, and A
is an element of the group. Likewise, we have

CayA = a = (I − A) (I + A)−1 , (A2)

In the case of the unitary group, the Cayley map is a bijec-
tion between u(N) and the set U (N )− E , where E is the set

of “exceptional elements.” E is the set of all elements A such
that I + A is singular, and can be characterized as the set of all
elements A with at least one eigenvalue −1. The exceptional
elements on SO(3) are the reflections. For all such elements E,
I + E has a 0 eigenvalue, and is not invertible, so the Cayley
map is not defined on these elements; however, this will not
hinder our attempts to minimize η over U(N). Since we are
performing numerical optimization, we only care that we can
get arbitrarily close to a given local optimum. The closure of
the image of the Cayley map on u(N) is all ofU(N), so we will
still be able to identify minima located at exceptional points.

Because u(N) is easily parameterized by N2 parameters,
we can therefore parameterize U(N) by N2 parameters via the
Cayley map. Given a set of N2 parameters {p1, . . . , pN2}, the
corresponding element of U(N) is then

A = Cay(a(p1, . . . , pN2 )), (A3)

where a is the element of u(N) given by the parameters pi un-
der a standard parameterization. In the current work we use
the basis of tensor products of Pauli matrices for the algebra
su(N). The virtue of the Cayley map is that it gives us an eas-
ily understood and easily implemented way to parameterize
U(N). The Cayley map thus provides somewhat simpler pa-
rameterization than that used in prior work on the convex roof
optimization in Ref. 64. Comparison of the performance of
our method with the simulated annealing approach described
in Appendix B of Ref. 65 shows a substantial advantage to
parameterization by the Cayley map combined with steepest
descent. We leave detailed comparison of our method with
that of Ref. 64, and the evaluation of other optimization tech-
niques beyond steepest descent, to future work.
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