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Generation of gold nanoneedles on glass by confined laser spinning was explored by using a

nanosecond pulsed laser. When the coated Au thin film was irradiated under the confinement of

glass, gold nanoneedles were formed by spreading the molten liquid of gold under high pressure. The

mechanism of the confined laser spinning process is studied. The maximum velocity and instability

of molten liquid during confined laser spinning were estimated. The diameter of nanoneedles can be

controlled by changing the thickness of coated gold thin film. Large scale of gold nanoneedles can be

formed by this direct writing method and collected by confined glass. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4746427]

Due to their high-aspect ratio, tunable nanoscale geome-

try and unique mechanical, electrical, and optical properties,

needle-like metal nanostructures are of considerable interests

to revolutionize applications such as probing and manipulat-

ing biological processes in living cells, precise control over

the color and directionality of ultra small optical emitters.1,2

Currently these nanoneedle structures are typically produced

by atomic scale methods which build up the continuous one-

dimensional structures one atomic layer at a time.2 From a

technical and economic perspective, these methods are slow,

complex, and expensive to meet the needs. Laser is an effi-

cient and versatile tool to fabricate nanoscale nanostruc-

tures.3 The production of ultra long ceramic nanofibers has

recently been reported by laser spinning,4 which combines

laser with a supersonic nozzle and a high pressure. Herein,

we introduce a laser based fabrication technique, confined

laser spinning, directly writing gold nanoneedles on glass

under ambient conditions.5 Compared to laser spinning, con-

fined laser spinning is more compact, simpler, and easier to

control, collect and align laser formed nanoneedles.

Confined laser spinning uses spatially confined configu-

ration to generate gold nanoneedles. In order to directly pro-

duce long metal needles from melted droplets, the

temperature needs to be quickly increased above melting

point, and the pressure needs to be high enough to initiate

spinning process. The utilization of pulsed lasers can pro-

duce molten metal drops at very high temperatures during

short periods,6 which ensures that the metal remains fluid

with a low viscosity during elongation. The spatially con-

fined configuration provides an ultrahigh pressure shock

because of confined laser ablation, which rapidly elongates

the melted metal droplets before cooling.3 To produce the

metal needles with nanoscale diameter, the diameter of the

initial drop before elongation should be as small as possible.

Thus, we chose metal thin film deposited on glass as the be-

ginning materials, which restricts the sizes of molten drops.

Finally, the extreme requirements for nanoneedle formation

were all satisfied by confined laser spinning.

The concept of confined laser spinning is illustrated in

Figure 1. The spinning process can be simply described as

follows: the melting and then evaporation of metallic thin

film, high-pressure pulse generation and lateral propagation,

and formation of nanoneedles. During the operation, the

laser beam was passing through a focus lens directly for con-

trolling the final beam size and laser fluence. The intensity of

laser spot satisfied Gauss distribution; thus, the laser inten-

sity was the highest at the spot center and was the lowest at

the spot edge. When the laser transmitted through the trans-

parent glass and arrived at the metal film, the metal material

absorbed the laser energy and then vaporized and ionized

instantly inside the laser spot, where laser intensity was

above the evaporation threshold. At the same time, the metal

material melt and formed liquid droplets at the edge of the

laser spot, where laser intensity was above melting point, but

is lower than evaporation threshold. The vapor exploded vio-

lently at the middle spot in the limited space and continued

absorbing the remaining laser energy. As a result, a high-

pressure pulse formed inside the spot during the laser heating

and condensing of the vapor. The high-pressure pulse later-

ally expelled the molten droplets at the spot edge to the spot

exterior, because the pressure was not counterbalanced in the

outside directions. Metal nanoneedles were drawn from these

molten droplets and finally resolidified fast on the glass

surface.

FIG. 1. Schematically illustration of gold nanoneedle generation by confined

laser spinning.
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A short pulse Q-switched Nd-YAG laser in TEM00

mode (Continuum
VR
SureliteTM III) was used as laser source.

The laser pulse width was 5 ns, and the laser pulse energy

was measured by an optical power meter (Newport, type:

1916c). The beam diameter was calibrated by a photosensi-

tive paper (Kodak Linagraph, type: 1895) and it was fixed at

2mm in all experiments. ITO glass was used as the needle

collector and the transparent confinement to increase laser

induced pressure. Au thin film with a thickness of 30 nm was

deposited on glass with SPI Module-T Sputter/Carbon Coat-

ers. The morphology of laser produced nanoneedle was char-

acterized by using a Hitachi S-4800 field emission scanning

electron microscopy (SEM). ITO glass was used as covered

collector because of its high electrical conductivity, which

was propitious to observe sample morphologies by SEM.

Figure 2 shows the typical morphology of gold nanonee-

dles formed on ITO glass surface by confined laser spinning

processing. Here, the laser fluence was about 7.52 mJ/cm2.

The SEM pictures show that these nanoneedles lie along the

same direction which is perpendicular to the laser spot edge.

The packing density of these separated nanoneedles is vary-

ing with the processing conditions. The average diameter of

these parallel nanoneedles is about 40 nm. The picture in

Figure 2(b) with higher magnification reveals that these

nanoneedles have well-defined needlelike morphology with

diameter decreasing along nanoneedles, smooth surface, and

high aspect ratio. The tips of these needles are very sharp,

with diameter as small as about 5 nm. The side of nanonee-

dles with bigger diameter is away from the center of laser

irradiated region.

According to the model of Fabbro et al.,7 the peak value

of local shock pressure Pp can be evaluated under the con-

fined configuration. It is proportional to the square root of

laser intensityI0:

PpðGPaÞ ¼ 0:01
a

2aþ 3

� �0:5

Z0:5ðg=cm2sÞ � I0:50 ðGW=cm2Þ;
(1)

where a is the fraction of absorbed energy (normally

between 0.2 and 0.5), and Z is reduced acoustic impedance,

calculated by

2

Z
¼ 1

Z1
þ 1

Z2
; (2)

where Z1 and Z2 are the impedances of the confining media

(ITO glass) and the target material (gold), respectively. The

Z value can be estimated by Z ¼ qD, where D is the shock

velocity.8 The estimated values of Z1 and Z2 are 3:52� 106

and 9:554� 106g=ðcm2sÞ, respectively. The maximum ve-

locity of molten liquid u at the spot border can be evaluated

from Bernoulli’s law9,10:

u ¼ 2Pa

q

� �0:5

� 2Pp

q

� �0:5

; (3)

where q is the density of irradiated material (gold: 19.3 g/

cm3), and Pa is the mean pressure value averaged over the

pressure pulse duration. Using Newton’s second law for the

droplet elongation motion and neglecting friction between

liquid and glass, the maximum length of nanoneedle (lmax) is

obtained when the liquid velocity drops to 0 (Ref. 10):

lmax ¼ l0u
qr
2r

� �0:5

; (4)

where r is the surface tension coefficient, the value of Au

liquid is in the range of 1.1 N/m, r is a constant across length
radius of nanofiber (40 nm), and l0 is the initial length of liq-

uid (29lm). The evolution time of this needle formation pro-

cess is10

tmax ¼ l0uqr
2r

: (5)

The instability of the liquid cylinder could be another factor

limiting the maximum length of final nanoneedle. The char-

acteristic time of the instability development is estimated

approximately as10,11

tin ¼ 8vqr
r

; (6)

where v is the kinematic viscosity of the metal liquid. The

measured value of kinematic viscosity of liquid gold is

3.58 Pa s.12 The instability could be effective and induce the

breakup of the viscous fluid thread, if tin < tmax. According

to Eq. (6), the length of broken piece is proportional to its

radius, and it does not affect by the elongation velocity of

liquid cylinder. This phenomenon is demonstrated by SEM

picture (Figures 3(a) and 3(b)). Figure 3(a) shows that

the gold nanoscale beads are connected together (in the black

dotted circle) due to instability. It is a transition status

between forming nanoneedles (Figure 2) and nanoscale beads

(Figure 3(b)). Figure 3 was observed from the transition zone,

which is between the nanoneedle forming zone and laser writ-

ten zone. It is noted that the instability of liquid cylinder pro-

vides a simple method to fabricate well separated nanoscale

beads aligned along the direction of pressure difference. Such

metal nanostructures are considered is useful for transfer light

by coupling.

FIG. 2. High density of gold nanoneedles formed on ITO glass: (a) large

scale and (b) higher magnification of nanoneedles.

FIG. 3. (a) Status between forming nanoneedle and nanobeads, and (b)

nanobeads formed by instability of gold liquid under high pressure.
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Figure 4 shows the tmax and maximum velocity of mol-

ten liquid under different local shock pressure. It is noted

that the maximum velocities of molten liquid increase with

increasing the local shock pressure. The nanoneedles were

formed under high shock pressure; however, high pressure

would cause instability of liquid cylinder. Higher local shock

pressure would also result in longer tmax. From the Figure 4,

the tmax at any local shock pressure is longer than tin, which
explains the existence of transition zone. The higher velocity

of molten gold causes the instability for the generation of

aligned nanobeads. After passing the transition zone, the

velocity of nanobeads decreases to form nanoneedles.

To summarize, this work demonstrates formation of

gold nanoneedle by confined laser spinning. The formation

mechanism of the nanoneedles is investigated. During the

laser ablation, higher pressure was generated on the center of

the laser spot and lower pressure on the edge of the spot. The

high pressure expelled the molten droplet on the edge

towards the outside of the laser spot. The instability hap-

pened when the evolution time of molten liquid was higher

than the critical value. After the velocity of molten liquid

reduces, gold nanoneedles were formed. This method pro-

vides a fast and simpler technique to form large scale gold

nanoneedles by laser direct writing.
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FIG. 4. tmax and maximum velocity of molten liquid at different local shock
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