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1 Introduction 

Antiseptics are compounds which are able to kill or inhibit the growth and 

development of microorganisms (Hubner et al, 2010). Clinically, these substances are 

used for both, intact skin and wounds (Atiyeh et al., 2009). They are applied topically 

on the surface of the body, in body cavities or on surgically exposed tissues (Stahl et 

al., 2010) in order to reduce the risk of colonization of microorganisms or to treat 

already existing infections of wounds (Hubner et al., 2010). Wound infections are 

associated with a delay of wound healing (Hirsch et al., 2009) and the development of 

severe morbidity up to sepsis  (Steinstraesser et al., 2002). Therefore, if the bacterial 

colonisation and the bio burden of a wound could be decreased by topical antiseptics, 

antibiotic therapy might be not needed (Leaper and Durani, 2008). However, 

antiseptics may be cytotoxic to the wound itself (Hirsch et al., 2009). For this reason, 

antiseptic preparations should fulfil certain requirements in order to be the agent of 

choice. To chose the right antiseptic for wound management, overall data regarding 

toxicity, safety, efficiency, clinical application and contraindications are needed 

(Hubner et al., 2010). 

In the last few decades, new compounds have been in clinical use. Among these, one is 

octenidine dihydrochloride (Hubner et al., 2010), which is, in combination with 2-

phenoxyethanol (PH), a licensed product in European countries (Octenisept® (OCT) 

with 0,1 % octenidine and 2 % PH) (Stahl et al., 2010). It has become the antiseptic 

agent of first choice in many hospitals (Franz and Vogelein, 2011), where it is used for 

skin, mucous membrane and wound antisepsis (Hubner et al., 2010) (Gilbert and 

Moore, 2005). It has a broad antimicrobial spectrum against a variety of gram-positive 

and gram-negative bacteria, including methicillin resistant Staphylococcus aureus 

(MRSA) (Kramer et al, 2008), skin microflora and fungi (Sedlock and Bailey, 1985). As 

antiseptics are applied on host tissue, the cytotoxic side effects should be minimal 

without adversely affecting the microbicidal properties of the compound. Due to this, 

the indications for local antiseptics should be carefully chosen (Marquardt et al., 2010) 

(Hirsch et al., 2009). Hence, the impact of octenidine on cell migration and 

proliferation was under investigation in the current work. Therefore, in vitro tests 
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using primary human fibroblasts which are the main cell type of the connective tissue 

and MCF-7 cells, a breast cancer cell line, were performed. Moreover, it was 

determined whether the application of octenidine causes any changes in the 

expression of genes involved in wound healing like the family of matrix 

metalloproteinases (MMPs), transforming growth factor (TGF)-β or vascular 

endothelial growth factor (VEGF) (Werner and Grose, 2003) (Lund et al., 1999). 

Another aspect of this work was to elucidate whether there are any interactions 

between commonly used antibiotics and selected antiseptics since they are often used 

in combination in clinical practise. However, the knowledge of possible interactions is 

limited which led us to the aim to further shed light on this issue.  

All these investigations were also performed with a new OCT formulation where the 

compound is diluted 1:2 with a 5 % glucose solution. In case report studies, this 

formulation was better tolerated than OCT diluted with saline. Previous experiments in 

our working group showed an enhanced stability of cell adhesion upon application of 

the glucose formulation of OCT which reflects a stable cell-matrix association in vivo. 

This would explain the favorable results from case reports. Moreover, we tried to dig 

deeper into the paradox observation that OCT is quite toxic in the cell culture but well 

tolerated in clinical practise what is not explainable so far. Extracellular matrix 

components (ECM) like CHS are highly negatively charged and dermal fibroblasts are 

embedded therein. To elucidate we searched for experimental evidence that 

octenidine antiseptics are sequestered from the cellular membranes by CHS. The 

complex formation of octenidine and ECM components could substantially decrease 

the cytotoxicity of octenidine while the antimicrobial activity is sustained. 
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2 Literature review 

2.1. Wound healing 

2.1.1. Overview 

The skin can be divided into two distinguishable tissue layers: a keratinized epidermis 

which consists of several cell layers and the underlying dermis separated by a 

basement membrane (Figure 1) (Fuchs and Raghavan, 2002). The dermis is a thick 

tissue layer comprised of collagen-rich dermal connective tissue which provides 

nutrients and support (Martin, 1997). The epidermis is the primary barrier of the 

external environment and the internal tissues (Kirker et al., 2009). It has various 

protective barrier functions against microbial pathogens, oxidant stress including 

ultraviolet light or mechanical insults (Elias, 2007). Consequently, any damage to it 

must be rapidly and efficiently repaired (Martin, 1997). 

 Figure 1. Overview of the skin layers (adapted from Fuch and Raghavan, 2003) 
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The healing of a cutaneous wound is a very complex, dynamic and well organized 

process. Several different cell types, including inflammatory cells, endothelial cells, 

keratinocytes and fibroblasts, and cellular pathways need to be coordinated in order to 

secure an efficient repair (Werner and Grose, 2003) (Gurtner et al., 2008) (Singer and 

Clark, 1999).  

Usual mammal wound repair can be divided into three classical overlapping stages: 

inflammation, new tissue formation and remodeling. Immediately after an injury 

occurs, the inflammatory phase is initiated, which serves to remove dead tissue, to 

stop ongoing blood and fluid loss and to prevent infection (Singer and Clark, 1999). 

Wound repair is induced via the secretion of various growth factors and cytokines by 

injured blood vessels, activated platelets (Werner and Grose, 2003) and inflammatory 

cells (Kung et al., 2008). This is accompanied by the formation of a blood clot as a 

consequence of the disruption of blood vessels (Singer and Clark, 1999) . The blood 

clot is the result of the activated coagulation cascade and consists of a fibrin matrix 

which acts as a scaffold for the infiltrating inflammatory cells and fibroblasts.  

The second stage, the proliferative phase, is characterized by the migration of 

inflammatory cells and fibroblasts which form the granulation tissue and replace the 

fibrin matrix. Fibroblasts produce large amounts of collagen-rich extracellular matrix 

that is deposited in the provisional matrix. Additionally, this cell type differentiates into 

myofibroblasts which are important for wound contraction.  

Another important process during wound repair is the formation of new blood vessels 

(known as angiogenesis) (Gurtner et al., 2008) because they secure nutrient and 

oxygen supply (Kung et al., 2008). 

Keratinocytes start to migrate from the edges of the wound to cover up the injured 

dermis until a monolayer is created. This is followed by the re-establishment of the 

epidermis and the basal lamina. It is believed that the stop of the proliferating 

keratinocytes is a consequence of contact inhibition (Martin, 1997). Eventually, the 

granulation tissue is replaced by scar tissue which mostly consists of extracellular 

matrix proteins and collagen and is mechanically insufficient (Werner and Grose, 

2003).  
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2.1.2. Molecular mechanisms  

The complex mechanisms of wound repair are navigated by the interplay of cell-cell/ 

cell-matrix interactions and by a plethora of cytokines and growth factors (Werner and 

Grose, 2003). One of the first signals is secreted by platelets which are located in the 

newly formed fibrin clot after wounding occurred. They secrete growth factors such as 

epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and 

transforming growth factor-beta (TGF-β). These signalling molecules initiate the 

recruitment of inflammatory cells, the migration of fibroblasts to the healing wound 

and the stimulation of wound contraction (Martin, 1997) (Barrientos et al., 2008). 

Additionally, the fibroblast growth factor (FGF) family represents a well known protein 

family involved in wound healing. They are produced by various cell types such as 

fibroblasts, keratinocytes or endothelial cells and play an important role during re-

epithelialisation and vascularisation (Barrientos et al., 2008).  Another essential 

angiogenic factor which is released at the wound site by predominantly keratinocytes 

and macrophages is a member of the vascular endothelial growth factor (VEGF) family, 

VEGF-A (Werner and Grose, 2003). Its expression is induced in a paracrine manner by 

the afore mentioned growth factor families (Figure 2) (Barrientos et al., 2008).  

 

 Figure 2. Inflammatory phase of a cutaneous wound: Growth factors implicated in cell migration into the 

wounded area are illustrated (Singer and Clark, 1999). 
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Adhesion molecules like intercellular adhesion molecule-1 (ICAM-1) and L-selectin are 

indispensable in the recruitment of leukocytes from the periphery to the site of 

inflammation. Thus, they are a fundamental component during tissue repair where the 

leukocytes, such as neutrophils and macrophages, infiltrate to the site of injury and 

form a first line defense against invading environmental pathogens. Moreover, these 

inflammatory cells secrete growth factors and cytokines which are needed for the 

initial fibroblast and keratinocyte activation and the removal of cell debris and foreign 

particles (Yukami et al., 2007). 

The proteolytic degradation of extracellular matrix is considered to be an essential part 

of wound healing. Especially the concerted activity of family members of the matrix 

metalloproteinase (MMP) family and components of the plasminogen activation (PA) 

system are needed for the keratinocyte migration over the provisional matrix 

composed of the fibrin clot (Frossing et al., 2010). Therefore, the leading-edge 

keratinocytes express MMPs and plasminogen (Plg). These fibrinolytic enzymes enable 

the cells to cut their path through the fibrin clot during re-epithelialisation (Figure 3) 

(Barrientos et al., 2008).  

 

 

The next section will provide more insight into the function and activation of some of 

these mentioned factors which were under investigation in the current work. 

Figure 3. Re-epithelialisation and vascularisation of a cutaneous wound after injury. Proteinases suggested to be 

involved in cell movement are depicted (Singer and Clark, 1999) 
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2.2. Transforming growth factor (TGF)-β family 

The TGF-β family represents a superfamily of cytokines. In mammals the ligand 

members of the TGF-β superfamily are divided into two subfamilies: the TGF-β, 

Activin/Inhibin/Nodal and the bone morphogenetic protein (BMP)/growth and 

differentiation factor (GDF)/Muellerian inhibiting substance (MIS). They all share 

certain sequence and structural elements and they regulate diverse cellular processes, 

including cell proliferation, differentiation, apoptosis, bone morphogenesis and wound 

healing (Li and Verma, 2002; Shi and Massague, 2003). MIS and GDF are not expressed 

continuously, but only in a few cell types or for a limited period of time during 

development. In contrast, TGF-β1 and BMP appear prevalent during embryogenesis 

and in the adult organism (Massague et al., 2000).  

 

2.2.1. TGF- β pathway 

The TGF-β superfamily-initiated signal transduction is mediated through certain 

transmembrane receptor serine/threonine kinases termed as type I and type II 

receptors. The signal transduction begins with the ligand docking on the type II 

receptor which results in the formation of a heteromeric receptor complex of type I 

and type II receptor. Upon the ligand binding of type II receptor, it activates type I 

receptor through phosphorylation on serine and threonine sites in a highly conserved 

GS domain (SGSGSG sequence). Subsequently, receptor I transfers the signal by 

targeting family members of the Smad proteins (Massague et al., 2000; Wrana and 

Attisano, 2000), which encompass a family of transcription factors (Li et al., 2006). 

There are three functional classes of Smad proteins with distinct functions: the 

receptor-regulated Smad (R-Smad: Smad 1, 2, 3, 5, 8), the Co-mediator Smad (Co-

Smad: Smad 4) and the inhibitory Smad proteins (I-Smad: Smad 6, 7) (Shi and 

Massague, 2003). R-Smads are activated by the type I receptor kinases through 

phosphorylation of the two distal serines of the C-terminal SSXS motif (Derynck and 

Zhang, 2003). This subgroup of Smad proteins is important for the specificity of the 

biological response. Smad 2 and Smad 3 are induced by receptor docking of TGF-β and 

Activin. In contrast, Smad 1, 5 and 8 transmit the biological actions of BMP (Massague 
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et al., 2000; Wrana and Attisano, 2000) after the pathway is initiated by ligand docking 

to ALK1, ALK2 and ALK3. The activation of the Smad1/5/8 route seems to be cell type 

and differentiation stage specific (van der Kraan et al., 2009). 

For interactions with DNA, Smad proteins need DNA binding cofactors, due to the fact 

that the affinity of Smads for their target DNA sequences is too low. The cell type 

dependent expression of these transcriptional cofactors contributes to a cell type 

specific response to the nuclear translocation of the Smad complex. Each subgroup of 

Smads has its own specific DNA binding cofactor (Massague et al., 2000). In addition, 

Smads are able to associate with either transcriptional co-repressors or co-activators.  

Transcriptional co-repressors act as negative regulators of Smad target genes and 

promote histone deacetylation (Figure 4). Co-activating factors are associated with 

histone acetylase transferase activity. Thus, dependent on the association partners of 

Smad proteins, transcription of target genes is either repressed or activated by 

chromatin remodeling effects (Massague et al., 2000).  

  

 

 

 

Figure 4. Schematic overview of the TGF-β signalling pathway (Shi and Massague, 2003). 
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During wound healing, TGF-β signalling is believed to be important for tissue 

remodeling and extracellular matrix deposition. Relevant sources during this 

physiological state are injured skin, macrophages, fibroblasts, endothelium and 

epithelia (Martinez-Ferrer et al., 2010). This protein is known to be involved in all three 

stages of wound repair. It acts as a chemotactic agent for infiltrating immune cells and 

stimulates the dermal collagen deposition by dermal fibroblasts as demonstrated by a 

transgenic mouse model (Martinez-Ferrer et al., 2010). 

Especially the process of re-epithelialisation is a crucial step and TGF-β is known to 

influence the migration and proliferation of keratinocytes (Amendt et al., 2002). 

Because of conflictive study results, the distinct role of TGF-β during re-

epithelialisation is still not fully understood. On the one hand, it inhibits keratinocyte 

proliferation in vitro and in vivo. For instance, Amendt et al. demonstrated that in mice 

lacking type II TGF-β receptor exclusively in keratinocytes, the re-epithelialisation 

process is accelerated (Amendt et al., 2002). Similar results could be gained by 

inhibiting the downstream element Smad-3 of the TGF-β signalling cascade in mice 

(Ashcroft et al., 1999) and in a conditional knock out of type II TGF-β receptor in 

dermal fibroblasts in mice (Martinez-Ferrer et al., 2010).  

On the other hand, it could be shown that TGF-β enhances the expression of specific 

integrins, which results in a more sufficient migration of epidermal cells over the 

provisional wound matrix. However, it must be noted that the outcome of TGF-β 

signalling depends on the cell type and differentiation and in most studies it is not 

possible to distinguish between direct and indirect effects of TGF-β (Amendt et al., 

2002). The antiproliferative effects of TGF-β are mediated by the activation of cyclin-

dependent kinase (CDK) inhibitors, which inhibit a key player of cell cycle progression. 

It is known that TGF- β1 is a repressor of c-myc (Mukherjee et al., 2010) which leads to 

the activation of p15 and p21. These proteins are specific inhibitors of the early G1-

phase of the cell cycle (Warner et al., 1999). C-myc encodes a transcription factor that 

is required for growth and proliferation. Overexpression of this gene is implicated in 

tumorigenesis due to uncontrolled DNA replication which leads to the accumulation of 

DNA damage within the cell (Dominguez-Sola et al., 2007).  
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2.3. Extracellular matrix (ECM) degrading enzymes 

Targeted proteolysis is required during cell migration and invasion through tissue 

barriers. Hence, it is an essential part during wound healing and other physiological 

processes like morphogenesis and embryonic development, as well as 

pathophysiological processes including cancer invasion and metastasis (Juncker-Jensen 

and Lund, 2011) (Collen and Lijnen, 2004). These events are dependent on the 

coordinated and tightly controlled activity of the plasminogen activation (PA) system 

and members of the matrix metalloproteinase (MMPs) family (Frossing et al., 2010). 

 

2.3.1. Plasminogen activation (PA) system 

The plasminogen activation (PA) system is a temporally and in regard of activation 

highly regulated extracellular proteolytic cascade. Activation of this system is induced 

by the secretion of either tissue type plasminogen activator (tPA) or urokinase-like PA 

(uPA) from cells after stimulation by growth factors, cytokines or hormones. This 

release usually occurs during tissue remodeling, inflammation and thrombosis (Collen 

and Lijnen, 2004) (Collen and Lijnen, 2004). Sites for uPA and tPA pathway initiations 

are uPA receptor (uPAR) expressing cells and fibrin deposits, respectively. PAs then 

convert the inactive pro-enzyme plasminogen (Plg) into the trypsin-like serine protease 

plasmin. This is achieved by the concomitant binding of PAs and Plg  to cell surfaces or 

fibrin (Lund et al., 2006). 

Plasmin has a broad proteolytic spectrum. It degrades extracellular matrix proteins, 

growth factor precursors (Blasi, 1993) and specifically, it removes fibrin clots from the 

vasculature. A process known as fibrinolysis (Figure 5) which has to be tightly regulated 

(Dellas and Loskutoff, 2005). This is partly achieved by plasminogen activator inhibitor-

1 (PAI-1) and by the physiologic inactivator of plasmin, α2-antiplasmin (Loskutoff and 

Quigley, 2000), whereas plasmin activation control is primary conducted by inhibiting 

PAs via PAI-1 (Dellas and Loskutoff, 2005). 
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Figure 5. Schematic illustration of the activation of plasminogen and its inactivation: Plasminogen and 
plasminogen activator associate on fibrin where conversion of plasminogen into plasmin occurs. The legs of the 
animal represent lysine residues important for interactions with fibrin and α2-antiplasmin (Collen, 1982). 

 

 

 

PAI-1 occurs in vitro as an active or latent state depending on the folding of the 

protein’s reactive centre loop. The origin of circulating PAI-1 is less clarified. One 

important source may be the liver, where PAI-1 gene expression is increased during 

trauma, sepsis, stress and inflammation. Additionally, the vasculature and activated 

platelets release PAI-1 in order to inactivate tPA. Important regulators for PAI-1 are for 

instance cytokines such as tumor necrosis factor (TNF)-α and Interleukin-1 (IL-1) and 

grow factors like TGF-β which induces PAI-1 in many cell types (Slivka and Loskutoff, 

1991)(Dellas and Loskutoff, 2005).  

Injury leads to vasodilatation. Consequently, leakage of plasma proteins into the 

connective tissue leads to the activation of the coagulation cascade and fibrin is 

produced. As mentioned earlier, this fibrin matrix provides a road map to direct the 

infiltrating cells (Loskutoff and Quigley, 2000). For that, migrating leading edge 

keratinocytes express uPA and uPAR during re-epithelialisation in wound healing (Lund 

et al, 2006). Studies with Plg and PAI-1 deficient mice underlined the important role of 

proteolytic degradation of ECM during wound healing. It could be shown that wounds 

from animals lacking Plg have a significantly attenuated healing rate. In accordance to 

this, PAI-1 knock out results in accelerated wound healing. It is suggested that PAI-1 

could influence wound healing by modulating the fibrinolytic environment at the 
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wounded site (Chan et al., 2001). It could be demonstrated that PAI-1 inhibits smooth 

muscle cell migration by blocking the binding of the integrin ανβ3 on the cellular 

surface to vitronectin (VN) (Stefansson and Lawrence, 1996). VN is an abundant 

circulating plasma protein which can be found in the ECM as part of the provisional 

matrix after tissue injury (Lopez-Guisa et al. 2011). Cells can attach to this ECM protein 

via integrins and uPAR (Czekay and Loskutoff, 2009). PAI-1 binds VN with high affinity 

as well. The binding sites on VN for uPAR and integrins are overlapping with the 

binding site of PAI-1. Thus, PAI-1 can block integrin- and uPAR-mediated cell 

attachment to VN. It is suggested that the presence of VN in a matrix or fibrin clot 

might enhance cell migration of smooth muscle cells and primary keratinocytes. Thus, 

the inhibitory effect of PAI-1 on cell migration is not dependent on the inactivation of 

PAs. The binding of PAs to PAI-1 results in loss of PAI-1 affinity to VN and restores cell 

migration (Stefansson and Lawrence, 1996). Moreover, PAI-1 can cause cell 

detachment from other ECM proteins which require the interaction with uPA and 

uPAR (Czekay and Loskutoff, 2009). The receptor localizes uPA on the cell surface of 

migrating cells. Additionally, this interaction causes a conformational change in the 

receptor resulting in the binding of matrix-associated integrins. Eventually, the 

addition of PAI-1 leads to the formation of a transient complex of these proteins which 

are then internalized. The endocytic clearance of the adhesion receptors contributes to 

the deadhesive property of PAI-1 (Czekay and Loskutoff, 2009) (Dellas and Loskutoff, 

2005) (Czekay et al., 2003). 

 

 

2.3.2 Matrixmetalloproteinases (MMPs) 

The MMP family compromises a big family of zinc-dependent endo-peptidases that 

catalyze the degradation of ECM components and non-matrix proteins. They are 

involved in a plethora of physiological and pathophysiological processes such as 

embryonic development, tissue morphogenesis, wound healing, angiogenesis, 

inflammatory diseases and cancer.  
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The members share common structural and functional elements: an amino-terminal 

pro-peptide, a catalytic domain and a hemopexin-like domain. They are synthesized as 

inactive pro-enzymes (Sternlicht and Werb, 2001) (Massova et al., 1998) which are 

either membrane bound or secreted and subsequently processed and thus, activated 

(Yan and Boyd, 2007). The catalytic domain contains two zinc ions and 2-3 calcium 

ions. The pro-peptide domain features a conserved sequence harboring a cysteine 

which ligates the catalytic zinc ion (Nagase and Woessner, 1999). The removal of the 

pro-peptide via proteolysis results in the activation of the enzyme (Massova et al., 

1998). Depending on the substrate specificity and localization, MMPs can be divided 

into gelatinases, stromelysines and membrane type MMPs (MT-MMPs). 

The tight regulation of MMP activity is pivotal for normal tissue homeostasis. They 

must be activated (or inactivated) at the right time and must be located in the right cell 

type in an appropriate amount (Sternlicht and Werb, 2001). Therefore, these enzymes 

can be controlled at various levels including transcription, secretion, activation and 

inhibition. For instance, cell surface proteins such as the uPA/plasmin system and 

other plasma proteinases, as well as MT-MMPs are potent activators of pro-MMPs 

(Nagase and Woessner, 1999) (Chakraborti et al., 2003). Well known physiological 

inhibitors of the members of the MMP family are tissue inhibitors of 

metalloproteinases (TIMPS) (Yan and Boyd, 2007), inhibitors of metalloproteinases 

(IMPs) and α2-macroglobulin which is a general proteinase inhibitor (Chakraborti et al., 

2003).  

Since MMP substrate specificities are partly overlapping, the unique function of an 

MMP family member is determined by different spatial and temporal expression 

patterns. With the exception of MMP-2 which is constitutively expressed (Sternlicht 

and Werb, 2001), normal tissue levels of MMPs are rather low. However, gene 

expression of MMPs is highly inducible by growth factors, cytokines, chemical agents, 

physical stress, oncogenic transformation (Nagase et al., 1999) or cell matrix contact 

(Parks, 1999). The promoters of MMP genes share common structural features that 

allow a co-regulation of their expression in some extent. These cis-elements allow the 

binding of various transcription factors including AP-1, PEA3, β-Catenin/Tcf-4 and NF-
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κB. AP-1 and PEA3 are important for triggering signals from cytokines and growth 

factors such as TGF-β, PDGF, TNF-α, VEGF or EGF into the nucleus resulting in the 

trans-activation of MMP promoters. Enhanced induction of AP-1 and PEA3 is mostly 

accomplished by mitogen-activated protein kinases (MAPKs)-dependent 

phosphorylation. Beside transcriptional control, stabilization of MMP mRNA, 

translational regulation and epigenetic mechanisms such as DNA-methylation, histone 

acetylation and chromatin remodeling are implicated in monitoring MMP gene 

expression (Chakraborti et al., 2003) (Yan and Boyd, 2007). 

During wound repair, a diverse set of MMPs are synthesized by multiple cell types in 

different compartments within the wound environment (Table 1) (Parks, 1999). 

 

 

For instance, MMP-1 is expressed during the movement of keratinocytes across the 

provisional matrix as a consequence of integrin interactions on the cell surface with 

type I collagen (Saarialho-Kere et al., 1995). It was shown that MMP-2 mRNA levels are 

upregulated during wound healing in mice in the granulation tissue and dermal 

fibroblasts, as well as MMP-9. However, MMP-2 deficiency in these mice did not affect 

wound healing. Other wound healing studies in mice deficient for MMP-3, MMP-9, 

MMP-13 and MMP-14 demonstrated the same result. This could be due to redundant 

functions among MMPs in term of substrates and localization as well as the presence 

of other protease system like the PA system (Frossing et al. 2010) (Jensen and Lund, 

2011). The latter assumption was strengthen by Lund et al. who observed that Plg 

knock out in mice treated with galardin, an inhibitor of a broad spectrum of MMPs, 

leads to a complete wound healing arrest (Lund et al., 1999). In addition to the 

breakdown of matrix barriers, Pilcher and co-workers claimed that MMP-1 contributes 

Table 1.: Expression of MMPs in different cell types during cutaneous wound repair (Parks, 1999) 
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to the right orientation of keratinocytes during re-epithelialisation on type I collagen 

by converting it into gelatin for which integrins of keratinocytes have a lower affinity. 

Consequently, the tight binding of integrins and type I collagen is loosened up and 

keratinocytes are allowed to move and are held in direction (Pilcher et al., 1997). 
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2.4. Vascular endothelial growth factor (VEGF) 

The VEGF family currently encompasses five isoforms generated from one mRNA by 

alternative splicing: VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E and placenta growth 

factor (PLGF). They transfer their biological functions via the binding to three 

distinguishable tyrosine kinase receptors, designated as VEGFR-1, VEGFR-2 and VEGFR-

3, whereas the biological actions of VEGF-A and its receptors VEGFR-1 and VEGFR-2 are 

the best studied ones (Werner and Grose, 2002).  

VEGF is an essential regulator of angiogenesis and vasculogenesis under physiological 

(e.g. embryogenesis and wound healing) and pathophysiological conditions (e.g. tumor 

growth and invasion). VEGF induction is achieved by a number of growth factors and 

cytokines. For instance, PDGF, FGF-4, TNF-α or TGF-β act as angiogenic factors via 

VEGF activation (Neufeld et al., 1999). Furthermore, hypoxia and nutrient stress are 

very potent stimulators of some VEGF family members. Hypoxia may promote VEGF 

transcription through the transcription factor hypoxia-inducible factor 1 (HIF-1). An 

additional mechanism is the stabilization of VEGF mRNA and via a cap-independent 

translation using the internal ribosome entry site (IRES) (Figure 6.) (Banerjee et al., 

2007). 

 

 
Figure 6. Pathways for VEGF stimulation: Growth factor signals initiate the phosphorylation of co-factors via 

MAPK-pathway and phosphatidylinositol 3´-Kinase/Akt signalling leading to VEGF transcription. Additionally, 

stress activated pathways stabilise the VEGF mRNA and mediate cap-independent translation of VEGF (Banarjee 

et al., 2007) 
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The finding of increased amounts of VEGF in skin wounds suggested a potential role for 

this protein during wound healing. Earlier studies accounted keratinocytes, fibroblasts 

and macrophages as the primary source of VEGF in wounds (Nissen et al., 1998). Also 

activated platelets, smooth muscle cells, neutrophils and endothelial cells contribute 

to VEGF release upon injury (Bao et al., 2009). Especially VEGF-A was shown to be an 

important angiogenic agent during wound healing as it was observed that the protein 

and its receptor are upregulated in an acute wound. Growth factors and hypoxia are 

very prominent in the wound environment. Hence, VEGF stimulation is secured 

(Barrientos et al., 2008) and is able to initiate angiogenesis by enhancing endothelial 

cell migration. This is mediated by promoting chemotaxis (e.g. stimulating the 

expression of uPA) and vasodilatation. Moreover, VEGF is known to be a mitogenic 

factor for endothelial cells (Bao et al., 2009). Eventually, the resulting angiogenesis 

recovers tissue perfusion (Barrientos et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

 2.5. Intercellular adhesion molecule-1 (ICAM-1) 

Intercellular adhesion molecule-1 (ICAM-1) belongs to the Ig superfamily composed of 

five extracellular Ig-like domains, a transmembrane domain and a cytoplasmatic tail. 

The amount of the Ig-like domains can vary due to alternative mRNA splicing leading to 

the generation of different isoforms. It is a membrane glycoprotein and is an important 

factor during inflammation and immune responses as it acts as a co-stimulatory 

molecule during antigen presentation. Aside from this, ICAM-1 is highly upregulated 

during inflammation on endothelial cells as pro-inflammatory cytokines are released 

and mediates adhesion of leukocytes to the endothelium enabling them to migrate to 

sites of inflammation via interaction with leukocyte integrin lymphocyte function-

associated antigen-1 (LFA-1) (Robledo et al., 2003) (Yang et al., 2005).  

It is recognized that the later stages of wound repair depend on the initial 

inflammatory phase after an injury happens. Therefore, the recruitment of 

inflammatory cells from the circulation to the wounded site via the interactions of 

adhesion molecules on the immune cells and the endothelium is of great importance. 

The reason for this is, as stated earlier, that leukocytes like macrophages and 

neutrophils are crucial sources of growth factors and cytokines and are a defense 

system against invading pathogens in the wound environment. It was shown that, in 

mice lacking ICAM-1 expression wound healing, keratinocyte migration and formation 

of granulation tissue was inhibited. This effect was even more severe when LFA-1 was 

knocked out simultaneously. These observations were accompanied by decreased 

infiltration of neutrophils and macrophages which was suggested to be the cause of 

the disturbance in wound healing  (Nagaoka et al., 2000) (Yukami et al., 2007). 

 

 

 

 

 

 

 



19 

 

2.7. Wound management and the role of antiseptics 

A good quality of wound care is considered to be an essential part to facilitate healing 

of acute traumatic or chronic wounds. This is often associated with the prevention of 

wound contamination and infection (Atiyeh et al., 2009). The breakthrough of good 

wound care came in the 19th century with the discovery that bacteria are the cause of 

infection which led to the development of aseptic and antiseptic surgery (Leaper and 

Durani, 2008). Nowadays, it is well recognized that wound infection contributes to a 

delay of healing (Vermeulen et al., 2010). Open wounds, especially difficult-to-heal 

wounds like chronic leg ulcers or deep burns, are an attractive environment for 

bacterial colonization (Hirsch et al., 2009).  Microbial contamination drives chronic 

inflammation and some bacterial strains like Staphylococcus aureus and Pseudomonas 

aeruginosa express very destructive virulence factors that interfere with the host’s 

immune system and re-epithelialisation processes (Percival et al., 2010; Scales and 

Hufnagle, 2012). Therefore, most studies focus on the relationship of the facultative or 

aerobic bacteria like the afore mentioned ones. Nevertheless, anaerobic species form a 

significant population in wounds when considering that they are often within a hypoxic 

environment. These bacteria are not easy to isolate and cultivate and thus, are not 

often recognized in wound isolates (Bowler et al., 2001), but their metabolic products, 

like short chain fatty acids, are potent in inhibiting wound healing processes. For 

instance, butyrate was shown to inhibit neutrophil degranulation and lysozyme activity 

in vitro. In addition, these products inhibit re-epithelialisation via inducing cell cycle 

arrest in fibroblasts and keratinocytes (Wall et al., 2002). Furthermore, anaerobic 

bacteria express adhesion factors, tissue damaging exoenzymes, like collagenases and 

gelatinases, and anti-phagocytic factors (Percival et al., 2010).  

Wound infection can occur when the microbial colonization reaches a critical level. 

However, recent findings showed that a correlation of exact microbial numbers (CFU/g 

of tissue) and wound healing does not exist. Nevertheless, wound colonization by 

microorganisms indeed influences wound healing as reasoned above. However, 

microbial numbers should not be interpreted alone when predicting wound infection. 
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In fact, the distinct bacteria species and their impulse to form biofilms should be 

considered as well (Percival et al., 2010). 

One strategy to prevent and treat wound infections is the application of systemic 

antibiotics and topical antiseptics/antibiotics (Hirsch et al., 2009). However, the 

extensive use of antibiotics in the past has led to a dramatically increasing occurrence 

of resistant human pathogens which limits the therapeutic application of antibiotics. 

On the contrary, antiseptics that do not have a specific target, like antibiotics (e.g. cell 

wall biosynthesis or RNA transcription) (Andersson and Hughes, 2010), are unlikely to 

cause resistant pathogens.  

Antiseptics are antimicrobial agents that kill or inhibit  the growth of microorganisms in 

or on living tissues after topical administration (Hubner et al., 2010). They are applied 

on intact skin for hand washing by medical personnel, for prepping patients 

preoperatively or prior punctures. Additionally, these compounds are used as anti-

infective prophylaxis for open wounds or to treat already infected wounds. 

Considering cytotoxic data, many authors disagree with the prophylactic treatment of 

open wounds using antiseptics, as their cytotoxicity may overweight the beneficial 

effects. However, if an acute wound should be inhibited to become chronic, the 

prevention of wound infection is the greatest concern. This is a present challenge of 

the National Health Service in order to secure life quality for the patients and to 

minimize hospital costs (Atiyeh et al., 2009). Even Alexander Fleming already stated in 

1919 that the value of an antiseptic compound is rather measured by its effect on 

tissues than its antimicrobial actions (Hirsch et al, 2009). 

The toxicity of local antiseptic agents is well assessed in cell culture studies. Since 

human tissue is less sensitive to antiseptic exposure, it tolerates it better than cells in 

tissue culture do. Due to this fact, the determined toxicity values should be considered 

to be rather a relative measure. Furthermore, cytotoxicity of an antiseptic agent also 

depends on the cell type used. For compounds which were shown to have harmful 

effects on tissue culture cells, a dose reduction might be considered without losing 

antimicrobial effectiveness. Of course, this has to be clarified in clinical studies (Muller 

and Kramer, 2008).  
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Thus, indications for local antiseptics should be carefully chosen (Marquardt et al., 

2010). Sufficient data regarding toxicity, efficiency, tissue compatibility and 

contraindications are needed (Hubner et al., 2010). Many studies were performed in 

order to create new antiseptic substances. One result of these studies was the 

development of an alkanediylbis[pyridine] germicidal agent known as octenidine 

dihydrochloride (Stahl et al., 2010) (Sedlock and Bailey, 1985). 
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2.8. Octenidine dihydrochloride 

The combination of 0,1 % octenidine dihydrochloride with 2 % phenoxyethanol (PH) 

[(Octenisept ® (OCT)] is an important antiseptic solution approved in several European 

countries as a medical substance (Kramer et al., 2008). It can be either applied on skin 

or for the antisepsis of mucous membranes (Hubner et al., 2010) and it is 

recommended for the treatment of acute wounds (Kramer et al., 2004). Its molecular 

weight is approximately 624 kDa, stability is given in pH ranges from 1,6 to 12,2 and its 

activity is not reduced upon contact with mucin or albumin. 

Chemically, octenidine is a cationic surface active substance which has 2 non-

interacting cationic centers within its molecule that are separated by a long aliphatic 

carbohydrate chain (Figure 7). Consequently, it binds onto negatively charged surfaces 

like bacterial cell envelopes and eukaryotic cell membranes (Hubner et al., 2010). Like 

for other cationic antiseptics, the main binding partners are assumed to be salts of 

fatty acids glycerol phosphates, which are found in the cell membranes (Gilbert and 

Moore, 2005) (Kramer et al., 2008). 

 

 

Due to this strong and unspecific interaction with cell wall and cell membrane 

components, octenidine is effective against a wide range of microorganisms (Muller 

and Kramer, 2007).  

It acts against gram-positive and gram-negative bacteria, including Methicillin-resistant 

Staphylococcus aureus (MRSA) (Hubner et al., 2010), plaque forming bacteria (Slee and 

Figure 7. Chemical structure of octenidine dihydrochloride (Hubner et al., 2010) 
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O'Connor, 1983)  and fungi (Sedlock and Bailey, 1985). For instance, OCT was shown to 

be superior to other commonly used antiseptics including triclosane, PVP- iodine and 

Chlorhexidine digluconate regarding the antimicrobial efficiency against Candida 

albicans, Staphylococcus aureus and Pseudomonas aeroginosa. Moreover, sufficient 

bacterial reduction could be achieved after 1 minute contact time. This short time 

efficacy is especially important, as antiseptics are often applied on skin and mucous 

membranes prior to invasive procedures (Koburger et al., 2010).  

In clinical practise, antibiotics and antiseptics are commonly used in combination. 

Thus, possible interactions between these two anti-infective classes are clinically of 

special interest. First in vitro studies indicate that octenidine in combination with 

systemic antibiotics like Imipenem and Piperacillin + tazobactam could be synergistic in 

their antimicrobial efficiency against Enterococcus sp., P. aeruginosa and Escherichia 

coli. However, this interesting finding needs further investigation (Hubner et al., 2010). 

 

Beside a broad antimicrobial spectrum with rapid onset, antiseptic preparations should 

also have good tissue compatibility (Muller and Kramer, 2008). In vitro studies from 

cell culture showed that OCT has a rather high cytotoxic effect on human amnion cells, 

human primary fibroblasts and human primary keratinocytes (Kramer et al., 2004) 

(Hirsch et al. 2009). Furthermore, it was observed that OCT treatment leads to wound 

healing retardation in pigs in vitro (Kramer et al., 2004). In contrast, a few years later, 

Kramer and Muller purported that OCT and polyhexanide have the highest 

biocompatibility index. This means that these compounds are more effective against 

microorganisms than to cultured fibroblasts (Muller and Kramer, 2008). In accordance 

with this, Stahl et al. reported that treatment with OCT did not negatively influence the 

re-epithelialisation of wounded porcine skin explants (Stahl et al., 2010). Additionally, 

it was observed that it causes the slightest effect on microcirculation in comparison to 

other antiseptic agents. This is of great importance, since insufficient nutritional supply 

via the microcirculation of the skin may lead to inadequate wound healing and skin 

necrosis (Langer et al., 2004). Recently, a randomized double-blind controlled study 

with chronic leg ulcers patient could confirm the last mentioned results. In this study a 
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high tissue compatibility and tolerability was shown for OCT treatment over a 12-week 

period with several applications a week (Vanscheidt et al., 2012).  

The discrepancy between the high cytotoxic effects in in vitro studies and the 

favorable clinical results might have several reasons. Firstly, most in vitro studies are 

performed under sterile conditions. Due to this fact, OCT was found to be inferior to 

Ringer solution which would not be the case in septic wounds (Kramer et al., 2004). 

Secondly, human tissue tolerates the exposure to antiseptic compounds better than 

tissue culture cells (Muller and Kramer, 2008). The reason for this is that in a clinical 

setting, the topically applied substance will first get in contact with fibrin, blood and 

debris. Harmful effects on this layer are tolerated as long as there is no damage to the 

deeper, more sensitive structures (Marquardt et al., 2010). Last but not least, it could 

be observed that octenidine dihydrochloride is able to adhere to cell membrane 

components. In these stable complexes, the cytotoxicity of octenidine is decreased, 

whereas the antiseptic efficiency is unchanged (Muller and Kramer, 2007). In 

summary, OCT is a promising antiseptic agent for topical skin and wound treatment 

(Stahl et al., 2010) which is also suitable for chronic wound management (Vanscheidt 

et al., 2012).  
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3 Materials and Methods 
3.1 Cell culture  

3.1.1 Used materials, devices and reagents 

Laminar Flow Hood Biosafe 1    Ehret 

Incubator Queue      Sanova 

Microscope       Nikon TMS 

Water bath Thermo-Boy     MGW Lauda 

Drier        Binder 

Cell culture flasks      Greiner 

6-well microtiter plate     Greiner 

12-well microtiter plate     Greiner 

96-well microtiter plate     Greiner 

Sterile filter (0,2 μm pore diameter)    Sartorius 

RPMI 1640       Biochrom AG 

DMEM        BioWhittaker, Lonza 

FCS        GIBCO 

L-Glutamine (200 mM in 0,85 % NaCl)   BioWhittaker, Lonza 

PEN-STREP (10 000 U/ml)     BioWhittaker, Lonza 

Trypsin/EDTA       PAA  

Ethanol 70 % 

5 x PBS, pH 7,4; 1000 ml: 

 40 g NaCl      Roth 

 14,5 g Na2HPO4 . 12 H2O    MERCK 

 1 g KH2PO4      MERCK 

 1 g KCl      MERCK 

 1 M NaOH for adjustment of the pH value MERCK 

 filled up with aqua dest. 

Glucose 2,5 % (sterile filtrated)     Fresenius Kabi 

Octenisept® (0,1 g Octenidine in 100 ml  

aqueous solution)      Schülke & Mayr 



26 

 

Chlorhexidine (1 g Chlorhexidine in 500 ml 

aqueous solution)      Raphael Donner Apotheke 

Taurolin® (0,5 g Taurolidin in 100 ml 

aquous solution)      Chemomedica 

Beta-Isodona® (10 g Povidin-Iodine complex in  

100 ml aqueous solution)   Mundipharma   

LPS from Escherichia coli     Sigma 

 

3.1.2 Sterile working 

All cell culture procedures were conducted in sterile laminar-airflow hood, which was 

disinfected with ultraviolet light over night. Only sterile or sterile filtrated solutions 

were used, to avoid microbial cell contamination. Furthermore, pipette tips were 

autoclaved at 120 °C for 30 minutes prior utilization. Reusable glasswares were 

sterilized at 180 °C over night. Last but not least all other materials (boxes for pipette 

tips, flasks, hands, etc.) were cleaned with 70% ethanol.  

 

3.1.3 Cell lines 

3.1.3.1 MCF-7 cells 

The MCF-7 breast cancer cell line was developed by Dr. Herbert Soule at the Michigan 

Cancer Foundation and was taken from a pleural effusion of a metastatic breast cancer 

patient in 1970 (Levenson and Jordan, 1997). These cells express the estrogen-

receptor (ER) on their surface and thus, are the first hormone-sensitive breast cancer 

cell line. Generally, MCF-7 cells are the longest studied breast cancer model systems 

(Simstein et al., 2003) and retain several characteristics of mammary epithelium (Lloyd 

et al., 1996). 

 

3.1.3.2 Fibroblasts 

Fibroblast used in this work were a gift from Johannes Berger (MUW, Center for Brain 

research), and were taken from a healthy male adult.  
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3.1.4 Preparation of the cell culture medium for MCF-7 cells and fibroblasts 

MCF-7 cells were either grown in complemented Dublecco’s modified Eagle Medium 

(C-DMEM) or complemented Roswell Park memorial institute (C-RPMI) medium. For 

the preparation of complemented media, 50 ml fetal calf serum (FCS), 5 ml 200mM 

glutamine and 5 ml 10 000 U/L Penicillin-Streptomycin (PEN-STREP) were added to 500 

ml culture medium. FCS and glutamine serves as nutritional factors for cell growth 

whereas PEN-STREP inhibits unwanted bacterial growth in the medium. Additionally, 

an uncomplemented DMEM was set up by only administrating 5 ml 10 000 U/L PEN-

STREP. The media are stored at 4 °C and heated up at 37 °C prior to usage. 

 

3.1.5 Cultivation of MCF-7 cells and fibroblasts 

In order to start a culture, cells, which were stored at -80 °C, were thawed and quickly 

transferred to 5 ml warm culture medium in a 25 cm2 cell culture flask. After 12 to 24 

hours the medium was changed to remove the remaining DMSO. Generally, the cells 

were grown at 37 °C, 5 % CO2 atmosphere until they reached confluency (= ~ 90 % 

confluent) or otherwise the desired density.  

 

3.1.6 Passaging (subculturing) MCF-7 cells and fibroblasts 

The cell density was monitored under the microscope. At the confluent stadium, cells 

were split and diluted to ensure sufficient space and nutrition for further proliferation. 

Since MCF-7 and fibroblasts cells stick to the culture flask’s surface (also called 

adherent cells), they first needed to be loosening up. Therefore the cell culture 

medium was aspirated. Afterwards 1,5 ml for 25 cm2 cell culture flasks or 4 ml for 75 

cm2 cell culture flasks of warm Trypsin-EDTA were added and incubated at 37 °C for 

several minutes. Trypsin is a serine-protease and hydrolyzes the bonds between cells 

and the culture flask. This process can be watched under a light microscope. After the 

incubation time, the Trypsin was aspirated and the cell culture flask was gently tapped 

to detach the cells from the surface of the flask. Then the flask was washed several 

times usually with 5 ml (for 25 cm2) or 10 ml (for 75 cm2) of fresh culture medium in 

order to suspend the cells in the medium. The suspension was transferred into a 
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desired volume (depending on the desired dilution factor of the new subculture) of 

fresh medium, gently mixed and seeded into a new cell culture flask.  

 

3.1.7 Freezing MCF-7 cells and fibroblasts 

Freezing cells started with the same steps as passaging until trypsinisation. Afterwards 

the loosened cells were taken up with 2 ml cold, uncomplemented DMEM and 0,5 ml 

of the cell suspension was added to the 0,5 ml prepared ice cold cryo-solution 

(complemented medium: FCS: DMSO = 5:3:2). Subsequently, the cells were put into a 

styrofoam box and frozen at -80 °C. For long-term storage, cryovials were transferred 

in liquid nitrogen. 

 

3.1.8 Cell seeding 

MCF-7 cells were seeded when they reached 80 % confluency and fibroblasts at a 

confluent stadium. Depending on the experiment performed, cells were either seeded 

into a 96-well, 12-well or 6-well microtiter plate. For the first one 100 μl cell 

suspension per well were needed, for the 12-well 1 ml and for the latter one 2 ml. 

 

3.1.9 Incubation  

Incubation of MCF-7 cells and fibroblasts with the antiseptic agents was performed 

when they reached the desired density. 

For assessing cell adhesion, incubation solutions were pipetted directly into the cell 

culture medium in the well, unless it is otherwise stated (see section 3.5. MTT-assay). 

Cells were incubated with different solutions in several dilutions of Octenisept ® - 

either diluted 1:2 in sterile distilled water (O) or sterile 5% glucose solution (O+), 

Chlorhexidine, Taurolidin® and Beta-Isodona®. 
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3.2 Cell lysation 

3.2.1 Used materials, devices and reagents 

Ice 

5 x PBS, pH 7,4; 1000 ml: 

 40 g NaCl      Roth 

 14,5 g Na2HPO4 . 12 H2O    MERCK 

 1 g KH2PO4      MERCK 

 1 g KCl      MERCK 

 1 M NaOH for adjustment of the pH value MERCK 

 filled up with aqua dest. 

peqGOLD TriFastTM      PEQLAB 

 

3.2.2 Cell lysation 

After the incubation time ended, the cells were immediately placed on ice to stop all 

ongoing metabolic events. The upcoming working steps were no longer performed 

under a laminar airflow hood, but at the laboratory bench. The cell culture medium 

was aspirated and the cells were washed twice with 2 ml/well of ice cold 1 x PBS. Then 

the cells were incubated with 0,5 ml/well peqGOLD TriFastTM for 5 to 10 minutes at 

room temperature. Finally, the cells were scratched with a sterile pipette tip from the 

well’s surface and transferred into Eppendorf-tubes. The cell lysate could be stored at -

20 °C. 
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3.3 RNA Isolation and reverse transcription 

3.3.1 Used materials, devices and reagents 

Centrifuge       Eppendorf 5417R 

Mini centrifuge      ROTH 

Thermo Cycler      PEQLAB Primus 25 advanced 

peqGOLD TriFastTM      PEQLAB 

Phase lock gel heavy       5 Prime 

DEPC        Sigma 

DEPC-water RNasefree 

 100 μl DEPC 

 diluted in 1 litre aqua dest. for 3 h under the hood 

 2 h autoclaved at 120 °C 

DEPC-pipette tips, -reactiontubes RNasefree 

 soak in DEPC-water over night 

 autoclaving at 120 °C for 2 h; dry at 70 °C  

Chloroform       MERCK 

Isopropanol       MERCK 

Ethanol 75 % in DEPC water     MERCK 

Ethanol 70 % 

Random hexamer primer 0,2 μg/μl    Fermentas 

Reaction Buffer (5x)      Fermentas 

dNTP Mix 10mM; 100 μl 

 5 μl dATP, dGTP, dCTP, dTTP 100 mM each  Fermentas 

 diluted in 80 μl sterile filtrated aqua dest. 

RiboLockTM RNase inhibitor 40 U/μl    Fermentas 

RevertAidTM M-MuLV reverse transcriptase 200 U/μl Fermentas 

 

3.3.2 RNA isolation 

Before starting RNA isolation, all surfaces in use were cleaned with 70% Ethanol.  The 

cells were lysed and thawed under the mini lamina at room temperature and the 
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centrifuge was cooled down up to 4 °C. In the meanwhile the phase lock gel tubes 

were spinned down 20 to 30 seconds in the mini centrifuge. Then 250 μl of cold 

chloroform and 500 μl of the cell lysate were pipetted into the tubes, which were 

afterwards thoroughly shaken in order to form a transiently homogenous suspension 

of the aqueous sample phase and the organic chloroform phase in order to maximize 

the diffusion area. The samples were centrifuged (5 minutes, 16 000 g, 4 °C), which 

lead to a separation of the protein-containing organic phase, the DNA enriched 

interphase and the RNA harboring aqueous phase. The following procedures were 

exclusively performed on ice. After that, the upper aqueous phase was added to 250 μl 

of cold isopropanol, prepared in new DEPC-treated reaction tubes during sample 

centrifugation. The tubes were stored 24 h at -20 °C. During this time, RNA 

precipitation took place. 

Then the tubes were centrifuged at 4 °C, 12 000 g for 10 minutes. This step usually 

leads to the retrieval of a RNA pellet. The pellet was washed with 1 ml 75 % cold 

ethanol.  For that, the isopropanol was discarded, the ethanol was added and the afore 

vortexed sample was centrifuged at 4 °C, 12 000 g for 10 minutes to recollect the RNA 

pellet. This step was repeated another time. Finally, the ethanol was removed as much 

as possible and the pellet was air-dried under the hood.  

 

3.3.3 Reverse transcription (RT)/ cDNA synthesis 

The dry RNA pellet was resuspended in 14 μl DEPC water and dissolved at 55 °C in the 

water bath for 10 minutes. 12 μl of the dissolved RNA sample was transferred into PCR 

tubes and 1 μl random Hexamer primer (2μg/μl) was added. Afterwards, the tubes 

were incubated for 10 minutes at 70 °C in a Thermocycler. Meanwhile, a mastermix for 

the following cDNA synthesis was prepared: 
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Table 2. Pipetting scheme for the preparation of the mastermix used for cDNA synthesis.  

Reagent Conc. of stock 

solution 

Volume Endconcentration 

RT Buffer 5x 4 μl 1x 

dNTPs 100mM 2 μl 10mM 

RNase Inhibitor 40 U/μl 0,5 μl 1 U/μl 

Reverse Transcriptase 200 U/μl 0,5 μl 5 U/μl 

 

7,5 μl of the mastermix were then mixed with the sample, which were incubated for 1 

h at 37 °C and afterwards 10 minutes at 60 °C in a thermo cycler. The newly 

synthesized cDNA was stored at -20 °C. 
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3.4 Polymerase chain reaction (PCR) 

3.4.1 Used materials, devices and reagents 

Thermocycler      PEQLAB primus 25 advanced 

Electrophoresis chamber    Bio-Rad 

Power supply      Bio-Rad 

Microwave      Moulinex 

Sterile filter (0,2 μm pore diameter)   Sartorius 

Sterile filtrated aqua dest. 

Taq buffer + KCl 10x     Fermentas 

MgCl2 25 mM      Fermentas 

dNTP mix 10 mM; 100 μl 

 5 μl dATP, dGTP, dCTP, dTTP each 100 mM Fermentas 

 diluted in 80 μl aqua dest. sterile filtrated 

Taq polymerase recombinant 1 U/μl   Fermentas 

Taq polymerase recombinant 5 U/μl   Fermentas 

Gene specific Primer 100 μM    VBC-Genomics 

 primerdesign via PRIMER 3 SOFTWARE 

 diluted 1 :10 in sterile filtrated aqua dest. 

Agarose powder     MERCK 

Ethidium bromide     MERCK 

Gene RulerTM 1kb DNA ladder 0,5 μg/μl  Fermentas 

5 x TBE Buffer; 1000 ml : 

 54 g tris(hydroxymethyl)aminomethane MERCK 

 27,5 g boric acid H3BO3   MERCK 

 20 ml 0,5 M EDTA solution     

0,5 M EDTA solution; pH 8, 500 ml: 

 93 g titriplex     MERCK 

 dissolved in 400 ml Aqua dest. 

 10 N NaOH for adjustment of the pH value MERCK 

 filled up with Aqua dest. 
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Table 3. Pipetting scheme for the preparation of the mastermix used for PCR. 

 

6 x loading dye     Fermentas 

2 UV transilluminator     UVP 

ChemiImagerTM 4400     Biozym 

AlphaEaseFC-Chemilmager 4400   Alpha Innotec 

 

3.4.2 Procedure 

The polymerase chain reaction serves as a method for sequence-specific exponentially 

amplification of a DNA or cDNA section. For that, all reagents, which were stored at -20 

°C, were thawed on ice and thoroughly mixed. This was followed by the preparation of 

a mastermix: 

 

Reagent Conc. of stock 

solution 

Volume Endconcentration 

 

Aqua dest. steril filtrated  31 μl  

Buffer 10 x 5 μl 1 x 

MgCl2 25 mM 5 μl 2,5 mM 

dNTPs 10 mM 4 μl 0,8 mM 

Primer 

(forward/reverse) 

10 μM  

1,5 μl each 

 

0,3 μl each 

Taq polymerase 1 U/μl or 5 U/μl 1 μl or 0,2 μl 0,02 U/μl 

 

1 μl of the cDNA sample was mixed with 49 μl mastermix in a PCR tube, vortexed and 

incubated in a thermo cycler. During this process, the machine runs through a defined 

cyclic temperature program, which included the following steps: 

1. Initial denaturation: the DNA doublestrand is separated by heat at 94 °C (3 minutes). 

2. Denaturation at 94 °C (40 seconds). 

3. Annealing: the temperature is lowered to a primer-specific temperature (Table 4) in 

order to allow their hybridisation to the single stranded DNA template. Primers mark 

the starting point of the newly synthesized DNA strand, which is complementary to the 

template strand (60 seconds).  
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4. Elongation: in this step the temperature is raised on the temperature optimum of 

the Taq polymerase (72 °C) and a second DNA strand, complementary to the template 

strand, is synthesized by the enzyme. Thereby, the primers determine the starting 

point of this process (60 seconds) 

5. Final elongation at 72 °C. (5 minutes) 

6. Storage at 4 °C. 

The so amplified cDNA fragments were then separated by size and identified using an 

agarose gel electrophoresis. For that, a 1,5 % agarose gel was prepared by mixing 0,45 

g agarose powder with 30 ml 1 x TBE buffer in a glass beaker. Then the mixture was 

boiled in the microwave until the solution was clear. After the viscous mass was cooled 

down at approximately 60 °C, 0,5 mg/ml ethidium bromide was added. Ethidium 

bromide is able to fluoresce in ultra-violet light when it intercalates into the DNA. 

Therefore, this substance facilitates the visualization of the separated DNA fragments 

in an agarose gel. The gel was poured into a gel sled with inserted 8-well comb, which 

was removed after the agarose was solidified. The gel on the sled was then transferred 

into an electrophoresis chamber. The chamber was filled with 1 x TBE buffer. The 

construct was now ready for the loading of the PCR-samples.  

The samples were mixed with the 6 x loading dye in a 1:6 ratio (15 μl sample plus 3 μl 

loading dye) and then pipetted into the slots of the gel. A DNA-ladder served as a size 

marker and was applied into the gel slots as well (2,5 μl). The DNA was separated with 

constant 100 V and 50-60 mA for 20 minutes. Finally, the DNA bands were visualized 

under ultraviolet light in a transilluminator and photographed. The intensity of the 

signal was analyzed with AlphaEaseFC Chemilmager 4400 software.  
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Table 4. Overview of the nucletoidesequences of the forward and reverse primer of the corresponding amplified 
genes. Additionally, the specific annealing temperature (°C AT), the optimal number of cycles (cyc.) and the size of 
the PCR product (bp) are depicted.  

Gene Nucleotidesequenz: 

Forward Primer 

Reverse Primer 

°C AT cyc

. 

bp 

GAPDH 5’-GGA GCC AAA AGG GTC ATC ATC TC-3’ 

5’-GTC ATG AGT CCT TCC ACG ATA CC-3’ 

62 23 185 

PAI-1 5’-TGC TGG TGA ATG CCC TCT ACT-3’ 

5’-CGG TCA TTC CCA GGT TCT CTA-3’ 

61 30 399 

uPA 5’-CCA AGG AGG GCA GGT GTG CG-3’ 

5’-CGG GTG GTG CCC GTT TCC TC-3’ 

67 30 480 

ICAM-1 5’-CGT GTC CTG TAT GGC CCC CG -3’ 

5’-GGG AGG CGT GGC TTG TGT GT -3’ 

70 30 426 

MMP-1 5’-AAG GTT AGC TTA CTG TCA CAC GCT T -3’ 

5’-GTG CTG AAG GAC ACA CTA AAG AAG A -3’ 

61,4 30 787 

MMP-2 5`-GTG CTG AAG GAC ACA CTA AAG AAG A-3` 

5`- TTG CCA TCC TTC TCA AAG TTG TAG G-3` 

61 30 605 

MMP-3 5’-GAA ATG CAG AAG TTC CTT GG-3’ 

5’-GTG AAA GAG ACC CAG GGA GTG-3’ 

60 30 489 

MMP-9 5’-ATT CAG GGA GAC GCC CAT TT-3’ 

5’-GTG CAG GCG GAG TAG GAT TG-3’ 

63 30 317 

TGF-β1 5’-GCT GCA CTT GCA GGA GCG CAC -3’ 

5’-GGA CTC AGC TCT GGT TGG TG -3’ 

65,8 32 336 

TGF-β RI 5’-GGG GCC ATG TAC CTT TTT GT-3’ 

5’-ACG GAG TTG GGG AAA CAT ACT-3’ 

61 30 325 

VEGF-A 5’-GGA CAT CTT CCA GGA GTA-3’ 

5’-TGC AAC GCG AGT CTG TGT -3’ 

60 30 413 
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3.5 MTT- assay 

3.5.1 Used materials, devices and reagents 

Microplate reader      Bio-Rad 

Microscope       Nikon TMS 

96-well microtiter plate     Greiner 

MTT (3-3(4,5-Dimethylthiazol-2-yl)-2,5-   Invitrogen 

diphenyltetrazolium bromide         

DMSO        MERCK 

5 x PBS, pH 7,4; 1000 ml: 

 40 g NaCl      Roth 

 14,5 g Na2HPO4 . 12 H2O    MERCK 

 1 g KH2PO4      MERCK 

 1 g KCl      MERCK 

 1 M NaOH for adjustment of the pH value MERCK 

 fill up with aqua dest. 

Prism.3.02       GraphPad 

 

3.5.2 Procedure 

The MTT-cell proliferation assay is a method for detecting cell survival and 

proliferation within cell population after incubation with certain substances. The basis 

of this test is the reduction of the yellow MTT (3-3(4,5-Dimethylthiazol-2-yl)-2,5- 

diphenyltetrazolium bromide) into a purple formazan product in living cells (Figure 8) 

(Mosmann, 1983).  
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Figure 8. Formation of the purple formazan product by mitochondrial reductase of viable cells (Mosmann, 1983). 

 

Depending on the aim of the tests, two different procedures were performed: 

(1) Assessment of cell proliferation: A 96-well microtiter plate was incubated with 

various dilutions of O, O+ or chondroitin sulfate (CHS) at 37 °C for 1 h. During this time, 

the chemical agents were allowed to adsorb on the well surface. This was followed by 

washing twice with sterile 1x PBS and drying over night at 37 °C. On the next day cells 

were seeded into the pre-incubated 96-well plate and the proliferation rate was 

determined after 24 h using the MTT-assay for which the procedure is described 

below. 

(2) Assessment of cell adhesion: Cells were seeded into a 96-well plate and placed into 

the incubator at 37 °C until they reach ~80 % confluency. Afterwards they were 

incubated for 30 minutes with several dilutions of the antiseptic agent. Then the cells 

were washed twice with 150 μl warm and fresh culture medium. For the MTT-assay, 5 

mg MTT were dissolved in 1 ml sterile filtrated 1 x PBS, which served as a MTT stock 

solution. From this, a 10 % MTT solution in complemented DMEM was prepared and 

100 μl were added to each well. The plate was then incubated for one and a half hour 

at 37 °C. The incorporation process of the purple formazan product into living cells 

could be monitored under the microscope. The incubation period was followed by two 

washing steps with 150 μl warm 1 x PBS. The non-soluble formazan was dissolved in 50 

μl DMSO and the extinction was measured at 595 nm. The analysis of the data was 

achieved with “Prism3.20”. The proliferation rate was estimated by the quotient of the 

extinction value of the treatment cells and the extinction value of the reference cells. 
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3.6 Scratch assay/ Migration test 

3.6.1 Used materials, devices and reagents 

Microscope       Zeiss Axiovert 135 

6-well microtiter plate     Greiner 

12-well microtiter plate     Greiner 

RPMI 1640       Biochrom AG 

FCS        GIBCO 

L-Glutamine (200 mM in 0,85 % NaCl)   BioWhittaker, Lonza 

PEN-STREP (10 000 U/ml)     BioWhittaker, Lonza 

Glucose 2,5 % (sterile filtrated)     Fresenius Kabi 

Octenisept® (0,1 g Octenidine in 100 ml  

aqueous solution)      Schülke & Mayr 

Chlorhexidine (1 g Chlorhexidine in 500 ml 

aqueous solution)      Raphael Donner Apotheke 

Taurolin® (0,5 g Taurolidin in 100 ml 

aquous solution)      Chemomedica 

Beta-Isodona® (10 g Povidin-Iodine complex in  

100 ml aqueous solution)     Mundipharma  

 

3.6.2. Procedure 

Cells were seeded evenly into 6-well or 12-well microtiter plates and grown in 

complemented medium until the reach almost confluency (fibroblasts 4 days, MCF-7 

cells 2 days). Then the cells were carefully scratched in the middle of the well surface 

with a yellow pipette tip and the culture medium was replaced with fresh one. This 

was followed by taking a 12-bit picture with a spot camera marking the time point 

“0h”. Afterwards the cells were treated with the different antiseptic agents under 

investigation for 2 minutes (Table 5). Subsequently, each well was washed once with 

fresh culture medium and the microtiter plates are further incubated at 37 °C to assess 

the cell migration for up to 48 h.  
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Table 5. Illustration of the applied concentrations of the antiseptic agents in the scratch assay: Each compound 

was diluted 1:75 or 1:30 in 2 ml of the cell culture medium. 

Compound Endconcentration (1:75/1:30) 

Octenisept 7/17 mg/L 

Octeniplus 7/17 mg/L 

Chlorhexidine 26/67 mg/L 

Taurolin 67/ 167 mg/L 

Betaisodona 1,3/ 3 g/L 
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3.7 Cooperation testing of antiseptics and antibiotics 

3.7.1 Used materials, devices and reagents 

Laminar Flow Hood Biosafe 1     Ehret 

Incubator        Binder 

Petri Dish        Sterilin 

0,9 % NaCl solution, 2000 ml 

 18 g NaCl       ROTH 

 filled up with aqua dest. 

Trypticase Soy Broth, 1000 ml; autoclaved 

 30 g Trypticase Soy Broth 

 5 g Yeast Extract 

 15 g Agar 

 filled up with aqua dest. 

CASO-Agar ready for use; 1000 ml; autoclaved   ROTH 

 5g Peptone from Casein 

 5g Peptone from Soy 

 5g NaCl 

 15g Agar 

 filled up with aqua dest. 

Ethanol 70 %        ROTH 

Glucose 5 %       Fresenius Kabi 

Octenisept® (0,1 g Octenidine in 100 ml  

aqueous solution)      Schülke & Mayr 

Chlorhexidine (1 g Chlorhexidine in 500 ml 

aqueous solution)      Raphael Donner Apotheke 

Taurolin® (0,5 g Taurolidin in 100 ml 

aquous solution)      Chemomedica 

Beta-Isodona® (10 g Povidin-Iodine complex in  

100 ml aqueous solution)     Mundipharma 

Antibiotic filter discs (table 6)    Mast Diagnostica 
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Table 6. Overview of the used antibiotics. The concentration of each compound is indicated as mg per 

antibiotic paper disc. Moreover, the corresponding abbreviation (abbr.) and mode of action are depicted. 

Antibiotic Abbr. [mg/disc] Mode of action 

Linezolid LZD 30 Inh. of proteinsynthesis 

Vancomycin VA 30 Inh. of cell wall synthesis 

Metronidazol MTZ 5 DNA ds breaks 

Cotrimoxazol TS 35 Inh. of DNA synthesis 

        

Ciprofloxacin CIP 5 Gyrase Inhibitor 

Levofloxacin LEV 5 Gyrase Inhibitor 

Moxifloxacin MFX 5 Gyrase Inhibitor 

Gentamicin GM 10 Proteinsynthese 

        

Clarythromycin CLA 15 Inh. of proteinsynthesis 

Tigecyclin TGC 15 Inh. of proteinsynthesis 

Doxycyclin DXT 30 Inh. of proteinsynthesis 

Cefotaxim CTX 30 Inh. of cell wall synthesis 

        

Imipenem IMI 10 Inh. of cell wall synthesis 

Piperacillin/Tazobactam PTZ 36 Inh. of cell wall synthesis 

Amoxicillin/Clavulansäure AUG 30 Inh. of cell wall synthesis 

Amoxicillin A 10 Inh. of cell wall synthesis 

Penicillin G PG 10 Inh. of cell wall synthesis 

        

Penicillin V PV 10 Inh. of cell wall synthesis 

Cefadroxil CDX 30 Inh. of cell wall synthesis 

Lincomycin MY 15 Inh. of proteinsynthesis 

 

3.7.2 Bacterial strain and culturing 

The investigations were carried out with the non-human pathogenic Bordetella petrii 

(DSM 12804) and Staphylococcus aureus (DSM 20231). B. petrii were grown on CASO-

Agar plates at 27,5 °C until a bacterial lawn has formed. S. aureus were cultivated on 

Trypticase Soy Broth and were incubated at 37 °C. Plates were stored at 4 °C until 

usage; if the cultures were not needed immediately. Bi- to three-weekly, a fresh Agar 

plate was inoculated with a colony from the precursor plate. This was performed by 

streaking a sterile bacteria-laden inoculation loop across the surface of the agar plate 

under a laminar flow. 
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3.7.3 Procedure 

Antibiotic sensitivity was tested by performing the agar diffusion test. Therefore, 

bacteria were transformed to 5 ml of sterile NaCl-solution with a bacteria-laden 

inoculation loop. The bacterial suspension was densely spread on a CASO-Agar or 

Trypticase Soy Broth-Agar (depending on the bacterial strain to be tested) plate with a 

sterile cotton bud. Afterwards, antibiotic discs (Table 6) were placed on the streaked 

bacterial suspension with forceps, which were flamed with ethanol before usage. For 

cooperation testing with the chosen antiseptics, 10μl of the antiseptic agents were 

dropped directly onto the antibiotic discs. Additionally, the effects of bacterial growth 

of the antiseptics alone were estimated as well. For this, 5μl, 10μl or 20μl of the 

substance under investigation were dropped on sterile discs, which were placed on the 

bacterial suspension like the ones with antibiotics. The whole procedure was 

performed under semi-sterile conditions (flame). The plates were evaluated after 48 h 

at 27,5 °C (B. petrii) or 48 h at 37 °C (S. aureus) by measuring the diameter of the 

formed zone of inhibition, which reflects the degree of bacterial sensitivity against the 

applied compound.  
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4 Results 
 

The usage of a 1:1 OCT dilution with a physiological sodium chloride (NaCl) solution is 

clinically common practise. Previous studies in the working group of Prof. Hüttinger 

showed that OCT in dilution with NaCl induces crystallization which could impair the 

microbicidal efficacy and tissue tolerability of octenidine. Unpublished data from a 

case study suggest that the dilution of OCT with a 5 % glucose solution has a beneficial 

effect on wound healing without affecting the antiseptic properties of OCT. Our 

working group could demonstrate that the addition of glucose leads to an enhanced 

attachment of human glioblastoma cells in comparison to OCT with NaCl. This 

parameter indicates the formation of a stable cell-matrix connection in vivo which is a 

favorable effect during wound healing.   

 

The current work further investigated the effects of glucose in combination with 

octenidine (Octeniplus, O+) in comparison to the “classical” OCT formulation (O) and 

other commonly used antiseptics including Chlorhexidine (Chl), Beta-Isodona® (Bet) 

and Taurolin® (Tau). Thereby, the focus was on the impact on cell proliferation, cell 

migration and cell adhesion, gene expression and interactions with various antibiotics.  

These parameters where assessed by using the MTT-assay, for the determination of 

cell proliferation and cell adhesion; reverse transcription polymerase chain reaction 

(rt-PCR), for the effects on gene expression; the in vitro Scratch assay, for the 

investigation of cell migration; and the agar diffusion test which shed light on the 

antimicrobial efficiency and possible interactions with antibiotics. With these tests, we 

wanted to look behind the paradox observations of the high cytotoxic properties of O 

in vitro and the good tolerability in clinical practise.  

 

All tests, except the agar diffusion test, where performed with primary human 

fibroblasts and MCF-7 cells. It is necessary to cause as less damage as possible to the 

upper epithelial layer upon antiseptic application in order to support wound closure. 

Moreover, the migration of fibroblasts into the wounded area is essential for 

depositing extracellular matrix proteins in order to establish the granulation tissue 
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(Gurtner et al., 2008). Due to this fact, it was examined whether O+ had any beneficial 

effect on these cells in comparison to O which could explain the positive results from 

case report studies.  

The agar diffusion test was conducted with two different bacterial strains: (1) 

Bordetella petrii which is not pathogenic to humans (Gross et al., 2008) and (2) 

Staphylococcus aureus which is a frequent isolate from acute and chronic wounds 

(Kirker et al., 2009).  

The following graphs, tables and pictures represent the impact of O and O+ in various 

concentrations on fibroblasts and MCF-7 cells considering cell proliferation, adhesion, 

migration and gene expression. These data which are the outcome of at least 2 

independent experiments were statistically analyzed using Prism 3.0 (significance p < 

0,05).  
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4.1. Effects of O, O+ and chondroitin sulfate on cell proliferation and cell 

adhesion in MCF-7 cells 

 

4.1.1. Impact of O in comparison to O+ on MCF-7 cell proliferation  

Since the conservation of cell proliferation during wounding is indispensable, an ideal 

antiseptic should not interfere with this process. For testing, MCF-7 cells were grown 

on microtiter plates coated with different concentrations of O and O+ for 24 h which 

resulted in highly significant growth retardation (p < 0,001) (see Table 7). Even at a 

higher dilution factor (1:1024 i.e. 0,5 mg/L octenidine), the proliferation rate upon O+ 

and O application was only 40 % and 50 % of untreated cells, respectively. However, in 

the presence of 0,012 mg/L, the average growth rate reached more than 100 % of 

control cells. At this concentration, O+ allowed greater proliferation than O (p < 0,001) 

(Table 8, Figure 9A). 

Chondroitin sulfate (CHS) is a sulfated glycosaminoglycan and is distributed as side 

chains of proteoglycans in the ECM and on cellular surfaces. It is highly negatively 

charged (Ogawa et al. 2012). Hence, it is likely that CHS and octenidine interact with 

each other and most of the applied octenidine molecules are retained in the ECM of 

the tissue. In such complexes, the cytotoxicity of octenidine may be decreased while 

the antimicrobial efficiency is maintained. This would partly explain the different 

tolerability of octenidine in vitro and in vivo studies. The addition of 1 g/L CHS to the 

antiseptic stock solutions did not ameliorate the cytotoxic effects of O and O+. A rather 

more severe inhibition of cell proliferation could be detected in the course of the 

concentration gradient. At 125 mg/L O/O+ and 250 mg/L CHS, the proliferation rate 

was less than 10 % in comparison to cells solely grown in 10 % FCS. The maximal 

growth rate (approximately 85 %) was measured at the lowest antiseptic and CHS 

concentration (Figure 9B). 
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Table 7. Effect of O (vs ctrl) and O+ (vs ctrl) on MCF-7 cell proliferation. Dishes were coated with whether O 
and O+ or O and O+ supplemented with CHS and a serial dilution thereof. Cells were grown in medium on these 
coats for 24 hours and then subjected to the MTT-assay. The statistical analysis was conducted using 
Bonferroni-Test. DF Dilution Factor, MD mean difference between % of O/O+ and control (= 100 %), CI 
confidence interval. 

 

 

 Conc. 
O/O+[mg/L] 

125 31,25 7,81 1,95 0,5 0,012 

 Conc. CHS 
[mg/L] 

250 62,5 15,6 3,9 0,9 0,24 

 DF 4 16 64 256 1024 4096 

O 

MD -73,75 -74,69 -70,3 -65,5 -43,48 14,46 

P-value P < 0.001 P < 0.001 P < 0.01 P < 0.01 P > 0.05 P > 0.05 

95 % CI -121.3 to -
26.19 

-122.2 to -
27.13 

-117.9 to -
22.74 

-113.1 to -
17.94 

-91.03 to 
4.083 

-33.10 to 
62.02 

O+ 

MD -68,63 -62,37 -61,22 -67,69 -60,28 82,93 

P-value P < 0.01 P < 0.01 P < 0.01 P < 0.01 P < 0.01 P < 0.001 

95 % CI -116.2 to -
21.07 

-109.9 to -
14.81 

-108.8 to -
13.66 

-115.3 to -
20.13 

-107.8 to -
12.72 

35.37 to 
130.5 

O w CHS 

MD -97,86 -78,86 -64,14 -57,05 -49,74 -16,13 

P-value P < 0.001 P < 0.001 P < 0.01 P < 0.05 P < 0.05 P > 0.05 

95 % CI -145.9 to -
49.87 

-126.9 to -
30.87 

-112.1 to -
16.15 

-105.0 to -
9.054 

-97.73 to -
1.747 

-64.12 to 
31.86 

O+ w CH 

MD -91,39 -68,22 -60,8 -63 -36,8 -13,26 

P-value P < 0.001 P < 0.01 P < 0.01 P < 0.01 P > 0.05 P > 0.05 

95 % CI -139.4 to -
43.40 

-116.2 to -
20.22 

-108.8 to -
12.81 

-111.0 to -
15.00 

-84.79 to 
11.20 

-66.91 to 
40.40 
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A 

B 

Figure 9. Effect of O and O+ (with or without CHS) on MCF-7 cell proliferation after 24h incubation. (A) There 

was a concentration dependent inhibition of cell proliferation, whereas at the highest dilution, O+ had a higher 

biocompatibility in comparison to O. (B) The addition of CHS (1 g/L) to the O and O+ stock solution led to a 

significant proliferation inhibition in the course of the concentration gradient with no significant differences 

between the two Octenisept
®
 formulations. The calculation of the growth rates [%] were done in covering to cells 

grown for 24 h in the absence of antiseptic agents and CHS which were set to 100 % (represented by the red 

dotted line). Error bars indicate the SD from three measurements (p < 0,05 *, p < 0,01 < **, p < 0,001 ***). 
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Table 8. Effect of O vs O+ on MCF-7 cell proliferation. Dishes were coated with whether O and O+ or O and O+ 

supplemented with CHS and a serial dilution thereof. Cells were grown in medium on these coats for 24 hours 

and then subjected to the MTT-assay. The statistical analysis was conducted using Bonferroni-Test. DF Dilution 

Factor, MD mean difference between % of O and O+, CI confidence interval. 

. 

 

 

 

 

 
 Conc. O/O+ 

[mg/L] 
125 31,25 7,81 1,95 0,5 0,012 

 Conc. CHS 
[mg/L] 

250 62,5 15,6 3,9 0,9 0,24 

 DF 14 16 64 256 1024 4096 

O vs O+ 

MD -5,115 -12,32 -9,081 2,192 16,81 -68,48 

P-value P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 P < 0.001 

95 % CI -48.35 to 
38.12 

-55.55 to 
30.92 

-52.32 to 
34.15 

-41.04 to 
45.43 

-26.43 to 
60.04 

-111.7 to -
25.24 

O w CHS vs 
O+ w CHS 

MD -6,472 -10,65 -3,34 5,95 -12,94 -2,871 

P-value P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 

95 % CI -50.08 to 
37.13 

-54.25 to 
32.96 

-46.94 to 
40.26 

-37.65 to 
49.55 

-56.55 to 
30.66 

-51.62 to 
45.88 

 

 
 
 
To examine how MCF-7 cells better proliferate in the presence of O or O+ and how CHS 

influences such proliferation, MCF-7 cells were grown in wells coated with 1 g/L CHS 

constantly and with different O/O+ concentration. Therefore, only the concentration 

of octenidine decreased but CHS concentration was unaltered in the course of dilution.  

Table 9 illustrates that in the presence of 1 g/L CHS and up to 1,95 mg/L octenidine 

significant growth retardation occurs (p < 0,001). At the lowest O+ concentration, the 

proliferation rate increased significantly by 60 % in comparison to control cells (Table 

10). On the contrary, with the same O concentration, the proliferation rate did not 

exceed the level of control cells. Instead, O had a more positive effect on cell 

proliferation at 0,5 mg/L in comparison to O+ (p < 0,05) (Figure 10). 
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Table 9. Effect of several O and O+ concentrations with CHS (vs ctrl) on MCF-7 cell proliferation. Dishes were 
coated with 1 g/L CHS and a serial dilution of O or O+. Cells were grown in medium for 24 hours and then 
subjected to the MTT-assay. The statistical analysis was conducted using Bonferroni-Test. DF Dilution Factor, 
MD mean difference between % of O/O+ and control (= 100 %), CI confidence interval. 

Table 10. Effect of several O and O+ concentrations with CHS on MCF-7 cell proliferation. Dishes were coated 
with 1 g/L CHS and a serial dilution of O or O+. Cells were grown in medium for 24 hours and then subjected to 
the MTT-assay. The statistical analysis was conducted using Bonferroni-Test. DF Dilution Factor, MD mean 
difference between % of O and O+, CI confidence interval. 
 

 

 

 

 Conc. O/O+ 
[mg/L] 

125 31,25 7,81 1,95 0,5 0,012 

        

 DF 4 16 64 256 1024 4096 

O w CHS coat 

MD -78,43 -78,57 -71,63 -70,07 -14,67 -6,022 

P-value P < 0.001 P < 0.001 P < 0.001 P < 0.001 P > 0.05 P > 0.05 

95 % CI -112.6 to -
44.25 

-112.7 to -
44.40 

-105.8 to -
37.45 

-104.2 to -35.89 -48.84 to 
19.51 

-40.19 to 
28.15 

O+ w CHS coat 

MD -81,83 -77,29 -77,15 -75,74 -49,81 66,67 

P-value P < 0.001 P < 0.001 P < 0.001 P < 0.001 P < 0.01 P < 0.001 

95 % CI -116.0 to -
47.66 

-111.5 to -
43.12 

-111.3 to -
42.98 

-109.9 to -41.56 -83.98 to -
15.63 

32.49 to 
100.8 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Conc. O/O+ 
[mg/L] 

125 31,25 7,81 1,95 0,5 0,012 

 DF 4 16 64 256 1024 4096 

O w CHS vs O+ 
w CHS 

MD 3,401 
 

-1,275 
 

5,526 
 

5,668 
 

35,14 
 

-72,69 
 

P-value P > 0.05 P > 0.05 P > 0.05 P > 0.05 P < 0.05 P < 0.001 

95 % CI -27.66 to 
34.47 

 

-32.34 to 29.79 
 

-25.54 to 36.59 
 

-25.40 to 36.73 
 

4.075 to 66.20 
 

-103.8 to 
-41.62 
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Figure 10. Effect of O and O+ complemented with 1 g/L CHS on MCF-7 cell proliferation after 24h incubation. 

Cell proliferation was significantly inhibited in the presence of CHS and octenidine whereby O+ had a higher 

biocompatibility in comparison to O at the highest dilution factor. The calculation of the growth rates [%] were 

done in covering to cells grown for 24 h in the absence of antiseptic agents and CHS which were set to 100 % 

(represented by the red dotted line). Error bars indicate the SD from three measurements (p < 0,05 *, p < 0,01 ** 

p < 0,001 ***). 
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In the next assay, 96-well plates were pre-incubated (coated) with a serially diluted 1 

g/L CHS solution and with 0,5 g/L O and O+. Cell proliferation was dramatically 

decreased upon this treatment in comparison to control cells (max. growth rate 10 %) 

(Figure 11). CHS coat with O+ was less cytotoxic than O (Table 11), but significant 

growth inhibition was induced by both preparations. However, 0,24 mg/L of CHS coat 

could ameliorate the highly cytotoxic effect of O+. Cell proliferation was 60 % of 

reference cells in response to this combination (Figure 11). 

 

Table 11. Ratios of growth rates of MCF-7 cells cultured in 0,5 g/L O vs O+. Cells were grown on different 
concentrations of CHS coats (ranging from 250 to 0,24 mg/L). The Growth rate is the ratio of the extinction value 
of O with CHS and the extinction value of O+ with CHS. The statistical analysis was conducted using Bonferroni-
Test. DF Dilution Factor, MD mean difference between % of O with CHS and % of O+ with CHS, CI confidence 
interval 

 Conc. CHS 
[mg/L] 

250 62,5 15,6 3,9 0,9 0,24 

 DF 4 16 64 256 1024 4096 

O w CHS vs O+ 
w CHS 

MD -38,81 
 

-32,38 
 

-23,1 
 

-21,19 
 

-12,62 
 

-51,19 
 

P-value P < 0.001 P < 0.001 P < 0.05 P < 0.05 P > 0.05 P < 0.001 

95 % CI -58.96 to -
18.66 

 

-52.53 to -
12.23 

 

-43.25 to -2.94 
 

-41.34 to -1.04 
 

-32.77 to 7.53 
 

-71.34 to -
31.04 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In summary, high concentrations of O and O+ had severe effects on cell proliferation. 

However, in lower amounts, O+ was better tolerated than O. Moreover, the presence 
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Figure 11. Effect of 0,5 g/L O and O+ (with several CHS concentrations) on MCF-7 cell proliferation after 24h 

incubation. Cell proliferation was significantly inhibited in the presence of different CHS concentrations and 

octenidine. CHS in combination with O+ had a better biocompatibility than O. The calculation of the growth rates 

[%] were done in covering to cells grown for 24 h in the absence of antiseptic agents and CHS which were set to 

100 % (represented by the red dotted line). Error bars indicate the SD from three measurements (p < 0,05 *, p < 

0,01 **, p < 0,001 ***). 
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Table 12. MCF-7 cell adhesion after 30 minutes incubation with various O concentrations in comparison to O+. 
Serial dilutions of O and O+ stock solution were done directly in the cell culture medium. Cells were incubated 30 
minutes and then subjected to the MTT-assay. No significant differences between O and O+ were detected. The 
statistical analysis was conducted using Bonferroni-Test. DF Dilution Factor, MD mean difference between % of O 
and % of O+, CI confidence interval. 

of CHS seemed to have a beneficial effect when it was applied in very small amounts. 

This result further supports the hypothesis of a subtle role of CHS in the presentation 

of octenidine to bacteria and cells. At a certain low concentration, it ameliorated the 

cytotoxic effects of 0,5 g/L O+ (Figure 11).  

 

 

4.1.2. Impact on MCF-7 cell adhesion of O in comparison to O+ 

Beside proliferation, stable cell adhesion to the extracellular matrix is postulated to be 

an important factor during wound repair. Due to this fact, the effect of O and O+ 

incubation (30 minutes) on MCF-7 cell adhesion was investigated. After the incubation, 

the cells were washed stringently in a normalized procedure with PBS and the 

remaining attached cells to the microtiter plate surface were then subjected to the 

MTT-assay. The absorbance at 595nm correlates with the cell number that is still 

attached to the well surface after the procedure. O and O+ had no negative effect on 

cell adhesion when it was diluted 1:100 and higher (Figure 12). Below this mark, a 

concentration dependent loss of cell adhesion was observed with no significant 

differences between O and O+ (Table 12).  

 

 

 

 Conc. O/O+ 
[mg/L] 

50 5 0,5 0,05 0,005 

 DF 10 100 1000 10000 100000 

O vs O+ 

MD 2,288 5,72 5,529 -1,716 24 

P-value P > 0.05 P > 0.05 P > 0.05 P > 0.05 P < 0.05 

95 % CI -36.70 to 41.28 -33.27 to 44.71 -33.46 to 44.52 -40.70 to 37.27 -14.99 to 62.99 
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While in poliferation experiments a > 1:1000 dilution abrogated toxicity of O/O+, in 

adhesion experiments 1:100 dilution was sufficient to abolish cytotoxic effects. This 

observation points out that....   

 
It is apparent from Figure 12 that the IC50 value for octenidine ranges between 50 

mg/ml and 5 mg/ml of O and O+. The IC50 value describes the concentration of a 

compound at which 50 % of the cell population survives. To determine this value, the 

dilution factors were adjusted and the assay was repeated under the same conditions. 

This led to the result that at 15 ± 1 mg/L (i.e. 1:33 dilution) O/O+ 50 % of cell adhesion 

were lost (Figure 13). The presence of glucose did not influence this value. From this 

graphic, a value for IC10 (concentration at which 10 % of cell adhesion is lost) and IC90 

(concentration at which 90 % of the cells loose their adhesion) was calculated as well 

(not shown in the graphic). The IC10 was measured at 7 ± 0,3 mg/L O/O+ (i.e. 1:75 

dilution) and the IC90 at 30 ± 5 mg/L  O/O+ (i.e. 1:15 dilution). 
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Figure 12. Effect of O and O+ on MCF-7 cell adhesion after 30 minutes incubation. Incubation with 50 mg/L O 

and O+ leads to a complete loss of cell adhesion. However, this effect is abrogated with decreasing concentrations 

of the antiseptic agents. Then, the level of cell adhesion is comparable to that of control cells. The quotient of the 

extinction value of treatment cells and the extinction value of the reference cells represents the % of cell 

adhesion. Reference cells were taken as 100 % (represented by the red dotted line). Error bars indicate the SD 

from three measurements. 
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The calculated IC values for O and O+ were used to further analyse the optimal contact 

time of the antiseptic compound. The optimal contact time of octenidine allows clinical 

efficiency with minimal disturbance of cell adhesion. MCF-7 cells were incubated with 

different O and O+ concentrations (IC10, IC50 and IC90 value) for 1 s, 5 s, 10 s, 20 s, 60 

s, 120 s, 300 s and 600 s and the residual attached cells were investigated by the MTT-

assay. Incubation with 30 mg/L O and O+ (i.e. IC90, 90 % loss of cell adhesion) resulted 

in a striking decrease of cell adhesion after 600 s (10 minutes). Furthermore, even 

when the contact time was reduced to 1 s, approximately 50 % of cell attachment was 

lost (Figure 14A). Cell adhesion was never lower than 50 % at any time point in 

response to 15 mg/L (i.e. IC50) of the antiseptic agents in comparison to control cells. 

Incubation for 300 s (5 minutes) and shorter always resulted in a cell number between 

70 % and 80 % (Figure 14B) of reference cells. As expected, the concentration 

corresponding to the IC 10 showed a good biocompatibility in vitro. This amount of O 

and O+ hardly caused severe cell damage since cell adhesion was at the same level as 

control cells at any given contact time. Additionally, O+ had a better tissue 

compatibility after 60 s and 5 s exposure time in comparison to O (p < 0,001 and p < 

Figure 13. Determination of the IC50 value of O and O+ in MCF-7 cells. Cells were incubated with different O and 

O+ concentrations (ranging from 1:10 to 1:320 dilution) for 30 minutes and then subjected to the MTT-assay. 

After 30 minutes incubation with a 1:33 dilution of O and O+, 50 % loss of cell adhesion was detected with no 

differences between O and O+. The % of adhesion was calculated by the ratio of the extinction value of treatment 

cells and the extinction value of reference cells. Reference cells were set to 100 % (represented by the red dotted 

line). Error bars indicate the SD from three independent experiments, measured as triplicates. 
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Table 13. Cell adhesion in response to the IC values of O in comparison to O+ after the indicated contact times in 

MCF-7 cells. Serial dilutions of O and O+ stock solution were done directly in the cell culture medium. Cells were 

incubated for the indicated periods and then subjected to the MTT-assay. No significant differences between O and 

O+ were detected. The statistical analysis was conducted using Bonferroni-Test. MD mean difference between % of 

adhesion of O and % of adhesion of O+, CI confidence interval. 

0,01 respectively) (Figure 14C). In all other settings, glucose addition did not provide 

any advantage (Table 13). 

 

 

 

 

Contact 
time [s] 600 300 120 60 20 10 5 1 

O vs O+ 
IC90 MD -7,317 -13,77 -10,08 3,46 -10,66 -2,863 -11,14 7,00 

 P-value P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 

 95 % CI 
-29.71 to 

15.07 
-36.16 to 

8.62 
-32.47 to 

12.31 
-18.93 to 

25.84 
-33.05 to 

11.73 
-25.25 to 

19.53 
-33.53 to 

11.25 
-15.38 to 

29.40 

O vs O+ 
IC50 MD 4,561 4,489 -11,32 -2,56 -11,62 -11,52 -6,03 -17,79 

 P-value P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 

 95 % CI 
-16.14 to 

25.26 
-16.21 to 

25.19 
-32.02 to 

9.384 
-23.26 to 

18.14 
-32.33 to 

9.078 
-32.22 to 

9.184 
-26.73 to 

14.67 
-38.49 to 

2.912 

O vs O+ 
IC10 MD -21,96 -14,54 -1,95 -44,37 -19,81 -15,59 -36,83 -22,05 

 P-value P > 0.05 P > 0.05 P > 0.05 P < 0.001 P > 0.05 P > 0.05 P < 0.01 P > 0.05 

 95 % CI 
-51.44 to 

7.529 
-41.45 to 

12.38 
-28.87 to 

24.97 
-71.28 to -

17.45 
-46.72 to 

7.110 
-42.51 to 

11.33 
-63.75 to -

9.917 
-48.97 to 

4.862 
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Figure 14. Effect of different concentrations of O in comparison to O+ on MCF-7 cell adhesion. O and O+ were 

diluted directly in the cell culture medium. Cells were incubated for the indicated time points with 30 (A), 15 (B) 

or 7 mg/L (C) of O/O+ and then subjected to the MTT-assay. The % of adhesion was calculated by the ratio of the 

extinction value of treatment cells and the extinction value of reference cells. Reference cells were set to 100 % 

(represented by the red dotted line). Error bars indicate the results from two independent experiments, 

measured as triplicates (p < 0,01 **, p < 0,001 ***). 
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Again, for elucidation of the toxicity paradox these experiments allow the assumption 

that the sequestration of octenidine is to be achieved within 10 minutes to avoid 

toxicity for the cell but to keep bactericidal efficiency. 

In these short-time application experiments, the earlier observed advantages of the O+ 

formulation in comparison to the classical O preparation were only reproducible when 

the concentration of the antiseptics were rather low (7 mg/L). At higher dosage rates 

(15 mg/L and 30 mg/L) O+ was not less cytotoxic than O.  

In accordance with the manufacturer’s instructions, the contact time of Octenisept® is 

ideally between 30 seconds and 2 minutes when applied topically. For this reason, the 

incubation time for the following experiments was chosen to be 2 minutes (if not 

otherwise stated) regardless of the used O and O+ concentration. 
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4.2. Influence of O and O+ on fibroblast and MCF-7 cell migration in 

comparison to other commonly used antiseptics 

Next, the effect on cell migration of O and O+ was assessed by using the in vitro 

laceration assay. In this assay, the cell monolayer was scratched and cell migration into 

the cell-free areas was estimated by visual inspection. It was shown that only Beta-

Isodona® impaired (1:75 dilution of the stock solution) and even inhibited (1:30) cell 

migration of primary human fibroblasts and wound closure. All other antiseptic 

preparations did not interfere with this process (Figure 15). However, to some extent 

cell detachment could be observed at the application point of Chl, O, O+ and Bet in 

some cases (data not shown). The application point refers to the site where the stock 

solution of the antiseptic compounds was administered and resulted from the addition 

of a stock solution volume to the culture medium volume.  

 

The same assay was now performed using MCF-7 cells. It turned out that these cells 

need more time to migrate into the artificially introduced wounds. Due to this, the 

wound closure was monitored up to 98 h. Nevertheless, full re-establishment of a 

continuous cell monolayer was not achieved even by untreated cells serving as a 

reference. Unless cell migration occurred rather slowly, cell proliferation could be 

estimated easily. MCF-7 cells treated with O, Chl, Bet and Tau proliferated in the same 

extent than untreated ones as the cell density of the non-lacerated area increased, 

deduced from visual inspection. The wound area decreased after O, Chl, Bet and Tau 

treatment, but less obvious for O treated cells. On the contrary, the proliferation rate 

after O+ incubation seemed to be decreased in comparison to the other antiseptics 

and to control cells in MCF-7 cells (Figure 16). 

In literature full wound closure was achieved with another clone of MCF-7 cells (Kang 

et al., 2009). Therefore, our MCF-7 cell clone seemed not to be the optimal cell type to 

assess cell migration via the in vitro laceration assay. 
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Figure 15. Representative pictures of the in vitro laceration assay with fibroblasts. Primary human fibroblasts 
were grown to confluency and at time point 0 a scratch-cross was introduced into the cellular monolayer. 
Incubations with indicated antiseptics or sterile filtrated aqua dest. (control) were then performed. The 
investigated antiseptic agents were either diluted 1:75 (A) or 1:30 (B). The experiment was repeated 4 times. 
Ctrl control, Bet Betaisodona, Chl Chlorhexidine, Tau Taurolin

®
. 
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 Bet (1,3 g/L; 32,5 μmol) Chl (26 mg/L; 51 μmol) Tau (67 mg/L; 236 μmol) 
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Figure 16. Representative pictures of the in vitro laceration assay with MCF-7 cells. MCF-7 cells were grown to 
confluency and at time point 0 a scratch-cross was introduced into the cellular monolayer. Incubations with 
indicated antiseptics or sterile filtrated aqua dest. (control) were then performed. The investigated antiseptic 
agents were diluted 1:75. The experiment was repeated twice. Ctrl control, Bet Betaisodona, Chl Chlorhexidine, 
Tau Taurolin

®
. 

 
 
These tests showed that O and O+ did not negatively influence migration of fibroblasts 

in vitro after 2 minutes contact time. However, MCF-7 cell proliferation was slightly 

slowed down after O+ application.  

There is still discrepancy between this tissue culture model and the in vivo situation 

whereby the effect was not so pronounced in fibroblasts. Fibroblasts started to 

migrate 6 hours after the antiseptic treatment and the cell monolayer was established 

after 24 hours. On the contrary, MCF-7 cells did not achieve a complete wound closure 

after 98 hours (regardless of the treatment). 
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4.3. Impact of O and O+ on the expression of selected genes involved in 

wound healing 

 
Wound repair is a highly complex, dynamic and well regulated process which involves 

the interplay of various signalling molecules. Therefore, it was analyzed whether the 

application of O or O+ causes any changes in gene expression in primary human 

fibroblasts and MCF-7 cells after laceration and in normally growing fibroblasts. 

Additionally, it was determined whether O and O+ treatment causes any differences in 

gene expression in the presence of bacterial cell wall components. For that, cells were 

incubated for 2 hours with lipopolysaccharides (LPS, 10 μg/ml) prior to antiseptic 

treatment.   

In unwounded fibroblasts, treatment with 7 mg/L (i.e. 10 μM = IC10) O led to a 

significant increase of MMP-1 and MMP-3 levels (p < 0,05 and p < 0,001 respectively) 

in comparison to control cells. Furthermore, the MMP-3 expression was significantly 

enhanced in comparison to 7 mg/L (i.e. 10 μM = IC10) O+ (p < 0,01) (Figure 17A, Table 

14).  

Laceration and LPS pre-incubation did not cause any significant changes in gene 

expression of MMPs in comparison to control cells and between O and O+ (Figure 17B-

C). MMP-2 levels were increased after O+ application in unwounded fibroblasts but, 

this result was not significant (Figure 17C, Table 14). MMP-9 gene expression changes 

could not be analyzed statistically due to big variations between the distinct 

experiments. 
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Table 14. Relative gene expression levels of MMP family members in fibroblasts after O incubation in 
comparison to O+. Gene expression changes upon 7 mg/L O or O+ were tested under three conditions in 
fibroblasts: (i) no laceration = unwounded; (ii) lacerated = several scratches were introduced into  the cell 
monolayer ( #); (iii) 2 h pre-incubation with 10 μg/ml LPS and #. The depicted values are derived from two to four 
independent experiments. The statistical analysis was conducted using Bonferroni-Test. CI confidence interval 
MD mean difference between relative gene expression change of O and O+ LPS lipopolysaccharides. 

 Gene MMP-1 MMP-2 MMP-3 

O vs O+ MD 1,86 -4,02 1,654 

 P-value P > 0.05 P > 0.05 P < 0.01 

 95 % CI -0.7297 to 4.450 -9.722 to 1.682 0.450 to 2.859 

O# vs O+# MD -0,0131 0,0316 -0,436 

 P-value P > 0.05 P > 0.05 P > 0.05 

 95 % CI -2.435 to 2.409 -4.624 to 4.687 -1.479 to 0.607 

O#LPS vs O+#LPS MD -0,063 0,257 0,200 

 P-value P > 0.05 P > 0.05 P > 0.05 

 95 % CI -2.809 to 2.684 -4.399 to 4.912 -1.005 to 1.404 
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Figure 17. PCR analysis of MMP family members in primary human fibroblasts after O treatment in comparison to 

control cells and O+. Fibroblasts were incubated with 7 mg/L O or O+ under three different conditions (described at 

Table 14) for 2 minutes. Control cells were only incubated with sterile aqua dest. The cells were then washed with 

PBS and grown for 24 hours in fresh cell culture medium in the absence of the antiseptics. Gene expression changes 

were estimated by PCR using primers for MMP-3 (A), MMP-1 (B) and MMP-2 (C) and MMP-9. Representative agarose 

gel picture of the PCR products (D). GAPDH was used as house keeping gene. Relative activation was calculated by 

the quotient of the intensity from the PCR signal of treatment cells and reference cells. Reference cells were set as 1 

(red dotted line). All data were normalized to GAPDH. Error bars indicate SD from two to four independent 

experiments (* p < 0,05; ** p < 0,01; *** p < 0,001). 
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As summarized in Figure 18, the different incubation procedures had no significant 

influence on gene expression of PAI-1, TGF-β1, VEGF-A, ICAM-1 and uPA. Only in 

lacerated fibroblasts treated with O+, TGF-β1 expression was totally abolished (Figure 

18B). VEGF-A expression was more induced in non-lacerated fibroblasts after O 

administration than after O+ (p < 0,05). Two isoforms of VEGF-A were detected. 

Statistical analysis was only conducted for the smaller VEGF-A variant which was 

designated as VEGF-A1 (analogously, the bigger isoform was designated VEGF-A2) 

(Figure 18C). Also PAI-1 (Figure 18A) and ICAM-1 (Figure 18D) seemed to be 

upregulated in response to O in unwounded fibroblasts. However, a high variation 

between the independent experiments was detected. Therefore, these observations 

were not significant (Table 15). Especially, uPA duplicates were not matching after O+, 

scratch and LPS treatment (Figure 18E, second last column). 

 

Table 15. Relative gene expression levels of genes in fibroblasts after O incubation in comparison to O. 
Gene expression changes upon 7 mg/L O or O+ were tested under three conditions in fibroblasts: (i) no 
laceration = unwounded; (ii) lacerated = several scratches were introduced into  the cell monolayer ( #); 
(iii) 2 h pre-incubation with 10 μg/ml LPS and #. The depicted values are derived from two to four 
independent experiments. The statistical analysis was conducted using Bonferroni-Test. CI confidence 
interval MD mean difference between relative gene expression change of O and O+ LPS 
lipopolysaccharides. 

 Gene PAI-1 TGFβ-1 VEGF-A ICAM-1 uPA 

O vs O+ MD 0,91 -0,30 0,878 1,772 0,003 

 P-value P > 0.05 P > 0.05 P < 0.05 P > 0.05 P > 0.05 

 95 % CI 
-0.602 to 

2.432 -1.012 to 0.413 0.107 to 1.649 -0.982 to 4.525 -6.604 to 6.610 

O# vs O+# MD 0,028 0,732 0,341 -0,452 -1,073 

 P-value P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 

 95 % CI 
-1.392 to 

1.447 -0.141 to 1.606 -0.684 to 1.367 -2.700 to 1.796 -6.468 to 4.322 

O#LPS vs 
O+#LPS MD 0,231 0,062 0,186 0,083 5,022 

 P-value P > 0.05 P > 0.05 P > 0.05 P > 0.05 P > 0.05 

 95 % CI 
-1.286 to 

1.748 -0.812 to 0.935 -0.937 to 1.309 -2.670 to 2.837 -1.585 to 11.63 
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Figure 18. PCR analysis of the indicated genes after O treatment in comparison to control cells and O+. Fibroblasts 

were incubated with 7 mg/L O or O+ under three different conditions (described at Table 15) for 2 minutes. Control 

cells were only incubated with sterile aqua dest. The cells were then washed with PBS and grown for 24 hours in 

fresh cell culture medium in the absence of the antiseptics. Gene expression changes were estimated by PCR using 

primers for PAI-1 (A), TGFβ-1 (B), VEGF-A (C), ICAM-1 (D) and uPA (E). Representative agarose gel picture of the PCR 

products (F). GAPDH was used as house keeping gene. Relative activation was calculated by the quotient of the 

intensity from the PCR signal of treatment cells and reference cells. Reference cells were set as 1 (red dotted line). 

All data were normalized to GAPDH. Error bars indicate SD from two to four independent experiments (* p < 0,05). 
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In addition, it was analyzed whether higher concentrations of O and O+ cause more 

severe changes in gene expression of the investigated genes. Therefore, lacerated 

fibroblasts were treated with 17 mg/L (i.e. IC50) O and O+ and then subjected to rt-

PCR.  

Upon O+ application, increased levels of genes associated with matrix degradation 

were detected. Especially, transcription of MMP-3, MMP-2 and PAI-1 seemed to be 

highly activated in comparison to control cells. Certainly these 3 genes are worth to 

further investigate and to reduce the big standard deviation as well. On the contrary, O 

treatment did not induce such dramatic effects. Consequently, the differences 

between O and O+ were not significant either (Table 16). Definitely, none of the 

analyzed genes involved in ECM degradation was strongly inhibited in response to 

antiseptic treatment (Figure 19A). In addition, it was observed that O+ treatment 

caused a striking increase in VEGF-A1 expression by 2,5 fold (Figure 19C, first column 

pair). This result might be significant as it was achieved with a perfect duplicate. 

Furthermore, elevated levels of VEGF-A2, the bigger isoforms of VEGF-A, were 

measured after O+ application. The VEGF-A2 enhancement might be questionable due 

to the high standard deviation. ICAM-1 was induced after O and O+ incubation. 

However, the variation among the independent experiments entailed no significant 

results (Figure 19C, last column pair). Additionally, O, as well as O+, provoked a 

decrease in TGF-β1 levels by 60 and 35 %, respectively (p < 0,05 for O, non-significant 

for O+) (Figure 19C, second last column pair). 
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In summary, it could be shown that antiseptic treatment has generally no dramatic 

influences on gene expression with only few exceptions. Lacerated fibroblasts 

produced increased mRNA levels of MMP-3 and MMP-1 in response to O treatment 

whereas these effects were not detected in wounded and LPS pre-incubated cells. In 

addition, higher amounts of O and O+ did not induce significant gene activation. It is 

intriguing that O+ elevated mRNA levels more than O in most cases. Only TGF-β1 was 

slightly inhibited by O and O+ when increased concentrations (17 mg/L) were applied.  

 

Table 16. Relative gene expression levels of selected genes in lacerated fibroblasts after O incubation in 
comparison to O+. Gene expression changes were tested upon 17 mg/L O or O+ in lacerated fibroblasts. The 
depicted values are derived from two independent experiments. The statistical analysis was conducted 
using Bonferroni-Test. CI confidence interval MD mean difference between relative gene expression change 
of O and O+.  

O vs O+ 

Gene MD P-value 95 % CI 

MMP-1 -0,17 P > 0.05 -2.49 to 2.14 

MMP-2 -6,18 P > 0.05 -22.68 to 10.33 

MMP-3 -1,18 P > 0.05 -5.66 to 3.30 

PAI-1 -5,20 P > 0.05 -17.60 to 7.20 

uPA -0,04 P > 0.05 -1.37 to 1.29 

VEGF-A1 -1,35 P > 0.05 -3.51 to 0.81 

VEGF-A2 -3,56 P > 0.05 -10.70 to 3.57 

TGFβ-1 -0,26 P > 0.05 -0.64 to 0.12 

ICAM-1 1,29 P > 0.05 -5.13 to 7.73 
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Figure 19. PCR analysis of indicated genes after high concentration treatment with O in comparison to control 

cells and O+ in wounded fibroblasts. Scratched fibroblasts were incubated with 17 mg/L O or O+ for 2 minutes. The 

cells were then washed with PBS and grown for 24 hours in fresh cell culture medium in the absence of the 

antiseptics. Gene expression changes were estimated by PCR using primers for genes involved in ECM degradation 

(A) and TGFβ-1, VEGF-A and ICAM-1 (C). Representative agarose gel picture of the PCR products (B). GAPDH was 

used as house keeping gene. Relative activation was calculated by the quotient of the intensity from the PCR signal 

of treatment cells and reference cells. Reference cells were set as 1 (red dotted line). All data were normalized to 

GAPDH. Error bars indicate SD from two to four independent experiments (* p < 0,05). 

 

The results from Figure 19 should be considered with caution due to the high variation 

between the duplicates. Nevertheless, these primary results purport that O and 

especially O+ are potent to induce genes involved in ECM degradation (MMPs and PAI-

1), cell-cell interaction (ICAM-1) and angiogenesis (VEGF-A). Therefore, it is worth to 

substantiate these results by repeating these experiments. 
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Additionally, the impact of O and O+ on gene expression was analyzed in MCF-7 cells. 

Therefore, the cell monolayer was lacerated several times, incubated with 7 mg/L of 

the antiseptic preparations for 2 minutes and were allowed to re-epithelialise for 24 

hours. Cells were lysed and then subjected to rt-PCR. In addition, the effect of 1,85 

mM glucose, which is the concentration that is administered with 7 mg/L O+, was 

assessed as well. Neither in untreated control cells nor in O and O+ treated cells, 

expression of MMP-1, MMP-3, MMP-2 and PAI-1 was observed (data not shown). The 

presence of 1,85 mM glucose did not cause any severe changes of mRNA level of the 

depicted genes (Figure 20A, black column). Although the measured mean values of the 

relative gene expression rate of VEGF-A1, VEGF-A2 and ICAM-1 was smaller after 

glucose incubation than after O and O+ treatment. O and O+ application did not 

provoke significant gene activation or inhibition as the relative expression levels were 

not significantly different than from control cells (Table 17). Only MMP-9 was shown to 

be decreased by 50 % after O incubation (Figure 20A), but without significance. 

All in all, gene expression levels remained unaffected upon the different incubation 

procedures in lacerated MCF-7 cells. 

 

Table 17. Relative gene expression levels of investigated genes in MCF-7 cells after O  incubation in comparison 
to O+  and control cells. Gene expression changes were tested upon 7 mg/L O or O+ and 1,85 mM glucose in 
lacerated MCF-7 cells. The depicted values are derived from two to three independent experiments. The 
statistical analysis was conducted using Bonferroni-Test. CI confidence interval MD mean difference between 
relative gene expression change of O and O+ Ctrl Control. 

 O vs O+ O vs Ctrl O+ vs Ctrl 

Gene MD P-value 95 % CI MD P-value 95 % CI MD P-value 95 % CI 

TGFβ-1 -0,188 P > 0.05 
-0.420 to 

0.045 -0,172 P > 0.05 
-0.451 to 

0.107 0,016 P > 0.05 
-0.264 to 

0.295 

TGFβR-1 0,258 P > 0.05 
-0.396 to 

0.911 0,402 P > 0.05 
-0.420 to 

1.224 0,144 P > 0.05 
-0.678 to 

0.967 

VEGF-A1 0,083 P > 0.05 
-0.516 to 

0.681 0,159 P > 0.05 
-0.632 to 

0.950 0,076 P > 0.05 
-0.715 to 

0.868 

VEGF-A2 0,042 P > 0.05 
-0.485 to 

0.569 0,063 P > 0.05 
-0.633 to 

0.760 0,021 P > 0.05 
-0.675 to 

0.718 

ICAM-1 0,013 P > 0.05 
-1.354 to 

1.381 0,311 P > 0.05 
-1.639 to 

2.262 0,298 P > 0.05 
-1.653 to 

2.249 

MMP-9 -0,568 P > 0.05 
-1.140 to 

0.004 -0,505 P > 0.05 
-1.256 to 

0.246 0,063 P > 0.05 
-0.688 to 

0.814 
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Figure 20. PCR analysis of investigated genes after O treatment in comparison to control cells and O+ in wounded 

MCF-7 cells. Scratched MCF-7 cells were incubated with 7 mg/L O or O+ or 1,85 mM glucose for 2 minutes. The cells 

were then washed with PBS and grown for 24 hours in fresh cell culture medium in the absence of the antiseptics. 

Gene expression changes were estimated by PCR using primers for the indicated genes (A). Representative agarose 

gel picture of the PCR products (B). GAPDH was used as house keeping gene. Relative activation was calculated by 

the quotient of the intensity from the PCR signal of treatment cells and reference cells. Reference cells were set as 1 

(red dotted line). All data were normalized to GAPDH. Error bars indicate SD from two to four independent 

experiments. 
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4.4. Cooperativity between antibiotics and antiseptics 

Antiseptics and antibiotics are commonly used in combination in clinical practise. 

However, little is known about possible interactions between those two antimicrobial 

agents. Therefore, the effects of a combined application of antibiotics and antiseptics 

were assessed using the agar diffusion test. We applied antiseptics, antibiotics and 

both in combination onto paper discs mounted on the agar and measured the 

diameter of the inhibited zone created from diffusion of the antimicrobials. To give 

positive cooperation a combined application must result in a greater diameter than the 

antibiotics alone.  

As summarized in Table 18, some antibiotics (e.g. Linezolid, Vancomycin, Metronidazol 

or Penicillin G and V) were not able to inhibit bacterial growth. Similarly, O and O+ did 

not have bactericidal efficiency when only 5 μl and 10 μl were applied. However, the 

formation of a zone of inhibition was observed when O/O+ were combined with the 

antibiotics. This indicates a positive cooperation between those compounds. 

Synergistic effects between O and O+ and antibiotics were observed for 13 out of the 

20 (2/3) tested combinations (in B. petrii) (Figure 21). Moreover, the simultaneous 

application of O/O+ and antibiotics did not led to significant negative cooperations. 

Only 5 weak antagonistic effects were measured. In comparison, concomitant 

application of Beta-Isodona® or Taurolin® and antibiotics caused a decrease of 

bactericidal efficiency of the antibiotic in more cases than O or O+. Additionally, 

Taurolin® in combination with the antibiotics did never result in a positive 

cooperativity. Only Chlorhexidine together with the antibiotic compounds acted in a 

more synergistic manner than O or O+ against B. petrii.  
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Table 18. Results from the agar diffusion test with B. petrii. For cooperativity testing, 10 μl of the antiseptic 
agents were applied directly onto the antibiotic paper discs. Additionally, antibiotics and antiseptics were tested 
as single compounds.  The mean value ± SD (O, O+, antibiotics alone: n =3; Chl, Bet, Tau: n =2) of the diameter of 
the formed zone of inhibition are illustrated.  

Combination: O [mm] O+ [mm] Chl [mm] Bet [mm] Tau [mm] 

only 
antibiotics 

[mm] 

- 5 μl (antiseptic only) 0 ± 0 0 ± 0 17,5 ± 0,7 0 ± 0 0 ± 0 - 

- 10 μl (antiseptic only 0 ± 0 0 ± 0 24 ± 0 10 ± 0 0 ± 0 - 

- 20 μl (antiseptic only) 10 ± 1 10,0 ± 0,6 26 ± 0 12,5 ± 0,7 0 ± 0 - 

Linezolid 9,3 ± 5,3 9 ± 5,5 26 ± 1,4 10 ± 0 0 ± 0 0 ± 0 

Vancomycin 9 ± 5,8 4 ±  5,3 26 ± 0 10,5 ± 0,7 0 ± 0 0 ± 0 

Metronidazol 9,5 ± 1,7 7,7 ± 5,2 26,5 ± 2,1 10,5 ± 0,7 0 ± 0 0 ± 0 

Cotrimoxazol 10 ± 1,5 9 ± 0,6 27 ± 2,8 10 ± 0 0 ± 0 0 ± 0 

Ciprofloxacin 23 ± 4,7 26,3 ± 1 27 ± 2,8 12,5 ± 3,5 13,5 ± 2,1 23 ± 6,2 

Levofloxacin 28,6 ± 3,6 32,3 ± 5,2 30,5 ± 2,1 23 ± 4,2 22 ± 1,4 34,7 ± 4,9 

Moxifloxacin 31,3 ± 2,1 30,7 ± 2,6 29,5 ± 2,1 24,5 ± 3,5 25 ± 1,4 30,7 ± 8,3 

Gentamicin 17,7 ± 5,0 17,3 ± 4,6 26 ± 1,4 18 ± 2,8 21 ± 1,4 19 ± 3,6 

Clarythromycin 25,5 ± 5,7 24,7 ± 0,6 26,5 ± 2,1 16 ± 8,5 24,5 ± 2,1 25,3 ± 9,3 

Tigecyclin 38,3 ± 4,5 38,3 ± 3,6 36 ± 0 23,5 ± 5,0 32 ± 2,8 38,3 ± 2,5 

Doxycyclin 48,3 ± 7,2 43 ± 9,2 43,5 ± 3,5 44 ± 2,8 40 ± 2,8 38 ± 5,7 

Cefotaxim 9,7 ± 1 9,7 ± 1,2 25 ± 1,4 10 ± 0 0 ± 0 0 ± 0 

Imipenem 39 ± 4,6 40 ± 5,1 38 ± 0 36,5 ± 2,1 38 ± 2,8 36 ± 1,4 

Piperacillin/Tazobactam 38,7 ± 4,2 39 ± 12,7 39,5 ± 0,7 34 ± 5,7 34,5 ± 0,7 39,3 ± 4,6 

Amoxicillin/Clavulanic 
acid 22,3 ± 2,5 22,7 ± 3,8 24,5 ±2,1 19,5 ± 0,7 20 ± 0 23 ± 5,2 

Amoxicillin 8,7 ± 1 10 ± 1,5 25 ± 1,4 9 ± 0 10 ± 7 0 ± 0 

Penicillin G 9 ± 1 10,3 ± 1,5 24,5 ± 2,1 10,5 ± 0,7 0 ± 0 0 ± 0 

Penicillin V 9,3 ±1,5 10 ± 2 24,5 ± 2,1 9 ± 0 0 ± 0 0 ± 0 

Cefadroxil 8 ± 1,5 10,3 ± 2,1 24 ± 1,4 10 ± 0 0 ± 0 0 ± 0 

Lincomycin 7,7 ± 1,2 8 ± 1,7 23 ± 2,8 9,5 ± 0,7 0 ± 0 0 ± 0 
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These tests with B. petrii pointed toward the potency of combined application of 

bactericidal principles. Therefore, the experiments were repeated with S. aureus. 

Thereby, the results showed strong strain specificity of antibiotic sensitivity. 

Substantially, as illustrated in Table 19, the antiseptic agents themselves were able to 

Figure 21. Cooperativity between antibiotics and antiseptics against B. petrii.  Cooperativity between antibiotics 

and antiseptics was assessed by the agar diffusion test. Antiseptics, antibiotics and both in combination were 

applied. For that, 10 μl of the antiseptics were dropped onto the antibiotic paper disc mounted on the agar. After 

48 hours, the diameter of the zone of inhibition was measured. Positive cooperativity was given when the 

diameter of zone of inhibition after the combined treatment was greater than that after application of the 

antibiotic alone. The presented data are the result from three independent experiments. Taurolidin = Taurolin® 
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inhibit bacterial growth at all applied volumina as measured by the diameter of the 

zone of inhibition. Only Taurolin® was not potent against S. aureus if applied alone. O 

and O+ were more efficient against S. aureus than against B. petrii (Table 19). In this 

setting, O+ caused the most synergistic (9 out of 20) and the least antagonistic effects 

(7 out of 20) in combination with the antibiotics. Antibiotic application together with 

the other antiseptics under investigation led to negative cooperations in more than 

half of the tested combinations (Figure 22). One distinctive observation during these 

experiments was that S. aureus developed antibiotic resistance. After 2 days in the 

zone of inhibition re-growth of colonies were observed, but never with O+ (data not 

shown). 
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Table 19. Results from the agar diffusion test with S. aureus. For cooperativity testing, 10 μl of the antiseptic 
agents were applied directly onto the antibiotic paper discs. Additionally, antibiotics and antiseptics were tested 
as single compounds.  The mean value ± SD (O, O+, antibiotics alone: n =3; Chl, Bet, Tau: n =2) of the diameter of 
the formed zone of inhibition are illustrated. 

Combination: O [mm] O+ [mm] Chl [mm] Bet [mm] Tau [mm] 
only antibiotics 

[mm] 

- 5 μl (antiseptic only) 3,7 ± 5,2  15 ±  0 10 ±  0 10 ±  0 0 ±  0 - 

- 10 μl (antiseptic only 10 ±  0 14 ± 2,8 12 ±  0 12 ±  0 0 ±  0 - 

- 20 μl (antiseptic only) 15 ±  0 15 ±  0 15 ±  0 15 ±  0 0 ±  0 - 

Linezolid 10 ±  0 24 ±  0 20 ±  0 25 ±  0 20 ±  0 23,5 ± 2,1 

Vancomycin 15 ±  0 15 ±  0 15 ±  0 15 ±  0 15 ±  0 15,5 ± 0,7 

Metronidazol 12 ±  0 11 ±  0 15 ±  0 13 ±  0 0 ±  0 0 ±0 

Cotrimoxazol 10 ±  0 11 ±  0 16 ±  0 13 ±  0 0 ±  0 0 ± 0 

Ciprofloxacin 21 ±  0 22 ±  0 20 ±  0 23 ±  0 21 ±  0 23,5 ± 2,1 

Levofloxacin 21 ±  0 24 ±  0 23 ±  0 25 ±  0 22 ±  0 24,5 ± 3,5 

Moxifloxacin 25 ±  0 27 ±  0 27 ±  0 25 ±  0 25 ±  0 28 ± 4,2 

Gentamicin 11 ±  0 11 ±  0 15 ±  0 10 ±  0 0 ±  0 0 ± 0 

Clarythromycin 20 ±  0 20 ±  0 20 ±  0 21 ±  0 22 ±  0 22,5 ± 2,12 

Tigecyclin 15 ±  0 15 ±  0 17 ±  0 15 ±  0 17 ±  0 20,5 ± 0,7 

Doxycyclin 20 ±  0 20 ±  0 21 ±  0 22 ±  0 20 ±  0 24,5 ± 3,5 

Cefotaxim 25 ±  0 25 ±  0 25 ±  0 25 ±  0 25 ±  0 25,5 ± 0,7 

Imipenem 40 ±  0 36 ±  0 40 ±  0 36 ±  0 40 ±  0 45 ± 1,4 

Piperacillin/Tazobactam 25 ±  0 30 ±  0 25 ±  0 26 ±  0 28 ±  0 30 ± 0 

Amoxicillin/Clavulanic acid 20 ±  0 30 ±  0 22 ±  0 18 ±  0 24 ±  0 37 ± 4,2 

Amoxicillin 15 ±  0 30 ±  0 18 ±  0 14 ±  0 24 ±  0 31 ± 1,4 

Penicillin G 11 ±  0 30 ±  0 18 ±  0 10 ±  0 0 ±  0 39 ± 1,4 

Penicillin V 10 ±  0 40 ±  0 19 ±  0 10 ±  0 0 ±  0 38 ± 2,8 

Cefadroxil 20 ±  0 22 ±  0  20 ±  0 18 ±  0 19 ±  0 27,5 ± 3,5 

Lincomycin 10 ±  0 20 ±  0 20 ±  0 10 ±  0 0 ±  0 21,5 ± 2,1 
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Taken together, O+ was the antiseptic that had the most positive effect on bactericidal 

properties of antibiotics against S. aureus and hardly led to negative cooperations in 

combination with antibiotics. Chlorhexidine enhanced the potency of the tested 

antibiotics the most against B. petrii in comparison to the other antiseptics. These tests 

demonstrated that indeed, strong interactions between antibiotics and antiseptics are 

possible which can both, enhance and reduce the bactericidal efficiency of an 

antibiotic compound. 

Figure 22. Cooperativity between antibiotics and antiseptics against S. aureus. Cooperativity between antibiotics 
and antiseptics was assessed by the agar diffusion test. Antiseptics, antibiotics and both in combination were 
applied. For that, 10 μl of the antiseptics were dropped onto the antibiotic paper disc mounted on the agar. After 
48 hours, the diameter of the zone of inhibition was measured. Positive cooperativity was given when the 
diameter of zone of inhibition after the combined treatment was greater than that after application of the 
antibiotic alone. The presented data are the result from three independent experiments. Taurolidin = Taurolin® 
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5 Discussion 
 

All open wounds are contaminated by bacteria and hence, are at some risk of 

becoming infected. Since wound infection is associated with a prolonged healing time, 

it is the wound care practitioner’s goal to prevent infection in order to reduce the 

suffering of the patient and hospital costs (Leaper and Durani, 2008, Atiyeh et al., 

2009). Infection of a post surgical wound is associated with approximately 4000 $ 

hospital cost per infected patient. The application of systemic antibiotics and topical 

antiseptics is one of the first strategies to prevent or treat already existing wound 

infections. Considering the developing bacterial resistance against antibiotics and the 

burden of treatment, their usage should be carefully chosen. Therefore, the use of 

antiseptic agents is becoming increasingly important in wound management (Hirsch et 

al., 2010) because no danger of developing resistance has been reported yet (Hubner 

et al., 2010). However, concomitant with the toxicity of antiseptics against 

microorganisms, they may harm host tissue as well. Due to this fact, choice of agents 

and mode of applications must be optimized to yield an excellent wound care 

(Marquardt et al., 2010). Additionally, antiseptics and antibiotics are often 

administered concomitantly although not much is known about possible synergistic or 

antagonistic interactions between those compounds (Hubner et al. 2010). 

In this study, Octenisept® (O) and a new Octenisept® formulation, which is diluted 1:2 

with a 5 % glucose solution (O+), were tested in regard to cell proliferation, migration 

and interactions with antibiotics and compared to Chlorhexidine, Beta-Isodona® and 

Taurolin®. In in vitro studies it was demonstrated that Octenisept® has higher 

microbicidal efficiency and a better biocompatibility than Chlorhexidine and Beta-

Isodona® (Koburger et al. 2010; Muller and Kramer, 2008). No studies comparing 

Octenisept® and Taurolin® were found. 

So far, Octenisept® was diluted with saline. The main idea behind this was to reduce 

pain by decreasing osmotic provocation when O was applied alone. Some observations 

in clinical practise support the idea not to dilute with saline. This led to test glucose. In 

a few case reports, it was observed that O+ is superior to O with respect to wound 

healing. These observations were validated in our working group where we 



79 

 

demonstrated that the presence of glucose has a favorable effect on cell adhesion. In 

order to go deeper into the molecular mechanisms, it was assessed whether O and O+ 

affect gene expression pathways involved in wound healing and re-epithelialisation 

and cell proliferation as outcome of these was measured. Obviously, due to the fact, 

that the here presented results were performed in vitro, the reflection to the in vivo 

situation needs further testing in organ culture. Most obviously the paradox 

observation that O is extremely cytotoxic in tissue culture but no noticeable effect is 

observed in wounded skin cells, calls for more insight and tells a story of our hazy 

knowledge of the mechanism behind this. Speculations are that binding of Octenisept® 

to ECM components, like CHS, forms an active layer. This layer retains the 

antimicrobial efficiency of O while the rest of the applied substance is sequestered 

from the cells. 

 

Indeed, MTT-test assays demonstrated that incubations with various O and O+ 

concentrations for 24 hours substantially inhibit MCF-7 cell proliferation, whereby no 

significant difference between the two formulations was observed. Even a dilution of 

1:1024 caused a decrease by 50 % of MCF-7 cell proliferation rate, but with 1:4096 

dilution of O+ growth rates were restored to normal and moreover cell proliferation 

was even enhanced (60 % over control cells) (Figure 9A). This was not observed so with 

O.  

 

Sulfated glycosaminoglycans (GAGs) like CHS are highly negatively charged and 

abundant in the ECM and on cellular surfaces (Ogawa et al. 2012). Apart from being a 

structural element, it can bind growth factors like FGF and thus CHS regulates wound 

healing and cell migration (Malmström et al., 2012). Furthermore, negatively charged 

GAGs are likely to interact with cationic antimicrobials like octenidine. Dermal 

fibroblasts are embedded in the ECM and it is not clear whether octenidine antiseptics 

are sequestered from the cellular membranes by CHS in the ECM. The complex 

formation of octenidine and ECM components could substantially decrease the 

cytotoxicity of octenidine while the antimicrobial activity is maintained. This would 
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explain the paradox toxicity divergences of octenidine between in vitro and in vivo 

studies. Our experiments here serve as a starting point to investigate and understand 

the action of the antiseptic octenidine. Two different application strategies were 

tested: 1. adding CHS to the antseptic stock solution and 2. coating the dish bottom 

with CHS. The first should unveil effects of interaction whereas the latter come within 

reach to mimic ECM embedding effects of O and O+.   

Hence we scouted for effects in the presence of 250 mg/L CHS and 125 mg/L (= 1:4 

dilution) O/O+. Cell proliferation was only 5-10 % of control cells (Figure 9B) and the 

same O/O+ concentrations, without CHS, allowed cell proliferation 25-30 % of control 

cells. A 1:4096 dilution (as above in MCF-7) in the presence of CHS did not significantly 

interfere with normal cell proliferation, but the growth rate was never better than that 

of control cells. 

Indeed, the addition of CHS to the antiseptic stock solutions rather elevated the 

cytotoxic potential of O and O+. However, when microtiter plates were coated with 

CHS by pre-incubation with 1 g/L CHS and then serial dilutions of O and O+ were 

added, the result looked like the one from the experiment illustrated in Figure 9A 

where growth rates were restored to normal. Again at 1:4096 dilution O+ enhanced 

cell proliferation significantly (p < 0,001) by 50 % in comparison to control cells (Figure 

10) when grown on CHS coat.  

 

This indicated that it makes a difference whether CHS is added directly to the 

antiseptic stock solutions or CHS and O/O+ are added successively to the microtiter 

plate and is the first experimental indication towards a matrix dependent action of 

CHS. With the latter procedure it was observed that small amounts of CHS (0,24 mg/L) 

decreased the cytotoxicity of high concentrations of O+ (0,5 g/L) by approximately 40 

%. For comparison, 0,5 g/L of O or O+ without CHS caused a complete loss of cell 

proliferation under the same test conditions (data not shown).  The combination of 

CHS and O+ is significantly better tolerated than with O (Figure 11). When reflecting 

these results to the in vivo situation, where dermal fibroblasts are embedded in the 
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ECM, it can be speculated that O+ is better sequestered from the cellular membranes 

by CHS in the ECM than O and thus, is less cytotoxic. 

 

Furthermore, our results showed that the toxicity of O and O+ can be ameliorated 

when the contact time and the concentration of the antiseptics are modulated. When 

the 24 hours exposure time was reduced to 30 minutes, the observed harmful effects 

were decreased. Since here the MTT-test was performed directly after the 30 minutes 

incubations, these values measure the impact on cell adhesion and not cell 

proliferation. For adhesion inhibition the IC50 value of O and O+ was determined to be 

at 15 mg/L (i.e. 1:30 dilution) after 30 minutes contact time (Figure 13). In accordance 

with the manufacturer’s instructions, a contact time of 2 minutes is sufficient in order 

to yield an optimal wound treatment.  

In our test system, 15 mg/L O or O+ reduced adherent cell number by only 30 % after 2 

minutes incubation time (Figure 14B). In comparison, the same concentration caused 

50 % loss of cell adhesion after 30 minutes. Lower concentrations (7 mg/L i.e. 1:75 

dilution, regarded as IC10 value, which signifies that 90 % of the cells adhere after 30 

minutes incubation) did not harm MCF-7 cells after an exposure time for up to 10 

minutes. Here, the O+ formulation resulted in better adhesion than O (Figure 14C).  

Additionally, a 1:30 or 1:75 dilution of O and O+ did not impair or slow down fibroblast 

cell migration in our in vitro laceration assay which is a standard method for 

investigating wound closure after scratching the cellular monolayer. As comparison, 

Beta-Isodona® application decelerated fibroblast migration and inhibited wound 

closure (Figure 15A and B). 

 

In summary, from these experiments it is obvious that octenidine can exert a very high 

cytotoxic potential. Especially if it is taken into account that the octenidine 

concentration of Octenisept® is 1 g/L and the stock solution is usually not more diluted 

than 1:2. However, we assume that if an antiseptic agent is topically applied onto a 

wound it becomes diluted by an unknown extent by the wound exudate which is a 

consequence of the inflammatory mediators released by leukocytes (Barrientos et al. 
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2008). These events lead to increased permeability of the capillaries (Singer and Clark, 

1999). Consequently, leakage of fluid – the exudate – into the open wound occurs and 

gets in touch with the administered antiseptic compound and dilutes it. In addition, it 

is important that it is not inactivated by interactions with components of the exudate. 

In contrast to Chlorhexidine, octenidine is known to have no reduction in activity upon 

albumin or mucin contact and is not sensitive to hydrolysis (Stahl et al., 2010). 

Moreover, at the cellular level the concentration can be substantially reduced as most 

of the octenidine molecules are kept in the mesh of the ECM. Only a fraction of the 

applied substance reaches the cellular membrane which would cause cytotoxic effects. 

Concomitantly, it is suggested that octenidine could be continuously released from the 

ECM to sustain its antimicrobial activity (Muller and Kramer, 2007). Essentially, cells 

within human tissues embedded in ECM components better tolerate the exposure to 

antiseptic compounds (Muller and Kramer, 2008). Upon topical application onto a 

wound, antiseptics first get in contact with cell debris, fibrin or blood and the deeper 

more sensitive tissue layers are not damaged (Marquardt et al. 2010). Indeed, 

octenidine has proven its efficiency and safety in wounded tissue samples (Stahl et al., 

2010)) and in clinical practise (Vanscheidt et al., 2012, Eisenbeiß et al., 2012). 

Especially the latter report emphasizes the good tissue tolerance with concomitant 

high antimicrobial efficiency in burns. 

 

Until now, Octenisept® is not recommended for intra-operation in the abdominal 

surgery because ascites and chemical peritonitis occurred upon application (Hubner et 

al. 2010). Our results allow the suggestion that upon optimizing concentration and 

contact time, the intra-abdominal application must be safe. The here investigated 

glucose addition to the classical formulation was reported to have no harmful effects 

at this application area and also other beneficial results in case reports were observed. 

MTT-test analysis showed that O+ allows indeed, higher proliferation rates than O in 

long-term application (24 hours). Moreover, in our previous experiments O+ led to less 

cell detachment than O after 30 minutes contact time. 
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Next we tried to scout how O and O+ did influence cell proliferation and migration at 

the molecular level. We measured changes in expression of genes implicated in the re-

epithelialisation process after incubation with 7 mg/L O and O+ for 2 minutes on 

confluent and on lacerated fibroblasts. This concentration, which corresponds to the 

IC10 value, was chosen to minimize cytotoxic effects. We found that in non-lacerated 

fibroblasts O leads to a significant induction of MMP-3 and MMP-1. Especially, MMP-3 

levels were significantly (three fold) higher after O incubation than with O+. PAI-1 and 

uPA levels were not significantly altered after antiseptic treatment and the laceration 

procedure. In addition, the IC50 value of the antiseptic compounds was tested on 

lacerated fibroblasts as well. At these higher concentrations (IC50 value i.e. 27 mg/L), 

O+ caused enhanced levels of MMP-2, PAI-1 and MMP-3. However, there were high 

variations among the different experiments. MMPs, uPA and PAI-1 belong to the group 

of extracellular matrix degrading enzymes, with partly overlapping functions during 

wound healing (Lund et al., 1999). MMP-3 has a broad spectrum of substrate 

specificity and cleaves different types of collagen, fibronectin, gelatin and pro-MMPs 

like MMP-1 (Ye et al., 1996). Both enzymes, as well as other members of the MMP 

family and the PA-system, are known to be upregulated during repair processes (Parks, 

1999). However, after disrupting the cellular monolayer and subsequent antiseptic 

treatment, no significant changes in expression levels of the investigated genes were 

detected. Such changes may occur only in the lacerated zone only and there is no 

possibility to select for cells that are from the wounded area only. In order to detect a 

significant change of gene expression levels, the signal must be very strong or act in a 

paracrine manner over the entire cellular layer.   

Gene expression analysis of MMPs must be clarified also on the activity level as 

zymogens need activation by proteolytic cleavage to be functional (Massova et al., 

1998). Therefore we performed zymogram analysis and we observed that the active 

form of MMP-2 and MMP-9 are generated but without detectable changes among the 

different treatments (data not shown). The sensitivity of this assay might be too low to 

detect subtle changes. Thomas et al. demonstrated that Chlorhexidine is a potent 

inhibitor of pro-MMP-2 and pro-MMP-9 release in dermal fibroblasts stimulated with 
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TNF-α and TGF-β1. On the contrary, Beta-Isodona® enhanced pro-MMP-9 secretion at 

low dosage rate, whereas higher-dosed exposure completely abrogated pro-MMP 

release (Thomas et al., 2009). In our laceration assay, dilutions of 1:75 and 1:30 of the 

Chlorhexidine stock solution did not inhibit cell migration. Beta-Isodona® (1:30) was a 

potent inhibitor of cell migration. Our laceration assay confirms that a certain pattern 

of MMPs is not essential at this level. The absence of a specific member of the MMP 

family will not necessarily lead to impaired wound healing as demonstrated by several 

mouse models. A reason for this is the redundant function of MMP family members 

and the presence of other protease systems including the PA system (Frossing et al. 

2010, Lund et al. 1999). 

 

TGF-β1 expression was not affected by the antiseptics when applied at lower (7 mg/L) 

concentrations. The exceptional observation was the complete TGF-β1 mRNA absence 

after O+ application on wounded fibroblasts while untreated and also O treated cells 

exhibited measurable TGF-β1 levels. However, target genes for TGF-β involved in 

migration, like VEGF-A, PAI-1 or MMPs (Dallas and Loskutoff 2005, Chakraborti et al., 

2003, Neufeld et al. 1999), were not affected by these conditions. Higher amounts 

(IC50 = 15 mg/L) of O and O+ led to decreased TGF-β1 levels. Here, O was a more 

potent inhibitor than O+. This is remarkable, as 7 mg/L of O+ caused a complete loss of 

TGF-β1 expression. This result should be estimated with proper caution. Although TGF-

β1 was decreased after higher O+ concentration, VEGF-A1 was increased (2,5 fold) 

after the same O+ treatment. The result was achieved by a perfect duplicate but upon 

statistical analysis it was without significance. The exact role of TGF-β in wound 

healing, though investigated with great effort, is still not well understood in full detail. 

It was reported that the cytokine inhibits keratinocyte proliferation. As underlined by 

several mice models, TGF-β therefore acts as negative regulator for re-

epithelialisation. On the contrary, it was demonstrated that TGF-β enhances cells 

migration due to increased expression of integrins (Amendth et al., 2002) and acts as 

chemotactic factor for fibroblasts, macrophages and neutrophils. Moreover, it 

stimulates collagen deposition from fibroblasts and thus, is important for the 
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formation of the granulation tissue (Bowler et al., 2001). From these reports, it can be 

concluded that the outcome of TGF-β signalling is dependent on the cell type and the 

stage of wound healing. If octenidine is indeed an inhibitor of TGF-β1, one can 

speculate that the antiseptic can therefore enhance re-epithelialisation but the 

strength of a wound might be decreased. This would be a consequence of reduced 

collagen deposition by fibroblasts and a delay in the formation of new tissue. This 

assumption is worth for further investigation whereby it should be kept in mind that 

wound healing process is very complex and needs the interplay of many signalling 

molecules. 

 

As mentioned earlier, O+ was shown to enhance cell adhesion in vitro, reflecting the 

formation of stable cell-matrix complexes. Therefore, ICAM-1 expression was analyzed 

and no significant alterations were observed. Only after O incubation (in non-lacerated 

fibroblasts) and higher O+ concentrations (17 mg/L; in lacerated fibroblasts), ICAM-1 

levels were increased in comparison to control cells but without significance. Due to 

the fact that ICAM-1 is rather responsible for cell-cell interactions between endothelial 

cells and leukocytes (Robledo et al., 2003), fibroblasts may be not the ideal cell type to 

assess ICAM-1 expression changes. Moreover, other integrins like integrin ανβ3, by 

which cells adhere to VN (Czekay and Loskutoff, 2009) will bear more importance.  

 

As bacterial contamination exerts its deleterious effects, among others, by LPS 

generation we added LPS to mimic bacterial contamination. Surprisingly, such 

treatment did not cause any measurable gene expression alteration. This was quite an 

unexpected result, since the applied LPS concentration (10 μg/ml) was high. One 

reason for this may be, that the investigated gene expression alterations are not 

directly influenced by LPS and incubation time (2 hours) was too short to detect 

secondary effects.  

 

As a second cell culture model, gene expression experiments in lacerated MCF-7 cells 

were performed and yielded similar result what added significance to the fibroblast 
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results reported above. Incubation with 7 mg/L O or O+ neither enhanced nor 

decreased gene transcription of the assessed genes. The glucose concentration 

delivered with 7 mg/L of O+ (i.e. 1,85 mM glucose) was tested on lacerated MCF-7 cells 

in addition. This treatment slightly decreased VEGF-A1 and VEGF-A2 and ICAM-1 levels, 

but without high significance. A study conducted by Qian et al. demonstrated that 

VEGF mRNA is inducible in response to high glucose exposure (30mM), whereas lower 

amounts (3mM) showed no effect (Qian et al., 2011). The here applied glucose 

concentrations are too low to cause significant changes in gene expression. This 

suggests that the observed differences between O and O+ in the cell proliferation and 

cell adhesion experiments are not a consequence of severe changes in gene expression 

in response to the presence of glucose in O+. It can be speculated that glucose rather 

interacts with octenidine that changes its cytotoxic properties.  

From these experiments, it can be stated that treatment with O and O+ alters gene 

expression profile of fibroblasts and MCF-7 cells only very subtle. In concentrations 

close to the stock solutions it caused cellular stress and levels of certain genes rose but 

with high variation which was more profound after O+ exposure (Figure 19). These 

primary results purport that O and especially O+ are potent to induce genes involved in 

ECM degradation (MMPs and PAI-1), cell-cell interaction (ICAM-1) and angiogenesis 

(VEGF-A). Therefore, it is worth to substantiate these results by repeating these 

experiments. 

In long term application of O+ (24 hours, 96 well microtiter plate with a coat of various 

O/O+ concentrations up to 1:4096) we observed significantly enhanced proliferation 

with the lowest O+ concentration over the same O concentration. This allows the 

speculation that stress response induction is beneficial and possibly occurs by 

preparing cells for survival.  

 

Antibiotics and antiseptics are suspected to interact with each other upon concomitant 

application. In clinical practise, the clarification of possible interaction between 

antibiotics and antiseptics is of great interest. To clarify this, we performed agar 

diffusion tests with two, a pathogenic and a non-pathogenic bacterial strain. In this 
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test system, bacteria free zones are generated by diffusion of the antibiotic from the 

endowment disc on a bacterial lawn and are designated as the zone of inhibition. The 

diameter of the zone of inhibition is a measure for bactericidal efficiency of the 

investigated antimicrobials. A positive cooperativity was given when the diameter of 

the zone of inhibition was greater upon combined application of antibiotics and 

antiseptics than upon antibiotic application. Simultaneous incubation of O+ and 

various commonly used antibiotics caused growth inhibition of the non-pathogenic B. 

petrii in all combinations. Remarkably, antibacterial efficiency was enhanced in 13 out 

of the 20 tested combinations suggesting a synergistic effect between O+ and 

antibiotics. Similar characteristic could also be ascribed to O and Chlorhexidine which 

had the most positive and least negative effect on bactericidal properties of the 

antibiotics. Beta-Isodona® was as potent as O or O+ to increase the efficiency of the 

antibiotics but on the other hand more negative cooperations were measured than 

with O or O+. Synergistic effects between Taurolin® and antibiotics were only observed 

once (with Amoxicillin). In the other cases, bactericidal efficiency of the antibiotics was 

reduced or no influence was observed. When the experiment was repeated with S. 

aureus, O+ was the best choice among the tested antiseptics. It had the most positive 

cooperations with the antibiotics and concomitantly, the least negative. Again, 

Taurolin® was the compound that interfered with the antibacterial efficiency of the 

antibiotics the most. It is obvious from these results that antibiotics and antiseptics 

have certain interactions that alter their bactericidal properties and hence, their 

indication for application. Positively charged octenidine may associate with antibiotic 

compounds like β-lactame antibiotics via electrostatic interactions and guide it to the 

bacterial cell wall more efficiently as octenidine has a high affinity for negatively 

charged cell wall components. Conversely, complex formation may lead to 

sequestration and thus, reduced availability of the antimicrobial compounds. 

Surprisingly, O+ was as potent as O to inhibit bacterial growth. The argument that the 

presence of glucose may support bacterial proliferation and survival was not effective. 

Another remarkable observation was that in the course of the growth inhibition 

experiments, S. aureus developed antibiotic resistance. Distinct colonies re-grew 
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within the zone of inhibition after 48 hours. In combinations with O+ these resistant 

clones were not detected. This would give a complete new meaning to O+ activity if 

this result could be further elucidated into detail.  

 

In summary, both O and O+ did not interfere with wound healing processes under 

certain conditions that were pointed out here. 

Concentrations, close to the stock solutions, of O and O+ caused cytotoxic effects in 

the tissue culture. Despite profound cell cytotoxicity, we found that a lower 

concentration of O+ better supports cell proliferation than the same concentration of 

O after 24 hours incubation. This is in accordance with case reports. Both, O and O+, 

had no harmful effects on cell migration. Molecular mechanisms behind the better 

biocompatibility of O+ in the 24 hours cell proliferation assays need further 

elucidation. So far our data strenghtens the speculation that ECM components like CHS 

could decrease the cytotoxicity of octenidine by sequestering the molecule from the 

cellular membrane without reducing its microbicidal properties. In addition, here it 

was demonstrated for the first time, that O+ can enhance bactericidal efficiency of 

commonly used antibiotics whereby it was superior to O. These results point toward 

that the dilution of Octenisept® with glucose brings more favorable effects on tissue 

tolerability and on antibiotic bactericidal potency. The improvement of 

biocompatibility of Octenisept® would allow to extend the field of application (for 

instance intra-abdominal) of this antiseptic agent. Furthermore, the development of 

antibiotic resistance is less likely with O+ than with other antiseptic compounds. This 

remarkable observation is worth to be further investigated.     
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6 Abstract 
 

In wound care use of antiseptics is common as is the use of antibiotics. Therefore, it is 

of great interest to find the optimal mode of antiseptic application in order to support 

wound healing. Therefore, we tested the impact of commercially available 

preparations of octenidine-hydrochloride (O: “classical” formulation Octenisept® and 

O+: glucose in combination with Octenisept®). Additionally, we tried to scout the 

effects of how octenidine did influence cell proliferation and migration at the 

molecular level using rt-PCR analysis. We also examined interactions of these 

antiseptics with various antibiotics on the growth of B. petrii and S. aureus. As 

expected high concentrations O and O+ were highly cytotoxic but with 1:4096 dilution 

of O+ the effect was reverted to enhanced cell proliferation (60 % over control cells). 

This was not observed so with O. Furthermore, the cytotoxic effects of a high O+ 

concentration were ameliorated when cells were grown on the ECM component CHS. 

Thus, this result indicates that cells embedded into ECM components are less sensitive 

to O+ but not so to O. Furthermore, we could demonstrate that the toxicity of O and 

O+ can be shifted to be tolerable when the contact time and the concentration of the 

antiseptics are modulated. From gene expression analysis data we can reason that 

none of the investigated genes, except TGF-ß, was inhibited. Thus at the gene 

expression regulatory level these molecules seem provided uninfluenced to the cell 

and it remains to be determined whether such regulation occurs on the protein 

synthesis or activation level preferably. In combinations with 20 different antibiotics, O 

and O+ were able to enhance bactericidal potency of the antibiotics in many cases. 

Especially, concomitant application of O+ and antibiotics had the most positive 

cooperativity against S. aureus in comparison to other tested antiseptics including 

Chlorhexidine, Beta-Isodona® and Taurolin®. In conclusion, the dilution of octenidine 

with glucose has a favorable effect on cell proliferation in vitro and the cytotoxicity of 

high O+ concentration is substantially decreased in the presence of CHS in comparison 

to O. Together with the potency to enhance microbicidal efficiency of several 

antibiotics, the dilution of Octenisept® with glucose could extend the field of 

application of this agent. 
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