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Myocardial ischemia resulting from sudden occlusion of a coronary artery is one of the major
causes in the appearance of severe, often life-threatening ventricular arrhythmias. Although
the underlying mechanisms of these acute arrhythmias are many and varied, there is no
doubt that uncoupling of gap junctions (GJs) play an important role especially in arrhythmias
that are generated during phase Ib, and often terminate in sudden cardiac death. In the
past decades considerable efforts have been made to explore mechanisms which regulate
the function of GJs, and to find new approaches for protection against arrhythmias through
the modulation of GJs. These investigations led to the development of GJ openers and
inhibitors.The pharmacological modulation of GJs, however, resulted in conflicting results.
It is still not clear whether opening or closing of GJs would be advantageous for the
ischemic myocardium. Both maneuvers can result in protection, depending on the models,
endpoints and the time of opening and closing of GJs. Furthermore, although there is
substantial evidence that preconditioning decreases or delays the uncoupling of GJs,
the precise mechanisms by which this attains have not yet been elucidated. In our own
studies in anesthetized dogs preconditioning suppressed the ischemia and reperfusion-
induced ventricular arrhythmias, and this protection was associated with the preservation
of GJ function, manifested in less marked changes in electrical impedance, as well as in
the maintenance of GJ permeability and phosphorylation of connexin43. Since we have
substantial previous evidence that nitric oxide (NO) is an important trigger and mediator of
the preconditioning-induced antiarrhythmic protection, we hypothesized that NO, among
its several effects, may lead to this protection by influencing cardiac GJs. The hypotheses
and theories relating to the pharmacological modulation of GJs will be discussed with
particular attention to the role of NO.
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INTRODUCTION
Traveling on the London underground you may frequently hear
“Mind the gap! Mind the gap!” This warning call is also valid for
the heart when the genesis of arrhythmias is considered. Gaps
not only separate but also connect cells by forming special chan-
nels, termed gap junctions (GJs), which allow fast electrical and
metabolic cross-talk between the neighboring cells. In myocar-
dial tissue, these GJ channels are accumulated in clusters located
in the intercalated disks, and they represent low resistance path-
ways between the adjacent cells, allowing fast spread of impulse
from the one cell to the other (electrical coupling). These channels
can also transfer small molecules (less than 1,000 Da) result-
ing in tight metabolic intercellular communication (metabolic
coupling). Since, the shape of the ventricular cardiomyocytes
is elongated and the GJs are preferably located in the longi-
tudinal end of the cell, under normal conditions, the action
potential is propagated in longitudinal direction (Spach et al.,
1981; Rudy and Quan, 1987; Peters and Wit, 1998; Rohr, 2004).
This uniform anisotropy that mainly results from the structural

arrangement (longitudinal vs. transversal) and electrical proper-
ties of GJs (low resistance), makes possible that the heart behaves
as an electrical syncytium. However, under pathologic condi-
tions, such as the acute myocardial ischemia, as the consequence
of the rapid metabolic changes (Shaw and Rudy, 1997), these
GJs are uncoupled, resulting in the closure of the low resistance
pathways and changes in impulse propagation. In homogene-
ity (non-uniform anisotropy) develops within the cardiac tissue
as regards the electrical conduction, which leads ultimately to
arrhythmia generation (Spear et al., 1992; De Groot and Coronel,
2004).

The present paper will focus on the role of GJs in the generation
of ventricular arrhythmias due to acute myocardial ischemia. We
will discuss how the pharmacological modulation of GJs would
influence these ischemia-induced early ventricular arrhythmias,
and put forth a hypothesis, based mainly on our own studies in
anesthetized dogs, that nitric oxide (NO), an important endoge-
nous modulator of heart function, may also regulate cardiac GJs.
We provide evidence that the effect of NO on GJs might have a
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role in the cardioprotective (antiarrhythmic) effect of precondi-
tioning and NO donors.

THE ROLE OF GAP JUNCTIONS IN THE ACUTE
ISCHEMIA-INDUCED VENTRICULAR ARRHYTHMIAS
There seems to be consensus in respect that arrhythmias occur-
ring soon (within 3 min) after the onset of the coronary artery
occlusion result from those ionic and electrophysiological changes
which are due to the rapid switch of myocardial metabolism from
aerobic to anaerobic mode (Janse et al., 1986). These metabolic
changes (loss of ATP, fall in intracellular pH, accumulation of lac-
tate, etc.) are apparent within seconds or minutes after the onset
of ischemia and directly affect the function of ion channels and
exchangers, resulting in considerable alterations in impulse gener-
ation and conduction (Cascio, 2001). Without going into details,
conditions develop during this early phase of ischemia favor reen-
try, which is thought to be the main mechanism underlying the
phase Ia arrhythmias (Kléber, 1983; Janse et al., 1986).

Although processes underlying generation of phase Ib arrhyth-
mias are less well understood, there is no doubt that uncoupling
of GJs play an important role. As is mentioned above in the
uniformly anisotropic heart the transfer of an impulse is largely
dependent upon the resistance of GJs, which is lower in longi-
tudinal than transversal direction (Hoyt et al., 1989; Saffitz et al.,
1995). This provides longitudinal preference over transversal con-
duction (Spach et al., 1981; Peters and Wit, 1998) and a safety
for normal cell-to-cell impulse propagation (Spach and Heid-
lage, 1995). However, under ischemic conditions, particularly
with the progression of ischemia, the further loss of ATP and
intracellular K+, the accumulation of harmful metabolites and
ions, the release of catecholamines, etc., would result in a milieu
in which the uncoupling of GJs increases (White et al., 1990;
Dhein, 1998). This leads to non-uniform changes in tissue resis-
tance and inhomogeneous impulse conduction (Wojtczak, 1979;
Kléber et al., 1987; Cascio et al., 2005) which initiate and maintain
reentry during phase Ib (Spach et al., 1988). On the other hand,
the increased resistance resulting from interruption of cell-to-cell
coupling decreases the injury current, although at moderate lev-
els of uncoupling this current would still be sufficient to induce
delayed after-depolarization and trigger focal activity (Janse and
van Capelle, 1982). Another consequence of the “metabolic over-
load” in the ischemic myocardium which largely accounts for
the uncoupling of GJs is the reduced phosphorylation of con-
nexin43 (Cx43), which is the primary structural protein of GJs
in the ventricle (Söhl and Willecke, 2004). The ischemia-induced
dephosphorylation of Cx43 results in conformational changes in
connexin and leads to the closure of GJs and translocation of
Cx43 from the membrane to the cytosol (Beardslee et al., 2000).
This ischemia-induced Cx43 dephosphorylation and the subse-
quent closure of GJs occurs within 30 min (Beardslee et al., 2000;
Schulz et al., 2003), making possible to use the measurement of
Cx43 phosphorylation as a tool for the assessment of GJ function
even during such a relatively short period of ischemia.

Functionally, GJ channels can be in open and closed state,
although the conductance of a single channel may vary between
several states – from closed, residual to the several levels of con-
ducting (open) states – which are regulated by phosphorylation

of the C-terminal of the connexin (Kwak and Jongsma, 1996).
The assessment of GJ function particularly under in vivo con-
ditions is rather difficult. Most of the currently used methods
provide only indirect evidence on the coupling status of GJs.
Measurement of GJ permeability using small molecular weight
dyes (Ruiz-Meana et al., 2001) or the determination of connexin
phosphorylation (Ando et al., 2005) allows evaluation of coupling
only at a certain time point. Although measuring conduction
velocity by activation mapping techniques (Rohr et al., 1998; Hen-
riquez et al., 2001), or tissue impedance (resistivity and phase
angle) changes by the use of a four-pin electrode method (Kléber
et al., 1987; Cinca et al., 1997; Padilla et al., 2003) make possible
continuous recording, these methods represent also only indi-
rect assessment of GJ function. These methodological problems
have been discussed in details previously (Garcia-Dorado et al.,
2004; Végh and Papp, 2011). Nevertheless, despite these diffi-
culties the combination of the available methods and techniques
allow us to estimate the function of GJs and their role in arrhyth-
mogenesis under various physiological and pathophysiological
conditions.

THE ROLE OF GAP JUNCTIONS IN ARRHYTHMOGENESIS
AND IN THE ANTIARRHYTHMIC EFFECT OF
PRECONDITIONING
There were two studies (Smith et al., 1995; Cinca et al., 1997), both
performed in anesthetized pigs, which provided the first in vivo
evidence that GJs play an important role in the generation of the
ischemia-induced ventricular arrhythmias. The first study pointed
out a relationship between changes in tissue impedance and the
occurrence of arrhythmias, showing that the appearance of phase
Ib arrhythmias during a 60-min coronary artery occlusion was
preceded by a steep increase in tissue resistivity around the 15 min
of ischemia (Smith et al., 1995). The second study (Cinca et al.,
1997) reported that ischemic preconditioning delays uncoupling
of GJs and shifts the onset of the Ib phase arrhythmias to a later
period of the ischemia. Our own studies in dogs (Papp et al., 2007)
showed somewhat similar results, but the rise in tissue resistiv-
ity prior to the occurrence of the phase Ib arrhythmias was not
as marked as either in pigs (Smith et al., 1995) or isolated heart
preparation (Kléber et al., 1987). Furthermore, preconditioning
in dogs not only delayed but significantly decreased the tissue
impedance changes (Papp et al., 2007) and, as that we have pointed
out previously (Végh et al., 1992a), preconditioning resulted in an
absolute reduction in the number and severity of arrhythmias
without shifting them to a later period of the occlusion. Precon-
ditioning also preserved GJ permeability and phosphorylation of
Cx43 determined both at 25 and 60 min of ischemia, suggest-
ing that preconditioning in this species not only delays but indeed
reduces the closure of GJs (Papp et al., 2007). There might be many
explanations of these dissimilarities, among which the difference
in the preexisting collateral system between dogs and pigs seems to
play a major role. This has been thoroughly discussed previously
(Végh and Papp, 2011).

Although the mechanisms by which preconditioning influences
GJ coupling has not yet been elucidated, it seems reasonable to
hypothesize that mediators and signaling pathways, which are
thought to play role in this form of cardioprotection, may target
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and modify GJs, perhaps at the level of connexins. This hypothe-
sis is supported by the fact that GJ channels exist and can switch
between various conductance states, which depend on the phos-
phorylation status of connexins (Kwak et al., 1995; Kwak and
Jongsma, 1996). The phosphorylation of the C-terminal of con-
nexins, which determines whether GJs are in open or closed state,
involves kinases or kinase-mediated signaling pathways which are
activated in response to a preconditioning stimulus. Thus, several
kinases, such as protein kinase A (PKA), the various isoforms of
PKC, PKG, as well as mitogen-activated protein (MAP) and tyro-
sine kinases (TK), etc., which have been identified as parts of the
preconditioning-induced signaling cascade (Downey et al., 2008),
were also shown to target connexins (Dhein, 2004; Salameh and
Dhein, 2005). For example, the preconditioning-induced reduc-
tion in myocardial damage was associated with a PKC-activated
enhanced Cx43 phosphorylation in the rabbit isolated hearts
(Miura et al., 2004).

Since the different kinases and kinase isoforms may phospho-
rylate connexins differently, the resulting responses regarding the
regulation of GJ coupling would also be different. Indeed, there
are many, sometimes conflicting results reported in both normal
and diseased hearts as concerns the activation of a certain kinase
pathway and changes in GJ function (Salameh and Dhein, 2005;
Dhein et al., 2011). These differences seem to largely depend on
the preparations, models and species used, as well as on the experi-
mental conditions applied. Since the regulatory role of the various
kinase and signaling pathways on GJs have been excellently dis-
cussed previously (e.g., Dhein, 1998; Salameh and Dhein, 2005),
it is not purposed to discuss these further. Nota bene the explo-
ration of mechanisms which affect GJ function led to the idea that
the generation of arrhythmias might be influenced through the
modulation of GJs (Dhein et al., 2010).

PHARMACOLOGICAL MODIFICATION OF GAP JUNCTIONAL
COUPLING AND ARRHYTHMIAS
During the past two decades, a number of drugs have been
described and developed which facilitate or inhibit the coupling
of GJs (reviewed by Dhein, 2004; Dhein et al., 2010). These were
used, in part, as tools for obtaining information on the phys-
iological and pathophysiological roles of GJs, in part, as drugs
purposing to develop novel antiarrhythmic therapy (Dhein and
Tudyka, 1995; Dhein, 2004; Salameh and Dhein, 2005). However,
the pharmacological modification of GJ coupling raises also many
questions, in particular, when the acute ischemia-induced ven-
tricular arrhythmias are considered. It is still not clear whether
opening or closing of GJs during ischemia would be advantageous
for arrhythmia suppression. As we, and others (De Groot et al.,
2001; De Groot and Coronel,2004; Végh and Papp,2011) have sug-
gested both maneuvers can result in protection. There is no doubt
that keeping GJs open during ischemia and thereby maintaining
conduction velocity (De Groot and Coronel, 2004) would result in
an antiarrhythmic effect. This has been proved by several in vitro
and in vivo studies using synthetic antiarrhythmic peptides, such
as AAP10 and rotigaptide (Dhein et al., 1994; Müller et al., 1997;
Grover and Dhein, 2001; Xing et al., 2003, 2005; Végh and Papp,
2011). However, more controversial results were obtained with
the use of uncouplers, indicating the complexity of the regulation

of GJs in both normal and diseased hearts (Garcia-Dorado et al.,
1997; Salameh and Dhein, 2005). These differences may be related
to the uncoupler used, the model and endpoint examined, as well
as the time of administration of the uncoupler to close GJs (Végh
and Papp, 2011).

We have experimental evidence that in dogs both the GJ opener
rotigaptide and the uncoupler carbenoxolone given prior to and
during coronary artery occlusion protected against the ischemia-
induced severe ventricular arrhythmias (Végh and Papp, 2011).
The fact that the uncoupler carbenoxolone induced an antiar-
rhythmic effect was indeed surprising, since one would have
expected that closing of GJs during ischemia result in enhanced
gap junctional uncoupling and arrhythmias. The results of tis-
sue resistivity measurements showed that immediately after the
onset of the coronary artery occlusion the decline in phase angle
(a measure of increased membrane capacitance due to closure of
GJs; Padilla et al., 2003) was more marked in the carbenoxolone
treated dogs than in the controls (Papp et al., 2008; Végh and
Papp, 2011). Although these early impedance changes are thought
not to be attributed to closure of GJs (Kléber et al., 1987), it can-
not rule out the possibility that there might be cells within the
ischemic area which are severely injured and uncoupled even soon
after the onset of the coronary artery occlusion (Wolk et al., 1999;
Daleau et al., 2001; Vetterlein et al., 2006). Furthermore, in dogs
infused with carbenoxolone the steep increase in resistivity and
decline in phase angle that occur usually around the 15 min of
the occlusion were also absent. In these dogs the two characteris-
tic arrhythmia phases disappeared, and although ectopic activity
could be observed over the entire occlusion period, the total num-
ber of ectopic beats was significantly less than in the controls (Végh
and Papp, 2011). We proposed that this finding could perhaps
be associated with the phenomenon termed “paradoxical restora-
tion of conduction” (Rohr et al., 1997). This suggests that in the
border zone, the viable cells are electrically depressed through
electrotonic interactions from their neighboring ischemic cells
resulting in slowing of conduction (De Groot and Coronel, 2004).
However, with the facilitation of uncoupling, such as may occur
during ischemia in the presence of an uncoupler, this electrotonic
interaction decreases, resulting in an improvement in conduction
and, subsequently, a reduction in arrhythmia severity (De Groot
and Coronel, 2004). Whatever the precise mechanism is, it seems
that carbenoxolone given prior to and during ischemia attenuates
impedance changes during the “critical” phase of ischemia and
reduces phase Ib arrhythmias, and this effect is similar to that seen
with the GJ opener rotigaptide and with preconditioning (Papp
et al., 2008; Végh and Papp, 2011).

Interestingly, carbenoxolone almost completely abolished the
antiarrhythmic effect of ischemic preconditioning. When it was
given prior to and during the preconditioning procedure (two
5-min occlusion and reperfusion insults) both the impedance
changes and the ectopic activity were markedly increased during
the short ischemic periods compared to the preconditioned dogs
without carbenoxolone administration (Papp et al., 2007). In these
carbenoxolone treated preconditioned dogs the tissue impedance
changes during the prolonged occlusion were as marked as in
the non-preconditioned controls, and the severity of arrhyth-
mias, particularly during phase Ib, was also substantially increased.
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Furthermore, preservation of the phosphorylated form of Cx43
afforded by preconditioning was abolished with the administra-
tion of carbenoxolone. Our conclusion was that closing of GJs
prior to preconditioning perhaps inhibits the transfer of endoge-
nous substances that are released by the short preconditioning
ischemia and reperfusion insults thus inhibiting the activation of
signaling pathways leading to cardioprotection (Papp et al., 2007).

As has been mentioned above, many endogenous substances
are thought to regulate GJs function by activating various protein
kinases (Dhein, 1998; Salameh and Dhein, 2005). Our previous
research focused on the exploration of mechanisms involved in the
antiarrhythmic effect of ischemic preconditioning, provided sub-
stantial evidence that NO is one of the key mediators which plays
essential trigger and mediator role in the preconditioning-induced
cardioprotection (Végh et al., 1992c). Thus it seemed reasonable to
hypothesize that the antiarrhythmic effect of preconditioning and
of NO donors (György et al., 2000) may, in part, be accomplished
through the modulation of GJ channels.

EVIDENCE FOR THE ROLE OF NITRIC OXIDE IN THE
REGULATION OF CARDIAC GAP JUNCTIONS
The evidence that NO may modulate GJ function comes mainly
from studies in non-cardiac tissues (Roh et al., 2002; Patel et al.,
2006), especially from those which are dealing with vessel phys-
iology where NO is one of the most important physiological
mediators (Kameritsch et al., 2003; Rodenwaldt et al., 2007). These
studies showed that NO is able to modify GJ permeability (Bolanos
and Medina, 1996; Kameritsch et al., 2003) and the expression
of connexin isoforms (Roh et al., 2002; Hoffmann et al., 2003;
Yao et al., 2005). This latter would be especially important under
chronic conditions where the regulatory role of NO on the expres-
sion of connexins has to be considered in terms of the development
of chronic heart diseases (Poelzing and Rosembaum, 2004; Akar
et al., 2007; Kontogeorgis et al., 2008; Kim et al., 2010; Radosinska
et al., 2011). Changes in Cx43 expression play also an important
role in the delayed phase of cardioprotection induced by rapid car-
diac pacing 24 h prior to ischemia in dogs (Gönczi et al., 2012). In
case of the acute and shorter periods of ischemic challenge (such
as a 30- to 60-min ischemia) and its arrhythmia consequences, the
alterations of GJ conductance, resulting from changes in connexin
phosphorylation, seem to be the more likely mechanism through
which NO may modify GJ function. However, the signaling path-
ways, which regulate the level and phosphorylation status of Cx43
and thus modulate the GJ channel properties, are even less well
understood in the myocardium than in the other non-cardiac tis-
sues. For example, it has been proposed that stimulation of both α1

and β adrenoceptors, although through the activation of different
pathways and protein kinases (PKC and PKA, respectively), leads
to connexin phosphorylation and to the opening of GJs (Saez
et al., 1997; Weng et al., 2002). In contrast, the activation of the
guanylyl cyclase-cGMP pathway and the subsequent stimulation
of PKG would result in closing of these channels (Dhein, 1998).
A more recent study, however, showed that in H9c2 cells, iso-
lated from the rat myocardium, the hypoxia-induced loss in total
Cx43 protein content was restored by acetylcholine and also by the
administration of the NO donor S-nitroso-N-acetylpenicillamine
(SNAP; Zhang et al., 2006). Since the protective effect of

acetylcholine was inhibited by L-NAME, it was suggested that
acetylcholine prevents the hypoxia-induced decrease of Cx43 and
improves GJ coupling via a NO-mediated pathway.

In our own studies, using sodium nitroprusside (SNP) as an NO
donor and administered in intracoronary infusion 20 min prior
to and throughout a 60-min occlusion period of the left anterior
descending (LAD) coronary artery in anesthetized dogs, we have
found that SNP almost completely abolished the severe ventricular
ectopic activity and attenuated the increase in tissue resistivity but
it did not substantially influence the decrease in phase angle that
resulted from occlusion (Gönczi et al., 2009). In the presence of
SNP infusion, there was indeed a more marked reduction in phase
angle during the first 10-min period of occlusion; and this effect
was very similar to that seen with the administration of carbenox-
olone (Papp et al., 2008; Végh and Papp, 2011). Furthermore, SNP,
like carbenoxolone, abrogated the steep decline in phase angle that
occurred in the controls just prior to the appearance of the phase
Ib arrhythmias; i.e., the impedance changes remained virtually
constant during this critical period of ischemia (i.e., between 15
and 20 min). Despite similarities of impedance changes of SNP
and carbenoxolone, these in vivo impedance measurements do
not provide an answer to the question, as to whether NO, derived
from SNP, opens or closes GJs, and whether opening or closing
of GJs leads to the antiarrhythmic effect of SNP. However, the
fact, that in the presence of SNP the rapid impedance changes that
precede the occurrence of phase Ib arrhythmias were markedly
attenuated (and in parallel the ectopic activity was virtually dis-
appeared), suggests a preserved GJ function during ischemia and
confirms that of our previous supposition that the rate of uncou-
pling prior to phase Ib is of particular importance in the generation
of arrhythmias (Papp et al., 2007; Végh and Papp, 2011). A fur-
ther evidence that NO may preserve GJ function derived from the
in vitro measurements. These showed that compared to the con-
trols, SNP maintained GJ permeability and Cx43 phosphorylation
even after 60 min of ischemia. In the presence of SNP, the mem-
brane fraction of Cx43 remained largely in phosphorylated form
and the metabolic coupling of the adjacent cells was significantly
improved. Thus it seems from these results that NO, derived from
NO donors, protects the heart against the ischemia-induced early
ventricular arrhythmias, and that this effect, at least in part, can be
attributed to the effect of NO, or of the NO-stimulated pathways
on GJs, as their function is largely preserved in the presence of
SNP (Gönczi et al., 2009).

More recent experimental data resulting from the administra-
tion of sodium nitrite support this hypothesis. Under experimen-
tal conditions sodium nitrite is used as an exogenous nitrite source
to prove the importance and the potential therapeutic benefit of
nitrite anion. Inorganic nitrites and nitrates, which are natural
oxidative metabolites of NO, have been considered for a long time
as inert molecules playing not a compelling role in NO physiol-
ogy. However, over the last decade emerging evidence suggests that
inorganic nitrites and nitrates may serve as important reservoirs
for NO (reviewed, e.g., Lundberg and Govoni, 2004; Lefer, 2009),
since these metabolites, particularly under hypoxic and anoxic
conditions, can readily be reduced back to NO (Zweier et al., 1995;
Bryan, 2006). This mechanism may provide an increased NO
availability under ischemic conditions independently from NO
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synthase (NOS) activity which is otherwise reduced in the absence
of oxygen (Zweier et al., 1995). A number of studies in various
experimental animal models have proved that nitrite anion has
an important biological function and might represent an effective
means to attenuate ischemia and reperfusion injury (e.g., Webb
et al., 2004; Duranski et al., 2005; Shiva et al., 2007).

Thus in our anesthetized dog model, we infused sodium nitrite
intravenously in a dose of 0.2 μg kg−1 min−1, starting the
infusion 10 min prior to and maintained throughout the entire
25 min occlusion of the LAD coronary artery, and changes in
tissue impedance in parallel with arrhythmia distribution were
assessed (Gönczi et al., 2010). We found that in the presence of
sodium nitrite infusion the total number of ventricular premature
beats during the occlusion was markedly reduced (472 ± 105 vs.
147 ± 77; P < 0.05) and the impedance changes were substan-
tially less pronounced than in the controls (Gönczi et al., 2010).
This is illustrated in Figure 1 which clearly shows that in dogs
infused with sodium nitrite, the steep increase in resistivity and
the decline in phase angle that usually occur around the 14–15 min
of ischemia in the control animals were abrogated and the num-
ber of ectopic beats during phase Ib was markedly suppressed.
In these experiments we also used a mapping electrode, which
collects signals from 31 unipolar electrode points of the epicar-
dial surface of the ischemic area in order to evaluate changes
in the epicardial ST-segment and in total activation time (TAT)
by creating ST and activation maps. The results show that com-
pared with control dogs, in dogs infused with sodium nitrite both
the ischemia-induced increases in epicardial ST-segment and TAT
were considerable reduced (Figure 2). In this study, at the end of
the 25 min occlusion period, myocardial tissue samples were taken
from the hearts for the assessment of metabolic coupling and Cx43
phosphorylation, as has been described previously (Gönczi et al.,
2009). Figure 3A shows that the administration of sodium nitrite
preserved the phosphorylated form of Cx43 within the ischemic
LAD area compared with the control hearts in which the occlusion
of the LAD resulted in marked dephosphorylation of Cx43. GJ per-
meability, determined by double dye loading (Ruiz-Meana et al.,
2001; Papp et al., 2007), was also maintained even after the 25 min
of ischemia in hearts infused with sodium nitrite (Figure 3B).

The results support our previous proposal (Végh and Papp,
2011) that in arrhythmia point of view the modification of
GJ function, for example, by preventing the ischemia-induced
dephosphorylation of Cx43, would particularly be important dur-
ing that “critical” phase of ischemia when the rate of uncoupling
of GJs rapidly increases, and when other factors, implicated in
arrhythmogenesis, are also present. Furthermore, we suggest that
NO might be one of the endogenous substances which would
regulate GJs not only in vascular tissues (reviewed recently by
Looft-Wilson et al., 2012) but also in cardiac myocytes. There
is emerging evidence for a cross-talk between NO signaling and
connexins in the vasculature which is essential for normal vas-
cular function (Looft-Wilson et al., 2012). Although a strong
proof is lacking for such an NO-mediated modulation of GJ pro-
teins in cardiac myocytes, we assume that there might be similar
interactions between NO and GJs also within the myocardium,
since NO derives either from the “classical” NO donors or inor-
ganic nitrites, or generated during a preconditioning stimulus

influenced the electrical and metabolic properties of GJs and
resulted in simultaneous alterations in arrhythmia generation.
We have proposed previously the most likely scenario for the
antiarrhythmic effect afforded by preconditioning is that the pre-
conditioning stimulus triggers the generation and the release
of NO from the vascular endothelial cells and also from car-
diac myocytes (Parratt and Végh, 1996; Végh and Parratt, 1996).
NO by diffusing to cardiac myocytes stimulates soluble guany-
lyl cyclase and increases cGMP within the myocardium since the
inhibition of soluble guanylyl cyclase completely abolished the
antiarrhythmic protection (Végh et al., 1992b). cGMP could mod-
ify arrhythmogenesis by a number of ways involving the inhibition
of calcium entry through L-type calcium channels (Sun et al.,
2007), modification of the cGMP/cAMP balance by influencing
cGMP-dependent phosphodiesterase and/or the direct depression
of cardiac myocytes, resulting in reduced oxygen demand during
prolonged ischemia (Parratt and Végh, 1996; Végh and Parratt,
1996). There is evidence that in vascular endothelium both the
endogenously produced (Straub et al., 2011) and the exogenously
administered (Hoffmann et al., 2003; Rodenwaldt et al., 2007) NO
can acutely increase GJ coupling by a cGMP-dependent mech-
anism. cGMP through the inhibition of the cGMP-dependent
phosphodiesterase prevents the degradation of cAMP and stim-
ulates the cAMP–PKA pathway (Francis et al., 2010). This has
been shown to enhance the coupling of GJs (Hoffmann et al.,
2003). The stimulation of the soluble guanylyl cyclase-cGMP path-
way by NO and the subsequent activation of protein kinase G
(Patel et al., 2006) might be another signaling mechanism which
can lead to connexin phosphorylation and modification of GJ
coupling (Lampe and Lau, 2004).

More recent studies suggests that NO can modify GJ function
independent from the activation of the NO-induced cGMP–PKG
pathway. Such a mechanism is S-nitrosylation during which NO
reversible binds to the thiol groups of cysteine residue of pro-
teins resulting in S-nitrosothiols (SNO). S-nitrosylation not only
allows the storage and transport of NO (Dejam et al., 2004; Lima
et al., 2010) but modulates the activity of several cardiac functions,
including cardiac ion channels (Gonzalez et al., 2009), mitochon-
drial respiration (Sun et al., 2006, 2007), formation of reactive
oxygen species (Sun et al., 2006), or gap junctional connexins
(Straub et al., 2011). For example, in the myoendothelial junc-
tion, where the vascular endothelial and smooth muscle cells are
connected NO has been found to enhance the opening of this spe-
cial form of GJs through S-nitrosylation of Cx43 (Straub et al.,
2011). It is reasonable to assume that S-nitrosylation of Cx43
would be a possible alternative mechanism by which NO regu-
lates the function of GJs also in cardiac myocytes, especially under
conditions of increased NO availability. This may occur, for exam-
ple, after preconditioning (Kiss et al., 2010), the administration of
NO donors (György et al., 2000; Gönczi et al., 2009), including
sodium nitrite. There is evidence that S-nitrosylation plays an
important role in cardioprotection afforded by preconditioning
(Sun et al., 2007; Murphy and Steenbergen, 2008). As to whether
S-nitrosylation of Cx43, indeed, plays a role in the modulation of
GJ function by NO and, if so, how much this mechanism accounts
for the antiarrhythmic effect is still not known and warrants
further examinations.
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FIGURE 1 | Distribution of ventricular premature beats (VPBs) and

relative changes in tissue impedance (resistivity and phase angle) at one

minute intervals during a 25-min coronary artery occlusion in control

dogs and in dogs infused with sodium nitrite. Compared with the
controls, the infusion of sodium nitrite markedly reduced the number of

VPBs (A) and attenuated the rise in tissue resistivity (B) and the decline in
phase angle (C), particularly during the critical period of ischemia (between 15
and 25 min) when the change of phase angle remained virtually constant.
Values are means ± SEM obtained from nine dogs in each group. *P < 0.05
compared with the controls.
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FIGURE 2 | Changes in the total activation time (TAT) (A) and in the

epicardial ST-segment (B) during a 25-min occlusion of the anterior

descending branch of the left coronary artery. In control dogs, both
indices of ischemia severity were markedly increased, especially during the
initial 5 min of the occlusion. These changes were significantly reduced in
the presence of the intravenous infusion of sodium nitrite. Values are
means ± SEM. *P < 0.05 compared with the controls.

SUMMARY
We hypothesized that NO derives from either endogenous
(induced by preconditioning) or exogenous sources (administra-
tion of NO donors) is able to modulate GJ function, and that this
effect of NO, in part, plays a role in the protection against the severe
ventricular arrhythmias that results from an acute ischemia and
reperfusion insult in anesthetized dogs. To support this hypoth-
esis in the present article we summarized our results obtained
from previous and more recent studies which aimed to examine

FIGURE 3 | (A) A representative Western blot and changes in the
phosphorylated (P-Cx43; open columns) and dephosphorylated Cx43
(dP-Cx43; filled columns) isoforms as a percentage of the total
sarcolemmal Cx43 content, following a 25-min LAD occlusion The
phospho/dephospho ratio within the normal area is around 51/49 ± 1%.
This shifted to 29/71 ± 4% in hearts of the control dogs when subjected to
a 25-min occlusion. Infusion of sodium nitrite prevented this shift and
preserved the phosphorylated form of this protein both within the normal
non-ischemic (52/48 ± 1%) and the ischemic myocardial region
(59/41 ± 3%). (B) Changes in gap junction permeability in sham-control
(SHAM) and ischemic control (ISCH) hearts, as well as in hearts infused
with sodium nitrite (NaNO2). Sodium nitrite prevented the
ischemia-induced reduction in gap junction permeability. Values are
means ± SEM. #P < 0.05 compared with the ischemic control samples.
∗P < 0.05 compared with non-ischemic samples.
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the regulatory role of NO on cardiac GJs in relation to
arrhythmogenesis (Gönczi et al., 2009, Gönczi et al., 2010). The
results give a strong support for this hypothesis, since in the pres-
ence of increased NO availability the function of GJs seems to
be well preserved, as have been shown by both the in vivo and
in vitro measurements. These measures, albeit provide only indi-
rect evidence, clearly indicate that a maintained NO availability
during a prolonged ischemic insult, resulting from either a pre-
conditioning stimulus or the administration of drugs that liberate
NO, inhibits the ischemia-induced tissue impedance changes and
dephosphorylation of Cx43, and maintains the metabolic cou-
pling between cells. These effects of NO are especially pronounced
during that critical period of ischemia when factors and mecha-
nisms, involved in the generation of the phase Ib arrhythmias are
present and fully activated. As a result of the preserved GJ function,
the Ib phase of arrhythmias are markedly suppressed. Although
the precise mechanisms by which NO attains this GJ modulating

effect is still not fully understood, we discussed hypotheses and
theories which propose a role for NO in the regulation of GJs.
These involve NO-mediated signaling cascades including protein
kinases which might have a role in connexin phosphorylation, the
classical NO-soluble guanylyl cyclase-cGMP pathway with the sub-
sequent PKG activation and the cGMP-independent mechanism
of NO through which NO is able to bind and modify proteins
via S-nitrosylation. As to whether all these mechanisms are acting
together or there is one particular mechanism which preferentially
acts under certain circumstances is unknown and requires further
investigations.
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