UNIVERSITY OF THE SOUTHERN QUEENSLAND

NUMERICAL INVESTIGATION OF TRANSCRANIAL DIRECT CURRENT STIMULATION ON CORTICAL MODULATION

A dissertation submitted by

Syed Salman Shahid

For the award of

Doctor of Philosophy

June 2013

Copyright

by

Syed Salman Shahid

Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive and sub-convulsive functional stimulation technique with applications in both clinical therapy and neuroscience research. The technique provides researchers and clinicians with a unique tool capable of modulating the neural excitability in both the central and peripheral nervous system. On a clinical level, the procedure has been used quite extensively for its potential therapeutic applications in a number of neurological disorders. Despite the advantages of being safe, low cost and easy to administer, our limited understanding on interaction mechanisms between the stimulation parameters and biological materials has impeded the development and optimisation of tDCS based therapies.

The focus of this thesis is to develop a realistic finite element based human head model to address the problems involved in the forward modelling of transcranial direct current stimulation. The study explores the effects of model complexities and anisotropic material properties on field estimations. The sensitivity of electric field and current density on accurate modelling of cortical and non-cortical structures, and the influence of heterogeneously defined anisotropic electric conductivity on field parameters were analysed in an incremental manner. Using the averaged and the subject specific Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data, the head models with detailed anatomical features and realistic tissue conductive properties, were developed and employed to specifically address the role of stimulation parameters, such as: morphological variations, structural details, tissue behaviour, inter-subject variations, electrode montages and neural fibre pathways for defining the site and strength of modulation/stimulation.

This thesis demonstrates the importance of human head modelling in elucidating the complex electric field and current density profiles instigated by the non-invasive electric stimulation. The results of this study strongly support the initial hypothesis that model complexity and accurate conductivity estimation play a crucial role in determining the accurate predictions of field variables. The study also highlighted the inadequacy of scalar field maps to decipher the complex brain current flow patterns and axonal/neural polarization. With the proposed refinements, model based strategies can be employed to optimally select the required stimulation strength and electrode montage specific to individual dose requirements. Therefore, the work conducted in this study will bridge the gap between the current clinical practices and the subject specific treatments by providing accurate physiologically representative simulation.

Certification of Dissertation

I certify that the ideas, experimental work, results, analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the work is original and has not been previously submitted for any other award, except where otherwise acknowledged.

Signature of Candidate

ENDORSEMENT

Signature of Supervisors

Date

Date

v

Acknowledgement

My time at the USQ has been a great learning experience. I am extremely grateful to a number of people for their guidance and assistance.

Firstly I would like to express my gratitude to my Supervisor A/Professor Peng (Paul) Wen for his support, encouragement and patience. I am also grateful for his invaluable suggestions, discussion and confidence in my work.

I would like to thank Dr. Tony Ahfock for his unparalleled encouragement, guidance and support, and A/Professor John Leis for his guidance at the beginning of my PhD program. I would also like to acknowledge the technical and administrative support of the Faculty of Engineering and Surveying. Last but certainly not the least, my special gratitude goes to my parents, who have always been there for me and have shown consistent interest in my welfare.

List of related publications

The following papers, associated with the research contained in this dissertation, have been published or submitted for publication.

JOURNAL PAPERS

Shahid, S, Wen, P and Ahfock, T 2013, 'Numerical investigation of white matter anisotropic conductivity in defining current distribution under tDCS', Journal of Computer Methods and Programs in Biomedicine, vol. 109, no. 1, pp. 48-64.

Shahid, S, Wen, P and Ahfock, T 2012, 'Effects of model complexity and tissue anisotropic conductivity on cortical modulation during tDCS', IET Science, Measurement & Technology, vol. 6, no. 6, pp. 464 - 473

Shahid, S, Wen, P, Ahfock, T and Leis, J 2011, 'Effects of head geometry, coil position and CSF displacement on field distribution under transcranial magnetic stimulation', Journal of Medical Imaging and Health Informatics, vol. 1, no. 3, pp. 271-277

PEER-REVIEWED CONFERENCE PAPERS

Shahid, S, Wen, P and Ahfock, T 2011, 'Effect of fat and muscle tissue conductivity on cortical currents - a tDCS study', In: CME 2011: IEEE/ICME International Conference on Complex Medical Engineering, 22-25 May 2011, Harbin, China.

Shahid, S, Wen, P, Ahfock, T and Leis, J 2011, 'Effects of head geometry and coil position on field distribution under transcranial magnetic stimulation', In: MECBME 2011: Connecting Professionals in Biomedical Sciences and Technology, 21-24 Feb 2011, Sharjah, UAE.

Shahid, S and Wen, P 2010, 'Analytic and numeric evaluation of EEG forward problem using spherical volume conductor models', In: CME 2010: IEEE/ICME International Conference on Complex Medical Engineering, 13-15 Jul 2010, Gold Coast, Australia.

JOURNAL MANUSCRIPTS UNDER REVIEW/SUBMITTED

Shahid, S, Wen, P and Ahfock, T, 'Assessment of electric field distribution in cortical and sub-cortical regions under the influence of tDCS', under review at the Journal of Bioelectromagnetics, submitted on 19-10-2012 (under review).

Contents

ABSTRACT	III
CERTIFICATION OF DISSERTATION	V
ACKNOWLEDGEMENT	VI
LIST OF RELATED PUBLICATIONS	VII
LIST OF TABLES	XIII
LIST OF FIGURES	XV
1. INTRODUCTION	1
1.1. BACKGROUND	1
1.2. AIM AND OBJECTIVES	2
1.3. OVERVIEW OF THE PROPOSED STRATEGY	3
1.4. SCOPE	4
1.5. THESIS OVERVIEW	7
2. ELECTROMAGNETIC STIMULATION OF HUMAN BRAIN	10
2.1. CLASSIFICATION OF ELECTROMAGNETIC STIMULATION	10
2.2. SIGNIFICANCE OF ELECTROMAGNETIC STIMULATION	11
2.3. INTRODUCTION TO TRANSCRANIAL DIRECT CURRENT STIMULATION	ЭN 12
2.3.1. Mechanism of dosage delivery	12
2.3.2. Dosage and its relationship with excitability	14
2.4. SCOPE OF TDCS FORWARD HEAD MODELLING	16
2.4.1. The forward human head model	17
2.4.1.1. Analytical and simplified numerical head models	17

2.4.1.2. Numerical volume conductor models	18
2.5. MATHEMATICAL FORMULATION OF FORWARD HEAD MODEL	22
2.5.1. Maxwell's equations	23
2.5.2. Quasi-static approximation	24
2.5.3. Boundary conditions	27
2.6. NUMERICAL MODELLING FORMULATION FOR TDCS	28
2.6.1. Finite element method based formulation	29
2.7. Assessment criteria for model comparison	32
2.8. Chapter summary	34
3. HUMAN HEAD MODEL DEVELOPMENT	35
3.1. REALISTIC HUMAN HEAD MODEL CONSTRUCTION	35
3.1.1. Scalar imaging modalities	37
3.1.2. Spatial image registration	38
3.1.3. Spatial coregistration/transformation of scalar volumes	41
3.2. Multimodal image segmentation	41
3.3 . Electrode modelling	43
3.4. Mesh generation	45
3.5. Chapter summary	47
4. ELECTRICAL PROPERTIES OF HUMAN HEAD TISSUES	48
4.1. ISOTROPIC ELECTRICAL CONDUCTIVITIES OF HEAD TISSUES	48
4.2. MODELLING THE ANISOTROPIC CONDUCTIVITY FOR NON-CORTICAL	
STRUCTURES	50
4.3. MODELLING THE ANISOTROPIC CONDUCTIVITY OF THE BRAIN	52
4.3.1. Estimating brain anisotropic conductivity from measured diffusion	
tensor data	54
4.3.1.1. Diffusion tensor calculation	55
4.3.1.2. Diffusion anisotropy by tensor parameters	58
4.3.1.3. Artefacts in DT-MRI	62
4.3.1.4. DW imaging modalities	64
4.3.1.5. DTI data processing	64
4.3.1.6. Translation of diffusion tensor to conductivity tensor	67

4.4.	INDUCED ELECTRIC FIELD TRACKING AND ASSESSMENT OF STIMULATIO	N
MECH	IANISMS ALONG FIBRE PATHWAYS	71
4.5.	CHAPTER SUMMARY	74
5. RC	DLE OF MODEL COMPLEXITY ON FIELD ASSESSMENT	76
5.1.	INTRODUCTION	76
5.2.	Material and methods	77
5.2	2.1. Head model design	77
5.2	2.2. Tissue conductivity	77
5.2	2.3. Electrode configurations and current density calculation	79
5.3.	RESULTS AND ANALYSIS	80
5.3	2.1. Influence of model complexity on field assessment – impact of non-	
COP	rtical structures	80
5.3	2.2. Influence of tissue anisotropy (artificial) on field estimates	86
5.4.	CONCLUSION	94
6. RC	DLE OF REALISTIC WHITE MATTER ANISOTROPIC	
CONDI	UCTIVITY ON FIELD ESTIMATES	96
(1		0.0
0.1.		96
0.2.	MATERIAL AND METHODS	97
0.2	2.1. Isotropic volume conductor model construction	9/
0.2	2.2. Incorporation of WM anisotropic conductivity	99
0.2	2.3. Itssue electric conductivity assignment	100
0.2	2.4. Electroae configuration and current density calculation	101
0.2	2.5. Sensitivity analysis	102
6.3.	RESULTS AND ANALYSIS	102
0.3	1. Volume/domain analysis	102
6.3	2.2. Volume of interest (VOI) analysis	109
6.3	<i>R.3.</i> Role of anatomical variation in field distribution	116
6.4.	DISCUSSION	119
6.5.	CONCLUSION	122
7. EF	FECT OF GREY MATTER AND SUB-CORTICAL ANISOTROP	PΥ
ON FIE	CLD ASSESSMENT	124

7.1. INTRODUCTION	
7.2. MATERIAL AND METHODS	
7.2.1. Isotropic head model construction	
7.2.2. Conductivity assignment	
7.2.3. Translation of diffusion tensor to conductivity tensor and	electrode
configurations	
7.3. Results and analysis	
7.3.1. Impact of brain anisotropy	
7.3.2. Electrode montage variation	
7.4. DISCUSSION	141
7.5. CONCLUSION	
8. EFFECT OF TISSUE ANISOTROPIC CONDUCTIVITY AN	ND FIBRE
TRACTS IN NEUROMODULATION	145
8.1. Introduction	145
8.2. MATERIAL AND METHODS	
8.2.1. Electrode configurations and field calculations	
8.3. Results	
8.3.1. HD vs. conventional tDCS electrode configurations	
8.3.2. Effect of anisotropic conductivity	
8.3.3. Assessment of electric field along fibre tracts	
8.4. DISCUSSION	
8.5. CONCLUSION	
9. CONCLUSION AND FUTURE DIRECTION	
9.1. MAIN CONTRIBUTIONS	
9.2. FUTURE WORK AND DIRECTION	171
REFERENCES	

List of Tables

Table 4-1: Isotropic conductivity assignment 49
Table 5-1: Comparison of J_{median} across different layers84
Table 5-2: Concentration of active regions across GM and WM 85
Table 5-3: Conductivity assignment for model comparison (conductivities are in <i>S/m</i>)
Table 5-4: Statistical variations across GM under C3-Fp2 electrode configuration92
Table 5-5: Statistical variations across WM under C3-Fp2 electrode configuration. 92
Table 5-6: Concentration of active regions across GM and WM 93
Table 6-1: Percentage RDM and CC across GM, WM, M1, Contralateral M1 and Supplementary motor area of averaged models. A1: Isotropic head model, A2: artificial anisotropy (radial) based head model, A3: head model based on Equivalent Isotropic Trace algorithm, A4: Model based on fixed (eigenvalues) anisotropic algorithm and A5: model based on Proportional Anisotropic Ratio algorithm 107
Table 6-2: Maximum and median values of current density for GM, WM, M1, Contralateral M1 and Supplementary motor area of averaged models. A1: Isotropic head model, A2: artificial anisotropy (radial) based head model, A3: head model based on Equivalent Isotropic Trace algorithm, A4: Model based on fixed (eigenvalues) anisotropic algorithm and A5: model based on Proportional Anisotropic Ratio algorithm
Table 6-3: Percentage RDM for two regions of interests 110
Table 6-4: Maximum and median values of current density (mA/m^2) across ROI of averaged models under consideration A1: Isotronic head model A2: artificial

Table	7-1:	Condu	ctivity A	Assignn	nent	•••••					 •••••	. 127
Table	8-1:	Return	current	distrib	ution	among	catho	des in H	D-moi	ntages	 	. 148
	~ -	~		~			ι.					

 Table 8-2: Strength of E-field (median values) in various regions for each electrode configuration

 151

Table 8-6: Qualitative ranking based on the selected regions of interest157

List of Figures

Figure 2.1: The layered structure of cerebral cortex. Source: http://chronopause.com.

Figure 3.2: Masks of twenty segmented tissues of the head model using T1, T2 and PD-MRI volumes of the simulated datasets (a) axial slice and (b) coronal slice. 42

Figure 3.3: Four conventional bi-cephalic electrode montages. (a) C3-Fp2 electrode configuration, (b) F3-Fp2 electrode configuration, (c) P3-Fp2 electrode configuration and (d) C3-C4 electrode configuration. 44

Figure 4.2: The complex fibre architecture (WM fibre bundles) of the human brain. Source: (http://www.vh.org/Providers/Textbooks/BrainAnatomy)......53

Figure 4.3: Nine coefficients of a diffusion tensor field. The diagonal components of the tensor are dominant indicating the positive definiteness of the diffusion tensor. 57

Figure 5.5: 1D J distribution pattern across a straight line passing through five (conductivity wise) different head models, (a) 1D J distribution using C3-Fp2 electrode configuration, (b) 1D J distribution using C3-C4 electrode configuration.88

Figure 6.3: (a) Distribution of current density (magnitude) across the GM and WM of all the five models. (b) Distribution pattern of the magnitude of the normal component of current density across the cortex of model A3. (c) Selected region highlighting the strength of the normal component of current density and black arrows indicate the direction of the induced current density vector. (d) Tangential component of current density across the cortex of A3. A1, Isotropic head model; A2,

artificial anisotropy (radial) based head model; A3, head model based on Equivalent Isotropic Trace algorithm; A4, model based on fixed (eigenvalues) anisotropic algorithm and A5, model based on Proportional Anisotropic Ratio algorithm. 103

Figure 6.4: Variation of current density distribution in terms of percentage differences across the GM of (A2-A1), (A3-A1), (A4-A1) and (A5-A1). (a) Projection of % difference in J over the cortex. Regions where the strength of J has increased is shown in red and yellow colours. Whereas regions where the magnitude of J has dropped is indicated by a contrast of blue colour (b) histogram analysis highlighting the spread of difference distribution. A1, Isotropic head model; A2, artificial anisotropy (radial) based head model; A3, head model based on Equivalent Isotropic Trace algorithm; A4, model based on fixed (eigenvalues) anisotropic algorithm and A5, model based on Proportional Anisotropic Ratio algorithm. 105

Figure 6.9: Visualization of percentage difference in current density across an arbitrary coronal slices of averaged models under discussion. A1: Isotropic head model, A2: artificial anisotropy (radial) based head model, A3: head model based on Equivalent Isotropic Trace algorithm, A4: Model based on fixed (eigenvalues) anisotropic algorithm and A5: model based on Proportional Anisotropic Ratio

Figure 6.10: Current density distribution (magnitude) across (a) GM, (b) WM, of subject specific head models. I1, Isotropic head mode; I2, artificial anisotropy (radial) based head model (not included in sensitivity analysis); I3, head model based on Equivalent Isotropic Trace algorithm; I4, model based on fixed (eigenvalues) anisotropic algorithm; and I5, model based on Proportional Anisotropic Ratio algorithm. 117

Figure 7.3: Projection of percentage differences on the brain volume (a) I2-I1, (b) I3-I1 and (c) I4-I1. Difference distribution plots; (d) I2-I1, (e) I3-I1 and (f) I4-I1..... 132

Figure 7.4: Comparison of E_{max} across selected regions of a brain using four (conductivity wise) different head models, (b) Comparison of E_{median} across selected regions of a brain using (conductivity wise) different head models, (c) Topographic assessment by comparing selected regions of each model with their respective isotropic counterparts and (d) standard deviation in E-field distributions across various regions of the selected head models. 133

Figure 8.2: (a, b and c) Posterior view of an arbitrary coronal slice depicting E-field strength and distribution pattern in grayscale colours. Current distribution is highlighted by arrows, the orientation of arrows illustrates the direction of induced current and colour (RGB) signifies the strength of current density. Montage m1 and m2 are based on 4x1 HD-electrode configurations and in (a and b) field parameters (E/J) are highlighted using a common scale. Montage m3 is based on conventional C3-Fp2 configuration and its field parameters are illustrated by separate legends. In (a, b and c) the field parameters (E/J) are depicted under the influence of anisotropic skull, muscles and brain anisotropic conductivities. The coronal slices include CSF, GM, WM and sub-cortical regions. In (d-g) a single scale has been selected to indicate the changes in E-field strength and distribution pattern associated with various anisotropic regions under m1 configuration. In (h-k) each model is represented by its individual E_{max} scale under m1 configuration. Slice (d) and 3 D brain (h) illustrate E-field distribution under m1 montage using isotropic conductivities. (e and i) illustrate field distribution under the influence of skull and muscles anisotropic conductivities. (f and j) depict distribution under brain anisotropy. (g and k) projects the combined influence of skull, muscles and brain anisotropy. Posterior view of an arbitrary coronal slice, illustrating anisotropic conductivity distribution in the form of conductivity ellipsoids, (1) non-normalized,

Figure 8.4: Montage specific behaviour of induced electric field *E* and stimulation parameters *Ep*, $\partial Ep/\partial l$ and $\Delta Ep/2$ across (a) left corticospinal tracts, (b) right corticospinal tracts, (c) medial of corpus callosum (d) genu of corpus callosum and (e) splenium of corpus callosum under HD montages m1 and m2, respectively ($\lambda = 1$ mm).

Figure 8.5: Montage specific behaviour of induced electric field *E* and stimulation parameters *Ep*, $\partial Ep/\partial l$ and $\Delta Ep/2$ across (a) Left corticospinal tracts, (b) right corticospinal tracts, (c) medial of corpus callosum (d) genu of corpus callosum and (e) splenium of corpus callosum under m3 (conventional) montage ($\lambda = 1$ mm)..... 160

Figure 8.6: Single fibre level investigation using the projection of induced electric field 'E', stimulation parameters E_P , $\partial E_P/\partial l$, $\Delta E_P/2$, fractional anisotropy index 'FA'' and conductivity distribution along the selected fibre (a-m1 and b-m1) under montage m1, (a-m2 and b-m2) under montage m2 and (a-m3 and b-m3) under montage m3. Sub-sections (a-m1, a-m2 and a-m3) illustrate E_P along the selected fibres of left corticospinal tract and (b-m1, b-m2 and b-m3) highlight the variations in electric field, stimulation mechanism, FA and anisotropic conductivity along the selected fibre ($\lambda = 1$ mm).