

Is surgery more effective than non-surgical treatment for spinal stenosis and which non-surgical treatment is more effective? a systematic review

MAY, Stephen and COMER, C

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/6976/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

MAY, Stephen and COMER, C (2013) Is surgery more effective than non-surgical treatment for spinal stenosis and which non-surgical treatment is more effective? a systematic review. Physiotherapy, 99 (1). 12-20. ISSN 0031-9406

Repository use policy

Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in SHURA to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

Table 2. Summary of included trials

<u>Trial^j</u>	Number	Interventions	Outcomes / follow-up ^a
Amundsen et al. [1]	31	 Decompression surgery (13) Orthosis, back school (18) Both groups general physical training 	Clinician determined good or bad result at 6 months 1, 4 and 10 years. Good results: 1: 92%, 69%, 92%, 91%.2: 39%, 33%, 47%, 71%
Comer et al. [7] ^j	40	 Walking stick if not using one (20) No walking stick (20) 	ZCQ at 2 weeks: NS differences
Cuckler et al. [9]	37 ^d	 ESI + procaine (20) Saline + procaine (17) Both groups ESI if < 50% better 	Success = 75% self-reported improvement at 24 hours and mean 20 months: NS differences
Eskola et al. [13]	40	Calcitonin then placebo Placebo then calcitonin	VAS rest pain and jumping, walking distance 1, 3, 4, 6, 12 months. Active stage V placebo: VAS rest (P=0.01); jump pain (P=0.001 / 0.019; walking distance (P=0.007 / 0.14) up to 3 months No long term difference.
Fukusaki et al. [16]	53	 Saline epidural injection Mepivacaine epidural injection ESI + mepivacaine 	Walking distance improvement: 100m (excellent), 20-100m (good), <20m (poor) at 1 week, 1, 3 months 2 + 3 V 1 at 1 week (P<0.01) ; NS at 1 and 3 months
Goren et al. [21]	50	1. US + exercise (17) 2. Sham US + exercise (17) 3. Control (16)	VAS leg / back, Oswestry, treadmill test, medication after 3 weeks of treatment 1 + 2 V 3: Leg pain (P<0.007); Oswestry (P<0.014); 1 V 3: medication (P=0.016) 1 V 2 = NS differences

Koc et al. [31]	29	 In-patient physical therapy (10) ESI (10) Controls (9) 	VAS, flexion, treadmill test, sit-to-stand, Roland-Morris (RMD), NHP at 2 weeks, 1, 3, and 6 months 2 v 3 at 2 weeks: VAS (P=0.008); RMD (P=0.007); NHP (P=0.004). SD in all groups. NS 1 V 2.
Kurihara et al. [32]	146	1. Opalman (15 mgd) ^h (69) 2. Opalman (3 mgd) ^h (77)	Improvement in sensation, walking distance, leg pain standing pain at 6 months 1 V 2: improvement (P=0.005); improvement in sensation (P=0008); walking distance (P=0.019).
Lee et al. [33]	99	 Interlaminar ESI (42) Bilateral transforaminal ESI (57) 	NRS, Patient Satisfaction Index (PSI), 5-point pain score at 2 weeks, 2 and 4 months 2 V 1 at 2w, 2 and 4m NPRS / pain score (P<0.05)
Malmivaara et al. [35]	94	 Decompression surgery (50) NSAID, back school, some individualised physical therapy (44) 	Oswestry, NRS, treadmill test at 6, 12, 24 months 1 V 2 entire follow-up period: Oswestry (P=0.01), leg pain walking (P=0.02), LBP walking (P=0.0003)
Manchikanti et al. [36]	40	 Caudal ESI + anaesthetic (20) Caudal epidural anaesthetic (20) 	NRS, Oswestry at 3, 6, 12 months NS differences; SD over time
Manchikanti et al. [37]	50	 Caudal ESI + anaesthetic (25) Percutaneous adhesiolysis (25) 	NRS, Oswestry at 3, 6, 12 months 2 V 1 entire follow-up period NRS and Oswestry (P<0.0001)
Mariconda et al. [38]	44	1 Decompression surgery (22) 2. Bed rest, orthosis, physical therapy (22)	Beaujon Scoring System ⁹ at 1, 2 years, and mean 47 months: 1 V 2 at 2 years / long-term (P≤0.05 / ≤0.01)
Matsudaira et al. [39]	79	1. Prostaglandin (39) 2. Etodolac (NSAID) (40)	SF 36, rating scale for back and leg pain and walking distance, improvement, satisfaction at 8 weeks 1 V 2 SF 36 physical functioning, bodily pain,

			mental health (P<0.01), role physical (P=0.03), walking distance, leg numbness, improvement, satisfaction (P<0.01)
Ng et al. [40]	32 ^d	 PRI bupivacaine (15) PRI bupivacaine + steroid (17) 	VAS back / leg pain, walking distance at 2, 4, 6, 12 weeks: NS difference in walking distance (only outcome separate data for spinal stenosis)
Podichetty et al. [45]	55	1. Nasal calcitonin (36) 2. Placebo (19)	VAS, Oswestry, walking distance, SF 36 at 6 weeks: NS differences
Porter & Miller [47]	42	 Injected calcitonin (20) Injected saline (placebo) (22) 	Walking distance, pain, sleep, mobility, analgesics at 4, 8 weeks: NS differences
Pua et al. [48]	68	1. BWST ^b (33) 2. Cycling ^b (35)	Oswestry, Roland-Morris, VAS, patient-rated change at 3, 6 weeks: NS differences, SD over time
Sahin et al. [50]	45	 Nasal calcitonin^c (23) Paracetamol^c (22) 	VAS, ROM, Roland-Morris, walking distance at 8 weeks: NS differences, SD over time
Slatis et al. [53]	83	 Decompression surgery (45) NSAID, back school, some individualised physical therapy (38) 	Oswestry, NRS, treadmill test at mean 6 years NS difference; SD over time
Tafazal et al. [56]	40	1. Nasal calcitonin (20) 2. Placebo (20)	VAS back / leg pain, Oswestry, LBOS, walking distance at 4, 10, 16 weeks: NS differences
Tafazal et al. [57]	48 ^d	 PRI bupivacaine (25) PRI bupivacaine + steroid (23) 	VAS back / leg pain, Oswestry, LBOS at 6, 12 weeks 1 year: Oswestry at 3 months (P=0.04)
Uratsuji et al. [66]	84	1. Opalman (30 mgd) ^h (29) 2. Opalman (15 mgd) ^h (32)	Self-reported improvement, functional tasks at 6 weeks. NS differences

		3. Opalman (6 mgd) ^h (23)	
Waikakul & Waikakul [67]	152	 Methylcobalamin (70) Control (82) Both groups – education, strengthening exercises, physical therapy, NSAID. 	Pain on movement, ROM, SLR, Neurology, walking distance, medication at 6, 12, 18, 24 months: 1 v 2 at 6, 12, 18 months: walking distance (P<0.05)
Weinstein et al. [69]	304 ^e	 Decompressive surgery (159) Usual care^f (145) 	SF 36, Oswestry at 6 weeks, 3, 6, 12, 24 months: NS differences
Weinstein et al. [70]	289 ^e	 Decompressive surgery (138) Usual care^f (151) 	SF 36, Oswestry at 6 weeks, 3, 6, 12, 24 months: 1 V 2 SF 36 bodily pain at 2 years (P not stated)
Weinstein et al. [71]	304 ^e	 Decompressive surgery (159) Usual care^f (145) 	SF 36, Oswestry at 3, 4 years: NS differences
Whitman et al. [72]	58	1. MT, BWST, flexion exercises (29) 2. Flexion exercises, walking, US (29)	Global rating of change (GRC), Oswestry, NPRS, SSS at 6 weeks, 1 year: 1 V 2 GRC at 6 weeks (P=0.0015). Other outcomes NS differences
Yaksi et al. [74]	55	 Flexion / strengthening exercises traction, corset, NSAID (27) As 1 + gabapentin (28) 	Walking distance, VAS with movement, neurological deficit at 1, 2, 3, 4 months: 2 V 1 walking distance at 2, 3, 4 months (P=0.03, 0.04, 0.001); VAS at 3, 4 months (P=0.039, 0.006); improvement sensory loss at 4 months (P=0.04)
Zucherman et al. [76]	191	1. Decompression surgery (100) 2. ESI (NSAID, physical therapy) (91)	SF 36, ZCQ, ZCS at 6 weeks, 6, 12 months: 1 V 2 at all time points ZCQ (P not stated), and SF 36 (P not stated)
Zucherman et al. [77]	191	1. Decompression surgery (100)	ZCQ at 2 years:

2. ESI (NSAID, physical therapy) (91) 1 V 2 all domains of ZCQ (P<0.001)

BWST = body-weight supported treadmill; ESI = epidural steroid injection; LBOS = Low Back Outcome Score; LBP = low back pain; MT = manual therapy; NPRS = Numeric Pain Rating Scale; NRS = Numeric (pain) Rating Scale; NS = not significant; NSAID = non-steroidal anti-inflammatory drugs; PRI = periradicular infiltration; ROM = range of movement; SD = significant difference; SSS = Spinal Stenosis Scale; US = ultrasound; VAS = visual analogue scale; ZCQ = Zurich Claudication Questionnaire; ZCS = Zurich Claudication Score.

^a = significant differences in bold (with more effective treatment given first)

b = in addition both groups received warm-up (heat, traction) and home flexion exercise programme

^c = in addition both groups did exercise programme (heat, flexion and stabilisation exercises)

^d = spinal stenosis patients only, trial also included patients with disc herniations

^e = in randomised controlled trial, more patients in an observational study

f = physical therapy, ESI, education, home exercises, NSAID

g = combination: walking distance, leg pain rest / exertion, back pain, neurological deficit, medication, quality of life

h = mgd = micrograms per day; Japanese trademark name for prostaglandin E

j = high quality (≥ 6 on PEDro scale) in bold