

Durham E-Theses

The quantitative measurement of colour in minerals

Htein, Win

How to cite:

Htein, Win (1972) The quantitative measurement of colour in minerals, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8421/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

•••				~						۵	
				Thesis		of Win Htein				e Argi	67
Page	to	•	R%	Page	to		R%	Page	to		R%
278		Antimony	76	274		Hausmannite	20	275		Pyrochroite	18
284		Arsenic	45	264		Hematite	29	193 1		Pyrolusite	34
283		Arsenopyrite	52	288		Hessite	41	4	18	Pyrite	55
		D I	(a	276		Hetaerolite	17	191.		(how)	40
280		Bismuth	62	183		Heteromorphite	40			(nex)	
289		Bishuite	50	245		Hollandite	33	286		Schapbachite	45
03 71.	82	Bornite	18-24	142		Hollingworthite	52	1		Silver	99
791	182	Boulangerite	41				50	142		Skutterudite	53
295		Bournonite	35	195	200	Idaite 25-	31	290		Sorbyite	42
273		Braunite	21	266		Ilmenite	20	89	119	Sphalerite	18
286		Breithauptite	50	145	146	Irarsite	47	141		Sperrylite	55
240	242	Briartite	27					222	227	Stannite	28
	-	-		85	100	Jacobsite	19	216	221	Stannite	28
306		Cassiterite	12	188	189	Jamesonite	40			(yellow)	26
28		Cattierite	34					298		Stannolulte	20 54
296		Chalcochenito	33	281		Kitkaite	59	204		nalladinite	74
208 1.4 <i>4</i>	178	Chalcopyrite	47	305		Klockmannite 0-	-12 E-36	305		Staringite	14
172	139	Chromite	13	258	263	Kosterite	25	293		Sterrvite	37
298	299	Cinnabar	29	156		Kostovite	58	238	239	Stibio-	24
141		Clausthalite	50	27	I	Kutinaite	42			luzonite	
19		Cobaltite	50			- .		287		Stibnite	46
×2	153	Coloradoite	34- 38	289	160	Launayite	44	32	35	Sulvanite	31
. 13	41	Colusite	30	148	150	Laurite	42	162	163	Sylvanite	60
n		Copper	53	225	237	Luzonite	25	701	202	mlite	17
13	200	Coronadite	32	235		DUZUILLE	23	301	502	Tapionite	28
7	208	Covellite 0-	7, E- 22	. 87		Magnesioferite	17	42	52	Tetrahedrite	33
			54 26	84		Magnetite	21	265	56	Ti_hematite	28
2.1		Cryptometane	20	j 300		Magnetoplumbit	e 24	155		Ti-magnetite	17
278		Dvscrasite	64	157	159	Marcasite	53	292		Tintinaite	43
5.0		-,	•••	88		Marmatite	18	146		Tyrrelite	46
24 6 ·	257	Enargite	29	1 121		Manganosite	14	291		Twinnite	43
°97		Eskebornite	35	213	215	Mawsonite 0-2	5 E-26				45
				19/	105	Meronite	40	147		Ulimanite	45
60		Franklinite	18	282	185	Millerite	40 54	304		Omangite 0-	12 E-16
20	26	Colora	4.4	154		Murdochite	17	1		·	2-10
270	272	Gallite					-·.	64		Vaesite	31
306		Geikielite	14	301		Nb-Rutile	20	290		Vennite	43
⁷ 179	180	Geochronite	41			(Ilmenorutile)		1			
65	70	Germanite	22	160		Niccolite	53	303		Wodginite	15
143	144	Gersdorffite	46	194		Nsutite	31	303		Wolframite	18
297		Getchellite	27	201	212	Orange-bornite	22-26	104		71	41
* 3		Gold	57	201		Orange-Dormite	23-20	186	187	Zincenite	te 67
29	- 31		32 iov 80	279		Paradocrasite	73	140		2 vyaginisevi	
6 777	•	Groutite	10y 07 20	147		Pentlandite	45				
202	i	Guettardite	42	150	152	Petzite 3	7-41	ł			
673		- 401111 4155	10	190		Plagionite	37	ł		,	
N ¹	13 *			302		Plattnerite	17	1			
6.30	on p.	288		292		Playfairite	40	1			
				145		Polydymite	46	1			
				269		Psilomelane	23				
								1		1	
17 · . · · · · · · ·				11				1		•	
							1				

THE QUANTITATIVE MEASUREMENT

OF COLOUR IN MINERALS

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE UNIVERSITY OF DURHAM

Ьy

WIN HTEIN,

B.Sc. (Rangoon), F.G.A. (London)

Graduate Society

---- ,

December, 1972.

ABSTRACT

The present study has been directed towards investigating quantitative measurements of colours in minerals, which might serve as a readily accessible means of identification and understanding related properties.

A review of the concepts of colour measurement is described in the first part of the thesis. Attention has been paid to the improvement and application of methods of colour measurement. in mineralogy and gemmology. Computational procedures and all the necessary computer programmes for calculating colour values are given with examples. For this purpose appropriate measurements of spectral reflectivity for opaque minerals, and spectral transmittance for non-opaque minerals and facetted gemstones are described.

Quantitative measurements of other colour properties colour constancy, bireflectance and reflection pleochroism - are described and defined. A study of some colour problems in ore minerals is made. Tables of colour values and spectral reflectivity data for 130 ore minerals are given, and these values are also presented in colour diagrams. The uses of quantitative colour values and colour diagrams are explained with examples.

ACKNOWLEDGEMENT

The writer wishes to thank to the British Council, the Ministry of Overseas Development, and the Ministry of Education,Union of Burma, for the Colombo Plan Fellowship Award.

The writer wishes to thank to Professor G.M.Brown, of the Geology Department, for the facilities provided for this study .

The writer thanks Mr. R.Phillips, for suggesting this research topic, supervising the study and for critically reading the manuscript.

Special thanks are due to: Mr. E.A.Jobbins, of the London Geological Museum, for loan ofgemstones out of his own collection; Mr. F.W.Smith, for translating the paper by Levy (1966); Dr. A.Peckett and Mr. R.Hardy, for analysing specimens; Dr.M.J.Reeves, for assistance in writing the computer programmes; and Mr. S.Gezci, of the Applied Physics Department, for his advice on the use of the Double Beam Grating Spectrograph.

The technical staff of the Geology Department and the Science Workshop are thanked for their kind help.

Finally the writer is indebted to the individuals and institutions, listed in References, for permission to redraw diagrams or copy tables and photos from the sources noted.

CONTENTS

.

ABSTRACT

1

ACKNOWLEDGEMENT

Chapter				
I.	INTRODU	JCTION	1	
II.	LITERA	TURE REVIEW ON THEORY OF COLOUR MEASUREMENT	3	
	II.1	Introduction	3	
	11.2	Psychophysical Concepts of Colour	5	
	II.3	Attributes of Colour	7	
	II.4	The sensitivity of the Eye	9	
		Relative Luminous Efficiency Functions	9	
		Sensitivity to Differences of Hue and Saturation	12	
	II.5	Spectral Energy Distribution and Colour Sensation	15	
	II.6	Principles of Colour Measurement	17	
	II.7	The C.I.E. System of Colour Measurement	25	
	II.8	C.I.E. Standard Light Sources	28	
	II.9	Computation of Tristimulus Values and Chromaticity		
		Coordiantes	30	
		Weighted Ordinate Method	31	
		Selected Ordinate Method	32	
		Accuracy of two Methods	33	
	II .1 0	The 1931 C.I.E. Chromaticity Diagram	35	
	II.11	Dominant Wavelength and Excitation Purity	36	
	II . 12	Colour Distrimination	38	
III.	SPECTR	AL REFLECTIVITY MEASUREMENTS	46	
	III.1	Previous Work	46	
	III.2	Present Work	50	
		Specimen Preparation	50	

			Apparatus and Technique	50
			Accuracy and Precision	53
		111.3	Spectral Reflectivity of Gemstones	54
	IV.	POSSIBI	LITY OF TRANSMISSION MEASUREMENT THROUGH	
		FACETTE	D GEMSTONES FOR COLOUR MEASUREMENT	58
			Theorectical Considerations	58
			Experiments and Results	63
v	V.	COMPARIS	SION OF TRANSMISSION MEASUREMENTS WITH A MICROSCOPE	
		PHOTOME	TER AND DOUBLE BEAM SPECTROGRAPH	67
	VI.	METHODS	OF COMPUTING COLOUR SPECIFICATIONS OF MINERALS	72
		VI.1	Computational Procedure for Tristimulus Values	
			and Chromaticity Coordinates	72
			PL/1 Computer Programme	Appendix
		VI.2	Computational Procedure for Dominant and	
			Complementary Wavelengths, and Excitation Purity	74
			PL/1 Computer Programme	Appendix
			PL/1 Computer Programme	Appendix
	VII.	ACCURAC	Y AND PRECISION OF COLOUR SPECIFICATIONS OF MINERALS	79
	VIII.	MEASUREI	MENTS OF COLOUR CONSTANCY, BIREFLECTANCE AND	
		REFLECT	ION PLEOCHROISM	83
			PL/1 Computer Programme	Appendix
	IX.	A STUDY	ON SOME COLOUR PROBLEMS IN ORE MINERALS	92
			Pure Gold, Pure Silver, Gold-Silver Alloy	93
			Germanite	95
			Bornite	96
			Pyrite	98
			Chalcopyrite	100
			Tetrahedrite and Tennantite	101
			Sphalerite	102

	Galena	104
	Colusite and Sulvanite	105
	Stannite, Mawsonite, Idaite	106
	Enargite, Luzonite-Stibioluzonite	108
	Hematite powders	10 9
QUANTI	TATIVE COLOUR VALUES AND SPECTRAL REFLECTIVITIES	
OF SOM	ORE MINERALS	Appendix
QUANTI	TATIVE COLOUR VALUES, SPECTRAL TRANSMISSION CURVES	
AND A (COLOUR DIAGRAM OF GEMSTONES	Appendix
CONCLUS	SIONS AND SUGGESTIONS OF POSSIBLE FUTURE WORK	111

LIST OF TABLES

Χ.

XI.

XII.

LIST OF FIGURES

LIST OF PLATES

APPENDICES

REFERENCES

MINERALS IDENTIFICATION DIAGRAMS

.

LIST OF TABLES

II 2.	Relationships between the 1931 CIE-RGB System and		
	the 1931 CIE-XYZ System	27	Ь
II 3 .	Standard chromaticity coordinates and colour-matching		
	functions of equal-energy spectrum	27	С
II 4.	Chromaticity coordinates of the C.I.E. standard sources	29	Ь
II 5.	1931 C.I.E. colour-matching functions weighted by relative	9	
	spectral energy distribution of sources A,B & C	34	а
II 6.	Selected ordinates for standard sources A,B & C	34	Ь
III 1.	Accuracy and precision of reflectivity measurement	53	a
IV 1.	Measured spectral R.I. & calculated values	66	а
IV 2.	Measured and Calculation transmittance values	66	Ь
IV 3.	Measured values of brown quartz	66	Ь
IV 4.	Colour specifications derived from calculated and		
	measured transmittance values	66	d
V 1.	Spectral transmittance values of red spinel	71	a
V 2.	" " brown quartz	71	Ь
V 3.	" " " red spinel	71	С
V 4.	" " " brown quartz	71	d
V 5.	Quantitative colour values of red spinel	71	j
V 6.	" " " brown quartz	71	k
VI 1.	Ratios to compute wavelengths and excitation purity	Apr	pendix
VII 1.	Measured reflectivity values and deviations at omitted		
	wavelengths due to interpolation	82	a
VII 2.	Variations in chromaticity coordinates, and precision	82	Ь
VIII 1.	Differently changes in the colours of briatite and		
	gallite when the illuminant is changed	91	a

II 16.	Relative spectral distributions of the standard sources	
	A,B,C & E	29 a
II 17.	1931 C.I.E. Chromaticity diagram with points of the	
	standard sources and the locus of Planckian radiators	29 a
II 18.	Derivation of the tristimulus specifications of an	
	object colour by two methods	34 c
ii 19 .	1931 C.I.E. standard chromaticity diagram superimposed	
	on a colour plate	35 a
II 20	Graphical determination of dominant (and complementary)	
	wavelength and excitation purity of a sample colour	37 a
II 21.	Discrimination ellipses obtained by MacAdam	45 a
II 22.	Measures of a discrimination ellipse	45 a
II 23.	MacAdam's contour diagrams	45 Ь
II 24.	12 19 12	45 c
II 25.	11 12 11	45 d
III 1.	Schematic diagram of the apparatus	51 a
III 2.	A test of the stabilised voltage current with time	51 b
III 3.	Total back reflection and dispersion of a ray of light	
	passing through brilliant cut diamond	57 a
III 4.	Spectral reflectivity curves of facetted gemstones	57 b
III 5.	Hypothetical relationships between R.I. & R of	
	non-opaque minerals	57 c
IV 1.	Transmission, reflection and absorption of a parallel	
	beam of light passing through a parallel sided plate	58 a
IV 2.	Transmission of a combination of non-absorbing layers	
	separated by air	59 a
IV 3.	Transmission of a combination of non-absorbing layers	
	in optical contact	59 a

Page

VIII 2.	Example of quantitative values of pleochroism of	
	some ore minerals	91 b
IX 1.	Electron Microprobe analyses and colour values of	
	bornite	97 b
IX 2.	Electron Microprobe analyses, colour values and	
	optical properties of Stannite-Idaite series	10 7 b
IX 3.	XRF analysis of hematite specimens	110 a
XI 1.	Mean transmittance values of some cut gemstones	Appendix
XI 2.	Quantitative colour values of some cut gemstones	Appendix

.

LIST OF FIGURES

11	1.	Spectral distributions of irradiance of direct sun light	10	а
II	2.	Relative spectral distributions of irradiance of three		
		phases of daylight	10	а
II	3.	Standard relative luminous efficiency fuctions	10	Ь
II	4.	Typical wavelength discrimination curve	12	a
II	5.	Average purity discrimination as a function of		
		wavelength	12	a
II	б.	Relation between spectral energy distribution and		
		colour sensation	16	а
II	7.	A three dimensional vector diagram illustrating a		
		colour space and a corresponding two dimensional		
		colour plane	19	a
II	8.	Illustrating the additive mixture of the two colours		
		producing a new colour	19	b
II	9.	A colour vector diagram with a colour plane of		
		constant brightness	20	a
II	10.	Mean chromaticity coordinates of spectrum colours		
		obtained by Guild	24	a
II	11.	Mean chromaticity coordinates of spectrum colours		
		obtained by Wright	24	a
II	12.	Spectral distribution curves (colour-matching functions)		
		for equal—energy spectrum in the RGB system	24	b
II	13.	Chromaticity diagram in the RGB system	24	Ь
II	14.	1931 C.I.E. colour-matching functions based on the XYZ		
		primaries	27	а
II	15.	The C.I.E. standard chromaticity diagram in terms of		
. "	.	the reference stimuli XYZ	27	а

Page

IV 4.	Transmission of a combination of non-absorbing layers		
	of different R.I	59	а
IV 5.	Transmission of a combination of an absorbing layer		
	and non-absorbing layer in optical contact	60	a
IV 6A.	Back reflection of a ray of light in passing through		
	a facetted stone in air	60	а
IV 68.	A parallel transmitted ray of light in passing through		
	a facetted stone in liquid	60	а
IV 7.	Dispersion characters of solid and liquid	62	а
IV 8.	Transmission curves (measured and calculated)	66	С
V 1.	Spectral transmittance curves of red spinel	71	9
V 2.	Spectral transmittance curves of brown quartz	71	f
V 3.	Chromaticity diagram showing the colours of red spinel		
	brown quartz	71	9
V 4.	Spetral sensitivities of the two types of photomultipliers	s71	h
VI 1.	Explanation for computing complementary wavelength		
	and excitation purity	78	a
VIII 1.	Spectral distribution curve giving a green colour		
	in daylight and changing to a red under tungsten light	85	а
VIII 2.	Chromaticity diagram showing a poor colour sonstancy		
	of a specimen	85	a
VIII 3.	Changes of dominant wavelength and purity of some ore		
	minerals in passing from source A to source C	91	С
VIII 4.	Example of different effects of pleochroism under		
	source A and source C	91	d
IX 1.	Gold, Silver and Gold-Silver Alloy	94	a
IX 2.	Germanite	9 5	а
IX 3.	Bornite	97	а

Page

IX 4.	Pyrite	99 a
IX 5.	Chalcopyrite	100 a
IX 6.	Tetrahedrite-Tennantite	101 a
IX 7.	Sphalerite	103 a
IX 8.	Galena	104 a
IX 9.	Colusite , Sulvanite	105 a
IX 10.	Stannite, Mawsonite, Idaite	107 a
IX 11.	Enargite, Luzonite-Stibioluzonite	108 a
IX 12.	Chromaticity diagram showing the colours of hematite	
	powders	110 Ь
IX 13.	Enlarged chromaticity chart with colour points of	
	hematite specimens and discrimination ellipse	110 c
XI 1.	Chromaticity diagram with colour points of some	
	cut gemstones	Appendix
XI 2.	Spectral transmission curves of citrine & chrysoberyl	Appendix
XI 3.	" " " synthetic rubies	Appendix
XI 4.	" " almandine & amethyst	Appendix
XII 1.	Showing marked variations in spectral reflectivity	
	values quoted for specific minerals	Appendix
1 a.	Enlarged Chromaticity Diagram with the colour points	
	of some Ore Minerals	Appendix
1 b.	Enlarged Chart of Tristimulus Value Y and Dominant	
	(also complementary) Wavelength of some Ore Minerals	Appendix

Page

•

LIST OF PLATES

.

1	а.	Hue circuit of high saturation	7	а
1	b.	Red-to-Yellow series giving approximately equal subjective	Э	
		intervals of hue	7	a
2	a.	Polar arrangement of various saturations of several hues	8	а
2	b.	Grey-to-Green series giving appeoximately equal		
		subjective intervals of saturation	8	a
3,	•	Additive combination of red, green and blue producing		
		white	18	3 a
4	•	1931 C.I.E. chromaticity diagram with approximate		
		distribution of colours for daylight adaptation	35	i a

Page

.

D. C. B. Y. ev. S. P. K. Those every exigination of the every 13 minute 1000

Page

•

APPENDICES

х.	Tables of Quantitative Co	plour Values & Spectral				
	Reflectivity Data of some Ore Minerals					
	Isotropic Minerals Al	bbreviations for Figs. 1a & 1b.				
	(values from a	bout full wavelength scale data)				
	Pure Silver		A.1			
	Gold-Silver Alloy		A.2			
	Pure Gold		A.3			
	• Pyrite	Ру	A .4 —18			
	Cobaltite	Соь	A.19			
	Galena	Gal	A.20→26			
	Kutinaite	Kut	A.27			
	Cattierite	Cat	A.28			
	Goldfieldite	Goldf	A.29-31			
	Sulvanite	Sul	A.32-35			
	Colusite	Col	A.36-41			
	Tetrahedrite	Tet	A.42-52			
	Tennantite	Ten	A.53-63			
	Vaesite	Vae	A.64			
	Germanite	Ger	A.65-70			
	Bornite	Bor	A.71-82			
	Bixbyite	Bi×	A.83			
	Magnetite	Mag	A.84			
	Jacobsite	Јас	A.85			
	Franklinite	Fran	A.86			
	Magnesioferrite	Magn	A.87			
	Marmatite	Marm	A.88			
	Sphalerite	Sph	A.89-120			
	Manganosite	Mang	A.121			
	2'					

.

Page

	Chromite	Chr	A.122-139
	(values from 4 wave)	length data)	
	Zvyagintsevite	Zvya	A.140
	Copper	Сорр	A.140
	Sperrylite	Sperr	A.141
	Clausthalite	Clau	A.141
	Skutterudite	Skut	A.142
	Hollingworthite	Holling	A.142
	Ru-Hollingworthite	Ru-Holling	A.143
	Gersdorffite	Gers	A.143-144
	Polydymite	Pol	A.145
	Irarsite	Ira	A.145-146
	Tyrrelite	Tyr	A.146
	Pentlandite	Pent	A.147
	Ullmanite	U11	A.147
	Laurite	Lau	A.148-150
	Petzite	Pet	A.150-152
	Coloradoite	Colo	A.152-153
	Murdochite	Mur	A.154
	Titanomagnetite	Titanomag	A.155
Ani	istropic Minerals (values from	n about full wavelength scale	data)
	Kostovite	Kos	A.156
	Marcasite	Marc	A.157-159
	Niccolite	Nicc	A.160
	Loellingite	Loe	A.161
	Sylvanite	Syl	A.162-163
	Chalcopyrite	Chalcopy	A.164-178
	Geochronite	Geo	A.179-180 N.S. 132

Page

		2
Boulangerite	Воц	A.181-182
Heteromorphite	Hete	A.183
Meneghinite	Mene	A.184-185
Zinkenite	Zin	A.186-187
Jamesonite	Jam	A.188-189
Plagionite	Plag	A.190
Hexagonal Pyrrhotite	Pyrr	A.191
Hodrushite	Hod	A.192
Pyrolusite	Руго	A.193
Alpha-MnO ₂ Nsutite	-Nsu	A.194
Idaite	Ida	A.195-200
Orange Bornite	Or-Bor	A.201-212
Mawsonite	Maws	A.213-215
Stannite Jaune	Stan-J	A.216-221
Stannite	Stan	A.222-227
Renierite	Ren	A.228-234
Luzonite	Luz	A.235-237
Stibioluzonite	Stibioluz	A.238-239
Briartite	Bri	A.240-242
Coronadite	Coro	A.243
Cryptomelane	Стур	A.244
Hollandite	Holl	A.245
Enargite	Enar	A.246-257
Kosterite	Kost	A.258-263
Hematite	Hem	A.264
Ti-Hematite	Ti—Hem	A.265
Ilmanite	Ilm	A.266
Crednerite	Cred	A.267

Chalcophanite	Chalcoph	A.268
Psilomelane	Psi	A.269
Gallite	Gall	A.270-272
Braunite	Brau	A.273
Hausmannite	Haus	A.274
Pyrochroite	Pyroch	A.275
Hetaerolite	Heta	A.276
Groutite	Grou	A.277
(values from 4	wavelength data)	
Antimony		A.278
Dyscrasite	Dysc	A.278
Paradocrasite	Par	A.279
Melonite	Melo	A.280
Bismuth	Bis	A.280
Å Kitaite	Kit	A.281
Rammelsbergite	Ramm	A.281-282
Millerite	Mill	A.282
Arsenopyrite	Ars	A.283
Stannopalladinite	Stannop	A.284
Arsenic	Arse	A.285+
Breithaupite	Brei	A.286
Schapbachite	Schapb	A.286
Stibnite	Stib	A.287
Hessite	Hess	A.288
Bismuthinite	Bism	A.289
Launayite	Laun	A.289
Veenite	Vee	A.290
Sorbyite	Sor	A.290

thaile

XI.

XI

.

Page

٠

Twinnite	Twinn	A•291
Tintinaite	Tint	A.292
Playfairite	Play	A.292
Sterryite	Ster	A.293
Guettardite	Guet	A.294 3
Bournonite	Bourn	A.295
Chalcocite	Chalc	A.296
Eskebornite	Eskeb	A.297
Getehellite	Get	A.297
Stannoidite	Stann	A.298
Cinnabar	Cin	A.298-299
Magnetoplumbite	Magneto	A.300
Rutile		A.300
Nb-Rutile		A.301
Tapiolite	Тар	A.301-302
Plattnerite	Plat	A.302
Wolframite	Wolf	A.303
Wodginite	Mod	A.303
Umangite	Uman	A.304
Staringite	Star	A.305
Klockmannite	Kloc	A.305
Cassiterite	Cass	A.306
Geikielite	Gei	A.306
Covellite	Covel	A30 7-3 08
Table XI 1. Mean Transmittanc	e Values of some Cut	
Gemstones		A.309
Table XI 2. Quantitative Colo	ur Values of some Cut	
Gemstones		A.310

×I.	Figure XI 1. Chromaticity Diagram with Colour Points	
	of some Cut Gemstones	A.311
XI.	Figures XI 2-4.Spectral Transmittance Curves of	
	Gemstones	A•312-314
XII.	Figure XII 1.Showing marked variations in Spectral	
	Reflectivity values quoted for specific minerals	A.315
III.1	PL/1 Computer Programme "SPECTR" to compute Spectral R	A.316
VI 1a.	PL/1 Computer Programme "REFLECT" to Compute Tristimulus	
	Values & Chromaticity Coordinates	A.317-319
1b.	Example of listing data for the Programme "REFLECT"	A.320-321
VI 2a.	PL/1 Computer Programme "SLOPE" to compute ratios of	
	slopes of constant dominant wavelength	A.322
2b.	Example of listing data for the Programme "SLOPE"	A.323
VI 3.	Tabular Ratios	A.324-330
VI 4a.	PL/1 Computer Programme "CHROM" to compute Dominant	
	& Complementary Wavelengths & Purities	A.331-333
4b.	Example of listing data for the Programme "CHROM"	A.334
VIII 1	• PL/1 Computer Programme "COLOR" to compute Normalized	
	Spectral Distributions, Tristimulus Values & Coordinates	
	of a Light Source	A.335-336

Page

INTRODUCTION

The colour of a mineral is one of the simplest qualitative properties that can be used as an aid to distinguishing it from other minerals, even though the same mineral may show different colours and different minerals may have the same colour.

The quantitative measurement of colour involves several theoretical and practical difficulties. Other physical properties that can be measured more easily have therefore been used for mineral identification and it is only relatively recently that an interest in the quantitative measurement of colour in mineralogy has developed.

One branch of mineralogy in which colour is of prime importance is gemmology, where small colour differences may greatly affect the relative value of two otherwise identical specimens. Once a gemstone has been facetted, transmitted light methods of determining its spectral transmission are difficult or impossible to apply, so it was decided that an investigation of the use of reflected light methods would be made.

At the same time, the application of similar methods to the measurement of colour in opaque minerals was also investigated, since it promised to be a useful additional method for the identification of these minerals.

It was found that the use of reflected light method in non-opaque minerals including gemstones was unfavourable for purposes of quantitative colour measurement.

I.

After a theoretical study therefore, an alternative method was developed using a matching liquid to determine the spectral transmission of a facetted gemstone for colour compatison.

Finally, it was also decided to investigate some colour problems in minerals, such as changes in the observed colour of a mineral that occur as its grain size is reduced.

II. LITERATURE REVIEW ON THEORY OF COLOUR MEASUREMENT

II.1. INTRODUCTION

The art of coloring started many thousands of years ago, but the science of colour began in the last centuries. It was founded by Isaac Newton (1866) hwo separated the components of homogeneous white light (the sun light) into a sequence of coloured rays. In recent years modern methods of colour measurement have been developed. Concepts , methods and quantitative data have become standardized and used by colorimetrists and research workers.

Despite the fact that colour is an important physical property made use of in mineralogy, and particularly in gemmology, in various ways (e.g. specimen colour, colours seen under the microscope in polarised light, etc.), there has been comparatively little use or understanding of the concepts of quantitative colour measurement.

A summary of the necessary basic information has therefore been prepared from the literature, which is abundant. Further details if required may be found in the following useful books, and periodical papers listed in the reference section.

by the Committee on Colorimetry of
the Optical Society of America,1968.
by Gunter Wyszecki and W.S.Stiles,
1967.
by W₀D∙Wright, 1969.

(4) ' Physical Aspects of Colour' by Dr. P.J.Bouma, 1947.

(5) 'Color in Business, Science and Industry' by D.8. Judd & G. Wyszecki, 1963.

(6) 'Sources of Color Science' selected and edited by D.L. MacAdam, 1970.

In 1931 the Commission Internationale de l'Eclairage (C.I.E.) first adopted a set of data to define the colour- matching characteristics of standard observers (that is of the average eye) and established a reference framework for the specifications of colours . Armed with this reference framework, specifications of various standard stimuli (light sources) and a standard chromaticity diagram were derived.

Any colour is then determined with reference to a standard stimulus or standard stimuli and expressed by three numbers termed tristimulus values. It can also be represented in the standard C.I.E. chromaticity diagram and characterised by numbers, namely dominant (or complementary) wavelength, excitation purity and relative brightness.

Since basic data representing the normal eye as standardised by the C.I.E. colour specifications are independent of the colour vision of any particular individual, they are reproducible from one laboratory to another.

II.2. PSYCHOPHYSICAL CONCEPTS OF COLOUR

Man has been aware of colour since immemorial time . Aristotle first realized that light is necessary for colour vision. It is now well known that colours are seen because of light. The phenomena of light have been explained by wave (Maxwell's electromagnetic) and quantum theories. Both theories have been accepted, as light has a dual nature, possessing both wave and corpuscular properties.

As far as the measurement of colour is concerned the concepts of light and colour need to be defined by the procedures which are precribed for their measurements.

The measurement of colour is not a purely physical practice. Physiology and in some cases (such as sensation, perception, recall, recognition, imagination, motivation, feeling, emotion, reasoning, etc.) psychology are involved in the measurement, since colour - matching experiments to obtain basic data were made by human observers.

When a beam of light strikes the retine of the eye the colour sensation is interpreted by the mind. Colour sensation which may be defined as the primary conscious response to excitation of the visual mechanism has three attributes, hue, saturation and brightness as interpreted by the eye and mind. Sensation is specifically the direct result of consciousness of the present stimulation of the sense organs, as distinguished from perception, which includes the combination of different sensations and utilization of past experience in recognizing the objects and facts from which the present stimulation arises.

5

Objects are very commonly recognized and classified according to the colour of the light they reflect. The colour of an object depends upon the effect of its selective absorption, upon the spectral distribution of the incident radiant energy and upon the psychophysical functions of human vision.

It is obvious that subjects of light and colour are linked to the sciences of physics, chemistry, physiology, and in some cases psychology. Light and colour, therefore, are defined as psychophysical concepts.

II 3. ATTRIBUTES OF COLOUR

Light is characterised by its frequency, velocity and wavelength. Since the velocity is constant in a given medium, the frequency and wavelength are inversely proportional. However, wavelength is usually quoted in preference to frequency, as the numbers required are smaller. Table II 1 shows the colour names given to light of certain wavelength ranges in approximate divisions.

Wavelength (nm)	Colour name
380 - 450	Violet
450 - 490	Blue
490 - 560	Green
560 - 590	Yellow
590 - 630	Orange
630 - 780	Red

Table II 1

There is, of course, a continuous series of pure colours gradually passing from the one into the others. They are known as hues and illustrated, for example, in Plate 1.

Each hue (spectrum colour) has several different colours (having the same brightness) when it becomes progressively paler till it approachswhite. The progression from a spectrum colour (retaining its hue throughout towards white is said to be one of desaturation. The aspect in which the individual members of such series differ, namely the property of being more or less white, we call their saturations. Plate 2 shows a green hue giving a gradual change of saturation. The saturation increases progressively from zero in the case of white sample (achromatic) to a maximum in the case of a highly saturated colour sample (chromatic).

A colour retaining its two properties, hue and saturation, will give rise to a slightly different sensation of colour when its brightness level is changed. In other words if two samples have the same hue and saturation but differ in brightness they will appear to be different colours.

Thus the colour sensation has three attributes, namely hue, saturation and brightness. Expressed differently, therefore, a colour sensation is completely determined by these three magnitudes .

Plate 1 a. Hue circuit of high saturation, brightness varying to give the highest saturation of each hue. (from Plate 19 in the 'Science of Color' published by the Committee on Colorimetry Optical Society of America, 1968)

of Colour' by W.D.Wright, 1969)

Plate 2 a. Polar arrangement of various saturations of several hues, all having the same brightness. (from Plate 18 in the 'Science of Color' published by the Committee on Colorimetry Optical Society of America, 1968)

Plate 2b. Grey-to-Green series giving approximately equal subjective intervals of saturation. (from Plate 8 facing Page 102 in the 'Measurement of Colour by W.D.Wright, 1969)

THE SENSITIVITY OF THE EYE

Relative Luminous Efficiency Functions

The most important natural light source is the sun. Many spectroradiometric measurements of the spectral energy distributions of the sun have been made and reported in the literature (Abbot et al 1923; Kimball 1928; Moon 1940; Taylor and Kerr 1941; MacAdam 1958 ; Henderson and Hodgkiss 1963; and Budde 1963). The significant spectral distribution data taken from Wyszecki and Stiles (1967) are shown in Figures II.1 and II.2.

Figure II.2 contains relative spectral irradiance distributions of daylight at correlated colour temperatures 5500, 6500 and 7500°K. They are considered as the most typical spectral distributions of irradiance produced by daylight at the earth's surface and are recommanded as guides in the development of sources of ' artificial daylight.

The above data show that the spectrum of the sun radiates approximately equal amounts of energy per unit wavelength interval throughout the visible range. But these equal amounts of energy of different wavelengths do not produce visible sensation having equal brightnesses. In other words the brightness sensitivity of the eye is not equal for all wavelengths of the visible spectrum. The sensitivity of the eye to radiant energy depends upon the wavelength.

The conversion of light energy into nervous energy takes place in the light-sensitive retina of the eye. The retina contains two kinds of light sensitive elements, rods and cones. Rods are receptors which function in the low level of illumination (scotopic vision), whereas cones operate at high illumination levels (photopic vision). The luminance level of the normal photopic range is from about one to fifteen foot-lamberts^{*} (Brown, 1951).

Important investigations of the spectral sensitivity of the eye were made by Gibson and Tyndall (1923), Crawford (1949), Judd and Wyszecki (1963), Wright (1946) and others. In such investigations spectral sensitivity was recorded subjectively by finding the energy required at each wavelength in the visible spectrum to produce a response of constant brightness; for cones, the observations were made under photopic conditions or by using the foveal arga of the retina, while the rod sensitivity was obtained at near-threshold illumination using the extra-fovea (Wright, 1969). The sensitivity curve was then given by plotting the inverse of the energy obtained against wavelength.

Since only the relative sensitivity to the various wavelengths was of interest, all values were multiplied by a constant so that the maxima were equal to unity. These values thus obtained are termed the relative luminous efficiency functions.

Figure II.3 shows scotopic ($V\lambda$) and photopic ($V\lambda$) curves as standardised in 1951 and 1924 respectively by the C.I.E. The rods have their maximum sensitivity at a wavelength of 507 nm and the cones at one of about 555 nm. The curves as a whole have been shifted with respect to each other.

* 1 foot-lambert = 0.0003426 candle per square centimeter(CCOSA 1968).

Figure II :. Spectral distributions of irrediance of direct sunlight in absolute unit. (Wm⁻² / / ¹). Uprer curve: above atmosphere, lower curve: at sea level. (from Moon, 1940)

Figure II 2. Relative spectral distributions of irradiance of chose pages of against, of correlated colour temperatures, 5-10, 0500, 750° k. (from Budo, Wyszecki and MacAdam, 1964)

Figure 11 3. Standard relative luminous efficiency functions for photopic (VN) and scotopic (V'N) vision, (from Wyszecki and Stiles, 1967) and also showing the Perkinje effect.

A considerable difference between the two functions is that the relative brightness in different coloured objects alters when the quantity of light is greatly reduced. If one half of the field of vision, for instance, is strongly illuminated with yellow light of 581 nm and the other half with green light of 530 nm the eye sensitivity for these two wavelengths is equal. When the illumination levels are reduced by the same factor, the powers of the two halves have indeed remained equal but the eye sensitivity has become quite different for the two lights.

With these equal powers the green light has a much stronger apparent brightness than the yellow light (Figure II.3). This is known as the Purkinje effect. Expressed differently, in order to obtain the same apparent brightness we shall have to transmit much more energy per second of violet or red light to the eye than the green light.

It became necessary to select one of the relative efficiency functions to be used to obtain standard data specifying visual sensitivity for colour differences. When colours are observed at low luminance levels such as under twilight conditions or in areas of high density in colour transparencies, the scotopic function $(V'\lambda)$ would be useful to obtain data.

Normally, colour differences are observed under high illumination levels (1.40., higher than one foot-lambert) and therefore the photopic (V_N) function was selected by the C.I.E. and used to derive the basic colour-matching functions for general purposes of colour measurements.

It was later verified from the experimental data by Brown (1951) that sensitivity to colour differences remains constant for a

19
normal observer until the field luminance drops below about one footlambert. Below this level the colour discrimination becomes poorer, slowly at first, and then rapidly.

Sensitivity To Differences Of Hue And Saturation

In the same way that the sensitivity of the eye to small differences of brightness varies, so there are sensitivities to small differences of hue (wavelength) and saturation (purity).

Hue discrimination was measured by setting just-noticeable differences of wavelengths. Starting with the two halves of the photometric field illuminated by light of the same wavelength λ and luminance (brightness), the wavelength of one half of the field was then gradually changed to $\lambda \pm d\lambda$, at the same time maintaining the brightness match between the two halves, until a just-noticeable chromaticness^{*} difference was detected (Wright and Pitt, 1934; Bedford and Wyszecki, 1958). The average difference $d\lambda = [(+d\lambda) + (-d\lambda)]/2$ was obtained from several repeated measurements for each comparison wavelength and plotted against λ .

All curves have the same general appearance as shown in Figure II.4. It is regarded only as typical , since the differences between individuals are fairly large.

* Chromaticness = hue and saturation, taken together, expressive of the quality of colour sensation as distinguished from its intensity (CCOSA 1968).

Figure II 4. Typical wavelength discrimination for a normal observer using a 2°field of view. (Wright and Pitt, 1934)

Figure II 5. Average purity discrimination as a function of wavelength (Martin et al, 1933,and Dones and Lowry, 1926)

Figure II.4 shows that the difference of wavelength which can just be detected by the normal eye varies irregularly from end of the spectrum to the other. A wavelength difference of about 1 nm will give rise to a just-noticeable chromaticness difference in the yelloworange (590 nm) part of the spectrum and again in the blue-green(490 nm) under a 2-degrees field of observation. Under large field conditions small differences of wavelength might be detectable in these regions of the spectrum (Wright, 1969). Hue discrimination rapidly becomes poor at both ends of the visible spectrum.

The sensitivity of the eye to differences of saturation is expressed by the number of just-noticeably different mixtures of white with light of any given wavelength. In the experiments additive mixtures of a monochromatic light of a given wavelength and a given achromatic (white) light were produced in two halves of a photometric field. The luminance of the both lights can be varied independently, thus providing a series of colours ranging from a pure white to a spectrum colour.

The observer was required to determine just-noticeable differences or equally differences of saturation by changing the colour of one half of the photometric field (Martin et al , 1933).

An alternative method was to make repeated colour matches and deduce the just-noticeable difference from the standard deviation of the matches (MacAdam , 1942).

In both cases it was found that the sensitivity to saturation was least. (i.e. the number of steps between white and the spectral radiation was least) for wavelength in the yellow part (570 nm) of the spectrum, as shown in Figure II.5 (taken from Wyszecki and Stiles, 1967). This implies that a monochromatic light of wavelength 570 nm is in some sense less saturated than light of any other wavelength.

In conclusion, the photopic luminous efficiency functions $V \ge play$ an important part in the derivation of colour-matching functions. The sensitivity of the eye to small differences of hue (wavelength) and saturation (purity) are of special interest and are major problems in measurements of colour discrimination, and are described in the later sections.

II.5. SPECTRAL ENERGY DISTRIBUTION AND COUOUR SENSATION

Experiments on radiant energy distribution of light sources showed that there is a relation between spectral composition of light and colour sensation. A white light sources, such as the sun, radiates more or less equal energy throughout the visible spectrum . In other words when the integrated white light is dispersed into distinguishable components an equal distribution of energy over the spectrum will result. If its spectral energies were plotted against wavelength a flat curve will be obtained. There is no region in which the energy is greater over other regions of the spectrum.

When the energy distribution at some wavelengths is lower the light in general appears coloured . A yellow stimulus of a source, for instance, is due to a high energy distribution at long wavelengths and low energy distribution in the shorter wavelength regions.

The spectral energy distribution $(P\lambda)$ is a purely numerical series as a function of wavelength. Wavelength and intensity of light are characteristics of the appropriate colour response. This is known as the colour stimulus (Q).

For object colours the same principle applies, because they act as secondary light sources. When radiant energy falls onto a surface of an object the spectral energy distribution (P_{N}) of the incident light is altered after reflection by the surface of the object. The spectral energy distribution, the resultant of the combined

15

action of the incident light (P_{λ}) and reflection power (R_{λ}) of the object is equal to the colour stimulus of that object. that is,

$$P \lambda \cdot R \lambda = Q$$
.

This interrelations are the fundamental facts to define object colours and are illustrated in Figure II.6. Light sources in general having different energy distributions cause different colour response. It appears that different colour stimuli from an object caused by different light sources can be measured using the above general expression.

It can be assumed that the retina (cone) possesses three dufferent types of light sensitive photo cells which are distinguished from one another by their spectral sensitivities. It can also be assumed that the first cell has its maximum sensitivity in the red part of the spectrum, the second in the green and the third in the blue. When a light beam stimulates the eye the three photo cells operate together simultaneously and form three magnitudes by which a colour sensation is determined.

The above assumption makes quantitative colour measurement possible by means of a photo-electric device functioning exactly the same as those of the retina. With such apparatus measurements of spectral reflectivity (or transmittance) on an object surface can be made and followed by appropriate calculation to derive the three magnitudes which will represent the attributes of colour sensation.

16

non-opaque object

II.6. PRINCIPLES OF COLOUR MEASUREMENT

By experiments it was found that any colour could be produced by varying appropriate amounts of three suitable radiations (colours). The fundamental principles of colour measurement were first postulated by Grassmann (1854) and were familiar to Maxwell (1860 & 1872), Helmholtz (1866) and others.

Experimental checks were carried out later by Blottian (1947), Trezona (1954) and recently by Stiles (1963). Two significant investigations were made by Guild (1924 & 1931) and Wright (1928-1929) to determine the relative amounts of three specified radiations required to match the colours in the spectrum.

Their colour mixture data were used in 1931 by the Commission Internationale de l'Eclairage (C.I.E.) to standardize the colour-matching functions of a normal observer and to adopt a standard framework for colour specification.

One of the basic laws of colour theory would be expressed thus: By mixing three selected spectral colours in definite proportions any given colour sensation can be matched.

Grassmann's first law states that three primary colours can be selected so that it is impossible to match one of them by any mixture of the other two.

The primary colour stimuli employed in the colour-matching

experiments were saturated red, green and blue, thus satisfying the above law none of them can be produced by a mixture of the rest of two radiations. But with these primary colours a yellow can be produced by mixing the red and green, and a purple by mixing blue and red. All intermediate hues of successive degrees of desaturation can be produced by combining the stimuli in appropriate definite proportions. A white is obtained by mixing the correct proportions of all three stimuli and is demonstrated in Plate 3.

For a given colour Q , the colour equation can be conveniently expressed as

$$R(R) + G(G) + B(B) = Q(Q)$$
.

where R, G and B are amounts of the three primary colours (R), (G) and (B), and they are termed the tristimulus values required to produce the Q quantity of the (Q) colour. It is possible and convenient to represent colours in colour space by three dimensional vectors, and colour matches by linear equations between such vectors. The symbol Q, for instance, is a vector representing a colour and R,G,B are the vectors representing the amounts of three fixed primaries. A three dimensional vector diagram illustrating a colour space and a corresponding two dimensional colour plane are shown in Figure II.7.

Grassmann's third law says that if two colours Q₁ and Q₂ are produced by mixtures of three radiations, the colours together , when mixed additively, will be matched by the sum of the two mixtures similarly combined.

i.e., if

$$R_1(R) + G_1(G) + B_1(B) = Q_1(Q)$$
 and
 $R_2(R) + G_2(G) + B_2(B) = Q_2(Q)$

then

$$\frac{R_1 + R_2}{2}(R) + \frac{G_1 + G_2}{2}(G) + \frac{B_1 + B_2}{2}(B) = \frac{Q_1 + Q_2}{2}(Q) = Q_3(Q)$$

The new colour Q_3 is thus obtained by the additive mixing of the two colours Q_1 and Q_2 and lies on the straight line connecting Q_1 and Q_2 , as shown in Figure II.8.

If m units of Q_1 are mixed with n units of Q_2 , (m + n) units of a new colour Q_3 will be obtained. The colour Q_3 will lie at a distance on the line $Q_1 Q_2$ such that $Q_1 Q_3 / Q_3 Q_2 = n / m$.

For three or more colours the same principle applies. A convention was made to base the units of (R), (G) and (B) on a match on a white of some defined quality. For this purpose there was an assumption that white may be regarded as a colour (achromatic)^{*} in which neither red nor green nor blue predominates. The standard white, therefore, could be defined by its colour temperature if it were a Plankian radiator (Black body), whereas the qualities of other colours (chromatic colours) could be defined by their dominant wavelength and purity corresponding, in an approximate way, to their hue and saturation respectively.

Based on such units the colour equation for the standard white (E) becomes:

$$1(E) = R(R) + G(G) + B(B)$$

* achromatic colour: colour that does not elicit hue.

white, grey, black are achromatic colours.

Figure 11 7. A three dimensional vector diagram illustrating a colour space and **a corresponding** two dimensional colour plane.

Plate 3. Additive combination of red, green and blue producing white. Partly overlapping mixture of red and green produces yellow, red and blue produces purple, blue and green produces blue-green.

(from Plate 6 in the 'Science of Color' by the Committee on Colorimetry Optical Society of America, 1968)

Figure II 8. Illustrating the additive mixture of the two colours Q $_1$ & Q $_2$ producing a new colour Q $_3$.

$$r = \frac{R}{R + G + B} = 1 / 3$$

$$g = \frac{G}{R + G + B} = 1 / 3$$

$$b = \frac{B}{R + G + B} = 1 / 3$$

This particular white in fact is the centroid of the colour triangle. R, G, B are called tristimulus values and r, g, b are termed the chromaticity coordinates. By definition tristimulus values are components necessary in a three-colour mixture matching a sample colour.

Grassmann's second law states that if two different light spots give the same colour sensation they continue to do so if the brightnesses of both are increased or decreased by the same factor . It means that with any change in brightness of a colour, its tristimulus values increase proportionally.

All colours having the same hue and saturation but differing in brightness will be represented by one point in a colour plane. This is illustrated in Figure II.9. Therefore colours slightly different due to variation in brightness annot be distinguidhed by the two-dimensional plane diagram.

Although the colour sensation is defined by three magnitudes only hue and saturation are taken into account in the colour plane, the brightness is ignored. Such a colour plane is called a chromaticity diagram. It is in fact a plane of constant brightness. The chromaticity (quality of hue and saturation) of a synthesized colour may be specified in terms of the proportions of each of two of the

20

í it

Figure 11 9. A vector diagram with a colour plane of constant brightness.

components in the trichromatic mixture.

From the above laws any additive mixture of the primary colours RGB will produce a colour point lying within the colour triangle formed by three spectral radiations RGB. Practically this additive colour-mixture system does not hold the fundamental rule which states that all spectrum colours must lie inside the colour triangle. Some of the spectrum colours lie slightly beyond the triangle RGB. They cannot be produced by positive mixtures of RGB. Therefore the fundamental law of additive colour-matching has a limitation in its application.

However the exceptions were eliminated by introducing subtractive amounts in the colour-matching. For example the colour of wavelength 510 nm cannot be produced by additive mixing of RGB but it can be matched in the following way expressed algebraically thus,

$$(510) + r(R) = g(G) + b(B).$$

or $(510) = -r(R) + g(G) + b(B).$

Hence the spectrum colour (510) can be produced by a negative quantity of (R) plus two positive quantities of (G) and (B). In this manner the fundamental law holds universally.

Based on these fundamental criteria of colour-mixing theory, extensive experiments were made to specify the units of reference stimuli (R), (G) and (B) and their quantities required to match each wavelength colour in turn in the equal-energy spectrum.

To fullfil the above requirements important investigations were undertaken by Wright (1928-29 & 1930) and Guild (1931) indepently, using very different instruments and with different groups of observers. In Guild's experiment seven observers made colour matches through the spectrum. The instrumental stimuli were adjusted to be equal in a match on the N.P.L. white.

Wright used ten observers in his investigation and his reference stimuli were monochromatic radiations of wavelengths 650 (R), 530 (G) and 460 (B) nm. The units were adjusted so that equal amounts of the red and green stimuli were required in the match of a monochromatic yellow of wavelength 582.5 nm and equal amounts of the green and blue in the match on 494.0 nm.

Both sets of data obtained by Guild and Wright were transformed by the C.I.E. to the same reference stimuli, namely 700.0, 546.1 and 435.8 nm, with the units based on the N.P.L. white. The mean results of the two investigations were compared and it was found that they were in good agreement. Therefore the average values of the Guild-Wright investigations were accepted as basic data for further experimente. These data are representative of a normal eye and called the 1931 standard observer by definition.

In 1955 a redetermination of the colour-matching functions was made by Stiles (1955) and his data showed that no important errors were present in Guild-Wright data.

Figures II.10 and II.11 show the mean chromaticity coordinates of spectrum colours, obtained by Guild and Wright respectively. In both figures the coordinates add up to unity at each wavelength. But one or the other of the coordinates is always negative, because those colours indicated by negative coordinates cannot be matched by a positive mixture of three components. In such case a match was established with a mixture of the sample light and one of the components. The amount of the component which is mixed with the sample light was taken as a negative quantity. It can be explained by the following expressions thus,

$$r(R) + g(G) = Q(Q) + b(B)$$

or
$$r(R) + g(G) - b(B) = Q(Q).$$

To obtain the amounts of (R), (G) and (B) in the equalenergy spectrum the relative luminous efficiency function (V λ) was used(Figure II.3) instead of making direct colour matches on an equalenergy spectrum, because the light flux (luminance) at wavelength λ in the equal-energy spectrum is proportional to V λ .

If the luminances are written as V(R), V(G), V(B) the colour equation becomes

$$V(Q) = r_{\bullet}V(R) + g_{\bullet}V(G) + b_{\bullet}V(B)_{\bullet}$$

the spectral colour with wavelength λ is

$$V(\lambda) = r V(R) + g V(G) + b V(B).$$

Since the light flux at wavelength (λ) in the equal-energy spectrum is proportional to V λ , the unit quantities of the primaries in the equal-energy spectrum will be proportional to

$$\frac{V\lambda}{V(\lambda)} = \frac{V\lambda}{r V(R) + g V(G) + b V(B)} = m\lambda$$

The value V h is already in existance(Figure II.3), the chromaticity coordinates , r h , g h , b h , and the reference stimuli, V(R), V(G), V(B) are known experimentally. The colour-matching functions (also called distribution coefficients, or tristimulus values of the spectrum),

 $\bar{r}\lambda$, $\bar{g}\lambda$, $\bar{b}\lambda$, of the equal-energy spectrum are given by

Since only the relative values of the colour-matching functions are of interest, the coefficients for all wavelengths were multiplied by the same factor, and thus they were finally derived to satisfy the equation

$$V\lambda = a \text{ constant} \left[\overline{r} \lambda V(R) + \overline{g} \lambda V(G) + \overline{b} \lambda V(B) \right]$$

Figure II.12 which was thus derived from Figures II. 11 and II.10 shows the spectral distribution curves for the equal-energy spectrum expressed in terms of the matching stimuli 700.0 nm, 546.1 nm and 435.8 nm with their units adjusted to be equal in a match on an equal-energy white.

Thus the spectrum colours were broken down into three parameters $\overline{r}\lambda$, $\overline{g}\lambda$ and $\overline{b}\lambda$ measured in terms of the tristimulus values (or distribution coefficients).

These basic data had to be used to compute specifications of a given stimulus. The spectrum locus could be drawn by plotting the spectral chromaticity coordinates, giving the chromaticities of the spectrum colours. It is clear from Figure II.13 that part of the spectrum locus, unfortunately, lie outside the RGB triangle. Therefore it is not a suitable system for colour measurement purposes. The RGB system had to be transformed into a new reference system.

Figure II 10. Mean colour matching results obtanied by Guild. (from Guild, Phil. Trans., 1931)

figure II 11. Hear colour matching results obtained by Wright. (from Wright, Trans. Opt. Soc., 1928-29)

υ

Figure II 13. Chromaticity diagram showing spectrum locus (380-700 nm) in the primary system R.G.P. equalenergy stimulus (E) (from Wyszecki & Stiles, 1967)

II.7. THE C.I.E. SYSTEM OF COLOUR MEASUREMENT

The principles of colorimetry were developed from the starting point of a colour-match with a visual trichromatic colorimeter. The whole of applied colorimetry is based on the primary RGB system. But the RGB system for the notation of colours in space and on a plane diagram is not convenient for practical use. The negative quantities of the chromaticity coordinates create difficulty in the sophisticated computations for colour specifications and cause the spectrum locus to lie outside the RGB colour triangle as shown in Figure II.13.

The C.I.E. (Commission Internationale de l'Eclairage), a body which in 1931 took over the functions of the earlier 'Commission Internationale de Photometrie' was responsible for transforming the RGB system into one based on new primaries XYZ. This new system not only would make use of the experimental data underlying the RGB system but also would introduce changes chiefly intended to simplify computation in colorimetric calculations. Thus the new system was diveloped via a transformation of the RGB coordinates.

This is the transformation of Guild's and Wright's data by mathematical treatments into the new XYZ-CIE system so that the coordinates and tristimulus values of the spectrum are never negative. Details of the transformation equations, if required, from one system to another can be found in the text-books.

In this new system the colour-matching functions $(\bar{r}\lambda, \bar{g}\lambda, \bar{b}\lambda)$ in the old RGB system) are denoted by the symbols $\bar{x}\lambda, \bar{y}\lambda, \bar{z}\lambda$.

25

The 1931 C.I.E. colour-matching functions based on the XYZ primaries are presented by the curves in Figure II.14. Figure II.15 shows the CIE-XYZ standard chromaticity diagram in terms of the reference stimuli (X), (Y) and (Z) with unit based on an equal-energy (E) whose coordinates in the chromaticity diagram are 1/3, 1/3 and 1/3. Table II.2 summerises the relationships between the 1931 CIE-RGB system and the 1931 CIE-XYZ system.

With the new set of reference stimuli XYZ the transformed system has the following characteristics:

- (1) Tristimulus values and coordinates of all spectrum colours are now positive, so the triangle formed by the chromaticity points XYZ completely encloses the spectrum locus.
- (2) The units of (X), (Y) and (Z) are adjusted, as in the RGB system, to be equal in a match of an equal-energy white, so that the equalenergy white (E) lies in the middle of the chromaticity triangle.
- (3) The colour-matching function \overline{y}_{λ} is set to be identical with the luminous efficiency function V_{λ} . It follows that the tristimulus values Y of a given colour is equal to its relative reflection or transmission factor.
- (4) As in the RGB system, the areas under the curves $\overline{x}\lambda$, $\overline{y}\lambda$, $\overline{z}\lambda$ of the spectrum are equal (Figure II.10).

that is,
$$\int \vec{x} \lambda d\lambda = \int \vec{y} \lambda d\lambda = \int \vec{z} \lambda d\lambda$$

(5) The reference stimuli XYZ cannot be reproduced experimentally in the laboratory. They are hypothetical stimuli, but they have real merits as reference coordinates of the C.I.E. system.

26

All colours will be represented by points within the spectrum locus and the purple line connecting the red and blue ends. There is no colour outside the curve.

Standard chromaticity coordinates x, y, z and the colourmatching functions $\bar{x}\lambda$, $\bar{y}\lambda$, $\bar{z}\lambda$, of the equal-energy spectrum are given in Table II.3 (from Wyszecki and Stiles, 1967). These colour-matching functions are to be used in calculations for any light source when its spectral energy distributions are known.

Figure II 14. 1931 C.I.E. colour matching functions x, y, y, zλ. (from Wyszecki & Stiles, 1967)

Figure 1) 15. 1931 C.I.E. chromaticity Hiagram with spectrum locus, purple line, and the chromaticity point of equal-energy stimulus E (from Wyszecki & Stiles, 1967)

Table II 2.

	R (chroma	,G,B System aticity cod	n ordinates)	X,Y,Z System (chromaticity coordinates)		
Stimulus	<u>г</u>	g	b	×	у	Z
(R) 700.0 nm	1	0	D	0,73467	0.26533	0.0000
(G) 546.1 nm	0	1	0	0.27376	0 . 71741	0.00883
(B) 435.8 nm	0	0	1	0.16658	0.00886	0.82456
Equal—energy source(E) 👌	<u>1</u> 3	<u>]</u> 3	13	1 3	1 3
Source A	0.55255	0.32126	0.12619	0.44757	0.40745	0.14498
Source B	0.36230	0.34305	0.29465	0.34842	0.35161	0.29997
Source C	0.28226	0.33326	0.38448	0,31006	0.31616	0.37378

. • •

Relationships between the 1931 C.I.E.-(R,G,B) System and the C.I.E.-(XYZ) System of colour specification

.

(from Wyszecki & Stiles 1967).

.

x_A y_A z_A y_A z_A y_A z_A 0.1741 0.0050 0.8209 380 0.0014 0.0000 0.0005 0.1740 0.0050 0.8210 385 0.0022 0.0001 0.0201 0.1736 0.0049 0.8213 395 0.0076 0.0002 0.0362 0.1730 0.0048 0.8222 405 0.0232 0.0006 0.102 0.2074 0.1720 0.0048 0.8222 405 0.0353 0.0012 0.2074 0.1721 0.0048 0.8235 420 0.1344 0.0400 0.6456 0.1703 0.0059 0.8235 420 0.2148 0.0073 1.0391 0.1669 0.0069 0.8242 430 0.2389 0.0116 1.3856 0.1664 0.0069 0.8247 440 0.3443 0.0230 1.7721 0.1669 0.0086 0.8247 440 0.3443 0.0230 1.7441	Chromaticity Coordinates			Wavelength	Color-Matching Functions			
0.1741 0.0050 0.8209 380 0.0014 0.0000 0.0065 0.1740 0.0050 0.8210 385 0.0022 0.0001 0.0201 0.1736 0.0049 0.8215 395 0.0076 0.0002 0.0362 0.1736 0.0049 0.8215 395 0.0076 0.0004 0.0679 0.1730 0.0048 0.8222 405 0.0312 0.0006 0.1102 0.2074 0.1721 0.0048 0.8225 420 0.1344 0.0022 0.2074 0.1701 0.0051 0.8235 420 0.1344 0.0040 0.6456 0.1703 0.0059 0.8242 430 0.2389 0.0116 1.3356 0.1669 0.0069 0.8242 430 0.2389 0.0168 1.6230 0.1669 0.0069 0.8245 4315 0.3143 0.0239 1.7471 0.1664 0.0109 0.8247 450 0.3483 0.0238 1.7471 <	*1	y _k	2, Z	(nm)	÷.	Ūλ	źż	
0.1740 0.0030 0.8210 385 0.0022 0.0001 0.0021 0.1736 0.0049 0.8213 395 0.0076 0.0002 0.0362 0.1736 0.0049 0.8215 395 0.0076 0.0002 0.0362 0.1730 0.0048 0.8222 405 0.0123 0.0004 0.102 0.1730 0.0048 0.8225 410 0.0135 0.0012 0.2074 0.1721 0.0048 0.8235 420 0.1344 0.0040 0.6436 0.1703 0.0059 0.8235 420 0.1344 0.0040 0.6436 0.1689 0.0069 0.8242 430 0.2839 0.0161 1.3856 0.1669 0.0086 0.8245 443 0.2839 0.0161 1.3856 0.1644 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1566 0.0177 0.8263 455 0.3187 0.0480 1.7441	0.1741	0.0050	0.8209	380	0.0014	0.0000	0.0065	
0.1738 0.0049 0.8213 390 0.0042 0.0002 0.0201 0.1733 0.0048 0.8215 395 0.0076 0.0002 0.0362 0.1733 0.0048 0.8221 405 0.0323 0.0006 0.1102 0.1726 0.0048 0.8225 410 0.0435 0.0012 0.2074 0.1721 0.0048 0.8235 420 0.1344 0.0040 0.64456 0.1703 0.0058 0.8239 425 0.2148 0.00073 1.0391. 0.1669 0.0069 0.8242 433 0.2839 0.0116 1.3836 0.1669 0.0086 0.8247 440 0.3483 0.0230 1.7471 0.1611 0.0138 0.8257 450 0.3362 0.0360 1.7721 0.1566 0.0177 0.8257 450 0.3362 0.0360 1.7721 0.1566 0.0177 0.8263 465 0.2511 0.739 1.531 <t< td=""><td>0.1740</td><td>0.0050</td><td>0.8210</td><td>385</td><td>0.0022</td><td>0.0001</td><td>0.0105</td></t<>	0.1740	0.0050	0.8210	385	0.0022	0.0001	0.0105	
0.1736 0.0049 0.8215 395 0.0076 0.0002 0.0362 0.1733 0.0048 0.8222 405 0.0332 0.0006 0.1102 0.1730 0.0048 0.8222 405 0.0323 0.0006 0.1102 0.1726 0.0048 0.8231 415 0.0776 0.0022 0.3713 0.1714 0.0051 0.8235 420 0.1344 0.0040 0.6456 0.1703 0.0058 0.8239 425 0.2148 0.0073 1.0391 0.1649 0.0069 0.8242 430 0.2839 0.0166 1.7621 0.1640 0.0086 0.8245 4435 0.3483 0.0230 1.7471 0.1611 0.0138 0.8251 445 0.3481 0.0298 1.7826 0.1566 0.0177 0.8263 455 0.3187 0.0480 1.7441 0.1440 0.0397 0.8263 455 0.3187 0.0480 1.7491 <t< td=""><td>0.1738</td><td>0.0049</td><td>0.8213</td><td>390</td><td>0.0042</td><td>0.0001</td><td>0.0201</td></t<>	0.1738	0.0049	0.8213	390	0.0042	0.0001	0.0201	
0.1733 0.0048 0.8219 400 0.0143 0.0004 0.0679 0.1726 0.0048 0.8222 405 0.0232 0.0006 0.1102 0.2074 0.1726 0.0048 0.8233 415 0.0776 0.0022 0.3713 0.1714 0.0051 0.8233 420 0.1344 0.0040 0.6436 0.1703 0.0058 0.8239 425 0.2148 0.0073 1.0391 0.1649 0.0069 0.8242 430 0.2839 0.0168 1.6230 0.1644 0.0199 0.8247 443 0.3483 0.0230 1.7471 0.1611 0.0136 0.8251 445 0.3481 0.0298 1.7826 0.1566 0.0177 0.8263 455 0.3187 0.0460 1.7441 0.1440 0.0297 0.8263 465 0.2908 0.0600 1.6692 0.1351 0.0399 0.8246 465 0.2511 0.0739 1.32876 <	0.1736	0.0049	0.8215	395	0.0076	0.0002	0.0362	
0.1735 0.0018 0.0222 405 0.0332 0.0006 0.1102 0.1726 0.0048 0.8226 410 0.0433 0.0012 0.2774 0.171 0.0048 0.8233 420 0.1344 0.0040 0.6456 0.1703 0.0058 0.8235 420 0.1344 0.0040 0.6456 0.1703 0.0058 0.8235 430 0.2839 0.0116 1.3856 0.1669 0.0086 0.8242 430 0.2839 0.0168 1.6230 0.1644 0.0109 0.8247 440 0.3481 0.0230 1.7471 0.1611 0.0138 0.8251 445 0.3481 0.0230 1.7471 0.1510 0.0227 0.8263 455 0.3187 0.0480 1.7441 0.1404 0.0227 0.8263 465 0.2511 0.0739 1.5331 0.1241 0.1327 0.8264 465 0.2511 0.0739 1.5331	0 1733	0.0048	0 8219	. 400	0.0143	0 000.1	0.0679	
0.1725 0.0018 0.0222 100 0.0232 0.0012 0.2074 0.1721 0.0048 0.8231 415 0.0776 0.0022 0.3713 0.1714 0.0051 0.8235 420 0.1344 0.00073 1.0391 0.1689 0.0069 0.8242 430 0.2839 0.0116 1.3856 0.1649 0.0086 0.8242 430 0.2839 0.0116 1.3856 0.1649 0.0086 0.8247 440 0.3481 0.0298 1.7721 0.1641 0.0139 0.8251 445 0.3481 0.0298 1.7721 0.1566 0.0177 0.8257 450 0.3187 0.0480 1.7721 0.1566 0.0177 0.8253 450 0.3187 0.0480 1.7721 0.1566 0.0177 0.8263 465 0.2511 0.0739 1.3281 0.1241 0.1126 1.0419 0.910 1.2876 0.1353 0.1327	0 1730	0.0048	0.8272	405	0.0145	0.0004	0.0073	
0.1720 0.0013 0.0221 10 0.0776 0.0022 0.0171 0.1714 0.0051 0.8235 420 0.1344 0.0040 0.6456 0.1703 0.0058 0.8235 420 0.1344 0.0040 0.6456 0.1703 0.0059 0.8242 430 0.2839 0.0116 1.3856 0.1649 0.0066 0.8245 443 0.3483 0.0230 1.7471 0.1611 0.0138 0.8251 445 0.3481 0.0298 1.7826 0.1566 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1510 0.0227 0.8263 455 0.3187 0.0480 1.7441 0.1440 0.0297 0.8263 465 0.2511 0.0739 1.5331 0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.1096 0.0868 0.8036 475 0.1421 0.1126 1.0419	0 1726	0.0048	0.8226	410	0.0.135	0.0000	0.1102	
0.1711 0.0051 0.8235 410 0.0140 0.0042 0.1141 0.1703 0.0058 0.8239 425 0.1148 0.0073 1.0391 0.1689 0.0069 0.8242 435 0.2189 0.0116 1.3856 0.1644 0.0109 0.8247 440 0.3483 0.0230 1.7471 0.1610 0.0138 0.8257 450 0.3362 0.0380 1.7721 0.1510 0.0227 0.8263 465 0.2598 0.06600 1.6692 0.1566 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1510 0.0227 0.8263 465 0.2591 0.0660 1.6692 0.1350 0.0399 0.8246 465 0.2511 0.0799 1.2876 0.1241 0.0578 0.8181 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7760 480 0.0958 0.1390 0.8130 <t< td=""><td>0.1720</td><td>0.0048</td><td>0.8231</td><td>415</td><td>0.0776</td><td>0.0072</td><td>0.2014</td></t<>	0.1720	0.0048	0.8231	415	0.0776	0.0072	0.2014	
0.1703 0.0058 0.8239 425 0.2148 0.0073 1.0391 0.1669 0.0086 0.8242 430 0.2839 0.0116 1.5230 0.1669 0.0086 0.8247 440 0.3483 0.0230 1.7411 0.1611 0.0138 0.8251 445 0.3461 0.0298 1.7826 0.1566 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1510 0.0227 0.8263 465 0.2908 0.6600 1.6692 0.1351 0.0399 0.8246 465 0.2908 0.0600 1.6692 0.1354 0.0910 1.2876 0.1126 1.0419 0.913 0.1327 0.7760 480 0.0950 0.8130 0.0687 0.2007 0.7366 485 0.0580 0.1693 0.6162 0.0484 0.2950 0.6596 435 0.0580 0.1693 0.6162 0.0325 0.4127 0.5638 495 0.0147	0.1714	0.0051	0.8235	420	0.1344	0.0040	0.6456	
0.1703 0.0038 0.8242 423 0.2148 0.0073 1.0391 0.1669 0.0066 0.8242 430 0.2839 0.0116 1.3856 0.1669 0.0086 0.8247 440 0.3483 0.0230 1.7471 0.1611 0.0138 0.8251 445 0.3481 0.0298 1.7826 0.1566 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1566 0.0177 0.8253 460 0.2908 0.0600 1.6692 0.1355 0.0399 0.8246 465 0.2511 0.0739 1.5281 0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.1996 0.0868 0.8036 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7760 480 0.0956 0.1390 0.8130 0.0687 0.2007 0.7306 485 0.0320 0.2080 0.6162 <td< td=""><td>0.1707</td><td>0.0069</td><td>0 0000</td><td></td><td>0.0140</td><td>0.0073</td><td></td></td<>	0.1707	0.0069	0 0000		0.0140	0.0073		
0.1689 0.0096 0.8242 430 0.2839 0.0116 1.3856 0.1644 0.0109 0.8247 440 0.3483 0.0230 1.7471 0.1611 0.0138 0.8251 445 0.3481 0.0298 1.7826 0.1566 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1510 0.0227 0.8263 455 0.3187 0.0480 1.7411 0.1400 0.0297 0.8263 460 0.2908 0.0600 1.6692 0.1355 0.0199 0.8246 465 0.2511 0.0739 1.5281 0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.0487 0.2007 0.7306 485 0.0580 0.1693 0.6162 0.0325 0.4127 0.5638 495 0.0147 0.2586 0.3533 0.0082 0.5384 0.4534 500 0.0024 0.4073 0.2123 <td< td=""><td>0.1703</td><td>0.0058</td><td>0.8239</td><td>425</td><td>0.2148</td><td>0.0073</td><td>1.0391,</td></td<>	0.1703	0.0058	0.8239	425	0.2148	0.0073	1.0391,	
0.1609 0.0086 0.8243 433 0.2835 0.0168 1.6230 0.1644 0.0109 0.8247 440 0.3481 0.0298 1.7826 0.1566 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1510 0.0227 0.8263 455 0.3187 0.0480 1.7441 0.1440 0.0297 0.8263 460 0.2908 0.0600 1.6692 0.1351 0.0378 0.8181 470 0.1954 0.0910 1.2876 0.1096 0.0868 0.8036 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7306 485 0.0580 0.1693 0.6162 0.0454 0.2950 0.6596 490 0.0320 0.2080 0.3533 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2123 0.0339 0.7502 0.2359 510 0.0093 0.5030 0.1582 <td< td=""><td>0.1689</td><td>0.0009</td><td>0.8242</td><td>430</td><td>0.2839</td><td>0.0116</td><td>1.3850</td></td<>	0.1689	0.0009	0.8242	430	0.2839	0.0116	1.3850	
0.1644 0.0109 0.8247 440 0.3483 0.0230 1.7471 0.1611 0.0138 0.8251 445 0.3481 0.0298 1.7826 0.1566 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1510 0.0227 0.8263 450 0.2908 0.0600 1.6692 0.1355 0.0399 0.8246 465 0.2511 0.0739 1.5281 0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.1996 0.0868 0.8036 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7760 480 0.0956 0.1390 0.8130 0.0687 0.2007 0.7306 485 0.0580 0.1693 0.6162 0.0320 0.2080 0.4452 0.2356 0.3533 0.01477 0.2586 0.3533 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720	0.1009	0.0086	0.8245	435	0.3285	0.0168	1.6230	
0.1611 0.0138 0.8231 443 0.3481 0.0298 1.7826 0.1566 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1510 0.0227 0.8263 455 0.3187 0.0480 1.7441 0.1440 0.0297 0.8263 460 0.2908 0.0600 1.6692 0.1351 0.0399 0.8246 465 0.2511 0.0739 1.5281 0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.196 0.0868 0.8036 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7760 480 0.0956 0.1390 0.8130 0.087 0.2007 0.7306 485 0.0580 0.1693 0.6162 0.0454 0.2950 0.6596 490 0.0320 0.2080 0.4652 0.0399 0.6142 0.5638 495 0.0147 0.2286 0.3533 0	0.1644	0.0109	0.8247	440	0.3485	0.0230	1.7471	
0.1566 0.0177 0.8257 450 0.3362 0.0380 1.7721 0.1510 0.0227 0.8263 455 0.3187 0.0480 1.7441 0.1440 0.0297 0.8263 460 0.2908 0.0600 1.6692 0.1355 0.0399 0.8246 465 0.2511 0.0739 1.5231 0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.1096 0.0868 0.8036 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7766 480 0.0956 0.1390 0.8130 0.0687 0.2007 0.7306 485 0.0580 0.1693 0.6162 0.0454 0.2950 0.6596 490 0.0320 0.2080 0.4652 0.0323 0.4127 0.5638 495 0.0147 0.2586 0.3333 0.0049 0.3230 0.2720 0.0393 0.5300 0.1582 0.0399	0.1611	0.0138	0.8251	440	0.3481	0.0298	1.7826	
0.1510 0.0227 0.8263 455 0.3187 0.0480 1.7441 0.1440 0.0297 0.8263 460 0.2908 0.0600 1.6692 0.1355 0.0399 0.8246 465 0.2511 0.0739 1.5281 0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.1096 0.0868 0.8036 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7760 480 0.0956 0.1390 0.8130 0.0687 0.2007 0.7306 485 0.0580 0.1693 0.6162 0.0454 0.2950 0.6596 490 0.0320 0.2080 0.4652 0.0235 0.4127 0.5638 495 0.0147 0.2586 0.3333 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720 0.0139 0.5548 0.3413 505 0.0024 0.4073 0.2123 <td< td=""><td>0.1566</td><td>0.0177</td><td>0.8257</td><td>450</td><td>0.3362</td><td>0.0380</td><td>1.7721</td></td<>	0.1566	0.0177	0.8257	450	0.3362	0.0380	1.7721	
0.1440 0.0297 0.8263 460 0.2908 0.0600 1.6692 0.1355 0.0399 0.8246 465 0.2511 0.0739 1.5281 0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.1096 0.0868 0.8036 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7760 480 0.0956 0.1390 0.8130 0.0687 0.2007 0.7306 485 0.0320 0.2080 0.4652 0.0235 0.4127 0.5638 495 0.0147 0.2586 0.3533 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720 0.0039 0.6548 0.3413 505 0.0024 0.4073 0.2123 0.0139 0.7502 0.2359 510 0.0093 0.5030 0.1582 0.0389 0.8120 0.1491 515 0.0221 0.0573 0.1421 <td< td=""><td>0.1510</td><td>0.0227</td><td>0.8263</td><td>455</td><td>0.3187</td><td>0.0480</td><td>1.7441</td></td<>	0.1510	0.0227	0.8263	455	0.3187	0.0480	1.7441	
0.1355 0.0399 0.8246 465 0.2511 0.0739 1.5281 0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.1096 0.0868 0.8036 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7760 480 0.0956 0.1390 0.8130 0.0687 0.2007 0.7306 485 0.0580 0.1693 0.6162 0.0454 0.2950 0.6596 490 0.0320 0.2080 0.4652 0.0235 0.4127 0.5638 495 0.0147 0.2586 0.3533 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720 0.0039 0.6548 0.3413 505 0.0024 0.4073 0.2123 0.0139 0.7502 0.2359 510 0.0093 0.5030 0.1582 0.0389 0.8120 0.1491 515 0.6822 0.0117 0.0743 <td< td=""><td>0.1440</td><td>0.0297</td><td>0.8263</td><td>460</td><td>0.2908</td><td>0.0600</td><td>1.6692</td></td<>	0.1440	0.0297	0.8263	460	0.2908	0.0600	1.6692	
0.1241 0.0578 0.8181 470 0.1954 0.0910 1.2876 0.1096 0.0868 0.8036 475 0.1421 0.1126 1.0419 0.0913 0.1327 0.7760 480 0.0956 0.1390 0.8130 0.0687 0.2007 0.7306 485 0.0580 0.1693 0.6162 0.0454 0.2950 0.6596 490 0.0320 0.2080 0.4652 0.0235 0.4127 0.5638 495 0.0147 0.2586 0.3533 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720 0.0039 0.6548 0.3413 505 0.0024 0.4073 0.2123 0.0139 0.7502 0.2359 510 0.0093 0.5030 0.1582 0.0389 0.8120 0.1491 515 0.0221 0.6082 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 <td< td=""><td>0.1355</td><td>0.0399</td><td>0.8246</td><td>465</td><td>0.2511</td><td>0.0739</td><td>1.5281</td></td<>	0.1355	0.0399	0.8246	465	0.2511	0.0739	1.5281	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1241	0.0578	0.8181	470	0.1954	0.0910	1.2876	
0.0913 0.1327 0.7760 480 0.0956 0.1390 0.8130 0.0687 0.2007 0.7306 485 0.0580 0.1693 0.6162 0.0454 0.2950 0.6596 490 0.0320 0.2080 0.4652 0.0235 0.4127 0.5638 495 0.0147 0.2586 0.3533 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720 0.0039 0.6548 0.3413 505 0.0024 0.4073 0.2123 0.0139 0.7502 0.2359 510 0.0093 0.5030 0.1582 0.0389 0.8120 0.1491 515 0.0291 0.6082 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 0.1142 0.8262 0.0596 525 0.1096 0.7932 0.0573 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 <td< td=""><td>0.1096</td><td>0.0868</td><td>0.8036</td><td>475</td><td>0.1421</td><td>0.1126</td><td>1.0419</td></td<>	0.1096	0.0868	0.8036	475	0.1421	0.1126	1.0419	
0.0687 0.2007 0.7306 485 0.0580 0.1693 0.6162 0.0454 0.2950 0.6596 490 0.0320 0.2080 0.4652 0.0235 0.4127 0.5638 495 0.0147 0.2586 0.3333 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720 0.0039 0.6548 0.3413 505 0.0024 0.4073 0.2123 0.0139 0.7502 0.2359 510 0.0093 0.5030 0.1582 0.0389 0.8120 0.1491 515 0.0291 0.6082 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 0.1142 0.8262 0.0596 525 0.1096 0.7932 0.0573 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 <td< td=""><td>0.0913</td><td>0.1327</td><td>0.7760</td><td>480</td><td>0.0956</td><td>0.1390</td><td>0.8130</td></td<>	0.0913	0.1327	0.7760	480	0.0956	0.1390	0.8130	
0.0454 0.2950 0.6596 490 0.0320 0.2080 0.4652 0.0235 0.4127 0.5638 495 0.0147 0.2586 0.3533 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720 0.0039 0.6548 0.3413 505 0.0024 0.4073 0.2123 0.0139 0.7502 0.2359 510 0.0093 0.5030 0.1582 0.0389 0.8120 0.1491 515 0.0291 0.6682 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 0.1142 0.8262 0.0596 525 0.1096 0.7932 0.0573 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0037 <td< td=""><td>0.0687</td><td>0.2007</td><td>0.7306</td><td>485</td><td>0.0580</td><td>· 0.1693</td><td>0.6162</td></td<>	0.0687	0.2007	0.7306	485	0.0580	· 0.1693	0.6162	
0.0235 0.4127 0.5638 495 0.0147 0.2586 0.3333 0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720 0.0039 0.6548 0.3413 505 0.0024 0.4073 0.2123 0.0139 0.7502 0.2359 510 0.0093 0.5030 0.1582 0.0389 0.8120 0.1491 515 0.0291 0.6682 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 0.1142 0.8262 0.0596 525 0.1096 0.7932 0.0573 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0203 0.2658 0.7243 0.0024 560 0.5945 0.9950 0.0037 <td< td=""><td>0.0454</td><td>0.2950</td><td>0.6596</td><td>490</td><td>0.0320</td><td>0.2080</td><td>0.4652 ·</td></td<>	0.0454	0.2950	0.6596	490	0.0320	0.2080	0.4652 ·	
0.0082 0.5384 0.4534 500 0.0049 0.3230 0.2720 0.0039 0.6548 0.3413 505 0.0024 0.4073 0.2123 0.0139 0.7502 0.2359 510 0.0093 0.5030 0.1582 0.0389 0.8120 0.1491 515 0.0291 0.6082 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 0.1142 0.8262 0.0596 525 0.1096 0.7932 0.0573 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0203 0.2658 0.7243 0.00088 555 0.5121 1.0002 0.0037 0.3373 0.6589 0.0038 555 0.5121 1.0002 0.0057 <t< td=""><td>0.0235</td><td>0.4127</td><td>0.5638</td><td>495</td><td>0.0147</td><td>0.2586</td><td>0.3533</td></t<>	0.0235	0.4127	0.5638	495	0.0147	0.2586	0.3533	
0.0032 0.0344 0.0344 0.0345 0.0345 0.0345 0.0345 0.0345 0.0345 0.0345 0.0345 0.0345 0.0345 0.02123 0.02133 0.2123 0.0139 0.2123 0.0139 0.2123 0.0139 0.0530 0.1582 0.01117 0.0389 0.8120 0.1491 515 0.0291 0.6082 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 0.1142 0.8262 0.0596 525 0.1096 0.7932 0.0573 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0203 0.2658 0.7243 0.0099 545 0.3597 0.9803 0.0134 0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0037	0.0082 -	A 5384	0 4534	500	0.0049	0 1220	0 3730	
0.0039 0.0340 0.2413 303 0.0024 0.4013 0.2123 0.0139 0.7502 0.2359 510 0.0024 0.4013 0.1582 0.0389 0.8120 0.1491 515 0.0291 0.6082 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 0.1142 0.8262 0.0596 525 0.1096 0.7932 0.0573 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0203 0.2658 0.7243 0.0099 545 0.3597 0.9803 0.0134 0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0037 0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 <td< td=""><td>0.0002</td><td>0.6548</td><td>0 3413</td><td>505</td><td>0.0042</td><td>0.3230</td><td>0.2123</td></td<>	0.0002	0.6548	0 3413	505	0.0042	0.3230	0.2123	
0.0155 0.1352 0.1355 0.0355 0.0355 0.1355 0.1117 0.0389 0.8120 0.1491 515 0.0291 0.6082 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 0.1142 0.8262 0.0596 525 0.1096 0.7932 0.0573 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0203 0.2658 0.7243 0.0099 545 0.3597 0.9803 0.0134 0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0087 0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027	0.0130	0.7502	0 2359	510	0.0093	0 5030	0 1582	
0.0303 0.0112 0.0211 0.0211 0.0012 0.1117 0.0743 0.8338 0.0919 520 0.0633 0.7100 0.0782 0.1142 0.8262 0.0596 525 0.1096 0.7932 0.0573 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0203 0.2658 0.7243 0.0099 545 0.3597 0.9803 0.0134 0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0087 0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788	0.0139	0.8120	0 1491	515	0.0291	0.5050	0 1117	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0743	0.8338	0.0919	520	0.0633	0.7100	0.0782	
0.1142 0.8202 0.0390 523 0.1090 0.732 0.0373 0.1547 0.8059 0.0394 530 0.1655 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0203 0.2658 0.7243 0.0099 545 0.3597 0.9803 0.0134 0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0087 0.3373 0.6589 0.0038 555 0.5121 1.0002 0.0057 0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018		0 0747	0.0506	575	0 1096	0 7033	0.0673	
0.1347 0.8039 0.0394 530 0.1633 0.8620 0.0422 0.1929 0.7816 0.0255 535 0.2257 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0203 0.2658 0.7243 0.0099 545 0.3597 0.9803 0.0134 0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0087 0.373 0.6589 0.0024 560 0.5945 0.9950 0.0037 0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018 0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.1142	0.8202	0.0390	323	0.1090	0.7932	0.0373	
0.1929 0.7816 0.0233 533 0.2237 0.9149 0.0298 0.2296 0.7543 0.0161 540 0.2904 0.9540 0.0203 0.2658 0.7243 0.0099 545 0.3597 0.9803 0.0134 0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0087 0.3373 0.6589 0.0024 560 0.5945 0.9950 0.0037 0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018 0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.1547	0.8059	0.0394	530	0.1000	0.8620	0.0422	
0.2296 0.7343 0.0161 540 0.2904 0.9340 0.0203 0.2658 0.7243 0.0099 545 0.3597 0.9803 0.0134 0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0087 0.3373 0.6589 0.0024 560 0.5945 0.9950 0.0037 0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018 0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.1929	0.7610	0.0255	333	0.2257	0.9149	0.0298	
0.2638 0.7243 0.0059 543 0.3397 0.3803 0.0134 0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0087 0.3373 0.6589 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0018 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018 0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.2290	0.7343	0.0101	540	0.2904	0.9340	0.0203	
0.3016 0.6923 0.0061 550 0.4334 0.9950 0.0087 0.3373 0.6589 0.0038 555 0.5121 1.0002 0.0057 0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018 0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.2038	0.7243	0.0099	- 343	0.3397	0.9803	0.0134	
0.3373 0.6589 0.0038 555 0.5121 1.0002 0.0057 0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018 0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.3016	0.6923	0.0061	550	0.4334	0.9950	0.0087	
0.3731 0.6245 0.0024 560 0.5945 0.9950 0.0039 0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018 0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.3373	0.6589	0.0038	555	0.5121	1.0002	0.0057	
0.4087 0.5896 0.0017 565 0.6784 0.9786 0.0027 0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018 0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.3731	0.6245	0.0024	560	0.5945	0.9950	0.0039	
0.4441 0.5547 0.0012 570 0.7621 0.9520 0.0021 0.4788 0.5202 0.0010 575 0.8425 0.9154 0.0018 0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.4087	0.5896	0.0017	565	0.6784	0.9786	0.0027	
0.47880.52020.00105750.84250.91540.00180.51250.48660.00095800.91630.87000.0017	0.4441	0.5547	0.0012	570	0.7621	0.9520	0.0021	
0.5125 0.4866 0.0009 580 0.9163 0.8700 0.0017	0.4788	0.5202	0.0010	575	0.8425	0.9154	0.0018	
	0.5125	0.4866	0.0009	580	0.9163	0.8700	0.0017	

Table II 3. Chromaticity Coordinates and Color-Matching Functions in 1931 CIE Colorimetric System (X, Y, Z) $(\lambda = 380 \cdots 780 \text{ nm}; \Delta \lambda = 5 \text{ nm})$

.

•

Chromaticity Coordinates		Wavelength	Color-Matching Functions			
**	y _λ	2 ₂	(nm)	<i>Ē</i> λ	Ϋ,	ž,
0.5125	0.4866	0.0009 ·	580	0.9163	0.8700	0.0017
0.5448	0.4544	0.0008	585	0.9786	0.8163	0.0014
0.5752	0.4242	0.0006	590	1.0263	0.7570	0.0011
0.6029	0.3965	0.0006	595	1.0567	0.6949	0.0010
0.6270	0.3725	0.0005	600	1.0622	0.6310	0.0008
0.6482	0.3514	0.0004	605	1.0456	0.5668	0.0006
0.6658	0.3340	0.0002	610	1.0026	0.5030	0.0003
0.6801	0.3197	0.0002	615	0.9384	0.4412	0.0002
0.6915	0.3083	0.0002	620	0.8544	0.3810	0.0002
0 7006	0 2002	0.0001	636	0 7514	0 1210	0.0001
0.7000	0.2993	0.0001	025	0.7314	0.3210	0.0001
0.7079	0.2920	0.0001	030	0.0424	0.2050	0.0000
0.7140	0.2839	0.0001	035	0.3419	0.2170	0.0000
0.7190	0.2809	0.0001	040	0.4479	0.1750	0.0000
0.7230	0.2770	0.0000	643	0.3008	0.1382	0.0000
0.7260	0.2740	0.0000	650	0.2835	0.1070	0.0000
0.7283	0.2717	0.0000	655	0.2187	0.0816	0.0000
0.7300	0.2700	0.0000	660	0.1649	0.0610	0.0000
0.7311	0,2689	0.0000	665	0.1212	0.0446	0.0000
0,7320	0.2680	0.0000	670	0.0874	0.0320	0.0000
						0.0000
0.7327	0.2673	0.0000	675	0.0636	0.0232	0.0000
0.7334	0,2666	0.0000	680	0.0468	0.0170	0.0000
0.7340	0.2660	0.0000	685	0.0329	0.0119	0.0000
0.7344	0.2656	0.0000	690	0.0227	0.0082	0.0000
0.7346	0.2654	0.0000	695	0.0158	0.0057	0.0000
0 7347	0 2653	0.000	700	0.0114	0.0041	0.0000
0 7347	0.2653	0.0000	705	0.0081	0.0029	0.0000
0 7347	0.2653	0.0000	710	0.0058	0.0021	0.0000
0 7347	0 2653	0.0000	715	0.0041	0.0015	0.0000
0.7347	0.2653	0.0000	720	0.0029	0.0010	0.0000
				0.0000		0.0000
0.7347.	0.2653	0.0000	725	0.0020	0.0007	0.0000
0.7347	0.2653	0.0000	730	0.0014	0.0005	0.0000
0.7347	0.2653	0.0000	735	0.0010	0.0004	0.0000
0.7347	0.2653	0.0000	740	0.0007	0.0003	0.0000
0.7347	0.2653	0.0000	745	0.0005	0.0002	0.0000
0.7347	0.2653	0.0000	750	0.0003	0.0001	0.0000
0.7347	0.2653	. 0.0000	755	0.0002	0.0001	0.0000
0.7347	0.2653	0.0000	760	0.0002	0.0001	0.0000
0.7347	0.2653	0.0000	765	0.0001	0.0000	0.0000
0.7347	0.2653	0.0000	770	0.0001	0.0000	0.0000
0 7347	0 3/63	0.0000	775	0 0000	0.0000	0 0000
0.7347	0.2653	0.0000	780	0.0000	0.0000	0.0000

.

II.8. <u>C.I.E. STANDARD LIGHT SOURCES</u>

It is necessary to specify a particular kind of light source (or light sources) under which colours are observed and measured. For the purposes of general colour measurement three light sources have been recommended by the C.I.E. in 1931 since they are the most common of all kinds of light. These sources designated by the symbols A, B and C are representatives of the following types of radiant energy distribution.

- A : Incandesent lamp light, at a colour temperature of 2854[°]K (this provides a standard illuminant similar to the average tungsten-filament lamp).
- B : Artificial sun light, correlated colour temperature of 4870°K.
- C : Artificial average daylight, correlated colour temperature of 6770°K.

In the visible range the spectral emittance distributions of source A is equal to that of a Planckian radiator and the spectral irradiance from source A is found from the Planck radiation law. The locus of Planckian (Black-body) radiators is useful for determining the correlated colour temperature of a source, as shown in Figure II.17.

Sources B and C were obtained by combining source A with special filters, the Davis-Gibson filters. The relative spectral distributions of sources B and C were obtained by measuring spectrophotometrically and are represented by the curves in Figure II.16. Their chromaticity coordinates are tabulated in Table II. 4 and are plotted in the C.I.E. chromaticity diagram of Figure II.17.

As a convenient and practical rule standard light sources are used as reference achromatic stimuli.

.

Figure 11-16. Relative spectral distributions of the C.).E. standard sources A,B and C (from Judd & Wyszecki, 1965)

Figure II 17. C.I.E. light sources A,B,C and the locus of Planckian radiators in the C.I.E. chromaticity diagram. Absolute colour temperatures are shown against the locus (from Judd & Wyszecki, 1965)

Table II.4.

•

CHROMATICITY COORDINATES OF THE 1931 C.I.E. STANDARD

So	ULC8	×	У
A	Incandescent Lamp	0.4476	0.4075
B	Sunlight (artificial)	0.3485	0,3518
C	Average Daylight (artificial)	0.3101	0.3163
Ε	Equal—energy Stimulus	0,3333	0.3333

.

LIGHT SOURCES

The C.I.E. system of colour measurement is an internationally adopted method to specify the characteristics of a light source or an object colour in terms of its tristimulus values. For a desired light source specified by its spectral irradiance distributions $(S \land d \land)$ in the visible range (i.e. 380 nm to 780 nm) the tristimulus values XYZ are given by

$$X = K \int S \lambda \overline{x} \lambda d\lambda ,$$

$$Y = K \int S \lambda \overline{y} \lambda d\lambda = 100.0$$
(1)

$$Z = K \int S \lambda \overline{z} \lambda d\lambda .$$

where
$$K = \frac{100.0}{S \sqrt{y} \sqrt{d}}$$
, a normalizing factor and so that $Y = 100.0$;

 $d\lambda = wavelength interval.$

The chromaticity coordinates are computed therefrom thus,

$$x = \frac{X}{X + Y + Z},$$

$$y = \frac{Y}{X + Y + Z},$$

$$(2)$$

$$z = \frac{Z}{X + Y + Z}$$

Spectral energy distributions, tristimulus values and chromaticity coordinates of the C.I.E. standard sources and many other sources can be found in the text-books, particularly in 'Color Science' by Wyszecki and Stiles, 1967. To characterise an object colour irradiated by one of those sources the first requirement is to determine its spectral reflectance (r_{λ}) or transmittance (t_{λ}) by measurement, followed by calculation. Generally, spectral reflectance or transmittance is measured with a spectrophotometer and the C.I.E. tristimulus values are then calculated. Sometimes tristimulus values are measured directly with a photoelectric colorimeter.

The evaluation of the tristimulus values of an object colour with respect to a particular source can be done by either of the following methods.

(1) Weighted Ordinate Method.

This is merely a numerical method of integrating the values of spectral energy distributions $(5 \setminus \bar{x} \setminus , 5 \setminus \bar{y} \setminus , 5 \setminus \bar{z} \setminus)$ and spectral reflectance $(r \setminus)$ or transmittance $(t \setminus)$ at equal wavelength intervals.

The tristimulus values of an object colour are given by

$$X = K \int r \lambda S \lambda \overline{x} \lambda d\lambda$$

$$Y = K \int r \lambda S \lambda \overline{y} \lambda d\lambda$$

$$Z = K \int r \lambda S \lambda \overline{z} \lambda d\lambda$$
(3)

Since the products $S \setminus \overline{X} \setminus d \setminus$, etc. of a source are constants for all problems of computing object colours, tables of normalized products denoted by $H \setminus \overline{X} \setminus d \setminus$, $H \setminus \overline{y} \setminus d \setminus$ and $H \setminus \overline{z} \setminus d \setminus$ are convenient for the Weighted Ordinate Method of evaluating the integrals. The normalized products to be used for standard sources A, B and C are listed in Table II.5 (from Wyszecki and Stiles, 1967). Using these Tables the tristimulus values of an object colour are given by

$$X = \int R \lambda H \lambda \overline{x} \lambda d \lambda ,$$

$$Y = \int R \lambda H \lambda \overline{y} \lambda d \lambda ,$$

$$Z = \int R \lambda H \lambda \overline{z} \lambda d \lambda .$$
(4)

In the same way for a transparent object T h replaces R h. The chromaticity coordinates are then calculated by the equations (2).

(2) Selected Ordinate Method

An alternative method for computing tristimulus specification of an object colour was proposed by Hardy and Pineo (1935). Their method is called the Selected Ordinate Method and is popular in practical colorimetry because of the simpler computation to be carried out. In this method numerous multiplications involved in the Weighted Ordinate Method are avoided and only summations of reflectance are required at selected wavelengths.

The selected wavelength intervals are chosen to be inversely proportional to $H > \overline{x} > for X$, $H > \overline{y} > for Y$ and $H > \overline{z} > for Z$ so that where the distribution coefficients are large the wavelength intervals are small, and vice versa. The essential calculations for the tristimulus values XYZ of an object colour by the Selected Ordinate Method are performed simply by

- (1) adding the values of reflectance (or transmittance) at selected wavelengths, and
- (2) multiplying the three sums thus obtained by appropriate factors.

The thirty ordiantes for standard sources A, 8 and C are listed in Table II.6 and the corresponding multiplication factors are also given at the bottom of the Table. The derivations of the tristimulus specification of an object by both methods are illustrated in Figure II. 18.

ACCURACY OF THE TWO METHODS

The methods used to compute tristimulus specifications have limits of accuracy. The accuracy, based on comparison between computed values of standard reflecting surfaces and filters, depends on the numbers of wavelength intervals employed in the Weighted Ordinate and Selected Ordinate methods (Kerf, 1957). The smaller the wavelength intervals in the computation the better the accuracy obtained.

According to Nickerson (1935) the Weighted Ordinate method with $d\lambda = 10$ nm and Selected Ordinate with N = 30 are sufficient for accuracy. The Selected Ordinate method N = 10 is rejected. Many authors think so for most purposes.

According to Kerf (1957) the Weighted Ordinate $d\lambda = 10$ nm and Selected Ordinate method N = 100 are equally accurate in average, but the error of both methods is greater than 1/2 jps (just perceptible steps, or = 1/10 NBS units) in some cases. Kerf concludes that the
only method, which determines the tristimulus specifications of all the samples studied with an uncertainty smaller than 1/2 jps, is the Weighted Ordinate method $d\lambda = 5$ nm ; and that the Selected Ordinate method N = 30 may only be applied to smooth curves of samples.

It is obvious that if accuracy is of prime importance the Weighted Ordinate method is preferable. With automatic computing machines becoming increasingly available to research workers the Selected Ordinate method is of less importance.

It is also found that the Weighted Ordinate method is more convenient to be used to derive weighted spectral energy distributions of any desired illumination . Therefore computer programs for the Weighted Ordinate method were developed and used in this present work.

Using the Weighted Ordinate method $d\lambda = 5$ nm consistantly as a standard method the deviations in computed colour values would be only due to errors in measured reflectivity (or transmittance) or insufficient numbers of wavelength intervals used in the measurement of spectral reflectivity (or transmittance). Precision of colour specifications in this work is discussed in a later Chapter.

Wavelength				Wavelength			
λ (nm)	$\bar{x}_{\lambda}H_{\lambda}$	ÿ _λ Η _λ	ž _λ H _λ	· λ (nm)	$\bar{x}_{\lambda}H_{\lambda}$	$\bar{y}_{\lambda}H_{\lambda}$	ź, H,
380	0.0006	0.0000	0.0029	580	4.8594	4.6139	0.0090
385	0.0011	0.0000	0.0053	585	5.3549	4.4668	0.0077
390	0.0024	0.0000	0.0113	590	5.7896	4.2704	0.0062
395	0.0047	0.0001	0.0224	595	6.1403	4.0379	0.0058
400	0.0097	0.0003	0.0463	600	6 3518	3 7713	0 00.18
405	0.0097	0,0003	0.0405	605	6 4200	3 4855	0.0040
410	0.0174	0.0004	0.0025	610	6 3340	3 1780	0.0007
415	0.0550	0.0010	0.3310	615	6 0877	7 8677	0.0013
420	0.1308	0.0039	0.6283	620	5.6865	2.5358	0.0013
426	0.22(0		1.0074	(25	6 1267	2 1001	0.0007
425	0.2209	0.0077	1,0974	025	3.1207	2.1901	0.0007
430	0.3246	0.0133	1.5840	630	4.4902	1.8523	0.0000
435	0.4055	0.0207	2.0036	635	3.8/19	1.5529	0.0000
440	0.4632	0.0306	2.3230	640	3.2791	1.2812	0.0000
445	0.4976	0.0426	2.5484	645	2.7004	1.0344	0.0000
450	0.5155	0.0583	2.7173	650	2.1681	0.8183	0.0000
455	0.5230	0.0788	2.8621	655	1.7078	0.6372	0.0000
460	0.5097	0.1052	2. 9 254	660	1.3141	0.4861	0.0000
465	0.4690	0.1380	2,8539	665	0.9850	0.3625	0.0000
470	0.3882	0.1808	2.5581	670	0.7241	0.2651	0.0000
475	0.2998	0.2375	2.1979	. 675	0.5368	0.1958	0.0000
480	0,2138	0.3108	1.8179	680	0.4022	0.1461	0.0000
485	0.1372	0.4004	1.4575	685	0.2877	0.1041	0.0000
490	0.0799	0.5196	1.1622	690	0.2019	0.0729	0.0000
495	0.0387	0.6813	0.9308	695	0.1429	0.0515	0.0000
500	0.0136	0.8960	0.7545	700	0.1047	0.0377	0.0000
505	0.0070	1.1878	0.6191	705	0.0756	0.0271	0.0000
510	0.0285	1.5398	0.4843	710	0.0549	0,0199	0.0000
515	0.0934	1.9518	0.3585	715	0.0394	0.0144	0.0000
520	0.2127	2.3855	0.2627	720	0.0283	0.0097	0.0000
525	0 3849	2 7859	0 2012	725	0.0198	0 0069	0.000
530	0.6069	3 1609	0 1547	730	0.0140	0.0050	0.0000
535	0.8631	3.4987	0.1140	735	0.0101	0.0041	0.0000
540	1.1567	3,7999	0.0809	740	0.0072	0.0031	0.0000
545	1.4904	4.0618	0.0555	745	0.0052	0.0021	0.0000
550	1.8660	4.2841	0.0375	750	0.0032	0.0010	0.0000
555	2.2887	4.4701	0.0255	755	0.0021	0.0010	0.0000
560	2.7550	4.6110	0.0181	760	0.0021	0.0010	0.0000
565	3.2564	4.6974	0.0130	765	0.0011	0.0000	0.0000
570	3.7853	4.7285	0.0104	770	0.0011	0.0000	0.0000
575	4 3250	4.7002	0 0097	775	0.0000	0.0000	0.000
580	4.8594	4.6139	0.0090	780	0.0000	0.0000	0.0000
				Totals (X_A, Y_A, Z_A)	109.8472	100.0000	35.5824

Table II 5. 1931 CIE Color-Matching Functions $(\bar{x}_{\lambda}, \bar{y}_{\lambda}, \bar{z}_{\lambda})$ Weighted by Relative Spectral Energy Distribution $(H_{\lambda}\Delta\lambda)$ of CIE Source A $(\lambda = 380 \cdots 780 \text{ nm}; \Delta\lambda = 5 \text{ nm})$

۰.

(continued)

.

Wavelength				Wavelength			
λ (nm)	<i>x</i> _λ H _λ	ÿ _λ H _λ	ž _λ H _λ	λ (nm)		ÿ _k H _k	ā _↓ H;
380	0.0015	0.0000	0.0070	580	4,4218	4.1984	0.008
385	0.0028	0.0001	0.0135	585	4.6790	3.9030	0.006
390	0.0063	0.0001	0.0301	590	4.8644	3.5880	0.005
395	0.0131	0.0003	0.0626	595	4.9701	3.2684	0.604
400	0.0282	0.0008	0.1340	600	4.9736	2,9546	0.003
405	0.0517	0.0013	0.2455	605	4 8999	2,6561	0.002
405	0 1083	0.0010	-0.5163	610	4 7185	2.0507	0.001
415	0 2139	0.0050	1 0236	615	4.7705	2.0072	0.001
420	0.4058	0.0121	1.9495	- 620	4.0700	1.8149	0.000
175	0 7017	0.0219	2 2044	675	3 6031	. 1 5303	0.000
425	0.7017	0.0238	3.3944	623	3.0031	1.3374	0.000
430	0.9910	0.0405	4.8394	010	3.1000	1.2/00	0.000
435	1.2134	0.0621	5.9951	032	2.6296	1.0530	0.000
440	1.3440	0.0888	0.7448	040	2.18/1	0.8343	0.000
445	1.3878	0.1188	7.1067	645	1.7765	0.6804	0.000
450	1.3718	0.1551	7.2308	650	1.4074	0.5312	0.000
455	1.3229	0.1993	7.2399	655	1.0929	0.4078	0.000
460	1.2269	0.2531	7.0422	660	0.8273	0.3060	0.000
465	1.0807	0.3181	6.5769	665	0.6085	0.2239	0.000
470	0.8589	0.4000	5.6599	670	0.4381	0.1604	0.000
475	0.6365	0,5044	4,6670	675	0.3177	0.1159	0.000
480	0.4348	0.6323	3.6980	680	0.2323	0.0844	0.000
485	0.2667	0.7784	2.8332	685	0.1617	0.0585	0.000
490	0.1475	0.9590	2.1449	690	0.1102	0.0398	0.000
495	0.0672	1.1826	1.6156	695	0.0758	0.0273	0.000
500 ·	0.0221	i.4538	1.2242	700	0.0540	0.0194	0 000
505	0.0106	1 7976	0 9370	705	0.0378	0.0135	0.000
510	0.0403	2 1798	0.6856	710	0.0267	0.0097	0.000
515	0 1246	2 6052	0.4785	715	0.0185	0.0057	0.000
520	0.2707	3.0361	0.3344	720	0.0129	0.0044	0.000
\$35	0 4735	3 4979	0 2476	725	0.0087	0.0030	0.000
510	0.7701	3 7072	0.1850	730	0.0060	0.0030	0.000
535	1 0194	A 1707	0.1037	736	0.0000	0.0021	0.000
535	1 3446	4.1474	0.1242	· 7/0	0.0042	0.0017	0.000
545	1.7042	4.6445	0.0635	745	0.0029	0.0008	0.000
550	2 0016	1 9016	0.0420	. 750	0.001.2	0.0004	0.000
330	2.0713	4.0010	0.0420	. 750	0.0012	0.0004	0.000
333	2.3000	4.0040	0.0276	720	0.0000	0.0004	0.000
200	2.9200	4.00/2	0.0192	. /00	0.0008	0.0004	0.000
202	2.2200	4.8122	2010.0	(0) 740	0.0004	0.0000	0.000
570	3.1339	4.0009	0.0103	//0	0.0004	0.0000	0.000
575	4.1019	4.4568	0.0088	775	0.0000	0.0000	0.000
580	4.4218	4.1984	0.0082	780	0.0000	0.0000	0.000
				Totals	00 0000	100 0000	
		•		(X_B, Y_B, Z_B)	99.0930	100.0000	2012
				(x_B, y_B, z_B)	0.3484	0.3210	0.3000

Table II 5. 1931 CIE Color-Matching Functions $(\bar{x}_{\lambda}, \bar{y}_{\lambda}, \bar{z}_{\lambda})$ Weighted by Relative Spectral Energy Distribution $(H_{\lambda}\Delta\lambda)$ of CIE Source B $(\lambda = 380 \cdots 780 \text{ nm}; \Delta\lambda = 5 \text{ nm})$

(continued)

Table II 5. 1931 CIE Color-Matching Functions $(\bar{x}_{\lambda}, \bar{y}_{\lambda}, \bar{z}_{\lambda})$ Weighted by Relative Spectral Energy Distribution $(H_{\lambda}\Delta\lambda)$ of CIE Source C $(\lambda = 380 \cdots 780 \text{ nm}; \Delta\lambda = 5 \text{ nm})$

Wavelength え (nm)	.ī.↓II↓	ÿ _λ H _λ	≅ _à ∥à	Wavelength λ (nm)		ÿ _k ∏ _k	≤ _k H _k
380	0.0022	0.0000	0.0101	580	4.2084	3.9958	0.0078
385	0.0041	0.0002	0.0197	585	4.3859	3.6585	0.0063
390	0.0093	0.0002	0.0447	590	4 4920	3 3133	0.0048
395	0.0197	0.0005	0.0938	595	4 5765	2 9767	0.0043
575	0.0177	0.0005	0.0750	J73	4.5205	2.9707	0.0045
400	0.0425	0.0012	0.2018	600	4.4745	2.6581	0.0034
405	0.0782	0.0020	0.3716	605	4.3617	2.3644	0.0025
410	0.1647	0.0045	0.7850	610	4.1622	2.0882	0.0013
415	0.3263	0.0092	1.5611	615	3.8863	1.8272	0.0008
420	0.6192	0.0184	2.9743	620	3.5349	1.5763	0.0008
476	1.0/73	0.0272	6 1 6 2 10		2 1074		0.000.4
425	1.0672	0.0363	5.1628	625	3.10/4	1.3275	0.0004 ·
430	1.4986	0.0612	7.3139	630	2.6548	1.0952	0.0000
435	1.8165	0.0929	8.9747	635	2.2358	0.8953	0.0000
. 440	1.9874	0.1312	9.9687	640	1.8468	0.7216	0.0000
445	2.0182	0.1728	10.3351	645	1.4909	0.5711	0.0000
450	1 9578	0.2213	10.3194	650	1 1 7 4 3	0 44 12	. 0.0000
455	1 8499	0.2786	10.1235	655	0.9058	0 3380	0,0000
460	1 6811	0 3469	9 6497	660	0 6807	0 2518	0,0000
465	1 4539	0 4279	8 8481	665	0.4965	0 1827	0.0000
405	1 1360	0.5201	7 4860	670	0 3542	0.1027	0.0000
470	1.1500	0.5291	1.4000	0/0	0.3342	0.1297	0.0000
475	0.8281	0.6562	6.0719	675	0.2548	0.0929	0.0000
480	0.5563	0.8088	4.7305	680	0.1846	0.0671	0.0000
485	0.3348	0.9773	3.5571	685	0.1270	0.0459	0.0000
490	0.1814	1.1790	2.6369	690	0.0855	0.0309	0.0000
495	0.0807	1.4197	1.9396	695	0.0581	0.0209	0.0000
500	0.0258	1 7004	1 4310	700	0.0408	0.0147	0 0000
500	0.0121	2.0462	1.4317	700	0.0408	0.0147	0.0000
500	0.0121	2.0402	1.0003	705	0.0285	0.0101	0.0000
510	0.0447	2.4103	0.7000	710	0.0197	0.0071	0.0000
515	0.1350	2.8223	0.5183	715	0.0130	0.0049	0.0000
520	0.2881	3.2309	0.3559	720	0.0093	0.0032	0.0000
525 .	0.4982	3.6052	0.2604	725	0.0062	0.0022	0.0000
530	0.7617	3.9671	0.1942	730	0.0042	0.0015	0.0000
535	1.0593	4.2941	0.1399	735	0.0029	0.0012	0.0000
540	1.3924	4.5742	0.0973	740	0.0020	0.0009	0.0000
545	1.7559	4.7853	0.0654	745	0.0014	0.0006	0.0000
•				•			
550	2.1412	4.9157	0.0430	. 750	0.0008	0.0003	0.0000
555	2.5414	4.9636	0.0283	. 755	0.0005	0.0003	0.0000
560	2.9399	4.9204	0.0193	760	0.0005	0.0003	0.0000
565	3.3167	4.7844	0.0132	765	0.0003	0.0000	0.0000
570	3.6613	4.5736	0.0101	770	0.0003	0.0000	0.0000
575	3 9673	4 3051	0.0085	775	0.0000	0 0000	0 0000
580	4.2084	3.9958	0.0078	780	0.0000	0.0000	0.0000
<u> </u>				Totals	<u>. </u>		<u>_</u>
				$(Y_{\alpha}, Y_{\alpha}, Z_{\alpha})$	09 0705	100 0000	118 2246
				(AC, IC, ZC)	30.0703	0 7147	110.2240
				\ <i>±C, Y</i> C, <i>²C)</i>	0.5101	0.3102	

Table II 6.

Selected Ordinates for Computing 1931 C.I.E. Tristimulus Values of Object Colours with Respect to C.I.E. Standard Sources A,B,C

•

Ordinate	Source A				Source	8		Source C		
Number	x	Y	Z	x	Y	Z	x	Y	Z	
1	444.0	487.8	416.4	428.1	472.3	414.8	424,4	465.9	414.1	
2	516,9	507.7	424.9	442.1	494.5	422.9	435.5	489.4	422.2	
3	544 . 0	517.3	429.4	454.1	505.7	427.1	443 . 9	500.4	426.3	
4	554.2	524.1	432.9	468.1	513.5	430.3	452.1	508.7	429.4	
5	561.4	529 _• 8	436 .D	527.8	519.6	433.0	461.2	515.1	432.0	
6	567.1	534.8	438.7	543 . 3	524.8	435.4	474.0	520.6	434 . 3	
7	572.0	539.4	441.3	551.9	529.4	437.7	531.2	525.4	436.5	
8	576.3	543.7	443.7	558.5	533.7	439.9	544.3	529.8	438.6	
9	580 . 2	547.8	446.0	564 . 0	537 . 7	44 2. 0	552.4	533,9	440.6	
10	58 3 .9	551.7	448.3	568.8	541.5	444.0	558,7	537.7	442.5	
1 1	587,2	555.4	450.5	573.1	545.1	446.0	564.1	541.4	444.4	
12	590 •5	559 . 1	452.6	577.1	548.7	448.0	568.9	544.9	446.3	
13	593 . 5	562.7	454.7	580.9	552.1	450.0	573 . 2	548.4	448.2	
14	596.5	566.3	456.8	584.5	555.5	451.9	577.3	551.8	450.1	
15	599.4	569. 8	458 . 8	588 . 0	559.0	453.9	581.3	555.1	452.1	
16	602,3	573 . 3	460.8	591.4	562.4	455.8	585.0	558.5	454.0	
17	605.2	576.9	462.9	594 .7	565.8	45 7. 8	588.7	561.9	455.9	
18	608.0	580.5	464.9	598.1	569.3	459.8	592.4	565.3	457.9	
19	610•9	584.1	467.0	601.4	572.9	461.8	596.0	568 . 9	459.9	
20	613.8	587.9	469 . 2	604 . 7	576 . 7	463.9	599 .6	5 72. 5	462.0	
21	616.9	591.8	471.6	608.1	580.6	466.1	603,3	576.4	464.1	
2 2	~ 62 0.0	5 9 5.9	474.1	611.6	584 . 7	468.4	607.0	580.5	466.3	
23	62 3 •3	600.1	476.8	615.3	589 . 1	470.8	610.9	584.8	468.7	
24	626.9	604.7	479.9	619•1	593.9	473.6	615.0	589.6	471.4	
25	630.8	60 9 .7	483.4	623.3	599.1	476.6	619.4	594.8	474.3	
26	635 _• 3	615.2	487.5	628.0	605.0	480.2	624.2	600.8	477.7	
27	640 . 5	621.5	492.7	633.4	611.8	484.5	629.8	607.7	481.8	

Ordinate	S	ource A			Source	В	Source C		
Number	x	Y	Z	x	Y	Z	x	Y	Z
28	646.9	629.2	499.3	640.1	619,9	490.2	636.6	616.1	487.2
29	655,9	639.7	508.4	649.2	630.9	498.6	645.9	627.3	495.2
30	673 . 5	659 <u>.</u> 0	526 . 7	666.3	650,7	515.2	663.0	647.4	511.2

Factors: 0.03661 0.03333 0.01185 0.03303 0.03333 0.02842 0.03268 0.0333 0.03938

(from Committee on Colorimetry Optical Society of America, 1968)

Figure II 18. Derivations of the tristimulus specifications of an object colour by Weighted Ordinate and Selected Ordinate methods.

- Figure II 18. Illustration of the Computation of the Tristimulus Values of an Object Colour by the Weighted Ordinate and Selected Ordinate Methods.
- (1) Colour-matching functions $(\bar{x}\lambda, \bar{y}\lambda, \bar{z}\lambda)$.
- (2) Energy distributions of the C.I.E. source A ($H\lambda$).
- (3) Products of (2) with the colour-matching functions $(H \land \overline{\land} \land H \land \overline{\lor} \land H \land \overline{\lor} \land H \land \overline{\lor} \land).$
- (4) Spectral reflectance (R_{λ}) of the object at equal wavelength intervals .
- (5) Products of (3) and (4). The areas under the three curves give the tristimulus values X,Y and Z of the object by the Weighted Ordinate method .
- (6)(7)(8) Selected ordinates derived from (3) for the C.I.E. source A.
- (9)(10)(11) Spectral reflectance of the object at selected ordinates. Products of the sums by the appropriate factors give the tristimulus values X,Y and Z of the object by the Selected Ordinate method.

II 10. THE 1931 C.I.E. CHROMATICITY DIAGRAM

The 1931 C.I.E. chromaticity diagram with the spectral locus and the purple line is drawn on the x-y coordinates chart, as in Figure II 19. The chromaticity coordinates of the spectrum locus are included in Table II 3.

Chromaticity, the quality of a colour may be specified by a point in a plane diagram, the chromaticity diagram. This diagram represents the relative chromaticities of all colours in the same manner as a plane map represents the relative locations of various places on the earth. That is, the brightness of any colour is not taken into account in the diagram. The perfect white and black colours in fact will coincide at a poimt (achromatic point).

All colours represented by points on the spectrum locus are termed spectrum colours. All colours within the triangle defined by the points of two ends (380 nm and 780 nm) of the spectrum locus and the point of the achromatic stimulus are called non-spectral colours. Colours having chromaticities (chromatic points) represented within the curve and outside the non-spectral triangle are called spectral colours. There is no colour outside the spectrum locus and the purple line (the Science of Color by the Committee on Colorimetry of the Optical Society of America, 1968).

35

II 11. DOMINANT WAVELENGTH AND EXCITATION PURITY

Although the quality of a colour can be completely specified by its tristimulus values X,Y,Z (known as the trichromatic system) these numerical values do not provide a suitable way to visualize the chracter of the colour. A given colour can also be characterised by additional numerical values in terms of the dominant wavelength and excitation purity (known as the monochromatic system).

It is in practice easier to get a general picture of a colour when it is expressed in terms of its dominant wavelength, purity and tristimulus Y value (brightness) with respect to a particular light source.

The dominant wavelength of a colour is the wavelength of spectrally pure radiant energy (spectrum colour) that, when additively mixed in suitable proportions with a specified white light yields a match with the given colour. The dominant wavelength of a colour correlates in an approximate way with the general term, hue. Thus, in general, colours of constant dominant wivelength would be said to have the same hue. The derivation of the dominant wavelength of a sample colour is shown in Figure II 20. That is the wavelength at the intersection point of the spectrum locus with the straight line drawn from the achromatic point through sample point.

If a sample point lies in the non-spectral triangle then the wavelength corresponding to the intersection is the complementary wavelength (λ c) of the colour. The chromaticity of a spectral colour

36

is specified by its dominant wavelength (λd) and excitation purity (Pe), and the chromaticity of a non-spectral colour is specified by its complementary wavelength (λc) and excitation purity (Pe).

The determination of dominant wavelength from the chromaticity coordinates can also be carried out by computation, making use of tabulated ratios prepared by Judd (1933).

Radiant energy of a single wavelength is said to be spectrally pure. In terms of the chromaticity diagram, a dominant (or complementary) wavelength is constant for all points on any straight line passing through an achromatic point, whereas purity increases linearly with increasing distance from zero at the achromatic point to the maximum (1 or 100%) on the spectrum locus (or on the purple line).

The excitation purity (Pe) is defined as a ratio by the following equivalent expressions:

$$Pe = \frac{x_1 - x}{x - x} = \frac{y_1 - y}{y - y}$$

where x_1 , y_1 and x, y are coordinates of the sample point and specified achromatic point respectively; x h, y_h are coordinates of the dominant or complementary wavelength at the intersection point.

When the straight line passing through the illuminant point and sample point is nearly horizontal the second formula will become less accurate and vice versa when the line is nearly vertical.

Figure 11 20. Graphical determination of dominant (or complementary) wavelength and excitation purity of a sample colour in the C.I.E. chromaticity diagram.

COLOUR DISCRIMINATION

It has been shown that the standard C.I.E. system allows all colours to be specified quantitatively in terms of tristimulus specifications. As a consequence of the application of the system it is necessary to specify colour differences. The reason for this is the fact that small differences in XYZ figures do not give directly an indication of the visual effect of the colour difference.

There are limits to the precision and accuracy within which colours were matched by the standard observer, as described in previous sections, with a purely physical instrument. In other words there are limits within which colours are not discriminated to the visual sensation.

This means that the C.I.E. system is not uniform and not quite suitable for colour difference specification without additional standardization or transformation into a uniform scale. Therefore, there is need of an additional system for specifying colour differences.

A number of different methods of calculating colour differences have been tried by various workers : Judd (1935); Wright (1941); Nickerson (1944 & 1950); Balinkin (1941); Godlove (1951) ; MacAdam (1942 & 1943); and others.

All of these methods are based on measurements of intervals (distances) between colours. Three general approaches to the problem of establishing a uniform colour space have been proposed. The first of these is a linear transformation of the C.I.E. chromaticity chart into a so called Uniform Chromaticity (UCS) diagram (Judd , 1935 ; MacAdam, 1937; Hunter, 1941; Committee on Colorimetry, 1963). Combination of this transformation with a lightness scale yields a colour difference formulation of limited usefulness.

The second approach, suggested by Nickerson (1936 & 1950), Balinkin (1941) and Godlove (1951), is the transformation of C.I.E. data into a so called uniform colour spacing as laid down in the Munsell Renotation and DIN systems. A colour difference specification can be defined in terms of hue, value and chroma (Munsell) or Farbton, Sättigung and Dunkelstufe (DIN). The transformation of C.I.E. data into these units can only be made by means of graphical representation.

The third approach which is the more promising and easiest way of handling the problem is to use the colour discrimination data, as obtained by MacAdam (1942 & 1943), since no system is sufficiently uniform and no simple set of transformation equations can distort the C.I.E. space into a uniform space. Various methods proposed by MacAdam, based on his discrimination ellipses have found wide acceptance in industrial tolerance specification.

The work of MacAdam was extended by Brown and MacAdam (1949) and Brown (1957). Many workers, Moon (1943), Davidson and Friede (1952), Brown (1951) and Friele (1961) analysed the MacAdam colour discrimination data and calculations based on these data were found to correlate with the visual results much better than do those based on other methods.

In this present work the MacAdam discrimination data were

used to compare nearly identical colours and colour differences of minerals. From the literature the necessary basic information is therefore summarised below.

MacAdam (1942) investigated visual sensitivity to colour differences by studying just equally noticeable differences of colour matches about a colour centre. Twenty-five representative colour centres scattered throughout the colour domain were used in colour matching to determine noticeability of colour differences at constant luminance.

Extensive tests with a colour discrimination apparatus have indicated that the just noticeable differences of colour are directly related to the corresponding standard deviations of colour matching. The standard deviation of colour matching has therefore been adopted as a satisfactory measure of the noticeability of colour differences.

The standard deviations (root mean square of individual deviations from the average setting) of MacAdam's colour matching were plotted on the C.I.E. chromaticity diagram and all were in the form of ellipses of varying size as shown in Figure II 21. These ellipses represent the noticeability of chromaticity variations in all directions from the chromaticities indicated at the centres of the ellipses. That is, these ellipses indicate the noticeabilities of conceivable combinations of purity and dominant wavelength differences.

Silberstein and MacAdam (1945) deduced from discrimination ellipses that if the colour matches were not confined to chromaticity variations (that is the luminance variations are also involved) the surfaces in colour space representing the standard deviation of colour matching would be ellipsoids. Silberstein (1946) proved that the standard deviation figures were in the form of ellipsoids in colour space and gave formulae from which the coefficients of the ellipsoids could be determined.

The ellipses, therefore, are regarded as the constant luminance cross sections of the ellipsoids. MacAdam (1942) describes that C.I.E. chromaticity diagram appears / convenient as possible for the representation of relative chromaticity difference, in the manner $\frac{d^2}{d^2}$ as a plane map represents the relative locations of various places on the earth.

ash

Each ellipse is measured by the lengths of the principal semi-axes 'a' and 'b' and the angle of inclination $\hat{\theta}$ of the major axis from the horizontal as shown in Figure II 22. These values of MacAdam's discrimination ellipses are tabulated in Table II 7.

The sizes, shapes and orientations of the ellipses vary throughout the chromaticity diagram, in a somewhat systematic manner. These trends encouraged the interpolation of ellipses representing colours equally noticeably different from any other fixed colours. MacAdam (1943) has prepared contour diagrams in order to evaluate colour difference specifications for most practical purposes. They are reproduced in Figures II 23, **II** 24, and II 25, and can be found in the original paper by MacAdam (1943) or in 'Color Science' by Wyszecki and Stiles (1967).

Each of the twenty-five ellipses representing the known standard deviations of colour matching, according to MacAdam, is

41

represented by the equation

$$g_{11} dx^2 + g_{12} dx \cdot dy + g_{22} dy^2 = 1$$

where dx is the distance of the x coordinates of the centre of the ellipse and any point on the ellipse; dy is the difference of the y coordinates for the the same pair of points; and g_{11} , g_{12} and g_{22} indicated in the diagrams are constants for each ellipse.

These constants can be determined from the length dx_0 of the horizontal radius of the ellipse (for which dy = 0), the length dy_0 of the vertical radius of the ellipse (for which dx = 0), and the lengths dp and dq of the radii which are inclined at $\pm 45^{\circ}$ from the horizontal

$$g_{11} = 1 / dx_0^2$$

 $g_{12} = 1 / dp^2 - 1 / dq^2$
 $g_{22} = 1 / dy_0^2$.

The orientation Θ and lengths a and b of the ellipse may be derived from the values of the coefficients g_{11} , g_{12} , g_{22} indicated for that central colour

$$\tan 2 \theta = 2g_{12} / (g_{11} - g_{22}).$$

$$\Theta \langle 90^{\circ} \text{ when } g_{12} \langle 0,$$

$$\Theta \rangle 90^{\circ} \text{ when } g_{12} \rangle 0.$$

$$1 / a^2 = g_{22} + g_{12}$$
 Cot θ
 $1 / b^2 = g_{11} - g_{12}$ Cot θ

From these values an ellipse may be constructed. This ellipse is the equi-luminance cross section of the ellipsoid in colour space.

Every colour on the surface of the ellipsoid represents just equal noticeabilities of total colour difference from the central colour. Any colour which would plot within the ellpsoid would be visually indistinguishable from the colour plotted at the centre of the ellipsoid.

According to MacAdam the necessity of constructing such ellipses will be almost completely eliminated by the method which follows:

The ratio of any chromaticity difference colour matching is denoted by ds. Then

$$ds^{2} = g_{11} dx^{2} + 2 g_{12} dx \cdot dy + g_{22} dy^{2} \cdot$$

In the calculation each of the numerical values, g₁₁ , g₁₂, g₂₂ for the region intermediate between the two chromaticities , is multiplied by 10,000.

For example, if two colours A and B are to be compared with each other the differences of their chromaticities and appropriate coefficients found from the contour diagrams are substituted in the above equation and say ds = n. This indicates that the two colours A and B exhibit a difference of chromaticity n times as great as the standard deviations of colour matching.

MacAdam (1943) described other methods of calculating colour differences for particular problems. Brown and MacAdam (1949) studied the visual sensitivities to combined chromaticity and luminance differences and determined the coefficients and axes of ellipsoids derived from standard deviations of colour matches. The cross sections of all ellipsoids correlate well with results previously published by MacAdam (1942).

Thus the precision of colour matching is commonly described by colour-matching ellipses. To obtain colour discrimination specifications, numerous colour-matching experiments have been made later by several workers: Stiles (1946), Brown (1951, 1952 & 1956), MacAdam (1950), Wyszecki and Fielder (1971), Wyszecki (1972). For a given colour centre the ellipses of different observers are not in close agreement, but there is an overall resemblance and a general agreement between ellipses obtained by different investigators.

It has been found that the sizes, shapes and orientations of the ellipsoids depend upon many physical and psychophysical factors such as the luminance level, field size, surroundings, adaptation , portion of the retina, technique of observation, etc.

The effects of colour-matching field size, chromatic surround and luminance level on colour discrimination ellipsoids have been studied by Brown (1951 & 1952). The effect of luminance level is already described in section II 4.

From the work of Brown there are some interesting facts to be noted here. As a rule the colour of the field surrounding the matching field has a quite noticeable effect on colour discrimination when the matching field is small. Best discriminations obtained when the surround has the same chromaticity as the matching field. This agrees with results reported by Schonfelder (1933).

In general, large fields of view (10°) allow better colour

discrimination than flields covering only the foveal region (2°). This result is in agreement with observations by Judd (1930, Lobanova and Rautian (1949). The discrimination ellipsoids obtained for largefield and small-field viewing are similar in orientation and shape, but differ in size. The orientation and shape of the ellipsoids (2° matching field) are also affected by the colour of the surround.

However, at the present time the work of MacAdam, and Brown and MacAdam has found wide acceptance for colour discrimination purposes in many industrial and research problems.

Figure II 21. MacAdam's discrimination ellipses

(ten times enlarged). (from Wyszecki & Stiles 1967)

Figure II 22. Measures of a discrimination ellipse.

```
a = major semiaxis
b = minor semiaxis
dx = horizontal radius (for which dy = 0)
dy = vertical radius (for which dx = 0)
Ø = angle in degrees
```


Figure II 23. Contour lines of constant metric coefficient g₁₁ for various locations in the C.I.E. chromaticity diagram (from MacAdam 1943).

Figure II 24. Contour lines of constant metric coefficient 2g₁₂ for various locations in the C.I.E. chromaticity diagram (from MacAdam 1943).

Figure II 25. Contour lines of constant metric coefficient g₂₂ for various locations in the C.I.F. chromaticity diagram (from MacAdam 1943).

III. SPECTRAL REFLECTIVITY MEASUREMENTS

III 1. PREVIOUS WORK

The measurement of reflectivity is the only reliable quantitative method in ore microscopy since reflectivity is the most important property of a reflecting material. Significant contributions to the theory and practice of such measurements were made by Folinabee (1949), Bowie and Taylor (1958), Gray and Millman (1960 & 1962) , Cameron (1961), Bowie (1962), Jones (1962), Nichol (1962), von Gehlen and Piller (1964), and Nichol and Phillips (1964), using photoelectric microphotometers. The photoelectric microphotometer replaces the visual photometer used by previous workers, Hallimond (1957) and Leonard (1960) and others.

The divices and technique of reflectivity measurement for the visible spectrum have been improved in recent years . Unfortunately there are still marked variations in reflectivity values quoted for specific minerals by different workers, as Cameron (1961) points out and described by Nichol and Phillips (1964). Causes of error in reflectivity and in the calculation for refractive index and absorption coefficient have been discussed by Piller and von Gehlen (1964). Errors due to glare effects from optical parts of the microscope and correction procedures to reduce the errors have been described by Bowie and Henry (1964) and Piller (1965).

According to Piller and von Gehlen (1964) relative error of about \pm 0.5% to \pm 1% are unavoidable even under most favourable conditions. Cameron (1963) claims an accuracy of \pm 0.2%.

46

An important method of the linearity test of a photomultiplier used for reflectivity measurement has been given by Phillips and Bradshaw (1965).

The interest in reflectivity measurement has been increased to some extent to study other physical properties as well as the chemical composition. By measuring reflectivities of a mineral in air and oil its refractive index (n) and absorption index (K) can be derived, provided that the measured values of reflectivity (R) are accurate (Cameron, 1961; von Gehlen and Piller, 1964; Bradshaw, Phillips and Smith, 1965).

Bowie and Taylor (1958) have proposed a system of ore mineral identification from two quantitative values of reflectivity and micro-hardness. On this basis an unknown mineral can be assigned to one of the five main groups of similar composition and structure (oxides ; cobalt-nickel-iron; sulphides and arsenides; other sulphides; sulphosalts; and metals), and identification thereafter can be made with the aid of other observable properties such as colour, anisotropism, bireflection, etc.

Cameron (1963) has introduced the method of determination of optical symmetry from reflectivity measurements of randomly oriented grains of anisotropic ore minerals in monochromatic light (549 nm). From such measured data the recognition of $R_{\rm w}$ of uniaxial minerals and $R_{\rm m}$, corresponding to $R_{\rm p}$, of biaxial minerals can be made. The optical signs are then classified by a suggested convention analogous to that used for transparent minerals. Cameron suggested that with an accuracy of \pm 0.2% the value of reflectivity corresponding to the ordinary ray $(R_{\rm w})$ for any uniaxial mineral can be used as a prime basis of mineral identification. For minerals sensibly of lower symmetry , a value of R_m , the reflectivity for Y direction, of biaxial minerals can also be determined and used in identification.

Cervelle et al (1968) and Vaasjoki (1969) pointed out an interesting optical phenomenon of reverse bireflectance in a few ore minerals such as mawsonite and loellingite, showing the change of optic signs at some definite wavelength of the visible range. This new phenomenon has not been solved so far.

Vaughan (1969) and Demirsoy (1969) have made attempts to explain variations in reflectivity and composition in zoned bravoites. Engin (1969) showed a correlation between reflectivity and composition of chromite ores from Tukey. $Cr_2 \ 0_3$ has a positive correlation with measured reflectivity values at the 99.9 confidence level. That is reflectivity increases linearly with increasing of $Cr_2 0_3$ weight percent.

•. ;

Attempts have been made to correlate reflectivity and compositional variations of synthetic sphalerites by Akinci (1970) and of synthetic tetrahedrite-tennantite series by Hall (1972).

Burns and Vaughan (1970) have shown the existance of correlation between reflectivity variations and effective number of electrons in pyrite type compounds and have explained this relation for other solid solution series of ore minerals.

Reflectivity data of most ore minerals can be found in the books by C. Schouten (1962) and by Ramdohr (1969). More important spectral reflectivity values for four wavelengths have been compiled recently in ' International Tables for the Microscopic Determination of Crystalline Substances Absorbing in the Visible Light ' published by the Commission on Ore Microscopy (1970), and ' Tables for Microscopic Identification of Ore Minerals ' by Uytenbogaardt and Burke (1971).

PRESENT WORK

Specimen Preparation

The polishing procedure of specimens in this laboratory was according to that described in the paper by Nichol and Phillips (1964). For readily tarnishing minerals such as bornite, specimens were kept in a vacuum desiccator immediately after their final polishing.

Transparent, low-absorbing minerals were cut in such a way that the lower surfaces were non-parallel to the upper ones to reduce the back reflection. Facetted gemstones were measured without any preparation other than mounting and levelling in a piece of black plasticine and cleaning the surface thoroughly with very soft tissues.

Apparatus and Technique

The reflectivity apparatus in this laboratory was originally used and described by Nichol (1962), Nichol and Phillips (1964), Phillips and Bradshaw (1966), Burton (1967) who modified the photomultiplier to improve linearity and stability, Engin (1968) who replaced the galvinometer with the better digital voltmeter, and Tugal (1969).

Figure III 1 shows the general arrangement of the present reflectivity apparatus. To increase the accuracy and precision of results instrumental and operational improvements were made as follows:

Two specimen changer-stages which can be fixed one after the other on the rotating stage of the microscope were made. Polished sections of a standard and specimen were levelled with plasticine on flat metal plates. They were fixed on the specimen changer-stages by means of magnets, after choosing areas free from imperfections. By this way whenever measurements were made the same area of standard and specimen was measured. These changer-stages are extremely useful to increase the accuracy and precision and also to save time in the measurement for various wavelengths.

The microscope, photomultiplier tube, illuminator and continuous monochromator, all in optical alignment, were rigidly fixed by clamping to a wooden board to improve the mechanical stability.

All electrical units, which are voltage stabilizer (TSV 70), photomultiplier (EMI type 6094B), stabilized EHT power supply unit (type E2), digital voltmeter (DM 2005), were checked and found the following operational and conditional requirements for accurate measurement.

- (1) The calibrated digital voltmeter should be switched on at least 15 minutes before taking a reading.
- (2) The voltage stabilizer for the light source must be left switched on for about 2 hours at a required voltage before making any measurement. The result of a check is shown by a curve in Figure II 2.
- (3) The stabilized EHT power unit at a suitable voltage (depending on reflectivities of specimen and standards) range must be left switched on continuously for daily task so that a steady sensitivity of the photomultiplier was obtained.
- (4) The working room chould be in a reasonably constant temperature (about 21°C) because the sensitivity of the

Figure III 1. Schematic diagram of the apparatus for reflectivity and transmiticity measurements.

- 1. Voltage stabiliser TSV 70
- 2. Illuminator
- 3. Field diaphragm
- 4. Heat absorbing glass filter
- 5. Continuous monochromator
- 6. Polarizer
- 7 & 8. Meassuring diaphragm

- 9. Condenser
- 10. Specimen
- 11.Microscope
- 12, Photometer stop
- 13. Photomultiplier tube Type EMI 6094B
- 14.Stabilised EHT power supply unit Type E2
- 15. Digital valtaster DM 7999

(5) photomultiplier became unstable when the room was hot.
(5) No stray light should be around the photomultiplier tube and the miceoscope.

A test of the linearity of the photomultiplier was made according to the method described by Bradshaw and Phillips (1965), and no significant deviation from linearity was found. Spectral characteristics of the photomultiplier and continuous monochromator are according to the manufacturer's recommandations and are also given in Bradshaw's Ph.D. Thesis (1964).

When the above instrumental conditions were satisfied spectral reflectivity measurements were made using suitable standards. During operation care was taken in every case such as exact levelling polished surfaces, selecting measuring areas, exact focusing onto the surface and accurate setting wavelengths of the sliding monochromator.

At each wavelength three readings of the digital voltmeter were taken for standard, specimen and finally the black box. Measuring the same areas of the standard and of the specimen with the aid of the specimen changer-stages the procedure was repeated for various wavelengths.

Reflectivity value (in percent) corrected for the primary glare effect is computed by the following formula for a given wavelength.

$$R \lambda_{(sp)} = \frac{R \lambda_{(st)} V \lambda_{(sp)} - V \lambda_{(b)}}{V \lambda_{(st)} - V \lambda_{(b)}}$$

where $R \setminus (sp)$, $R \setminus (st) =$ reflectivity of specimen and standard, respectively, at wavelength \setminus .

 V_{λ} (sp), V_{λ} (st), V_{λ} (b)⁼ digital voltmeter readings for specimen,

standard and black box, respectively, at wavelength λ .

When a large number of measurements is made it may be preferable to use a PL / 1 computer program, as given in Appendix III 1, to carryout the calculation.

Accuracy and Precision

The reflectivity apparatus of this laboratory and the technique applied provide accurate and high precision results with a small limit of error. Results of silicon standard (NPL) measured against carborundum standard (NPL) are given in Table III 1.

The accuracy and precision of reflectivity values for quantitative colour measurement are discussed in Chapter VI.

Table III 1.	Accuracy and Precision of Spectral Reflectivity Measu	rements
	R% of Silicon (NPL) Measured Against Carborundum (N	PL)

Si(NPL)	Wave-	М	leasi red	. Value	S.	Mean	Mean	Standard	Coeff.of	5/0	Accuracy
Values	length	I	II	III	IV	R%	deviation	Deviation	Variation	Error	
43.1	440	43.19	43.12	43.21	43.15	43.17	<u>+</u> •03	.035	.08	• 16	.002
41.3	460	41.54	41.56	41•51	41.68	41.57	+• 0 <u>5</u> .	.065	• 16	•65	.007
39•9	480	40 <u>.</u> 02	40 . 07	40.03	40 . 17	40.07	<u>+</u> .05	. 05 9	• 15	•42	.004
38.9	500	3B.93	38.99	38.98	39.10	39.00	<u>+</u> .05	. 062	.16	• 26	.003
38.0	520	38.07	38 . 09	38.07	38.20	38. 11	<u>+</u> •05	.054	•14	• 29	.003
37.2	540	37.26	37.29	37•39	37.41	37•34	<u>+</u> .06	.064	• 17	• 37	.004
36.6	560	36.62	36.65	36.62	36.75	36.66	<u>+</u> •05	05 3	• 14	• 16	•002
36.0	580	35.96	35.96	35.99	36.10	36.00	<u>+</u> •05	. 058	. 16	.00	.000
35.5	600	35.50	35,48	35.53	35.62	35.53	<u>+</u> • 04	.054	• 15	.08	.001
35.1	620	35.20	35.14	35.16	35.29	35, 20	<u>+</u> •05	.058	• 16	•28	.003
34.8	640	34. 68	34.54	34.56	34.67	34.61	<u>+</u> •15	.063	. 18	•55	.005
34•4	660	34.83	34• 33	34.49	34.50	34•54	<u>+</u> •29	. 18 2.	• 53	•41	.004
abo	ut 21°C	room t	emperat	ure.							

•

•

III 3. SPECTRAL REFLECTIVITY OF GEMSTONES

Gem variaties of natural minerals, artificial materials and some organic substances of beauty to mankind have been used as gemstones. The qualities of colour and reflection are the most striking and important properties of gemstones.

The colour of a gemstone is used as an aid for identification and also made use of for classifying into different qualities. The colour may be the most important property to assess the relative value of very similar stones, other things being equal.

To measure the colour quantitatively the first problem is to obtain the spectral reflection or transmission values of a gemstone. Once a gem mineral has been facetted, the transmitted light method of determining its spectral transmission is difficult or impossible to apply, because of its odd shape, therefore it was first decided to make an investigation of the use of reflected light method.

The reflectivity of an isotropic gemstone is given by Fresnel's equation

$$R \% = \frac{(n - N)^2 + k^2}{(n + N)^2 + k^2} * 100.0$$

where n and k are the index of refraction and absorption coefficient, respectively, of the absorbing mineral. N is the refractive index of the surrounding medium (air N = 1), k = nK and k $/\lambda_0 = K /\lambda$ where K is the absorption index, λ_0 is the wavelength in air and λ is the wavelength in mineral. The index of refraction and absorption
coefficient of a gemstone vary with wavelength and therefore reflectivity varies accordingly.

For uniaxial gemstones, the reflectivities R_0 and R_0 of the principal vibration directions are related in the same way to refractive indices n_0 and n_0 and the absorption coefficients k_0 and k_0 . Bireflectance of a gemstone is $R_0 - R_0$ if it is optically negative or $R_0 - R_0$ if it is optically positive.

Similarly, a biaxial genetone has three principal reflectivities $R_{\mathcal{H}}$, R_{β} and $R_{\mathcal{T}}$ corresponding to $n_{\infty} k_{\infty}$, $n_{\beta} k_{\beta}$ and $n_{\mathcal{T}} k_{\mathcal{T}}$ respectively. The bireflectance is $R_{\mathcal{T}} - R_{\infty}$. If R_{β} is nearer to R_{∞} than $R_{\mathcal{T}}$ the stone is said to be optically positive and if R_{β} approaces $R_{\mathcal{T}}$ it is optically negative.

As in ore microscopy, the reflection principles for normally incident plane-polarised light are applied to gemstones and the reflectivity measurements are also applicable to polished surfaces of gemstones.

In an ideal brilliant cut stone the total back reflection occurs as shown in Figure III 3. A test showed that black plasticine absorbed all incident light, no detectable light reflected from it and so to reduce the back reflection facetted stones were mounted on pieces of black plasticine.

Inclusions and flaws are not uncommon in natural gemstions. Scattering of light due to such imperfections will cause error and unfortunately, this is unavoidable in the measurement.

However, an area as free as possible from optical imperfections should

be chosen and thus the conventional method of reflectivity measurement can be employed to facetted gemstones.

Spectral reflectivity measurements, as described in the previous section II 2, were made on polished surfaces of some ore minerals and facetted gemstones in the visible spectrum ranging from 440 nm to 660 nm at an interval of 20 nm. In all measurements a lowpower objective (X 10) and a measuring area of 50 micron were used consistantly. Measured reflectivity values of ore minerals and published data available in the literature were employed in the quantitative measurements of colour.

The spectral reflectivity values of facetted gemetones are presented by the curves in Figure II 4. For non-opaque minerals and gemetones there is no significant variation in reflectivity throughout the visible spectrum. Consequently, their spectral reflectivity values which are not related to the pronounced colours of the specimens are inapplicable for colour measurement.

The probable explaination for this is that reflection of normally incident light actually takes place at the top surface, perhaps a few micron thick layer of a non-opaque specimen. The amount of absorption of such a thin layer of low-absorbing material is negligible (i.e. $k \rightarrow 0$), and therefore it is not effective to reflectivity although measurement is made on thick specimens of pronounced colour.

It follows that reflectivity of a transparent(i.e. light can pass through a petrographic thin section with a thickness of 0.3 mm) mineral is completely dominated by its refractive index n rather than the absorption coefficient k.

; K For these reasions the accurate measurements of reflectivity suggested that reflectivity values and refractive indices of non-opaque minerals are directly correlated as shown by the linear straight line in Figure III 5.

Therefore reflectivity measurement could provide an additional method for identification in gemmology, especially those stones whose refractive indices are high beyound the range of a normal refracrometer.

Since the application of reflected light method to the measurement of colour in transparent genetions was unfavourable, an investigation of the use of transmitted method was made. The proper transmission measurement method requires a thin, parallel sided specimen. The most convenient thickness of a specimen depends on its amount of absorption (Tauc, 1967).

Such measurement is obviously impossible to apply to facetted gemstones. Therefore an alternative method of determining spectral transmission of facetted stones was considered and is described in the next Chapter.

57

Figure III 3. Total back reflection and dispersion of a ray of light passing through brilliant cut diamond.

.

σ

IV. POSSIBILITY OF TRANSMISSION MEASUREMENT THROUGH FACETTED GEMSTONES FOR COLOUR MEASUREMENT

THEORECTICAL CONSIDERATIONS

Consider a parallel beam of light incident normally on the surface of a parallel sided plate of thickness t , refractive index n_{b} and absorption index K_{b} . If the intensity is I_{o} in the direction shown in Figure IV 1, let J_{o} be the intensity of light travelling in the opposite direction due to reflection at the surface AB and transmission of components reflected from the surface CD . With similar meanings for other I_{x} and J_{x} we have the following relationships:

Equations for light leaving the surface AB $I_1 = R J_1 + (1 - R) I_0;$ $J_0 = R I_0 + (1 - R) J_1;$

Equations for light leaving the surface CD $I_3 = R J_3 + (1 - R) I_2$; $J_2 = R I_2 + (1 - R) J_3$;

Equations for absorption in the medium $I_2 = I_1 \cdot e^{-mt}$; $J_1 = J_2 \cdot e^{-mt}$.

where R is the reflection coefficient at normal incidence

$$R = \frac{(n_{\lambda_{0}} - N)^{2} + n_{\lambda_{0}}^{2} K_{\lambda_{0}}^{2}}{(n_{\lambda_{0}} - N)^{2} + n_{\lambda_{0}}^{2} K_{\lambda_{0}}^{2}}$$
(1)

K = k/n, N is the refractive index of the surrounding medium. m_{D} is the absorption modulus = $4\pi n_{D} K \lambda_{O} / \lambda_{O} = 4\pi k_{D} / \lambda_{O}$ (2) λ_{O} is the wavelength of the light in vacuo.

Figure IV. 1 Reflection and absorption of a parallel beam of normally incident light in passing through a parallel sided plate of an absorbing substance.

Assuming no reflection from the measuring instrument $J_3 = 0$.

Hence $I_3 = (1 - R) I_2;$

$$J_2 = R I_2;$$

$$J_1 = R I_2 \cdot e^{-mt}$$

substitution gives

e/

$$T_{\lambda_{0}} = I_{3} / I_{0} = \frac{\left(1 - R_{\lambda_{0}}\right)^{2}}{e^{m_{\lambda_{0}}t} - R_{\lambda_{0}}^{2}} e^{-m_{\lambda_{0}}t}$$
(3)

For non-absorbing substances it is usually assumed that m = 0, then equation (3) becomes

$$T = \frac{(1 - R)^2}{1 - R^2}$$
(4)

Thus for an isotropic absorbing and non-absorbing substance with two parallel surfaces on opposite sides the transmission of normally incident light is given by equations (3) and (4) respectively. From these equations, formulae for transmission of a combination of layers can be drived as follows:

(1) Transmission of a combination of non-absorbing layers separated by air as shown in Figure IV 2 is

$$T = \frac{(1 - R_1)^2 (1 - R_2)^2}{1 - R_1 \cdot R_2}$$
(5)

when both layers have the same refractive index, then $R_1 = R_2 = R$, and hence $R_1 = R_2 = R + R_1$

$$f = \frac{(1 - R)^2}{1 - R^2}$$

(2) Transmission of a combination of non-sbsorbing layers in optical contact, when both layers have the same refractive index as shown

59

Figure IV.2 A combination of non-absorbing layers separated by Air, both layers have same refractive index'n'

Figure IV.3 A combination of non-absorbing layers in optical contact, both layers have the same refractive index.'n'

ſ

Figure IV. 4 A combination of non-absorbing layers in optical contact, refractive indices of layers are different.

in Figure IV 3, then

$$T = \frac{(1 - R_1)(1 - R_2)}{1 - R_1 \cdot R_2} = \frac{(1 - R)^2}{1 - R^2} = \frac{1 - R}{1 + R}$$
(6)

(3) Transmission of a combination of non-absorbing layers in optical contact when refractive indices of layers are different as shown in Figure IV 4, then

$$T = \frac{(1 - R_1)(1 - R^{\dagger})(1 - R_2)}{1 - R_1 \cdot R^{\dagger} \cdot R_2}$$
(7)

where

$$R_{1} = (n - 1)^{2} / (n + 1)^{2}$$

$$R' = (N - n)^{2} / (N + n)^{2}; N > n.$$

$$R_{2} = (N - 1)^{2} / (N + 1)^{2}.$$

(4) Transmission of a combination of an absorbing layer and a nonabsorbing layer in optical contact as in Figure IV 5

$$T = \frac{(1 - R_1)(1 - R') \cdot (1 - R_2)}{1 - R_1 \cdot R' \cdot R_2 \cdot R_2^2}$$
(8)

where $= e^{-mt}$ (Bouguer's law), is called internal transmittance.

There is no parallel transmitted beam of light through a facetted gemetone since total back reflection t_{ekes} place from inclined faces as shown in Figure IV 6. A parallel transmitted beam of light through such stones can be obtained when immersed in liquid of the same refractive index as shown in Figure IV 68.

By this way transmission measurement is independent of

Figure IV 5. Transmission of a combination of an absorbing layer and a non-absorbing layer in optical contact.

Figure 1V 5 s. Back reflection of a ray of light in passing through a facetted stone in air.

the shape of a gemstone and the difficulty of preparation for a thin parallel sided section is eliminated. The above equation, therefore, is also applicable for facetted gemstones (without spoling a stone) at a particular wavelength, where the refractive index of a stone and liquid is the same.

When measurement of spectral transmission based on this principle is made errors will be introduced in the experiment. The probable errors considered are

(1) due to the excess liquid over the stone and

i/

(2) due to higher dispersion of the liquid for other wavelengths, except the matching wavelength.

In the first case the error may be eliminated if the matching liquid is colourless. If the liquid has a negligible amount of absorption at thin layer over the stones the consequent error may also be regarded as negligible. However for accurate measurement colourless immersion liquids are preferable.

In the second case the amount of errors depends upon the dispersion character of a liquid used in the measurement. Unfortunately, the dispersion of immersion liquids are normally higher than that of solids as, for example, shown in Figure IV 7.(after Wahlstrom, 1966). The refractive index of solid and liquid will be matched at a particular wavelength, and so parallel transmitted beam of light through a facetted stone occurs.

For other wavelengths in the visible spectrum the diviation of reflactive indecies of liquid from those of a solid will cause the divergence of the transmitted beam from parallelism. From the theorectical point of view, the refractive index of liquid at every wavelength could be matched with that of the solid by adjusting the temperature, since the R.I. of liquid is much more sensitive to temperature than that of a solid. But in practice it will not be very convenient and costly to do it.

However calculation shows that the estimate of the error due to a difference of 0.01 n between liquid and solid is about 0.25% in transmission and due to a difference of 0.1 n is about 2.5%. If the second case is considered as a maximum error the method of transmission measurement in oil is reasonably acceptable.

The relative values of spectral transmission are of interest for colour measurement of a particular gemstone. If the dispersion of liquid is not too much stronger than that of the stone, and as long as the same liquid is used for different cut stones of the same mineral, their relative transmission values are comparable and therefore their colour values are also comparable to one another.

The equation for spectral transmission of an isotropic absorbing gemstone in oil (of the same n as that of the stone) may be written as

$$T\lambda = \frac{(1 - R_1 \lambda)(1 - R \lambda) (1 - R_2 \lambda)}{1 - R_1 \lambda \cdot R \lambda R_2 \lambda \Lambda^2}$$
(9).

Figure IV.7 Dispersion curves plotted on a Hartman net and showing relationship among the index of refraction wavelength, and temperature (after Wahlstrom, 1966)

EXPERIMENTS AND RESULTS

To establish the validity of the above considerations transmission measurements were made and measured values were compared with those obtained by calculation according to equation (7) for non-absorbing specimens.

For an absorbing mineral two methods of transmission measurement were applied according to the conditions for equation (8) and equation (9). The equation (9) is the same as equation (8) which is from equation (7), but the measuring methods are different. Hence the results obtained by two methods should be the same.

Measurements were made as follows.

The same reflectivity apparatus was used for transmitted light work, with some alterations of the equipment, as shown in the diagram III 2. In the microscope assembly an iris diaphragm below the polarizer, a measuring diaphragm, of about 80 micron in diameter, above the objective, a photomultiplier stop, of about 50 micron in diameter (the same as in reflectivity measurement), below the photomultiplier tube-window, and the condensing lenses just below the microscope stage were used. By using the condensing lenses the image of the light source can be brought up to the specimen surface.

A glass cell was made by joining one end of a glass tube to a surface of a polished petrographic glass slide with 'araldite'. The glass cell was thoroughly cleaned and placed on the microscope stage. The image of the light source was focused as in proper way. Intensities of the light source (I_n) at various wavelengths were read

6:3

on the digital voltmeter.

One side of a basal section of clear quartz (rock crystal) with polished parallel surfaces was wetted with a drop of Rayner's R.I. liquid of 1.54 n and was placed with gentle pressure on the glass slide in such a way that a thin film of the liquid served to make 'optical contact' with the specimen and the glass slide (i.e. the entire space between the specimen and the glass slide was completely filled without any air bubbles).

An area of the specimen as free from imperfection as possible was selected and the image of the light source was focused. So the distance between the surfaces of photo.cells and the source image was always the same when the specimen was in or without the specimen in the plane polarized light.

Intensities of the emergent light passing through the glass slide and the specimen were read for various wavelengths . Therefore the spectral transmittance of the combination of the glass slide and clear quartz (w) in optical contact is

$$T = I / I_{O}$$

In order to compare the measured values with calculated results spectral refractive indices of the same glass slide and the quartz specimen were determined, at working temperature of about 20°C, with an Abbe Refractometer model B and a quartz monochromator. Direct readings on the scale for various wavelengths were corrected by using given calibration tables for the dispersion characteristics of the instrument as a function of the wavelength.

64

Fresnel reflectances of the quartz specimen, glass slide and quartz-glass interface were computed thereafter and substitutions of these values in the formula (7) gave spectral transmittances of the combination of the two non-absorbing layers at optical contact.

Measured spectral refractive indices and calculated Fresnel reflectances are tabulated in Table IV 1. Measured transmission values and calculated results of the combination of clear quartz and the glass slide at optical contact are given in Table IV 2. The measured values are slightly higher than the calculated values (N.B. according to Ayres, 1949 and Bloss, 1955, the relative errors increase considerably when transmission is lower than about 20% and higher than 60%).

Spectral transmission measurements of a combination of a basal section of brown quartz (cairngorm) and the glass slide were made by two methods.

The first method was as described above for a combination of non-absorbing and absorbing layers (equation 8) in optical contact at interfaces. In the second method the brown quartz basal section was measured in the matching liquid (equation 9). The polished surface of the brown quartz specimen was thoroughly cleaned and wetted with the same Rayner R.I. liquid of 1.544 n. The specimen was placed on the glass im the cell as mentioned above and the cell was filled with the same liquid till it just covered the top of the specimen surface. Measurement, as close as possible to the previous area was made after focusing to the image of the light source.

The measured values by two methods are given in Table

IV 3 and are presented by curves in Figure IV 8. All calculated and measured transmission results were then computed for quantitative colour values. For the clear quartz specimen its chromaticity coordinates must be the same as that of the achromatic point since it is colourless.

For brown quartz its colour coordinate points derived from two transmission measurements must also be more or less the same, or at least fall within the limits of a discrimination threshold. These conditions were satisfied as evidences of the proof are given in Table IV 4.

Thus statistical and experimental results permit the use of matching liquid to determine the spectral transmission characteristics of facetted gemstones.

For an anisotropic gemetone the transmission T is according to the crystallographic orientation under examination. At a wavelength where the R.I. of the stone matches that of the liquid the image of the parallel transmitted beam is at the centre of the field of view and the boundary of the image is sharp. During a gentle rotation of the microscope stage and sliding the monochromator for other wavelengths the image of the emergent light slightly deviates from the centre of the field due to the different dispersion characteristics of liquid and the stone. In this case values of minimum and maximum transmissions were measured in plane polarised light at each of the two extinction positions. It was considered that it may be permissable to take the mean transmission values of an anisotropic stone for general colour measurement.

66

Table IV 1.

	Measured Refra	ctive Indices
Wavelength	Clear Quartz	Glass Slide
nm	n _w	n
460	1.5517	1.524
480	1.5501	1.523
500	1.5488	1.522
520	1.5476	1.520
540	1.5465	1.519
560	1.5455	1.518
580	1.5446	1.517
600	1.5439	1.516
620	1.5431	1.515
640	1.5424	1.514

Calculated Fresnel Reflectances ($r = \frac{(n - N)^2}{(n + N)^2}$)

Wavelength nm	Clear Quartz ^r w	Glass Slide r	Quartz—Gļass interface r
460	0.04675	0.04310	0.00081
480	0.04653	0.04297	0.00078
500	0.04636	0.04284	0.000076
520	0.04620	0.04258	0.00081
540	0.04606	0.04245	0.000080
560	0.04592	0.04232	0.000081
580	0.04581	0.04219	0.000081
600	0.04571	0.04206	0.000083
620	0.04561	0.04193	0.00084
640	0.04552	0.04180	0.00086

Wavelength	Calculated	Measured	
nm	Τ %	Т %	
460	91.21	91.41	
480	91.24	91.83	
500	91.27	91.90	
520	91.31	92.02	
540	91.34	92. 36	
560	91.36	92.66	
580	91.39	92.69	
600	91.41	92.99	
620	91.43	93.12	
640	91.53	93.36	

Table IV 2. T% of a Combination of Clear Quartz and a Glass Slide in Optical Contact

Table IV 3. Measured	T % of a Combination and a Glass Slid	of Brown Quartz(w) e
Wavelength	in optical contact	in matching oil
nm	at interfaces	n = 1.544
440	43.97	42.82
460	44.84	43.86
480	45.67	45.01
500	46,95	46.50
520	48.55	48.34
540	50 . 98	50 .52
560	53.36	52,98
580	55.70	55.11
600	58,02	57 . 30
620	59.80	59.63
640	61.52	61.98
660	64.10	64.10

WAVELENGTH (nm)

66

O

Source & Specimens	Chromaticity coordinates		Dominant wavelength	Excitation purity
	×	<u>у</u>	d	Pe%
Illuminant A	0.4476	0 . 40 7 5		
Clear Quartz(w) in air,				
calculated	0.4477	0.4075		
Clear Quartz-Glass in				
optical contact,				
calculated	0.4478	0.4075		
Clear Quartz-Glass in				
optical contact,				
measured	0.4491	0.4078		

Table IV 4. Colour Specifications derived from Calculated and

Measured Transmittance Values

Brown Quartz-Glass in				
optical contact,				
measured	0.4712	0.4090	591.42	17.39
Brown Quartz-Glass in				
matching oil, measured	0.4722	0.4094	591.10	18.31

V. <u>COMPARISON OF TRANSMISSION MEASUREMENTS MADE WITH A MICROSCOPE</u> PHOTOMETER AND A <u>GRATING SPECTROGRAPH</u>

Spectral transmission measurements have been usually carried out with a recording grating spectrograph(or spectrophotometer). Such apparatus is not suitable to make measurement of very small specimens ($\langle 2 \ mm \ in \ diameter$) and specimens with non-parallel sided surfaces. Therefore, for non-opaque minerals and facetted gemstones, spectral transmission measurements were made with a microscope photometer (the same apparatus used for reflectivity measurement ; as described previously).

It was interesting to compare transmission measurements made with two different types of apparatus. For this purpose specimens were prepared as follows.

A red spinel crystal of gem quality, from Burma and a basal section of brown quartz (cairngorm) were embedded in synthetic resin discs. They were ground with medium grade silicon carbide on the first lap and with fine silicon carbide on the second lap. They were then polished with fast cutting alumina, with 6 micron diamond paste, with $\frac{1}{4}$ micron diamond paste and finally with 'finish polishing' alumina. The other sides of the embedded specimens were cut off and these second opposite surfaces of red spinel and brown quartz were ground and polished down to 1.5 mm and 1.0 mm in thickness respectively. Minute solid inclusions in both specimens were observed under the microscope with a low-power objective.

Measurements with the Microscope Photometer

Spectral intensity of the incident beam of light (I_{n})

of about 80 micron in diameter was measured before and after measurement of a specimen, as described in the previous section.

The polished specimen was cleaned thoroughly with xylene and soft tissues. It was placed on the microscope stage and an area as clean and free from imperfection as possible was selected. Spectral intensity of the transmitted beam (I) of plane polarised light was recorded from wavelengths of 400 nm to 680 nm. The specimen was turned over to measure the second surface in the same way. The average of two measured I_o was used to calculate spectral transmittance (in percent) of the specimen as

 $T \% = I / I_{0} \times 100.0$

The measured areas of the first surface and second surface of the specimen may not be the same. However, to estimate the precision of the measurement repeated experiments were made. The spectral transmittance values (%) of red spinel and brown quartz are given in Tables V 1 and V 2. The maximum variation of the average values of two measurements was less than 1 % (absolute) at any wavelength.

Measurements with an Optica Recording Grating Spectrograph

The optica recording grating spectrograph manufactured by Optica United Kingdom- Limited has a double beam optical system and a working range of 185 nm to 3200 nm. It has a 600 lines/mm ruled grating with a dispersion of 16 A°/mm for the UV and visible regions (185 nm to 1000 nm).

Holders for a specimen and the reference beam of light

of 2 mm in diameter were used. The holders were specially made, as those supplied with the instrument are too large. The deflections of the potentiometers on the chart recorder were set to 0 and 100 over the visible spectrum by means of the 0% and 100% transmission controls , when the light beam was cut off and when the incident beam was passed through the reference holder respectively.

The same specimens were first cleaned thoroughly with xylene and one face of a specimen was stuck on the back of the specimen holder having a 2 mm hole. Measurement of the first surface was made from wavelengths of 400 nm to 700 nm under the following operational conditions.

tungsten lamp(12V, 48W) from 400 to 600 nm Source: 11 11 - 11 " with a red filter from 600 to 700 nm. Photomultiplier Type: RCA 1P 28 with a maximum response at about 340 nm. Slit: automatic slit used to obtain a constant 100% transmission of the incident beam in air. Time Constant: normal. Gain: 6 (optimum condition). Wavelength Scan Speed:0.5 A*/sec. 2°/minute. Chart Speed:

Accuracy of the wavelength on the chart was 5 \pm 1 A^{\circ} .

The measurement of the opposite second surface was repeated in the same way. Transmittance values (%) thus obtained are given in Tables V 3 and V 4.

For comparison of the measurements made with two types

of different apparatus the spectral transmiticity ($i_{\bullet}e_{\bullet}$ transmittance in %) curves of red spinel and brown quartz are shown in Figures V 1 and V 2.

From tabulated measured values and Figures V 1 and V 2, it was seen that measurements with the spectrograph gave large variation in transmittance values of the first and second surfaces of the specimen. That is probably because of the different polishing qualities of opposite surfaces and imperfect parallelism of the section. Nevertheless, these large variations do not considerably affect quantitative colour measurements as shown in the chromaticity chart of Figure V 3.

With the microscope photometer a specimen can be examined and areas of both surfaces can be selected as free from imperfection as possible. For this reason the variation in transmittance values of the first and second surfaces of the specimen was comparatively smaller.Another advantage of the use of the microscope photometer was that a very small specimen could be measured.

The differences in spectral transmittance values, within the experimental errors, obtained with two different apparatus may be due to the following major reasons.

(1) Spectral sensitivities, over the visible spectrum, of the two types of photomultiplier are different as shown by curves in Figure V 4. Results of colour matching experiments however, show that for different persons appreciable differences in light sensitivity of retinal photocells result in slightly different sensation of the same colour. Likewise, two apparatus differing in sensitivity of light for each wavelength produced two different spectral responses resulting slightly different colours of same specimen.

(2) Fields of illumination and measuring sizes were different,although the same type of sources were used.

(

(3) There is a lower polarizer in the microscope photometer but no polarizer in the spectrograph.

Quantitative colour values were derived from the above measured transmittance values and results are given in Tables V 5 and V 6. Their colour points are plotted in the chromaticity diagrams of Figures V 3.

TRANSMITICITY (Transmittance in %) OF RED SPINEL (111) MEASURED WITH

THE MICROSCOPE PHOTOMETER.

(Thickness = 1.5 mm)

First Measurement

Second Measurement

(mm)	Face 1	Face 2	Average	Face 1	Face 2	Average
400	9.7	10.1	9.9	10.6	10.6	10.6
410	1 1.0	11.1	11.05	11.5	11.0	11.25
420	13.3	13.3	13.3	13.9	12.6	13.25
430	17.1	17.1	17.1			
440	22.5	22.1	22.3	23.0	21.25	22.1
450	28 . 7	28.1	28.4			
460	34.0	33.0	33.5	34.4	32.15	33.3
470	37.4	36.0	36.7	37.8	35.4	36.6
480	37.9	36.4	37.15	38.6	36.1	37.35
490	35.9	34.3	35.1			
500	31.9	30.5	31.2	32.7	30.3	31.5
510	26.8	25.6	26.2			
520	22.2	21.3	21.75	23.0	21.2	22.1
530	18.5	18.0	18.25			
540	16.6	16.1	16.35	17.2	15.7	16.45
550	16.5	16.0	16.25	17.0	15.6	16.3
560	18.3	17.8	18.05	18,85	17.3	18.1
570	2 2 . 3	21.5	21.9			
580	28.15	27.0	27.6	28.4	26.2	27.3
590	35.3	33.6	34.45			
600	42.6	40.1	41.35	42.8	39,55	41.2
610	49.3	46.6	47.95			
620	55.1	51.7	53.4	55.0	50.9	52 . 95
630	59 .9	55 .9	57.9			
640	62.8	58 .9	60.85	63.5	58 .5	61.0
650	65 .7	60.95	63.3			
660	66 .7	63.0	64.85	65.6	62,55	64.1
670	68 .5	64.0	66.25	67.9	62.9	65.4
680	67.8	64.9	66.35	68.1	66.0	67.05

Table V.2 .

(nm)	Face 1	Face 2	Average
400	41.3	43.6	42.25
410	42.3	44.8	43.55
420	42.9	44.9	43.9
440	43.1	45.3	44.2
460	43.4	45.8	44.6
480	44.0	46.5	45.25
500	45.1	47.6	46.35
520	46.4	49.1	47.75
540	48.1	50,8	49.45
560	49.9	52.7	51.3
580	51.4	54.4	52.9
600	53.3	56,3	54.8
610	54.4	56,9	55.65
620	55.0	57.6	56.3
630	55.9	58 . 7	57.3
640	56.9	59.6	58.25
650	57.4	60.4	58.9
660	59.4	60 .9	60.15
670	60.0	62.0	61.0
680	59.6	61.7	60.65

TRANSMITICITY OF BROWN QUARTZ(W) MEASURED WITH THE MICROSCOPE PHOTOMETER. (thickness = 1:0 mm) Table V 3.

TRANSMITICITY OF RED SPINEL (111) MEASURED WITH THE OPTICA RECORDING

GRATING SPECTROGRAPH (Thickness = 1.5 mm)

(11110411833 = 1.0

First Measurement

Second Measurement

(nm)	Face 1	Face 2	Average	Face 1	Face 2	Avegare
400	5.6	3.25	4.4	3.3	2.3	2.8
410	8 _• 0	4.7	6.35	4.6	4.0	4.3
420	10.0	5.1	7 .5 5	6.0	5.0	5.5
430	15.7	8.9	12.3	10.0	8.6	9.3
440	21.7	17.4	19.55	17.5	15.5	16.5
450	38.1	24.9	31.5	25.4	22.4	23.9
460	45.5	30.0	37 . 75	31.0	27.1	29.05
470	49.6	32.9	41.25	3 3.6	30.0	32.0
480	49.0	32.5	40.75	34.2	30.0	32.1
490	44.3	29.4	36.85	31.0	27.1	29.05
500	36.9	24.3	30.6	26.0	22.8	24.4
5 1 0	28.5	19.0	23.75	20.0	18.2	19.1
520	21.4	14.3	17.85	15.0	13.5	14.25
530	17.0	11.4	14.2	12.0	10.7	11.35
540	15.7	10.5	13.1	11.2	9.9	10.55
550	17.0	11.4	14.2	11.5	10.2	10.85
560	21.5	14.6	18.05	14.8	13.2	14.0
570	29.0	20.0	24.5	20.0	18.0	19.0
580	39.6	27.5	33,55	28.0	25.0	26.5
590	50,8	35.3	43.05	36.7	32.0	34.35
600	60.8	42.6	51.7	44.4	39 . 3	41.85
610	69.0	48.3	58.65	50.4	45.4	47.9
620	74.3	52.0	63.15	55.0	49.3	52,15
630	78.3	54.8	66 .5 5	58.3	52.1	55.2
640	80.4	56.7	68.55	60.2	54.0	57.1
650	82.2	57.6	69.9	61.7	55.5	58.6
660	83.3	59.0	71.15	63.0	57.0	60.0
670	84.3	59 . 7	72.0	64.2	58.0	61.1
680	84.6	60.4	72.5	64.6	58.4	61.5
690	83 . 7	60 .0	71.85	64.5	58.2	61.35
700	83,9	60 .5	72.2	64 •5	58.8	61.65

Table V. 4.

TRANSMITICITY OF BROWN QUARTZ (W) MEASURED WITH OPTICA RECORDING

(nm)	Face 1	Face 2	Average
400	26.4	41.8	34.1
410	26.6	42.0	34.3
420	26.9	42.0	34.45
430	27.0	42.2	34.6
440	27.1	42.2	34.65
450	27.3	42.4	34.85
460	27.5	42.4	34.95
470	27.7	42.5	35.1
480	28.0	42.7	35.35
490	28.3	43.2	35.75
500	28.6	43.7	36.15
510	29.3	44.2	36.75
520	29.9	44.8	37.35
530	30.5	45.6	38.05
540	31.4	46.5	38,95
550	32.0	47.5	39,75
560	32.8	48.7	40.75
570	33.2	49.4	41.3
580	33.8	50.3	42.05
590	34.6	51.0	42.8
600	35.4	52.1	43.75
610	36.1	54.5	45.3
620	36.9	55.4	46.15
630	37.5	56.5	47.0
640	38.2	57.5	47.85
650	38.5	58 . 7	48.6
6 60	39.8	59 .9	49.85
670	40.8	60 .9	50,85
680	41.6	61.8	51.7
6 90	42.8	62.9	52.85
7 00	43.9	64.0	53,95

GRATING SPECTROGRAPH. (Thickness = 1.0 mm)

Figure V 2. Spectral transmittance curves of brown quartz measured with the Double Beam Spectrograph and Microscope Photometer.

71 f

Figure V 4. Chromaticity diagram showing the colours of Red Spinel (1.5 mm) and Brown Quartz (w, 1.0 mm) under the C.I.E. source C. The differences in chromaticities are mainly due to two different types of apparatus used for transmission measurements.

71 g

Figure V4. Spectral monsitivities of the two types of photomultipliers.
QUANTITATIVE COLOUR VALUES OF RED SPINEL (111)

UNDER AVERAGE TUNGSTEN LAMP LIGHT

	CHROMATICITY	COORDINATES	COMPLEMENTARY	EXCITATION
	×	У	₩AVELENGTH(次c)	PURITY(Pe%)
T % Measure	ment with the	Microscope Pl	notometer.	
First measu	rement			
Face 1	0.5226	0,3602	- 506.51	29.81
Face 2	D.5196	0,3607	- 506.92	29.12
Average	0.5211	0.3604	- 506.73	29.48
Second measu	urement			
Face 1	0.5197	0.3621	- 506.49	28.63
Face 2	0.5195	0.3615	- 506.70	28.82
Average	0.5196	0.3618	- 506.60	28.72
T % Measure	ment with the	Optica Rëcord	ding Grating Spect	trograph.
First measu:	rement			
Face 1	0.5349	0.3543	- 506.07	34.02
Face 2	0.5393	0.3541	- 505.51	34.84
Average	0.5367	0.3542	- 505.84	34.36
Second mease	urement			
Face 1	0.5410	0.3533	- 505.47	35.42
Face 2	0.5422	0,3536	- 505.25	35.51
Average	D•5416	0.3534	- 505.37	35.48

•

.

QUANTITATIVE COLOUR VALUES OF RED SPINEL (111)

UNDER AVERAGE DAYLIGHT.

	CHROMATICITY ×	COORDINATES y	COMPLEMENTARY WAVELENGTH(7c)	EXCITATION PURITY(Pe%)
T % Measurem	ent with the	Microscope P	hotometer.	
First measur	ement			
Face 1	0.3671	0.2939	- 495.69	19.69
Face 2	0.3636	0.2926	- 496.30	19.56
Average	0.3654	0.2933	- 495.97	19,62
Second measu	rement			
Face 1	0,3646	0.2954	- 495.57	18,62
Face 2	0.3640	0.2944	- 495.85	18.91
Average	0.3643	0.2949	- 495.71	18.77
T % Measurem	ent with the	Optica Record	ding Grating Spec	trograph.
First measur	ement			
Face 1	0.3827	0.2903	- 495.26	24.06
Face 2	0.3887	0.2919	- 494.69	24.54
Average	0.3851	0,2909	- 495.03	24.27
Second measu	rement			
Face 1	0.3901	0.2920	- 494.60	24.76
Face 2	0.3919	0.2933	- 494.33	24.57
Average	0.3910	0.2926	- 494.47	24.69

QUANTITATIVE COLOUR VALUES OF BROWN QUARTZ (W)

UNDER AVERAGE TUNGSTEN LIGHT.

CHROMATICITY	COORDINATES	DOMINANT	EXCITATION
×	У	WAVELENGTH(<mark>አ</mark> d)	PURITY(Pe %)

T % Measurement with the Microscope Photometer.

Face 1	0,4672	0.4082	592.06	14.06
Face 2	0.4665	0.4087	591.42	13.93
Average	0.4668	0.4085	591.68	13.99

T % Measurement with the Optica Recording Grating Spectrograph.

Face 1	0.4714	0.4085	591.91	17.18
Face 2	0.4701	0.4064	594.33	14.70
Average	0.4707	0.4073	593.18	15.36

QUANTITATIVE COLOUR VALUES OF BROWN QUARTZ (W)

UNDER AVERAGE DAYLIGHT.

	CHROMATICITY ×	COORDINATES y	DOMINANT WAVELENGTH(Ad)	EXCITATION PURITY(Pe %)
T % Measure	ement with the	Microscope Pł	notometer.	
Face 1	0.3306	0.3292	584.07	8.96
Face 2	0.3303	0.3296	583.44	8.99
Average	0.3304	0.3294	583,72	8.96
T % Measur	ement with the	Optica Record	ding Grating Spec	trograph.
Face 1	0.3355	0.3325	583.88	11.16
Face 2	0.3328	0.3281	586.72	9.25
Average	0.3339	0.3299	585.41	10.03

VI. METHODS OF COMPUTING COLOUR SPECIFICATIONS OF MINERALS

Description has already been made of the basic principles of colour measurement. In the past colour specification of objects have been usually carried out graphically in part, from spectral transmittance or spectral reflectance data (Hand Book of Colorimetry by Hardy, 1936; Piller, 1966). Since better accuracy and precision of colour values of minerals are preferable, the absolute mathematical approach is considered and computer programmes developed to evaluate all colour specifications. This has the advantage of eliminating personal errors and reducing the time required for calculation.

VI 1. <u>Computational Procedure for Tristimulus values and Chromaticity</u> <u>Coordinates</u>

Measurements of spectral reflectivity for opaque mineral and spectral transmittance for non-opaque minerals and cut gemstones could be made at various wavelengths only within the sensitivity range of the photomultiplier (i.e. from about 420 nm to 660 nm) since the colour-matching functions are very small below about 400 nm and above 680 nm, the reflectivity curve can be extended justifiably towards the two ends of the spectrum by extrapolation (see Figure II 14).

Therefore the values require for the calculations were then found by interpolation and extrapolation for wavelengths of 360 nm to 780 nm with an equal interval of 5 nm , by the following linear equation:

$$R_{x} = \frac{\lambda_{x} - \lambda_{1}}{\lambda_{2} - \lambda_{1}} (R_{2} - R_{1}) + R_{1}$$
(1)

where R_x is a required reflectivity at the wavelength λ_x , λ_2 and λ_1 are longer and shorter successive wavelengths respectively, and R_2 and R_1 are the respective measured reflectivities.

The reflectivity values at 5 nm intervals are then multiplied by the corresponding normalized products of the colourmatching functions of the light source obtained from Table II 5. By definition, the tristimulus values XYZ of an object colour can be determined by evaluating the following integrals.

$$X = \int R \lambda H \lambda \overline{x} \lambda d\lambda$$

$$Y = \int R \lambda H \lambda \overline{y} \lambda d\lambda$$
 (2)

$$Z = \int R \lambda H \lambda \overline{z} \lambda d\lambda$$

Since the reflectivity (or transmiticity) values are in percent, the sum of the products for X is divided by 100.0, and similarly for Y and Z. Each integral extends over the visible spectrum at 5 nm intervals , that is an 81 - point multiplication and summation.

The chromaticity coordinates x, y, z are given by

$$x = \frac{X}{X + Y + Z}, \quad y = \frac{Y}{X + Y + Z}, \quad z = \frac{Z}{X + Y + Z}$$
(3)

PL / 1 Computer Programme

A PL/1 (Programming Language / One) programme written by the author and based on the above computational procedures (1), (2) and (3), has the capacity to determine the required values from data for several samples at a time, for one or many different light sources.

The computer output includes measured reflectivity (or transmiticity) data (input), interpolated and extrapolated values and chromaticity coordinates (output). This programme and an example of listings of sample data are given in Appendices VI 1a amd VI 1b. respectively.

VI 2. <u>Computational Procedure for Dominant Wavelength</u>, <u>Complementary</u> Wavelength and Excitation Purity

The dominant or complementary wavelength of a sample may be determined graphically from the standard chromaticity diagram (previously described). Judd (1933) gave a computational procedure to calculate the dominant wavelength and colorimetric purity^{*} by linear interpolation from his tabular values given for the C.I.E. standard sources A,B,C and E. Judd's tabular values of slopes of the dominant wavelength lines can also be found in the book ' Color Science' by Wyszecki and Stiles (1967).

* Colorimetric purity = spectral luminance purity, is the ratio of the luminance of the spectrally pure component of mixture with achromatic component, matching the colour, to the luminance of the colour itself. (CCOSA , 1968) Such ratios of constant dominant wavlength (also complementary) for any other light source are evaluated by

$$r = (x - X) / (y - Y)$$
if absolute value $(x - X) \langle (y - Y)$

$$r = (y - Y) / (x - X)$$
if absolute value $(y - Y) \langle (x - X)$.
(4)

where x,y and X,Y are coordinates of the spectrum and of the light source respectively.

A PL / 1 computer programme to compute tabular ratios was prepared and is given in Appendix VI 2. Tabular ratios for sources A,B and C are listed in Table VI 1.

The computation of the dominant wavelength (λd) or complementary wavelength (λc) by means of the Tables of Appendix VI 3, is as follows:

Knowing the chromaticity coordinates (x,y) of a sample irradiated by a source whose coordinates are (X,Y) the ratio r is computed from (4) above. The ratio r will be found lying between two tabulated ratios r_1 and r_2 which correspond to dominant wavelengths λ_1 and λ_2 respectively. The required dominant wavelength (λ d) of the sample was evaluated by linear interpolation within the intervals of 1 nm, therefore

$$\lambda d = \frac{(\mathbf{r} - \mathbf{r}_1)}{(\mathbf{r}_2 - \mathbf{r}_1)} (\lambda_2 - \lambda_1) + \lambda_1 \quad . \tag{5}$$

To compute the excitation purity (Pe) it is required to

find the coordinates of the dominant wavelength on the spectrum locus. The dominant wavelength of a sample lies between the tabulated wavelengths λ_1 and λ_2 . Their corresponding chromaticity coordinates (x_1, y_1) and (x_2, y_2) were read from Table II 3, and the required coordinates (x_d, y_d) of the calculated dominant wavelength (d) were obtained by linear interpolation.

$$x_{d} = \frac{(\lambda_{d} - \lambda_{1})}{(\lambda_{2} - \lambda_{1})} (x_{2} - x_{1}) + x_{1}$$

$$y_{d} = \frac{(\lambda_{d} - \lambda_{1})}{(\lambda_{2} - \lambda_{1})} (y_{2} - y_{1}) + y_{1}$$
(6)

The excitation purity (Pe) of the sample colour was then computed from one of the following formulae:

$$Pe = \frac{x - X}{\lambda_{d} - X} = \frac{y - Y}{\lambda_{d} - Y}$$
(7)

These two expressions are equivalent, but if the straight line is approaching vertical the first expression is less accurate and vice versa when the straight line is nearly horizontal, and therefore the smaller value with the least rejection error was taken.

To Compute Excitation Purities of Non-Spectral Colours

Excitation purities of spectral colours always have positive signs, but one or both values (Pe) for the stimulus of a non-spectral colour will have a negative sign or signs when the above procedures are carried out. Hence the negative sign or signs of excitation purity would indicate that the required wavelength was not a dominant wavelength (λd) but a complementary wavelength (λc) and that the specimen had a non-spectral colour. Therefore it was necessary to recalculate the excitation purity for the complementary wavelength.

In order to calculate the excitation purity of a nonspectral colour it is first required to find the coordinates of its complementary wavelength on the purple line. This could be done in two ways.

(1) Chromaticity coordinates of complementary wavelengths of maximum purity for the C.I.E. sources A,B and C can be obtained from tabulated values in the book ' Science of Color' by the Committee on Colorimetry, 1968. The calculated complementary wavelength was then read from that table and linear interpolation from tabulated coordinates would give the required coordinates. This method is less accurate because wavelengths are not in linear scale.

(2) The second method used in this present work was as follows:

> The equation of the purple line is y = mx + c, where $m = (y_m - y_{\bar{n}}) / (x_m - x_n),$ $c = (x_m y_n - x_n y_m) / (x_m - x_n)$

and x_m , y_m and x_n , y_n are coordinates of the two extreme ends of the spectrum locus.

through the illuminant point X,Y and sample point $x_1^{,y}$ y₁ as shown in Figure VI 1 are

$$m_{1} = (Y - y_{1}) / (X - x_{1})$$

$$c_{1} = (Xy_{1} - x_{1}Y) / (X - x_{1})$$
(9)

The required coordinates x', y' of the complementary wavelength (λc) are involved at the intersection of the above two straight lines . Hence simultaneous equations give

$$x' = (c_{1} - c) / (m - m_{1})$$

$$y' = m \frac{(c_{1} - c)}{(m - m_{1})} + c$$
(10)

The excitation purity (Pe) of a non-spectral colour was then calculated by the formulae (4) in which x' and y' replace x_d and y_d respectively.

PL/1 Computer Programme

Acomputer programme written by Dr. Reevs and the writer, based on the above equations (4) to (10), has the capacity to compute dominant and/ or complementary wavelengths, coordinates and excitation purities of large numbers of specimen data, and to produce input and output data. This programme and an example of listings of necessary data are given in Appendices VI 4 a and VI 4 b respectively.

Figure VI 1. Explaination to compute complementary wavelength (λc) and excitation purity (Pe) of a non-spectral colour.

VII. ACCURACY AND PRECISION OF COLOUR SPECIFICATIONS

OF MINERALS

Spectral reflectivity data available from different papers were employed to evaluate colour values quantitatively. Different authors gave different accuracy and precision of reflectivity measurements. Piller and von Gehlen (1964) describe accurate measurements of reflectivity with relative errors about \pm 0.5% to \pm 1%. Cameron (1963) claims an accuracy of \pm 0.2% at 549 nm (corresponding to a relative error of \pm 1% at a reflectivity of 20%).

Nichol and Phillips (1964) obtained a precision of \pm 0.25% at the reflectivity level of 18%. Rowie (1967) gives reflectivity data of some ore minerals with a precision of less than \pm 0.5 absolute percent in white light. Levy (1966) obtained precision of about \pm 0.2 to 0.6 from twenty measurements of spectral reflectivities.

It is to be pointed out that the precision and accuracy of spectral reflectivity measurements vary over the visible spectrum. This is the case to be considered seriously for reproducibilities of colour values of minerals, because calculations showed that a consistant error of 1% or 2% in every wavelength made no variation in calculated chromaticity coordinates, but small inconsistant error at some wavelengths only gave rise to differences in coordinates.

However, as the C.I.E. colorimetric system has limits of accuracy (threshold values), the accuracy and precision of colour values derived from spectral reflectivities can be estimated in terms of these threshold values.

The Weighted Ordinate method $(d \ge 5 \text{ nm})$ which is preferable to the Selected Ordinate method (previously described) was adopted as a standard method in this persent work. It follows that the accuracy and precision depends on spectral reflectivity data and the numbers of wavelength intervals used in the measurements. Most of the reflectivity values given in the papers are only for a few wavelengths. Hence several interpolated values required to evaluate the integrals may deviate considerably from actual measureable values. This in turn depends upon the shape of the reflectivity curve.

In order to estimate the precision of quantitative colour values derived from available reflectivity data by the computer programmes it is necessary to estimate the true values. This was done by using reflectivity data with the smallest wavelength intervals. Then the precision of chromaticity values derived from large wavelength intervals can be compared to those obtained from small intervals.

A wide range of specimen data was selected to obtain strong, medium and weak colours with the chromaticity points scattered as regularly as possible around the standard illuminant points A and C.

Calculations for comparisons of results were carried out on the following basis. For a particular mineral measured values of reflectivity with smallest wavelength intervals were first used to derive the chromaticity coordinates. From the same series of measurement a few values of reflectivity were then selected and used to determine the effect of making measurements at wider wavelength intervals. So that deviations from the smallest intervals can be estimated as errors introduced in the colour values.

For example, pyrite has a comparatively medium colour saturation so originally the results of Demirsoy (1968), at 23 wavelengths, were used in the calculations and then values only 16, 12, 8 and 4 were used in turn, as shown in Table VII 1.

Table VII 1 shows the deviations of reflectivity values at omitted wavelengths from the actual measured values of 23 wavelengths, due to linear interpolation. The effective variations in the chromaticity coordinates due to such inconsistant deviations of spectral reflectivities over the spectrum are given in Table VII 2.

In the case of pyrite it was found that the chromaticity coordinates derived from the 23-point, 16-point and 12-point series were identical, although the interpolated reflectivities deviated from the actual measured values of the 23-point series. That is, the deviations ranging from 0.0 to \pm 0.15 (see Table VII 2) in the visible spectrum indicate that the chromaticity values are not affected by errors of 0% to 0.3% in spectral reflectivities.

Due to linear interpolation the deviation of the 8-point and 4-point series from the actual measured values of the 23-point series ranged from 0.0 to ± 0.2 and ± 0.01 to ± 2.2 respectively (corresponding to relative errors of $\pm 0.4\%$ and $\pm 4\%$ for the upper limits).

Hence the chromaticity values of either the 23-point, 16-point or 12-point series can be taken as standard values for comparison and the deviations of the 8-point and 4-point values can be compared to the standard values, in terms of the MacAdam standard deviation formula $(ds^2 = g_{11}dx^2 + 2g_{12}dx \cdot dy + g_{22}dy^2;$ where the unit of ds = 1; previously described in Chapter II 12).

The chromaticity values obtained from the 8-point and 4-point series differed from the standard values in the fourth and third decimal places respectively, the results of calculations showed that the chromaticity point derived from the 8-point data was well within the threshold values, but the chromaticities of the 4-point data were only just within the threshold limit. It seems that the MacAdam's standard deviations are slightly large.

In the same way to estimate the accuracy and precision of colour values of minerals the calculated colour specifications and standard deviations for pyrite (Demirsoy, 1968), bornite (the writer), tennantite (Tugal, 1969), hematite (Demirsoy, 1968), covellite (von Gehlen and Piller, 1964) and cattierite (Demirsoy, 1968) are given in Table VII 2.

These considerations and results indicate that:

(1) for most ore minerals 12- to 8-point measurements of reflectivity are sufficient for accuracy and precision,
(2) for a strongly coloured mineral like covellite at least 12 measurements of reflectivity are necessary,
(3) four-point data will only provide reasonably accurate values of colour within the thrøsholds when the reflectivity curve is fairly linear,
(4) colour specifications derived from measured reflectivity (or transmiticity) values with regular approximate errors of 0 to ± 2% over the visible spectrum are accurate within the small limits of the threshold values.

Wave-	23-point Series	16-Point	Deviati on	12 - Point	Deviation	8-Point	Deviation	4-Point	Deviation
length	(measured)	Series		Series		Series		Series	
440	40.9	40.9	_	40.9		40.9			+ .80
450	42.4	42.4	-		.00		.00		+ .40
460	43.9		.00	43.9		43.9		43.9	
470	45.5	45.5	-		+.05		+::05		50
480	47.2	47.2		47.2			.00		-1.10
490	48.7		+.15		+.15		+.15		-1.50
500	50 . 5	50 . 5	÷	50.5	-	50.5	-		-2.20
510	50 . 9	50.9	-		+.10		+.15		-1.50
520	51.5		+.05	51.5	-		+.10		- 1.00
530	52.2	52.2	-		 10		 05		60
540	52.7	52.7	-	52.7	-	52.7		52.7	-
550	53.2		.00		.00		 10		10
560	53•7	53.7	-	53.7	-		20		20
570	54.1	54.1	-		10		20		20
580	54.3		.00	54•3	-	54.3	-	54.3	-
590	54-5	54. 5	-		.00		.00		06
600	54.7	54.7	-	54.7		54.7	-		13
610	54.7		.00		.00		-, 08		01
620	54•7	54•7	-	54.7	-		+.15		+ .15
6.30	54.9	54.9	-		05		+.03		+ .09
640	55.0		+_10	55.0	-	55.0			+ .13
650	55.3	55.3	-		 1 0		- • 10		04
660	55•4	55•4	-	55•4	-	55.4	-	55•4	-

Table VII 1. Measured Reflectivity Values and Deviations at Omitted Wavelengths Due to Interpolation

.

82 a

Specimen	Series	dγ	dx	dy	dY/Y
Pyrite	23 - Point	Compar	ed to th	e 23 - Poi	nt values
(Demirsoy,	16-Point	0.009	0.000	0.000	0.0002
1968)	12 - Point	0,009	0.000	0.000	0.0002
	8-Point	0.025	0.000	0.0001	0.0005
	4-Point	0.362	0.0006	0.0020	0.0068
Bornite					
(the Writer)	12-Point	Compar	ed to th	e 12 - Poi	nt values
	8-Point	0.079	0.0005	0.0002	0.004
	4 - Point	0.138	0.0004	0.0048	0 . 00 7
Tennantite					
(Tugal, 1969)	1969) 12-Point Compared to the 12-Point values				
	8 - Point	0.033	0.0003	0.0001	0.001
	4-Point	0.050	0.0009	0.0017	0.002
Hematite(w)					
(Demirsoy,1968)	23-Point	Compar	ed to th	e 23 - Poi	nt values
	12 - Point	0.009	0.0001	0.0001	0.0003
	8-Point	0.018	0.0000	0,0000	0.0006
	4 - Point	0.035	0.0002	0.0002	0.001
Vovellite(w)					
(Gehlen & Piller	,14- Point	Compar	ed to th	e 14-Poi	nt values
1964)	12 - Point	0,008	0.0005	0.0001	0.001
	8-Point	0.019	0.0014	0.0004	0.003
	4-Point	0.260	0.0128	0.0030	0.038
Cattierite					
(Demirsoy,1968)	23-Point	Compar	ed to th	ne 23-Poi	nt values
	16 - Point	0.000	0.000	0.0000	0.000
	12 → Point	0.009	0.0001	0.0001	0.0003
	8-Point	0 .004 /	0.0002	0.0000	0.001

.

Table VII 2. Variations in Chromaticity Coordinates Due to Interpolation of Reflectivity Values

VIII. <u>MEASUREMENTS OF COLOUR CONSTANCY, BIREFLECTANCE AND</u> REFLECTION PLEOCHROISM

Colour constancy refers to the substantial invariance of object-colour perceptions in the presence of changes in illumination (The Science of Color by Committee on Colorimetry, 1968). Discussion of the phenomenon of colour constancy is as old as the problem of matching surface colours in different illuminants. Two samples, for instance, will match under one illuminant, but they may not match under another. In some cases they will mis-match because the alteration in appearance may be so slight that it would pass undetected if the second sample were not available for comparison.

Each real object has a so-called object colour which is merely its capacity to modify the colour of the light incident upon it, This capacity depends essentially upon the spectral reflectance of the surface and is a more or less unique and constant characteristic of the given object.

Changes in appearance accompanying changes in illuminant may be too weak to be perceived. For instance, coal usually continues to look black, and snow white, in a wide range of illuminants, owing to the effect of colour constancy. They are said to have high degrees of colour constancy.

Changes in colour sensitivity are less frequently noticed although they, too, are continually occurring and may be quite large. The tendency in maintaining the colour constancy of object colours is, on the other hand, due to visual adaptation.

The effect of visual adaptation in colour perception may be illustrated as follows. The colour of daylight and the colour of tungsten light are very different when viewed side by side, but many ordinary objects in a room seem little changed in appearance when they are seen during the day and at night.

Another example of adaptation effect is well known in photographic colour processing. Whites in the original may consist of white surfaces illuminated by daylight, artificial light, or some other illuminant, and hence have varying energy distributions. These are all seen as more or less white, owing to the adaptation of the eye to the illuminant, but of course the sensitivities of the photographic material are unchangable, and therefore will give different reproductions for whites under different illuminants.

Thus process of visual adaptation could largely compensate for changes in sensitivity level of the eye and the colour of the illumination, and hence favours colour constancy. Nevertheless, the compensation is rarely quite complete and a high degree of colour constancy is rare (Wright, 1969; Committee on Colorimetry, 1968). On the other hand, if the illumination changes are too sudden or too great, or if the colour of the object instead of the illuminant is seen , adaptation could not prevent obvious changes in object colour perception due to changes in illuminant.

Changing the illuminant may change the brightness or relative spectral distributions of the light from the objects, and therefore they show changes in appearance. The degree of colour constancy will be of significance to particular light sources.

A classic example of a poor colour constacy can be

demonstrated by alexandrite (Cr-bearing chrysoberyl) in the field of mineralogy, particularly in gemmology. Alexandrite is green under daylight and changes very distinctly to a red under tungsten light, because it highly absorbs the light in the yellow and blue regions, gives a main peak in the green and a secondary one in the red. Its spectral diffuse reflectance or transmittance curve may be somewhat like the one as shown in Figure VIII 1. Unfortunately, no quantitative data for alexandrite was obtained vecause of lack of specimens. Its colour values calculated from the above predicted, general curve were plotted on the chromaticity diagram in Figure VIII 2 to show the obvious changes of colour in passing from daylight to tungsten light.

It was, therefore expected that some minerals may have characteristics changes in appearance accompanying the change of illuminant and so some minerals may be easily distinguished from others, which are similar under ordinary observation condition.

According to the literatures of ore microscopy briartite and gallite are difficult to distinguish, galena and sulvanite are similar. They can be distinguished from similar counterparts by observing changes differently in appearance when inserting and taking out a daylight filter infront of the tungsten lamplight. As shown in Table VIII 1 briatite shows very little change in appearance whereas gallite changes in colour noticeably when changing the illuminant from A to C. In the same way the changes in contrast enchancement of galene and sulvanite could be detected. Galena shows noticeably increasing saturation and brightness (additive effect), i.e. its appearance changes towards luminous bluish colour from bright grayish colour; whereas sulvanite performs slight decreasing saturation and brightness (subtractive effect) from gray=yellowish to faint yellowish colour.

Figure VIII 1. A spectral distribution curve giving a green colour in daylight and changing to a red under tungsten light.

Figure VIII 2. Chromaticity diagram showing a poor colour constancy of a specimen of Figure VIII 1.

The basic quantitative colour values of some ore minerals for the standard light sources A (average tungsten light) and C (artificial average daylight) are tabulated in a later Chapter.

Isometric minerals have a single reflectivity in all directions in white light or in any monochromatic light and consequently they remain unchanged in chromaticness (hue and saturation) and visual brightness as the stage of the microscope is rotated under one light source. Many minerals of other crystal systems show distinct changes in appearance with rotation of the stage under ordinary observation conditions.Such changes are due to the variation of indices of reflection and absorption with different crystallographic orientations. The changes may be in brightness or chromaticness, or both.

The terms bireflectance and reflection pleochroism are here used in separate senses on the basis of quantitative values, although in the literature of ore microscopy these terms have been used with the same or similar meanings but without clear diffinitions. (particularly in the books published by Uytenbogaardt and Burke, 1971 page VI; Ramdohr, 1969 page 297).

€/

Bireflectance may be defined as the difference between the maximum and minimum reflectivities of principal crystallographic directions or as the difference of brightness Y vaues (= visual R), i.e. $dY = Y_{max} - Y_{min}$. Effective bireflectance to the visual sensation can be estimated with the threshold value of the brightness which is appeoximately dY/Y = 1%.

Some sections of anisotropic minerals may show changes in brightness alone without changes noticeably in chromaticness, as the stage of the microscope is turned . In other words the change in appearance of a polished section with rotation of the stage is due to the bireflectance, not due to changes in colour.

Reflection pleochroism may be defined as differences in chromaticity values (dx,dy) or as differences in dominant wavelengths (λ d) and excitation purities (dPe) between the principal directions of a section. Effective reflection pleochroism can be estimated with MacAdam's threshold values.

Thus on the basis of quantitative colour values we can say that changes in appearance of anisotropic minerals with rotation of the stage are either due to the effect of bireflectance or due to reflection pleochroism, or due to both effects.

Pleochroism can then be defined quantitatively as differences between respective tristimulus values dX, dY, dZ for the principal directions of a section or expressed differently as the combined effects of bireflectance and reflection pleochroism.

For example, changes in colour of some ore minerals, as the microscope stage is rotated under one illuminant, are shown in Table VIII 2. Such quantitative values of bireflectance and reflection pleochroism may also help to direct the consentration of an observer in a particular case or cases.

Figure VIII 3 shows the changes of dominant wavelengths and excitation purities of some ore minerals in passing from tungsten light (source A) to artificial daylight (source C). In the Figure dots represent positions of the specimens under source A and the shifts are From this Figure the following interesting points are noted.

- (1) Most of the ore minerals have hues in two major wavelength regions - i.e. yellow-orange part and purple-blue part.
- (2) The shifts of chromaticness, accompanying changes in illuminant, appear in a rather regular fashion. These regular shifts, in general, indicate that the colours of ore minerals having chromaticnesses in yellow-orange region become fainter when a daylight filter is interposed infront of the tungsten light, whereas the colours of other minerals having chromaticnesses in the purpleblue become stronger.

(3) As consequances of the effect three signidicant characteristics in some cases were observed.
Firstly, in comparison, if two faint coloured minerals occur side by side there may be effective contrast enchancement with changes in illuminant.
For example, galena and briartite will show effective contrasts because the degree of colour constancy of galena is comparatively poorer than that of briartite.
Similarly as shown in Table VIII 1, briartite and gallite which are difficult to distinguish from each other can be differentiated and recognised by observing contrasting degrees of colour constancy.

Secondly, some anisotropic minerals will show more effective pleochroism (bireflectance and reflection

eitu:

pleochroism) under one illuminant or under another. For example, the reflection pleochroism of hexagonal pyrrhotite is stronger under illuminant A than under illuminant C. The reflection pleochroism of klockmannite is distinctly stronger under illuminant C than under illuminant A. These examples are illustrated in Figure VIII 4.

Thirdly, the colours of many minerals change correspondingly in passing from illuminant A to C, but their shifts are of the same magnitude, thus the contrast between the colours of many minerals remain the same.

The same effects were observed when attempts were made to obtain significant changes in colour under new light sources. These sources were combinations of source A and a neutral filter with 80 % transmission, and source A and a neutral filter with 20 % transmission characteristics.

The procedures for measurement of a new light source are described below.

First and formost measurements of spectral transmittances of each neutral filter (F λ) were made in the visible spectrum. The relative energy distributions of the C.I.E. source A (H λ d λ) were multiplied by the 1931 C.I.E. colour-matching functions ($\overline{x}\lambda$), similarly by ($\overline{y}\lambda$) and ($\overline{z}\lambda$) for wavelengths 380 nm to 780 nm with an equal interval of 5 nm.

The sums $\sum \overline{x} \lambda H \lambda d \lambda$, $\sum \overline{y} \lambda H \lambda d \lambda$, and $\sum \overline{z} \lambda H \lambda d \lambda$

were

multiplied by a normalizing factor K, where K = $100.0/\sum y_{\lambda}$ H $_{\lambda}$ d $_{\lambda}$. Then the spectral transmittances F $_{\lambda}$ were multiplied by corresponding products \overline{x}_{λ} H $_{\lambda}$ d $_{\lambda}$, etc. The normalizing factor K for the new light source was computed by

The tristimulus values of the new light source were

$$X_{F} = K \sum F \overline{X} H \overline{A} d ,$$

$$Y_{F} = K \sum F \overline{X} H \overline{A} d = 100.0 \text{ and}$$

$$Z_{F} = K \sum F \overline{X} H \overline{A} d .$$

The relative energy distributions or normalized energy distributions of the required light source were obtained thus

These relative energy distributions were used in the calculation according to the C.I.E. method for the measurement of an object colour with respect to this new light source. The chromaticity coordinates of the source were then calculated by the formulae given previously.

$$x = x_{F} / (x_{F} + Y_{F} + Z_{F})$$
$$y = Y_{F} / (x_{F} + Y_{F} + Z_{F}) .$$

·t!

APL/1 computer program written by the author for IBM/360 to compute relative spectral distributions, tristimulus values and chromaticity coordinates of any light source whose spectral characteristics are known is given in Appendix VIII 1.

Colour measurements of a few ore minerals were made for the new light source and results were compared to those obtained previously fot the standard light sources A and C. With changes in illuminant A to the new light sources or C to the new light sources all bases of comparison shifted correspondingly, but nothing looked significanely different compared to the shifts due to changes in illuminant A to C.

Therefore all quantitative colour values of some ore minerals are presented in Tables for the standard light sources A and C.

.

Example: Degrees of colour constancy in passing from tungsten light (source A) to daylight (source C).

 Mineral	٩۲	dPe%	dY	dY/Y %
Briartite	5.8	-0.33	+0.09	0.3
Gallite	10.7	+2.03	+0.18	0.8
Galena	11.15	+2.92	+0.30	0.7
Sulvanite	11.44	-3.75	-0.36	-1.1

1

Examples of Quantitative Values of Bireflectance and Reflection Pleochroism under average tungsten light (source A).

Anisotropic	Bireflectance	Reflec Pleoch	ction proism	Effective Pleochroism	
mineral	dY	dPe%	d٨	dY/Y	ds
Hematite (w - e)	3.7	0.5	1.1	12.7	1.0
Luzonite(max min.)	3.3	5.5	12.4	12.4	1.4
Mawsonite(max min.)	0.6	11.1	1.9	2.25	10.9
Chalcopyrite(max min.	.) 0.1	0.9	0.3	- 0.3	-0.9
Chalcophanite(max mir	1 .) 16.7	3.1	1.3	63.5	7.4
Niccolite(max min.)	2.2	2.9	0.1	4.2	7.7
Hodrushite(max min.)	1.2	0.0	4.0	3.6	2.1

Note: Pleochroism of hematite from (w) to (e) is mainly due to bireflectance. That is, the brightness difference between (w) and (e) directions is 12.7 times greater than just noticeable difference. Reflection pleochroism is just perceptiable since ds = 1.

The brightness difference (dY) of chalcopyrite between maximum and minimum directions is below noticeable level. The saturation difference (dPe%) is just below noticeable difference. Therefore, its pleochroism (dY/Y & ds) may not be perceptiable. FIGURE VILB SHOWING CHANGES IN HUE (Nd) AND SATURATION (Pe) OF ORE MINERALS IN PASSING FROM TUNGSTEN LIGHT TO DAYLIGHT

2.30

640

IX. A STUDY ON SOME COLOUR PROBLEMS IN ORE MINERALS

The major aim of this present work lies in the development of quantitative colour measurement methods for minerals and the establishment of numerical colour values, spectral reflectivity data and graphical representation of the colours of some ore minerals.

On the basis of the quantitative values, attempts were made to understand the nature of the characteristic.colour, colour variation, colour discrimination, colour constancy, refelction pleochroism and bireflectance of a mineral. Explainations of these properties have been given in the previous chapters.

Attempts were also made to understand the relationships between variations in colour quality and chemical composition and/ or physical properties. Unfortunately, in the majority of cases, insufficient chemical and other physical data are available for measured specimens, and therefore no promising correlation could be made, but general relations were observed.

The results of the analyses, described in the following pages should be consulted with the appropriate Figures and Tables which are compiled in Chapter X .

PURE GOLD, Au PURE SILVER, Ag GOLD - SILVER ALLOY, 50% Au + 50% Ag

The chromaticity coordinates of pure gold, pure silver and synthetic gold-silver alloy were plotted on the x-y chromaticity chart. A gentle curve passing through these points indicates the increase of excitation purity (saturation of hue) with increasing gold content in gold-silver alloys.

The chromaticity points of two natural sylvanite(AuAgTe₄) specimens from different localities are also shown in order to compare the positions of relative chromaticities with variable gold-silver content. The change in chromaticness of each sylvanite is due to two principal orientations (\propto and \propto), and is almost parallel to the purity increasing direction of the gold-silver alloy.

It is evident from the chromaticity chart that the higher purity of the sylvanite specimen from Fiji (the maximum purity point) suggest a higher gold content or conversely lower silver content than the specimen from Colorado, as quoted from their electron microprobe (Stumpfl, 1970) analyses on the chart.

These quantitative values of colour agree well with Eales (1961), who noted qualitatively that the colour of gold in polished sections is an index of its fineness. According to Eales nearly pure gold from some Southern Rhodesian mines has a golden colour with a distinct ruddy tint (approximately 950 fine) and with increasing proportion of alloys silver this colour changes through yellow to pale silvery yellow (approximately 600 fine). Eales defined only four shades of colour qualitatively, to which all gold grains encountered could be referred.

It be of interest to determine colour coordinates of several gold-silver alloys having different finenesses because the above data suggest that their colour points will lie on the suggested gentle curve, showing an increase of purities with increasing gold contents and that all gold grains encountered could be compared with known standards.

GERMANITE, Cu₆ Fe Ge S₈

Quantitative colour values of germanite specimens, as plotted on a chromaticity chart, are in good agreement with Levy (1966) who made measurements of spectral reflectivity on those specimens.

The chromaticity chart shows that the two specimens 1 and 2 from Bancairoun have the same colour as they are chemically homogeneous (Levy, 1966). The chromaticity points 3,4,5 and 6 scattering outside the discrimination ellipse represent the varying shades of colour of four different areas on a deterogeneous specimen from Tsumeb, as the differences are visually noticeable (Levy, 1966).

According to R. Phillips (personal communication), Springer (1969) and Levy (1966) the probable reason for the heterogeneous character of Tsumeb germanite is mainly due to the different contents of tungsten (tungsten-germanite). The colour of homogeneous, probably normal germanite is similar to that of bornite but slightly paler and higher in reflectivity (see in bornite).

.

.

BORNITE, Cu₅ Fe S₄

Freshly polished surfaces of some bornite specimens show noticeable colour differences. It was of interest to investigate the colour variation in bornites.

Spectral reflectivity measurements for colour evaluation were made on freshly polished surfaces of six specimens from five different localities, as described previously in Chapter III. In order to know the tarnishing effect with time, repeated reflectivity measurements were made. The values of the second measurement immediately after the first run, within about 40 minutes, showed no sigificant cariation in reflectivity and colour values, but during the third run it was noted that the specimen surface tarnished quickly and consequently gave different values. Therefore the reflectivity values obtained on the first run were believed to be accurate for bornite.

Electron microprobe analyses of these specimens were made by Dr. Peckett (Geology Department, University of Durham) with a 'Cambridge Geoscan' microanalyser. The precision of the measurements was estimated at about + 2% of the measured value.

All analyses show that the measured specimens are nearly pure as all trace element contents are below the limits of detection. The contents of Ti, Cr, Co, Ni are approximately less than 180 ppm, As is less than 450 ppm and Sb is less than 350 ppm.

Figure IX 3, showing the colour distributions of measured

bornite specimens (also other bornite specimens from Turkey; Tugal, 1969), and the Table below indicate that there are slight variations in colour with slight differences in composition, but also shows that there is no linear correlation between colour and composition. The chemical formula of each specimen is given on the basis of 4 sulfur atoms per molecule.

į

97 a

Table IX 1.		Electron Micro					
Specimen No.	63 05	13513	6320	5796	12894	6301	
Locality	Korea	Australia	ıstralia Arizona Rhodesia Rhodesia		New Jersey		
Сц	63.41	63.47	63.44	63•41	63.39	63.01 Wt. %	I
Fe	11-41	11 <u>+</u> 48	11.57	11.50	11.41	11.60	
S	25.49	24 - 82	2488	25.70	2+.88	25.50	
Sum	100.31	99.77	99.89	100,61	99.68	100,11	
Formula	^{Cu} 5.03 ^{Fe} 1.02 ^S 4	^{Cu} 5.17 ^{Fe} 1.06 ^S 4	^{Cu} 5•14 ^{Fe} 1•06 ^S 4	^{Cu} 4.98 ^{Fe} 1	.02 ^S 4 ^{Cu} 5.14 ^{Fe} 1.05	S ₄ ^{Cu} 4.98 ^{Fe} 1.04	s ₄
Y (brightnes	s) 22₊05	21.30	21.83	20.14	19.78	20.32	
d (nm)	593.8	595.8	596.1	603.7	610,6	603.8	
Pe 🎋	19.74	19.74	19.69	15.16	11,82	12•46	
		· · · · · · · · · · · · · · · · · · ·					

The colour values are with respect to the standard illuminant A.

97 b

PYRITE , Fe S2

The colour distributions of 15 pyrite specimens are shown together with a discrimination ellipse on the chromaticity chart. All colour points are scattered within about 3 nanometers of the dominant wavelength, but the variation in purity (saturation) as a whole is surprisingly large, i.e. their colour qualities may be perceptibly whitest yellow to yellowish white.

Comparing the colour distributions with the threshold ellipse, the colour quality, for instance, of the R.S.M. pyrite is noticeably different from that of the A.E.D. pyrite.

Spectral reflectivities of the (100) face of pyrite (Demirsoy, 1968) are lower, by between 0.3 and 0.6 units, than those of the (111) face, but chromaticity coordinates are identical. Their relative brightness (= visual reflectivity) difference (dY/Y%) is 1% which is just noticeable under an ore microscope.

Singh (1965) demonstrated the variations in spectral reflectivity of a group of pyrite specimens from fifferent localities and the same effect is also described by Gray and Millman (1961) and others. According to Singh the specimens 1877, 1879 and 1883 have no significant variation in composition and contain no trace element greater than 0.1%. In the figure they all will lie within a discrimination ellipse centred on the specimen 1883.

The anisotropic pyrite NG 18 of Tugal (1969) has a slightly larger cell size (about 0.001 to 0.002 A°) than his other pyrite

specimens. It seems that this difference is not significant in colour quality as compared with his other pyrites.

Pyrite specimens have been employed as standards in comparative reflectometry but it is doubtful on the above evidence whether pyrite is a reliable standard for spectral reflectivity measurements.

It is not included amongst the standards recommended by the International Mineralogical Association Commission on Ore Microscopy (I.M.A.C.D.M.).

If the spectral reflectivity data given by different authors are assumed to be reliable with small, conventional errors, then appreciable chromaticity variations could be largely a function of chemistry.

Since pyrite may have slight substitutional and nonstoichiometric variation in composition, appreciable changes in optical properties of pyrites from different types of deposits may be due to the presence of a minor element or elements (Co, Ni, Cu, As, Zn), perhaps : greater than 0.1 %. Unfortunately, chemical data on measured specimens is not available in most cases.

99

$\underline{CHALCOPYRITE}$, Cu Fe \mathbf{S}_2

The chromaticity distribution of 15 chalcopyrite specimens from three mineral deposits of Turkey (Tugal, 1969) are presented in the x-y colour diagram of Figure IX 5. Although the variation in chromaticness is not very large compared to the size of the discrimination ellipse , the brightness (visual reflectivity) differences from one mineral to another could be quite appreciably large, i.e. 47.8 - 43.6; 4.2 units.

.

Figure IX 5.

.

TETRAHEDRITE, Cu3 Sb S3.25

TENNANTITE , Cu3 As S3,25

Quantitative colour values show that tetrahedrite specimens have slight colour variation from greenish-yellowish grey to bluish-greenish grey and that tennantite specimens have comparatively larger variation in colour from greenish grey to bluish grey with higher saturation (purity).

Since the range of solid solution in the tetrahedritetennantite series is very large, their reflectivities generally vary correspondingly from 32.7 to 29.6 % in tetrahedrite and 31.0 to 26.5 % in tennantite.

The chromaticity coordinates of some members of synthesised tetrahedrite- tennantite series (Hall, 1971) are not directly comparable with those of natural tetrahedrite and tennantite, probably because of large variable substitutions in stoichiometric composition and weak colour values.

Hall (1971) concluded in his doctoral Thesis that with increasing As:Sb ratio there is a general decrease in cubic cell edge, increase in microhardness, decrease in reflectivity and increase in saturation of colour (purity). Unfortunately, it was not possible to support his conclusion for natural tetrahedrite and tennantite, because no chemical and physical data on measured specimens is available in the literature.

1()1 a

Many investigations on cause of coloration in various sphalerite specimens have been reported. Since pure Zn sphalerites can be colourless, the change in colour of sphalerites, from a translucent yellow through brown to nearly opaque black, is usually considered to be a function of iron content (Dana's System of Mineralogy, 1944; Deer Howie and Zussman, 1969).

Roedder and Dwornik (1968) concluded, in a study on colour banding of some low-iron sphalerites (Pine Point) with the electron microprobe, that there is no correlation between iron content and colour. Graeser (1969) also reported that the coloration of low-iron sphalerites (from Binnatal) in various shades of colour from yellow to black is not due to the increase of iron content, but due to a strong influence of the Mn content: the yellow colour changes to brown and black whenever the Mn content exceeds a value of about 100 ppm. No report to support his view has appeared so far.

The quantitative colour values of 16 sphalerite specimens from Yugoslavia (Grafenauer et al, 1969) do not agree with Graeser's report and have no correlation with chemistry. Although there is a linear relationship between reflectivity and FeS content in synthesised sphalerites (Akinci, 1970), their quantitative colour values again do not correlate with chemistry or cell size.

The reason for lack of correlation with chemistry in this present work might be that the reflection colour of sphalerite is very much less sensitive to its chemistry or other physical properties than the transmission colour.

The same reason will apply for other non-opaque minerals.

.

Therefore, quantitative colour measurements derived from spectral transmission data of sphalerite may be more suited to investigation in the colour problem.

SPHALERITE

Figure IX 7.

103 a

All quantitative colour values of 7 galena specimens represent greyish white colours with slight differences in purity. The specimen M1 of Tugal (1969), being an average one, is taken as a reference origin of the discrimination ellipse to compare the chromaticity point with those of other specimens.

Figure IX 8 shows that all galena specimens have no difference in colour perception. The specimens of Tugal have the relative brightness difference (dY/Y) not greater than the threshold level, but Demirsoy's galena (100) has 5% greater than the reference.

Under a daylight illumination galena will show a relatively brighter and slightly stronger saturation, as quantitative values are given in Table VIII 1.

COLUSITE, Cu3 (As, Sn, V, Fe, Sb) S4

SULVANITE, Cu3 V S4

Colusite is very similar to sulvanite (rare) in reflectivity and colour quality as given in Tables and shown on the chromaticity chart of Figure IX 9. Sulvanite has a slightly higher reflectivity whereas colusite commonly shows different shades of zonal structure.

The different shades are not due to difference in chromaticness but due to differences in visual reflectivity (brightness). The chromaticity points of different zones lie within the discrimination ellipse, as shown in the diagram, but the colours of two zoned colusite specimens are different. COLUSITE .

SULVANITE .

Figure IX 9.

105 a

STANNITE, Cu₂ Sn Fe S₄ ; Tetragonal

<u>MAWSONITE</u>, Cu_{2+x} Sn_{1-x} Fe S₄; Tetragonal <u>IDAITE</u>, Cu₃ Fe S₄; probably Tetragonal

Several unnamed varieties of stannite have been reported (Ramdohr, 1944 & 1960). Ramdohr recognised four different stannites which he called 'Zinnkies I - IV'. Some of them have been named, but still noticeable deviations from ideal compositions of stannite and hexastannite (= stannite jaune of Levy, 1966; renamed as stannoidite by Kato, 1968) from different localities were found by electron microprobe analysis (Springer, 1968).

Mawsonite is considered as an intermediate member between stannite and idaite (Uytenbogaardt and Burke, 1971), but little is known about the relationships between stannite and idaite.

An investigation of the variations in colour and other optical properties of stannite, stannite jaune (hexastannite), mawsonite, orange bornite and idaite were made and observed as follows.

The chromaticity points, as shown in the x-y coordinate chart, show, in general, that excitation purity and combined effects of bireflectance and reflection pleochroism increase from stannite to idaite.

It seems that the colour saturation and reflection pleochroism is largely influenced by the Cu content. That is, as given in Table below, the above properties increase with increasing Cu content from stannite to idaite. The electron microprobe analyses are average data as quoted below Table IX 2 which shows the general relationship between chemical composition and the optical properties.

For each member of the series the colour variation is also due to slight variation in chemistry and orientation of the measured sections. In Tables (Chapter X) and Figure IX 10 the spectral reflectivity data and respective colour values of 1-3-4 and 5-6-7 belong to the six different areas of the specimens no. 2 and no. 1 respectively (Levy, 1966). According to Levy (1966) the slight difference in reflectivity (as well as in colour) is perhaps due to the fact that the specimen no. 1 contains Zn whilst the specimen no. 2 contains no Zn.

It was seen from the Figure that the colour points of the so-called orange bornite lie inbetween mawsonite and idaite and its colour variation is large perhaps with large variation in composition. Orange bornite (13) from Peru has higher Cu and Fe contents than other orange bornites from Vaulry (Levy, 1966).

Similarly, the reason for large variations in reflectivity and colour of idaites are due to the different orientation and chemistry. Idaite (4-5-6) from Cerro Huemul, Argentina has higher Cu and Fe contents than those (1-2) from France.

Therefore, on above evidences the colour intensity in the series from stannite to idaite is strongly influenced by Cu content, i.e. the brownish yellow saturation increases with increasing Cu content. A slight variation in colour of a member of the series is probably due to the differences in content of Cu, Fe, perhaps Sn, and minor elements such as Zn, As.

Table IX 2.

	Stann	ite	Stannite Jaune	Hexastannite	Maws	onite	Or Bor	ange mite	Idai	.te	
Cu	29 .7	29.8	37.5	39.8	44.3	43.8	44	.2	50.	5	
Sn	27.1	26.7	20.1	16.4	12.5	12.6	15	i ∙ 1	-		
Fe	11.5	10.9	11.8	10.8	12.6	12.4	14	•7	14.	7	
Zn	1.7	3.2	2.7	1.7	-	-	-	-			
S	30.0	30.0	29.8	29 . 7	31.2	31.4	29	9.0	34.	2	
	S	L	L	S	L	S	L		Ĺ	Re	f.
	(9)	(5)	(9)	(4)*	(4)	(5)	(7	')	(7)	No. Spe	of cimens
				Optical	Chara	acters					
	13.3-9.6		21.4 - 18.0		33 .7- 22.7		43 . 6 - 27 . 4		42.1-31.5 Pe % MaxMin.		
	11.	4	19.	.7	21	8.2	3	5.5	36	ō . 8	Mean Pe%
	1.	1	2.	.3		1.1		0.6	1	•6 (Y	dY max Ymin.)
	(+	-)	(-	+)	(-) f: 420 to (+) f:	rom 540 rom	(-) 420 (+)	from to 560 from	(-) 420 (+)	from to 5 from	Optic 80 ^{Sign}
					000 CI	5 040	050	00 040	000		40 110

S = Springer (1968)

L = Levy (9166)

.

* a specimen also contains Sb and As.

5.

ENARGITE, Cu₃ (As,Sb) S₄; Orthorhombic <u>STIBIOLUZONITE-LUZONITE</u>, Cu₃ (As,Sb) S₄; Tetragonal

The chromaticity variations of enargite and stibioluzonite are mainly due to the different orientations in the polished sections, whilst the measured luzonite specimens were very small and had many inclusions (Levy, 1966).

A potion of the chromaticity diagram shows the colour distributions of enargite, stibioluzonite and luzonite. In order to visualize the colour quality from part of the chromaticity diagram and their colour values, the qualitative colour discriptions are quoted below.

Enargite:	Pinkish grey to violet grey,
	bireflectance and reflection pleochroism
	distinct.
Stibioluzonite:	Pinkish without orange tints,
	bireflectance and reflection pleochroism
	distinct to moderate.
Luzonite:	Light pinkish orange,
	bireflectance and reflection pleochroism
	distinct to strong.

108

THE EFFECT OF GRAIN SIZE ON CHANGES OF HEMATITE COLOURS

A massive hematite specimen from the Lake District (England) and single hematite crystals from Sweden were ground down separately by means of a Tema disk mill to investigate the change of colour when the grain size is reduced.

Each powdered specimen was passed through successive nylon sieves. All separated samples were then pelletised (dry) with boric acid powder backings by means of hydraulic Ram Press.

Under the reflected light photometer microscope all pellets revealed brown to red earthy grains and fairly, evenly distributed shining tiny specular hematites. Three separate, smooth areas which will represent the overall reflection of each pellet wore chosen and spectral reflectivity measurements were made on each area. The average results of each specimen were employed in quantitative colour measurement.

Some pellets having large grain sizes were reground down into sufficient fine powders for x-ray fluorescent analysis, because it was considered that the composition of the samples may change due to separation into different grain sizes.

X-ray fluorescent analysis was carried out on a Philips PW 1212 automatic sequential analyser for the following oxides. Si 0_2 , Al₂ 0_3 and Fe₂ 0_3 line intensities of the elements were measured on 10 standards which had previously been analysed by wet chemical methods. Calibration curves for the elements were then obtained and from these the compositions of the unknown samples were determined by interpolation.

The analyses are given in the Table IX 3'show that the compositions of the different samples of the massive hematite were not significantly different within the experimental error. The composition of the different samples of hematite crystals was therefore assumed to be the same as the original composition. Hence the change in colour of a specimen was mainly due to the change in grain size.

Figure IX 12 shows the effect of grain size on changes of colours of the massive hematite and hematite crystals. When the grain size decreases saturation (purity) of hematite colours distinctly increases together with slight change in hue (dominant wavelength). All sample points are also shown with the discrimination ellipse on an enlarge part of the chromaticity chart of Figure IX 13.

The changes of colour of the massive hematite were large at first and then decreased when the grain size was finer and finer. The dark red colour of the powders of hematite crystals changed little compared to the changes of the massive hematite powders.

For a hematite powdered specimen the variation in colour was due to the change of grain size and also the amount and nature of tiny specular hematites which were present in the powdered specimens.

Therefore the change of colour is probably a function of different light scattering (diffraction and reflection) from tiny spherical grains and crystalline hematites, together with the absorption of light incident upon the powdered specimens.

and

Specimen	Mesh of Nylon sieve		SiO ₂ Al ₂ O ₃		Fe ₂ 03	Total (Wt.%)	
Crystals		191	0.73	0.43	98.10	99.26	
Massive	25	52	0.80	0.31	95.77	96.88	
	52	72	0.72	0.31	96,50	97.53	
	72	100	0.72	0.33	95.53	96.57	
	100	150	0.78	0.32	96.42	97.52	
	150	200	0.79	0.33	96.04	97.16	

Table IX 3. X-Ray Fluorescent Analysis of Hematite

-

Figure IX 12. Chromaticity diagram showing the colour sequence of hematite powders under the standard illuminants A and C. Saturation increases with decreasing grain size . Arrow indicates the starting chromaticity points.

110 Ь

ĉ

Figure IX 13. Enlarged part of Figure IX 12 to show the noticeably changes of the colours compared with a discrimination ellipse at its actual position.

The figures against the points are the average meshes of nylon sieves.

.

110 c

XII. CONCLUSIONS AND SUGGESTIONS OF POSSIBLE FUTURE WORK

Quantitative colour measurements have been widely applied, in many ways (e.g. the use of the visual quality of a colour for its own sake; the use of the colour of an object as an idicator of other properties which it may possess; etc.), in various laboratories and industries such as colour photography, colour television, signal glasses and road signs, agriculture and food, meteorology and astronomy, chemical tests, analysis of optical and visual phenomena, industries of automobile, dyeing, paint, pulp and paper, etc.

This project was undertaken to investigate the contribution to be made by concepts and methods of quantitative colour measurement to mineralogy and gemmology.

All necessary computer programmes were prepared for IBM/ 360 and used in this work to reduce personal errors and to save time, since numerous calculations are involved in the measurement of colour. (Chapter VI).

An investigation of the use of reflected light methods of determining spectral reflectivity values of facetted gemstones was made for quantitative colour measurement. (Chapter III 3). The same method was applied to the measurement of colour in ore minerals, since it promised to be a useful additional method for the identification of these minerals.

Many ore minerals, especially oxides, sulpho-salts and

sulphides have similar reflectivity in white light and some have overlapping values of reflectivity and microhardness. It has been realized that spectral reflectivity measurements, can be made use of in many cases for mineral identification.

Although reflectivity is the most important property of opaque minerals, it is still difficult to compare the measured values with available reflectivity data of a mineral for determination. As shown by curves in Figure XII 1 in the Appendix, spectral reflectivity values of many polished specimens of a mineral vary over the visible spectrum. Such variations may be within the experimental errors and/or due to slight variations in chemical and physical properties. Unfortunately, such slight variation in properties is below detectable limits in many cases.

Therefore, it is difficult to interpret the significances of considerable variation, at a wavelength or at some wavelengths, of spectral reflectivities.

However, from such spectral reflectivity measurements, little work is required to obtain additional quantitative values, colour values, which may be more useful for mineral determination and which may help in explanation of the significant variations of spectral reflectivities of certain minerals (Chapter VIII and IX, Figures 1a and 1b).

The enlarged diagrams of Figures 1a and 1b may be used as an aid for mineral identification on the basis of quantitative colour values. From the chromaticity diagram of Figure 1a, in general, the measured chromaticity point of a mineral can be compared with those of other minerals. All similar minerals may be eliminated by reading off the tristimulus values Y, which is the relative brightness (or visual reflectivity) at an appropriate dominant (or complementary) wavelength from Figure 1b.

The mineral identification thereafter can be made with the aid of other quantitative properties such as degrees of colour constancy, pleochroism (bireflectance and reflection pleochroism), etc. (Chapter VIII) and of other qualitative properties such as form, texture, mineral associations, etc.

Thus spectral reflectivity data and colour values together may form an additional system of mineral identification. Therefore the compilation of systematic data of spectral reflectivity and colour of ore minerals took the large volume of the present work.

Further more, a chromaticity diagram representing colour qualities of ore minerals will be useful especially in teaching ore mineralogy to students. The colour distributions of ore minerals can be seen in a such a diagram.

It is of interest to look at the chromaticity diagram of Figure 1a, because the colours of most ore minerals distribute across the diagram (i.e. within 40% constant purity curve) from the yelloworange region through the illuminant point to the blue-purple region. The cause of this somewhat systematic and characteristic colour distribution poses a new problem. Finally, from this work quantitative colour values may contribute to a useful means of representing colour characteristics of ore minerals in a colour diagram, comparing and distinguishing between similar coloured minerals, and to an understanding of relations between colour quality and other properties such as compositional variations , bonding and structure of minerals.

SUGGESTIONS

More information for other ore minerals is required to complete the chromaticity diagram.

An interference colour of a mineral can also be shown in a colour diagram if its spectral energy distributions are known and such measurement may reward further study.

It was considered that the transmission methods of measurement of facetted gemstones for colour measurement requires further development of accuracy and precision and eventually, standardisation of method. Further investigation could make use of internal transmitted light method, since such a method has already been used to qualitatively determine the absorption spectrum of gemstones (Chapter IV).

Further work will be worthwhile to investigate the measurement of fluorescent colour of particular minerals. The fluorescent colour quality of a mineral is very difficult to discribe and yet is used as an important property for identification of some gemstones and minerals. Finally, a suggestion is made to investigate the improvement of reflected light methods of observing polished ore minerals by using certain types of illumination under which effective colour constancy and/or different colour contrast of similar minerals may be easily observed.
X. <u>QUANTITATIVE COLOUR VALUES AND SPECTRAL REFLECTIVITY</u> DATA OF SOME ORE MINERALS

The quantitative colour values and spectral reflectivity data of about 340 specimens of 130 different ore minerals are compiled in the table forms.

In compiling these data minerals are divided into two sections, isotropic and anisotropic, according to the crystal system. The visual reflectivity (tristimulus value Y) has been chosen as the chief property in the sub-division, in order of increasing value. The colour values derived form 4-wavelength reflectivity data are given at the bottom of each sub-division in the same order.

All these quantitative data can also be used together with qualitative descriptions given in the literature of ore microscopy for mineral identification.

1. ISOTROPIC MINERALS

MINEFAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS		
CGMPCSITICN	SCURCE	CCCPC	INATES	(CCMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P%)	Y	(\\)	R
PURE SILVER	Α	C.449E	C.4115	577.93	4.31	55.25	436	. 89.70
A C	C	0.2142	0.3252	567.64	3.49	99.20	450	\$3 . 7C
CUBIC							500	99.20
REF. FCR R: (SQUAIC,1965)						550	55.90 - 🗙 Ja -
REMARKS: LOC.			·				590	59.10
							590	59.10
							650	58.60

MINERAL NAME COMPOSITION CRYSTAL SYSTEM	SCURCE	CHROM CCORD X	ATICITY INATES Y	ECMINANT (CCMFL.) WAVELENGTH	FUFITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBEA (nm)	REFLECTIVITY R
GCL C-S IL VER	А	0.4603	C.4157	583.50	14.49	89 . 81	436	68.40
5C%AL+50%AG	С	0.3275	0.3397	573.57	10.95	88.77	45C	72.50
CUEIC							500	86.00
REF. FCR F: (SQUAID,1965)) .						550	88.30
REMARKS: LCC.							590	92.10
							650	92.20

MINERAL NAME CCMFCSITICN CRYSTAL SYSTEM	SCURCE	CHRCMA COCRC X	ATICITY INATES Y	CCMINANT (CCMPL.) Mavelength	PURITY (P%)	PRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIV	VITY
PLRE GCLD	4	0.5004	0.4240	587.05	48.06	60.22	436	25.40	ر ر
ΔU	С	C.3841	C.3852	578.60	38.33	56.66	450	26.90	
CUBIC							500	37.40	ţ
REF. FOF R: (SQUAIC, 1965)	i						550	59.00	
REMARKS: LCC.							590	64.50	
							650	74.20	
					•				

.

A•3

MINERAL NAME Composition Crystal system	SCURCE	CHRCM COCRDI X	ATICITY INATES Y	COMINANT (CCMFL•) WAVELENGTH	PURITY (PR)	EPIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTI' R	VITY
PYRITE	А	0.4595	C.4157	583.14	13.95	54.01	440	42.30	
FE S2	с	0.3267	C.3390	573.35	10.55	53,42	460	45.50	1.7.1
CUEIC							480	48.6C	ų s .
REF. FCR R: (SINGH,1964)						500	51.00	
REMARKS: LOC. FLBA.	A.E.D. S	TD.,ZEI	ISS CAL	IBRATEC			540	53.40	
							580	54.70	
							62 C	55.10	
							660	55.80	

MINERAL NAME CCNPCSITICN CRYSTAL SYSTEM	SOUPCI	CHREMA E COORDI X	TICITY NATES Y	DCMINANT (CCMPL•) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (nm)	REFLECTIN R	/ T Y
PYRITE	۵	0.4603	C.4149	584•C3	13.94	53.94	430	42.10	
FE S2	С	C.3265	C.3376	574.35	10.22	53.28	470	46.20	17.5
CUBIC							4 9 0	49.50	$Q^{(r)}$
REF. FOR R: NICHOL &	PHILLIPS ((1965)					520	52.00	
REMARKS: LCC. RIC	MARINA, ELE	2A					550	53.70	
							580	54.40	
							610	55.20	
							65C	56.20	

,

MINERAL NAME CCMPCSITICN	SCURCE	CHRCNATI COOFCINA	CITY	CCMINANT (CCMPL.)	PURITY	ERIGHTNESS (VISUAL R)	LAMBDA	REFLECTIVIT	Y
CRYSTAL SYSTEM		X	Y	NAVELENGTH	(F7)	Y	(NM)	P.	di
FYRITE	۵	0.4571 0.	4115	585.69	ç.36	53.75	470	49.10	
FE S2	С	0.3217 C.	3295	575.82	6.66	53.27	490	5C.90	
CUBIC							520	52.60	
REF. FOR R: HALLIMOND (1957)						550	52.70	
REMARKS: LCC. FIC MA	FINA, EL B	Δ					580	54.3C	
							610	55.10	
							650	56.40	
							670	55.00	

•

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCI	CFRCM E CCORC X	ATICITY INATES Y	DCMINANT (CCMFL•) WAVELENGTH	PURITY (P考)	BFIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVI R	ŤY
PYRITE	٨	C.4606	0.4167	532.98	15.41	53.86	460	27.10	
FE S2	С	0.3283	C.3412	573.34	11.57	53.22	420	38.80	
CLBIC							44C	41.20	
REF. FCP R: (CCMMUNICATIO	ON WITH	- P.R.S	IMPSCN)				46C	44.30	1: 9
REMARKS: LCC. ELBA. N	•F•L• (CALIERA	FEC (EC W	IE)			48C	47.EC	-,, ,
							500	50.30	
							520	52.00	
							540	53.20	
							560	54.CC	
							580	54.70	
							600	54.80	
							620	55.00	
							64Ü	55.30	
							666	55 . 7C	A•7
							680	56.00	-
							700	56.CC	

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCMA COORDI X	ATICITY INATES Y	CCMINANT (CCMFL•) WAVELENGTH	PUFITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLECTIV	ΙΤΥ
FYRITE	А	C.4597	C.4154	583.44	13.87	53.54	400	37.80	
FE S2	с	J.3267	C•3384	573.70	10.38	52.54	420	29.60	
CUEIC							440	42.10	
REF. FOR P: (SINGE,1964))						460	45.10	10 6
REMARKS: LOC. ELBA. A	•E•D• S	TC.,N.,	P.L. CAI	LIERATEC			480	48.10	4 9 .9
							500	5C.4C	
							546	53.20	
							589	54.40	
							620	54.70	
							66Ũ	55.60	

.

.

55**.**8C

7CG

MINEPAL NAME		CHRCM	ATICITY	DEMINANT		PRIGHTNESS			
CCMPOSITION CRYSTAL SYSTEM	SCLRCE	CCCRD. X	INATES Y	(CEMPL.) WAVELENGTH	FURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIV R	ITY
PYFITE,NGD10	۵	0.4594	0.4147	583.79	13.18	52.95	44ü	42.63	
FE S2	С	G.3262	C.3363	574.62	5.ć9	52.32	460	45.34	
CUBIC							480	47.68	(G·)·
REF. FOR R: (TUGAL, 1969)							500	48.94	
REMARKS: LCC. TURKEY							520	50.42	
							540	52.03	
							560	53.33	
							580	54.32	
							6 Û U	53.47	
							£20	54.89	
							640	53.47	
							66C	54.13	

MINERAL NAME Composition Crystal system	SCLRCE	CHRCM, COCFD: X	ATICITY INATES Y	CCMINANT (CCNFL.) NAVELENGTH	PUP ITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTIV R	ΙΤΥ
PYRITE 1879	Α	C•4576	C.4143	583.21	11.65	52.84	400	28.80	
FE S2	С	0.3238	C.3349	573.44	8.67	52.36	420	40.70	
CUBIC							440	43.20	
REF. FCR R: (SINGH, 1964)							460	45.90	1.7.2
REMARKS: LCC. COLOMBI	A,S.AME	RICA					48C	48.60	9
							50C	50.20	
							546	52.60	
							589	53.60	
							620	53.70	
							660	54•3C	
							700	54.4C	

MINERAL NAME Composition Crystal system	SCURCE	CHRCP) CCCRC) X	ATICITY INATES Y	CCMINANT (CCMFL•) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLECTIVI ⁻ R	ΥT
PYRITE	A	C.457î	C.4141	583.09	11.17	52.72	400	39.10	
FE S2	С	0.3232	C.3345	573.14	8.40	52.28	420	40.90	
CLBIC							44C	43.40	
REF. FCR R: (SINGH, 1964)							46Ü	45.EC	n 2
REMARKS: LCC. UNCERTA	IN. R.S	•M• STU	D. MEAS	URED AGAINS	T A.E.D.	STC.(NPL)	480	48 . 80	. (
							500	50.60	
							546	52.50	
							589	53.20	
							620	53.70	
							660	54.30	
							700	54.30	

MINERAL NAME CCMPOSITION CRYSTAL SYSTEM	SCUFCE	CF&(*/ CONRD) X	ATICITY INATES V	CCNJNANT (CCNPL•) WAVELENGTH	PURITY (P?)	RFIGHTNESS (VISUAL P) Y	LAMBCA (NM)	REFLECTIVITY R	r
PYRITE 1883 (100)	Δ	0.4586	C•4141	583.88	12.21	52.65	400	38.20	
FE S2	C	G•324E	C.3354	574.03	9.07	52.11	420	40.30	
CUBIC							440	42.00	
REF. FOR R: (SINGH,1964)							460	45.40	1.0
REMARKS: LCC. GRAY RIV	VER,NEW	FOUNDLA	AND				480	48.30 U	5.1
							500	45.50	
							546	52.30	
							589	53.20	
							620	53.90	
					•		660	55.10	
							700	55.20	

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM/ CCORC X	ATICITY INATES Y	DCMINANT (CCMPL.) WAVELENGTH	PURITY (F%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVI R	TY
PYRITE	A	0.4557	C.4133	582.92	9.65	52.48	400	38.20	
FE S2	C	5.3212	C.3323	572.66	7.27	52.12	420	40.20	
CLBIC							446	44 . 4C	
REF. FOR R: (SINGH, 1964)							460	47.10	<i>*</i> ~
REMARKS: LCC. KASSANC	RA MINE	,GREEC	E				48C	45.40	Ξť.
							500	5C.80	
							546	52.30	
							589	52.80	
							620	53.30	
							660	53.90	

A.13

2

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM. COORD: X	ATICITY INATES Y	CCPINANT (CCMPL•) *AVELENGTH	PURITY (P%)	PRIGHTNESS (VISUAL R) Y	LAMEDA (NM)	REFLECTIVITY R
FYRITE, NG10	4	0.4608	C.4145	584.53	14.01	51.88	440	41.37
FE SZ	С	C.3277	C.3368	575.49	10.22	51.15	460	44.08
CUBIC							480	46.33
REF. FOR R: (TUGAL,1965)							500	47.28
REMARKS: LCC. TURKEY							520	48.79
							540	50.51
							560	52.45
							580	53.35
							600	52.8C
							620	53.54
							640	52.78
							665	54.13

MINERAL NAME CCNPESITION CRYSTAL SYSTEM	SCURCE	CHRCM/ COORCI X	ATICITY INATES Y	DCMINANT (CCMPL.) WAVELENGTH	PURITY (F%)	BRIGHTNESS (VISLAL R) Y	LAMBDA (NM)	REFLECTIV R	ITY
PYRITE 1877	Д	0.4592	0.4145	583.85	12.90	51.68	400	37.20	
FE S2	С	0.3257	C.3364	574.14	9. 58	51.11	420	38.70	
CLBIC							440	41.40	
REF. FOP R: (SINGH,1964)							460	44.50	
REMARKS: LCC. CHARLET	TE MINE	,NCRWAY	(4 E C	46.60	4; ;
							500	48.70	
							546	51.20	
							589	52.60	
							620	52.90	
							660	53 . 5C	
							700	53.90	

A•15

MINERAL NAME Composition Crystal system	SCURCE	CHRCMA CCOREI X	TICITY NATES Y	CCMINANT (CCMPL.) WAVELENGTH	FURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLECTIV R	174
PYRITE	А	C.4581	C.4138	583.88	11.66	51.62	436	41.60	
FE S2	С	0.3241	C.3347	573.87	٤.70	51.11	4 6 C	45.10	17
CUBIC							480	47.40	م دابا
REF. FCR R: (SINGH, 1964)							500	45.10	
REMARKS: LCC. UNCERTA	IN. R.S	• M• STD	. N.P.I	L. CALIEFAT	EC		520	50.30	
							546	51.20	
							580	51.EC	
							610	52.80	
							650	53.40	

.

670 53.60

MINERAL NAME Composition Crystal system	SCURCE	CHRCM CCORC X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PLRITY (P\$)	BRIGHTNESS (VISUAL R) Y	LAMEDA (NN)	REFLECTI R	VITY
PYRITE,CG94	۵	0.4615	C•4144	584.90	14.50	51.39	440	40.46	
FE S2	С	0.3283	C.3376	575.43	10.60	50.65	460	43.59	1 . D
CUBIC							480	45.79	<i>e,</i> ,
REF. FOR R: (TUGAL,1969)							500	47.09	
REMARKS: LCC. TURKEY							520	48.49	
							540	50.18	σ
							560	51.60	20 6
							580	52.46	
							600	52.29	
							620	53.54	
							640	52.78	
							66C	54.13	

A•17

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCMATICITY COCRDINATES X Y	CCMINANT (CCMPL,) WAVELENGTH	FLRITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLEC (r)	TIVITY (F)
PYRITE NG18	A	054608 054148	584-31	14,22	52,15	44G	4ic 25	41.25
FE S2	Δ	G.46G5 G.4152	583.90	14.29	52.32	46C	44.02	44.11
CUEIC	C	0.2278 0.3377	574.55	10.49	51,45	480	46, 44	46,68
	С	C.3276 G.3381	574.59	10.54	51,65	560	46.16	48,39
REF. FCR R: TUGAL (1969)						520	49,48	49.74
REMARKS: LOC. TURKEY;	ANISCT	RCFIC PYFITE				540	50.56	51.22
						560	52.37	52,63
						58.)	52,21	53.50
						600	53 <u>,</u> 5ð	53,50
						620	53.53	53.53
						640	53.50	53.90
						660	53,84	53.84

MINERAL NAME CCMPCSITIGN CRYSTAL SYSTEM	SCURCE	CFRC CCCF X	MATICITY CINATES Y	DCNINANT (CCMFL.) MAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CCBALTITE(1GG)	Δ	C.455	€ C.4071	594.37	5.22	50.42	440	48.03
(CC,FE)AS S	с	0.217	8 0.3198	568.54	3.00	49.90	460	47.43
CUBIC							480	47.44
REF. FCR R: (THE AUTHOR)						5C0	47.87
REMARKS: LCC. UNCERT	AIN. SIN	GLE C	RYSTAL				520	48.45
Electron Prob	e Analysis	.:	Wt. %				540	49.16
		Co Fe	33. 20 1 . 90				580	49.09 50.67
		Ni	1.87				600	51.52
		As	45.23				620	52.19
		S	18,80				640	53.13
			101.00				660	53.50

١

.

MINERAL NAME Composition Crystal System	ទី១៧០ខ	CHRCM COORD X	ATICITY INATES Y	DCMINANT (CCNPL.) WAVELENGTH	PURITY (PR)	BRIGHTNESS (VISUAL P) Y	LAMBCA (NM)	REFLECTIVITY R
		0 4466	o			10 74		
GALENA	Д	0.4403	6.4615	428 - 70	2.08	43.70	440	45.80
P.R. S	С	C.3CC4	C.3527	469.71	5.24	44.Gi	460	48.40
CUBIC							480	47.20
REF. FOR R: DEMIRSCY (19	68)						500	45.90
REMARKS: LCC. UNKNOWN	. MEASU	IREC ON	CLEAVA	GE FACË			520	44.70
							540	43.90
							560	43.50
							580	43.20
							600	43.10
							620	43.30

- 640 43**.**4C
- 66C 44.00

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORC: X	INATES Y	(CCMPL•) WAVELENGTH	PURITY (P\$)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
GALENA M3	۵	0.4402	G•4C24	481.93	2.03	41.96	440	47.45
PE S	С	C.3CC8	0.3037	476.78	4.95	42.26	460	46.46
CLBIC							48C	44 . 7C
REF. FOR R: (TUGAL, 1969)							500	43.68
REMARKS: LCC. TURKEY							520	42.71
							520	42.71
							540	42.22
							560	42•0E
							580	41.62
							600	41.33
							620	41.62
							64C	41.41
							660	40.77

MINEFAL NAME		CHRGM	ATICITY	DCMINANT		BRIGHTNESS		
COMPOSITION Crystal System	SCUPCE	CCCPC X	INATES Y	(CCMFL.) WAVELENGTH	PUR ITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
GALENA, NGC16	Α	0.4411	6.4029	481.51	1.79	41.88	440	46.82
PB S	С	0.3019	0.3049	469.59	4.41	42.14	46C	45.84
CUBIC							480	44.38
REF. FCR R: (TUGAL,1969)							500	43.24
REMARKS: LCC. TURKEY							520	42.41
							520	42.41
							540	42.02
							560	41.97
							580	41.80
							600	41.41
							620	41.57
							64C	41.07
							660	40.77

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
CCMPESITIEN Crystal System	SCURCE	CCCRC X	INATES Y	(COMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
GALENA,KEZA	A	0.4413	0.4026	475.84	1.77	41.EC	4 4 C	46.53
PE S	С	0.3(19	C.3C45	468.86	4•48	42.04	460	45.45
CUBIC							480	44.36
REF. FOR R: (TUGAL, 1969)							500	43.22
REMARKS: LCC. TURKEY							520	42.45
							520	42.49
							540	41.91
							560	41.81
							580	41.38
							600	41.47
							620	41.62
							640	41.41
							660	40.77

NINEFAL NAME		CHRCM.	ATICITY	DCMINANT		BRIGHTNESS		
CCMPGSITICN CRYSTAL SYSTEM	SCURCE	CCORD X	INATES Y	(CCMFL.) Wavelength	FURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
GALENA,M1	A	C.44CE	C.4C25	480.86	1.89	41.62	440	46.93
PB S	С	0.3014	0.3041	469.71	4.70	41.88	460	45•61
CUBIC							480	44•26
REF. FOR R: (TUGAL,1969)							500	43.16
REMARKS: LOC. TURKEY							520	42.30
							52C	42.30
							540	41.75
							560	41.76
							580	41.22
							600	41.01
							620	41.34
							640	41.41
							64C	40.77

NINERAL NAME		CHROM	YTICITY	DCMINANT		BRIGHTNESS		
COMPOSITION CRYSTAL SYSTEM	SCURCE	CCCFC X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
GALENA,NGD17	۵	C •44CS	C.4C18	477.92	1.92	41.57	44C	47.37
PE S	С	0.3012	0.3029	467.17	4.97	41.81	460	45.62
CUBIC							480	44.33
REF. FCR R: (TUGAL, 1969)							500	43.11
REMARKS: LOC. TURKEY							520	41.86
							520	41.86
							540	41.72
							560	41.55
							5 E C	41.31
							600	41.15
							620	41.46
							640	41.07
							660	40.77

.

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNES	S	
COMPESITIEN Crystal System	SCURCE	COORC X	INATES ¥	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R Y) LAMEEA (NM)	REFLECTIVITY R
GALENA,KC2C	A	C.4413	C•4C2E	4 E C • E 1	1.76	41.55	440	46.50
PE S	С	0.3020	C.3C48	465.31	4• 4C	41.79	460	45.22
CUEIC							480	44.05
REF. FOR R: (TUGAL, 1969)							500	43.01
REMARKS: LOC. TURKEY							520	42.15
							52C	42.15
							540	41.66
							560	41.54
							580	41.38
							600	41.05
							620	41.34
							640	40.84

66C 4C.77

MINERAL NAME		CHREM	YTICITY	CCMINANT		BFIGHTNES	S	
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORD X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R Y) LAMECA (NM)	REFLECTIVITY R
KUTINAITE	۵	0.4335	C.4C59	492.86	3.38	41.50	42C	47.20
CU2.07 AGC.84 AS	C	C.2968	C.3C55	480.35	£.03	42.15	440	46.90
CUBIC							4ó0	46.50
REF. FOR R: (J.HAK ET AL	1570)						480	45.EC
REMARKS: LCC. CZECHOSL	Ονακιά	7					500	44.20
Chemical Analysi	is:	Wt. %					500	44.20
	Cu	45•3					520	43.30
	Ag	21.5					540	42•8G
	As	25.6					560	42.20
		92•4					580	41.4C
							600	41.70
							620	39.30

MINERAL NAME		CHROM	ATICITY	DCMINANT		BRIGHTNES	S	
COMPOSITION	SCURCE	CCCRD	INATES	(CCMPL.)	PURITY	(VISUAL R) LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P%)	Y	(\ \ \)	R
CATTIERITE	۵	0.4502	C.4061	-505.05	0.93	33.81	440	33.80
CC S2	C	0.3119	0.3154	-498.11	0.72	33.65	460	33.60
CUBIC							480	33.50
REF. FCR R: (DEMIRSCY,15)	68)						500	33.40
REMARKS: LOC. UNKNHGN							520	33 . 30
							520	33.30
							540	23.40
							560	33.60
							580	33.80
							600	33.90
							620	34.30
							640	34.70

660 35.20

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNES	S	
CCMPOSITICN Crystal system	SCUPCE	CCORD: X	INATES Y	(CCMPL.) Wavelengtf	PUFITY (P%)	(VISUAL R Y) LAMEDA (NM)	REFLECTIVITY R
GCLCFIELCITE 1,1	A	0.4475	C •4CE4	567.55	0.56	32.00	420	31.40
CU3(TE,SB)S4	С	0.3105	C.3179	561.58	C•54	32.02	44C	31.20
CUBIC							460	32.00
REF. FOR R: (LEVY,1966)							4 E C	31.80
REMARKS: LCC. GCLCFIE	LC,U.S.	Α.		_			500	32.20
				·			500	32.20
							520	32.00
							540	32.00
							560	32.20
							580	32.00
							600	31.80
							620	32.20
							64C	31.80

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COGRE: X	INATES Y	(COMPL.) WAVELENGTH	PURITY (F≵)	(VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
GCLEFIELDITE 1,2	۵	0.4477	0.4085	572.37	C.76	31.71	420	31.40
CU3(TE,SB)S4	С	0.2109	0.3180	567.89	C.67	32.29	440	31.60
CUBIC							460	32.20
REF. FOR R: (LEVY,1966)							480	32.00
REMARKS: LCC. GCLCFIE	LC,U.S.	£ .					50C	32.20
							500	32.20
							520	32.20
							540	32.40
							560	32.4C
							580	32.20
							600	32.40
							620	33.00
							640	31.8C

MINERAL NAME		CHROMA	ATICITY	DOMINANT		BRIGHTNESS		
COMPOSITION Crystal System	SCURCE	CCCFD X	IN ATES ¥	(CCMFL.) WAVELENGTH	PURITY (P発)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
GCLDFIELDITE 1,3	А	C•446C	C.4CE7	569.69	C.37	31.71	420	31.40
CL3(TE,SB)S4	С	0.3093	0.3173	567.60	0.26	31.78	4 4 C	31.2C
CUBIC							460	32.00
REF. FCR R: (LEVY,1966)							480	31.80
REMARKS: LCC. GCLCFIE	LC,U.S.	4.					500	32.00
							500	32.00
							520	31.80
							540	32.00
							560	32.00
							580	31.60
							600	31.60
							620	31.80
							640	31.00

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM/ COORDI X	ATICITY INATES Y	DCMINANT (CCMPL•) WAVELENGTH	PURITY (P%)	ERIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
SLLVANITE 3,2	۵	0.4605	C•4122	586+38	12.20	31.59	42C	28.60
CL3 V S4	С	0.3244	C.3336	574.95	8.48	31.24	440	26.20
CUBIC							460	25.70
REF. FOR R: LEVY (1966)							480	27.90
REMARKS: LCC. MERCUR,	UTAF,U.	ς.Α.					500	31.70
							500	31.70
							520	32.20
							540	31.20
							560	30.20
							580	31.00
							600	31.20
							620	33.30
							64C	34.80

MINERAL NAME CCMPCSITICN	SEURCE	CHRCM COCRC	ATICITY INATES	CCMINANT (CCMPL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P%)	Y	(NM)	R
SULVANITE 3,3	Δ	0.4607	0.4119	586.74	12.13	31.52	420	28.60
CU3 V S4	С	C.3244	C.3332	575 . 3C	8.37	31.16	440	26.20
CLBIC							4 6 0	25.70
REF. FOR R: LEVY (1966)							480	27.90
REMARKS: LOC. MERCUR,	LT∆⊨,U.	S • A •					500	31.60
							500	21.60
							520	32.20
							540	31.00
							560	30.00
							580	31.00
							600	31.20
							620	33.30
							640	34.80

MINERAL NAME COMPOSITION CRYSTAL SYSTEM	SCURCE	CFRCM E COCRC X	ATICITY INATES Y	CCMINANT (CCMPL•) Wavelength	PURITY (P%)	ERIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
SULVANITE 3,1	Δ	C.46CC	C.4118	586.60	11.57	31.14	420	28.20
CU3 V S4	С	0.3236	0.3327	574.93	8.02	30.82	44C	26.20
CUBIC							460	25.40
REF. FCR R: LEVY (1966)							48C	27.50
REMARKS: LOC. MERCLR,	LTAH,U.	5 • A •					500	21.50
							500	31.50
							520	32.00
							540	30.60
							560	25.60
							580	30.40
							600	31.20
							620	33.00

640 34.00

NINERAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS		
COMPOSITION Crystal System	SCURCE	CCCFC X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SULVANITE 4	Α	C.4628	C.4129	586.49	14.28	25.85	420	25.30
CL3 V S4	С	0.3272	0.3369	575 . C4	10.12	29.50	440	23.80
CUBIC							460	24.00
REF. FCR R: LEVY (1966)							480	25.80
REMARKS: LCC. EURRA-E	URRA, AU	STRALI	Δ				500	30.00
							500	30.00
ι.							520	30.60
							540	25.20
							560	28.30
							580	25.10
							600	30.50
							620	31.20
							640	33.00
MINERAL NAME Composition Crystal System	SCURCE	CHROM CCCFC X	ATICITY INATES Y	DEMINANT (CCMFL•) WAVELENGTH	PURITY (P%)	BRIGHTNES: (VISUAL R Y	S) LAMBDA (NM)	REFLECTIVITY R
---	---------	---------------------	------------------------	------------------------------------	----------------	------------------------------	-----------------------	-------------------
COLUSITE 1,1	Α	6.4603	C•4148	584.10	13.88	30.65	420	23.60
CL3(AS,SN,V,FE,SB)S4	С	0.3274	0.3359	575.88	9.90	36.22	440	25.10
CUBIC							460	26.00
REF. FCR R: LEVY (1966)							480	26.50
REMARKS: LGC. PUTTE,M	CNTANA,	CANACA					500	27.60
							500	27.60
							520	28.8C
							540	29.90
							56C	31.00
							580	31.60
							600	31.90
							620	31.50
							640	30.80

-

MINERAL NAME		CHRCM	YTICITY	DEMINANT		BRIGHTNESS		
CCMFCSITICN Crystal system	SCURCE	CCCFC: X	INATES Y	(COMPL.) WAVELENGTH	PUPITY (የ%)	(VISUAL R) Y	LAMEDA (NM)	REFLECTIVITY R
CCLUSITE 1.3	۸	0.4603	0-4147	5 84-18	13,81	36 . 57	420	23.60
	-	0.4005			13001	30021	120	23000
CL3(AS,SN,V,FE,SB)S4	С	0.3273	C.3357	575.94	9.82	30.14	440	25.10
SUBIC							460	26.00
REF. FOR R: LEVY (1966)							480	26.50
REMARKS: LOC. BUTTE,M							500	27.40
							500	27.40
							520	28.80
							540	25.80
							560	31.00
							580	31.40
							600	31.80
							620	31.50
							640	30.80

·

MINERAL NAME COMPOSITION CRYSTAL SYSTEM	SCUFCE	CFRCM COCRC X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	₽URITY (P≇)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
CCLUSITE 1,2	Δ	G.46C2	C•4139	584.75	13.18	30.Cl	420	23.40
CL3(AS, SN, V, FE, SB)S4	С	0.3268	0.3345	576.40	5.36	29.59	4 4 C	24. EC
CUBIC							460	25.80
REF. FCR R: LEVY (1966)							480	26.20
REMARKS: LCC. EUTTE, MO	ONTANA,	CANADA					500	27.10
							50Ü	27.10
							520	28.30
							54C	25.30
							560	30.20
							580	30.80
							600	21.10

- 620 31.00
- 640 30.50

MINERAL NAME		CHRCMA	ATICITY	CCMINANT		BRIGHTNESS		
CGMPCSITION CRYSTAL SYSTEM	SCLRCE	CCORCI X	INATES Y	(CCMPL•) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
CCLUSITE 2,2	۵	0.4634	C•41C5	588.51	13.30	29.57	420	24.00
CU3(AS, SN, V, FE, SB) S4	С	0.3284	0.3314	580.28	8.96	29.02	440	24 . EC
CUBIC							460	25.40
REF. FCR R: LEVY (1966)							480	25.90
REMARKS: LOC. CHIZELI	L,FRANC	E					500	26.60
							500	26.60
							520	27.20
							540	28.20
							560	25.60
							580	30.20
							606	30.60
							620	31.60
							E4C	31.40

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORD: X	INATES Y	(CCMPL•) Wavelength	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
CCLUSITE 2,3	۵	0.4633	C.41C8	588.6C	13.17	29.53	42C	24.00
CU3(AS, SN, V, FE, SB)S4	C	C.3282	0.3312	580.31	8.85	28.98	44C	24.80
CLBIC							4 E C	25•4C
REF. FCR R: LEVY (1966)							480	25.90
REMARKS: LOC. CHIZEUI	L,FRANC	E					500	26.60
							500	26.6C
							520	27.20
							54C	28.30
							560	29.40
							580	36.10
							600	30.60
							620	31.60
							640	31.40

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCLRCE	CHRCM CCCRC X	ATICITY INATES Y	ECMINANT (CEMFL.) WAVELENGTE	PUFITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTIVITY
		~	•			•		
CCLUSITE 2,1	۵	0.4625	0.4117	587.49	13.24	29.5C	420	24.00
CU3(AS, SN, V, FE, SB)S4	С	C.3279	C.3321	579.26	9.11	28.99	44C	24.80
CUBIC							460	25.00
REF. FCR R: LEVY (1966)							480	26.10
REMARKS: LCC. CHIZEUI	IL, FRANC	ε					500	26.80
							52C	27.40
							540	28.40
							560	29.20
							58C	30.10
							600	31.10
							620	31.30

640

MINERAL NAME		CHROM,	ATICITY	COMINANT		BRIGHTNESS		
COMPOSITION Crystal system	SCURCE	CCCRD: X	INATES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TETRAFECRITE 1,2	A	C•4463	C.41C5	558.12	1.48	32.67	420	30.80
CL3 SE \$3.25	C	0.3108	0.3208	558.17	1.40	32.73	4 4 C	31.80
CuBIC							460	32.00
REF. FCR R: (LEVY,1966)							480	32.00
REMARKS: LCC. HERNHAU	SEN						500	32.30
							500	32.30
							520	32.60
							540	33.00
							560	33.30
							580	33.20
							600	32.70
							620	31.40
							640	31.40

A•42

MINEFAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS		
CCMPOSITION CRYSTAL SYSTEM	SCURCE	CCORD: X	INATES Y	(CC#PL•) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
TETRAFEERITE 2,2	۵	0.445 <i>ć</i>	(•4168	542.11	C.99	32.61	420	30.90
CL3 SB 53.25	С	0.3099	0.3201	548.34	0.98	32.70	44C	32.00
CLBIC							460	32.20
REF. FCR R: (LEVY,1966)							4 E C	32.20
REMARKS: LOC. BCUCJCUC	CUN,AL	GERIA					500	32.40
							500	32.40
							520	32.60
							540	33.10

- 560 33.30
- 580 33.10
- 600 32.40
- 620 31.10
- 640 31.40

MINERAL NAME CCMPOSITION CRYSTAL SYSTEM	SCURCE	CHRGM/ CCCFC: X	ATICITY INATES Y	DCMINANT (CCMFL•) havelength	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (Nr)	REFLECTIVITY R
TETRAFECRITE 2,1	Α	C.4454	C.41C4	527.57	C.71	32.55	420	21.60
CU3 SB S3.25	С	0.3096	0.3154	541.56	C•72	32.64	440	32.00
CUBIC							460	32.20
REF. FCR R: (LEVY,1966)							480	32.20
REMARKS: LOC. BOUCJOU	CUN,AL	GERIA					500	32.40
							500	32.40
							520	32.70
							540	33.10
	۵						56C	33.10
							580	32.90
							600	32.20
							620	31.60
							640	31 . 4C

MINERAL NAME		CHRCM	YTICITY	DCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CGORC: X	IN ATES Y	(CCMPL.) WAVELENGTH	PURITY (F%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TETRAFECRITE 1,1	۵	0.4451	C.41C3	519.19	G.££	32.53	42C	31.70
CU3 SE S3.25	С	0.3092	C.3191	529.70	C.57	32.64	440	32.00
CUBIC							4£0	32•4C
REF. FOR R: (LEVY,1966)							480	32.20
REMARKS: LCC. HCRNHAL	SEN						500	32.50
							500	32.50
							520	32.80
							540	33.10
							560	33.10
							580	32.8C
							600	32.10
							620	31.60
							640	31.40

•

MINERAL NAME		CHRCM	YTICITY	CCMINANT		BRIGHTNESS		
CCMPOSITION CRYSTAL SYSTEM	SCURCE	COORC X	INATES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBCA (Nm)	REFLECTIVITY R
TETRAFECRITE 1,3	A	0.4462	C . 41C4	552.14	1.07	32.46	420	30.80
CL3 SE S3.25	С	0.3103	C.32CO	553.84	1.06	32.52	44C	31.8C
CUBIC							460	32.00
REF. FOR R: (LEVY,1966)							480	32.00
REMARKS: LCC. FCRNFAU	SEN						500	32.20
							500	32.20
							520	32.50
							540	32.80
							560	33.00
							580	32.90
							600	32.40
							620	31.20
							640	31.40

MINERAL NAME		CHRCMA	ATICITY	DCMINANT		ERIGHTNESS		
CCMPCSITION CRYSTAL SYSTEM	SCURCE	COORCI X	INATES Y	(CCMPL.) Wavelength	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
TETRAFECRITE 2,3	۵	0.4464	C•41C6	557.87	1.34	32.46	420	30.90
CU3 SB 53.25	С	0.3106	C.32C2	557.07	1.19	32.52	440	31.70
CUBIC							460	32.00
REF. FOR R: (LEVY,1966)							480	31.80
REMARKS: LCC. ECUCJOU	CCUN,AL	GERIA					500	32.00
							500	32.00
							520	32.40
							540	32.90
							560	33.00
							5 E C	33.00
							600	32.40
							620	31.10
							64C	31.40

MINERAL NAME		CHRCM	TICITY	DOMINANT		BRIGHTNESS		
CCMPOSITION Crystal System	SCURCE	CCCRC) X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TETRAFECRITE 3	A	0.4437	C. 4C58	505.66	0.85	31.63	420	30.50
CU3 SB S3.25	С	0.3076	C.3177	497.76	0.84	31.79	440	31.70
CUBIC							460	32.20
REF. FCR R: (LEVY,1966)							480	31.80
REMARKS: LCC. FAMATIN	۵						5CC	32.00
							500	32.00
							520	31.90
							540	32.20
							56C	32.20
							580	32.00
							600	31.20
							620	30.40
							640	30.30

MINERAL NAME		CFRCM	ATICITY	CCMINANT		BRIGHTNESS		
COMPOSITION Crystal system	SCURCE	CCCRC: X	INATES Y	(CCMFL•) WAVELENGTH	FURITY (P7%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
TETRAFECRITE 4	Д	0.4428	C.41CC	504.27	1.08	30.80	420	29.20
CU3 SE S3.25	C	0.3071	0.3174	495.27	1•C4	30.99	44C	31.4C
CUEIC							460	31.40
REF. FOR R: (LEVY,1966)							480	31.10
REMARKS: LOC. FAMATIN	Δ						500	31.00
							500	31.00
							520	31.40
							540	31.4C
							560	31.30
							580	31.10
							600	30.40
							620	30.40
							64C	25.00

MINERAL NAME		CHRCM4	ATICITY	DCMINANT		BRIGHTNESS		
COMPOSITION Crystal system	SCURCE	CCGFC: X	INATES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TETRAFECRITE,E	۵	C.4450	C.41C7	523.83	0.76	30.56	44C	30.19
CL3 SE 53.25	С	0.3094	C.3193	536.39	G.65	30.66	460	29.93
CUBIC							480	36.09
REF. FCR R: (TUGAL, 1969)							500	30.47
REMARKS: LOC. TURKEY							520	30.80
							520	30.80
							540	31.01
							560	31.12
							580	36.94
							600	30.36
							620	29.91
							640	29.27
							660	28.08

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS		
CCMFCSITICN CRYSTAL SYSTEM	SCURCE	COORD: X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
TETRAFECRITE,49A	۵	0.4458	C•4C76	455.74	C•42	25.57	44C	30.30
CU3 SB 53.25	C	6.3085	C.3155	484.72	C.67	30.03	460	30.23
CUBIC							480	30.25
REF. FOR R: (TUGAL, 1969)							500	30.36
REMARKS: LCC. TURKEY							520	30.28
							520	30.28
							540	30.03
							560	30.07
							580	29.88
							600	29.87
							620	30.17
							64C	25.55
							660	28.67

CCMPCSITION CRYSTAL SYSTEMSCURCE COCRCINATES X(CCMPL.) WAVELENGTHPURITY (FR)TETRAFECRITE,49BA 0.442C 0.41C6504.921.26CL3 SB 53.25C 0.3062 0.3177495.391.32	(VISUAL R) Y 29.33 29.55	LAMBDA (NM) 44C 460	REFLECTIVITY R 25.5E 29.44
TETRAFECRITE,49B A 0.442C 0.41C6 504.92 1.26 CL3 SB 53.25 C C.3063 C.3177 495.39 1.32	29•33 29•55	44C 460	29 . 58
CL3 SB 53.25 C C.3C63 C.3177 495.39 1.32	29.55	460	29.44
CLEIC		4 E C	25.55
REF. FOR R: (TUGAL, 1969)		500	29.78
REMARKS: LCC. TURKEY		52C	30.07
		520	30.07
		54C	30.13
		560	30.01
		580	29.45
		600	28.78
		620	28.34
		640	27.36
		660	27.11

•

-

MINERAL NAME		CHRCM	YTIDITA	CCMINANT		ERIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORD: X	INATES Y	(CCMPL.) Wavelength	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TENNANTITE 6	Δ	0.4433	C.41C2	506.46	C.97	36.79	420	30.40
CU3 AS 53.25	С	C.3C73	C.3182	455.27	C.93	30.97	440	30.80
CUBIC							460	30.70
REF. FOR R: (LEVY,1566)							480	31.20
REMARKS: LCC. TSUMEP							500	31.50
							50C	31.50
							520	31.70
							540	31.40
							560	31.00
							580	36.80
							600	30.80
							620	29.60
							64C	29.30

MINERAL NAME		CERCMA	ATICITY	CCMINANT		BRIGHTNES	S	
COMPOSITION Crystal system	SCURCE	COORDI X	INATES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R Y) LAMECA (NM)	REFLECTIVITY R
TENNANTITE 8,1	Α	0.4358	C.4C\$7	458.01	2.72	29.28	420	31.80
CL3 AS \$3.25	С	0.3003	0.3126	486.30	3.96	25.70	44C	30.8C
CUEIC							460	31.40
REF. FGR R: (LEVY,1966)							480	30.70
REMARKS: LOC. FAURCN.	, SPECI	MEN WIT	TH SN				500	30.60
							500	30.60
							520	30.60
							540	36.70
							560	30.00
							58C	29.20
							6 C G	28•9C
							620	27.4C
							64C	26.3C

MINERAL NAME		CHRCM	ATICITY	DCMINANT		ERIGHTNESS		
CCMPCSITICN CRYSIAL SYSTEM	SCURCE	COORD	INATES	(CCMPL.) WAVELENGTH	PURITY (P2)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY
		~	•	77 /71 W Backs Sec 17 No. 1		•		
TENNANTITE 8,2	۵	0.4360	C•4C92	457.31	2.68	28.54	42C	31.80
CUB AS SB.25	С	C.3CC2	C.3121	465.71	4.05	29.35	440	30.40
CUBIC							460	31.20
REF. FOR R: (LEVY,1966)							480	30.30
REMARKS: LCC. HAURCN	, SPECI	MEN WI	TH SN				500	30.40
							500	30.40
							520	30.30
							540	30.20
							560	29.60
							580	29.00
							600	28.30
							620	27.00
							64C	26.30

•

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRICHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CCGRD: X	INATES Y	(CCMFL.) WAVELENGTH	PLRITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TENNANTITE,40	A	C.442C	C•4121	510.73	1.30	28.86	44G	28.53
CU3 AS 53.25	С	0.3076	0.3202	507.12	1.02	29.08	460	28.45
CUBIC							480	28.95
REF. FOR R: (TUGAL,1969)							500	29.25
REMARKS: LOC. TURKEY							520	29.72
							520	29.72
							540	29.78
							560	29.61
							580	29.04
							600	28.16
							620	27.72
							640	27.07
							660	26.14

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM CCORD X	ATICITY INATES Y	CCMINANT (CGMPL•) WAVELENGTH	PURITY (F%)	BRIGHTNESS (VISLAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TENNANTITE 8,3	۵	0.4360	0.4090	497.01	2.65	28.82	420	31.80
CU3 AS S3.25	С	0.3001	C.3118	485.37	4.11	29.23	440	30.40
CUBIC							46C	21.00
REF. FOR R: (LEVY,1966)							480	30.30
REMARKS: LCC. HAURCN.	, SPECI	INEN WI	TH SN				5CC	30.40
							500	30.4C
							520	30.10
							540	30.10
							560	29 . 50
							580	28.80

600 28.20

- 620 26.80
- 640 26.30

A.57

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS		
CCMFCSITICN CRYSTAL SYSTEM	SCUPCE	COOFC: X	IN AT ES Y	(COMPL.) WAVELENGTH	PUPITY (P\$)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TENNANTITE,478	۵	0.4404	6.4111	503.85	1.62	28.53	44C	29.08
CU3 AS 53.25	C	0.3050	C.3175	453.78	1.81	28.80	460	28.72
CUBIC							4 E C	28.65
REF. FOR R: (TUGAL, 1965)							500	25.28
REMARKS: LCC. TURKEY							52C	29.62
							520	29.62
							540	29.66
							560	29.09
							580	28.63
							600	27.84
							620	27.02
							64C	26.5C
							660	26.42

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS		
COMPOSITION Crystal system	SCURCE	CGCRDI X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P7)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
TENNANTITE,47A	A	0.4380	0.4113	501.83	2.17	28.32	440	29.25
CU3 AS 53.25	С	0.3028	C.3166	491.46	2.69	28.68	460	28.82
CUBIC							480	29.05
REF. FOR R: (TUGAL, 1969)							500	25.46
REMARKS: LOC. TURKEY							520	29.82
							520	29.82
							540	29.69
							560	28.91
							580	28.36
							600	27.36
						•	620	27.02
							640	25.84
							660	24.96

MINERAL NAME		CHRGM	ATICITY	DCMINANT		BPIGHTNESS		
COMPOSITION Crystal System	SCURCE	CCCFC. X	IN ATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TENNANTITE,51	Δ	C.44C3	C •41C2	501.34	1.65	28.14	440	28.85
CL3 AS 53.25	C	0.3045	C.3162	490.75	2.09	28.41	4 E C	28.79
CUBIC							480	28.73
REF. FCR R: (TUGAL, 1969)							500	29.01
REMARKS: LOC. TURKEY							520	25.16
							520	29.16
							540	25.08
							560	28.77
							580	28.00
							600	27.66
							620	26.97
							640	26.23

660 25.71

MINERAL NAME		CHRCM	ATICITY	DOMINANT		BRIGHTNESS		
COMPOSITION Crystal system	SCURCE	CCCRC X	INATES Y	(CCMPL.) havelength	PURITY (P\$)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TENNANTITE 7,2	Α	C.4338	0.4086	496.15	3.22	27.22	420	30.50
CL3 AS \$3.25	С	0.2575	C.31CC	484 . 5C	5.10	27.67	440	25.70
CUBIC							460	25.50
REF. FOR R: (LEVY,1966)							480	29.20
REMARKS: LCC. NIARI							500	28.90
							500	28.90
							520	28.90
							540	28.60
							560	27.90
							580	27.00
							600	26.20
							620	25.80
							640	24.6C

MINERAL NAME		CHRCM	YTICITY	DCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORCI X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
TENNANTITE 7,1	Δ	0.4335	0.4078	495.16	3.22	27.20	42C	30.90
CU3 AS \$3.25	С	0.2976	0.3085	483.05	5.37	27.64	440	30.40
CUBIC							46C	25.60
REF. FOR R: (LEVY, 1966)							480	28.80
REMARKS: LCC. NIARI							500	25.00
							500	29.00
							520	28.90
							540	28.40
							560	27.80
							580	27.00
							600	26.60
							620	25•4C
							640	24.60

A.62

MINERAL NAME		CHRCM	YTICITY	CCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CCORDI X	INATES Y	(CCMFL•) WAVELENGTH	PURITY (P?)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
TENNANTITE 5	А	0.4319	C.4C7E	495.12	3.70	26.05	420	29.40
CL3 AS \$3.25	С	0.2959	0.3077	483.3C	6.C8	26.53	44C	25.30
CUBIC							460	28.80
REF. FOR R: (LEVY,1966)							480	28.40
REMARKS: LOC. SAN VIN	CENT						500	28.00
							500	28.00
							520	27.80
							540	27.30
							560	26.6C
							580	26.10
							600	25 . 2C
							620	24.20
							64C	23.20

						. 1	
MINERAL NAME Composition Crystal System	SCURCE	CHROMATICITY Coordinates X y	DDMINANT (CCMPL.) WAVELENGTH	PURITY. (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
VAESITE	A	0.4467 0.4043	-575.05	1.01	30.89	440	32.50
N1 S2	C	0.3076 0.3105	-566.90	1.87	30.89	460	31.90
CUBIC						480	31.60
REF. FOR R: (DEMIRSOY,	1968)			. •		500	31.10
REMARKS: LOC. UNKNW	ON.					520	31.00
			e i			540	30.70
						560	30.60
				. ·		580	30.70
				. '		600	30, 80
						620	31.10
				•.	· · ·	640	31.40
						660	31.90
							A.64
				· · · · ·			

•

•

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
CCMPOSITICN CRYSTAL SYSTEM	SCURCE	CCOPDI X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMEDA (NM)	REFLECTIVITY R
CERMANITE,3	Δ	6.4645	C.4C25	606.26	8.22	22.53	420	21.20
CUE FE GE SE	с	0.3245	0.3177	603.55	4.23	22.02	44C	21.20
CLEIC							460	21.00
REF. FCR R: (LEVY,1966)							480	20.60
REMARKS: LCC. TSUMEE							500	20.30
							500	20 . 3C
							520	20.60
							540	21.00
							560	21.80
							560	22.60
							600	23.40
							620	24.60
							640	25.80

MINERAL NAME		CFRCM.	ATICITY	CCMINANT		BRIGHTNESS		
CC⊬PGSITICN CR¥STAL SYSTEM	SCURCE	CCCRD X	INATES V	(CCMFL.) WAVELENGTH	FURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
GERMANITE,6	Δ	0.4641	C •4C16	612.34	7.33	22.27	420	21.20
CUE FE GE S8	с	0.3234	0.3161	618.90	3.51	21.77	440	21.20
CUBIC							460	21.00
REF. FCR R: (LEVY,1966)							486	20.70
REMARKS: LOC. TSUMEB							500	20.40
							500	20.40
							52C	20.40
							540	20.80
							560	21.30
							580	22.40
							60C	23.00
							620	24.GC
							640	25.80

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
COMPOSITION CRYSTAL SYSTEM	SCURCE	CCCFC X	IN ATES Y	(CCMFL.) havelength	PURITY (P2)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
GERMANITE,5	Α	0.4616	C.4025	612.28	£.22	. 22.04	420	20.90
CL6 FE GE S8	C	0.3215	0.3162	617.83	3.01	21.62	4 4 C	21.20
CUBIC							460	21.00
REF. FOR R: (LEVY,1966)							480	20.70
REMARKS: LOC. TSUMEE							500	20.40
							500	20.40
							520	20.40
							540	20.80
							56G	21.20
							580	22.20
							600	22•8C
							620	23.70
							640	24.80

Υ.

MINERAL NAME		CHRCM	YTICITY	DCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORC	INATES Y	(CCMPL.) WAVELENGTH	PURITY (F%)	(VISUAL R) Y	LAMEDA (NM)	REFLECTIVITY R
CERMANITE,4	۵	0.4614	C.4GC8	657 . 58	4.90	21.60	420	21.20
CU6 FE GE S8	С	0.3202	C.3134	-494.40	3.05	21.19	440	21.20
CUBIC							46C	21.00
REF. FOR R: (LEVY,1566)							480	20.60
REMARKS: LCC. TSUMEB							500	20.10
							500	20.10
							520	2C.GC
							540	20.40
							560	20.70
							580	21.60
							600	22.20
							620	23.10
							640	24 . 8C

MINEFAL NAME		CHRCMA	TICITY	DOMINANT		BRIGHTNES	S	
COMPOSITION CRYSTAL SYSTEM	SCURCE	CCCFC: X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R Y) ŁAMBDA (NM)	REFLECTIVITY R
GERMANITE,2	А	0.4666	0.4026	603.52	S.76	21.58	420	20.00
CU6 FE GE S8	С	0.3271	C.3186	602.68	5.17	21.02	440	20.10
CUBIC							460	19.60
REF. FCR R: (LEVY,1966)	I						480	19.50
REMARKS: LOC. BANCAL	RCLN. H	CMCGENE	ECUS SP	ECIMEN			500	19.20
							500	19.20
							520	19.10
							540	19.90
							560	20.80
							580	21.80
							600	23.10
							620	24.00
							640	24.40

MINERAL NAME		CHRCM	YFIJIFA	CCNINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SOURCE	CCORD. X	INATES Y	(COMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
GERMANITE,1	۵	0.4668	C.4C26	603.35	5 . 5C	21.22	420	19.60
CU6 FE GE S8	С	0.3271	0.3187	602.29	5.20	20.67	440	19.80
CLBIC							4 E C	19.30
REF. FCR R: (LEVY,1966)							480	19.00
FEMARKS: LCC. BANCAIR	CUN. H	OMCGEN	EOUS SP	ECIMEN			500	18.90
							500	18.90
							520	18.90
							540	19.70
							56C	20.30
							580	21.40
							600	22.60
							620	23.50
							640	24.20

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM CCORCI X	ATICITY INATES Y	CCMINANT (CCMPL•) WAVELENGTH	PURITY (P%)	ERIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
BCRNITE,NG36	۵	0.4727	C.414C	587.82	21.91	24.91	44C	18.21
CU5 FE S4	C	0.3403	C.3437	578.95	15.45	24.21	460	18.71
CLBIC							480	19.83
REF. FOR R: (TUGAL,1969)							500	21.34
REMARKS: LCC. TURKEY							520	22.52
							-520	22.52
							540	23.53
							560	24.50
							580	25.40
							600	26.18
							620	27.05
							64C	27.45
							660	28.67

.
MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
CCMPESITION CRYSTAL SYSTEM	SCURCE	CCCFC X	IN ATES Y	(CCMFL.) NAVELENGTH	PURITY (P\$)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
EORNITE, NGD3	۵	C•4785	C•4CEE	591.92	22.58	22.88	440	17.45
CU5 FE S4	С	0.3443	C.3376	584.21	14.89	22.C1	460	17.09
CUBIC							480	17.67
REF. FCR R: (TUGAL, 1969)							500	18.65
REMARKS: LOC. TURKEY							520	19.81
							<u> </u>	15.81
							540	20.76
							560	22.08
							580	23.16
							600	24.75
							620	25.89
							640	27.47
					•		660	27.78

·

•

MINERAL NAME		CHRC	MATICI	7 Y	DCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COG R X	CINATES	S	(CGMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
BCRNITE 63C5	А	0.477	4 6.40	66	593.78	15.74	22.05	440	17.55
CU5 FE S4	С	C.341	2 C.332	27	586.53	12.74	21.22	460	17.42
CUBIC								480	17.53
REF. FOR R: THE AUTHOR							-	500	18.13
REMARKS: LCC. KEREA								520	18.97
Electron Probe	Analysis	3.2	Wt. S					520	16-97-
		Cu	63.41					540	20.00
		Fe	11_41					56C	21.23
		s -	25•49					580	22.35
		1	00-31					600	23.63
								620	25.06
								64C	26.18
								660	27.43

MINERAL NAME		CHRCM	YTICITY	CCMINANT		PRIGHTNESS		
CCMPCSITICN Crystal System	SCURCE	COORDI X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
ECRNITE,NGC6	Δ	0.4751	C.4113	585.87	21.69	22.04	440	16.70
CU5 FE S4	C	0.3413	C.3397	581.62	14.65	21.32	460	16.60
CUBIC							480	17.26
REF. FOR R: (TUGAL, 1969)							500	18.48
REMARKS: LCC. TURKEY							520	19+41
							520	19.41
							54C	20.65
							560	21.40
							580	22.49
							£CC	23.42
							620	24.17
							640	25.03
							660	26.46

MINERAL NAME		CHRC	NATICITY	CCMINANT		ERIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COOF X	CINATES Y	(CCMPL.) WAVELENCTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
BCRNITE 63C2	۵	0.479	0.4042	59 6. 14	19.67	21.83	440	17.88
CU5 FE S4	С	0.341	E C.3253	589.90	11.98	20.94	460	17.37
CLBIC							480	17.20
REF. FOR R: THE AUTHOR							500	17.80
REMARKS: LCC. AFIZCNA							.520	18.50
Electron Probe	Analysi	s:	Wt. %				520	18.50
		Cu	63.44				540	19.57
		S	24•88				560	20.68
			99.89				580	22.19
							600	23.6C
							620	25.01
							64C	26.74
							660	28.13

MINERAL NAME		CFRCM	ATICITY	DOMINANT		BRIGHTNESS		
COMPOSITION Crystal system	SCURCE	COCRC: X	IN ATES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
BCRNITE,48	Α	C.4739	C.4C 8C	592.47	18.56	21.52	440	17.37
CU5 FE S4	С	0.3380	C.332E	584.93	11.51	20.82	460	17.16
CUBIC							480	17.42
REF. FCR R: (TUGAL, 1969)							500	18.18
REMARKS: LOC. TURKEY							520	18.92
							520	18.92
							540	19.89
							560	20.84
							580	21.84
							600	22.85
							620	24.16
							64Ŭ	24.76
							660	25.71

MINERAL NAME		CFRC	MATICITY	DGMINANT		BRIGHTNESS		
COMPOSITION Crystal system	SCURCE	CCCF X	CINATES Y	(CCMFL.) MAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (nr)	REFLECTIVITY R
BCRNITE 13513	А	C.479	1 C.4045	555.83	19.74	21.30	44C	17.52
CL5 FE S4	с	0.341	7 0.3252	585.86	11.96	20.44	4 E C	17.CC
CUEIC							480	16.45
REF. FCR R: THE AUTHOR							5CC	17.38
REMARKS: LOC. ALSTRAL	IA						520	18.10
Electron Probe	Analysis	:	Wt. %				E2C	18.10
		Cu	63•47				540	19.08
		Fe S	11•48 24-82				560	20.24
		-	99,77				580	21.63
			<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>				600	23.07
							620	24.37
							640	26.15
							660	27.12

MINERAL NAME Composition Crystal System	SCLRCE	CHREMATICITY CCOPDINATES X Y	DEMINANT (CCMPL•) Havelength	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
BCRNITE 63C1	Δ	G.4720 C.4011	603.80	12.46	26.32	4 4 C	18.72
CU5 FE S4	Cú	C.3317 C.3187	604.43	6.43	15.64	460	17.81
CUBIC						480	17.17
REF. FOR R: THE AUTHOR						500	17.28
REMARKS: LCC. NEW JER	SEY					520	17.69
Electron Probe	Anal ysis:	Wt. %				540	18.47
		Cu 63.01				560	19.35
		S 25.50				580	20.47
		100,11				£ĈC	21.69
						620	23.03
						640	24.04
						660	25.54

MINERAL NAME		CHRCM	ATICITY	CCMINANT		ERIGHTNESS		
CCMPCSITICN Crystal System	SCURCE	COORD X	INATES Y	(CCMPL.) Wavelength	PURITY (P7)	(VISUAL R) Y	LAMEDA (NM)	REFLECTIVITY R
ECRNITE 5796	۵	0.4772	C.3558	603.66	15.16	20.14	440	18.19
CU5 FE S4	C	0.3366	C.3193	604.27	7.90	19.32	460	17.06
CUEIC							480	16.44
REF. FOR R: THE ALTHOR							500	16.51
REMARKS: LCC. RFCCESI	4						520	16.98
Electron Probe	Analysis:	₩t.	. %				-520	16-56
	•	Cu 63.	• 41				540	17.85
		Fe 11,	.50				5ć0	18.95
		S 25.	.70				580	20.43
		100,	. 61				600	21.74
							620	23.23
							640	24.86
							660	26.58

MINERAL NAME Composition Crystal system	SCURC	CHRCI E CCCR X	MATICITY DINATES Y	CCMINANT (CCMFL•) WAVELENGTH	FURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
ECRNITE 12894	Δ	0.473	6 (.3986	610.55	11.82	19.78	440	18.75
CU5 FE S4	C	0.331	5 0.3145	631.04	5.46	19 . C£	4 E C	17.45
CUEIC							480	16.69
REF. FOR R: THE AUTHOR							500	16.58
REMARKS: LOC. RECDES	[Δ						520	16.95
Electron Probe	Analysi	s: W	lt. %				52 C	<u>16-5</u> 5
		Cu é	3 . 3 9				540	17.66
		Fe 1	1•41 ». 88				560	18.70
							586	15.55
		7	9 .00				600	21.31
							620	22.65
							640	24.12
							660	25.44

. .

•

MINERAL NAME CCMPCSITION CRYSTAL SYSTEM	SOUPCE	CHRCM COORD X	ATICITY INATES Y	DCMINANT (COMPL•) WAVELENGTH	PURITY (P१)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
BCRNITE, 455(2)	Д	0.4775	C.40C6	£G1.73	16.18	19.67	440	17.55
CU5 FE S4	С	C.3375	0.3210	£0(.5j	8.71	18.86	460	16.37
CUPIC							480	15.72
REF. FOR R: (TUGAL, 1969)							500	15.55
REMARKS: LCC. TURKEY							520	16.67
							540	17.48
							560	18.51
							580	19.83
							600	21.41

. .

- 620 22.90
- 640 24.45
- 660 25.27

MINERAL NAME		СНРС∽и	ATICITY	DCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CGCRE: X	INATES Y	(CCMPL.) Wavelength	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
BCRNITE, A55(1)	Α	C.4742	C.3973	615.87	11.34	18.62	440	18.02
CU5 FE S4	С	0.3318	C.3128	600.98	6.75	17.92	4ć0	16.54
CUBIC							480	15.67
REF. FOR R: (TUGAL,1969)							500	15.65
REMARKS: LCC. TURKEY							520	15.94
							540	16.51
							560	17.48
							580	18.61
							600	20.17
							620	21.69

- 640 23.20
- 660 23.87

A.82

MINERAL NAME		CFRGM	ATICITY	DCM INANT		BRIGHTNESS		
COMPOSITION	SCURCE	CCCRC	INATES	(CCMFL.)	FURITY	(VISUAL R)	LAMECA	REFLECTIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P\$)	Y	(N M)	R
EIXEVITE	Α	0.4445	C.410C	510.38	0.72	22.24	430	22.20
(MN,FE)2 03	С	C.3(84	C.318C	503.55	0.55	22.32	470	22.20
CLBIC							450	22.00
REF. FOR R: (NICHCL &	PHILLIPS,	1964)					520	22.50
REMARKS: LCC. UNKNW	ON						550	22.70
							580	22.4C
							610	21.80
							65U	21.20

•

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
COMPOSITION Crystal System	SOURCE	E COORD X	INATES Y	(CONPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
MAGNETITE	۵	0,4497	0.4078	589.78	1.66	20- 92	440	20, 50
FE FE2 04	c	0.3124	0.3178	583.58	1.02	20.64	460	20.50
CUBIC							480	20.60
REF. FOR R: (DEMIRSCY,196	68)						500	20.60
REMARKS: LOC. UNKNWON							520	20.60
							540	20.70
							560	- 21.00
							580	23.00
							600	21.00
							620	21.10
							040	210 XV

.

660 21.10

MINERAL NAME		CHRGMATICITY		DEMINANT		BRIGHTNESS		
CCMPCSITICN	SCURCE	CCCRD	INATES	(CCMPL.)	PURITY	(VISUAL R)	LAMECA	REFLECTIVITY
CRYSTAL SYSTEM		X	¥	WAVELENGTH	(P%)	Y	(NM)	R
JACUESITE	А	ü .4 394	C.4082	496.25	1.91	18.91	430	19.70
(MN,FE,MG)(FE,MN)2 C4	С	0.3029	C.3129	485.09	2.98	19.10	470	20.00
CUBIC							490	20.00
REF. FCR R: (NICHCL & P	HILLIPS,	1964)					520	19.40
REMARKS: LCC. UNKNWC	Ν						550	19.30
							580	19.00
							610	18.40
							650	17.50

MINERAL NAME		CHRCMATICITY		CCMINANT		BRIGHTNESS		
COMPOSITION Crystal System	SOURCE	CGORD X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P≇)	(VISUAL R) Y	LAMECA (nm)	REFLECTIVITY R
FRANKLINITE	Δ.	0.4410	0.4075	494.66	1.56	18.15	430	19.20
(ZN,FE,MN)(FE,MN)2 C4	С	0.3039	0.3122	482.54	2.69	18.29	470	16.90
CUBIC							490	18.80
REF. FOR R: (NICHCL & P	HILLIPS,	1964)					520	18.60
REMARKS: LOC. UNKNWO	N						550	18.40
							55C	18.4C
							580	18.20
							610	17.80
							65C	17.10

,

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRICHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORDI X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
MAGNESICFERRITE	۵	0.4354	0.4044	490.45	3.02	17.09	44C	19.40
MG FE2 C4	С	C.2574	0.3047	478.87	5.93	17.33	460	19.10
CUBIC							48C	18.70
REF. FCR R: (DEMIRSCY,19	68)						500	18.40
REMARKS: LCC. UNKNWCN							520	17.90
							520	17.90
							540	17.50
							560	17.30
							580	16.90
							600	16.60
							620	16.40
							£4C	16.20
							660	15.90

NINERAL NAME		CHROMATICITY		DCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORC X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY
MARMATITE	Α	0.4410	0.4055	485.58	1.65	17.63	430	19.00
ZN' S	С	C.3(31	0.3093	478.00	3.32	17.75	470	18.80
CLBIC							4 S C	16.30
REF. FOR R: (NICHOL &	PHILLIPS,	1964)					520	18.00
REMARKS: LCC. TREFC.	A,YLGCSL <i>A</i>	AIV					55C	17.80
							550	17.80
							580	17.60
							610	17.30
							65C	17.00

MINERAL NAME		CHRCM.	ATICITY	CCMINANT				
CCMPOSITICN CRMSTAL SYSTEM	SCURCE	CCCFC	INATES	(CC+PL.)	PURITY	(VISUAL R)	LAMECA	REFLECTIVITY
CRISIAL SISIEM		^	r	NAVELENGIN	(82)	Ŧ		ĸ
SPHALERITE 15	۵	6.4434	C.4C44	480.80	1.17	19.19	440	20.72
ZN S	С	0.3C49	0.3083	466.29	2.93	19.25	4 6 G	20.50
CUBIC							480	19.84
REF. FCR R: (GRAFENAUER	ET AL,1	9691					500	19.30
REMARKS: LCC. NOVO B	RCC,YLGC	SLAVIA					540	19.22
							540	19.22
							580	19.25
							620	19.02

.

660 18.78

MINERAL NAME		CHRCMATICITY		CCMINANT		BRICHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORD X	INATES Y	(CCMPL。) Wavelength	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SPHALERITE 5	۵	0.4402	C•4C\$4	499.26	1.69	15.07	440	19.90
ZN S	С	0.3043	C•3142	485.50	2.33	19.23	46C	19.71
CUBIC							480	19.51
REF. FOR R: (GRAFENALER	ET AL,1	565)					500	19.18
REMARKS: LCC. LECE,Y	UGCSLAVI	Δ					540	19.60
							540	15.60
							580	19.50
							620	17.90

MINERAL NAME		CHRCM	ATICITY	C C M I N AN T		BRIGHTNES		
COMPOSITION Crystal system	SOURCE	COORD	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R Y	LAMBCA (NM)	REFLECTIVITY R
SFHALERITE 14	Α	0.4422	C.404C	482.84	1.46	18.99	440	20.85
ZN S	С	0.3(35	0.3069	469.21	3.59	19.08	460	20.50
CUBIC							480	19.76
REF. FOR R: (GRAFENAUER	ET AL,1	565)					500	19.22
REMARKS: LCC. STARI T	RC,YUGO	SLAVIA					540	19.11
							540	19.11
							580	19.02
							620	18.70

•

18.56

660

MINERAL NAME		CFROMATICITY COMINANT			BRIGHTNESS			
COMPOSITION Crystal system	SCURC	E CCCRDI X	INATES Y	(CCMPL.) WAVELENGTH	FURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
SPHALERITE 12	Δ	C.44C3	0.4050	488.67	1.84	18.57	440	20.81
ZN S	С	0.3021	0.3077	476.21	3.91	19.12	46C	20.40
CUBIC							480	20.02
REF. FOR R: (GRAFENAU	ER ET AL,	1965)					500	19.51
REMARKS: LOC. AJVA	LIJA ,YLG	CSLAVI					540	19.28
							54C	19.28
							580	18.94
							620	18.48
							£6C	18.18

MINERAL NAME		CHRCM	ATICITY	DCMINANT				
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORD. X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISLAL R) Y	LAMECA (NM)	REFLECTIVITY R
SPHALERITE 11	۵	0.4415	C•4C42	485.10	1.61	18.95	4 4 C	20.88
ZN S	с	C•3C27	C.307C	472.85	3.82	19.07	460	20.25
CUBIC							4 E C	19.86
REF. FOR R: (GRAFENAUER	ET AL,1	965)					500	19.58
REMARKS: LCC. KIZNIC	A,YUCCSL	Ανια					540	19.07
							540	19.07
							58C	18.90
							620	18.63

660 18.51

MINERAL NAME		CHROMATICITY		DCMINANT		BRIGHTNESS		
CCMPCSITICN	SCURCE	COORD	INATES	(COMPL.)	PURITY	(VISUAL R)	LAMBCA	REFLECTIVITY
CRYSIAL SYSTEM		X	Y	WAVELENGIE	(Ŷ	(NM)	к
SPHALERITE 16	A	0.4402	0.4035	485.10	1.95	18.94	440	21.28
ZN S	С	0.3012	C.3C52	473.05	4.58	19.08	460	20.55
CLBIC							480	19.92
REF. FCR R: (GRAFENALER	ET AL,	1965)					500	15.76
REMARKS: LOC. JANJEN	O, YLGCSL	AVIĄ					540	19.10
							540	19.10
							580	18.80
							620	18.65

•

660 18.30

MINERAL NAME			CHREMATICITY DEMINANT				BRIGHTNESS		
	CCMPCSITICN CRYSTAL SYSTEM	SCURCE	E CGORE X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY
•	SPHALERITE 13	Δ	0.4392	0.4042	487.54	2.14	18.62	440	20.80
	ZN S	C	0.3007	0.3055	475.66	4.63	18.78	460	20.28
	CUBIC							480	15.72
	REF. FOR R: (GRAFENAUER E	ET AL,1	(965)					500	19.42
	REMARKS: LOC. SREEFENI	ICA,YLO	CSLAVI	۵				54C	18.92
								540	18.92
								580	18.51
								620	18.12

MINERAL NAME		CHROM	ATICITY	DCMINANT		BRIGHTNESS		
CRYSTAL SYSTEM	SCURCE	X COLFC	INATES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMEDA (NM)	REFLECTIVITY
SPHALERITE 10	А	0.4421	C•4C47	485.73	1.44	18.56	440	20.32
ZN S	С	0.3035	0306.0	472.83	3.41	18.66	4 6 C	19.48
CLBIC							480	19.30
REF. FCR R: (GRAFENAUER	ET AL,1	969)					500	19.08
REMARKS: LCC. SASE, YL	GCSLAVI	Δ					54C	18.67
							540	18.67
							580	18.56
							620	18.24

*66*C 18.10

MINERAL NAME		CHROM	ATICITY	DCMINANT		BRIGHTNESS			
COMPOSITION Crystal system	SCURCE	CGORE X	INATES Y	(COMPL.) WAVELENGTH	PURITY (F%)	(VISUAL R) Y	LAMBDA (NM)	REFLEC1IVITY R	
SPHALERITE 7	A	0.4431	0.4069	492.52	1.08	18.12	440	15.05	
ZN S	С	0.3(57	C.3121	478.22	2.08	16.20	46C	18.88	
CUBIC							4 E C	16.40	
REF. FOR R: (GRAFENAUER	ET AL,1	.969)					500	18.21	
REMARKS: LCC. CKCSKA	GCFA,YL	GCSLAV	14				54C	18.40	
							540	18.40	
							580	18.20	
							620	17.72	
							66G	17.40	

MINERAL NAME		CHREMATICITY		CCMINANT		BRIGHTNESS		
COMPOSITION Crystal system	SGURCE	COORC X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
SFHALERITE 8	А	0.4417	C•4053	488.31	1.49	17.93	44C	19.41
ZN S	С	0.3034	0.3090	475.97	3.29	18.04	460	18.93
CUBIC							480	18.75
REF. FOR R: (GRAFENALER	ET AL,1	565)					500	18.43
REMARKS: LCC. CCEREVO	,YUGCSL	4 I V 4					54C	16.21
							540	18.21
							580	17.78
							620	17.63

MINERAL NAME		CHRCM	ATICITY	DEMINANT		BRIGHTNESS		
COMPOSITION CRYSTAL SYSTEM	SCURCE	COOPD X	INATES Y	(COMPL.) WAVELENGTH	PUPITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SPHALERITE 4	A	0.4437	0.4045	480 . 05	1.09	17.92	440	19.18
ZN S	С	0.3051	G•3090	468.33	2.75	17.98	460	19.02
CUBIC							480	18.70
REF. FOR R: (GRAFENAU	ER ET AL,1	969)					500	18.15
REMARKS: LCC. PONO	VICE, YUGOS	SLAVIA					540	17.92
							580	17.92
							620	17.80

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
COMPOSITION	SOURCE	COORD	INATES	(CCMPL.)	PUPITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P%)	Y	(NM)	R
SPHALERITE 3	Д	0.4420	0.4054	488•27	1.42	17.91	440	19.31
ZN S	С	0.3039	0.3092	474.99	3.09	18.01	460	19.10
CUBIC							480	18.51
REF. FOR R: (GRAFENAUER	ET AL,1	969)					500	18.15
REMARKS: LOC. REMSNIK	,YUGOSL	ΑΥΙΑ					540	18.20
							580	17.85
							620	17.58

. .

•

MINERAL NAME		CHROM	ATICITY	DCMINANT		BRIGHTNESS		
CCMPCSITICN	SCURCE	E COORC	INATES	(COMPL.)	PURITY	(VISUAL R)	LAMBCA	REFLECTIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P#)	Y	(NM)	R
SPHALERITE 6	A	0.4438	0.4046	480.20	1.06	17.83	440	19.28
ZN S	С	0.3051	C.3C87	466.79	2.80	17.89	460	18.68
CUBIC							480	18.32
REF. FOR R: (GRAFENAUER	ET AL,1	9691					500	18.07
REMARKS: LCC. RUCNIK,	YLGCSLA	VIA					540	17.88
							580	17.80
							620	17.71

MINERAL NAME		CHRCMATICITY		DDMINANT		BRIGHTNESS		
COMPOSITION CRYSTAL SYSTEM	SOURCE	COORD) X	INATES Y	(CEMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY
SPHALERITE 1	Δ	n•4437	C.4C47	481.27	1.08	17.82	440	19.08
ZN S	C	0.3051	0.3092	469.30	2.71	17.88	460	18.72
CUBIC							480	18.66
REF. FOR R: (GRAFENAUER	ET AL,1	969)					500	17.95
REMARKS: LOC. CEMERNI	CA,YUGO	SLAVIA					540	17.90
							580	17.80
							620	17.70

.

MINERAL NAME		CHRGN	ATICITY	DCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COCRC X	IN AT ES Y	(CCMPL.) kavelengtµ	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SPHALERITE M3	۵	0.4415	0.4066	452.28	1.47	17.75	440	18.95
ZN S	C	6.3638	0.3110	475.07	2.83	17.88	460	18.50
CUBIC							480	18.37
REF. FOR R: (TUGAL, 1969)							500	18.24
REMARKS: LCC. TURKEY							520	18.40
							540	18.02
							560	17.83
							580	17.67
							600	17.47
							620	17.33

- o40 17**.**18
- 660 17.12

CCMPGSITICN SCO CRYSTAL SYSTEM	LRCE	CCGRD) X	INATES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY
	4	0-4422						
SPHALERITE KC2A		V •	C•4C£1	485.17	1.08	17.38	440	18.32
ZNS	2	0.3054	0.3115	464.60	2.70	17.46	460	1E.C4
CUEIC							480	17.95
REF. FCR R: (TUGAL,1969)							500	17.78
REMARKS: LCC. TURKEY							520	17.70
							520	17.70
							540	17.54
							56C	17.38
							580	17.35
							600	17.11
							620	17.45
							64C	17.25
							660	16.41

MINEFAL NAME CCNPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM COORD X	ATICITY INA 1ES Y	CCMINANT (CCMPL•) WAVELENGTH	PUFITY (P≹)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
SPHALER ITE M2	А	0.4420	C.4C66	452°C5	1.36	17.34	440	18.39
ZN S	С	0. 3046	0.3112	478.65	2.58	17.44	466	18.18
CUBIC							480	17.89
REF. FOR R: (TUGAL,1969)							500	17.65
REMARKS: LOC. TURKEY							520	17.70
							540	17.59
							560	17.39
							580	17.37
							600	17.24
							620	17.30
							640	16.45
							ó6()	16.02

•

A.105

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCUPCE	CHRON, CCCPC X	ATICITY INATES Y	DCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SPHALERITE S	А	℃ .4415	C.4C34	482.31	1.66	17.27	44C	19.30
ZN S	С	0.3024	0.3054	469.40	4.17	17.36	4 E C	18.48
CUBIC							480	18.20
REF. FCR R: (GRAFENAUER	ET AL,1	965)					500	17.65
REMARKS: LCC. SUPLJA	STENA,Y	UGCSLA	AIV				540	17.40
							580	17.18
							620	17.38
							66C	16.85

•

NINERAL NAME COMPOSITION CRYSTAL SYSTEM	SCUPCE	CHRCM COORD X	ATICITY INATES Y	DCMINANT (CCMPL•) WAVELENGTH	PUPITY (P%)	ERIGHTNESS (VISUAL R) Y	LANEDA (NM)	REFLECTIVITY R
SPHALERITE 2	Δ) . 4437	C.4352	484.CS	1.04	17.19	44Ü	18.25
ZN S	с	0.3054	6.3102	472.Ci	2.46	17.26	460	18.CE
CUBIC							480	17.88
REF. FCR R: (GRAFENALER	ET AL,1	SES)					500	17.45
REMARKS: LCC. MEZICA	,YUGCSLA	VIA					54C	17.28
							580	17.15
							620	17.06
							66C	16.86
MINERAL NAME CCMPOSITION CRYSTAL SYSTEM	SCURCE	CFRCM CCORD X	ATICITY INATES Y	CCMINANT (CCMPL•) %avelength	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
---	--------	---------------------	------------------------	------------------------------------	----------------	-------------------------------	----------------	-------------------
SPFALERITE 39B	٨	C•4442	C.4071	452.75	C. 82	17.05	440	17.74
ZN S	C	9.3068	0.3136	477.00	1.36	17.11	4ćC	17.39
CUEIC							480	17.35
REF. FOR R: (TUGAL 1965)							500	17.24
REMARKS: LOC. TURKEY							520	17.20
							54C	17.06
							560	17.09
							58C	17.47
							665	16.77
							620	16.95
							640	16.18

660 16.85

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM COORC X	ATICITY INATES ¥	DEMINANT (COMPL.) WAVELENGTH	PUPITY (P%)	BFIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SPHALERITE 41	4	0.4422	0.4050	486.62	1.40	16.94	440	16.18
ZN S	С	8635.0	C.3C92	475 . 3C	3.13	17.04	460	18.06
CLBIC							480	17.76
REF. FOR R: (TUGAL 1969)							500	17.50
REMARKS: LCC. TURKEY							520	17.25
							540	17.08
							560	16.93
							58U	16.93
							600	16.66
							620	16.80
							640	16.57
							660	16.54

A.109

MINERAL NAME CCMPOSITION CRYSTAL SYSTEM	SCURCE	CHRCM CCOFC X	ATICITY INATES Y	DCMINANT (CCNPL.) WAVELENGTH	PURITY (P%)	PRIGHTNESS (VISUAL P) Y	LAMBDA (NM)	REFLECTIVITY R
SPHALERITE KC2C	Ļ	3.4416	C.4C54	468.73	1.51	16.90	4 4 Ü	18.22
ZN S	С	6.3033	C.3C94	477.45	3.25	17.CZ	460	17.36
CUBIC							480	17.73
REF. FCR R: (TUGAL, 1969)							500	17.53
REMARKS: LOC. TURKEY							520	17.36
							540	17.09
							5EL	16.95
							58Ŭ	16.83
							600	16.56
							620	16.58
							64C	16.62
							660	16.41

MINERAL NAME		CHRCM	ATICITY	DEMINANT		BRIGHTN	ESS	
CCMPCSITICN Crystal System	SCURCE	COURD X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL Y	R) LAMEDA (NM)	REFLECTIVITY R
SFFALERITE M1	Δ	0.4414	0.4058	490.10	1.54	16.81	440	17.98
ZN S	С	C.3C35	C.31CC	478.22	3.12	16.93	460	17.87
CLBIC							480	17.63
KEF. FCR R: (TUGAL,1969)							500	17.35
REMARKS: LCC. TURKEY							520	17.21
							540	17.06
							560	16.85
							580	16.70
							600	16.73
							620	16.63
							64C	15.95
							660	16.02

A.111

FINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
CCNPESITIEN CRYSTAL SYSTEM	SCURCE	COORD X	INATES Y	(CCMPL.) WAVELENGTH	PUPITY (የ%)	(VISUAL R) Y	LAMPDA (NM)	REFLECTIVITY R
SPFALERITE NG39B	А	0.4413	C.4C57	489.89	1.57	16.73	440	17.97
ZN S	С	ü.3C33	0.3357	477.92	3.22	16.84	460	17.68
CLBIC							480	17.61
REF. FOR R: (TUGAL, 1969)							500	17.25
REMARKS: LCC. TURKEY							520	17.16
							540	16.94
							560	16.78
							580	16.69
							600	16.42
							620	16.54
							640	16.19
							660	16.02

MINEPAL NAME CCMFCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM COGRC X	ATICITY INATES Y	DEVINANT (COMPL.) WAVELENGTH	PURITY (P%)	ERIGHTNESS (VISUAL R) Y	LAMBDA (NY)	PEFLECTIVITY R
SPHALERITE NGD16A	А	0.4411	C . 4051	488.38	1.65	16.69	440	18.20
ZN S	C	0.3028	6906.0	475.85	3.59	16.80	460	17.73
CUBIC							4 e C	17.45
REF. FCR R: (TUGAL,1969)							500	17.26
REMARKS: LCC. TURKEY							520	17.03
							540	16.88
							560	16.81
							580	16.64
							600	16.33
							620	16.67
							640	15.87
							660	16 . Ŭ2

MINERAL NAME		CHRCM	ATICITY	DEMINANT		BRIGHTNESS		
CCIPCSITICN CRYSTAL SYSTEM	SCURCE	E CCORD X	IN:ATES Y	(CCMPL.) WAVELENGTH	PURITY (P≹)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SPHALERITE NG39A	۵	0.4410	C.4C55	489.58	1.65	16.62	44C	17.58
ZN S	С	6.3029	0.3091	477.00	3.14	16.74	460	17.61
CLBIC							4 8 C	17.47
REF. FOR P: (TUGAL, 1969)							500	17.20
REMARKS: LCC. TURKEY							520	17.ŭ8
							540	16.86
							560	16.64
							580	16.58
							600	16.37
							6 2Ú	16.32
							640	10.92
							666	16.02

MINERAL NAME		C HR C M.	ATICITY	DCMINANT		BRIGHTNESS		
CCNPCSITICN CRYSTAL SYSTEM	SCURCE	COORE X	IN AT ES Y	(COMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SPHALERITE 4CE	۵	J.4418	G.4065	491.85	1.41	16.51	440	17.39
ZN: S	С	∂. 3C42	C.3116	480.62	2.66	16.63	460	17.41
CUBIC							480	17.22
REF. FOR R: (TUGAL 1969)							500	17.11
REMARKS: LCC. TURKEY							520	16.90
							540	16.72
							560	16.63
							580	16.43
							60C	16.26
							620	16.32
							£4C	16.01
							660	15.67

MINERAL NAME		CHRGM	ATICITY	DCMINANT		BRIGHTNES	SS	
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	29000 E X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (F%)	(VISUAL F Y	R) LAMEDA (NM)	REFLECTIVITY R
SFHALERITE NG348	Δ	0.4436	G.4C53	484.51	1.Cé	16.50	440	17.49
ZN S	С	0.3(51	C.31C6	475 . C8	2.49	16.57	460	17.26
CUBIC							480	17.13
REF. FCR R: (TUGAL, 1969)							500	16.94
REMARKS: LOC. TURKEY							520	16.83
							520	16.83
							540	16.57
							560	16.56
							580	16.34
							600	16.23
							€20	16.39
							640	16.37
							660	16.54

MINERAL NAME Composition	SCLPCE	CHRCM. CCGFD	ATICITY IN ATES	CCMINANT (CCMPL.)	PUFITY	BFIGHTNESS (VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P%)	Y	(NM)	R
SPHALERITE 4CA	Α	C•4414	C.4C57	489.81	1.54	16.47	440	17.62
ZN S	C	0.3034	C.3(99	478.21	3.16	16.58	4 EC	17.50
CLBIC							480	17.31
REF. FCR R: (TUGAL 1969)							500	17.13
REMARKS: LCC. TURKEY							520	16.90
							540	16.66
							560	16.48
							580	16.38
							600	16.32
							620	16.24
							640	15.94
							660	15.67

MINERAL NAME CCMPCSITION CRYSTAL SYSTEM	SCURCE	CHROM CODRE X	ATICITY INATES Y	DCMINANT (CCMFL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SPHALESITE	۵	5.4413	C.4052	488.45	1.59	16.35	440	17.70
ZN S	с	0.3031	3335.0	476.27	3.42	16.46	460	17.40
CLBIC							4 E C	17.20
REF. FOR R: (CEMIRSCY,1	56E)						500	16.90
REFARKS: LCC. UNKNEW	N						52C	16.70
							54Û	16.50
							56Ū	16.40
							580	16.30
							600	16.20
							620	16.10
							630	16.00

MINEFAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRGM COORE X	ATICITY INATES Y	DCNINANT (CCMPL.) WAVELENGTH	PURITY (F%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
SPFALERITE 39A	Д	0.4428	C.4048	484.66	1.27	16.04	440	17.16
zn s	C	C.3C43	6.3052	473.49	2.96	16.11	460	17.06
CUBIC							48C	16.87
REF. FCR R: (TUGAL 1969)							500	16.45
REMARKS: LCC. TURKEY							520	16.19
							540	16.11
							560	16.10
							580	15.98
							600	15.88
							é 2 C	15.96
							64C	15.47
							660	15.85

							2		
MINERAL NAM	E		CHRCM	ATICITY	COMINANT		BRIGHTNES	i S	
COMPOSITION		SEURCE	CCOFD	INATES	(CCMFL.)	PURITY	(VISUAL R	LAMBCA	REFLECTIVITY
CRYSTAL SYS	TEM		X	Y	WAVELENGTH	(P%)	Y	(NM)	R
MANGANOSITE		A	6.4410	C .40€4	491.95	1.60	14.07	430	15.00
MN C		С	0.3032	0.3108	480.61	3.12	14.18	470	14.90
CUBIC								450	14.60
REF. FCR R:	(NICHOL & PHI	ILLIPS,	1964)					520	14.40
REMARKS:	LCC. UNKNWCN							550	14.40
								550	14.40

1

ì

i

· .

- - 580 13.90 . 610 13.70 650 13.70

A-120

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHROM E COORD X	A T I C I T Y I N A T E S Y	DCMINANT (CGMPL。) WAVELENGTH	PUPITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CFROMITE A10	A	∪ ₀4414	0.4069	493.14	1.49	12.55	44Ü	13.28
(FE,MG)(CR,AL,FE)2 C4	С	0.3(41	0.3116	48C•81	2.70	12.64	460	13.14
CLBIC							480	13.06
REF. FOR R: (ENGIN, 1969)							520	12.85
REMARKS: LCC. TURKEY							54C	12.73
							560	12.56
							580	12.53
							600	12.45
							620	12.29
							640	12.15
							660	11.66

· ··· ·· ··

.

.

.

2

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM COORD X	ATICITY INATES Y	DCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CFRUMITE F119	۵	0.4422	0.4060	490.03	1.34	12.47	440	13.33
(FE,MC)(CR,AL,FE)2 C4	С	0.3043	C.31C5	477.00	2.75	12.55	460	13.04
CLBIC							480	12.91
REF. FOR F: (ENGIN, 1969)							520	12.74
REMARKS: LCC. TURKEY							540	12.62
							560	12.53
							58C	12.44
							600	12.32
							620	12.35
							64C	12.04
							660	11.98

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SGURCE	CHRCMATICITY COORDINATES X Y	DCMI\ANT (CCHPL.) bavelength	PURITY (P})	ERIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLFCTIVITY
CHROMITE ZU12	۵	C.4424 C.4C63	490.85	1.28	12.46	440	13.21
(FE,MG)(CR,AL,FE)2 C4	С	C.3(46 C.3111	478.36	2.59	12.53	460	13.00
CLBIC						4 E C	12.51
REF. FCR P: (ENGIN, 1969)						520	12.69
REMARKS: LCC. TURKEY						540	12.61
						560	12.53
						580	12.40
						600	12.37
						620	12.24
						646	12.13
						660	11.97

MINEFAL NAME Composition Crystal system	SCURCE	CHRCM/ CCORDI X	ATICITY INATES Y	CCM INANT (CCMFL.) KAVELENGTH	PURITY (p%)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	R E FL EC T I V I T Y R
CFREMITE A17	А	0.4429	C.4C56	487.73	1.20	12.42	440	13.17
(FE,MG)(CR,AL,FE)2 C4	С	0.3047	C.31C6	476.53	2.62	12.49	46C	13.12
CUBIC							480	12.88
REF. FOR R: (ENGIN, 1969)							520	12.66
REMARKS: LOC. TURKEY							540	12.55
							560	12.45
							580	12.36
							600	12.22
							620	12.29
							640	12.29
							660	12.21

MINERAL NAME CEMPESITIEN CRYSTAL SYSTEM	SOURCE	CHRCMATICITY CCORDINATES X Y	DCMINANT (CCMPL。) WAVELENGTH	PURITY (P¾)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
CHRCMITE ZUBOE	۵	0.4421 C.4C59	4 E S • E C	1.37	12.39	4 4 C	13.20
(FE,MG)(CR,AL,FE)2 C4	C	0.3042 0.3105	477.53	2.78	1.2.46	460	13.04
CLBIC						480	12.86
REF. FOR R: (ENGIN, 1969)						520	12.68
REMARKS: LOC. TURKEY						540	12.53
						560	12.43
						580	12.32
						600	12.21
						620	12.20
						640	12.32
						66C	11.82

MINERAL NAME Composition Crystal System	SCURCE	CHRCMATICITY CCCPDINATES X Y	DCP INANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CFRCMITE AU32	А	C.4412 C.4664	491.86	1.55	12.37	440	13.25
(FE,NG)(CR,AL,FE)2 C4	С	0.3036 0.3106	475.43	3.00	12.46	460	12.88
CLBIC						480	12.91
REF. FCR R: (ENGIN,1969)						520	12.68
REMARKS: LCC. TURKEY						540	12.54
						560	12.47
						580	12.35
						600	12.25
						620	12.00
			,			640	11.99
						660	11.78

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SOURCE	CHREMATICITY CCORCINATES X Y	DCMINANT (CCNFL。) WAVELENGTH	PUFITY (P%)	BRIGHTNESS (VISUAL RI Y	S LAMBDA (NM)	REFLECTIVITY R
CFRCMITE A78	Д	Ũ•4424 0•4C59	489.50	1.33	12.34	440	13.15
(FE,MG)(CR,AL,FE)2 C4	C	C.3C43 C.31C5	477 . Cû	2.85	12.41	460	12.92
CUBIC						480	12.80
REF. FOR R: (ENGIN, 1969)						520	12.60
REMARKS: LCC. TURKEY						540	12.50
						560	12.37
						580	12.29
						600	12.12
						620	12.16
						64C	12.08
						660	12.08

MINERAL NAME		CHRCMA	TICITY	CCMINANT		BRIGHTNESS		
CC≯PCSITICN CRYSTAL SYSTEM	SCURCE	CUORDII X	NATES Y	(CCMPL.) WAVELENGTH	PURITY (P원)	(VISUAL P) Y	LAMECA (NM)	REFLECTIVITY R
CHRCMITE F31	A	C.4414	0.4261	4 ╤€•54	1.52	12.33	4 4 Ú	13.18
(FE,MG)(CR,AL,FE)2 C4	С	C.3C37	C. 31C3	478.45	3.^1	12.42	460	13.01
CUBIC							480	12.86
REF. FOR R: (ENGIN, 1969)							520	12.62
REMARKS: LOC. TURKEY							54C	12.50
							560	12.40
							580	12.29
							600	12.20
							620	12.96
							£4C	12.05
							660	11.67

MINERAL NAME COMPOSITION CRYSTAL SYSTEM	SCURCE	CHRCM CCCFD X	ATICITY INATES Y	CCMINANT (CCMFL.) WAVELENGTH	FURITY (P77)	BRIGHTNESS (VISUAL R) ¥	LAMECA (nm)	REFLECTIVITY R
CFRCMITE ZUS	А	0.4415	C.4C7C	493.39	1.46	12.31	440	12.94
(FE,MG)(CR,AL,FE)2 C4	С	C.3042	0.3120	481.59	2.61	12.39	4 E C	12.94
CUEIC							480	12.82
REF. FOR R: (ENGIN, 1969)							520	12.58
REMARKS: LOC. TURKEY							540	12.49
							560	12.42
							58C	12.28
							600	12.16
							620	12.15
							640	11.72
							660	11.47

MINERAL NAME		CERCN	ΑΤΙCΙΤΥ	CCM IN ANT		BRIGHTNESS		
CCMPCSITION CRYSTAL SYSTEM	SCURCE	CCCRC X	INATES Y	(CCNFL.) WAVELENGTH	PURITY (P%)	(VISUAL P) Y	LAMBCA (NM)	REFLECTIVITY F
CHREMITE AL	А	0.4421	C.4C£2	496.76	1.36	12.27	44Ü	13.96
(FE,MG)(CR,AL,FE)2 C4	C	0.3044	6.3108	47E.C5	2.70	12.35	460	12.79
CUEIC							480	12.73
REF. FOR R: (ENGIN, 1969)							520	12.55
REMARKS: LOC. TURKEY							54Ū	12.43
							56C	12.30
							580	12.21
							600	12.17
							620	12.15
							640	11.94
							£éC	11.58

,

MINERAL NAME Composition Crystal system	SCLFCE	CHRGM CCCRC X	ATICITY IN ATES Y	DJYINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CHRCMITE F70	А	C.442C	C.4267	492.36	1.35	12.18	440	12.81
(FE,MG)(CR,AL,FE)2 C4	С	5.3044	0.3118	48(.72	2.57	12.26	46C	12.77
CUBIC							480	12.69
REF. FCR R: (ENGIN,1969)							5 20	12.47
REMARKS: LOC. TURKEY							540	12.33
							560	12.24
							580	12.15
							600	12.08
· ·							62C	11.84
							640	11.92
							660	11.64

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHPICM/ Clidre X	ATICITY INATES Y	DCMINANT (COMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CFRCMITE AU12	А	0.4417	5.4066	492.19	1.43	12.07	440	12.73
(FE,MG)(CR,AL,FE)2 C4	C	9.3042	C.3114	480.13	2.69	12.15	46Ũ	12.72
CLBIC							480	12.60
REF. FOR R: (ENGIN, 1969)							520	12.35
REMARKS: LCC. TURKEY							540	12.21
							560	12.10
							5 E C	12.12
							600	11.91
							620	11.94
							640	11.57
							660	11.33

MINEFAL NAME COMPOSITION CRYSTAL SYSTEM	SCURCE	CHRCM COGRC X	ATICITY INATES Y	CCMINANT (CCMFL.) WAVELENGTH	PURITY (P%)	BPIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
CHREMITE 208	٨	0.4427	C.4C63	490.61	1.21	12.04	440	12.65
(FE,MG)(CR,AL,FE)2 C4	C	1. 3C49	C.3117	479.31	2.41	12.11	460	12.63
CUBIC							48ú	12.51
REF. FOR R: (ENGIN, 1969)							520	12.31
REMARKS: LCC. TURKEY							540	12.15
							560	12.08
							580	11.99
							600	11.93
							620	11.81
							64C	11.85
							660	11.65

•

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SOURCE	CHRCMATICITY CCORDINATES X Y	DCMINANT (CCMPL+) WAVELENGTH	PURITY (P%)	EPIGHTNESS (VISUAL R) Y	LAMBDA (NM)	PEFLECTIVITY R
CFRCMITE ZU44	۵	C.4424 C.4057	488.30	1.31	11.98	440	12.74
(FE,MG)(CR,AL,FE)2 C4	С	C.3C43 C.31C4	477.40	2.78	12.04	460	12.69
CLBIC						4 E C	12.42
REF. FCR R: (ENGIN, 1969)						520	12.23
FEMARKS: LCC. TURKEY						540	12.10
						5éC	12.03
						580	11.90
						600	11.81
						620	11.78
						640	11.70
						660	11.79

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCLRCE	CHROM CCOSC X	ATICITY IN ATES Y	DCMINANT (CCMPL•) WAVELENGTH	PURITY (P₹)	ERIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CHRUMITE F19	۵	0.4424	C.4C64	491.19	1.28	11.57	4 4 C	12.19
(FE,MG)(CR,AL,FE)2 C4	С	0. 3C46	C.3116	475.77	2.52	11.64	460	12.09
CUBIC							48L	12.04
REF. FCR R: (ENGIN, 1969)							520	11.81
PEMARKS: LCC. TURKEY							540	11.75
							560	11.62
							580	11.45
							600	11.41
							620	11.33
							640	11.30

.

.

A•136

11.33

660

MINERAL NAME CCMPOSITION CRYSTAL SYSTEM	SCURCE	CHRCMATICITY CCCRCINATES X Y	CCMINANT (CCMPL.) WAVELENGTH	PUPITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
CHRCMITE F62	А	0.4417 (.4061	450.74	1.45	11.46	440	12.25
(FE,NG)(CR,AL,FE)Z C4	C	3.3039 0.3104	478.26	2.92	11.54	46C	12.04
CLEIC			,			480	11.92
REF. FOR R: (ENGIN, 1969)						520	11.73
REMARKS: LCC. TURKEY						540	11.61
						560	11.51
						580	11.42
						600	11.32
						620	11.34
						640	11.21
						660	10.74

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCLRCE	CHRCM CCCFC X	ATICITY IN ATES Y	DCMINANT (CCMFL•) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CHROMITE FES	А	5.4428	0.4068	492.31	1.16	16.73	44C	11.28
(FE, MG) (CP, AL, FE) 2 C4	С	J.3052	C.3122	480.03	2.24	10.79	46C	11.06
CUBIC							480	11.05
REF. FOR R: (ENGIN, 1969)							520	11.00
REMARKS: LCC. TURKEY							54C	10.88
							560	10.73
							580	10.69
							600	10.63
							620	10.70
							640	10.37
							660	10.13

MINERAL NAME CCMPCSITICN CRYSIAL SYSTEM	SCURCE	CHRCMATICITY COORDINATES X Y	DEMINANT (CEMPL•) WAVELENGTH	PURITY (P\$)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CFRCMITE F68	۵	0.4430 C.4C63	490.33	1.14	10.54	44Û	11.12
(FE,MG)(CR,AL,FE)2 C4	С	C.3(51 C.3115	478.13	2.36	10.59	460	10.93
CLBIC						48 0	10.88
REF. FOR R: (ENGIN, 1965)						520	10.74
REMARKS: LCC. TURKEY						540	10.64
						560	10.58
						580	19•49
						600	10.43
						620	10.34
						64C	10.42
						660	10.23

MINEBAL NAME		CHROMA	TICITY	DOMINANT		BRIGHTNESS		
COMPOSITION	SOURCE	CODREI	NATES	(COMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		x	Y	WAVELENGTH	(P%)	Y	(NM)	Ŕ
ZVYAGINTSEVITE	Α	0.4550	0.4102	586.37	7.00	67.18	450	61.40
(PD, PT)3 (PD, SN)	C	9.3189	9.3253	577.47	4.74	56•E3	550	65.80
CUBIC							580	67.57
							650	69 . 40

•

REMAPKS: LOC: UNKNOWN

.

REF. FOR R L.VYALSOV, MOWSCOW

COPPER	Δ	9.5055 0.4705	596.77	35 . 20	57.58	470	38.41
CU	C	0.3739 0.3412	590.56	23.78	53.18	546	42.63
CUBIC						589	68.2 0
						650	78.40

REMARKS: GEORGETOWN, USA. CU=99.7%

REF. FOR R CEFVELLE & CAYE, 1968

MINERAL NAME		CHROMA	TICITY	DOMINANT		BEIGHTNESS		
COMPOSITION	SOURCE	COOPDI	INATES	(COMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		x	Y	WAVEL ENGTH	(p%)	Y	(MM)	R
SPERRYLITE	A	3.4448	0.4793	506.77	n. 63	54.91	460	55 . 🕄 🤊
PT AS2	C	0.3085	0.3173	498.58	∩•54	55.10	540	55.50
CUBIC							580	55.50
							660	52.02

REF. FOR R L.VYALSOV, MOWSCOW

LOC: UNKNOWN

REMARKS:

CLAUSTHALITE . A 0.4353 0.4316 486.30 3.19 49.08 PB SE C 0.2960 0.3003 475.17 7.01 49.74

CUBIC	589	48.10
	650	47.10

REMARKS: LOC: EAGLE GROUP, CANADA

REF. FOR R BURKE, FREE UNIV., AMSTERDAM

A.141

470

546

55.40

MINERAL NAME		CHROMATICIT	DOMINANT		BRIGHTNESS		
COMPOSITION	SOURCE	COORDINATES	(COMPL.1	PURITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P?)	Y	(NM)	R
SKUTTERUDITE	A	0.4462 0.4072	2 491.14	7.34	53.20	470	53.80
(CO,FE,NI)AS3-X	C	0.3086 0.3150	479.58	^. 69	53.29	546	53 . 40
CUBIC						589	53.10
						6 50	52 . 90

- REMARKS: LOC: JACHYMOV, CZECHOSLOVAKIA
- REF. FOR R BURKE, FREE UNIV., AMSTERDAM

HOLLINGWORTHITE	Α	9.4451 9.4197	512.14	°∙59	51.71	460	51.5 3
(RH,PD)AS S	С	A.3(89 0.3182	512.66	0.41	51.89	543	52.50
CUBIC						581)	52. (3)
						649	57.00

REMARKS: LOC: UNKNOWN

REF. FOR R L. VYALSOV, MOSCOW

MINERAL NAME		CHROMATICITY		DCMINANT		BRIGHTNESS		
COMPOSITION	SOURCE	COORDI	[NATES	(COMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		x	Y	WAVEL ENGTH	(□%)	Y	(NM)	R
RU-HOLLINGWORTHITE	A	0.4459	0. 4075	494 . 79	∩ <mark>₀</mark> 4.1	49 •()4	455	49.69
(RH,RU,PD)AS S	C (0.3085	9.3153	483.74	≙•69	49.14	52)	49.47
CUBIC							560	49.20
							650	48 . 41

REMARKS: LOC: UNKNOWN

•

REF. FOR R L. VYALSOV, MOSCOW

GERSDORFFITE	А	0.4497 0.4776	591.24	1.14	48 . 41	470	47.90
(NI,CO,FE)AS S	С	0.3116 0.3171	586.37	?. 62	48.32	546	48.10
CUBIC						589	48•80
						650	48.50

REMARKS: LOC: SUCBUPY, ONTARIC CANADA

REF. FOR R BURKE, FREE UNIV., AMSTEPDAM

A•143

MINERAL NAME COMPOSITION	SOURCE	CHROMATICITY COORDINATES	DOMINANT (Compl.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X Y	WAVELENGIH	(P%)	Ŷ	(NM)	R
GERSDORFFITE	A	0.4490 0.4991	580.33	2• 78	46.42	470	45 . 40
(NI,CO,FE)AS S	c s	0.3123 0.3198	571.47	1.53	46.37	546	46.77
CUBIC				•		589	46.39
						6 50	46.60

REMARKS: LOC: UNKNCWN

REF. FOR R UYTENBOGAARDT & BURKE, 1971

GERSDORFFITE	۵	0.4488 0.4989	580.22	1. 94	53.64	470	52.61
(NI,CO,FE)AS S	С	0.3120 7.3192	571.93	1.29	53. 58	546	53.81
CUBIC						589	53.80
						650	53.43

REMARKS: LOC: UNKNOWN

REF. FOR R UYTENBOGAAPDT & BURKE, 1971
MINERAL NAME	SOURCE	CHREMATICIT	Y DENINANT		BRICHTNESS		
CRYSTAL SYSTEM	300762	X Y	WAVELENGTH	(P%)	Y	(NM)	R
POLYDYMITE	A	0.4500 0.478	6 590.86	9.34	47.12	47C	42.90
NI3 S4	C	0.3230 0.326	1 581.44	6.09	46•45	546	46.13
CUBIC						589	47.30
						650	51.70

- REMARKS: LOC: DRY NICKEL MINE, S. RHODESIA
- REF. FOR R BURKE, FREE UNIV., AMSTERDAM

IRARSITE	Δ	0.4426 0.4071	493.43	1.19	46.74	455	48.60
(IR,RU,FH,PT)AS S	С	9.3051 v.3127	481.72	2.21	47.52	52.3	4 7. 87
CUBIC						56.)	47. 00
						650	45.20

- REMARKS: LDC: UNKNOWN
- REF. FOR R L.VYALSOV, MOSCOW

MINERAL NAME		CHROMATICITY	DCMINANT		BPIGHTNESS		
COMPOSITION	SOURCE	COORDINATES	(COMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X Y	HAVELENGTH	(P%)	Y	(NM)	R
IRARSITE	A	7.4436 %.4084	498.69) . 92	46.55	49-ì	47.6.)
IR,RU,RH,PT)AS S	c ·	n.3167 (.3157	488.82	1.31	46.83	520	47.87
CUBIC						589	46.10
						65 0	4.5°2)

REMARKS: LCC: UNKNCWN

REF. FOR R UYTENBOGAARDT & BURKE,1971

TYRRELITE	Α	0.4527 0.4087	588.19	4.37	46.01	47 :)	44 . *•)
(NI,CD,CU)3SE4	С)•3158 ()•3212	579.71	2• ^P 4	45.73	546	45.50
CUBIC						589	46.50
						651	47.13

REMARKS: EAGLE GROUP, CANADA

REF. FOR R BURKE, FREE UNIV., AMSTERDAM

A.146

MINERAL NAME	6.0110.67	CHROMATICIT	Y DOMINANT	0	BP IGHTNESS		
CRYSTAL SYSTEM	SUURCe		(CUMPL.) WAVELENGTH	PUF119 (D9)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY
PENTLANDITE	۸	3.4647 3.411	1 589.62	13.65	45.84	47:)	39.80
(NI,FE)9 S8	C	0.3201 1.331	4 58 0.7 2	٩.12	44.93	546	44.27
CUBIC						589	47. NO
						65 0	50 . 51)
REMARKS: LOC: FLA	AT NICKEL MI	INE, TELEMARK	NORWAY				

REF. FOR R BURKE, FREE UNIV., AMSTERDAM

ULLMANITE	۲,	Ĵ•4469)•4949	577.05	1.00	44.ç7	470	46•71
NI SB S	С	0.3067 0.3099	453.25	2.17	45.02	546	44.69
CUBIC						589	44.5.)
						65J	46.10

- REMARKS: LOC: EISENHARTER, SAXONY
- REF. FOR R BURKE, FREE UNIV. , AMSTERDAM

MINERAL NAME COMPOSITION CRYSTAL SYST	E . FEM	SOURCE	CHROM COOPD X	ATICITY INATES Y	DEMINANT (COMPLe) WAVELENGTH	(Рੴ)	BRIGHTNESS (VISUAL P) Y	L AMBDA (NI4)	REFLECTIVITY R
LAURITE (1)	PILE	А	´) ₀ 4294	∂ •4927	490 .2 8	4.51	41.25	470	47.80
RU S2		С	0.2914	0.2989	478.63	8.77	42.13	546	4 2 •51
CUBIC								589	40.31
								65)	37.29
REMARKS:	LAC: GOODNEW	S BAY,A	LASKA.	RU=61.	;;[R=1.0;S	=38.0 W	Τ., ??		
REF. FOR R	(LEONARD ET	AL,1969)						

 LAUPITE (2) NUGGET
 A 0.4305 0.403 490.29
 4.24 40.94
 47.0
 47.00

 RU S2
 C 0.2925 0.2999 478.58
 8.26 41.74
 546 42.10

 CUBIC
 589 40.00
 589 40.00

 650
 37.20

.

REMARKS: LOC: GOODNEWS BAY, ALASKA. RU=40.5; IR=13.0; S=31.1 WT. 2

REF. FOP R (LEONARD ET AL, 1969)

MINERAL NAME		CHRCM	YTICITY	DOMINANT		BRIGHTNESS		
COMPOSITION Crystal system	SOURCE	COORD) X	INATES Y	(COMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
	٨	9 4747	0 3054	495 52	८ १ १	37 69	4.70	47 7 0
LAUNTIE (57	А). 4245	503994	400007	0031	570-0	479	4 / o : : /
RU S2	С	∂.2 84∷	0.2860	474.69	13.08	38.95	546	38.50
CUBIC							589	36.40
							650	35.40
REMARKS: LOC: GOODNE	WS BAY,A	LASKA.	RU=59.	•5;IR=2••;S	=36•7 W	Τ ● ^α		
REF. FCR P (LEONARD ET	AL,1965)						
LAURITE (4)	A	0.4274	0.3960	484.52	5.36	39.96	470	48.))
RU S2	C).2876	C.2880	473.47	11.80	39.94)	546	39.00
CUBIC							589	38.30
							651	36.30
REMARKS: LUC: STILLW	ATER COM	PLEX,M	DNTANA					

REF. FOR R (LEONARD ET AL, 1965)

A.149

MINERAL NAME			CHROMATICITY				BRIGHTNESS		
COMPOSIT	ION	SOUPCE	COORDI	NATES	(COMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL	SYSTEM		X	Y	WAVELENGTH	(口%)	Y	(NM)	D,
LAURITE	(5)	A	0.4344	ĵ₀4137	489 . 85	3.29	41.00	470	45 . 8.
RU 52		C ć	n•2962	7.3129	478.07	6.58	41.61	546	41.81
CUBIC								589	47.30
								650	38.29

REMARKS: LDC: BORNED. RU=30.0; IR=20.0; S=27.0 WT. 3

REF. FOR R (LEONARD ET AL, 1969)

 PETZITE
 A
 0.4427
 0.4052
 486.57
 1.27
 40.32
 460
 42.60

 AG3
 AU
 TE2
 C
 0.3044
 0.3096
 474.42
 2.87
 40.52
 540
 40.50

 CUBIC
 580
 40.20
 640
 39.60

REMARKS: LOC: UNKNOWN

REF. FOR R L.VYALSOV, MOSCOW

MINERAL NAME		CHRCMA	TICITY	DOMINANT		BRIGHTNESS		
COMPOSITION CRYSTAL SYSTEM	SOURCE	COORDI X	NATES Y	(COMPL.) WAVELENGTH	PURITY (PZ)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY P
PETZITE	А	7. 4419). 4074	494 . 49	1.35	38.55	460	47.10
AG3 AU TE2	С	0.3049	1.3127	482.29	2.31	38. 91	540	39.10
CUBIC							580	38.71
							640	37. 10
REMARKS: LOC: UNKNEW	N							
REF. FOP R L.VYALSOV,	MOSCOW							
PETZITE	Δ	^ . 4422	ý . 4954	488.02	1.37	38 . 1J	460	4.).3.)
AG3 AU TE2	С	0.3039	0 . 3198	476.65	3.11	38.33	540	38 . 50
CUBIC							58.`	37. 8J
							640	37.40

REMARKS: LOC: UNKNOWN

REF. FOR R P.BEISTEIN, MOSCOW

.

a

A•151

MINERAL NAME		CHROMATICITY	DCMINANE		BRIGHTNESS		
COMPOSITION	SOURCE	COORDINATES	(CCTPL.)	PUFITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P%)	Y	(// 34)	R
PETZITE	A	0.4276 0.3994	487.72	5.1)	35,83	46 ⁻)	42.10
AG3 AU TE2	C ·	n.2884 ().2933	475.46	19.55	36.63	541)	37.1)
CUBIC						580	34.99
						641)	33.3)

REMARKS: LOC: UNKNOWN

REF. FOR R UYTENBOGAARDT & BURKE, 1971

COLORADOITE	Α	3.45)) 3.4)78	59).12	1.87	37.29	46.)	37.10
HG TE	С	0.3132 0.3175	590.66	1.15	37.73	540	36.84
CUBIC						581	39,21
						64()	37.40

REMARKS: LOC: UNKNEWN

REF. FOF R L.VYALSOV, MOSCOW

MINERAL NAME COMPOSITION CRYSTAL SYST	ΈM	SOURCE	CHROMA COORDI X	ATICITY INATES Y	DOMINANT (COMPL.) WAVELENGTH	PURITY (P7)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
COLORADOITE		A	0 - 45 04	0.4 096	582.68	3.40	36.24	46 [?] }	34 • 8·)
HG TE		С	J.3144	1.3217	577.46	2.32	36.10	54 ()	35.50
CUBIC								58*/	37.51
								640	35.51
REMARKS:	LOC: UNKNOWN								
REF. FOR P	P.BEISTEIN, M	ISCOW							

COLORADOITE	А	0.4431 0.4012	579.25	7 . 50	34.31	460	36.60
HG TE	С	0.3.28 0.3037	57~.37	5.34	34.43	54.)	33.53
CUBIC						580	33 . 90
						64)	34. 8)

•

REMARKS: LOC: UNKNOWN

REF. FOF R UYTENBOGAARDT & BURKE,1971

MINERAL NAME		CHROMATICITY	DOMINANT		BFIGHTNESS		
COMPOSITION	SCURCE	COORDINATES	(COMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P%)	Y	(NM)	P
MURDOCHITE	Α	9.4533 0.4187	588.59	4.78	17.31	470	16.50
CU6 PB O8	C a	0.3163 0.3216	579.78	3.09	17.20	546	17.10
CUBIC						589	17.50
						650	17.8)

- REMARKS: LOC: TCHAH-KHOUNI MINE, IRAN
- REF. FOR R BURKE, FREE UNIV., AMSTERDAM

MURDOCHITE	Α	0.4534 0.4092	587.33	5.20	17.19	47 1	16.30
CU6 PB 08	С	3.3168 3.3224	578.90	3.43	17.37	546	17.00
CUBIC						589	17.40
						650	17.57

REMARKS: LOC: UNKNOWN

REF. FOR R UYTENBOGAARDT & BURKE,1971

MINERAL NAME		CHP.OM	ATICITY	DOMINANT		BRIGHTNESS		
COMPOSITION	SCURCE	COORDI	INATES	(COMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM		x	Y	WAVELENGTH	(PR)	Y	(NM)	R
TITANOMAGNETITE	Α	1)• 4469	9.4193	563.76	3.47	16.93	470	16.60
FE1+X,FE2-2X,TIX 04	C ·	0.3112	0.3200	563.11	1.29	16.94	546	17. IN
CUBIC			•				589	17.30
							650	16.03

REMARKS: LOC: UNKEL, RHENANIE. FE2 03=84.5%; TI 02=15.3%

REF. FOR R CERVELLE, 1967

2. ANISOTROPIC MINERALS

•

MINERAL NAME	SCHOCE	CHRCMATICITY E CCCPTINATES		CCM INANT		BRIGHTNESS		A REFLECTIVITY	
CRYSTAL SYSTEM	SLUKUE		Y	WAVELENGTH	(P%)	Y Y	(NM)	(Rp)	(Rg)
KCSTOVITE	A	0.4482	C.413C	572.52	4.24	53.22 Yp	433	49.30	50.10
AU CU TE4	۵	0.4508	C.4146	576.98	7.16	57.50 Yg	465	49.70	53.70
PRGBAELY MGNO.	С	0.3136	C.3255	565.54	3.41	53.26 Yp	482	52.10	55.20
	С	0.3172	0.3302	568.84	5.64	57.79 Yg	518	52.70	56.40
REF. FOR R: (TERZEIV,1966	1)						559	54.90	60.10
REMARKS: LOC. CHELCPEC	H,BULG	ARIA					589	53.OC	57.90
							624	52.5C	57.CC
							668	49.30	55.20
							691	48.40	53.30

•

•

MINERAL NAME		CHRCM	ATICITY	ECNINANT		BRIGHTNESS	LANGEA		
CRYSTAL SYSTEM	JEGRUE	X	Y	WAVELENGTH	(P%)	Y Y	(N#)	(Rp)	(^P g)
MARCASITE NGC 9(1)	4	0.4535	Cc4127	581077	7.70	50,84 Yp	440	44.98	45° 82
FE SZ	۵	C. 4534	C.4137	580.65	٤.32	53.18Yg	46G	45,58	48.13
CRTHCRFCMBIC	С	0.3189	0-3285	572017	5.64	50. 55 Yp	480	47.72	50.00
	С	C.3195	ú. 3306	571.58	6.36	52351Yg	500	48053	51.15
REF, FOR R: (TUGAL, 1969)							520	45.54	51,88
REMARKS: LOC. TURKEY							540	50.56	52.86
							560	51,48	53.56
							580	51.63	54.88
							600	51.40	53.25
							620	50.57	52.41
							640	50,91	52.84
							660	56,17.	51.60

MINERAL NAME		CHRCM	ATICITY-	CCMINANT		ERICHTNESS			
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CCCFC X	INFTES Y	(CCMPL.) Wavelength	PURITY (P2)	(VISUAL R) Y	LAMBCA (NM)	REFLEC	TIVITY (Rg)
MARCASITE NGE S(2)	Δ	0.4456	6,4121	576.81	4,58	45.55 Y	440	45.76	45.45
FE S2	۵	0=4517	C.412E	575.67	6.52	51.06 Y	460	46,41	47.5
CRTHCRHOMBIC	C	0.3143	0.3251	568.05	3.49	49.51 Y	480	47.82	48°EC
	C	J :3170	0.328C	570.59	4.99	50390 Y	500	48,61	45.64
REF. FCR R: (TUGAL, 1565)						-	520	49530	50.32
REMARKS: LCC. TURKEY							540	45.56	51.17
							560	50.52	51.72
							580	50°22	51.63
							600	48.16	51.24
							620	49.44	50,97
							640	45062	50.27
							660	48.573	50.17

MINERAL NAME CCMPOSITION	SGURCE	CHRCM COORD	ATICITY INATES	CCMINANT (CCMFL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBCA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P%)	Ŷ	(NM)	(Rp)	(Rg)
MARCASITE KC 16	A	0.4532	C•4121	582.18	7.08	46.63 Yp	44C	42.01	46.20
FE S2	A	0.4514	C.4140	578.22	7.15	52.E4 Yg	460	42.56	48.13
GRTHORHOMBIC	C	C.3183	C.3269	574.10	5.05	46.37 Yp	480	43.59	50.61
	С	0.3173	C.33CC	569.18	5.61	52.74 Yg	5CG	44.38	51.64
REF. FOR R: (TUGAL, 1969)							520	45.23	52.35
REMARKS: LCC. TURKEY							540	46.25	53.16
							560	47.48	53.78
							580	47.71	53.78
							600	45.91	51.49
							620	47.70	53.10
							64C	47.69	53.49
							660	45.41	50.91

MINERAL NAME		CHROM	ATICITY	DCMINANT		BRIGHTNESS	_		
COMPOSITION Crystal system	SCURCE	CCGRE X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLEC	(Rg)
NICCOLITE 1	A	0.4815	C•4134	589.22	27.58	51•29 Yp	420	35.96	42.96
NI AS	A	0.4703	C.4113	539.34	18.36	54.52 Vg	44C	35.04	42.60
HEXAGONAL	C	0.3507	C.3477	581.18	19.32	0 49.22 Yp	460	35.36	43.27
	С	0.3360	C•3477	586.99	12.39	E 53.06 Yg	480	37.33	45.14
REF. FOR R: (THE AUTHCR)							500	39.94	46.79
REMARKS: LCC. GNTARIG	, CANACA						520	43.30	48.93
Electron Probe A	analysis:	Wt	• %		00	une 7	54C	47.01	51.45
		Ni 44	•07		U		560	50.26	53.67
		As 55	•12 • 90				580	53.08	55.58
		400	• <u> </u>				600	55.60	57.54
		100	•07				620	57.64	59.10
							640	59.15	6C.39

MINERAL NAME		CHROM	ATICITY	DEMINANT		BRIGHTNESS			
CCMPCSITICN	SCURCE	COORC	INATES	(CCMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P老)	Y	(NM)	(Rp)	(Rg)
LCELLINGITE	Δ	0.4500	C.411C	575.05	4.10	50.2C¥P	440	46.90	43.8C
FE AS2	Α	6.4584	C.4145	583•48	12.34	53°22 Yg	48C	48.30	47.40
CRTHORHCMBIC	C	0.3142	0.3236	569.99	3.06	50.12 Yp	500	45.50	50.10
	C	0.3247	0.3352	574.08	8.99	52.66 Yg	520	50.00	51.30
REF. FOR R: O.VAASJOKI (1969)						540	50.60	53.GC
REMARKS: LGC. UNKNOWN	l						600	50.20	54.00

MINERAL NAME		CHRGM	TICITY	CCMINANT		BRIGHTNESS			
COMPOSITION	SCURCE	CGCRD	INATES	$(CCMFL_{\bullet})$	PURITY	(VISUAL R)	LAMECA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P%)	Ŷ	(NM)	(R _{QL})	(R ₇₅)
SYLVANITE,FIJI	Д	0.4580	6.4130	584.55	11.02	50.71 Vac	440	42.OC	56.30
AU AG TE4	Α	0.4518	C.4101	583.02	4.37	60.80 Yz	460	44.60	57.50
PCNCCLINIC	C	0.3233	C.3334	574.07	8.13	50.24 Ya	48C	47•CC	59.10
	С	0.3148	0.3237	571.53	3.25	60.65 Yr	500	48.40	60.60
REF. FCR R: (STUMFFL,197	0)						546	50.80	61.20
REMARKS: LOC. EMPEROR	MINE,F	IJI					589	50.00	59.50
Electron Probe	Analysis:	wt,	. %				600	51 . 5C	61.10
		Au 31,	•4				620	52.30	61.60
		Ag 6,	.6						
		Te 99.	.9						
			•						

MINERAL NAME		CHRCM	ATICITY	DOMINANT		BRIGHTNESS			
COMPOSITION Crystal System	SGURCE	COCRC: X	INATES Y	(CCMFL.) WAVELENGTH	PURITY (PZ)	(VISUAL R) Y	LAMBCA (NM)	REFLEC [®] (R _{ex})	(Rg)
SYLVANITE,COLGRADO	A	0.4552	C.411C	565.25	7.70	44.04 Yoc	440	39.00	57.00
AL AG TE4	۵	0.4492	6.4688	582.24	2.01	58. 58 Yr	4 6 C	46.10	57.40
MCNOCL IN IC	С	0.3190	C.3277	574.22	5.45	43.75 Ya	480	41.40	58.10
	С	0.3122	0.3197	571.18	1.48	58.92 Yr	500	43.10	58.EC
REF. FCR R: (STUNFFL,197	0)						546	44.20	59 . 3C
REMARKS: LCC. REC CLC	UC MINE	,COLCR	400				589	43.00	58.4C
Electron Probe	Analysis:	: Wt	• %				600	44.10	58.60
		Au 23	•6				620	45.20	59.20
		Te 61	•7						
		98	•5						

MINERAL NA CCMPCSITIC Crystal Sy	ME N Stem	SOURCE	CHROM COORD X	ATICITY INATES Y	DCPINANT (COMPL.) WAVELENGTH	PURITY (P2)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CHALCOPYRI	TE,E	A	0.4724	C•4262	582.65	30.16	47.62	440	26.22
CU FE S2		C	0.3484	0.3692	573-22	24.47	46.55	460	31.80
TETRAGCNAL				· · ·			· .	480	37.00
REF. FOR R	: (TUGAL,1969)		•		÷			500	41.23
REMARKS:	LCC. TURKEY	-			• •			520	44.05
						·		540	46.38
				• • •		•		560	48.41
				•		a		580	49.29
					·			600	49.52
		-				11 A. 11 11 A. 11	х. ¹	620	49.67

A•164

49.09

48.16

640

660

οĘ²,

MINERAL NAME Composition Crystal System	SOURCE	CHRCM CCCRC X	ATICITY INATES Y	CCMINANT (CCMPL•) Wavelength	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLEC	TIVITY (Rg)
CHALCOPYRITE 4	Д	0.4706	C.4243	532.82	27.61	47.61 Yp	440	27.63	27.63
CU FE S2	A	C.472C	6.4242	533.17	28.51	47•75Yg	4 E C	32.66	33 . 2£
TETRAGENAL	C	0.3448	C.3643	573.20	22.19	46.63 Yp	480	37.75	38.47
	С	0.3463	C.3649	573.95	22.75	46.67 Yg	500	41.62	42.05
REF. FOR R: TUGAL (1969)							520	44.21	44.18
REMARKS: LOC. TURKEY							540	46.50	46.55
							560	48.11	48.11
							580	49.23	49.14
							600	49.75	49.08
							620	49.53	45.84
							64C	49.80	49.17
							66C	50.17	48.73

MINEFAL NAME		CHRCM	TICITY	CCMINANT		BRICHTNESS		
CCMPOSITION CRYSTAL SYSTEM	SCURCE	CCCRDI X	INATES ¥	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CHALCOPYR ITE, NG39	А	C•4711	C.4259	582.45	29.05	47.37	440	26.53
CU FE SZ	C	0.3467	C.3677	573.00	23.62	46.38	4 E G	32.33
TETRAGONAL							480	37.47
REF. FOR R: (TUGAL,1969)							500	41.47
REMARKS: LOC. TURKEY							520	44.05
							520	44.05
							540	46.18
							560	47.95
							580	49.19
							600	49.35
							620	45.48
							640	49.09
							660	46.16

MINERAL NAME		CFREMA	TICITY	COMINANT		BRIGHTNESS		
COMPOSITION CRYSTAL SYSTEM	SCURCE	E CGCFC) X	IN AT ES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CHALCCPYRITE,M2	A	C.4721	C.4257	582.73	29.61	47.25	440	26.39
CU FE S2	С	C•3476	C•3682	573.19	23.99	46.25	460	31.74
TETRAGONAL							480	37.06
REF. FOR R: (TUGAL,1969)							500	41.06
REMARKS: LOC. TURKEY							520	44.10
							52C	44.10
							540	46.13
							560	47.77
							580	48.91
							600	49.05
							620	49.14
							640	49.62
							660	48.17

MINERAL NAME Composition Crystal System	C Scurce C	HROMATICITY Oorcinates X Y	DCMINANT (COMPL.) WAVELENGTH	PURITY (P2)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CHALCOPYRITE,35	A 0.	4725 0.4248	583.07	29.28	47.22	440	26.68
CU FE S2	C 0.	3475 C.3666	573.56	23.53	46.13	460	32.03
TETRAGONAL	· · ·		•			480	37.26
REF. FOR R: (TUGAL,1969)	. <u>.</u>) ·					500	40.89
REMARKS: LOC. TURKEY		· · ·				520	43.59
						540	45.71
	. · . ·		· · · ·			560	47.72
	· · · ·					580	49.04
				•		600	49.19
	· ·					620	48.88
						640	48.60

A.168

MINERAL NAME		CHREMATIC	YTI	CCMINANT		BRIGHTNES	S	
CCMPCSITICN · CRYSTAL SYSTEM	SCURCE	COORDINAT X	Y Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R Y) LAMBCA (NM)	REFLECTIVITY R
CHALCOPYRITE,M3	A	0.4733 C.4	126C	582.90	30.67	47.16	440	25.77
CU FE S2	С	C.3493 C.3	8656	573.42	24.82	46.06	460	31.32
TETRAGENAL							480	36.47
REF. FOR R: (TUGAL,1969)							500	40.72
REMARKS: LOC. TURKEY							520	43.44
							520	43.44
							54C	45.90
							560	47.77
							580	48.73
							600	49.20
							620	49.14
							640	45.62
							660	48.17

MINERAL NAME	CHROMATICITY			DOMINANT		BRIGHTNESS	RIGHTNESS			
COMPOSITION Crystal system	SCURCE	COCRDI X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R		
CHALCOPYRITE,M12	A	C.4731	G.4256	582.57	30.26	47.14	440	25.92		
CU FE S2	С	0.3489	8336.3	573.48	24.50	46.05	460	31.57		
TETRAGONAL							48C	36.74		
REF. FCR R: (TUGA 1969)							500	40.76		
REMARKS: LOC. TURKEY							520	43.40		
							520	43.40		
							540	45.90		
							560	47.59		
							580	48.82		
							600	45.20		
							62C	49.14		
							640	49.62		
							660	48.17		

MINERAL NAME		CHROM	YTICITA	DCMINANT		BRIGHTNESS			
CCMPCSITICN CRYSTAL SYSTEM	SCURCE		IN ATES Y	(CEMFL.) %AVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLEC	۲IVITY (R م R)
CHALCCPYRITE M24	A	0.4722	C.426C	582•6 7	29.88	46.59 Yp	440	25.52	26.08
CU FE S2	A	0.4730	C•4262	582.78	30.58	47.35 Yg	460	31.32	31.49
TETRAGENAL	C	C.3481	C.3685	573.29	24.21	45.54 Yp	480	36.58	36.68
	С	0.3491	C•3657	573 . 33	24.80	46•26 Yg	500	40.89	40.80
REF. FOR R: TUGAL (1969)							520	43.64	43.36
REMARKS: LCC. TURKEY							540	46.32	45.71
							560	47.89	47.65
							580	48.91	48.73
							600	49.51	49.20
							620	49.14	48.83
							64C	45.62	48.98
							660	48.17	46.78

•

MINEFAL NAME		CHROMA	CHROMATICITY DEMINANT			BRIGHTNESS			
COMPOSITION CRYSTAL SYSTEM	SCURCE	CCCRDI X	N ATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R	
CHALCCPYRITE,K	A	0.4713	0.4252	582.71	28.71	46.87	440	26.67	
CU FE S2	С	0.3463	C.3664	573.19	23.16	45.87	460	32.05	
TETRAGENAL							480	37.21	
REF. FCR R: (TUGAL, 1969)							500	40.92	
REMARKS: LOC. TURKEY							520	43.53	
							520	43.53	
							540	45.74	
							5€0	47.48	
							580	48.52	
							600	46.60	
							620	48.48	
							640	48.47	
							66C	48.16	

MINERAL NAME		CHRCM	YTICITY	CCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COCRCI X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P\$)	(VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
CHALCOPYRITE,M1	۵	0.4736	0.4262	582.SC	31.02	46.77	44C	25.26
CU FE S2	С	0.3499	C+37C5	573.4C	25.22	45.66	460	30.61
TETRAGENAL							48C	36.23
REF. FOR R: (TUGAL, 1965)							500	40.42
REMARKS: LOC. TURKEY							520	43.06
							520	43.06
							540	45 . 5C
							560	47.33
							580	48.32
							600	48.87
							620	48.81
							64G	48.72
							660	48.17

MINERAL NAME		CHRCM/	YLIJITA	CCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORD) X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (F%)	(VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
CFALCCPYFITE NG31E	۵	0.4748	C.4264	583.09	31.99	46.58	44C	24.78
CU FE S2	C	0.3513	C.3718	573.54	25.95	45.42	460	29.94
(TETRAGENAL							48C	35.64
REF. FOR R: (TUGAL,1969)							500	39.88
REMARKS: LOC. TURKEY							520	42.73
							520	42.73
							540	45.02
							560	47.51
							580	48.03
							600	48.57
							620	48.33
							64C	48.84
							660	49.54

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
COMPOSITION Crystal System	SCURCE	CCCFC	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CHALCOPYRITE,NG35	А	C.4749	C.4254	583.41	31.34	46.49	440	25.03
CL FE S2	С	0.3509	C•37CC	573.85	25.36	45.32	4 E C	30.69
TETRAGONAL							480	35.75
REF. FCR R: (TUGAL,1969)							5 C G	35.85
REMARKS: LOC. TURKEY							520	42.70
							52C	42.70
							540	44•86
							560	46.74
							580	48.08
							600	48•75
							620	45.17
							640	49.09
							66C	48.16

NINERAL NAME		CHREMATICITY		DCMINANT		BRIGHTNESS		
CCMPCSITION Crystal system	SOURCE	CCCRD X	INATES Y	(CCMFL.) WAVELENGTH	PURITY (P架)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
CHALCOPYRITE,20	A	0.4721	(.4253	562.65	29.34	46.48	440	26.08
CU FE S2	С	0.3474	0.3673	573.35	23.69	45.45	460	31.49
TETRAGONAL					•		480	36.63
REF. FOR R: (TUGAL, 1969)							500	40.43
REMARKS: LOC. TURKEY							520	43.03
							520	43.03
							540	45.29
							560	47.17
							580	47.76
							600	48.27
							620	48.83
							640	48.98
							6 6C	46.78

MINERAL NAME		CHRCMA	ATICITY	CCMINANT		BRIGHTNESS		
COMPOSITION CRYSTAL SYSTEM	SCURCE	COCRCI X	INATES Y	(CEMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
CFALCCPYR ITE,NG31A	Α	0.4745	C. 4258	583.21	31.35	46.40	440	24.92
CU FE S2	С	0.3506	C.37C5	573.63	25.41	45.25	460	30.51
TETRAGONAL							480	35.69
REF. FOR R: (TUGAL, 1969)							5C0	39.88
REMARKS: LOC. TURKEY							520	42.61
							520	42.61
							540	44•98
							560	46.94
							580	47.86
							600	48.57
							620	48.05
							640	48.48
							66C	49.54

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRICHTNESS		
CCMPCSITICN Crystal System	SCURCE	COORD: X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
CHALCOPYRITE 43-46	Δ (0.4809	C•42EE	583.55	37 . 8£	43.EC	44C	15.57
CU FE S2	C	C.3605	0.3823	574 . C3	31.35	42.25	460	25.47
TETRAGENAL							480	31.16
REF. FOR R: (TUGAL, 1969)							500	35.98
REMARKS: LCC. TURKEY							520	39.24
							52C	35.24
							540	41.81
							560	43.77
							580	45•54
							600	46.17
							620	46•C4
							640	46.61
							66C	46.78

MINEFAL NAME		CHRCM	YTICITY	DCMINANT		PRICHTNESS			
CCMPCSITICN	SCUPCE	CCCRD	INATES	(CC∵⊳L°)	PUPITY	(VISUAL R)	LAMPCA	≈5≈F3C	ΥΓΙΥΙΓ
CRYSTAL SYSTEM		X	Ŷ	%AVE'.ENGTH	(jc ÷)	Y	(NN)	(q ³)	(Rg)
GECCRONITE	4	6.4445	(4]34	545.22	2."3	37.14 Yp	450	35.50	39.00
27PE S 7(SE,AS)2 S3	٨	3.4441	2.4133	542,35	• • 74	40.67 Yg	472	36.00	39.50
MCNUCTINIC	c	0.3161	1.3240	551.33	្រុំខ្លួ	37.34 Yp	496	37.00	40.81
	C	0.3396	A. 3237	547.48	۰,۶۹	40. 91 Yg	527	5°35	42.00
REF. FOR D: NACEZDA N.	MCZGCVA E	T /L,I	MM 78(190	50)			550	36.15	43.6F
REMARKS: LCC. UNKNO	WN						579	37.70	41.21
							808	36.20	39.50
							640	35.00	38,30
							670	33.80	37.00

A•179
MINERAL NAME			CHRCMA	YTIDIT	DEFINANT		PPIGHTNES	S	
CCMPCSITIEN		SCLRCE	CCOREI	NATES	(CCMPL.)	PUTITY	(VISUAL R) LAMBDA	REFLECTIVITY
CRYSTAL SYSTEM			X	Y	NAVFLENGTH	(F%)	Y	(<u>N</u> M)	ą
GEOCRONITE		Д	3.4448	0.4151	559.80	3.37	48.59	476	39.00
27PE 5 7(SE, AS)	2 53	С	0.3171	ŋ.3276	555,39	3.32	40.83	520	42.00
MENGELINIC								575	41.54
REF. FCP R: GRA	Y & MILLM	AN (196	2)					600	39.02
REMARKS: LCC	. UNKNEWN	; LNCFI	ENTED S	ECTION	•			760	37.90

MINERAL NAME		CHRCN	YFIJITA	DEMINANT		BRIGHTNESS			
CCMPCSITICN	SCURCE	COCRE	INATES	(CENFL.)	PUTITY	(VISUAL R)	LAMPPA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	¥AVELENG™H	(F¥)	Y	(N172)	(^d _c)	(وع)
BCULANGERITE	Ъ	0.4434	C.4130	527.56	1.74	36.46 YP	451	35.20	35.70
SPE S 28E? S3	Δ	0.4426	C.4122	5:3466	1.20	41.036 Yg	472	36.01	79 . 80
MUNOCLINIC	C	C.3C87	C.3228	537.71	1.4	36.7° Yp	45ć	3£.5C	4(.75
	С	0.3076	C.32C8	5:4.63	(°c)	4°.66 Yg	<u>5</u> 27	رن • 2 2	42.20
REF. FOR R: NACEZCA N.MC	ZGCVA E	T AL,I	NN78(15	59)			550	37.50	41.50
REMARKS: LCC. UNKNOWN	; RP=NC	FMAL TI	C C, RG⇒	FARALLEL TO	0 0		579	36.50	40.40
							608	35.60	39.30
							640	34.30	35.00
							676	32.50	36.50

.

.

.

A. 181

MINERAL NAME		CHRCM	ATICITY	DEMINANT		POTCHTNES	5	
CRYSTAL SYSTEM	SLURCE	X	Y	KAVELENGTH	(P%)) LAMELA (NY)	R
BCULANGERITE	۸	0.4393	C.413C	507.19	1.88	36.49	47 <u>ĉ</u>	37.05
SPB 5 25E2 S3	С	9.3046	0.3209	501.33	1.81	36.95	520	36.70
MCNOCLINIC							575	37.00
REF. FCR R: GRAY & MI	LLMAN (196	2)					600	34.50
REMARKS: LCC. UNKN	CWN; UNERI	ENTED S	SECTION	•			700	33.60

	MINEPAL NAME		СНРСМ.	ATICITY	SENINANT		PPIGETNESS			
	CCMPCSITICN	SCUPCE	00020	INATES	(CCVPL.)	PURITY	(VISUAL R)	LANRDA	FEFLEC	TIVITY
	CRYSTAL SYSTEM		X	Y	VAVELENGTH	(5%)	Y	(<u>N</u> M)	^{(P} P)	(و٩)
	HETERCMCRPHITE	۵	∩ <u>.4441</u>	0.4110	515.31	1.86	36.23Yp	45Ç	25.71	3 6 •36
•	7PB S 4582 S3	۸	G.4435	6.4320	53E•41	1.04	42.17 y g	472	35.90	20.80
	MCNECLINIC	С	0.3084	0.3198	521.81	0.68	36.35 Yp	496	36.30	40.30
		С	0.3093	0.3213	526.79		40.42 Yg	527	37.00	41.50
	REF. FOR P: NACEZCA N	N-MCZGCVA E	T AL,I'	VM78(19	(550	27.00	41.00
	REMARKS: LCC. UNK	NCWN						575	36.50	41.31
								<u>808</u>	25.40	39.00
								64?	34.40	38.00
								670	34.20	37.70

A•183

MINFRAL NAME		CHRCM	ATICITY.	DEMINANT		PRICHTNESS			
CCMPCSITICN	SCUPCE	CCCRC	INATES	(CENPL。)	PUBITY	(VISLAL R)	LAMBDA	PFFLEC	TIVITY
CRYSTAL SYSTEM		x	Y	WAVELENGTH	(P%)	Y	(NM)	(° P)	(و ^د)
MENEGHINITE	۵	r.442P	0.4083	457.66	2.11	35.48 Yp	450	36.30	40.50
CU2 S.26PB S 75B2 S3	Д	C•4424	0.4090	497.82	".[₽	39.76 Yg	472	26.47	40.91
CRTHCRHCMBIC	С	n . 3058	0.3151	497.55	1.70	35.71 Yp	4 <i>5</i> f	36.70	41.00
	С	C.2057	C.E161	497.47	1.65	40.25 Yg	527	36.40	41.00
REF. FCF R: NACEZCA N.M	ZGCVA E	T ∆L,I	MM78(19)	£Ş)			5 5 C	36.00	47.50
PEMARKS: LCC. UNKNOW	*;	RVAL T	C C,RC=	PAPALLEL TO	С		57c	35.20	? \$.40
							803	34 . 80	39.00
							640	34.47	≈8∎20
							670	24.21	28.()

.

•

MINERAL NAME		CHRCMATICITY	DEMINANT		FFIGHTNESS		
CCMPESITICN	SCUFCE	CCCPFINATES	(CCAPL.)	PURITY	(VISLAL R)	LAMPDA	REFLECTIVITY
CRYSTAL SYSTEM		X Y	WAVELENGTH	(f\$)	Y	(N ^{, N,})	Ċ
MENEGHINITE	Δ	7.4372 0.4075	494.94	2.45	37.58	470	40.21
CU2 S.26PE S 75B2 S3	C	0.3001 0.3110	484.32	4.20	38.08	52 0	39.90
CRTHCPHCMBIC						575	37.90
REF. FCR R: GRAY & MILLE	MAN (198)	2)				600	36.00
REMARKS: LCC. UNKNOW	N; UNCEI	ENTED SECTION	•			700	35.50

MINERAL NAME		CHRCM,	ATICITY	DEMINANT		PRICHINESS			
CCMPCSITICN	SCUPCE	00080	INATES	(CCIPL.)	PURITY	(VISUAL ?)	LAMEDA	REFLES	YTIVITY
CRYSTAL SYSTEM		X	Y	FAVELENGTH	(F%)	Ŷ	(NY)	^{(R} P)	(و۹)
ZINKENITE	۵	0.44]8	C.41C7	<u> </u>	3.31	35,43 Yp	450	35.60	38.40
FE S SR2S3	Δ	0.4417	C.4135	5(7.52	1. 24	38.51 Yg	472	36.00	<u>38</u> °cv
FEXAGENAL	C	340E.0	C+3182	496.85	1.23	35.72 Np	456	36.30	39.20
	С	0.3164	<u>r.</u> 3194	F: 1. 25	21 ء ٦	38.84 Yg	527	36.50	40.10
REF. FOR R: NACEZOA N	.MCZGCV≙ R	T ^L,I'	NN78(19)	6ç)			550	36.50	30.75
REMARKS: LCC. UNKN	CWN; RP=NC	RMAL TO	C C,RG=1	PARALLEL TO	С		579	35.20	38.20
							608	34.80	37.75
							640	33.80	36 . £(
							675	31.CC	23.70

MINERAL NAME CCMPCSITICN	SCURCE	CHRCM CNCPD	ATICITY INATES	PENINANI (CEMPL.)	PLRITY	PRIGHTNESS (VISUAL R)	LAMBEA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P%)	Y	(<u>N</u> M)	(? p)	(و٩)
ZINKENITE	Δ	0.4427	C.4155	541.51	2.37	38.48 Yp	470	7.5 0	38.50
PP S SB2S3	А	2.4474	0.4165	571.01	5.71	41.95 Yg	520	41.00	42.70
HEXAGENAL	с	0.3089	0.3277	543.23	2.81	38° 82 Xb	575	38.70	41.20
	С	1.3138	1.3315	561.36	F. °C	41.12 Yg	600	26.50	30.41
REF. FCP R: GRAY & MILLMA	N (106	2)					775	36.60	42.4.1

MINERAL NAME		CHRCM	ATICITY	PENINANT		PRICETNESS			
COMPOSITION	SCUPCE	COEPE	INATES	(CCNFL.)	PUPITY	(VISUAL F)	LAMPEA	REFLIC	TIVITY
CRYSTAL SYSTEM		Х	Y	MAVELENGIH	(Þ ú)	Y	(NM)	(9)	(Fg)
JAMÉSCNITE	۵	^ . 4373	C.4114	501,50	2.23	34. 95 Yp	45i.	36.00	39.6
498 S.FE S 532 S3	۵	0.4356	0.4113	5°2.2e	1,21	39.05 Yg	472	36.30	35.70
MENCELINIC	C	0.3021	397203	4c°.7:	2.55	35044 Yp	496	36.50	40.40
	С	0.3040	0.2181	4943 = 0	2.14	35.49 Yg	527	37.00	41.20
REF. FCR R: NACEZCA N.	"CZGCVA E	T AL,I	WW78(19)	69)			ĒĒJ	36.50	40.60
REMARKS: LCC. UNKNO	AN; RP=NC	RMAL TI	C (,?G=)	PARALLEL TO	С		57°	34.77	38.70
				,			608	32.00	36.90
							640	32.50	36.30
							£7C	31.50	39.20

NINERAL NAME COMPOSITION	SOURCE	CHRCN: CCCRDI	ATICITY INATES	CCMPL.)	PURITY	FFIGHTNESS (VISUAL P)	LAMPDA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(₽ %)	Ŷ	(NN)	(Rp)	(Pg)
JAMESENITE	A	G.4344	0.4095	497.40	3.15	35.13 Y p	470	37.70	29.72
4PB S FE S SB2 S3	۵	9.4425). 4121	5:2.25	1.20	39.76 Yg	520	38.00	4".(C
MCNCCLINIC	C .	0.2985	0.3127	457.05	Lat	35.75 Yp	575	35.01	40.50
	С	1.3073	0.3207	531.49	0.FE	40. CA Yg	933	33.21	38.20
REF. FCF R: GRAY & NIL	LMAN (196	2)					755	31.21	27.21

MINFRAL NAME		CF&CM	ATICITY	DEPINANT		BRICHTNESS			
CCMFCSITICN	SCURCE	CCCFC	INATES	(CCHPL.)	PURITY	(VISUAL P)	LANPEA	REFLEC	YTIVITY
CRYSTAL SYSTEM		X	Y	VAVELENCTH	(Pš)	Y	(NP)	^{(R} P)	(°g)
PLAGICNITE	Δ	°•4425	C.412:	502.69	1.21	23.67 Yp	45Q	33.00	37.2:
5PR.S 4582 53	٨	r.40F	0.4113	5-5013	5,53	37.03 Yg	472	33.80	₹7.65
MCNCCLINIC	С	0.2074	C.3214	515.85	1. 2	32.54 Yp	496	34.60	38.30
	С	0.3056	6.3366	4=7.55	1.53	37.37 Yg	527	35.10	38.20
REF. FOR R: NACEZCA N.	CZGCVA E	ET AL,I	MM78(19)	£9)			550	34 <u>.5</u> 0	<u>58°00</u>
REMARKS: LCC. UNKNOW	(N						579	33.61	37.50
							678	32.80	35.71
							44 C	31.60	34.50
							f 75	s0.00	33.30

MINERAL NAME		CHRCM	YLIDILY	DENIMANT		BRIGHTNESS			
CCMPCSITICN	SCUPC	E CCEPER	INATES	((0000))	PUPITY	(VISUAL P)	LAMBEA	REFLEC	YIVITY
CRYSTAL SYSTEM		¥	۷	WAVELENGTH	(F%)	Y	(N.M.)	(Fw)	(RE)
HEXAGONAL PYRPHOTITE	~	0.4632	2.4797	595.82	12.34	35 . 14 Y w	470	32,01	36.20
FE(1-X) S	ţ	0.4501	5.43.02	533.19	Ç, PZ	40° C4 X8	486	31.50	36.90
HEXAGENAL	С	P.3272	0.3299	Ē£ c °2č	8.24	34.55 Yw	546	34.(7	B9.20
	с	0.2232	0.3281	575.05	6.68	39.52 YE	589	35.80	40.70
REF. FCR R: VCN GEFLEN	S PILLES	(1964))				650	38.61	42.50
REMARKS: LCC. TREPCA	YUGCS1/	∿VI∆;					656	38.90	42.75

-

MINERAL NAME	SCURCE	CHROM,	ATICITY			BRIGHTNESS		PEELEC	710110
CRYSTAL SYSTEM	SCORE	X	тада <u>с</u> з Ү	WAVELENGTH	(P%)	Y	(NM)	(Rp)	(Rg)
HODRUSHITE	۵	0.4561	C•41C4	586.67	7.90	32.15 Yp	42C	26.20	27.CC
CU(8.12)BI(11.54)FE(0.	291522								
	Δ	0.4541	0.4124	582.66	7.90	33.35 Yg	440	28.30	29.50
MONOCLINIC	С	C.3205	C.3273	576.81	5.74	31.86 Yp	460	29.50	30.20
	С	0.3197	0.3289	573.89	5.96	33.14 Yg	480	30.70	31.80
REF. FOR R: (KCDERA ET	AL,1970)						500	31.5C	32.40
REMARKS: LOC.							520	31.60	32.70
							540	31.00	32.50
							560	31.40	32.80
							580	32.00	33.40
							600	34.60	36 . CO
							62C	33.40	34.10

MINERAL NAME			CFRCM	ATICITY	DCMINANT		BRIGHTNESS			
COMPOSITION		SCURCE	CCGRC	INATES	(CCMPL.)	PURITY	(VISUAL R)	LAMBCA	REFLEC	TIVITY
CRYSTAL SYSTE	M		X	Ŷ	WAVELENGTH	(P%)	Ϋ́	(NM)	(R P)	(Rg)
PYROLUSITE		А	0.4441	C.4CE7	450.85	0.86	32.42 Yp	430	33.30	34.CC
BETA-PN C2		۵	0.4446	0.4072	493.09	0.72	33.73 Yg	47C	33.80	35.00
TETRAGONAL		С	0.3(64	C.3131	475.61	1.70	32.55 Y P	490	33.20	34.50
		С	0.3072	0.3145	483.10	1.25	33.86 Yg	520	32.70	34.CO
REF. FOR R: (1	NICHOL & PHI	LLIPS,	1965)					550	32.70	34.CC
REMARKS: LI	CC. UNKNEWN							5 E C	32.40	33.70
								610	31.90	33.30
								650	32.CC	33.20

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRICHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SOURCE	COORD	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
			-					
ALPHA-MN C2-NSUTITE	Д	0.4411	6.4086	497.71	1.50	30.79	430	31.70
MN1-X MNX C2-2X(OH)2X,)	×=.C6C7							
	С	0.3046	C•3144	486.71	2.20	31.04	470	32.00
⊢EXAGONAL							490	31.80
REF. FCR R: (NICHOL & F	PHILLIPS,	1964)		·			520	31.50
REMARKS: LOC. UNKNWO	I N						55C	31.50
							550	31.50
							580	30.80
							610	30.00
							65C	29.00

MINERAL NAME Composition Crystal system	SOURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL。) WAVELENGTH	PURITY (P2)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLEC (Rp)	TIVITY (Rg)
							400	15.60	
ICAITE 4	A	0.4888	C•4234	586 . 1C	39.60	31•63 Yp	420	15.50	16.40
CU3 FE S4	Α	C.4775	(.4242	584.26	32.32	32.35 Yg	440	16.00	18.30
PROBABLY TETRAGONAL	С	0.3673	0.3737	577.92	30.35	30.20 Yp	460	17.80	20.80
	С	0.3525	C.3674	575.16	25.20	31.38 Yg	480	19.80	22.90
REF. FOR R: (LEVY,1966)							500	22.90	26.10
REMARKS: LCC. CERRC-H	JEMUL-M	IENCC Z A	ARGENT	INA			520	25.90	29.00
							540	29.20	31.20
							560	32.20	33.10
							580	33.40	33.40
							600	33.90	33.20
							620	35.10	34.80
							640	35.90	35.10
						660	607.4	33.00	
						6.8		** . •	
						÷ •,		1	

MINERAL NAME Composition Crystal system	SCURCE	CHROM CCORD X	ATICITY IN ATES Y	DCMINANT (CCMPL.) HAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLEC (Rp)	TIVITY (Rg)
ICAITE 5	Α	C . 4886	C•424C	585.90	39.88	31•49 У Р	420	15.30	16.20
CU3 FE S4	۵	0.4791	C.4238	584.66	33.14	31.73 Yg	44C	15.8C	17.70
PROBABLY TETRAGONAL	C	0.3677	0.3743	577.84	30.65	30.07 Yp	460	17.60	2C.CC
	С	0.3549	C.3676	575.73	25.79	30.69 Yg	480	19.70	22.40
REF. FCR R: (LEVY,1966)							500	22.60	25.20
REMARKS: LGC. CERRC-H	IUENUL-M	ENCCZA	, ARGENT	INA			520	25.ŞC	28.CC
							540	29.10	30.40
							56C	31.60	31.90
							580	33.60	33.20
							600	34.50	33.60
							620	35.00	33.90
							64C	34.90	34.20

-

MINERAL NAME Composition Crystal System	SCURCE	CHRCM COCRD X	ATICITY INATES Y	DCMINANT (CCMPL.) WAVELENGTH	FURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMEDA (NM)	REFLEC (Rp)	TIVITY (وR)
ICAITE 6	A	0.4920	(.42(3	567.39	39.65	28.C1 Yp	420	13.80	17.60
CU3 FE S4	A	0.4737	C.422C	584.29	28.16	25.65 Yg	440	14.70	18.10
PROBABLY TETRAGONAL	С	G.3696	0.3697	579.10	30.29	26.59 \p	460	16.00	20.30
	С	0.3468	C.3598	575.26	21.52	28.86 ¥g	480	17.40	22.CC
REF. FOR R: (LEVY, 1966)							500	19.60	24.80
REMARKS: LOC. CERRC-H	IUEPUL-M	ENCOZA	, AR GENT	INA			520	22.30	26.80
							540	25.10	28.60
							560	28.10	30.20
							580	29.80	30.60
							600	30.60	30.60
							620	32.00	31.70
							640	32.50	31.60

MINEFAL NAME Composition	SCURCE	CHRCM. CCORD	ATICITY INATES	DCMINANT (CCMFL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMECA	REFLEC	TIVITY
CRYSTAL SYSTEM		x	Ŷ	WAVELENGTH	(P%)	Ŷ	(NM)	(Rp)	(Rg).
ICAITE 2	Α	0.5062	C.4C57	592.01	42.12	25.85 Yr	420	14.40	15.40
CU3 FE S4	Α	0.4877	C.4129	589.93	31.52	26.55 Yg	440	14.50	16.70
PROBABLY TETRAGONAL	С	0.3812	G.3587	584.82	30.44	23.96 Yp	460	14.40	17.90
	C	0.3583	0.3526	581.56	22.67	25.30 Yg	480	14.50	18.90
REF. FOR R: (LEVY,1966)							500	16.00	20.10
REMARKS: LCC. EANCAI	RCUN,FRA	NCE					520	18.20	21.60
							540	21.30	23.80
							560	24.30	25.70
							580	27.50	27.50
							600	29.70	29.10
							620	33.30	30.50
							64C	33.70	31.90

MINERAL NAME Composition Crystal system	SCURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL•) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (nm)	REFLEC	TIVITY (Rg)
ICAITE 1	A	0.5065	C•4095	592.10	42.18	25.72Yp	42C	14.40	15.20
CU3 FE S4	A	C.4883	C.4127	59 0. C6	31.78	26.48 Yg	440	14.40	16.60
PROBABLY TETRAGONAL	С	0.3816	G.3584	584.99	30.47	23.82 Yp	460	14.30	17.80
	С	0.3589	G•3527	581.70	22.86	25.20 X g	480	14.EC	18.80
REF. FOR R: (LEVY,1966)							500	16.00	19.90
REMARKS: LCC. BANCAIR	OUN,FRA	NCE					52C	18.00	21.40
							540	21.00	23.60
							560	24.20	25.60
							580	27.40	27.60
							600	29.70	29.00
							620	33.20	30.40
							640	33.50	31.90

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SGURCE	CHRCM COORD X	ATICIT y INATES Y	CGMINANT (CCMPL•) Wavelength	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLEC (Rp)	tivity (^R g)
ICAITE 3	Δ	0.4882	0.4164	588.45	34 . 30	25.56 Yp	420	14.90	14.90
CU3 FE S4	А	C.4843	C.419C	587.03	33.43	26.25 Yg	440	15.20	15.70
PROBABLY TETRAGONAL	С	0.3615	C.3587	580.28	25.16	24•34 Yp	4 <i>6</i> 0	16.10	16.40
	С	0.3583	C.3611	578.62	24.95	25.16 y g	480	17.00	17.90
REF. FOR R: (LEVY,1966)							500	18.90	20.00
REMARKS: LCC. SAINT-V	ERAN						520	20.80	21.90
							540	22.90	24.20
							560	25.00	26.CC
							580	27.00	27.80
							600	28.40	28.50
							620	28.90	28.80
							640	29.60	29.60

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRICHTNESS			
CEMPESITIEN CONSTAL SYSTEM	SCURCE	COORD	INATES	(CCMPL.)	PURITY	(VISUAL R)		REFLEC	
CRISIAL STSIEM		^	r	WAVELENGTH	1841	ť	A INP 3	``S '	(rp)
CRANCE ECRNITE 6	۵	0.4911	0.4153	589.12	35.55	27.10 ×g	420	14.80	15.70
CU(2+X)SN(1-X)FE 54	A	C•4769	C.4179	586.50	27.52	26.88 Yr	440	15.70	16.85
TETRAGONAL	С	0.3644	0.3598	580.69	26.24	25.72 Yp	4 E C	16.8C	18.90
	С	C.3483	C.3550	577.69	20.43	26.03 Yg	480	18.10	20.60
REF. FOR R: (LEVY,1966)							500	20.00	22.60
REMARKS: LCC. VALLRY							520	21.90	23.80
							540	24.10	25.20
							560	26.20	26.50
							580	28.20	27.60
							600	30.30	28.90
							620	31.00	29.80
							640	32.40	29.40

A • 201

MINERAL NAME COMPCSITION CRYSTAL SYSTEM	SCURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL•) WAVELENGTH	PURITY (P2)	BRIGHTNESS (VISUAL R) Y	LAMEDA (NM)	REFLEC (Rg)	TIVITY (^R p)
CRANGE BCRNITE 1	۵	0.4916	0.4150	585.28	35.68	27. c7 Yg	420	14.70	15.70
CU(2+X)SN(1-X)FE 54	A	C•4774	C.4177	586.66	27.72	26.93 Yp	440	15.60	16.85
1 E TR AGGNAL	C	0.3649	0.3598	58C.82	26.37	25.68 Yp	4 <i>€</i> C	16.70	18.90
	C	C•3487	0.3550	577.94	20.46	26.07 Y g	480	18.20	20.60
REF. FCR R: (LEVY,1966)							500	20.10	22.60
REMARKS: LOC. VALLRY							520	21.80	23.80
							540	24.00	25.20
							560	26.CO	2 6 .5C
							580	28.20	27.60
							600	30.40	29.00
							620	31.10	30.00
							640	32.50	29.60

MINERAL NAME Composition Crystal System	SOURCE	CHRCM COORD X	ATICITY INATES Y	CCVINANT (CCMPL•) WAVELENGTH	PURITY (P鬼)	BRIGHTNESS (VISUAL R) Y	LAMBCA (nm)	REFLEC (R <mark>p</mark>)	TIVITY (Rg)
CRANGE BORNITE 4	A	0.4940	0.4150	589•44	27.34	26.63 Yp	420	15.50	15.70
CU(2+X)SN(1-X)FE 54	۵	C•4774	C•4177	586.66	27.72	26.93 Yg	44C	14.00	16.85
TETRAGENAL	C	0.3680	C.3623	58C.81	27.88	25.21 Yp	460	15.80	18.90
	C	6.3487	0.3550	577.94	20.46	26.07 Yg	480	17.60	20.60
REF. FOR R: (LEVY,1966)							500	20.20	22.60
REMARKS: LCC. VAULRY							520	21.20	23.80
							540	23.60	25.20
							560	25.20	26.50
							580	27.70	27.60
							600	29.60	29.00
							620	31.80	30.00
							64C	32.50	29.60

MINERAL NAME Composition Crystal system	SOURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PURITY (P2)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLEC (Rp)	TIVITY (Rg)
CRANCE BCRNITE 3	۸	0-4941	0-4126	585 <u>,</u> 66	36, 39	26-51 Yo	420	15.70	J6.60
CH(2+x)SN(1-x)FF = S4	Δ	C.4774	C.4178	586-62	27.87	26.81 Ya	440	15-10	16.85
TETRAGENAL	C	0.3671	0.3586	581.77	26.64	25. 05 Ye	460	16.00	18.70
	C	0.3486	G.3545	577.27	20.27	25.54 Ng	480	17.40	20.15
REF. FGR R: (LEVY,1966)						-	500	19.35	22.20
REMARKS: LOC. VAULRY							520	21.CC	23.15
							540	23.20	25.90
							560	25 . 3C	26.20
							580	27.60	27.50
							600	29.70	28.50
							620	31.40	30.GC
							64C	32.50	29.60

	MINERAL NAME Composition Crystal system	SCURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMEDA (nm)	REFLEC (Rp)	tivity (^R g)
	CRANCE ECRNITE 5	А	0.4946	0.4145	585.67	37.42	26.50 Yp	420	13.95	15.60
	CU(2+X)SN(1-X)FE S4	A	C.48C3	C.416G	587.80	28.57	26.67 Yg	440	14.40	16.50
	TETRACCNAL	С	0.3683	0•3 6 22	58C•91	27.93	25. C6 Yp	4£0	15.90	18.40
		С	C.3509	0.3545	578.52	21.19	25.72 Yg	480	17.70	20.60
	REF. FCR R: (LEVY,1966)							500	19.50	21.90
	REMARKS: LCC. VALLRY							520	21.30	23.20
								540	23.30	24.8C
								560	25.40	26.20
								580	27.30	27.10
								600	29.10	28.3C
								620	31.4C	30.00
•								64C	33.CC	30.70

MINERAL NAME Composition Crystal System	SOURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL•) WAVELENGTH	PURITY (P%)	BRICHTNESS (VISUAL R) Y	LAMECA (NM)	REFLEC ^T (R <mark>P</mark>)	۲IVITY (وR)
CRANGE BCRNITE 8	A	0.4940	0.4138	585.51	36.52	26.47 Y P	420	15.70	16.60
CU(2+X)SN(1-X)FE 54	۵	C.4776	C.4176	586.73	27.80	26.86 Yg	440	15.00	16.80
TETRAGCNAL	C	0.3672	0.3588	581.72	26.72	25.02 Yp	4 E C	16.00	1E.7G
	С	3345.0	C.3545	577.45	20.40	25.98 Yg	480	17.30	20.30
REF. FOR R: (LEVY,1966)							50C	19.30	22.30
REMARKS: LOC. VAULRY							520	21.00	23.70
							540	23.20	25.30
							560	25.20	26.30
							580	27.60	27.60
							600	29.60	28.80
							620	31.80	30.00
							64C	32.30	25.60

MINERAL NAME CCMPESITIEN CRYSTAL SYSTEM	SOURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMEDA (nm)	REFLEC (Rp)	TIVITY (Rg)
CRANGE BCRNITE 7	۵	0.4926	0.4156	589.11	36.80	25.80 Yp	420	13.90	16.60
CU(2+X)SN(1-X)FE S4	A	C.4783	0.4163	587.18	27.73	26.84 Yg	440	14.20	16.80
TETRAGCNAL	С	C.3671	C.3615	58C.83	27.42	24.44 Yp	460	15.70	18.70
	C	0.3491	0.3538	578.15	20.52	25.54 Yg	480	17.30	20.50
REF. FCR R: (LEVY,1966)						-	500	18.70	22.40
REMARKS: LCC. VAULRY							520	20.50	23 . 4C
							540	22.60	25.10
							560	24.90	26.40
							580	27.10	27.60
							600	25.10	28.70
							620	30.70	29.50
							64C	30.50	30.10

MINERAL NAME Composition Crystal System	SCURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PURITY (P2)	BRIGHTNESS (VISUAL R) Y	LAMEDA (NM)	REFLEC (Rp)	IIVITY (Rg)
CRANGE BCRNITE 2	A	0.4923	0.4156	585.09	36.59	25 . 78 Yp	420	13.70	16.60
CU(2+X)SN(1-X)FE 54	۵	C.47E3	C•4168	587.18	27.73	26.84 Yg	44C	14.30	16.85
TETRAGENAL	С	0.3667	0.3615	58G . 74	27.31	24.44 Yp	460	15.80	18.70
	С	C•3490	0.3537	578.15	20.47	25.54 Yg	480	17.15	20.50
REF. FCR R: (LEVY,1966)							500	18.90	22.40
REMARKS: LOC. VAULRY							520	20.60	23.40
							540	22.70	25.10
							560	24.EC	26.40
							580	27.00	27.60
							600	29.00	28.70
							620	30.70	29.50
							64C	36.50	30.10

-

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM COORC X	ATICITY INATES Y	DCMINANT (COMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLEC (Rg)	TIVITY (R _P)
CRANGE BCRNITE 10	۵	0.5040	0.4137	550.43	43.38	25.70 Yg	420	11.35	13.40
CU(2+X)SN(1-X)FE S4	A	0.4831	C.4181	587+25	31.96	24.89 Yp	440	12.60	14.40
TETRAGCNAL	С	0.3809	C.3685	581.86	33.CC	24.00 Yg	460	14.10	16.20
	С	0.3561	C.36C4	578.19	24.17	23.92 Yp	480	15.70	18.40
REF. FOR R: (LEVY,1966)							500	17.40	15.80
REMARKS: LOC. VAULRY							520	19.45	21.40
							540	21.80	22.90
							560	24.20	24.40
							580	26.70	25.80
							600	29.30	26.80
							620	30.70	27.80
							640	33.50	28.40

MINERAL NAME Composition Crystal system	SOURCE	CHRCP COORD X	ATICITY INATES Y	CCMINANT (CCMFL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLEC (Ra)	TIVITY (Rp)
								5	,
LRANGE ELENTIE 12	A	0.5015	004142	590.15	42021	25.55 13	420	11.40	13.40
CU(2+X)SN(1-X)FE S4	A	C. 4836	C.4191	586.92	33.01	24.52 Yp	44C	13.00	14.20
TETRAGENAL	с	0.3782	0386.0	531.45	32.14	23. 54 Yp	460	14.00	16.00
	С	0.3572	C•3624	577.74	24.88	23.55 Yg	480	15.90	17.60
REF. FCR R: (LEVY, 1966)							500	17.75	19.90
REMARKS: LOC. VALLRY							520	20.10	21.40
							540	21.80	23.20
							560	23.90	24 . 4C
							580	26.50	25.80
							600	26.80	26.60
							620	30.70	28.20
							64C	33.00	28.40

MINERAL NAME CCMPCSITION CRYSTAL SYSTEM	SOURCE	CHRCM. COGRD X	ATICITY INATES Y	DCM]NANT (COMPL.) Wavelength	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLEC (Rp)	tivity (R)
CRANGE BCRNITE 11	۵	0.5055	0.4123	590.98	42.23	24.63 Yp	420	11.35	13.40
CU(2+X)SN(1-X)FE S4	Α	0.4871	C.4164	588.35	33.55	25.34 Yg	440	12.10	14.40
TETRAGENAL	С	0.3819	0.3667	582.55	32.78	22.54 Yp	460	13.60	16.20
	С	C.3555	(.3607	575.08	25.17	24.24 کو	480	14.85	18.25
REF. FCR R: (LEVY,1966)							500	16.65	19.90
REMARKS: LOC. VAULRY							520	18.40	21.50
							540	20.70	23.10
							56C	23.00	24.60
							580	25.40	25.90
							600	28.40	27.40
							620	29.90	28.2C
							64C	32.50	30.40

MINERAL NAME Composition Crystal System	SCURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL.) Wavelength	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (nm)	REFLEC (Rp)	TIVITY (Rg)
CRANGE BCRNITE 13	Α	0.5098	0.4082	592.67	43.57	23.57 Yp	420	12.70	14.90
CU(2+X)SN(1-X)FE S4	A	C.4814	C.4132	539.31	27.37	24.18 Yg	440	12.20	15.60
TETRAGONAL	С	0.3850	C.36C4	534.99	31.91	21.76 Yp	4 6 C	12.90	17.30
	C	C.3502	0.3499	530.06	19.77	23.27 Yg	480	13.60	18.50
REF. FCR R: (LEVY,1966)						-	500	15.40	20.20
REMARKS: LOC. PERU							520	16.85	2C.8C
							540	18.90	22.20
							560	21.4C	23.40
							580	24.60	24.60
							600	27.70	25.60
							620	30.70	27.60
							64C	31.60	28.60

						,	Shored	in con	, ĉ. L	
MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM COORD X	ATICITY INATES Y	DCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	ERIGHTNESS / (VISUAL R)/L Y	AMBDA (NM)	REFLEC	TIVITY (Rp) C	1
MAWSGNITE 14	Δ	0.4904	6.4133	589.92	33.68	27.18 Ýg	420	14.50	17.10	
CU2+X SN1-X FE S4,.5<><1	A	0.4738	C.4141	587.92	22.72	26.10 Yp	440	16.40	18.50	
TETRAGCNAL	С	0.3621	0.3555	581.40	24.57	25. E1 Yg E	4 E C	17.50	19.90	
	C	0.3419	0.3452	578.93	16.29	25.34 Yp 0	480	19.00	20.80	
REF. FOR R: (LEVY,1966)							500	20.50	22.40	
REMARKS: LOC. MONT-LY	ELL						520	21.80	23.20	
							540	24.10	24.50	
							560	26.20	25.70	
							580	28.20	26.60	
							600	29.80	27.80	
							620	31.90	28.50	
							64C	33.00	29.00	

ì

MINERAL NAME	SOURCE	CHREM	ATICITY	DEMINANT		BRIGHTNESS			TIVITY
CRYSTAL SYSTEM	JUUKLE	X	Y	WAVELENGTH	(P\$)	Y Y	(NM)	(Rg)	(Rp)
MAWSCNITE 16	A	0.4903	0.4132	589.95	33.52	26.64 Yg	420	e 14.90	<i>0</i> 17.20
CU2+X SN1-X FE S4,.5 <x<1< td=""><td>Α</td><td>G.4737</td><td>C•4138</td><td>588.C8</td><td>22.44</td><td>26.00 Yp</td><td>440</td><td>16.20</td><td>18.40</td></x<1<>	Α	G.4737	C•4138	588.C8	22.44	26.00 Yp	440	16.20	18.40
TETRAGONAL	С	0.3620	C.3553	581.55	24.38	25.30 Y g	E 460	17.20	20.00
	C	0.3416	C•344E	578.99	16.10	25.24 Yp	⁰ 480	18.50	20.70
REF. FOR R: (LEVY,1966)							500	20.20	22.30
REMARKS: MONT-LYELL							520	21.30	23.20
							54C	23.60	24.50
							560	25.70	25.50
							580	27.70	26•4Ŭ
							600	29.30	27.60
							620	31.40	28.50
							640	32.20	29.CC

MINERAL NAME Composition	SOURCE	CHRCM	ATICITY INATES	DCMINANT (compl.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P\$)	Y	(NM)	(Rp)	(Rg)
NALSENTE 15	A	0 4730	0 4140	507 00	22 70	26 07 Va	420	E 17 30	0 17 10
PANJENTTE IJ	4	0.4157	004140	201079	22010	20.01 4	420	11030	TLOTC
CU2+X SN1-X FE S4,.5 <x<1< td=""><td>Α</td><td>C.4738</td><td>C.4141</td><td>587.92</td><td>22.72</td><td>26.23 Yg</td><td>440</td><td>18.30</td><td>18.50</td></x<1<>	Α	C.4738	C.4141	587.92	22.72	26.23 Yg	440	18.30	18.50
TETRAGENAL	С	0.3420	0.3450	579.07	16.26	25.25 Yp	7 4EC	20.CO	2G . 1G
	С	0.3418	0.3454	578.79	16.31	25.47 Yg	480	20.80	20.90
REF. FOR R: (LEVY,1966)							500	22.20	22.50
REMARKS: LOC. MONT-LY	ELL						520	23.20	23.5C
							54C	24.40	24.70
							560	25.70	25.80
							580	26.60	26.60
							600	27.70	27.80
							620	28.50	28.70
							64C	29.CC	25.30

·
MINERAL NAME Composition Crystal system	SCURCE	CHREM COORD X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (nm)	REFLEC (Rp)	TIVITY (Rg)
STANNITE JAUNE,5	A	0.4712	C .4140	587.58	20.86	26.62 Yp	42C	20.50	21.20
CU(I+X)SN(1-X)FE S4	A	C. 4684	C.4131	587.67	18.30	28.56 Yg	440	19.30	22.00
TETRAGONAL	С	0.3385	C.3419	579.24	14.59	25.89 Yp	46U	20.50	23.30
	С	0.3349	0.3394	578.59	12.85	28. 29 Yg	48C	21.20	24.40
REF. FOR R: (LEVY,1966)							500	22.60	25.20
REMARKS: LCC. VAULRY							520	23.90	26.70
							540	25.00	27.50
							560	26.60	28.90
							580	27.30	25.40
							600	28.20	30.00
							620	28.60	30.50
							640	29.00	31.90

MINERAL NAME Composition	SOURCE	CHRCM COORC	ATICITY INATES	DCMINANT (CCMFL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMECA	REFLEC	TIVITY
CRISIAL SYSTEM		*	Y	WAVELENGIH	(74)	Ť	(NM)	^{(K} P)	(^k g)
STANN ITE JAUNE,6	Α	0.4724	(•4133	588-21	21.21	26.54 Yp	420	20.40	20.50
CU(I+X)SN(1-X)FE S4	۵	0.4680	0.4137	587.17	18.44	27.58 Yg	4 4 C	15.40	2C•80
TETRAGONAL	C	6.3356	C.3415	579.75	14.67	25.78 Yp	460	20.30	22.20
	C	0.3348	C•3399	578.24	12.96	26. 95 Yg	48C	21.00	22.90
REF. FOR R: (LEVY,1966)							500	22.50	24.00
REMARKS: LCC. VAULRY							520	23.80	25.40
							540	24.80	26.3C
							560	26.40	27.60
							580	27.20	28.GC
							600	28.00	28.80
							620	28.5C	28.50
							64G	29.50	30.00

MINERAL NAME	SCURCE	CHRCM	ATICITY	COMINANT (CCMPL_)	PURITY	BRIGHTNESS (VISUAL R)		REFLEC	τινττγ
CRYSTAL SYSTEM	500.02	X	Ŷ	WAVELENGTH	(P%)	Ŷ	(NM)	^{(R} P)	(Rg)
STANNITE JAUNE,4	Α	0.4720	C.414C	587.71	21.42	26.48 Yp	420	20.00	20.80
CU(I+X)SN(1-X)FE S4	۵	0.4680	C•4136	587.24	18.37	28.17 Yg	440	19.20	21.30
TETRAGONAL	С	C.3356	C•3425	575.25	14.94	25.74 Yp	460	20.20	22.70
	с	0.3348	0.3399	578.24	12.96	27.53 Yg	480	21.05	23.40
REF. FOR R: (LEVY,1966)							500	22.40	24.60
REMARKS: LOC. VAULRY							520	23.80	26.(C
							540	24.80	26.80
							560	26.40	28.20
							580	27.10	28.60
							600	28.20	29.30
							620	28.40	29.60
							64C	25.CC	30.70

NINERAL NAME Composition	SCURCE	CHROM. Coord	ATICITY INATES	DCMINANT (CCMFL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMEDA	REFLEC	TIVITY
CRYSTAL SYSTEM		x	Y	WAVELENGTH	(P%)	¥	(NM)	(Rp)	(Rg)
STANNITE JAUNE,7	A	0.4724	C.4136	588.01	21.38	26.29 Yp	420	20.00	20.70
CU(I+X)SN(1-X)FE S4	۵	0.4673	0.4138	586.95	18.03	28.12 Yg	4 4 C	19.00	21.20
TETRAGONAL	С	0.3401	C.3422	579.65	15.00	25.53 Yp	460	20.00	22.90
	С	C•3344	C.3396	578.19	12.77	27.49 Yg	480	21.00	23.50
REF. FOR R: (LEVY,1966)							5 C U	22.20	24.50
REMARKS: LCC. VAULRY							520	23.50	25.90
							540	24.50	26.50
							560	26.00	28.40
							580	27.20	28.70
							600	28.10	29.40
							620	28.20	29.50
							640	28.80	30.20

·

•

NINERAL NAME Composition Constal system	SCURCE	CHRCM CCCRD	ATICITY INATES	CCPINANT (CCPFL.)	FURITY	BRIGHINESS (VISUAL R)	LAMBCA	REFLEC	TIVITY
CRISIAL STSTEM		^	T	WAVELENGIN	1741	T	(INP)	(*P /	' وْ`
STANNITE JAUNE,1	A	0.4762	(.41(5	590.53	21.90	25.59 Yp	420	20.20	21.00
CU(1+X)SN(1-X)FE 54	A	0.4725	C.41CO	55G.62	18.99	27.18 Yg	440	18.80	20.90
TETRAGONAL	С	0.3421	C.3391	582.34	14.70	24.72 Yp	460	19.55	21.90
	С	0.3373	0.3363	581.89	12.66	26.38 Yg	480	20.00	22.20
REF. FOR R: (LEVY, 1966)							500	21.40	23.40
REMARKS: LCC. VAULRY							520	22.60	24.5C
							540	23.30	25.20
							560	25.00	26.80
							580	26.20	27.40
							600	27.40	28.5C
							620	27.90	29.00
							640	29.60	31.40

MINERAL NAME Composition Crystal system	SCLRCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMFL.) WAVELENGTH	FURITY (PZ)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLEC (Rp)	TIVITY (Rg)
STANNITE JAUNE,3	A	C•4755	C.4C95	591.25	21.00	25.38Yp	420	19.45	21.00
CU(I+X)SN(1-X)FE 54	۵	0.4721	6.4652	591.28	18.15	27.55Yg	44C	19.50	21.60
TETRAGONAL	С	0.3410	(•3374	582.93	13.95	24.52 Yp	46C	19.50	22.60
	С	0.3366	0.3348	582.63	12.07	26.75 Yg	480	20.20	22.8C
REF. FOR R: (LEVY,1966)							500	21.20	23.80
REMARKS: LCC. VAULRY							520	22.60	24 . 5C
							540	23.00	25.EC
							560	24.90	27.20
							580	25.60	27.80
							600	27.20	28.80
							620	27.70	29.50
							640	29.60	31.90

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SOURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PURITY	BRIGFTNESS (VISUAL R)	LAMEDA	REFLEC	
		,	•		(, ,, ,	·		··· P /	<u>.</u> 9 ,
STANNITE,3	4	0.4568	0.4164	581.21	12.51	28.21 Yp	420	22.20	22.20
CL2 SN FE S4	Δ	0.4543	C.4158	575.91	10.41	28.63Yg	440	22.80	24.CO
TETRAGCNAL	С	C.3243	C.3371	572.45	9.39	27.56 Yp	46C	24.00	25.20
	С	0.3215	C.3347	571.22	8.00	28.46 Yg	480	25.20	26.20
REF. FOR R: (LEVY,1966)							500	26.20	27.20
REMARKS: LGC. SAINT-A	GNES,CO	RNCUAI	LLES				520	27.20	27.80
							540	28.20	28.70
							560	28.70	29.00
							58G	28.80	29.50
							600	28.70	29 . 00
							620	28.20	28.20
							640	28.00	28.CC

MINERAL NAME CEMPESITIEN CRYSTAL SYSTEM	SCURCE	CHRCM CCGRD X	ATICITY INATES Y	DCMINANT (CCMFL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NF)	REFLEC (Rp)	TIVITY (Rg)
STANNITE,1	A	0.4571	C.4167	581.21	12.92	28 .17 Yp	420	22.20	22.20
CU2 SN FE S4	A	0.4541	C•415E	579.74	16.27	28.64 Yg	440	22.50	24.00
TETRAGENAL	С	0.3247	0.3377	572.44	5.66	27.53 Yp	4 E C	24.00	25.40
	С	0.3212	0.3345	571.03	7.86	28.48 y	480	24.80	26.20
REF. FCR R: (LEVY,1966)							500	26.30	27.20
REMARKS: LOC. SAINT-A	GNES,CC	RNGLAI	LLES				520	27.20	27.80
							540	28.20	28.8C
							560	28.60	29.10
							580	28.80	29.40
							600	28.6C	29.00
							620	28.20	28.20
							640	28.CC	28.00

•

MINERAL NAME	SCURCE	CHRCM.	ATICITY			BRIGHTNESS		REFLEC	ττνττγ
CRYSTAL SYSTEM	SCOREE	X	Y	WAVELENGTH	(P%)	Y	(NM)	(Rp)	(Rg)
STANNITE,4	A	0.4575	C.4168	581.39	13.29	28•14 Yp	4 2 C	22.20	23.50
CU2 SN FE S4	А	0.4537	C.4152	575.80	S . 58	25.13 Yg	440	22.50	24.70
TETRAGONAL	C	0.3252	C.3381	572.64	5.90	27.88 Yp	460	23.60	25.80
	С	0.3203	0.3334	576.74	7.33	28.59 Yg	480	24.80	26.70
REF. FOR R: (LEVY,1966)							500	26.20	28.20
REMARKS: LOC. SAINT-A	GNES,CC	RNOUAII	LLES				520	27.20	28.60
							540	28.00	29.30
							560	28.60	29.40
							580	28.80	29.50
							600	28.60	29.60
							620	28.20	29.00
							64C	28.00	28.60

MINERAL NAME	SCUDCE	CHRCM	ATICITY	CCMINANT	עדזמוום	BRIGHTNESS			τιντν
CRYSTAL SYSTEM	JUOKUE	X	Y	WAVEL ENGTH	(P%)	Y Y	(NM)	(Rp)	(Rg)
STANN ITE,6	۵	0.4629	0.4153	584.73	16.02	28.C1 Yp	420	20.60	22.70
CU2 SN FE S4	۵	C.46C6	C.413C	585.67	12.83	28.84 Y	44C	21.90	23.70
TETRAGCNAL	С	0.3299	3356•0	575.24	11.62	27.59 Yp	460	22.70	24.30
	С	0.3264	C.3344	576.15	9.23	28.45 Yg	480	24.4C	26.10
REF. FCR R: (LEVY,1966)							500	25.60	27.20
REMARKS: LOC. SEINT-A	GNES,CC	RNCUAI	LLES				520	26.8C	27.90
							540	27.50	27.40
							56C	27.50	28.80
							580	28.20	29.20
							600	28.90	30.20
							620	28.90	29.70
							64C	29.40	29.80

MINERAL NAME	SCURCE		ATICITY	CCM INANT	PHRITY	BRIGHTNESS		REELEC	τινιτν
CRYSTAL SYSTEM	SUBRUE	x	Ŷ	WAVELENGTH	(22)	Y	(NM)	(Rp)	(Rg)
STANNITE,7	Δ	0.4637	C•4154	584.92	16.65	27.94 Yp	420	20.70	22.80
CU2 SN FE S4	Д	C.4599	C.4141	584.47	13.10	25.05 Yg	440	21.40	23.80
TETRAGENAL	С	0.3308	0.3408	575.28	12.13	27.50 Yp	460	22.30	24.30
	С	C.3262	C.3356	575.11	9.50	28.65 Yg	480	24.40	26.10
REF. FCR R: (LEVY,1966)							500	25.50	27.20
REMARKS: LOC. SEINT-A	GNES,CC	RNCLAI	LLES				520	26.50	27.90
							540	27.50	28.50
							560	27.90	28.90
							580	27.90	29.30
							600	28.SC	36.30
							620	29.00	29.70
							64C	29.50	29.80

MINEFAL NAME			ATICITY			BRIGHTNESS			τινιτν
CRYSTAL SYSTEM	JUCKUE	X	Y	WAVELENGTH	(P%)	Y Y	(NM)	(Rp)	(Rg)
STANN ITE,5	Д	0.4606	C.4155	583.49	14.84	27•71 Yp	420	21.60	21.10
CU2 SN FE S4	A	0.4591	C.4152	583.30	13.31	2E.53Yg	440	21.60	23.20
TETRAGONAL	C	0.3283	C.339C	574.57	10.97	27.35 Yp	460	22.60	24.00
	С	0.3261	C.3372	573 . 96	9. 90	28.21 Yg	480	24.5C	25.70
REF. FCR R: (LEVY,1966)							500	25.60	26.70
REMARKS: LOC. SAINT-A	GNES,CC	RNCUAI	LLES				520	26.20	27.20
							54C	27.40	28.20
							56C	27.80	28.70
							580	28.00	29.00
							ECC	26.80	25.20
							620	29.20	29.20
							64C	27.90	29.00

	MINERAL NAME	COURCE	CHRGM	ATICITY	DGMINANT	עלדיטט	BRIGHTNESS			TTUTT
	CRYSTAL SYSTEM	SLUKUE	χ	Y 11/0152	WAVELENGTH	(P%)	Y	(NM)		(R P)
•	RENIERITE,1(RE>RO)	Α	C•4E46	C.4184	587.30	33.20	28.64 Yg	420	17.30	17.60
	CU(3-X)GE(X)FE S4,X= <c.5)< td=""><td>4</td><td>0.4841</td><td>0.4150</td><td>588.68</td><td>30.49</td><td>27.77YP</td><td>44C</td><td>16.90</td><td>17.20</td></c.5)<>	4	0.4841	0.4150	588.68	30.49	27.77YP	44C	16.90	17.20
	TETRAGONAL	С	C.3582	0.3599	578.96	24.60	27.42 49	46C	18.00	18.00
		С	0.3561	0.3550	58C•00	22.73	26.38Yp	4 E C	19.70	19.20
	REF. FGR R: (LEVY,1966)							500	21.50	20.80
	REMARKS: LCC. KIPUSHI							520	23.80	22.90
								540	26.40	25.10
								560	28.40	27.20
								580	36.20	29.CC
								600	31.00	30.20
								62C	31.8C	30.60
								640	32.50	31.40

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS			
CEMPOSITIEN Crystal System	SCURCE	COOPC X	INATES Y	(CCMPL•) WAVELENGTH	PURITY (F%)	(VISUAL R) Y	LAMBDA (NM)	REFLEC (R)	(RP)
RENIERITE, 6(RE>RO)	۵	0.4856	C.4175	587.61	33.55	28.44Yg	4 2 C	17.40	18.80
CU(3-X)GE(X)FE 54,X= <g.5)< td=""><td>A</td><td>C.4843</td><td>C.4149</td><td>588.74</td><td>30.56</td><td>27.77 Yp</td><td>440</td><td>17.30</td><td>18.50</td></g.5)<>	A	C.4843	C.4149	588.74	30.56	27.77 Yp	440	17.30	18.50
TETRAGCNAL	C	0.3592	C.3560	580.57	23.82	26.53 Yg	4 E C	17.80	18.30
	С	0.3550	C•3475	582.69	20.41	25 . 76 Yp	480	18.50	18.50
REF. FOR R: (LEVY,1966)							500	20.40	20.10
REMARKS: LOC. TSUMEB							520	22.60	22.00
							540	25.20	24.20
							560	27.30	26.30
							580	29.40	28.40
							600	31.00	29.90
							620	31.70	31.10
							64C	31.60	31.40

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM COORC X	ATICITY INATES Y	CCMINANT (COMPL.) WAVELENGTH	PURITY (P\$)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLEC (Rg)	TIVITY (Rp)
RENIERITE,8(RE>RD)	۵	0.4869	0.4159	583.54	33.05	28.15Yg	42C	17.60	17.60
CU(3-X)GE(X)FE S4,X= <c.5)< td=""><td>A (</td><td>G.4822</td><td>C.413E</td><td>585.07</td><td>28.34</td><td>26.C3 Yp</td><td>440</td><td>17.40</td><td>17.70</td></c.5)<>	A (G.4822	C.413E	585.07	28.34	26.C3 Yp	440	17.40	17.70
TETRAGGNAL	С	0.3568	0.3546	580.37	22.80	26.76 Yg	460	18.70	18.30
	С	0.3521	C.34E2	581.44	19.82	24•94 Yp	480	19.00	18.20
REF. FOR R: (LEVY,1966)							500	21.00	19.70
REMARKS: LOC. M PASSA,	CONGO						520	23.10	21.7C
							540	25.4C	23.70
							560	27.60	25.60
							580	29.40	27.20
							600	30.90	28.60
							620	31.40	25.40
							640	31.90	29.60

MINERAL NAME		CHROM	ATICITY	COMINANT		BRIGHTNESS			
COMPOSITION CRYSTAL SYSTEM	SCURCE	CCOFD X	INATES Y	(CEMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLEC	^{(R} P)
RENIERITE,4(RE>RD)	A	C.4855	C.4174	587.74	33.14	27.93 %	420	17.30	17.60
CL(3-X)GE(X)FE S4,X=<0.5)	4 (0.4853	0.4125	585.97	29.56	27.C2 Yp	44C	16.60	17.10
TETRAGENAL	С	0.3593	0.3556	575.38	24.81	27.19 Yg	460	17.80	17.60
	С	0.3561	C.3541	580.34	22.48	25.90 Yp	480	19.60	18.90
REF. FOR R: (LEVY,1966)							500	21.20	20.50
REMARKS: LOC. KIPUSHI							520	23.60	22.20
							54C	26.00	24.60
							560	28.00	26.60
							580	25.80	28.60
							600	31.40	30.10
							620	32.10	30.60
							640	32.20	36.30
								•	

MINERAL NAME Composition Crystal System	SCURCE	CHRCM CCORD X	ATICITY INATES Y	DCMINANT (CCMFL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLEC	tivity (Rg)
RENIERITE,3(RE>RO)	А	C.4841	C.4163	588.03	31.38	27.56 Yp	420	17.30	16.90
CL(3-X)GE(X)FE S4,X=<0.5)	Δ (0.4864	0.4162	588.37	32.92	27. E2 Yg	4 4 C	16.EC	16.30
TETRAGONAL	C	0.3587	C.3585	579.57	24.36	26.70 Yp	460	17.50	17.00
	С	0.3555	0.3528	580.64	21.57	24. 66 Yg	4 8 C	19.40	18.30
REF. FOR R: (LEVY,1966)							500	20.80	19.80
REMARKS: LCC. KIPUSHI							520	23.10	21.20
							54C	25.40	23.40
							560	27.60	25.20
							580	29.40	27.OC
							600	30.70	28.50
							620	31.2G	28. EC
							640	31.80	29.60

MINERAL NAME CGMPCSITION CRYSTAL SYSTEM	SCURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (COMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLEC (Rp)	TIVITY (Rg)
RENIERITE,7(RE>RO)	Δ	0.4839	0.4161	588.16	31.12	27.C7YP	420	17.40	18.40
CU(3-X)GE(X)FE S4,X= <c.5)< td=""><td>A (</td><td>0.4847</td><td>C.4159</td><td>588.33</td><td>31.54</td><td>27.99 Yg</td><td>440</td><td>17.30</td><td>18.3C</td></c.5)<>	A (0.4847	C.4159	588.33	31.54	27.99 Yg	440	17.30	18.3C
TETRAGCNAL	С	0.3597	C.3560	580.71	23.96	26.82 Yp	46C	16.10	18.50
	С	0.3557	C•3515	581.21	21.68	26.54 Yg	480	18.80	18.90
REF. FOR R: (LEVY,1966)							500	20.70	20.60
REMARKS: LOC. TSUMEB							520	22.90	22.70
							540	25.40	25.20
·							560	27.50	27.20
							58C	25.70	29.40
							600	31.20	30.90
							620	32.00	31.40
							640	32.50	31 . 40

MINERAL NAME CCMPCSITIGN CRYSTAL SYSTEM	SCURCE	CHRCM COORE X	ATICITY INATES Y	DCMINANT (CCMPL•) WAVELENGTH	PURITY (P%)	ERIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLEC (R _p)	TIVITY (Rg)
		0	0 (1)(5		26 (2		(20		J
KENIERIIE,S(RE>RU)	Д	0.4844	6.4149	522.15	36.63	25018 19	420	17.40	18.40
CU(3-X)GE(X)FE S4, X= <c.5)< td=""><td>A</td><td>0.4872</td><td>C.4157</td><td>588.65</td><td>33.12</td><td>28•15 Yg</td><td>440</td><td>17.30</td><td>18.30</td></c.5)<>	A	0.4872	C.4157	588.65	33.12	28•15 Yg	440	17.30	18.30
TETRAGONAL	С	0.3596	C.3563	580.57	24.01	26.88 YP	460	16.10	18.50
	С	0.3554	C.3516	581.08	21.62	26.55 Yg	480	18.80	18.90
REF. FOR R: (LEVY,1966)							500	20.80	20.70
REMARKS: LOC. TSUMEB							520	23.00	22.80
							540	25.5C	25.20
							560	27.60	27.30
							580	25.70	29.30
							600	31.20	30.80
							620	32.00	31.40
							640	32.50	31.40

MINERAL NAME CCMPGSITICN	SCURCE	CHRCM COOFC	A TICITY IN ATES	DCMINANT (CCMPL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P2)	Ŷ	(NM)	(Rg)	(Rp)
LUZONITE 1	Δ	0.4607	0.4078	592.38	S•28	28.50 y	420	27.60	25.00
CU3(AS, SB)S4	A	0.4552	(.4054	£(4.76	3.81	25.62 Yp	440	26.80	25.30
TETRAGCNAL	C	0.3236	C.322E	587.76	5.36	28.39 Yg	4 <i>6</i> C	25.80	24.60
	С	0.3165	0.3168	607.19	1.85	25.36 Yr	480	25.20	24.30
REF. FCR R: (LEVY,1966)							500	26.00	24.70
REMARKS: LCC. MANKAYA	N,FHILI	FFINES					520	26.70	24.50
							540	27.90	24.80
							560	28.5C	25.20
							580	29.40	26.OC
							600	30.60	25 . 8C
							620	30.00	26.8C
							64C	30.50	27.20

MINERAL NAME COMPOSITION CRYSTAL SYSTEM	SOURCE	CHRCM COORD X	ATICITY INATES Y	DCMINANT (CCMPL•) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (nm)	REFLEC (Rg)	TIVITY (Rp)
LUZCNITE 2	A	0.4560	C.4C81	591.24	6.24	28.42 Yg	420	27.60	26.00
CU3(AS,SB)S4	Δ	C•4543	C.4C54	607.72	3.18	25.68 Yp	44Ú	27.20	25.30
TETRAGENAL	С	0.3191	C.32C6	587.86	2.57	28.C8 Yg	460	26.40	24.80
	С	0.3155	C.3163	616.39	1.01	25.45 Yp	480	25.60	24.30
REF. FOR R: (LEVY,1966)							500	26.30	25.10
REMARKS: LOC. MANKAYA	N,PHILI	FFINES					520	26.90	24.70
							540	27.80	25.00
							560	28.20	25.30
							580	28.90	25.90
							600	25.60	25 . 8C
							620	29.60	26.80
							640	29.00	27.20

MINERAL NAME COMPOSITION	SCURCE	CHRCM CCORD	ATICITY INATES	CCMINANT (CCMFL.)	FURITY	BRIGHTNESS (VISUAL R)	LAMBCA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P%)	Ŷ	(NM)	(R)	(Rp)
LUZGNITE 3	۵	0.4545	C.4075	551.54	5.06	26.54 3	420	25.00	25.50
CL3(AS, SB)S4	A	0.4523	0.4075	590.93	3.52	25.84 YP	440	25.30	24.80
TETRAGONAL	C	0.3173	C.32C4	585•46	3.03	26.30 Y	460	25.10	24.60
	С	0.3148	0.3154	583.42	2.09	25.69 YP	480	25.CO	24.90
REF. FOR R: (LEVY,1966)							500	25.20	25.10
REMARKS: LCC. MANKAYA	N, PHILI	PPINES					52C	25.40	25.20
							540	26.10	25.60
							560	26.30	25.86
							580	26.80	26.00
							600	27.40	25.80
							620	27.20	26.20
							640	27.20	26.70

MINERAL NAME		CHRCM.	ATICITY	DEMINANT	0110 7711	BRICHTNESS			.
CRYSTAL SYSTEM	SLURUE	X	Y	WAVELENGTH	(P%)	Y	(NM)	(Rg)	(R P)
STIBICLUZCNITE 5	Δ	C•45E1	(.4054	600.25	5.81	27.07 Yg	420	28.40	26.80
CL3(AS,SB)S4	۵	0.4532	C.4017	-516.38	3.05	24.30 Yp	440	26.30	25.40
TETRAGENAL	С	0.3194	C.317C	6(7.45	2.68	26.65 Yg	460	25.20	24 . 4C
	C	0.3124	0.3095	-528.43	3.17	24.09 Yp	480	24 . 50	23.80
REF. FOR R: (LEVY,1966)							500	24.70	23.70
REMARKS: LOC. FAMATIN	A,ARGEN	TINA					520	25.00	23.40
							540	26.20	23.70
							560	27.CC	23.80
							580	27.40	24.00
							60C	27.50	24.50
							620	27.90	25.30
							£4C	25.00	26.40

•

A•238

MINEFAL NAME		CHRCM.	ATICITY	DCMINANT		BRIGHTNESS			
COMPOSITION Crystal System	SCURCE	CCCRD. X	INATES Y	(CEMFL.) WAVELENGTH	FURITY (P%)	(VISUAL RJ Y	LAMBEA (NM)	REFLEC	(Rp)
STIBICLUZCNITE 4	Α	0.4565	C.4C45	610.03	4.08	26.30 Yg	420	27.90	26.30
CU3(AS,SB)S4	Δ	0.4540	C.4018	-512.41	3.15	24.59 Yp	440	26.30	25.80
TETRAGONAL	С	C.3174	C•314E	-453.42	1.97	25.95 Yg	460	25.00	24.60
	С	0.3132	0.3100	-517.83	3.12	24.34 Yp	480	24.20	23.80
REF. FOR R: (LEVY,1966)							500	24.40	23.80
REMARKS: LCC. FAMATIN	A, ARGEN	TINA					52C	24.50	23.50
							540	25.40	23.90
							56G	26.40	24.20
							580	26.40	24.20
							600	26.70	25.00
							620	27.90	25.40
							640	28,10	26.80

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS	- 	
CGMPCSITICN Crystal system	SCURCE	CCCRCI X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECT IVITY R
ERIARTITE 11	Δ	0.4466	C.4131	566.09	3.21	26.99	420	24.20
CL2(FE,ZN)GE S4	C	0.3120	0.3252	560.32	2.91	27.07	44C	25.20
TETRAGONAL							460	25.80
REF. FCR R: (LEVY,1966)							48G	26.20
REMARKS: LOC. KIPUSHI							500	27.00
							500	27.00
							520	27.30
							540	27.60
							560	27.40
							580	27.40
							600	26.50
							620	26.00
							640	26.00

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
CCMFCSITICN CRYSTAL SYSTEM	SCURCE	COORC: X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (F%)	(VISUAL R) Y	LAMBCA (NM)	REFLECTIVITY R
ERIARTITE S	Α	0.4463	C.4134	564.77	3.21	26.89	420	24.30
CU2(FE,ZN)GE S4	C	0.3117	C.3254	558.94	2.88	26.98	440	25.30
TETRAGONAL							46C	25.40
REF. FOR R: (LEVY,1966)							480	26.10
REMARKS: LCC. KIFUSHI							500	26.90
							500	26.90
							520	27.60
							540	27.60
							560	27.20
							580	27.00
							600	26.50
							620	26.20
							640	25.80

MINERAL NAME CCMPOSITION CRYSTAL SYSTEM	SOURCE	CHRCM COCRD X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (nm)	REFLECTIVITY R
PRIARTITE 10	А	0.4471	C.414C	5+8.79	4. 4	26.87	420	23.30
CU2(FE,ZN)GE S4	С	6.3129	ü.3273	561.73	3.71	26.95	440	24 . 4C
TETRAGONAL							46C	25.50
REF. FCR R: (LEVY,1966)							480	26.10
REMARKS: LCC. KIPUSHI							500	26.80
							520	27.50
							540	27.50
							560	27.20
							580	27.00
							600	26.60
							62C	26.20

640 25.80

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRICHTNESS			
COMPOSITION CRYSTAL SYSTEM	SCURCE	COORD	INATES	(CCMPL.)	PURITY (P2)	(VISUAL R)	LAMECA (NM)	REFLEC	TIVITY
		~	•			·		P	ing '
CORCNACITE	A	0.4379	C.4C67	493.39	2.32	26.09Yp	430	28.20	34.40
PB<=2 MN8 CE	۵	0.4354	6.4077	495.07	2.87	31•48Yg	47C	28.30	34.20
TETRAGCNAL	С	0.3067	C.3096	481.82	4.14	26.39 Yp	490	27.20	33.30
	C	C.2585	0.3056	483.40	4.79	31.54 Yg	520	27.20	33.30
REF. FCR R: (NICHCL & PH	-ILLIPS,	1965)					550	26.70	32.30
REMARKS: LCC. UNKNOWN	N .						580	26.CO	31.50
							610	25.00	30.00
							65C	24.70	28.70

MINERAL NAME		CHROM	ATICITY	DOMINANT		BRIGHTNESS	SS		
CCMPGSITICN CRYSTAL SYSTEM	SCURCI	E CCCRC X	IN ATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R	
CRYPTOMELANE	A	C.4371	C.4077	495.12	2.47	25.99	430	27.80	
A<=2 88 C16	С	0.3006	C.31C9	483.81	4.03	26.32	470	28.00	
TETR. & MCNO.							450	27.60	
REF. FOR R: (NICHOL & P	HILLIPS	1964)					520	27.00	
REMARKS: LOC. UNKNWG	Ν						550	26.70	
							550	26.70	
							580	26.00	
							610	25.00	
							65C	23.90	

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS			
CCMPOSITION CRYSTAL SYSTEM	SCURCE	COOPD X	INATES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECT	IVITY (و ^R)
HGLLANDITE	Д	0.4397	0.4064	492.42	1.91	25.25 Yp	43C	27.00	33.90
EA<=2 R8 C16	A	C.4386	C.4CE7	497.08	2.09	31.78 Yg	470	27.10	33.00
TETR.& MCNC.	С	0.3621	0.3103	481.29	3.56	25.53 Yp	450	26.60	33.40
	С	C.3C24	C.3126	484.58	3.19	32.12Yg	520	26.20	32.80
REF. FOR R: (NICHCL & PH	ILLIPS,	1965)					550	25.60	32.30
REMARKS: LOC. UNKNOWN	N						580	25.20	32.50
							610	24.50	36.20
							65C	24.30	29.40

MINEPAL NAME		CHROM	ATICITY	DEMINANT		BRIGHTNESS				
COMPOSITION CRYSTAL SYSTEM	SOURCE	כפססס x	INATES Y	(COMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	PEFL R.	ECTIV	VITY Far
		~	·			·			7	· 6
ENARGITE	A f	0.4408	0.4026	481.21	1,88	25. 12 7 ×	4 4*)	27.7	26.7	29.8
CU3(AS,SB)S4	Α	°. 4497	0.4943	-537.34	1.52	26.37 Yy	46i)	27.6	26.9	29.4
ORTHORHOMBIC	A	• 4454	1.4163	485 . 1	ົາ• 58	28. 68 7 .	48)	27.2	26.8	29.1
	C ć	n. 3011	0.3054	473.75	4.58	25.21 Yx	5.00	26.5	26.5	28.9
	C ·	0.3203	0.3129	-547.9°	1.41	26. 23 Yy	520	25.9	26.2	28.8
	C :	9.3)75	0.3127	470.li	2.40	28.73 Yz	540	25.3	25.9	22.7
							56J	24.8	25.9	28.7
							58)	24.5	25.9	28.7
							600	24.4	26.3	28.0
							62.,	24.6	25.8	28.5
							640	25.3	27.7	28.4
							660	25.9	28.2	28.3

REF. FOR R: LOPEZ-SOLER ET AL (1970)

REMAPKS: LOC. UTAH, U.S.A.: ORIENTED SECTION PARALLEL TO X- Y- Z-AXIS

.

.

.

Λ.246

MINERAL NAME Composition	SOURCE	CHRCM. COCRD	ATICITY INATES	DOMINANT (CCMFL.)	PURITY	BRIGHTNESS (VISUAL R)	REFLECTIVITY		
CRYSTAL SYSTEM		x	¥	WAVELENGTH	(P%)	Y	(NM)	(R)	^{(R} 9)
ENARGITE 7	А	0.4510	C.4C32	-525.43	2.13	25.75 Yp	420	26.70	29.10
CL3(AS,SB)S4	۵	0.4469	C •4C29	-573.22	1.55	26.56 Yg	44C	26.30	28.80
CRTHGRHOMBIC	С	C.311C	C.3116	-535.45	2.06	25.62 Yp	460	26.30	28.50
	C	0.3070	0.3086	-566.15	2.52	26.56Yg	480	26.00	27.40
REF. FOR R: (LEVY,1966)							500	25.60	27.50
REMARKS: LCC. PARAC							520	25.30	26.90
							540	25.20	26.90
							560	25.40	26.40
							580	25.40	26.90
							600	25.90	26.60
							62C	26.20	27.30
							64C	27.40	28.00

MINERAL NAME Composition	SCURCE	CHREMATICITY RCE COORDINATES		CITY DCMINANT TES (CCMFL.) PURITY		BRIGHTNESS (VISUAL R)	LAMECA	REFLECTIVITY		
CRYSTAL SYSTEM		x	Ŷ	WAVELENGTH	(P%)	Ŷ	(NM)	(^R P)	(Rg)	
ENARGITE S	Α	0.4520	C.4C31	-580.00	2.34	25.62 Yp	420	26.50	29.20	
CL3(AS,SB)S4	۵	0.4469	C.4026	-573.08	1.66	26.83 Yg	4 4 C	26.20	28.60	
ORTFORHOMEIC	C	0.3117	C.3118	-527.12	2.11	25•46 Yp	460	26.20	28.50	
	С	3332.0	C.3081	-566+15	2.69	26.82 Yg	48C	25.10	27 . 40	
REF. FOR R: (LEVY,1966)							500	25.50	27.50	
REMARKS: LOC. PARAD							520	25.20	26.80	
							540	25.10	26.70	
							56C	25.30	26.20	
							580	25.00	26.80	
							600	25.70	26.40	
							620	26.10	27.10	
							64C	27.70	28.00	

. .

MINERAL NAME Composition Crystal System	SCURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL P) Y	LAMECA (NM)	REFLEC (Rp)	TIVITY (Rg)
ENARGITE 1	۵	0.4503	C•4032	-54C.C6	2.02	25.59 Yp	420	26.70	29.30
CU3(AS, SB)S4	A	0.4481	0.4024	-568.27	1.94	26.51 Yg	440	26.4C	28.EC
CRTHCRHCMEIC	С	0.3105	C.311C	-547.02	2.21	25.48Yp	460	26.30	28.20
	С	0.3079	6.3083	-562.40	2.81	26.86 Xg	48C	25.EC	27 . 5C
REF. FCR R: (LEVY,1966)							500	25.40	27.20
REMARKS: LCC. HAUREN,	PERU						520	25.20	26.70
							540	25.00	26.50
							560	25.20	26.50
							580	25.50	26.70
							600	25.70	26.70
							620	26.UG	27 . 5C
							640	27.00	28.20

MINERAL NAME	SCURCE	CHREMATICITY RCE COGREINATES		CCMINANT (COMPL -)	PURTTY	BRIGHTNESS		REFLECTIVITY		
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(F%)	Y	(NM)	(Rp)	(^R g ⁾	
ENARGITE 4	۵	0.4508	0.4031	-530.71	2.14	25.18 Yp	420	26.20	29.40	
CU3(AS, SB)S4	А	C•4485	C•4C23	-566.25	2.04	26.85 Yg	440	25.90	28 . 7C	
CRTHORHCMEIC	С	0.3110	0.3112	-540.51	2.22	25.05 Yp	460	25.70	28.CC	
	С	6336.0	C.3CE1	-560.53	2.97	26.77 Yg	480	25.40	27.30	
REF. FOR R: (LEVY,1966)							50C	25.00	2 £. 8C	
REMARKS: LOC. BOR, YO	UGOSLAVI	A					520	24.80	26.60	
							54C	24.EC	26.40	
							560	24.60	26.40	
							5 E G	25.00	26.60	
							600	25.50	27.10	
							62G	26.00	27.30	
							640	2ć.50	28.00	

MINERAL NAME Composition	SCURCE	CHRCM.	ATICITY INATES	DCMINANT (COMPL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBCA	REFLEC	ΤΙνΙΤΥ
CRYSTAL SYSTEM		×	¥	WAVELENGTH	(65)	Y	(NM)	(Rp)	(Rg)
ENARGITE É	A	0.4505	C.4011	-544.98	2.48	25.13 Yp	420	27.20	28.90
CU3(AS, SB)S4	Α	0.4507	C.4C21	-549.77	2.88	27.14 Yg	44C	26.70	28.60
GRTHORHOMEIC	С	0.3099	0.3078	-551.92	2.76	24.58 Yp	460	26.10	27.90
	С	0.3100	0.3054	-552.37	3.39	27.01 Yg	480	25.5C	27.30
REF. FOR R: (LEVY,1966)							500	24.90	27.20
REMARKS: LCC. ECR,YOU	GCSLAVI	4					520	24.70	26.7G
							540	24.50	26.70
							560	24.40	26.50
							580	24.90	26.80
							600	25.10	27.00
							620	26•4C	27.90
							64C	27.00	29.20
MINERAL NAME	SCHECE	CHROM.	ATICITY	DCMINANT		BRIGHTNESS			<u></u>
-------------------------	--------	--------	---------	------------	------	-----------------	------	-------	---------
CRYSTAL SYSTEM	JUNUL	X	Y	WAVELENGTH	(P%)	Y Y	(NM)	(Rp)	(Rg)
ENARGITE 3	A	C.4510	C.4C17	-543.90	2.68	24.82 \p	42C	26.70	28.40
CU3(AS,SE)S4	Δ	0.4500	C.4024	-552.96	2.26	26.59 Yg	440	26.20	28.10
ORTHORHCMBIC	C	C.31C4	C.3087	-549.08	3.12	24.68 Yp	460	25.60	27.40
	С	0.3096	(.3093	-554.64	2.73	26.48 Yg	480	25.00	26.80
REF. FOR R: (LEVY,1966)							500	24.60	26.70
REMARKS: LOC. HAURON,	PERU						520	24.20	26.20
							540	24.30	26.20
							56C	24.20	26.00
							580	24.60	26.30
							600	25.00	26.50
							6 20	25.80	27.4C
							640	26.50	28.30

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM COORC X	ATICITY INATES Y	EEMINANT (CCMPL.) Wavelength	PURITY (F%)	ERIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLEC (Rp)	TIVITY (Rg)
ENARGITE 5	۵	0.4537	C.4021	-512.28	2.99	24.76 Yp	42C	26.20	25.00
CU3(AS, SB)54	A	C.4499	C.4C21	-555.75	2.35	27.03 Ya	440	25.70	28.40
CRTHCRHCMEIC	С	0.3129	0.3108	-516.90	2.74	24.54 Yp	460	24.70	28 . 1C
	С	0.3094	0.3090	-555.71	2.81	26. 53 Xg	48C	24.40	27.40
REF. FOR R: (LEVY,1966)							500	24.10	27.10
REMARKS: LOC. ECR, YOU	GCSLAVI	Α					520	24.20	26.70
							540	24.00	26 . 7G
							560	24.20	26.40
							580	24.50	2£•5C
							600	24.70	27.10
							620	25.70	27.90

.

640 27.20 28.80

MINEFAL NAME Composition Crystal System	SCURCE	CHRCM COORD X	ATICITY INATES Y	DOMINANT (CCMfl.) Wavelength	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLEC	TIVITY (Rg)
ENARGITE 8	A	0.4537	C.4C15	-514.83	3.21	24.70 Yp	420	26.40	29.20
CU3(AS,SB)S4	A	0.4495	0.4022	-559.28	2.24	26.55 Yg	44C	25.50	28.30
GRTHCRHOMBIC	С	C.3126	(.3(\$\$	-524.53	3.05	24 . 47 Yp	460	24.70	28.10
	С	0.3091	0.3085	-557.35	2.79	26.89 Yg	480	24.40	27.40
REF. FOR R: (LEVY,1966)							500	24.10	27.20
REMARKS: LGC. PARAE							52C	24.20	26.70
							540	23.80	26.50
							560	24.10	26.40
							580	24.40	26.50
							600	24.70	27.30
							620	25.70	27.70
							640	27.20	28.50

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM COORC X	ATICITY INATES Y	DCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLEC (Rp)	TIVITY (Rg)
		o	c (c)(1.45	04 70 No		1	
ENARGITE 48	А	0.4424	6.4636	486.01	1.45	24.1019	440	20.00	29.24
CU3(AS, SB) 54	А	C•4463	C.4C55	461.18	C•43	28.17 Yg	460	26.69	28.73
CRTHCRHCMEIC	С	0.3030	0.3080	474.54	3.57	24. Et Yp	4 E C	26.42	28.37
	С	0.3079	0.3126	461.69	1.30	28.19 Yg	500	26.01	28.42
REF. FCR R: (TUGAL, 1969)						_	520	25.45	28.33
REMARKS: LCC. TURKEY							540	24.91	28.29
							560	24.51	27.94
							580	24.18	28.12
							600	24.16	28.11
							620	24.48	28.C3
							640	24.76	28.11
							66C	25.71	28.74

•

MINERAL NAME	SCUDCE	CHRCM	ATICITY	COM IN ANT		BRIGHTNESS			TIVITY
CRYSTAL SYSTEM	JUNCE	X	Y	WAVELENGTH	(P%)	Y	(NM)	(Rp)	(Rg)
ENARGITE 49	Α	0.4425	C.4056	487.73	1.20	24.46 \p	440	25.68	26.01
CU3(AS,SB)54	۵	0.4486	C.4055	-540.23	0.75	25.87 Yg	4 C C	25.73	26.09
CRTHORHOMBIC	С	0.3(45	C.3114	479.46	2.59	24.61 Yp	480	25.72	26.07
	С	0.3101	C.3145	-551.55	0.56	25.84 Yg	500	25.55	26.12
REF. FCR R: (TUGAL, 1969)							52C	25.12	25.98
REMARKS: LOC. TURKEY							540	25.05	25.77
							560	24.17	25.63
							580	23.96	25.49
							600	24.04	25.78
							620	24.25	26.16
							640	24.74	26.70
							66C	24.26	27.11

MINERAL NAME Composition Crystal System	SGURCE	CHRCM. COORD: X	ATICITY INATES Y	COMINANT (CCMFL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBCA (NM)	REFLEC	rivity (و ^{R)}
ENARGITE 2	Δ	C.454C	C.4C16	-513.20	3.22	23.68 YP	420	25.20	28.CC
CU3(AS,SB)S4	۵	0.4505	C.4C18	-550.28	2.56	26.11 Yg	440	24.60	27.50
CRTFORFOMBIC	С	C.313C	C.31C2	-518.79	3.00	23.46 YP	460	23.80	27.00
	С	0.3098	C.3088	-553.17	2.96	25.58 Yg	480	23.30	26.50
REF. FOR R: (LEVY,1966)							500	23.00	26.CC
REMARKS: LCC. HAURON	, P E R U						520	23.00	25.80
							54G	23.00	25.60
							560	23.00	25.50
							580	23.40	25.60
							600	23.80	26.20
							620	24.8C	27.60
				-			640	26.00	28.OC

MINERAL NAME		CHRCMA	YTIDITY	CCMINANT		BRIGHTNES	S	
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	COORDI X	INATES ¥	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R Y) LAMBDA (NM)	REFLECTIVITY R
KCSTERITE 2,2	A	0.4502	C.4118	578.39	4.79	25.56	420	22.60
CU2 SN ZN S4	С	C•3149	0.3258	568.71	3.84	25.52	44C	22.70
TETRAGENAL							460	24.60
REF. FOR R: (LEVY,1566)							480	24.70
REMARKS: LCC. VAULRY							500	25.20
							500	25.20
							520	25.70
							540	25.80
							560	25.50
							58C	25.70
							600	25.50
							620	25.50
							640	25.4C

·

MINERAL NAME COMPOSITION CRYSTAL SYSTEM	SOURCE	CHRCM COORD X	ATICITY INATES Y	CCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
KCSTERITE 1,1	4	0.4505	0.4122	578.49	5.27	25.55	42C	22.10
CU2 SN ZN S4	С	0.3154	0.3268	566.70	4.24	25.52	440	22.50
TETRAGENAL							460	24•4C
REF. FOR R: (LEVY,1966)							480	24.80
REMARKS: LCC. VAULRY							500	25.20
							500	25.20
							5 20	25.60
							540	25•8C
							560	25.50
							580	25.8C
							600	25.40
•							620	25.50
							640	25.40

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SCURCE	E COCRE X	IN AT ES Y	(CCMPL。) WAVELENCTH	PURITY (P\$)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
KCSTERITE 3,1	۵	0.4502	0.4122	577.96	5.07	25.54	42C	22.20
CU2 SN ZN S4	С	0.3151	C.3267	568.13	4.14	25.51	440	22.50
TETRAGCNAL							4 E C	24•4C
REF. FOR R: (LEVY,1966)							480	24.90
REMARKS: LCC. VAULRY							500	25•2C
							500	25.20
							520	25.60
							540	25.80
							560	25.60
							580	25.70
							600	25.30
							620	25.50
							640	25.40

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
COMPESITIEN CRYSTAL SYSTEM	SCURCE	CCCRD) X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (PZ)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
KGSTERITE 3,2	Α	C•4454	C.4119	576.54	4.3C	25.53	420	22.60
CL2 SN ZN S4	C	0.3142	0.3255	567.26	3.57	25.52	4 4 C	22.90
TETRAGCNAL							460	24.60
REF. FCR R: (LEVY,1966)							480	24.80
REMARKS: LGC. VAULRY							500	25.40
							500	25.40
							520	25.60
							540	25.80
							560	25.60
							580	25.70
							600	25.40
							620	25.40
							64C	25.20

•

MINERAL NAME		CHRCM	ATICITY	ECMINANT		BRIGHTNESS		
CCMPCSITICN CRYSTAL SYSTEM	SOURCE	CCCRC: X	INATES Y	(CCMPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
KCSTERITE 2,1	۵	0.4506	C.4121	578 .7 8	5.28	25.52	420	22.20
CU2 SN ZN S4	С	0.3154	C.3266	568.93	4.19	25.48	4 4 C	22.5C
TETRAGCNAL							460	24•40
REF. FGR R: (LEVY,1966)							480	24.70
REMARKS: LOC. VALLRY							500	25.20
							500	25.20
							520	25.60
							540	25.70
							560	25.50
							580	25.70
							600	25.4C
							620	25.50
							640	25 . 4C

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
CCMPOSITION CRYSTAL SYSTEM	SCURCE	CGORC: X	INATES Y	(CCMFL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
KCSTERITE 1,2	Δ	C.449C	C.4119	575.50	4.03	25.41	420	22.60
CU2 SN ZN S4	С	3515.0	C.325C	566.74	3.33	25.41	440	22.90
TETRAGONAL							460	24.60
REF. FCR R: (LEVY,1966)							480	24.80
REMARKS: LCC. VALLRY							500	25.20
							500	25.20
							520	25.5C
							540	25.70
							560	25.40
							580	25.70
							600	25.40
							620	25.10
							640	24.90

MINERAL NAME			CHRCM	ATICITY	CCMINANT		SRIGHTNESS			
COMPOSITION		SCURCE	CCCRD	INATES	(CCMPL.)	PURITY	(VISUAL R)	LAMECA	REFLECT	TIVITY
CRYSTAL SYSTE	Ŋ		X	Ŷ	WAVELENGTH	(P%)	Y	(NM)	(R _E)	(RN)
FEMATITE		А	0.4335	C.4C61	493.10	3.37	25.40 7 E	470	28.00	31.50
FE2 03		Α	0.4355	C.4071	494.23	2.87	29.12 YN	486	27.60	31.20
TRIGCNAL		С	0.2965	C.3C59	481.08	6.C8	25 . 82 7 8	546	26.20	30.00
		С	0.2988	0.3086	482.26	4.94	29.53 YN	589	25.10	28.80
REF. FCR R: (/CN GE⊦LEN	8 PILLE	R,1965)				650	22.80	26.50
REMARKS: L	C. ELBA,IT	ALY						656	22.60	26.20

Chemical Analysis: $Wt_{\bullet}\%$ Fe_2O_3 99.55 $FeT.iO_3$ - - $MinTiO_3$ 0.04 $MgTiO_3$ ---

99•59

NINERAL NAME	8		CHRCM	ATICITY	CCMINANT		BRIGHTNESS			
COMPOSITION		SCURCE	COORD	INATES	(CEMPL.)	PURITY	(VISUAL R)	LAMECA	REFLEC	TIVITY
CRYSTAL SYST	[EM		X	Ŷ	WAVELENGTH	(PZ)	Y	(NM)	(R _E)	(Rw)
TI-FEMATITE		A	0.4357	C•4C5E	452.36	2.87	23.98 7	470	26.10	29.80
FE(FE,TI)C3		A	0.4362	G.4066	493.45	2.72	27.57 Yw	486	25.70	29.50
TRIGCNAL		С	0.2983	C.3C66	486.25	5.37	24.30 YE	546	24.60	28.30
		C	0.2992	0.3084	481.65	4.82	27.94 Yw	589	23.70	27.30
REF. FOR R:	(VCN GEFLEN	8 PILLE	R,1965)				650	22.00	25.20
REMARKS:	LCC. SNARLM,	NCRWAY						656	21.90	25.10

Chenical	Analysis:		Wt•%
		Fe203	90•7
		FeTiO3	7.8
		MnTiO3	0_06
		MgTiO3	0.6
			99.16

A•265

MINERAL NAME		CHRCM	ATICITY	DEMINANT		BRICHTNESS				
CRYSTAL SYSTEM	SUURCE	X X	INDIES	WAVELENGTH	(F2)	Y	(NM)	(R _E)	(R _W)	
E		0 4504	0 4047	-516 60	1 4 5	17 224	476	17 70	20 40	
ILMANITE	Д	0.4504	0.4047	-515.00	1.45	11032 12	470	11.20	20.00	
FE TI 03	Δ	0.4467	C.4C54	-575.75	C.61	20.22 YN	486	17.10	20.40	
TRIGCNAL	С	0.3114	C.3130	-524.29	1.57	17.24 YE	546	17.00	20.10	
	С	0.3082	0.3122	-567.71	1.30	20.22 YW	589	17.40	20.20	
REF. FOR R: (VCN GEFLEN &	S PILLE	R,1965)				650	18.OC	20.40	
REMARKS: LOC. ILMEN M	rs.,uss	iR					656	18.10	20.40	

Chemical	Analysis:		Wt.%
		$Fe_2^{0}3$	6.6
		FeTiO ₃	80.5
		MnTiO3	9•4
		MgTiO3	3.0
			99•5

A•266

MINERAL NAME		CHRCM.	ATICITY	DCMINANT		BRIGHTNESS			
COMPOSITION CRYSTAL SYSTEM	SCURCE	CGORC X	INATES Y	(CCMPL.) havelength	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLEC	(Rg)
CREDNERITE	Д	0.4373	0.4078	495.29	2.42	23.12 Y p	430	24.70	35.80
CU MN C2	А	0.4348	6.4095	497.48	2.96	33. 91 Yg	470	24.90	36.80
MGNOCLINIC	С	0.3007	C.311C	483.87	3.98	23.41 Yp	490	24.30	36.10
	С	0.2592	0.3125	486.67	4.37	34.46 Yg	520	24.30	36.00
REF. FOR R: (NICHOL & PH.	ILLIPS,	1965)					550	23.6C	35.60
REMARKS: LCC. UNKNOWN							580	23.10	34.CO
							610	22.30	32.20
							650	21.30	36.20

MINERAL NAME		CHRCM	ΑΤΙCΙΤΥ	CCMINANT		BRIGHTNESS			
COMPOSITION	SOURCE	CCORD	INATES	(CCMFL.)	PURITY	(VISUAL R)	LAMBCA	REFLEC	ΤΙΥΙΤΥ
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P%)	Ŷ	(NM)	(RP)	(Rg)
CHALCOPPAN ITE	A	0.4379	C.4C34	487.39	2.49	9.57YP	430	10.80	33.50
(ZN,MN,FE)MN3 C7.3H2 C	۵	0.4252	C.4CCE	485.65	5.59	26.25Yg	47C	10.60	32.20
TRICLINIC	С	G.2992	C.3C47	476.35	5.31	9.68 Yp	490	10.30	30.00
	С	0.2871	0.2942	473.12	10.88	26 . 56 Yg	520	10.00	26.50
REF. FOR R: (NICHOL & PH	ILLIPS,	1965)					550	9.60	27.30
REMARKS: LCC. UNKNOWN							580	9.40	25.70
							610	9.50	24.60
							650	9 . 1C	23.50

MINERAL NAME		CFRCM	ATICITY	DOMINANT		BRIGHTNESS	3	
COMPOSITION CRYSTAL SYSTEM	SCURCI	E CCCRC X	IN ATES Y	(CCMFL.) WAVELENGTH	PURITY (P2)	(VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
PSILCMELANE	Δ	C.4375	C.437C	453.55	2-40	22.96	430	24.70
A3 X6 MN8 C16	С	0.3005	C.3057	482.18	4.20	23.23	470	25.00
CRTHCRHOMBIC							490	24.10
REF. FCR R: (NICHCL &	PHILLIPS	,1964)					52C	23.80
REMARKS: LCC. UNKN	hON						550	23.50
							580	25.00
							610	22.10
							650	21.30

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS		
CCMPESITIEN CRYSTAL SYSTEM	SOURCE	COORD X	INATES Y	(CCNPL.) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMBDA (NM)	REFLECTIVITY R
GALLITE 1	۵	C.4421	C•4051	487.13	1.41	21.65	42C	23.60
CL GA S2	С	0.3036	0.3094	476.43	3.16	21.78	440	23.20
IETRAGCNAL							4 E C	23.00
REF. FOR R: (LEVY,1966)							480	22.70
REMARKS: LCC. TSUMEB							500	22.4C
							500	22.40
							520	22.10
							540	22.00
							560	21.70
							580	21.40
							600	21.20
							620	21.20
							640	21.5C

•

MINERAL NAME CCMFCSITICN CRYSTAL SYSTEM	SOURCE	CHRCM COORC X	ATICITY INATES Y	DCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	ERIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
GALLITE 3	۵	0.44C£	C.4C5C	488•6C	1.77	21.55	420	23.90
CU GA S2	С	C.3C22	C.3CE5	477.40	3.72	21.72	440	23.20
IETRAGCNAL							4 6 C	23.20
REF. FCR R: (LEVY,1566)					-		480	22.80
REMARKS: LCC. TSUMEB							500	22.70
							500	22.70
							520	22.20
							540	21.90
							560	21.50
							580	21.40
							600	21.10
							620	21.10
							640	21.10

MINEFAL NAME Composition Crystal system /	SCURCE	CFROM COORD X	ATICITY INATES Y	DCMINANT (CCMFL.) WAVELENGTH	PURITY (PZ)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLECTIVITY R
GALLITE 2	Α	0.4405	C.4C45	488.43	1.80	21.54	420	23.90
CU GA S2	C	0.3020	C.3CE4	477.78	3.83	21.72	44C	23.20
TETRACONAL							460	27.20
REF. FOR R: (LEVY,1966)							480	22-90
REMARKS: LOC. ISLMEB							500	22.70
							500	22.70
							520	22.40
							540	21.80
							560	21.40
							580	21.40
							600	21.10
				•			620	21.10
							64C	21.10

.

·

MINERAL NAME		CHRCM	ATICITY	CCMINANT		BRIGHTNESS			
COMPOSITION Crystal system	SOURCE	CCCRD. X	INATES Y	(CCMFL•) WAVELENGTH	PURITY (P%)	(VISUAL R) Y	LAMEDA (NM)	REFLEC (R و)	TIVITY (Rg)
BRAUNITE	Α	0.4391	0.4062	492.18	2.06	19.97 Y P	430	21.70	22.80
MN MN6(C8/SI 04)	Д	0.4382	0.4064	492.80	2.26	2 6. 88 Yg	470	21.50	22.5C
TETRAGENAL	С	0.3015	C.3C92	486.20	3.92	20.16 Yp	490	20.60	21.70
	C	8.3CCE	0.3051	48 C. 95	4.17	21.10Yg	520	20.70	21.70
REF. FOR R: (NICHOL & PI	HILL IPS,	1965)					550	20.40	21.40
REMARKS: LOC. UNKNOW	Ň						580	15 . 8C	20.70
							610	19.40	20.20
							65C	19.00	15.70

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS			
	SOURCE	COORD	INATES	(CCMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGIE	(PZ)	Y	(NM)	(кр)	
HAUSMANNITE	۵	0.4382	0.4073	494.43	2.23	16.85 YP	43C	18.00	21.70
(MN,FEJMN2 04	۵	6.4368	C.4C73	454.47	2.56	19.93 Y	470	18.10	21.40
TETRAGENAL	С	0.3013	G.3107	482.88	3.80	17. C4 YP	4 S C	17.80	21.20
	C	0.3000	C.3(\$\$	482.52	4.35	20.19 Yg	520	17.50	20.80
REF. FOR R: (NICHGL & PH	ILLIPS,	1965)					550	17.20	20.50
REMARKS: LCC. UNKNOWN							580	16.80	19.80
							610	16.40	19.20
							650	15.60	18.40

•

•

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS			
COMPOSITION	SCURCE	CCCRC	INATES	(CCMPL.)	PURITY	(VISUAL R)	LAMECA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P%)	Ŷ	(NM)	(R P)	(و)
PYRCCHRCITE	Α	0.4388	0.4052	49 6. 32	2.18	14.99 YP	430	16.40	19.10
MN(OH)2	A	C.4388	0.4067	493.24	2.10	17.55 Yg	470	16.30	18.60
HEXAGENAL	С	0.3005	C.3C77	478.53	4.32	15.13 Yp	490	16.00	18.80
	C	0.3016	C.31CC	481.42	3.78	17.78 Yg	520	15.30	18.10
REF. FCR R: (NICHOL & PH	ILL IPS,	1965)					550	15.20	17.90
REMARKS: LCC. UNKNOW	Ň						580	15.00	17.60
							610	14.60	17.10
							650	14.20	16.50

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS			
CEMPOSITIEN	SOURCE	COGRD	INATES	(COMPL.)	PURITY	(VISUAL R)	LAMBDA	REFLEC	FIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P%)	Y	(NM)	(Rp)	(Rg)
HETAERCLITE	Δ.	0.4379	C•4065	493.03	2.32	13.17 YP	43C	14.30	19.00
ZN MN2 04	А	0.4373	(.4(62	492.64	2.48	17.22 ک ر	470	14.20	18.60
TETRAGCNAL	C	3008.0	0.3092	481.10	4.16	13. 32 YP	4 S C	14.00	18.20
	С	0.3000	C.3CE4	48C•83	4.54	17.43 Yg	520	13.60	18.00
REF. FCR R: (NICHCL &	PHILLIPS,	1965)					550	13.40	17.50
REMARKS: LOC. UNKNO	WN						580	13.20	17.20
							610	12.80	16.70
							650	12.20	16.00

·

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SCURCE	CHRCM/ COGRC X	ATICITY INATES Y	DCMINANT (CCMPL•) Wavelength	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMBDA (NM)	REFLEC	۱۱۷۱۲۷ (۹)
GROUTITE	A	C.4415	C.4CEC	456.19	1.42	12.23 Yp	430	12.80	21.40
ALPHA-MN CCH	А	0.4416	C.4059	490.23	1.45	15.E2 Yg	47C	12.60	20.80
CRTHORHOMEIC	С	C.3C45	C.3135	484.72	2.33	12.32 Yp	490	12.70	20.50
	C	0.3039	C.3099	476.54	2.99	15.54 Yg	520	12.60	20.00
REF. FOR R: (NICHOL & PH	ILLIPS,	1965)					550	12.40	20.00
REMARKS: LCC. UNKNOWN	•						5 E C	12.20	20.60
							610	12.00	19.50
							650	11.60	18.90

MINERAL NAME	S CHID C E	CHRCMATICITY	DCMINANT	CHRITY	BRIGHTNESS			T T // I T V
CRYSTAL SYSTEM	SLUKUE	X Y	WAVELENGTH	(P2)	Y	(NM)	(Rp)	(Rg)
ANTIMONY	Δ	G.4426 C.4CE1	496.85	1.16	73.54 Yp	470	75.5C	77.30
SE	А	C.4434 U.4C79	496.42	0.98	75.53 Yg	546	74.70	76.60
TRIGCNAL	C	0.3C58 C.3143	485.18	1.78	73.5E YP	589	73.3C	75.20
	C	0.3C63 C.3145	485.07	1.57	75.92 Yg	650	70.20	72 . 8C

REF. FCR R: CERVELLE & CAYE (1968)

REMARKS: LCC: MEYMAC, FRANCE. SE=997; AG=1RACES

CYSCRASITE	Δ	0.4505 C.4CEE	585.39	2.92	61.73 Yp	470	59.90	62.60
AC3 SB	А	C.4536 C.4072	594.37	3.91	65.00 Yg	546	61.50	64 . GC
CRTHCRHCMBIC	С	0.3136 C.32CC	576.82	1.53	61.53 Yp	589	62.20	65 . 1C
	С	0.3157 0.3195	585.42	2.36	64.54 Yg	650	62.10	68.50

REF. FCR R: ARAYA (1968)

REMARKS: LOC: UNKNOWN

MINERAL NAME		CHRCM	ATICITY	DCMINANT		BRIGHTNESS				
CCMPCSITICN	SCURCE	CCCRCI	INATES	(CCMFL.)	FURITY	(VISUAL R)	LAMECA	PEFI	LECTI	VITY
CRYSTAL SYSTEM		x	Y	WAVELENGTH	(P%)	Ŷ	(NM)	۹ ۶	Rm	۳g
FARACCCRASITE	۵	0.4451	C.4C74	494.11	C.59	67.50Yp	470	68.6	71.2	75.0
SE2 (SE,AS)2	4	€.4449	C.4C7E	496.70	0.63	7C•22 Ym	546	67.8	70.5	73.8
MCNCCLINIC	A	0.4437	C.4C76	495.23	C.92	73.27Ng	589	67.6	70.7	73.6
	C 1	0.3077	C.3145	481.29	1.07	67.69 Yp	650	65.9	67.8	70.2
	C	C. 3(79	C.315C	483 . 5C	C.54	7C.42 Ym				
	C	0.3066	C.314C	482.59	1.52	·73.55 Yg				

REF. FCF R: E.F. LECNARC & MEAC(1971)

REMARKS: LCC. ERCKEN FILL, NEW SCUTH WALES. A NEW MINERAL

•

A.279

MINERAL NAME		CHROMA	TICITY	DCMINANT		BRIGHTNESS			
CGMPGSITICN	SOURCE	COORDIN	NATES	(CCMPL.)	PURITY	(VISUAL R)	LAMECA	REFLEC	TIVITY
CRYSTAL SYSTEM		x	Y	WAVELENGTH	(P%)	Y	(NM)	(Rp)	(و ا
MELCNITE	Δ (0.4586 (C.40EC	591.84	£.C4	59.C1 7 p	470	54.50	56.30
NI TE2	Δ	C.4626 (0.4043	600.93	8.17	6C.88Y	546	57.00	56.30
HEXAGENAL	C (0.3215 (0.3236	583.83	5.02	58.22 7p	589	€C•40	64.00
	C	0.3235 (C•3196	595.6 4	4.58	59.66 Yg	650	62.90	66.90

REF. FOR R: BURKE, FREE UNIV., AMSTERDAM

REMARKS: LCC: RCBB MENTERAY MINE, QUEBEC, CANADA

BISMUTH	A	0.4585 0.4097	583.74	5.08	58.55 Yp	470	53.30	58.50
5 I	Δ	C.4555 C.41C2	586 . 67	7.35	63.07 Yg	546	57.10	62.90
TRIGGNAL	С	0.3224 C.3266	580.07	6.06	57.81 Yp	589	59.60	62.90
	С	C.3192 C.3259	577.24	4.98	62.55 Yg	650	61.60	66.40

.

REF. FCR R: CERVELLE & CAYE (1968)

REMARKS: LOC: ALLEMENT, FRANCE. BI=96.8%; SE=2.3%; AS=C.2%

MINERAL NAME		CHREMATICITY	DEMINANT		BRICHTNESS			
COMPOSITION	SOURCE	COORDINATES	(CENPL.)	PURITY	(VISUAL R)	LAMBCA	REFLEC	TIVITY
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P%)	Y	(NM)	(Rp)	(و R)
KITKAITE	۵	0.4581 0.4099	588.29	٤.54	57.01 Yp	470	52.00	54.70
NI TE SE	Α	0.4576 6.4657	588.44	8.45	59.65 Yg	546	55 . 80	58.30
HEXAGONAL	C	0.3220 0.3267	579.48	5.98	56.32 YP	589	58.10	€1.CC
	С	0.3214 0.3259	575.87	5.61	58.96 Yg	650	60.00	62.30

REF. FOR R: EURKE, FREE UNIV., AMSTERCAM

REMARKS: LOC: KUUSAMC, FINLAND

.

RAMMESLBERGITE	۵	0.4448 0.4051	477.74	0.81	56.50 Yp	47C	59.00	62 . 5C
NI AS	A	0.4439 C.4C51	482.83	1.00	59.92 Yg	546	56.80	59.90
CRTHCRHCMBIC	С	0.3062 0.3109	470.11	2.05	57.CE YP	589	56.50	55.60
	С	0.3054 0.3103	472.44	2.44	60.15 Yg	650	57.00	59.40

REF. FOR R: W.PETRUK, OTTAWA

REMARKS: LCC: EISLEBEN, GERMANY

A•281

MINERAL NAME CCMPCSITICN	SCUPCE	CHRCMA CCCRCI	TICITY	DCMINANT (COMPL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(F%)	Ŷ	(N. M.)	(Rp)	(Rg)
RAMMELSBERGITE	Δ (0.4449	0.4058	483.24	0.73	56.47 7P	470	58.2C	£1. 80
NIAS	Δ (0.4437	6.4057	486.65	1.01	59.43 79	546	56.60	59.70
CRTHCRHCMBIC	C	0.3066	C.3121	473.97	1.77	56.64 7p	589	56.00	58.90
	C (0.3054	0.3111	475.66	2.32	59.65 Yg	650	56.40	58.80

REF. FOR R: W.PETRLK, CTTAWA

REMARKS: LCC: EISLEBEN, GERMANY

							RE	RN
MILLERITE	۵	C.4683 G.4175	584.99	21.29	55.24 YE	470	43.60	43.90
NI S	۵	C.4605 C.4127	585.89	12.56	50.17 Yw	546	54.30	49.40
HEXAGONAL	C	C.3377 C.3472	576.04	15.70	54.02 Yz	589	57.40	51 . 4C
	С	0.3261 0.3331	57ć•92	8.80	45.46 Yw	650	58.40	52.40

REF. FOR R: BURKE, FREE UNIV., AMSTERDAM

REMARKS: LGC: LIEUSIN, KLACNC BCHEMIA

A~282

MINERAL NAME COMPOSITION CRYSTAL SYSTEM	SCLRCE	CHREMAT CCCREIN X	ICITY ATES Y	COMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	refi r _ø	. ЕСТ I ' ^R β	VITY R g
ARSENCPYRITE	А	0.4518 C	.4085	588.14	3.60	52.68 Y a	470	50.8	48.7	51.8
FE AS S	٨	D.4539 C	.4106	584.91	6.52	52.12 YB	546	52.2	51.8	51.9
MONOCL IN IC	A	C.4468 C	•4077	603.02	C•42	51.73 Yr	589+	53.2	52.8	51.7
	C	G.3148 C	.3203	579.85	2.33	52.43 Va	650	53 . 6	52.9	51.3
	С	C.318C O	.3251	576.11	4.48	51.77 YB				
	C	0.3095 0	.3162	600.65	C.19	51.77 Yr				

.

REF. FCF R: P.R. SIMFSCN(LCNDCN)

REMARKS: LCC. UNKNEWN

A• 283

MINERAL NAME	SOURCE	CHREMATICI	IY DEMINANT S (CEMPL.)	PURITY	ERIGHTNESS (VISUAL R)	LAMBCA	REFLEC	TIVITY
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P%)	Ŷ	(NM)	(R P)	(Rg)
STANNCPALLACINITE	A	0.4601 0.41	BC 585.48	12.48	53.68 7 9	460	46.20	48.50
PC3 SN2	Α	C.4606 C.410	5 587.78	11.37	55.30 Yg	540	53.00	54.CC
HEXAGONAL	C	0.3257 0.33	36 576.17	8.83	52.98 Yp	580	54.CC	55.50
	C (0.3249 C.33	2 578.48	7.70	54.51 Yg	660	57.00	60.00

REF. FOR R: L.VYALSCV, MCSCCW

REMARKS: LCC: UNKNOWN

.

ARSENIC	Α	0.4433 0.4061	489.17	1.08	44 . 28 Yp	47C	46.CO	46.70
۵S	۵	0.4428 C.4C54	487.11	1.23	44.57 Yg	546	44.60	44.80
TRIGONAL (PSEUDGCUBIC)	С	C.3C53 0.3116	477.65	2.27	44.45 Yp	589	43.50	44 . 2C
	С	0.3045 0.3102	475.57	2.75	44• 81 Y g	650	43.50	43.80

REF. FCR R: CERVELLE & CAYE (1968)

REMARKS: LCC: STE.MARIE AUX MINE, FRANCE. AS=98%; SB=2%

MINERAL NAME CCMPCSITICN CRYSTAL SYSTEM	SGURCE	CHREMATICI COORDINATES X Y	IY CCMINANT (CCMPL.) WAVELENGTH	PURITY (P%)	BRIGHTNESS (VISUAL R) Y	LAMECA (NM)	REFLEC ⁻ (r _e)	(Rw)
BREITHAUPITE	Δ	0.4719 6.460	2 606.62	11.75	41.72 Ye	470	37.40	45.50
NI SB	A	C.4658 G.406	7 594.18	11.95	51.33 Yw	546	36.90	48.20
+ EXAGCNAL	C i	0.3312 C.318	604.23	6.29	40.37 YE	585	43.70	53.00
	C	C.3283 C.326	1 586.24	7.51	50.18 Yw	650	51.00	58.CC

REF. FCR R: EURKE, FREE UNIV., AMSTERDAM

REMARKS: LCC: CCBALT, CNTARIC CANACA

							Rp	Rg	K C
SCHAPBACHITE(MATILCITE)	۵	C.4450 0.4075	454.75	C.61	43.49 Yp	47C	44.20	45.30	110
AG BI S2	А	C.4453 C.4C73	493.31	J.55	44.60 Yg	546	43.80	44.90	
HEXAGENAL	С	0.3C77 C.3147	482.46	1.04	43.63 Yp	585	43.40	44•40	
	С	0.3075 0.3147	481.61	0.97	44.72 Yg	650	42.60	44.00	.

REF. FOR R: HARRIS & THORPE (1969)

.

REMARKS: LCC: CAMSELL RIVER, CANADA

A•286

MINERAL NAME		CHRCM	ATICITY	DEMINANT		BFIGHTNESS				
CCMPCSITICN	SCURC	E COORD	INATES	(CC1PL.)	PURITY	(VISUAL R)	LAMECA	REFI	LECTI	VITY
CRYSTAL SYSTEM		x	Y	WAVELENGTH	(P१)	Y	(NM)	^R ⊶	P.B	Rð
STIENITE	۵	0.4397	0.4049	439.11	1.98	41.40 Ye r	470	44.4	30.8	52.6
SE2 S3	А	0.4425	C.4C9C	499.93	1.16	30.13 YB	546	42.1	31.1	48.1
CRTHCRHCMEIC	۵	0.4276	C.4039	491.72	4.87	45.27 Yr	585	40.4	29.3	42.1
	С	6.3012	C.3075	478.22	4.15	41.78 Yo	650	40.4	29.3	42.1
	С	0.3057	C.316C	490.15	1.66	30.35 Yp				
	С	C.2899	C.3005	480.83	9.08	46.39 Y	•			

REF. FOR R: P.R. SIMFSON(LONDON)

•

REMARKS: LCC. UNKNCHN

A.287

MINERAL NAME Composition	SCURCE	CHRCMATICITY COGFDINATES	CCMINANT	PURITY	BRIGHTNESS (VISUAL R)	LAMECA	REFLEC	ΤΙνίτγ
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P\$)	Y	(NM)	(Rp)	(و R)
FESSITE	A (D•442C C•4C57	489.25	1.40	38.17 YP	460	40.30	40.70
AG2 TE	Δ (0.4518 C.4062	500.22	C.95	41.43 Yg	54C	36.70	40.80
MENGELINIC	с (C.3(39 C.31(3	478.01	2.94	38.41 Yp	580	37.80	41.30
	c c	.3135 0.3167	489.54	1.29	41.20 Yg	64C	37.40	43.00

•

REF. FOR R: L.LOGINOVA, MOSCOW

REMARKS: LCC UNKNOWN

GEOCRONITE	Α	0.4432 C.4076	495.18	1.03	37.92 Np	460	39.00	43.20
27PB 5 7(SE,AS)2 S3	۵	0.4408 0.4060	491.03	1.67	40.70 ×9	54C	38.40	41.30
MONGOL IN IC	с	0.3061 0.3139	483.38	1.71	38.11 Yp	580	38.00	4C.60
	С	0.3030 0.3100	479.27	3.29	41.01 Yg	650	36.50	39.00

REF. FOR R: L. VYALSOV, MOSCOW

REMARKS: LCC: UNKNOWN
MINERAL NAME COMPOSITION	SCLRCE	CHROMATIC CCGFDINAT	ITY ES	DEMINANT (CEMPL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBCA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(PZ)	Y	(NM)	(Rp)	(Rg)
BISMUTHINITE	A	G.4425 C.4	C54	487.59	1.30	37.63 Yp	470	39.50	50.60
BI2 S3	Δ (0.4428 C.4	C E 2	457.30	1.11	49.39 Yg	546	37.80	50.20
GRTHORHOMEIC	C	G.3C43 C.3	100	475.03	2.84	37.84 Yp	585	37.40	49.20
	C (0.3060 0.3	146	485.83	1.67	49.68 Yg	65C	36.80	47.20

REF. FOR R: BURKE, FREE UNIV., AMSTERDAM

REMARKS: LCC: AVENTURA MINE, BOLIVIA

LAUNAYITE	Α	C.4414 C.4055	489.23	1.55	36•56Yp	470	38.60	46.20
22PB S 13(SB,AS)2 S3	۵	0.4389 0.4056	491.07	2.14	43.13 Yg	546	36.90	43.80
MCNOCLINIC	С	0.3033 C.3056	477.72	3.24	36.81 Yp	589	36.20	42.70
	С	0.3011 0.3083	479.24	4.17	43.56 Yg	650	35.50	40.90

REF. FOR R: JAMBOR (1967)

REMARKS: LCC: MAEOC, ONTARIO CANADA

MINERAL NAME COMPOSITION	SCURCE	CHRCMATICI	IY DCMINANT 5 (CCMPL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	TIVITY
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P%)	Y	(NM)	(Rp)	(Rg)
VEENITE	A (0.4375 0.400	492.77	2.43	36.75 Yp	470	39.50	45.50
2PB S.(SB,AS)2 S3	A (0.4383 6.40	59 491.86	2.25	42.42 Yg	546	37.60	43.20
CRTHCRHOMEIC	C (0.3001 0.30	6 481.01	4.48	37.18 Yp	589	36.30	42.CC
	C (C.3CC7 C.3C	4 475.98	4.30	42.87 Yg	650	34.30	39.90

REF. FOR R: JAMBOR (1967)

REMARKS: LOC: MACOC, CNTARIO CANACA

SCREVITE	۵	0.4380 C.4C60	492.13	2.32	36.32 Yp	47C	39.00	45.00
17PE S.11(SB,AS)2 S3	Α	0.4382 C.4C6C	492.07	2.28	41.94 Yg	546	37.00	43.OC
MENCEL IN IC	С	0.3005 0.3084	48G.24	4.37	36.72 Yp	589	36.00	41.00
	С	0.3005 C.3C87	48C.69	4.33	42.41 Yg	650	34.00	40.00

REF. FOR R: JAMBOR (1967)

REMARKS: LOC: MACOC, ONTARIO CANADA

MINERAL NAME COMPOSITION	SCURCE	CHROMA COORCI	TICITY NATES	DCMINANT (CCMPL•)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	ΤΙνΙΤΥ
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P%)	Y	(NM)	(R _f)	(Rg)
TWINNITE	۵	0.4394	C . 4C59	491.47	2.00	36.31 Yp	470	36.70	45.60
PE S(SE,AS)2 S3	А	0.4374	C.4C55	49].45	2.49	42.15 Yg	546	36.90	43.00
MCNOCLINIC(FSEUDO-CRTHO.)) с	0.3017	0.3090	475.55	3.87	36.65 Yp	585	35.90	41.60
	С	0.2997 (0.3(74	475.75	4.77	42.65 Yg	650	34.60	39.60

REF. FCR R: JANEGR (1967)

REMARKS: LOC: MACOC, CNTARIO CANADA

HETEROMCRPHITE	۵	0.4442 0.4109	515.31	0.83	36.17 Yp	45C	35.70	39.30
7PB S 4SE2 S3	Δ	0.4442 C.4112	518.C8	88.0	39.98 Yg	550	37.00	41.00
PENCELINIC	С	0.3086 6.3196	520.07	C• 64	36.34 YP	575	36.50	40.30
	С	0.3088 0.3202	528.79	C•79	40.17 Yg	640	34.40	38.00

REF. FOR R: A.RAKTSHEEV, MCSCOW

REMARKS: LOC: UNKNOWN

.

MINERAL NAME		CHREMATICITY	DCMINANT		BRIGHTNESS			
CCMPCSITICN	SCURCE	COORDINATES	(CCMPL.)	PURITY	(VISUAL R)	LAMECA	REFLEC	TIVITY
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P2)	Y	(NM)	(Rp)	(Rg)
TINTINAITE	٥	0.4415 C.4C62	490.90	1.40	35.71 Yr	47C	37.40	43.90
5PB S 4(BI> <sb)2 s3<="" td=""><td>Δ</td><td>C.4434 C.4671</td><td>493.17</td><td>1.00</td><td>42.61 Yg</td><td>546</td><td>36.30</td><td>43.30</td></sb)2>	Δ	C.4434 C.4671	493.17	1.00	42.61 Yg	546	36.30	43.30
CRTHCRHGMBIC	C	0.3040 0.3111	475.80	2.80	35.95 Yp	585	35.00	41.90
	C	0.3658 0.3134	482.36	1.28	42.84 Yg	650	35.10	42.00

REF. FOR R: EURKE, FREE UNIV., AMSTERDAM

REMARKS: LOC: TINTINA, CANADA

PLAYFAIRITE	Α	0.4390 C.4C58	451.42	2.10	35.80 YP	470	38.30	42.30
16PB 5.9(SP,AS)2 S3	۵	0.4393 0.4059	491.51	2.03	35.64 Yg	546	36.40	40.30
MCNGCL IN IC	С	0.3012 0.3086	475.60	4.10	36.16 Yp	589	35.40	39.20
	С	0.3015 0.3089	479.68	3.95	40.02 Yg	65C	34.00	37.70

REF. FOR R: JAMBOR (1967)

REMARKS: LOC: MACOC, CNTARIO CANACA

MINERAL NAME	SCURCE	CHROMATICITY COCRCINATES	DOMINANT (CCMPL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	ΤΙνιτγ
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P%)	Ŷ	(NP)	(Rp)	(Rg)
STERRYITE	Δ	C.44C1 C.4061	491.61	1.83	35.46 Yp	47C	37.60	40.40
12PB \$ 5(SE,AS)2 \$3	Δ	0.4399 0.4062	491.91	1.87	38. CS Yg	546	36.CO	38.70
ORTHGRHCMBIC	C	0.3023 0.3096	479.70	3.58	35.77 YP	589	35.10	37.70
	C	0.3022 0.3057	480.05	3.61	38.43 Yg	650	33.90	36.30

.

REF. FOR R: JAMBOR (1967)

REMARKS: LCC: MACOC, CNTARIO CANADA

GUETTARDITE	A	6.4394 C.4065	492.71	1.97	34.22 Yp	470	36.30	44.20
SPB S.8(SE,AS)2 S3	۵	0.4386 0.4059	491.76	2.19	41.26 Yg	546	34.80	42.00
MENGELINIC	С	0.3020 0.3099	483.71	3.65	34.54 Yp	589	34.00	4C.EC
	С	0.3009 C.3085	479.87	4.21	41.65 Yg	65C	32.20	39.00

REF. FOR R: JAMBOR (1967)

REMARKS: LCC: MAECC, CNTARIO CANADA

MINEPAL NAME		CHRCM	ATICITY	DEMINANT		BFIGHTNESS				
CCMPCSITICN	SCURCI	E CCORD	INATES	(CCMPL.)	PURITY	(VISUAL P)	LAMECA	FEF	LECTI	VITY
CRYSTAL SYSTEM		X	Y	KAVELENGTH	(P%)	Y	(N M)	Ret	RB	RJ
BCURNENITE	۵	0.4435	C.4CEC	495.55	1.66	34. E7 Ya	47C	36.3	35.5	37.6
2PB S CU2 S SB2 S3	A	C.4392	6.4062	492.15	2.03	33.34 YB	546	35.6	33.9	35.5
CRTHGRHCMBIC	۵	0.4383	0.4057	491.49	2.27	35.04 Yr	589	34.7	32.9	34.5
	С	0.3038	0.3129	484.19	2.65	35.16 Y a	650	32.7	31.6	32.7
	С	0.3016	0.3094	486.40	3.86	33.66 Y A	•			
	С	0.3007	C.3079	479.17	4.36	35.40 71	1			

.

.

REF. FCR R: P.R. SIMPSCN(LCNDCN)

REMARKS: LCC. PRIBRAM, USSR

there is no **بې** تورن

A.295

.

MINERAL NAME		CHRCM	ATICITY	DOMINANT		BPIGHTNESS				
CCMPGSITICN	SCURCE	CCCFC	INATES	(CENFL.)	PURITY	(VISUAL R)	LAMBDA	REFL	ECTI	VITY
CRYSTAL SYSTEM		x	Ŷ	WAVELENGTH	(P१)	Y	(NM)	R 🔫	Rß	^R 7
CHALCECITE	Д	0.4319	C.4C3S	45C.88	3.86	32.43 b	470	36.7	36.7	36.7
CU2 S	Δ	0.4323	C.4C38	490.66	3.78	32.48 Yp	546	33.3	33.3	33.1
CRTHCRHCMBIC	Δ	0.4326	C.4(29	489.51	3.75	32.33 Yr	589	31.7	31.8	31.5
	C	0.2941	0.3019	475.08	7.44	33.C1 Ya	650	25.E	29.7	30.2
	C	0.2544	C.3C2C	478.51	7.32	33. C5 YB				
	С	0.2942	0.3009	477.55	7.53	32.88 Y 8				

REF. FCR R: P.R. SIMPSON(LCNCON)

REMARKS: LCC. UNKNOWN

A•296

.

MINERAL NAME		CHROMA	ATICITY	DCMINANT		BRIGHTNESS		_	
COMPOSITION	SCURCE	COCPDI	INATES	(CCMFL.)	PURITY	(VISUAL R)	LAMBDA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P%)	Y	(N₩)	(Re)	(Rw)
ESKEBCRNITE	Α	0.4726	C.413G	588.44	21.14	25.667 8	470	20.40	30.60
CU FE SE2	۵	0.4628	C.4122	587.09	13.80	35.35 Yw	546	24.40	34.60
HEXAGONAL	С	0.3398	0.3421	579.56	14.89	24.93 Y E	589	26.70	36.20
	С	0.3282	0.3338	574.61	10.89	34.75 YW	650	29.00	37.90

REF. FOR R: BURKE, FREE UNIV., AMSTERCAM

REMARKS: LOC: EAGLE GRCUP, CANADA

							Rp	Rع
GETCHELLITE	А	C.436C 0.4031	488.19	2.94	25.55 7 p	470	28.4C	30.70
AS SE S3	۵	0.4341 0.4016	487.12	3.47	27.01 Yg	546	25.SC	27.30
MCNGCLINIC	С	C.2573 C.3025	476.68	6.20	25.88 Yp	589	25.10	26.50
	C	0.2950 0.2996	475.67	7.44	27.41 Yg	65C	24.30	25.60

REF. FOR R: BURKE, FREE UNIV., AMSTERCAM

.

REMARKS: LCC: GETCHELL MINE, NEVADA, USA

MINERAL NAME Composition	SCURCE	CHROMATICITY COCRDINATES	DCMINANT (CCMFL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	ΤΙνιτγ
CRYSTAL SYSTEM		X ¥	WAVELENGTH	(P%)	Y	(NM)	(RP)	(R))
STANNCIDITE	Δ	0.4678 C.4137	587.13	18.30	25.08 Yp	470	20.60	22.60
CU5 SN(FE,ZN)2 S8	۵	0.4664 0.4132	587.18	16.99	27.12 Yg	546	24.40	26.40
GRTHERHEMEIC	С	0.3345 (.34(1	577.86	12.90	24.52 Yp	589	25.70	27.80
	C	0.3328 0.3382	578.10	11.97	26.55 Yg	650	27.60	29.60

•

REF. FCR R: BURKE, FREE UNIV., AMSTERDAM

REMARKS: LOC: KONJO MINE, JAFAN

CINNABAR	A	C.4381 C.4C31	486.62	2.46	24.71 Yp	460	27.40	29.90
FG S	۵	0.4386 0.4082	496.12	2.10	28.33 Yg	540	25.00	29.30
TRIGCNAL	С	C.2553 C.3040	475.10	5.38	24.56 Yp	580	24.50	28.20
	С	0.3019 0.3123	484.88	3.40	28.64 Yg	640	23.90	26.60

REF. FOR R: L.VYALSOV, MOSCOW

REMARKS: LCC: UNKNOWN

MINERAL NAME Composition	SCURCE	CHROMAT COCRDIN	ICITY ATES	CCMINANT (CCMFL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBEA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(PZ)	Y	(N <i>M</i>)	(Rp)	(Rg)
CINNIBAR	А	0.4390 C	4038	487.24	2.21	23.88 YP	470	25.90	30.40
FG S	۵	0.4403 0	•4066	492.69	1.76	28.87 Yg	546	23.90	29.10
TRIGONAL	С	0.3005 0	.3054	475.16	4.78	24.05 Yp	589	23.90	29.10
	С	0.3C31 C	.31C3	497.73	3.22	25.1C Yg	650	22.70	26.90

REF. FCR R: HABER, FREE UNIV., AMSTERCAM

REMARKS: LCC: ZIPS-GCMCRER,USSR

							RN	Re
C INNABAR	А	0.4382 0.4043	488.91	2.36	24.42 Yw	470	26.53	30.73
HG S	۵	0.4364 0.4071	494.18	2.65	28.57 YE	546	24.68	29.51
TRIGGNAL	C	0.2999 0.3059	477.32	4.89	24.67 Yw	585	24.17	28.C3
	C	0.2995 0.3093	482.55	4.61	28. 95 Ye	650	23.26	26.44

REF. FOR R: LCPEZ-SCLER ET AL (1970)

REMARKS: LCC: RIANC, LECN, SPAIN

.

MINERAL NAME	SCURCE	CHROMATICITY	DCMINANT		BRIGHTNESS			τιντν
CRYSTAL SYSTEM	JUNCE		WAVELENGTH	(P%)	Y Y	(NM)	(R _E)	(R _W)
MAGNETCFLUMBITE	Δ	0.4396 0.4064	452.45	1.93	21.4E Y E	470	22.80	24.90
PE 0.6FE2 03	Α	0.4393 C.4C65	452.74	2.00	23.44 Yw	546	22.00	24.00
HEXAGONAL	C	0.3019 0.3101	481.20	3.66	21.65 YE	589	21.00	23.00
	C	0.3017 6.3101	481.46	3.73	23.68 Yw	650	20.70	22.40

REF. FOR R: BURKE, FREE UNIV., AMSTERDAM

REMARKS: LCC: LONG BAN, SWEDEN

							Rp	Rg
RUTILE	Α	C.4395 0.4042	487.67	2.07	19.74 Yp	470	21.30	24.70
TI 02	۵	0.4400 0.4046	488.15	1.93	23.02 Yg	546	19.90	23.20
TETRAGONAL	С	C.3C10 0.3065	47ć . 18	4•45	19.91 Yp	589	19.50	22.80
	С	0.3016 0.3073	476.48	4.13	23.22 Yg	65C	19.10	22.25

.

REF. FCR R: HABER, FREE UNIV., AMSTERDAM

REMARKS: LOC: ZIPS-GOMCRER, USSR

FINERAL NAME Composition	SCURCE	CHROM/ COGRD	ATICITY INATES	DCMINANT (CCMPL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P%)	Y	(NM)	(R)	(R)
NB-RUTILE(ILMENORLTILE)	۵	C•4415	0.4051	487.93	1.55	19.18	470	20.30	21.40
(FE>NN X+Y (NE>TA)2X TI2-	(3X+Y)C	4-Y							
	Α	0.4411	0.4046	486.95	1.67	20.09	546	19.30	20.20
TETRAGONAL	С	0.3032	2336.3	476.25	3.37	19.30	589	19.00	19.90
	С	0.3026	C.3080	475.66	3.70	20.23	650	18.70	15 . 6C

REF. FOR R: EURKE, FREE UNIV., AMSTERDAM

REMARKS: LOC: LEIRA, N.E. BRAZIL

TAPIOLITE	Α	0.4444 C.4C71	492.66	0.77	16.61	470	17.00	16.00
(FE,MN)TA2 06	۵	0.4420 0.4063	491.14	1.37	15.30	546	16.70	15.50
TETRAGONAL	С	0.3(69 (.3136	479.93	1.46	16.67	589	16.60	15.10
	C	0.3041 0.3112	475.83	2.75	15.40	650	16.20	14.90

REF. FOR R: EURKE, FREE UNIV., AMSTERDAM

REMARKS: LCC: N.E. ERAZIL

MINERAL NAME CCMPOSITION	SCURCE	CHROMATICI	TY DOMINANT S (CCMFL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	ΤΙνΙΤΥ
CRYSTAL SYSTEM		X Y	WAVELENGTH	(PZ)	Y	(NM)	(RE)	(Rw)
TAPIOLITE	Δ	C.4476 C.4C	88 489.04	0.98	17.69 7	47C	17.50	16.40
(FE,MN)TA2 06	Α	0•4437 C•4C	62 489.04	C•98	15.84 YN	546	17.80	15.90
TETRAGONAL	С	C.31C8 C.31	83 564.67	0.73	17.764	589	17.70	15.80
	C	0.3058 0.31	18 476.69	2.08	15.91Yw	6 50	17.50	15.50

REF. FOR R: BURKE, FREE UNIV., AMSTERCAM

REMARKS: LCC: N.E. BRAZIL

							Rp	Rg
PLATTNERITE	A.	0.4320 0.4065	493.70	3.71	16.5C Yp	470	18.30	19.50
PB 02	۵	0.4307 0.4049	492.17	4.05	17.24 Yg	546	17.20	17.90
TETRAGONAL	C	0.2953 C.3C6C	482.06	6.49	16.81 Ур	589	16.10	16.80
	С	0.2935 0.3029	480.46	7.52	17.58 Yg	650	14.80	15.50

REF. FOR R: BURKE, FREE UNIV., AMSTERDAM

REMARKS: LOC: TCHAH-KHCUNI MINE, ANARAK, IRAN

MINERAL NAME Composition	SCURCE	CHROMATICI	IY DEMINANT S (CEMFL.)	BRIGHTNESS (VISUAL R)	LAMECA	REFLECTIVITY		
CRYSTAL SYSTEM		X Y	WAVELENGTH	(PZ)	Y	(NM)	(Rp)	(Rg)
WCL FRAMITE	Δ.	C.4455 C.4C	507.27	C•48	15.78 Yr	470	15.80	18.50
(FE,MN)\04	4	0.4456 0.400	E8 506.92	C.45	18.46 Yg	546	16.CO	18.70
MCNOCLINIC	C (0.3088 0.31	14 501.46	C•43	15.82 Yp	589	15.70	18.40
	C	C.3CE8 C.31	12 499.44	C.43	18.51 Yg	650	15.40	18.00

REF. FOR R: EURKE, FREE UNIV., AMSTERCAM

REMARKS: LOC: UNKNOWN

WODGINITE	۵	0.4438 0.4046	489.82	0.95	14.23 Yp	470	14.70	15.80
(TA,NE,FE,MN,SN,ZR)16 032	A	C.4457 C.406C	475.54	0.54	15.43 Yg	546	14.30	15.40
MCNCCLINIC	С	0.3060 0.3123	477.88	1.95	14.25 Yp	589	14.20	15.40
	С	0.3076 0.3127	477.72	3.24	15.46 Yg	650	13.90	15.40

REF. FOR R: BURKE, FREE UNIV., AMSTERDAM

REMARKS: LCC: SERIECZINHC, ERAZIL

MINERAL NAME CCMPCSITICN	SCURCE	CHECMATIC CCCRDINATI	11Y 85	CCMINANT (CCMFL.)	PURITY	ERIGHTNESS (VISUAL R)	LAMECA	REFLEC	TIVITY
CRYSTAL SYSTEM		X	Y	WAVELENGTH	(P%)	Ŷ	(NM)	(RE)	(Rw)
LMANGITE	A	0,4309 0,40	CC4	487.34	4. 28	16.27 4	470	19.00	17.40
CU3 SE2	A (0.4533 0.3	78G	565.64	11.64	14.2EYN	546	16.69	12.60
TETRAGENAL	C :	0.2916 0.2	565	476,47	8 ° 28	16.57 VE	589	15 - 70	12,80
	C ¢	0,2997 5.2	757	-561.78	14.40	14.55 YW	650	15.40	28,46

REF. FCR R: VCN GEFLEN, FRANKFURT

.

REMARKS: LCC: SIERRA DA LMANGC, ARGENTINA

UMANGITE	Д	0,4317 0,4003	486482	4.1C	16.00 YE	470	18-60	15.80
CL3 SE2	۵	C.4592 C.3798	-556,16	12.00	13.60 Yw	546	16.00	12.00
TETRAGENAL	С	0.2926 C 2961	474, 82	٤,75	16.27 YE	589	16 00	12.10
	C	9.3058 C.2814	- 556.86	12.76	13.34 Yw	650	14.EC	28.16

FEF. FCR R: EURKE, FREE UNIV., AMSTERCAM

REMARKS: LCC: EAGLE GRCUP, LAKE ATHABASCA, CANACA

•

MINERAL NAME CCMPOSITION	SCURCE	CHROM	ATICITY INATES	DEMINANT (CEMFL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMBDA	REFLEC	τινιτγ
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(F7)	Y	(NM)	(R _E)	(R ₁₀)
STARINGITE	А	0.4427	G•4C54	487.28	1.26	13.8372	470	14.5G	12.80
(FE, MN)0.5(SN, TI)4.5(TA	NE).012					~			
	Α	0.4418	0.4047	496.24	1.51	12.07 Tw	546	13.90	12.10
FEXAGONAL	С	C.3C44	C.31C1	476.00	2.80	$13.90 Y_{E}$	589	13.70	12.00
	С	0.3033	0.3084	474.67	3.41	12.15 Y	65C	13.60	11.80

REF. FOR R: EURKE, FREE UNIV., AMSTERDAM

REMARKS: LCC: SERICCZINHC, PRAZIL

							Rp	Rg
KLCCKMANN ITE	А	0.4045 0.3933	489.10	10.81	10.99 7 P	470	15.50	37.40
CL SE	۵	0.4359 C.4C65	493.33	2.80	34.50 Yg	546	11.90	35.60
FEXAGONAL	С	C.2678 C.2754	478.02	20.04	11.55 Yp	589	9.80	33.80
	C	0.2587 C.3081	481.73	5.04	34.5E Yg	65C	9.30	32.00

. •

REF. FOR R: BURKE, FREE UNIV., AMSTERDAM

REMARKS: LOC: EAGLE GROUP, LAKE ATHAEASCA, CANADA

MINERAL NAME Composition	SCURCE	CHREMATICITY CCCRDINATES	DCMINANT (CCMPL.)	PURITY	BRIGHTNESS (VISUAL R)	LAMECA	REFLECTIVITY		
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P%)	Y	(NM)	(R _E)	(Rw)	
CASSITERITE	A	0.44CE C.4054	489.48	1.70	12.267E	470	13.00	11.30	
SN 02	Δ (0.4421 0.4061	490.44	1.36	10 . 79 Yw	546	12.40	10.90	
TETRAGONAL	C	G.3C27 C.3091	477.85	3.50	12.35 Y E	589	12.10	10.70	
	C (0.3042 0.3108	478.57	2.77	10.86 Yw	650	11.90	10.50	

REF. FCR R: BURKE ET AL (1969)

REMARKS: LOC: UNKNOWN

GEIKIELITE	Δ	0.4422 0.4061	490.36	1.34	11.76YE	470	12.30	14.90
MG TI 03	A	0.4431 (.468	492.14	1.09	14.40 Yw	546	11.90	14.50
TRIGCNAL	С	0.3042 0.3110	479.10	2.74	11.83 YE	585	11.60	14.40
	С	C.3055 C.3123	475.54	2.12	14.47 Yw	650	11.50	13.90

REF. FCR R: CERVELLE (1967)

REMARKS: LOC: CREST MORE, CALIFERNIA. MG 0=29.4; FE C=3.8; TI 02=66.5

MINERAL NAME CCMPCSITICN	SCURCE	CHRCMATICITY COORDINATES	CCMINANT	PURITY	BRIGHTNESS (VISUAL R)	LAMECA	REFLEC	TIVITY
CRYSTAL SYSTEM		X Y	WAVELENGTH	(P%)	Ŷ	(NM)	(RE)	(Rus)
CCVELLITE	Δ	0.4251 C.3944	484.25	5.99	23.06 YE	470	29.10	13.40
CU S	Α	0.3581 C.3588	485.03	23.61	6.34 Yw	546	23.70	7.15
HEXAGCNAL	C	0.2837 C.2850	474.65	13.24	23.66 YE	585	21.15	4.20
	C	C.2284 0.2236	475.17	40.63	7.06 Yw	650	23.00	5.90

REF. FOR R: SIMPSON; LONDON

REMARKS: LCC: UNKNEWN. S=32.6;CU=65.5;FE=C.C5;SI=C.C1;AL=0.C3

COVELLITE	Α	C.4195 C.3948	485.83	7.25	22.15 YE	470	28.70	13.60
CU S	۵	0.3666 C.35C4	481.57	22.30	6.30 Yw	546	23.10	6.90
FEXAGONAL	С	C.2795 C.2836	476.31	14.92	22.87 YE	589	20.30	3.70
	С	0.2301 C.2177	473.33	40.97	6.96 Yw	650	20.90	7.40

REF. FOR R: CERVELLE (1968)

REMARKS: LCC: ECR, YOUGDSLAVIA. CU=66.2; FE=0.3; S=33.2

MINERAL NAME CCMPCSITICN	SCURCE	CHRCMATIC COORDINAT	ITY ES	DCMINANT (CCMFL.)	PURITY	BRIGHTNESS (VISUAL R)		REFLEC	TIVITY
CRYSTAL SYSTEM		X	Ŷ	WAVELENGTH	(P%)	Ŷ	(NP)	(Rدی)	(RE)
COVELLITE	A	0.3673 0.3	673	485.89	20.96	6.37 Yo	486	11.30	27.50
cu s	Δ	0.4248 C.3	663	488.55	5.76	23.25 YE	546	7.20	24.30
HEXAGONAL	С	C.2355 C.2	343	475 .7 9	36.70	7.01 Yw	589	4.50	21.70
	C	0.2857 C.29	<u> 923</u>	477.52	11.50	23.87 YE	656	5.90	21.80

.

.

REF. FOR R: VON GEHLEN & PILLER (1965)

REMARKS: LCC. ALGHERC, SARDINIA, ITALY

A.308

•

.

Wavelength (nm)	440	460	480	500	520	540	560	580	600	620	640	660	
Citrine	11.8	16.2	21.5	27•4	33.6	39.7	45.4	50.8	55.3	59.1	62.6	66.0	
Amethyst	33.9	38 . 7	38.7	36.2	33.4	31.9	32.0	33.7	36.5	40.2	44.1	47.5	
Chrysoberyl	39.2	42.9	43.4	42.5	47.3	56.0	66 . 5	75 .0	80.5	83.5	84.8	86.2	Sp ₁
Chrysoberyl	9.2	11.8	12. 6	13 .1	17.4	25.8	36.9	48.5	57.4	63 .1	67.0	70.1	Sp ₂
Spinel	0.0	0.1	0.1	0.1	0.1	0.6	2.3	6.6	13.8	21.9	29.9	37.9	
Syn. Ruby(1)	0.4	2.2	3.2	1.8	0.6	0.2	0,3	1.7	8.9	24.2	41.7	51.5	
S yn . Ruby(2)	6.0	8.6	6 .5	4.7	4.1	4.5	6.8	13.7	29 ₀ 0	48.1	61.6	68 . 0	
Almandine(1)	26.2	27.9	24.1	14.2	11.1	15.8	19.6	20.2	28.8	38.7	47.6	53.9	
Almandine(2)	31.8	33.6	29 .9	18.8	15.0	20.1	24.1	24 <u>.</u> ?	31.7	40.3	47.6	51.3	
Matching Liq	uid												
D i-iodo Metha	ane R	•I. =	1.74	fo r	Chry	sober	/l & \$	Synthe	etic (Ruby			
Rayner		=	1.70	for	Spin	əl							

Table XI 1. Mean Transmittance Values of Some Cut Gemstones

Cargille = 1.78 for Almandine

.

Rayner = 1.55° for Citrine & Amethyst

Table XI 2.

QUANTITATIVE COLOUR VALUES OF SOME CUT GEMSTONES.

	Chromaticity Domi coordinates Compl x y Wave			Excitation purity (Pe %)
Under Tungsten Light (Source A)		• • • • • • • • • • • • • • • • • • •	
Citrine	0.5203	0.4245	588.21	62.19
Chrysoberyl Sp1	0,5006	0.3940	591.88	38.31
Chrysoberyl Sp2	0.5556	0.4050	593.59	71.57
Spinel	0 .6595	0.3397	608.32	99.65
Synthetic Ruby Sp1	0.6711	0.3064	633.26	84.55
Synthetic Rubý Sp2	0,6189	0.3417	615,97	72.92
Almandin s Sp1	0.5163	0,3573	-508,66	29.80
Almandine Sp2	0.4969	0.3643	-512,05	23,99
Amethyst	0,4635	0.3940	-511.39	7.58
Under Average Daylight	(Source (2)		
Citrine	0.4.72	0.4100	579.46	53.86
Chrysoberyl Sp1	0.3745	0.3537	585.19	27.3 0
Chrysoberyl Sp2	0.4641	0,3955	586.86	62.54
Spinel	0.6407	0.3567	603.60	99.38
Synthetic Ruby Sp1	0.6063	0.2945	634.35	73.46
Synthetic Ruby Sp2	0.5197	0.3185	614.82	56,30
Almandine Sp1	0.3560	0.2731	-502.74	26.00
Almandine Sp2	0.3387	0.2746	- 509 . 91	22.15
Amethyst	0 . 3186	0,3087	-502. 11	4.65

.

* - sign indicates complementary wavelength.

ſ

Figure XI 1. Chromaticity diagram showing the colour distributions of some cut gemstones under average daylight (CIE source C).

~

[]

r

Gemstones

1.	Citrine; brilliant cut,circular	1.22	carat
2.	Chrysoberyl Sp 1; mixed cut	0.58	11
З.	Chrysoberyl Sp 2; cushion-shaped cut	1.42	17
4.	Spinel; trap cut, 8-sided	1.30	11
5.	Synthetic ruby Sp 1; brilliant cut,circular	0.91	"
б.	Synthetic ruby Sp 2; mixed cut,oval	1.28	"
7.	Almandine Sp 1; cabochon with a concave base	0.99	11
8.	Almandine Sp 2; " " " " "	0.91	11
9.	Amethyst; fancy cut, hart-shape	3.01	п

.

Figure XI 2.

Figure XI 3.

Figure XII 1. Showing marked variations in spectral reflectivity values quoted for specific minerals. (see pages 112 & 46).

I

```
SPECP:PROC OPTIONS(MAIN):
      /*SPLCS IS A PROGRAM TO COMPUTE SPECTRAL REFLECTIVITY OF
                                                                        × /.
      /#MINEFAL FROM GALVO READINGS.
                                                                         ~/
       DCL(K(N),S(N),W(N),A(N),B(N),G(T),GG(T))CONTROLLED FLOAT;
       DCL(I.J.SUM.GC)FIXED BIN:
      DCL(".TITLE)CHAR(50)VAF:
 TAKE: OFF LIST(TITLE);
      GHT LIST(N):
      ALLOCATE R.S.W.A.B:
      DO I=! TO N;
      GET LIST(S(I));
      LND:
      GET LIST(T);
      GET LIST(W):
       PUT FOIT(TITLE, 'SPECTRAL REFLECTIVITY')(SKIP(2), A, SKIP(2), COL
                 (5.),A);
      PUT EDIT( ! WAVELENGTH NN !, W) (SKIP(2), A, CCL(22), (N) (F(5,1), X(3)))
START:GET LIST(N):
      UN ENDEIL" (SCARDS) GUTC FIN;
      DC 1=1 TO N:
       ALLOCATE G.GG:
      District TC T:
      50M=1:
      GFT LIST(G(J));
      SHM=SUM+G(J):
      A(I) = SUM/T:
      F-10;
      CO J=1 TO 1:
      504=1;
      6F1 LIST(66(J));
      SUM=SUM+GG(J);
      B(I) = SUM/I;
      FND:
       GET LIST(GD);
       R(I) = (A(I) - GO) / (B(I) - GO) + S(I);
      LND;
       PUT_EDIT(M,P)(SKIP(2),A,COL(22),(N)(F(5,2),X(3)));
      GOID START:
 FIN:LND:
```

Appendix VI 1 a.

ECT: PROC OPTIONS(MAIN):

SŤ

1

1

1

1

1

1

22

2

2

2

1

2

2

2

2

2

2

2

1 2

2

?

22

2

2

2

```
REFLECT: PROC OPTIONS(MAIN);
       /*REFLECT IS A PROGRAM TO COMPUTE TRISTIMULUS VALVES AND
                                                                       */
       /*CHPOMATICITY COORDINATES OF OBJECT COLOURS BY WEIGHTED
                                                                       */
       /*ORDINATE METHOD.
                                                                       */
       DCL(K(M),R(M),A(N),B(N),H(N,C),D(N,C))CONTROLLED FLOAT;
       DCL(TOT(3),V(3),Q(3),T,P)FLOAT;
       DCL(I, J, C, Z, M, N) FIXED BIN, (X, Y) CHAR(100) VAR:
       ON ENDFILE(SCARDS)GOTO LAST:
       /*READ IN MEASURED SPECTRAL REFLECTIVITY VALUES
                                                                       */
   RESFT:GET LIST(M.X):
         ALLOCATE K.R:
                                      0
             GET LIST(K,R);
              PUT SKIP(4);
              PUT PAGE EDIT('MEASURED REFLECTIVITY', 'WAVELENGTH')(COL
                            (49), A, SKIP(2), COL(18), A, SKIP);
             IF MC=6 THEN DO;
              PUT EDIT((K(I) D0 I=) T0 M))(C0L(38+7*I),F(3));
              PUT EDIT(X)(COL(18),A);
              PUT EDIT((R(I) DO I=1 TO M))(COL(38+7*I).F(5.2));
             FND:
            ELSE DO:
              PUT EDIT((K(I) DO I=1 TO 6))(COL(38+7*I),F(3));
              PUT EDIT(X)(COL(18),A);
              PUT EDIT((R(I) DO I=1 TO 6))(COL(38+7*I),F(5,2));
             IF M<=12 THEN DO;
              PUT SKIP(2):
              PUT EDIT((K(I) DO I=7 TO M))(COL(45+7*MOD(I-1,6)),F(3));
              PUT EDIT((R(I) DO I=7 TO M))(COL(45+7*MOD(I-1,6)),
                         F(5,2));
             GOTO L1;
             END:
             IF (M>12)&(M<19) THEN DO;
              PUT SKIP(2);
              PUT EDIT((K(I) DD I=7 TO 12))(COL(45+7*MOD(1-1,6)),
                         F(3));
              PUT EDIT((R(I) DO I=7 TO 12))(COL(45+7*MOD(I-1,6)),
                         F(5,2));
              PUT SKIP(2):
              PUT EDIT((K(I) DO I=13 TO M))(COL(45+7*MOD(I-1,6)),
                         F(3));
              PUT EDIT((R(I) DO I=13 TO M))(COL(45+7*MOD(I-1,6)),
                         F(5,2)):
             END:
             ELSE DO:
              PUT SKIP(2);
              PUT EDIT((K(I) DO I=7 TO 12))(COU(45+7*MOD(I-1.6)).
                         F(3));
              PUT EDIT((R(I) DO I=7 TO 12))(COL(45+7*MOD(I-1,6)),
                         F(5,2));
              PUT SKIP(2);
              PUT EDIT((K(I) DO I=13 TO 18))(COL(45+7*MOD(I-1,6)),
                          F(3)):
              PUT EDIT((R(I) DO I=13 TO 18))(COL(45+7 \pm MOD(I-1.6)),
                          F(5,2));
              PUT SKIP(2):
              PUT EDIT((K(I) DO I=19 TO M))(COL(45+7 \neq MOD(I-1.6)),
```

CT:PROC OPTIONS(MAIN):

T

```
Appendix VI 1 a. (continued)
```

```
F(3));
             PUT EDIT((R(I) DO I=19 TO M))(COL(45+7*MOD(I-1,6)),
                         F(5,2));
            END:
           END:
    L1:GET LIST(N,C,Z);
       ALLOCATE A, B, H, D;
       GET LIST(A);
      DO 1=1 TO N:
          IF A(I)<K(1) THEN
       DN;
          B(I)=R(1)+((A(I)-K(1))*(R(2)-R(1))/(K(2)-K(1)));
          GOTO KWINT:
       END;
      J=2:
ZWOGE: IF A(T)=K(J) THEN
       D0:
          B(I)=R(J):
          GOTO KWINT:
        END:
          IF A(I)<K(J) THEN
       00;
          B(I) = R(J-1) + ((A(I)-K(J-1)) + (R(J)-R(J-1))/(K(J)-K(J-1)));
          GOTO KWINT:
       END:
      J=J+1;
          IF J<=M THEN
          GOTO ZWOGE;
          IF A(T)>K(M) THEN
       00;
          B(I) = R(M) + ((A(I) - K(M)) + (R(M) - R(M - 1)))/(K(M) - K(M - 1)));
       END:
 KWINT:END;
 PLONK: TOT=:::
 SPLUD:GET LIST(P.Y):
       DO 1=1 TO N:
       GET LIST(H([,1),H(I,2),H(I,3));
       DO C=1 TO 3;
          D(I_{C}) = B(I) * H(I_{C});
       END:
       END;
                PUT SKIP(3);
               PUT EDIT(X, *WAVELENGTH*, *REFLECTIVITY*, *ENERGY *,
                         *DISTRIBUTION*)(COL(20),A,SKIP(2),COL(2.),A,
                         COL(34) . A . COL(58) . A . A);
       DD [=1 TO N:
            PUT FDIT(A(1),B(1),(D(1,C)) DO C=1 TO 3))(COL(24),
                    F(3),COL(37),F(6,3),COL(52),F(8,4),2(F(12,4));
       DO C=1 TO 3;
           TOT(C)=TOT(C)+D(I,C);
       END:
       END:
       DO C=1 TO 3;
           V(C) = TOT(C)/P:
```

Appendix VI 1 a. (continued)

```
CMPT
         THOPYIN
     po cet to st
         \gamma(c) = \gamma(c) / \tau;
     5 M ft :
         DUT POIT (ISUMSI, (TOTIC) DO CET TO 2)) (OULLIO), A.COU(TT).
                  F(C.4), F(F(10,4)));
        OHT COLT(V, 1X1, 1V1, 171, 1TDISTINUE DO MANTE OF, (V(C) DO OF) TO
                  3), CHERNATICITY CORENINATES! (O(C) OF CHE TO 3))
                  (SKIP()), COL(20), A, SKIP()), COL(E2), A, COL(CE), A,
                  COL(77), A, SKIO(2), COL(27), A, 2(E(12, A)), 5KIP(2),
                  CET (21), A, 3(E(12,4)));
         7 = 7 1 :
         TE 7=0 THEM
         nn:
          FDCT A.P.K.P:
          COTO DECET:
         TND:
         ELC - GUID DLONK:
LAST: THE PERLECT:
```

Example of listing of the programme "REFLECT" of Appendix VI 1 a.

```
12
                 (number of wavlengths used in the measurement of R% or T%)
BORNITE SP. 6305(W.H, 1971)
 440 460 480
                      620 640 660
                to
 17.55 17.42 17.53
                                  etc.
 81
                 (number of weighted ordinates from 380 to 780 nm)
 3
                 (for tristimulus values X,Y,Z)
                 (for two light sources)
 2
 380 385 390
                 to
                        770 775 780
  1931 CIE STANDARD SDURCE A'
 0.0006 0.0000 0.0029
 0.0011 0.0000 0.0053
 0.0024 0.0000 0.0113
                               (colour-matching functions weighted by
                               relative spectral distribution of CIE
                               source A)
          etc.
 0.0011 0.0000 0.0000
 0.0011 0.0000 0.0000
 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0008
  1931 CIE STANDARD SOURCE C'
  0.0022 0.0000 0.0101
  0.0041 0.0002 0.0197
                               (colour-matching functions weighted by
                               relative spectral distribution of CIE
                               source C)
          etc.
  0.0003 0.0000 0.0000
  0.0000 0.0000 0.0000
  14
  'BORNITE SP.NGD 6(TUGAL, 1969)'
  440 460 480
                to
                      660 680 700
  16.70 16.60 17.26
                                 etc.
  81
  3
  2
  380 385 390 395
                              770 775 780
                      to
```

Appendix VI 1 b. (continued)

'1931 CIE STANDARD SOURCE A' 0.0006 0.0000 0.0029 0.0011 0.0000 0.0053

etc.

0.0000 0.0000 0.0000 '1931 CIE STANDARD SOURCE C' 0.0022 0.0000 0.0101 0.0041 0.0002 0.0197

and so on.

```
111 1 1000 C 2001 1 20 (28 19) 1
     A DEPARTMENT OF A CONTRACT OF A DEPARTMENT OF A
     NE THE THEFT IN MULTING THE
                                                                        ... /
      1971(), V) 11/2AT;
     101 (TITI DOMATER 10) MARTE
     SOL (" (NI) " OWTHOLLED "TYPE WIN:
     THE (STEPHERS HERE
     11 A.
          OPERIO (SYSTAL COTO DEPI-
15 TH TELET 1 15 1 (TETELX, M) 1
     ANDERE TH MEMORY OF MANUFLER OTH
                                                                        * /
      351 FIST(N):
     ALLOCATE S, A, R, P, S, P;
     PREAD IN MAVELENGTHS AND CODEDINATES
      SET EISTEN()), A(]), P(T)):
     P(1)=1+
      14 MAS(A(1)-X)<4AS(A(1)-V) THEN DO:
      `[[)=("([)=V)/("(])=V):
     P(T)=P;
      · · · · :
      ALCE DI
      ふてて)~(~(1)~))/(∧(て)~))
     1(1)=1:
      1 Nº 1
      1.101
   OUT SETS POIT (ISLOPES OF LINES OF CONSTANT DIMININT WAVELENGTHE)
                 (CON. (201, A, SKIP(2)):
     PIT FD[T(T[1]F)(COL(2)).A):
     DUIT - FITTI + WANTER NOTHA, + (X-X5)/(Y-V5)+, + (V-Y5)/(X-V5)+) (SKTD(2)
              1,001(17),1,001(40),1,001(60),1):
      C:1 [=] 73 N:
      PHT (KI) F(I(#(I))((()(),()));
     ]E P(|)⇒⊃ ™4ES
      0917 COLI(2(1))(COL(4)), 5(9,5));
     #LSE OUT "DIT(S(T))(COL(AL),F(9,6));
     n n n t
 17 T 1 2 F 101 1 2
```

SHEEPLOOD FEELS(MARTEE)+

1

?

2

1

2

?

2

1

Appendix VI 2 a.

A.32 '

 $\mathcal{L}_{\mathbf{N}}$

Appendix VI 2 b.

'SOURCE A COMBINED WITH NEUTRAL FILTER(20%)(x=0.4473,y=0.4196)'
0.4473 0.4196
320 (number of wavelengths)
380 0.17411 0.00496
381 0.17409 0.00496

382 0.17407 0.00497

etc. (wavelength & chromaticity coordinates of equal-energy spectrum)

697 0.73465 0.26535

698 0.73467 0.26533

699 0.73469 0.26531

Appendix VI 3.

Table VI 1. Slopes of Lines of Constant Dominant Wavelength for C.I.C. Standard Sources A,B,C and Source E (Equal-energy, Wavelength basis) (from Judd 1933)

Sourc	e'A	Sour	ce B	Wave-	Sour	ce C	Sout	cce E	•
r ₁	r2	r ₁	r 2	length (nm)	r ₁	F 2	r ₁	r ₂	
+0.67950		+0.50303		380	+0.43688	<u></u>	+0.48508		
0.67954		0.50307		381	0.43693		0.48513		
0.67957		0.50311		382	0.43698		0.48517		
0.67963		0.50319		383	0.43706		0.48525		
0.67968		0,50326		384	0.43714		0.48532		
+0.67972		+0.50330		385	+0.43719		+0.48537	•	
0,67980		0.50340		386	0.43731		0.48548	4	
0.67986		0.50347		387	0.43739		0.48555		
0.67991		0.50355		388	0.43747		0.48563		
0.68000		0.50365		389	0.43759		0.48574		
+0,68008		+0.50375		390	+0.43770		+0.48584		
0.68016		0.50385		391	0.43782		0.48595		
0.68024		0.50395		392	0.43793		0.48606		
0.68035		0.50408		393	0.43808		0.48620		
0.68046		0.50421		394	0.43822		0.48633		
4.0.68052		+0.50430		395	+0.43832		+0.48613		
6 65066		0 50445		396	041850		0.48659		
0.68076		0.50475		397	0.43865		0 48673		
0.65087		0 50471		398	0 4 18 79		0.48687		
0.68107		0.50480		300	0 43899		0.48705		
0.00102		(7,50409		377	0.45077		0.40705		
+0.68115 .		+0.50504		400	+0.43917		+0.48722		
0.68130		0.50522		401	0.43936	•	0.48740		
0.68143		0.50538		402	0.43954		0.48757		
0.68157		0.50553		403	0.43971		0.48774		
0.68171		0,50571		404	0.43991		0.48792		
+0.65159		+0.50591		405	+0.4013		+0.48813		
0.68202		6,50607		406	0.44031		0.48830		
0.68222		0.50630		407	0.44057		0.48854		
0.68241		0.50651		408	0.44081		0.48877		
0,68265	•	0.50679		409	0.44111		0.48906		
+0.6829		+0.5071		410	+0.4414		+0.4893		
0.6831		0.5074		411	0.4417		0.4897		
0.6834		0.5076		412	0.4421		0.4900		
0,6836		0.5079		413	0.4424		0.4903		
0.6839		0.5082		414	0.4427		0.4906		
+0.6841		+0.5085		415	+0.4430		+0.4909		
0.6846		0.5089		416	0.4435		0.4913		
0.6858		6.5092		417	0.4438		0.4916		
0.6855		0.5100		418	0.4-146		0.4924	1	
0.6857		0,5102		419	0.4449		0.4927		
+0.6864		+0.5110		420	+0.4457		+0.4935		
0.6470		0.5117		421	0.4465		0.4942		
0.6877		0.5124		422	0.4473		0.4950		
0.6886		0.5133		423	0.4482		0.4959	-	
0.6892		0.5140		424	0.4490		0.4966		
Table VI 1 (continued)

.

•

.

<u> </u>	r 2	r 1	r 2		r ₁	r 2	r ₁	r ₂
+0.6903		+0.5152		425	+0.4502		+0.4979	
(0, 0, 0) (4)		0.5163		426	0.4515		0,4991	
0.6923		0.5172		427	0.4524		0.5000	
0.0933		0.5184		428	0.4537		0.5012	
0.6944		0.5196		429	0.4550		0.5024	
+0.6957		+0.5209		430	+0.4564		+0.5038	
0.6972		0.5225		431	0.4581		0.5055	
0.6988		0.5241		432	0.4598	•	0.5072	
0.7050		0.5254		433	0.4613		0.5086	
0.7620		0.5275		434	0.4635		0.5108	
+0.7037		+0.5293		435	+0.4654		+0.5126	
0.7056		0.5314		436	0.4676		0.5148	
0.7074		0.5332		437	0.4695		0.5167	
0.7095		0.5354		438	0.4719		0.5190	
0.7115		0.5375		439	0.4742		0.5212	
+0.7!4.		+0.5402		440	+0.477;		+0.5240	
0.7165		0.5428		441	0.4793		0.5267	
0,7191		0.5455		442	0.4327		0.5296	
0.7215		0,5481		443	0.4355		0.5323	
0.7244		0.5511		444	0.4888		0.5354	
+0.7277		+0.5546		445	+0.4926		+0.5391	
0.73:0		0.5581		446	0.4964		0.5428	
0,734.5		0.5617		447	0.5002		0.5465	
0,7382		0.5657		448	0.50-15		0.5507	
0.7-12-1		0.5702		449	0.5094		0.5555	
+0.7465		+0.5746		450	+0.5141		+0.5600	
0.7508		0.5791		451	0,5190		0.5648	
0,7556		0.5842		452	0.5244		0.5701	
0.7602		0.5891		45.5	0.5297		0.5753	
0.7655		0.5947		454	0.5358		0.5811	
+0.7753		+6.6003		455	+0.5-19		± 0.5871	•
0.7766		0.6065		456	0.5-55		0.5935	
6.2.0		0.6129		457	6.5555		0.6003	
(), · Y+		0.6201		. 438	0.5633		0.6079	
0.7963		0.6273		439	0.5711		0.6155	
+0.8036		+0.6351		460	+0.5796		+0.6236	
0.3110		0.6429		461	0.5881		0.6319	
0.8192	•	0.6516		462	0.5975		0.6410	
0.6261		0.0011		463	0,6075		0.6510	
108.00		-1.0.6231		465	.: 0 6 1 1 7		0.0022	
0.8610		0.0001		403	T0.0317		10.0743	
0.8010		0,0200		467	0.0472		0.0077	
0.5540		0,7105		-68	0.6788		0.7030	
0.9062		0.7435		469	0.6976		0.7382	
+0.9251		+0.7635		470	+0.7:95		+0.7594	
0.9455		0,7852		471	0.7434		0.7825	
0.9682		0.8094		472	0,7702		0,8084	
0.995	+ : .6066	0.8364		473	0.8002		0.8372	
+1.0217	0.9788	0.8669		• 474	0.8342		0.8699	

A.325

÷

Table VI 1 (continued)

•

.

.

F 1	r 2	r 1	r 2		r 1	r 2	r ₁	r2
	40.9 3	+0.5018			± 0.8736		4.0 \$075	
	0.9165	V.1622			09.93		0 9510	41.0515
	0.8832	0.9879	4.1.0122		0 9719		- : 000v	1 1 1 1 1 1 1
	0 \$:79	+ 1.6405	3.9511	473	+10378		1.0007	11.5
	0.5107	1 1.1.100	0.9375	470	11.0520	0.0.50		0.2883
			0.7070	412		0. 0. 0		0.00.00
	+0.7713		+0.8515	480		+0.8391		+0.3290
	0.7.46		0.7527	461		0,7705		0.7670
	0		0.7322	482		0,7602		0.7033
	0.0 .00		0.6695	483		0.6277		0.6374
	0.5973		0.6056	484		0.5543		0.5704
	4-0.5458		0.5397	485		+0.4789		+0.5013
	0.4953		0.4717	-186		± 0.4015		+0.4302
	0.4433		0.4023	487				+0.1577
	0,3899		0.3315	488		+0.2428		± 0.2838
	0.3353		0.2596	489		+0.1619		+0.2089
	+0.2797		+-0.1871	490		4 0,0305		+0.1323
	+0.2224		+0.1127	491		-0.0026	•	+0.0560
	± 0.1638		+0.0371	492		-0.6869		-0.0225
	+0.1051		-0.0582	493		-0.1706		-0.1003
	+0.0.61		-0.1131	494		-0.2537		-0.1755
	-01621		-0 1877	.105				-0.2550
	-0.0.05		-0.7619	406		-0.3.47		0.110
	-0.1257		-0.1350			0.4003		0.3227
	-0.1.87		-0.3330	477		0.4923		0.4057
	-6.2.23		-0.4784	470		0.5723		0,4030
	-0.2423		-0.4704	497		0.0377		0,5574
	-0.2979		-0	500		-0.7557		-0.6304
	0.3519		0.6169	201		0.8114	•	0.7013
	0.000		0.08.12	502		0.880.5		0.7714
	0,000		0.7504	303	-1.0413	0.9001		0.840.9
	0.5675		0.8133	504	0.908.			0,9081
	-0.5573		-0.8796	505	-0.90.0		-1.0252	-0.9754
	9.60o2		0.9433	506	0.8490		0.9594	-1.0423
	0.6539	0.9939	-1.0061	507	0.8072		0.5021	
	0,7006	6.5359		508	0.7567		0.3516	
	0.7459	0.8850		509	0,7;78		0.8008	
	-0,7502	-0,83%6		510	-0.6826		-0.7666	
	0.8529	0.7992		511	0.6507		+.7304	
	0.8742	0.7629		512	0.6216		0.6977	
	0,9143	0.7298		513	0.5947		0,6677	
	0,9530	0.6998		514	0.5699		0.6403	
-; 6!64	-0,9897	-0,6725		515	-0.5471		-0.6.53	
6.9767	-1.0239	6,6483		516	0.5263		0.5928	
0.9473		6.6262		517	0,5072		0.5722	
6,920		0.6057		518	0.4590		0.5528	
0.8969		0.5865		519	0.4718		0.5347	
-0.5757		-0.5688		520	-0.4557		-0.5178	
0.5593		0.5522		521	0.4.03		0.5019	
0.5399		6.53(8		522	0.4253		0.4870	
0.8244		6.5274		523	0.4117		0.4726	
0.8101		0.5074		524	6.3979		0.4587	
w								

. ..

Table VI 1 (continued)

.

r ₁	r ₂	r 1	r 2		r 1	. ^r 2	^r .1	, ^r 2 ;,
-0.7963		. 1938	مناکا ور سرا نیستما ہے۔ سر	525	<u></u>			
Sec. 3	Ģ			526			0.6313	
(0.75, 1)		den i		527	0.3772		u. 1177	
67		.45.51		528	6. 539		0.4045	_
0.7467	U.	-4393		524	0.3306		0,3913	•
-0.7353	-0			510	-0.3174		-0.3762	
11.7	11	14137		5.1	0.3043		-),3652	
0.7119	0	8001		532	0.2913		0.3523	
0.7021	C	3879	•	533	0 2262		0.3394	
0.6913	0	.5749		534	0,2650		6.3263	
+0.0°08	-0	5619		535	-0.2519		-0,3135	
0.6.05	£1	3.590		536	0.2450		6.5665	
0.644	, l	3357		537	0.125		6.2872	
4.6.223	0	32.5		5.58	0.2111		0.2737	
0.6389	0	8		539	0,1977		0.2602	
-26380		.2953		540	+0.1858		-0.2466	
41. 14	0	2812		541	0.1654		8,2325	•
(1,6073)	()	.2671		542	0.1-18		0 181	
0.5%62	()	1.25.73		54.1	6.1507			
0.5851	a	.2.173			0.12		0.1884	
-0.5739	-0	.2220		545	-0.00 0		-0.1729	
0.56.55	Q	267.3		546	- 0.020			
0.5564	0	1.1899		<47	4. ; 75.			
0.5351	0	0.1730		548	-0.6555		0.12.55	
0.5257	(41558		549	-0.040		0.154.7	
-0.5126	-0	.: \$77		550	-04.225		- 9,0550	
0.4950), 1189		551	-0.035		and the second	
0,0849		5976		552			- 0. 300	
0.4700	— i	5.0792		\$53	i		-(.))()	
0.4547	-0	0583		554	4-0,0575		<u>- 1 - 1996</u>	
-0.4587	-(0.0365		555	+6.6771		• • • • •	
0.4217		19133		556	0,1625			
0,4036		0.39		557	0.1.145		+0.0	•
0.3547	; ·	(4359		558	0.1512		+0.0531	
0.364	· + •	0.0626		559	0,1794		-10.1094	
-0.3155	46	- 0902		560	44.5		+0.1364	
6.3210	I	, [193		561	4.13.17		0.16.7	
0.21 14	1	1503		562	0.007		1.19.19	-
0.2765	(7.1 26		563	0.27			
0.2433	(0.2163		564	0.5264			
0,2134	÷.	, 530		565	+0.2038		7	
0,151 /	(0.2915		566	11 ⁽¹⁾			
-0.1269	6	9.3323		567	9.1450		1.	
-0.1092	i	3757		65	6 7 2			
-0.9681	1	24221		569	0.5177		(, .: .:	
-6.0238	- 			570	+		-	
+(•.	1.1.2.27		571	1.1.1		6	
-+ 0.0770	(1.5788		572	11 - A		0.6	
+0,1377	0	1,0.194		573	0.7::9		0.6564	
+ 0,20,53	C	0.7039		574	0.7679		0.7154	

Table VI 1 (continued)

	r 1	r ₂	r 1	r 2		r 1	r 2	r 1	r 2
-	+0.2768		+0.7733		575	+0,8274			
	0.3458		0.8479		576	0.8%		6.8456	
	0.02.1		U.9.290	4.1.0704	5//	0.9580	+:010	0,9180	1.001.
	0.5274		+1.0102	0.2051	570	+1,0,04	0.000	0.9954	
	0.0771			0.0770	519		0.7079	T 1.0/60	0.7207
	+0.8205			+0.8226	580		40.804		4-0.855
•	0.9862	+16.0		0.7521	581		0.7833		0,7,9,
	41.1818	0		0.6877	582		07.95		(1.5.80
		0.7033		0.0285	201		0,0.23		0,010
		0		0.27.57	.,,,,,		11,03-2		1.0.01
		4.0.4858		+0.5232	585		+0.5333		-1-0.5724
		G. Pasa		C. (765	586		0.5175		0.5276
		0.3.57		0.0032	587		1. S.		0.485
		0		0.3925	248		0.4727		(), 1-1-1 7-1-1
		0.5859		0.3352	יאר		6.4.97		0.410.1
		4-91709		+0.3198	590		+0.4010		+0.37
		+ 0.00-17		0.2869	591		0 5762		03.1
		4-0.0201		0.2566	592		0.5490		0.1; .0
				0.2277	593		0.2222		6.2112
		-0.6380		0.2011	594		0		0,25,9
		-0.0708		+0.1761	593		± 0.2739		
		-0.1(k)		0.1540	596		0.2521		0.21 2
		-0.1276		61316	597		0.2118		$O_{1} S^{*} C^{*}$
		-0.1516		0.014	598		07-75		
		-0.1744		0,0973	246		0,1213		0.1008
		-0.1951		4-6.0747	600		+0.17'3		+6.1332
		0.2148		+0.0576	601		6.1609		0.1161
		0, 10			602		0.1455		0.1002
		0.5.5		-1-11-11-1-1 1-11-11-1-1	(11)		01.00		0.07
					(11/4		0.1107		
				-0.0010	605		+0.003		-, 0,0572
		0.2976		-0.01.32	(a)7		0.0715		
		0.366		-0.0360	608		0.0003		
		0.5271		-0.0302	609		0.9.593		011
		-0.3368			610		4.75.25.55		and the tax
				0.0619	611				-0.6015
		V.3549		6.07.16	612				-0.0102
		0.3628		0.6815	613		4-0.0011		-0.0243
		0.3703		0.0891	614		+0.01c6		-6.6520
		-0.3776		-0.0965	615			-	-5.0345
		6.25.5		0.1033	616		+ , ,		0.0464
		0.390.		0.1094	617			•	6.05_6
		6,1961		0.1154	618		-0.60%		6,05)8
		0.4016		0.1211	619		-0.0156		0,0646
		-0.4067		-0.1265	620		-0.0210		-0.0701
		0.4111		0.1313	621		0.0258		0.0750
		0.4157		0.1361	622		6,0306		0,0798
		0.4199		0,1405	623		0.0351		0.0844
	-	U.4238		V, 1467	024		0.0394		0.0880

.

2

. .

Table VI 1 (continued)

<u> </u>	r 1 ^r 2		r ₁ r ₂	r ₁ r ₂
0.1277	-0.1 Los	`5	0.6:135	-0.0979
0.433	0.1527	6.16	0.0171	
0.4516	0.1562	627	0.0511	1.11415
0.4 × 7	0.1896	628	0.054-	0,1035
0	·	629	0.0580	0.1074
-0.41+7	-0.1001	630	-0.0611	-0.1105
0, 1455	0.169	631	0,0641	0.1136
0.4.91	0.1721	632	0.0672	0.1167
0.45.7	0.1748	633	0.0700	0.1195
0.6572	0.1770	634	0,0727	0.1223
-0.4565	+0.1809	635	-0.0753	-0.1248
0.4587	0.1425	636	0.0778	0.1273
0.4667	0.18.7	637	0.6300	0.1296
0.40.7	0.1569	6.18	0.0823	0.1319
0,4647	0.1891	6,69	0.0846	0.1341
-0.4665	-0.1911	640	-0.0866	-0.1362
0.4652	0,1931	6-11	1 0.0386	0.1382
0.4696	0.1947	642	0.0903	0,1399
0.4712	0,1965	6.13	0.0921	0.1417
0.4725	0,1980	(mini	0.0936	0.1432
-0.4739	-0.1995	645	-0.0952	-0.1448
0.4752	0.2010	646	0.0967	0.1463
0.4763	0,2022	(++7	0.6980	0.1476
0:775	0.2035	648	0.0993	0.1489
0.4756	0.2048	649	0.1006	0.1502
-0.4795	-0.2058	610	-0,1017	-0.1513
0.4805	0.2069	651	0.1028	0.1524
0,4514	0.2679	652	0.1039	0.1535
0821	0.2088	653	0.1047	0.1543
0.48.11	0.2098	654	0.1058	0.1554
-0.4838		655	-0.1066	-0.1562
0.4845	0.2115	656	0.1075	0.1571
0.4851	0.2121	657	0.1081	0.1577
0.4858	0.2129	658	0,1090	0.1586
0,4863	0.2135	659	0,1096	0.1592
-0.4869	-0.2142	660	-0.1103	-0.1599
0.4873	0.21-6	661	0.1107	0,1603
0,4878	0.2152	662	0.1113	0.1609
0.4552	0.2156	663	0.1117	0.1613
0.63.52	, 0,1200	004	0.1122	. 0.1618
-0.4889	-0.2164	665	-0.1126	-0.1622
0, 1892	0.216	666	0.1130	0.1626
- 0.4.56	0.217.	667	0.1134	6.1630
0.4763	0.21	668	0.1139	0.1634
0,5503	0,.:178	669	0.1141	0.1637
-0.4905	-0.2183	670	-0.1145	-0.1611
0,4%07	0.2165	671	0.1147	0.1643
4 0.4910	0.2159	672	0.1151	0.1647
0.4912	0.2191	0/3	0.1153	0,1649
0.4916	0.2195	674	0.1157	0.1 653

_

	^r 1 ^r 2	^r 1 ^r 2		^r 1 ^r 2	r 1 r 2
·	-0.4918	-0,2197	675	-0.1159	-0.1655
	0.4921	0.2201	676	0.1164	0,1660
	0.4923	0.2203	677	0.1166	0.1662
	0.4925	0.2205	678	0.1168	0.1664
	0,4928	0.2209	679	0.1172	0.1668
	-0.49300	-0.22110	680	-0.11741	-0.16700
	0.49321	0.22134	681	0.11766	0.16725
	0.49343	0.22158	682	0.11791	0,16750
	0.49362	0.22180	683	0.11814	0.16773
	0.49382	0,22203	65-	0.11837	0.16796
	-0.49401	-0.22225	685	-0.11860	-0.16819
	0.49419	0.22245	686	0.11881	0.16839
	0.49435	0.22263	687	0.11899	0.16858
	0.49451	0.22281	688	0.11918	0.16877
	0.49465	0.22297	689	0.11935	0.16893
	0.49477	-0.22311	690	-0.11949	-0.16908
	0.49488	. 0.22324	691	0.11962	0.16920
	0.49496	0.22334	692	0,11972	0.16931
	0.49503	0.22342	693	0.11980	0.16939
	0.49510	0,22350	694	0.11987	0.16947
	-0.49514	-0.22354	695	-0.11993	-0.16951
	0.49519	0.22360	696	0.11999	0.16957
	0.49521	0.22362	697	0.12001	0.16960
	0.49523	0.22364	698	0.12003	0.16962
	0.49525	-0.22366	699	-0.12005	-0.16964

Table VI 1 (continued)

(see pages 74 to 76, Chapter VI)

· . .

١.

.

DM:PROC OPTIONS(MAIN);

EST

1

1

1

12

è

ç

1

2

22

L

L

1

1

CHROM:PROC OPTIONS(MAIN): Z*CHRUM IS A PROGRAM TO CALCULATE DOMINANT WAVELENGTH, */ Z*CHRUMATICITY COORDINATES AND EXCITATION PURITY PERCENTAGE. */ DCL(X(M),Y(M),T(N,2),W(N),C(N),D(N),P(M),Z(M),E(M),F(M),P(H),Q(M),V(M),G(M),H(M))CONTROLLED FLOAT; DCL(A,B,IND,SX,SY,PX,PY,VV,GG,HH)FLOAT: DCL (M, N, I, J, K) FIXED BIN: DCL(COL(M))CONTROLLED FIXED BIN: DCL(NAME CHAR(1+1))VAR; DCL(TITLE(M)CHAR(50))CUNTPOLLED VAR: ON UNDERFLOW PUT DATA: GET LIST(NAME); PUT PAGE EDIT(NAME)(COLUMN(20),A); **1* READ IN NUMBERS OF MINERAL SAMPLES** **/ GET LIST(M); /# KEAD IN CHROMATICITY COURDINATES OF STANDARD SOURCE ~ / GET LISTIA,B); /* ALLOCATE ARRAY STORAGE × / ALLOCATE X,Y,R,Z,E,F,P,Q,TITLE,COL; 7* READ IN CHROMATICITY COORDINATES OF MINERAL SAMPLES AND */ /* TITLES * 1 PUT FDIT("CHEOMATICITY COORDINATES")(COLUMN(6)),A); PUT EDIT(*SAMPLE*,*X*,*Y*)(COLUMN(20),A,COLUMN(66),A,COLUMN(76) · A); 00 I=1 TO M; GET LIST(TITLE(1)); GET LIST(X(I),Y(I)); PUT ED1T(TITLE(I),X(I),Y(I))(SKIP(2),COLUMN(20),A,COLUMN(63),F (6,4),COLUMN(76),F(6,4)); END: **1*** COMPUTE COORDINATE RATIOS 1. / 00 1=; TO M; IF ABS(X(T)-A) < ABS(Y(T)-B) THEN DO; R(I) = (X(I) - A) / (Y(I) - B);COL(I)=1; END: ELSE DO: R(I) = (Y(1) - B) / (X(1) - A);CGL(I)=2; END: PUT_SKIP_EDIT(I,R(1))(X(5),F(2),X(5),F(7,3)); END: 7* READ IN NUMBER OF TABULATED COORDINATE RATIOS, WAVELENGTH #/ /* VALUES, AND CHROMATICITY COORDINATES */ GET LIST(N): **1# ALLOCATE ARRAY STORAGE** \$ / ALLOCATE T,W,C,D; /* PEAD IN WAVELENGTHS ETC + / DU J=L TO N; GET_LIST(T(J+1),T(J+2),W(J),C(J),D(J)); END: /* COMPUTE WAVELENGTH OF CALCULATED MINERAL COORDINATE RATIOS#/ **1* FROM TABULATED VALUES** */ Z=0: 00 I=1 TO M; K=C()L(I);

ST

```
1
             DÜ J=) TO N-1;
             IF T(J,K)>P(I)& T(J+1,K)<P(I) THEN GOTO L1:
ċ
             ELSE IF T(J+K)<R(I)& T(J+1+K)>R(I) THEN GOTO L1;
2
2
             ELSE GOTO L2;
2
          L1:2(I)=(R(I)-T(J,K))/(T(J+1,K)-T(J,K));
Ż
             Z(I) = Z(I) + W(J);
۷
          L2:IF T(J,K)=R(I) THEN Z(I)=W(J);
2
             END:
1
             PUT_SKIP_EDIT(I,Z(1))(X(5),F(2),X(5),F(7,3));
í.
             FND:
             DO I=1 TO M:
1
             IF Z(I)=0 THEN
             00;
1
2
             DO J=1 TO M:
3
             TITLE(J)=TITLE(J+));
3
             Z(J) = Z(J+1);
3
             ; ( [+L ) X = { L ) X
3
             Y(J)=Y(J+1);
3
             END:
             END:
2
ł
             END;
             J=0:
             DO I=1 TO M:
             IF Z(I)=0 THEN
ì
1
             J=J+1:
T
             END;
             M=M-J;
             /* COMPUTE DOMINANT WAVELENGTH COOPDINATES
             DO 1=1 TO M:
1
             IF ABS(Z(I)-TRUNC(Z(I)))>" THEN DO:
З
             F(1) = Z(1) - TRUNC(Z(1));
2
             J=TRUNC(Z(I))-W(1)+1;
2
             E(1) = \{(1) \neq (C(J+1) - C(J)) + C(J)\}
2
             F(1) = L(1) - TRUNC(Z(1));
2
             F(I)=F(I)*(D(J+1)-D(J))+D(J);
2
             END:
1
             IF ABS(Z(I)-TRUNC(Z(I)))=0 THEN DO;
2
             E(I) = C(J);
2
             F(1)=D(J);
2
             END:
i
             END;
             1* COMPUTE EXCITATION PURITY PERCENTAGE
             IND = 0:
          L3:D0 1=1 TO M;
             P(I) = (X(I) - A) * O O / (F(I) - A);
1
             O(I)=(Y(I)-B)*1∩0/(F(I)-B);
1
             PUT_SKIP_EDIT(I,P(1),Q(I),E(I),F(I))(X(5),F(2),X(5),F(7,3),
1
             X(5),F(7,3),X(5),F(7,3),X(5),F(7,3));
             END;
1
             IF INDED THEN GOTO L4:
              GET LIST(SX,SY,PX,PY);
             ALLUCATE V,G,H;
             DO I=, TO M:
          IF (P(1)>0) & (C(1)>0) THEN GOTO L5;
1
```

*/

~/

```
ST
```

ì

2

2 2

2

2 2 2

2

Ż

1

Ţ

```
ELSE DO;
    I*COMPUTE COORDINATES OF COMPLEMENTARY WAVELENGTHS
                                                                        ĸ
    VV = SX - PX:
    GG = (SY + PY) / VV;
    HH=(SX*PY-PX*SY)/VV;
    V(1) = A - X(1);
    G(I) = (B - Y(I))/V(I);
    H(I) = (A \times Y(I) - B \times X(I)) / V(I);
    E(I)=(H(I)-HH)/(GG-G(I));
    F(I) = GG \neq E(I) + HH;
   END:
L5:END;
   IND=1:
   GOTO L3;
   /* PRINT OUT RESULTS
                                                                       ¥/
L4:PUT PAGE:
   PUT SKIP(6);
   PUT EDIT('WEIGHTED CRDINATE METHOD')(COL(1)),A);
   PUT EDIT(NAME)(COL(10),A);
   PUT SKIP(2);
   PUT EDIT('WAVELENGTH', 'COORDINATES', 'EXCITATION PURITY')
             (COL(5)), A, COL(69), A, COL(89), A);
   PUT_EDIT('NM','X','Y','P','Q')(COL(54),A,COL(69),A,COL(79),A,CO
             (93),A,COL(103),A);
   PUT SKIP(2);
   DO I=1 TO M;
   PUT_EDIT(TITLE(I),Z(I),E(I),F(I),P(I),Q(I))(SKIP(2),CDL(1.),A,
              COL(52),F(6,2),COL(66),F(6,4),COL(76),F(6,4),COL(9)),
              F(6,2),COL(10)),F(6,2));
   END;
   PUT_SKIP(5);
   PUT EDIT('PROBLEM COMPLETED')(COLUMN(3),A);
   END CHROM:
```

```
Appendix VI 4 b.
```

Example of listing of the programme "CHROM" of Appendix VI 4 a.

'1931 CIE STANDARD SOURCE A (0.4476, 0.4075)'
10 (number of specimens)
0.4476 0.4075
'BORNITE SP. 6305(W.H, 1971)'
0.4774 0.4066
'BORNITE SP.NGD 6(TUGAL, 1969)'
0.4751 0.4113

and so on

```
'GERMANITE SP. 1(LEVY, 1966)'

0.4666 0.4026

184 (number of wavelengths from 516 to 699 nm)

-0.9769 1 516 0.04533 0.81939

-0.9473 1 517 0.05218 0.82516
```

```
etc.
```

+0,9862	1	581	0.51906	0.48003	(see Table VI 1)
1	+0,8462	582	0,52560	0,47353	
1	+0.7053	583	0.53207	0.46709	

```
etc.
```

1 -0.49525 699 0.73469 0.26531 0.17411 0.00496 0.73469 0.26531 (chromaticity coordinates of 380 nm and 830 nm of the spectrum)

Appendix VIII 1.

LOR: PROC OPTIONS(MAIN);

T

```
COLOR: PRUC OPTIONS (MAIN):
     DCL(W(N),T(N),E(N),F(N,3),P(N,3),PP(N,3),CMF(N,3))CONTROLLED
         FLOAT;
     DCL(S(3),TOT(3),TOTAL(3),X(3),Y(3),A(3),B(3),K(3),NK,Q,V,P(2),
        NF, YY(3))FLOAT;
     DCL(I,J,N)FIXED BIN(31),(TITLE)CHAR(100)VAR;
        ON ENDFILE(SCARDS)GOTO DONE:
REGIN:GET LIST(TITLE, N);
      ALLOCATE W, T, E, F, P, PP, CMF;
 GET LIST(T,E);
   L1:00 I=1 TO N:
       GET_LIST(W(I), F(1,1), F(1,2), F(1,3));
   L2:00 J=1 TO 3:
       P(1,J) = E(T) * F(1,J);
       PF(I,J)=T(I) *P(I,J);
     END L2;
     END L1:
     PUT PAGE EDIT('FILTER', 'WAVELENGTH', 'SOURCE-ENERGY',
                     *1931 CIE CM FUNCTIONS', 'PRODUCTS', 'PRODUCTS',
                    *T', 'H', 'X', 'Y', 'Z', 'XH', 'YH', 'ZH', 'XHT', 'YHT',
                     *ZHT*)(COL(2),A,COL(9),A,COL(20),A,COL(34),A,COL
                   (73), A, COL(1)3), A, SKIP, COL(4), A, COL(25), A, COL(34)
                  ,A,COL(44),A,COL(54),A,COL(65),A,COL(76),A,COL(87)
                   ,A,COL(96),A,COL(106),A,COL(116),A);
     PUT SKIP(2);
  L3:D0 1=1 TO N;
     PUT EDIT(T(1),W(1),E(1),(F(1,J) DO J=1 TO 3),
              (P(I,J) DO J=1 TO 3),(PP(I,J) DO J=1 TO 3))
              (COL(3), F(4,2), COL(13), F(3), COL(21), F(6,2),
              3(F(10,4)),3(F(11,2)),3(F(10,2)));
     END L3:
       S=0;
             - 101=0:
  L4:00 I=1 TO N;
  L5:D0 J=1 TU 3;
       S(J) = S(J) + P(I, J);
       TOT(J) = TOT(J) + PP(I,J);
  END L5:
  END L4:
     PUT EDIT('SUMS',(S(J) DO J=1 TO 3),(TOT(J) DO J=1 TO 3))
               (SKIP(2),COL(55),A,F(9,2),2(F(11,2)),3(F(9,2)));
     /#COMPUTE NORMALIZED TRISTIMULUS VALUES AND COURDINATES OF
                                                                      ×/
     1+THE SOURCE
                                                                      ×/
  L5:00 J=1 TO 3:
     K(J)=100.0/S(J);
     1F J=2 THEN
     GOTO BUR:
  END L6;
3UR:00:
       NK = K(J);
    END;
  L7:00 J=1 T9 3:
        x(J)=NK*S(J);
      Y(J)=NK*T()T(J);
  END 1.7:
       Q=SUM(X):
       V = SUM(Y):
```

Appendix VIII 1. (continued)

```
ZHCHM MATICITY COUPDINATES OF SOURCE AND FILTER.
                                                                        1.1
  LB: )13 d=1 TU 3;
       ∧(J)=×(J)/0:
       ○(J)=Y(J)/V;
  END L3:
      PUT EDIT( 'NOPMALIZING FACTOR K = ', NK, 'X', 'Y', 'Z',
                INCRMALIZED TRISTIMULUS!, !(SOURCE)!, (X(J) DO J=1 TO
                3), (FILTER), (Y(J) DJ J=1 TO 5)) (SKIP(2), COL(2), A,
                COL(44), F(7,5), SKIP, COL(59), A, COL(69), A, COL(79), A,
                SKIP,COL(2)),A,COL(46),A,3(F(11,4)),SKIP(2),COL(46),
               . A.3(F(11,4)));
      PUT LDIT("CHPDMATICITY COORDINATES", "(SOUPCE)", (A(J) DO J=1
                TO 3), *(FILTER)*, (B(J) DO J=1 TO 3))(SKIP(2), COL(2))
                ,A,COL(46),A,3(F(10,4)),SKIP(2),COL(46),A,3(F(10,4))
                 );
  L9:00 J=1 TO 3:
       % (J)=10% 0/TOT(J);
        IF J=2 THEN
       SOTO DUR:
     END L9;
 DUR:DU:
       NF=R(J);
     END:
  /#COMPUTE NORMALIZED TRISTIMULUS VALUES OF FILTER
                                                                        */
  L10:01 J=1 TO 3;
       YY(J)=NF*T()(J);
     END LID:
  Z*COMPUTE NORMALIZED COLOUR-MATCHING FUNCTIONS OF FILTER
                                                                        # /
  /*COMBINED WITH CIE SOURCE.
                                                                        ×/
     DO IN: TO N:
     00 J=1 TO 3;
       (MF(],J) = YY(J) \Rightarrow PP(],J) / TOT(J);
     6MD;
     END:
       PUT PAGE EDIT(TITLE, 'WAVELENGTH', 'COLDR MATCHING FUNCTIONS')
                      (COL(10), A, SKIP(2), COL(15), A, COL(35), A);
       TOTAL=.;
      PUT SKIP(2);
  L11:00 I=1 TO N:
         PUT EDIT(W(I),(CMF(I,J)) DO J=1 TO 3))(COL(1)),F(3),
                3(F(15,4)));
  £12:00 J=1 TO 3:
      T \cap T \land L (J) = T \cap T \land L (J) + C \lor F (I \cdot J) :
  END 1121
  END L11:
     PUT EDIT('SUMS', (TUTAL(J) DO J=i TC 3))(SKIP(2), CUL(38), A,
               3(F(14,4)));
DUNE:END COLCR:
```

A.336

```
Abbot, C.G; Fowle, F.E & Aldrich, L.B (1923) The Distribution of Energy in
                                      the Spectra of Sun and Stars.
                                      Smithonian Misc.Collection, 74,No.7,
                                      Publ.No. 2714.
Abney, W. de W.
                                      (1913) Researches in Colour Vision.
                                      Longmans Green & Co., Inc. New York.
Akinci, 0.T
                                      (1970) The Effect of Iron Substitution
                                      On the Cell Size, Reflectivity and
                                      Colour of Sphalerite.
                                      Unpub. M.Sc. Theis, Univ. of Durham.
Aksenov, V.S; Kosyak, Ye.A. Mergenov, Shk; & Rafikov, T.K
                                      (1968) A new bismuth telluride, Bi<sub>2</sub>Te<sub>5</sub>.
                                      Dok1.Acad.Sci.USSR,Earth Sci.Sect.,
                                      181, p 113-115 (1969).
Anderson, B.W.
                                      (1964) Gem Testing.
                                      7th. edition, A Heywood Book,
                                      Temple Press Books Ltd., London.
Bates, F & Douglas, M.L
                                      (9167) Programming Language/One.
                                      Prentice-Hall, Inc., Englewood Clffs,
                                      New Jersey.
                                      (1961) Color Discrimination.
Birch, J & Wright, W.D.
                                      Physics in Med. & Biol.,6,3.
Bloss,F.D
                                      (1966) An Introduction to the Methods
                                      of Optical Crystallography.
                                      Holt, Rinehart & Winston. New York.
Brett,R & Yund,R.A
                                      (1964) Sulfur-rich bornites.
                                      Am.Mineral.,49, p 1084-1098.
Bridgeman,T
                                      (1961) The Evaluation of Tristimulus
                                      Values from Spectral Reflectances.
                                      Die Farbe, 10 Band, Heft 5/6,p 243-254
Borodayev, Yu.S; Mozgova, N.N & Seuderova, V.M.
                                      (1968) Chalcostibite from Tereksay
                                      (Kirqiz SSR).
                                      Dokl.Acad.Se.USSR,Earth Sci.Sect.,
                                      178, p 118-121.
Bowie,S.H.U.
                                      (1967) Microscopy: Reflected Light -
                                      in Physical Methods in Determinative
                                      Mineralogy - edited by Zussman,
                                      p 103-159.
```

Bowie,S.H.U.	(1967) Minutes of I.M.A/Commission on
	Ore Microscopy - C.O.M Meetings
	held in Cambridge on 31st.Aug. & 3rd.
	Sept. 1966. Econ.Geol. 62, p 278-282.
Bowie,S.H.U. & Henry,N.F.M.	(1963-64) Quantitative Measurements
	with the Reflecting Polarizing
	Microscope.
	Trans.Instn.Min.Metall.,73,(Bull.Instn.
	Min.Metall. No.689,p 467-478, 1964).
Bowie,S.H.U. & Taylor,K.	(1958) A System of Ore Mineral
	Identification.
	Mining Mag.,London, 99,p 265 ,337.
Boynton,R.M.	(1960) ^T heory of Color Vision.
	J.Opt.Soc.Am., 50, p 929-944.
n	(1963) Contributions of threshold
	measurements to color-discrimination
	theory. J.Opt.Soc.Am., 53, 165
Brown,W.R.J.	(1951) The infulence of luminance
	level on visual sensitivity to color.
	differences.
	J.Opt.Soc.Am., 41, 684.
"	(1952) ^T he effect of field size and
	chromatic surroundings on colour
	discrimination. J.Opt.Soc.Am.,42,837.
u	(1957) Color Discrimination of
	Twelve Observers. J.Opt.Soc.Am.,
	47, p 137-143.
Brown,W.R.J. & MacAdam,D.L.	(1949) Visual Sensitivities to Combined
	Chromaticity and Luminance Differences.
	J.Opt.Soc.Am., 39, 808.
Bouma,P.J.	(1947) Physical Aspects of Colour.
	N.V.Philips'Gloeilampenfabrieken,
	Eindhoven(The Netherlands).
Bradshaw,P.M.D.	(1965) Part 1. An Absolute Method for
	the Measurement of Reflectivity.
	Unpub. Ph.D.Thesis, Univ. of Durham.
Burton,C.J.	(1969) Further Developments in
	Measurement of Reflectivity at
	Normal Incidence. Unpub. M.Sc. Thesis,
	Univ. of Durham.

Burns,R.G. & Vaughan,D.T.	(1970) Interpretation of the Reflectivity
	Behaviour of Ore Minerals.
	Am.Mineral. 55, p 1576-1586.
Cameron,E.N.	(1963) Optical Symmetry from Reflectivity
	Measurements.
	Am.Mineral.,V 48 p 1070-1079.
Cameron,E.N.	(1966) Ore Microscopy. Second Print¢ing
	John Wiley & Sons,Inc. New York. London.
Cervelle et al	(1968) Sur l'inversion du signe de la
	bireflectance de certains mineraux
	absorbants cas de la mawsonite.
	Bull.Soc.francaise Min.et.Crist.,91.
Commission On Ore Microscopy of the	International Mineralogical Association
	(1970) International Tables for the
	Microscopic Determination of Crystalline
	Substances Absorbing in ^V isual Light.
	Provisional Issue — Barcelona.
Committee on Colorimetry of the Opt	ical Society of America.
	(1968) The Science of Color. Published
	by Opti.Soc.Am., Washington,D.C. 20037.
Companion,A.L.	(1964) Chemical Bonding.
	McGraw Hill,Inc., New York.
Crawford,B.H.	(1949) The Scotopic Visibility
	Function. Proc.Phys.Soc.,B 62, 321.
Davis,R.	(1931) A Correlated Color Temperature
	for Illuminants. Bureau of Standards
	Journal of Research. 7, 659.
Davidson,H.R. & Friede, E.	(1952) The Size of Acceptable ^C olor
	Differences. J.Opt.Soc.A.,43,7,
	p 581 - 589.
Davidson,H.R.	(1951) Visual sensitivity to surface
	color differences. J.Opt.Soc.Am.,
	41, 104.
u	(1951) Calculation of ^C olor Differences
	from Visual Sensitivity Ellipsoids.
	J.Opt.Soc.Am., 41, 12,p 1052-1056.
n	(1955) Hea of Chanta for Parid
	(1935) Dae of Charts of Kapin
	Calculation of Color Differences.

Dee r, Howie & Zussman	(1967) An Introduction to the Rock
	Forming Minerals. Second Impression,
	Longmans, Green and Co.Ltd., London.
De Kerf,J.L.F.	(1958) Accuracy of Tristimulus
	Computations. J.Opt.Soc.Am. 48, 5,
	p 334-338.
Demirsoy.5.	(1968) Untersuchungen uber den Einfluss
	der chemischen Zusammensetzung auf die
	spektralen Reflexionsfunktionen und
	Mikroeimdruckharten. Thesis Aachen.
Eales,H.V.	(1967) Reflectivity of Gold & Silver
	Alloys. Econ.Geol., 62, p 412-420.
Eales,H.V.	(1964) Mineralogy and Petrology of
	the Empress nickel-copper deposit,
	Southern Rhodesia. Trans.Geol.Soc.S.
	Africa. 67, p 173-201.
Eales,H.V.	(1961) Fineness of Gold in Some Southern
	Rhodesian Minos. Trans.Inst.Min.Metall.,
	71, p 196-(Bull.InstnMin.Metall.,
	No. 660,Nov. p 49-73.
Engin,T.	(1969) The Geology and Ĝeochemistry
	of Ultrabasic Rocks and Associated
	Chromite Deposits of the Andizlik-
	Zimparalik Area,Fethiye,Southwest
	Turkey. Unpùb. Ph.D.Thesis, University
	of Durham.
Fleischer,M.	(1960) Studies of the Manganese Oxide
	Minerals. III Psilomelane.
	Am.Mineral., 45, p 176-187.
Fleischer,M.	(1964) Manganese Oxide Minerals.
	VIII. Hollandite. Advan.Frontiers
	Geol.Geophys.,Hyderabad, 221-232.
Folinsbee,R.E.	(1949) Determination of Reflectivity
	of the Ore Minerals.
	Econ.Geol.,V 44, p 425–436.
Frenzel, G.	(1959) Einneues Mineral: Idait.
	Neues Jahrb.Min.,Monatshefte., 142
Friele, L.F.C.	(1961) Analysis of the Brown and
	Brown-MacAdam Colour Discrimination
	Data. Farbe, 10, 193.

Friele,L.F.C.	(1965) Further analysis of colour
	discrimination data.
	Proc.Int.Colour Meeting (Lacerne,1965).
Fukuda,T & Sugiyama,Y.	(1961) The Measurement of Daylight
	Fluorescent Color. Farbe, 10, 73.
Gaines,R.V.	(1969) Luzonite,famatinite, and some
	related minerals. Am.Mineral.,42,p 766-779.
Gamyanin,G.N.	(1968) Bismuth sulfotellurides from
	Northern Yakutia. Dokl.Acad.Sci. USSR ,
	Earth Science Sect., 178, p 121-124.
Gibson,K.S. & Tyndall,E.P.T.	(1923) Visibility of Radiant Energy.
	Bull.Bureau of Standards. 19, 131.
Goncharenko,A.M & Fedorov,F.I.	(1958) Surfaces of refraction and absorption
	of absorbing crystals. Kristallografiya,
	3, p 592-598.
Grassmann.H.G.	(1854) Theory of Compound Colors.
	Philosophical Magazine, 4, no.7, p 254–264.
Gray,I.M. & Millman,A.P.	(1964) Reflection Characteristics of Dre
	Minerals. Econ.Geol.,59, 1394.
Gray,I.M. & Millman,A.P.	(1962) Reflection Characteristics of Ore
	Minerals. Econ.Mineral., V 57, p 325-349.
Grisafe,D.A. & Hummel,F.A.	(1970) Crystal Chemistry and Colour in
	Apatites containing Co,Ni, and Rare-Earth
	Ions. Am.Mineral.,V 55, p 1121-1145.
Guild,J.A.	(1931) The Colorimetric Properties of the
	Spectrum, Phil.Trans.Roy.Soc.(London),
	A,230, 149.
Hak,J; Johan,Z & Skinner,B.J.	(1970) Kutinaite: a new copper-silver
	arsenide (Czechoslovakia).
	Am.Mineral., V 55, p 1083-1087.
Hall,A.J.	(1971) The Mineralogy of some Synthetic
	Sulphosalts. Unpub. Ph.D.Thesis, University
	of Durham.
Hallimond,A.F.	(1970) ^T he Polarizing Microscope.
	3rd.edition,Vickers Ltd.,Vickers Instruments,
	York,England.
Hallimond,A.F.	(1957) Direct Measurement of Standard
	Reflectances with the Microphotometer.
	Min.Mag.,V 13,p 487.

```
Hallimond, A.F. & Bowie, S.H.U. (1964) On the Reflectivity of Pyrite.
                               Min.Mag., London, 111, 385.
                               (1936) Handbook of Colorimetry.
Hardy,A.C.
                               Massachusetts Institute of Technology,
                               Cambridge, Mass. The Technology Press.
Helson,H. & GROVE,J .
                               (1947) Changes in Hue, Lightness, and
                               Saturation of Surface Colors in passing
                               from Daylight to Incandescent Lamp Light.
                               J.Opt.Soc.Am., 37, p 387-395.
Henderson, S.T. & Hodgkiss, D.
                               (1963) The Spectral Energy Distribution
                               of Daylight. Brit.J.Appl.Phys.,14 125.
                              (1937) <sup>T</sup>he distinction Between enargite
Harcourt, G.A.
                               and famatinite(luzonite).
                               Am.Mineral., 22, p 517-525.
Harris, D.C. & Thorpe, R.I.
                               (1969) New observations on matildite
                               (schapbachite), Canadian Mineral,9,p 655-662.
                               (1950) The Effects of Daylight and Tungsten
Hunt,R.W.G.
                               light Adaptation on Color Perception.
                               J.Opt.Soc.Am., 40 362.
                               (1941) Photoelectric Tristimulus Colorimetry.
Hunter, R.S.
                               Symposium on color-its specification and
                               use in evaluating the appearance of materials.
                               Philadelphia American Soc.for Testing
                               Materials, p 61
                               (1704) New Theory about Light and Colors.
Isaac Newton
                               Philosophical Transactions of the Royal
                               Society of London, 80, 3075-3087.
                               Opticks by Isaac Newton. published by
                               Smith & Walford, London.(1704).
                               A reprint is available; Dover publications,
                               Inc., New York, 1952.
Jsmbor, J.L.
                               (1967) New lead sulfantimonides from Madoc.
                               Ontario. Part 1, 9.p 7-24; Part 2, 9.
                               p 191-213. Mineral description. Can.Mineral.
    H
                               (1969) Dadsonite (minerals Q & Qm), a new
                               lead sulphantimonide. Min.Mag., 37, p 437-441.
Jenkins,R. & De Vries,J.L.
                               (1967) Practical X-Ray Spectrometry.
                               N.V.Philips'Gloeilampenfabrieken.
                               Eindhoven, <sup>T</sup>he Netherlands.
```

Judd,D.B.	(9133) The 1931 I.C.I. Standard Observer
	and Coordinate System for Colorimetry.
	J.Opt.Soc.Am., 23, p 359-374.
Judd,D.B. & Wyszecki,G.W.	(1963) Color in Business, Science, and
	Industry. 2nd.edition.New York.
	John Wiley and Sons.
Kimball.H.H.	(1928) The Distribution of Energy in the
	Visible Spectrum of Sunlight, Skylight and
	the ^T otal Daylight. CIE Proc. 1928,p 501,
	Easton,Pennsylvania, Chemical Publishing C.
Kodera,M; Kupcik,V & Makovick	y,Ε.(1970) Hodrushite — a new sulphosalt.
	Min.Mag., 37, 290,p 641-648.
Larsen,E.S. & Berman,H.	(1964) The Microscopic Determination of the
	Nonopaque Minerals. 2nd.edition.
	Geological Survey Bull. 848, United States
	Government Printing Office, Washington:1934.
Leonard, B.F; Mead, C.W. & Finn	ey,J.J.(1971) Paradocrosite, Sb ₂ (Sb,As) ₂ ,
	a new mineral. Am.Mineral.,56,p 1127-1146.
Leonard, B.F: Desborough, G.A.	& Norman J.P.
	(1969) Dre Microscopy and Chemical
	Composition of some Laurites.
	Am.Mineral., 54, p 1330 —13 46.
Levy,C.	(1966) Contribution a la Mineralogie des
	Sulfures de cuivre du type Cu _a xS _a .
	Premiere these, Presentee a la Faculte des
	Sciences de l'Universite de Paris, Publie
	dans les Memoores di ^B ireau de Recherches
	Geologiques et Minieres.
Long,J∵V.P.	(1967) Electron Probe Microanalysis, in
	Physical Methods in Determinative Mineralogy.
	Edited by J.Zussman. Academic Press.
Lopez-Soler,A. & Bosch-Figuer	oa,J.M.(1970) Optical Characteristics of
	enargite. Trans.Inst.Mining Metall.
	Sect.B Appl.Earth Sci.) 79 p 249-251.
MacAdam,D.L.	(1970) Sources of Color Science.
	The MIT Press.Cambridge, Massachusetts,
	& London.
"	(1942) Visual Sensitivities to Color
	Differences in Daylight.
	J.Opt.Soc.Am., 32, 247.
11	(1943) Specification of small chromaticity
	diffan.

•

	differences. J.Opt.Soc.Am., 33, 18.
MacAdam,D.L.	(1950) Loci of Constant Hue and Brightness
	Determined with Various Surrounding Colors.
	J.Opt.Soc.Am., 40, 589.
"	(1951) Influence of Surround ^C olor.
	J.Mot.Pict.Telv.Eng., 57, 197.
Markham,N.L. & Lawrence,L.J.	(1965) Mawsonite, a new Cu-Fe-Sn Sulfide
	from Mt.Lyell,Tasmania and Tingha, New
•	SouthWales. Am.Mineral.,50,p 900-908.
Martin,L.C.;Warburton,F.L. & Morgan,W.J.	
	(1933) Determination of the sensitiveness
	of the eye to differences in the saturation
	of colours. Med.Res.Council,Rep.188,London.
Maxwell,J.C.	(1860)Theory of ^C ompound Colors and the
	Relations of the Çolors of the Spectrum.
	Proceedings of the Royal Soc. of London,
	10, 404-409; Scitific papers, V 1,410-444.
Moon, P.	(1940) Proposed Standard Solar-radiation
	Curves for engineering use.
	J.Franklin Inst., 230, 583.
Moss,T.S.	(1959) Optical Properties of Semi-Conductors.
	London Butterworths Scientific Pub.
Mozgova,N.N; Borodaev,Yu.S; Ra	akcheev,A.D. & Borishamskaya,S.S.
	(1969) On the Diagnostics of Lead
	Sulphantimonides. Institution of Mining &
	Metallurgy, Trans./Sect. B, 78 p B57-64.
Nichol,I.	(1962) A Study of some Opaque Manganese
	Minerals. Unpub. Ph.D.Thesis, University
	of Durham.
Nickerson,D. & Stultz,K.F.	(1944) Color tolerance specification.
	J.Opt.Soc.Am., 34, 550.
Nichol,I. & Phillips,R.	(1965) Measurements of Spectral Reflectivity
	of Manganese Oxides. Min.Mag.,No.269.
Pauly, H. et al.	(1969) Study of Minerals and Artificial
	Materials in Polished Sections on the Micro
	scale(third Annual ^R egional Conference,
	2-3 May,1969).
	Reprinted from Meddelelser fra Dansk Geolodisk
	Forening.

•

Petruk,W; Harris,D.C & Stewart	.J.M. (1969) Langisite, a new mineral, and
	the rare minerals cobalt, pentlandite,
	siegenite, parderite and bravoite from
	the Langis mine,Cobalt-Gowganda area,
	Ontario. Canadian Mineral., 9, p 597-616.
Phillips,R. & Bradshaw,P.M.D.	(1966) A Test of the Linearity of a
	Photomultiplier used for Reflectivity
	Measurement. Min.Mag., V 35, p 756-758.
Piller,H.	(1966) Colour Measurements in Ore
·	Microscopy. Mineralium Deposita.1, 175-192.
Piller,H & vonGehlen, K.	(1964) On Errors of Reflectivity
	Measurements and of Calculations of Refractive
	index n and Absorption Coefficient k.
	Am.Mineral., V 49, p 867-882.
Piller,H.	(1967) Influence of Light Reflection at the
	Objective in the Quantitative Measurement
	of Reflectivity with the Microscope.
	Min.Mag.,London, V 36, p 242-259.
Physical Society's Colour Grou	up.(1948) Report on ^C olour Terminology.
	Physical Society(London), p 56.
Ramdohr, P.	(1969) The Ore Minerals and Their
	Intergrowths. Pergamon Press.Oxford.
	London.Edinburgh.New York. Toronto.Sydney.
Ramdoh r ,P.	(1964) Remarks on Quantitative Measurements
	of Reflectivity. Econ.Geol.,59, 502-9.
Roedder,E. & Dwornik,E.J.	(1968) Sphalerite Color Banding: lack of
	Correlation with Iron ^C ontent,Pine Point,
	Northwest Territories,Canada.
	Am.Mineral., 53, p 1523-1529.
Sclar,C.8. & Geuer,8.H.	(1957) The Paragenets Relationship of
	Germanite and Renierite from Tsumeb, South
	West Africa. Econ.Geol., 52, p 612-631.
Short,M.N.	(1968) Microscopic Determination of the
	Ore Minerals. Geol.Survey Bulletin 914,
	2nd.edition 5th.printing. United States
	Government Printing Office, Washington:1940.
Schouten,C.	(1962) Determination Tables for Ore
	Microscopy. Elsevier Publishing Co.,
	Amsterdam. New York.

	346
Silberstein,L & MacAdam,D.L.	(1945) The Distribution of Color Matchings
	Around a Color Center.
	J.Opt.Soc.Am., 35, 32.
Santokh Singh,D.	(1964) Measurement of Spectral Reflectivity
	with the Reichert Microphotometer.
	Trans.Instn.Min. & Metall.,V 74, p 901-916.
Springer,G.	(1969 b) Compositional Variations in
	Enargite and Luzonite.
	Mineral.Deposita, 4, p 72 -7 4.
11	(1969 d) Microanalytical Investigations
	into Germanite,Renierite,Briartite and
	Gallite. Neues Jahrb.Mineral.,Monatsh,
	435-441.
Stumpfl,E.F.	(1970) New Electron Probe and Optical Data
	on Gold Tellurides. Am.Mineral., 55,p 808-814.
	(1968) New Data on Natural Phases in the
	System Ag-Te. Am.Mineral., 53, 1513,1522.
Squair,H.	(1964) A Reflectometric Method of
	Determining the Silver Content of Natural
	Gold Alloys. Trans.Inst.Min.Metall.,
	V 74, p 917-931.
Symposium on Color Tolerance	London(1958) Farbe, 7, 164,1958.
Tansel,T.	(1970) On the Mineralogy of Some Base Metal
	Ores from Ireland. Unpub. M.Sc. Thesis,
	University of Durham.
Taylor,A.H. & Kerr,G.P.	(1941) The Distribution of Energy in the
	Visible Spectrum of Daylight.
	J.Opt.Soc.Am., 31,3.
Terziev,G.	(1966) Kostovite, an Au-Cu telluride from
	Bulgaria. Am.Mineral., 51,p 29—36.
Topping,J.	(1966) Errors of Observation and Their
	Treatment. 3rd.edition, Chapman & Hall Ltd.,
	London.
Tugal,H.T	(1969) The Pyritic Sulphide Deposits of the
	Lahanos Mine Area, Eastern Black Sea Region,
	Turkey. Unpub. Ph.D.Thesis, Univ.of Durham.
Tyndall,E.P.T.	(9933) Chromaticity Sensibility to
	Wavelength Difference as a Function of
	Purity. J.Opt.Soc.Am., V 23, p 15-24.

•

Uytenbogaardt, W. & Burke,E.A.J. (1971) Tables for Mocroscopic Identification of Ore Minerals. 2nd.revised edition, Elsevier Publishing Co., Amsterdam. London. New York. von Helmholtz,H.L.F. (1924) Physiological Optics. translated by J.P.C.Southall. Published by the Opt. Soc.Am.; Reprint: Dover Publications, Inc., New York, 1962. (1965) On the Optics of Covelline. von Gehlen,K & Piller,H Mining Mag., 113, p 438-445. H (1964) Optices of Hexagonal Pyrrhotite, Feg S₁₀. Min.Mag.(London),V 35,p 335-346. u 11 (1965) Zur Optik von Hamátit und Ilmenit. N.Jb.Miner.Mh.H 4, p 97-108. Wahlstrom, E.E. (1966) Optical Crystallography. 3rd.edition, 4th.printing. John Wiley & Sons, Inc. Webster.R. (1970) Gems: Their Sources Description and Identification, 2nd, edition. Butterworth & Co.,Ltd.,London. (1928-29) A Re-determination of the Wright,W.D. Trichromatic Coefficients of the Spectral Colours. Trans. of the Opt.Soc. V xxx No.4. 11 (1929-30) A Re-determination of the Mixture Curves of the Spectrum. Trans.Opt.Soc., 31, 201. ... (1969) The Measurement of Colour. 4th.edition. Adam Hilger Ltd.,London. = (1934) Hue Discrimination in Normal & Pitt,F.H.G. Colour-Vision. Proc.Phys.Soc.(London), 46, 459. Wright,W.D. (1927-28) A Trichromatic Colorimeter with Spectral Stimuli. Trans.Opt.Soc., 29, 225. 11 (1941) The Sensitivity of the Eye to Small Colour Differences, Proc. Phys. Soc. (London). 53, 93. Wyszecki,G. & Stiles,W.S. (1967) Color Science.Concepts and Methods, Quantitative Data and Formulas. John Wiley & Sons, Inc. New York, London. 11 (1971) Color-Difference Matches. & Fielder,G.H. J.Opt.Soc.Am., V 61, No.11, 1501.

Wyszecki,G. & Fielder,G.H.	(1971) Color-Difference Matches.
	J.Opt.Soc.Am., V 61, No.9, 1135.
Yund "R.A.	(1963) Crystal data for synthetic
	Cu _{5.5x} Fe_S(Idaite). Am Mineral., 48, p 672-676.
Zussman,J.	(1967) Physical Methods in Determinative
	Mineralogy. Edited by Zussman.
	Academic Press, London & New York.

•

7

ł

ţ

÷

. :

h

ŝ

Figure 1.a. PART OF THE C.I.E. CHROMATICITY DIAGRAM SHOWING THE COLOURS OF SOME ORE MINERALS UNDER THE C.I.E. SOURCE C (average daylight)

