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ABSTRACT

Series expréssed in terms of Chebyshev polynomials are applied
using Lie series to the iterative solution of ordinary differential
equations. After a discussion of initial value problems, the
method is then used to solve two-point boundary value problems and

an improved method of shooting type is derived and tested,
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(ii)
Introduction

This thesis is concerned with the application of series methods to
the solution of ordinary differential equations. Series of Chebyshev
polynomials are used in conjunction with Lie series,

In Chapter I a brief account is given of the Lie series approach and
an account of previous work on application of Lie series to numerical
solution of initial value problems. A quick review is also given of the
properties of Chebyshev polynomials and the methods which have previously
been used to obtain solutions of initial value problems in terms of them.

In Chapter 11 Lie series are presented in Chebyshev form and applied
to the iterative solution of initial value problems. The theory of the
method is discussed and numerical results are analysed.

In Chapter III an account is given of various shooting type methods
previously used in solving linear and non-linear boundary value problems
and comparisons between them,

In Chapter IV the Lie sgries method is applied to socme of the methods
mentioned in Chapter III and the numerical behaviour is tested, A new
method for solving non-linear boundary value problems is then derived and
applied to a set of test examples. A detailed discussion is given of the
comparative performance of this method under various conditions,

Finally, a new continuation procedure based on this method is suggested

for future investigation.
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CHAPTER I

BASIC RESULTS

The first section of this chapter gives a brief account of the Lie
series approach to differential equations as developed in W,.Grobner and
H.Knapp (1967) and H.Knapp, G.Wanner (1968).

In the second section an account is given of previous work on
application of Lie series to numerical solution of initial value
differential equations,

Since in this thesis the Lie series are expressed in terms of
Chebyshev polynomials, a brief account is given in the third section
of the properties of such polynomials and the methods which have
previously been used to obtain solutions of initial value differential
equations in terms of them.

1.1 Theory of Lie Series

1.1.1, Definition of Lie Series

By D we denott a linear differential operator
9 2 L 2
= &/z — 1 ft) + _'.ﬂ 1z) 2
D ' )"52: &, 5z, 7 )gz” 1.1.1,

the coefficients of which, 6%CZ), represent functions of Complex

variables z z which are all assumed to be holomorphic in

1' Z2, s 0y
the neighbourhood of one and the same point, If then £(z) is any

function which is holomorphic in the neighbourhood of the same point,

it is possible to apply the operator D to f(z) and obtain

- oF 1 PR— 9F 1.1.2
which is holomorphic and also TP = D(DF), - 3 D?’= D/D""P)

are also holomorphic.

A series of the following kind

D 80 ff v
e Pz ) L D)

yso

it

2

is here called a Lie-series. .
O™ Jaican
{ 4 JULy/io
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A Convergence proof with the help of Ceuchy majorants can be found in
W.Grobner, H.Knapp (1967).

1,1.2, The Commutation theorem (W,Grobner and H.Knapp (1967))

‘Consider the function F(7.4,xJs"sYta))= F(2.9x), and specialise

to the usual definition of D as the differentiation operator so writing

A pruym)= [DF]
dx

2, Jix)
ad A prugm) = [DFl gy wormes L1
e
N
where DF(J'd‘(’)J s 1) = QF +.kZ, d«yﬁ)

The Taylor expansion of the function F(I,J/x)) at the point X, can

be written in the form

= X - ’3)
F (1, 4i0) Z (% -7, (2 [ D ,,-]’I“ e 1.1.5
yao
where  Jp denotes J(%
and so /I)" Z (1 z°) [DJ] > (fz1,2, - wn) - 1.1.6
%, Y,
ad 14
X = (x-2) 4
rz- "_’ [Dx]"ajo

Then (1,1.5) gives the Commutation theorem

Z {““) [z)foy)_] = F 2—_(’-%)[0] ZM[M]

-~1,1,7
ok pee r Yoo

The substitutions X —» 2 jo__»y ) & —w T+ 2 yield
Z (#- *)[DF“’)] F(rz /f.z.,)b Z/z“o) DJ)

Thus the function symbol F can be commuted with the expression

00 ro, '
Z (f;jo)D 1.1.9
=0 ’

All the formulae are valid in the common domain of Convergence,




1.1.3 Solution of differential equations in Lie series

Consider the system of ordinary differential equations

cj['//) = ;; ( 2, 400, 4(x), v %)

!

P;. (z‘y/_()) N {": ’l z)'_...-} ”) e e e arareisa e = 1.1.10

with initial condition

o, ) = J:‘o S0l ) 1.1.11

The method in question is a perturbation method, so assume another system

of differential equations

A/ A A Pl A
Cj‘./x) = E (2, 400, Yy (D5 s yn/z))

A A )
- ?‘ (1,]/1)) 5 Uz, 8, n) 1.1.12

A A A .
whose solutions J|()t) ,y?u),_....-)jn(u are known functions of x with the same

initial values
A
J‘flo) = J,a oo fE=2 n) 1.1.13

It is always easy to give such a further system with known solutions.
Choose j,(‘))f’/;“)r-“'uz'(n such that they have the correct initial values,
then differentiate them with respect to x and let these derivatives be
the functions

A

A A
g’)‘) > B, TR Bfl)

We introduce the following differential operators

9 . 5 0 |
D= Az + 12_, /-; (',J,a),..“.,y,,/l)) ,5.—2; e 1.1.14

belonging to the given system (1.1.10);

: @ e ereane 1.1.15
IX) J,”)J'---- ’.y"/l)) (:y-

%

LN DY

n
= by
Dl= r-{; + %




belonging to the chosen system (1,1.12); and

” o]
D2 = Z {f;(x.,/,m,...-,‘”'m)- ;; /x,x,,h.......,yn,,,)j%.__, D-D, 1.1.16

Pad
Now let [ (l,jm) and ff./l,]), (¥=1,4,..,n) De continuous functions in

the Compact domain

= {(z,]“_....,/”)

X€e [x,0,72]5 [Y; - J‘.o | < b //':/,.---,n)j...1.1.17
of the (xay|r“7jn) - space; then they are bounded in B

se. [Etny)|sdy 5 [Fmg)]s G, (rcrsn) e 1.1.18

and Peano -theorem guarantees the existence of corresponding solutions

,
dl.(z) ‘of (1.1,10) and Jf”) of (1.1,12), (r</,~~,1n ) at least for

b
w

Zé[lo :Zo-IA'*] s A = un (a., ,75- 5 ?é_) 1.1.

Theorem (1): (Main formula) Knapp (1964)

1t £ (n9) ana p/19) » (Feis,-2 %) aresnalytic in B, then the
4
*
following formulae hold at least for X €[ » , =z 4&[], The solution

can be given as an infinite Lie series

g0 = J/x)-/- 2 f [z U [ D DJ J ¢, 90 A7 e ) 1.1.20

rzo Av

or as a finite Lie series with remainder,

(jl. {1) = (}: rX) -+ E‘.S /I) e e e cts s s 11,21
— (-2 f)
where cjl w) = /!) + %o ’/. [D;D ]t,y'ma/“ . 1.1,22

and /? ) = / (J t) z([ 5'('/] "'"] } 1.1,23
Jj/f) Z'; /f)



Proof
Taylor expansionsof (/4'(’-) % jl.(t) are

o’

g = 3 "” [D9]

rso l‘z’, - T ttET s 1.1.24

A 00 r
c):.fx) = Z (x-2,) [Dr,],-] e . 1.1.25

yzvu "'/ ! oY,
The relation

r-i r-a-1

Dr: (D:*Dz) D + Z D, D,D . 1..26

is easily proved by induction, Hence inserting (1.1.26) into (1.1.24)

gives
S0 = (- ’°) Df + D D
%3; [.( 42' ! I:>2 )(j ]6,35
h 2 ¢ (x-z.)r r-a-|
= J @+ ) ) g DquJ.'],J
yzo X=o . %, Jo
Then a change in the order of summation produces
A oo &
Jow= g+ p Yy (LR ’°) [ r”-DzDJ] e 1.1.27
Azo Yzaqr -.-J,

This formula contains expressions of the form

——

(- 'o) v
2 [o7 " genn],

Y=o+

which can be simplified with the help of the Commutation theorem (1,1.8)

-d-
using the relation (x -z.) / (z- /)q’ (¢-2%) vy 1.1.28
r! o a (r-a-01




-6-

(o(zo ,(r—w—l)ao, integers)

(’ %) y-a-! /J {) ) " rew
D 2,9 (f 5)
é}n [ ¢ )J"’" , (r-a-1)! [D' ‘9“’]}] a7

o, ’.

/z{xa‘)o{ {z‘ 2 ({ z'.r%' Voo, »
M a! 2 Z [ D J]’.‘,")

yzael (V- “(r-w-0!

“aet)”
/j;r 90t 500)d?

1.1.29

Finally insert this into (1.1,27)

g = J”” + Z ] (z f)[DzDNJ ]t L d? 1.1.30

aze 7, , Jrt)

the formula which originally was proved by W.Grobner. 1t may be noted

A a
that putting cz.a)-= ébo’f:o this reduces to the Taylor series form of
the solution, and so(l.lﬁﬂjisa non-trivial generalisation of Taylor series,

r-S-1
To prove (1.1.21) operate on both sides of (1,1.26) with 1>’ giving

r-s-1 s+ v-q-i

D D D+ZDD

Rearranging and using D = DI+D2 gives

r-$-1  y.s-y 4

(Di+ 2) = D + ZD DZD +(D D-D )D (r>s) 1.3

we next insert (1.1.26) for rg¢s and (1,1.31) for (r»s) into (1.,1,24)

and again change the order of summation

[y -

N
gow= 2 g +zzf”°)["”'bm]

rzo Y:o @co 2o, -10



P33 s L 5 sty

r=s¢t @zo v do f—SH -704‘7,
S =2 ( Yo o
A Y X-X i
i.e, S = J.fl) + 2 Z )[ DJI,]
. 4 4 r= whl r ‘Jy’
A <=0 =
od
2 (I-J.)r 7-5t  _r-S-1\ sp
rl [(D - D )D j]’ p 1,1.32
rz S#l aede
ingerting (1.1.29) into (1.1,32) we obtain
gim = Far + Ry oo
where $ x o
- 2 (x-¢) A o
) = . 1)+ / . D, D J £
cj % 4% X x [ ‘ ]fdf/t)
x
/ [_z z) r S Sy { 0’
- o A 7
and g oo x/ 1 [D ‘j]m ) ~[D 'J]h?/ﬂ |
(]

An analogous proof for the non-analytic case when ﬁ.ll,j) and
5161) are only s~times continuously differentiable (sy0) is given in
H.Knapp & G.Wanner (1968),

1.1.4 Order of the remainder term

Theorem (2):

If in addition to the assumptions of theorem (1)

[D Fofap . yﬂ)] p - [;3;;./,,,,',....,4)] ISKSj,f-;}LLSS
. Y70 A 4

for ( x, J'*, """J:) € B and (z,‘y'h, .....,x“') R

(i.e.Lipschitz Condition for the functions [fﬁ 5 s ’ tfﬁ: with Constants

Ks in B)

e/

and _J [%-%] # 1.1.34
,j{,/x} ‘j'.fx)/$ M ) for  ze[x, 2.+4"]




(M a Constant, m an integer), then

mis+2

| gm0 -F o] < p kea (2%

¥
[mrsr2)] for xf[—n,z.f,{] 1.1.35

To prove this, note that

D' gm =D (DIm)= Df

Thus

ol |- | 85, e,

L) l

/{/z f/-‘/(/s Z”/J’U“Z/’”///l
bzt

£

J/_J__il—/(/)M_/i:ﬁ'—I*a//’

X, {m+1))

and using the formula (1,1.28) we get (1,1,35)

1.1.5 Iterative process

1f the remainder term is dropped, the formula (1.1.22) can be used

— A
as an iterative process Gs by taking J/(x) as the new‘j(x) and repeating

the calculation, that is by writing

S x. &
Hrj‘-/t) = 1(/"‘. 1) + Z:o/ (’:f}[ -,,D., DD(J,/ ¢ 1.1.36

2, ,Jmn)

1.1.37

where ’VD = Z f /z“z'.....,]” - /.
b4 z ‘ ) '()f ?‘7*

1t has been shown (H.Knapp and G.Wanner (1968)) that

s
(i) If the functiors L)f: are continuous and satisfy Lipschitz condition

(1.1,33) in B then

Lim 7‘71- x) = x /) in an interval x€ [z, ;,f‘] 1.1,38
Y —> 00



-0~

(ii) If /J’_/l}_o‘z_/x)/s 2; , Zs 6 , € [I,J_nq.,{], then

S+/

ry v
f&‘.-fx)—v(/‘.m/s o3 (ksnlzx-xl ")
[(s+)7]1

(1ii)1f 0‘7,'/") is the first m terms of Taylor series, then this result

> (/.:IJ--"zl'j e /4?,"') /-/39

may be improved, if
mél

. [Z-%/ .
/ /’./1) —o,]l-/ll/ < /‘7 '_——_——/mu)_l for x ¢ [Z,2,44] 1.1.40
e ( 7+I v
! ksﬂ/l*/o
then /‘y/'lz)—r‘/ﬁ”)/ =/ /1_%/ [ mtr+(ser)7v]] He
P
) met!
. . ) 7- %/ EN VRSN )|
wosn |l o L Gy e
then /(y n)_ 0 ) mei o ) Srr P
! » /‘< M[x%/ 2 (tkan J2-20] ) 1.1.43

fog [ mrirrss)r ]!
(v) As a generalisation, the above results hold for s-times differentiable

functions, with G's' , § 8§ orwith G which is defined as

S, 2845 a5y
J 3 [y
M) = Yo r- « 1.1.44
VI 7‘71 7 Z / —;—,-—"' [”'Dz DJ,] o
<o ds . !l'jltj
where 0 £ S, = 8 ;. S, 1integers ( czl--0m )

These iterative processes may be considered also as derivable directly
from Taylor series by estimating the remainder term, thus with §- o

the process G _ .
° z

o, W = S+ / [ £ (2. ,90)) = oF, (¢ )] o

Xy

= oy + / Fle, ,gm) d¢ - (402 - 7//1;/)

X
= J, + 10/ Fle. ,J00) o




_10_

is simply the Picard iterative process, Similarly

,vﬁj‘. 1) = ‘/‘;-0 + (X -%) /.7./,}(,)1-// [Df] o S,

lp Ao ‘ 7'7//)

G’,:,’Hjl- 79 .—:J,- + (1-2)F 10,.9,)+ _’_ﬁ![ol’] ///[Df] dt ot ot

S dy X, 7‘//{}

and in general

G : j x) "Z‘a*/"%)g‘/""')* //z f)[D/’] oy 1.1.45

n " j#)

The advantages that these can have over Taylor series are well known,

for example y/ = xloo + leO , y(o)=0

101
A
produces, with s=1 and y = zTﬁi a first iterate

_ A T Jojoo 200]9
f
J#) = J ) /""" //1—/) /00 - A+ -

/oo

o (fol) // /)

- x100 + 10101 + 20101

101 10101(101) 20101 201, (101)

containing more than 30,000 Taylor terms.

It may be noted that these iterative processes for s=0,1,2 have
been used in a somewhat different form, by Nicolovius (1961) in
connection with boundary value problems and éome practical experience
of his work is reported later, Wright (1964) reports some experience
with s=1 using Chebyshe® series and this will be discussed in chapter II.
The same iterative processes can be shown to arise from the Zadunaisky
approach to the solution of differential equations as follows.

Consider the first order non-linear initial value problem

=ty yx) = a0 xelxg, %)
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N
(i) solving by Picard, using y(x) as an approximation, gives
A
— A
y=¢ + f(t,y(t)) dat
As
ii) we try to find an equation which has ;'as exact solution such as

y' o= 2,y + T - £ (D)

iii) Solving this by Picard with the same initial § would give

X
o + /‘ (f(t,;') + 37 - 2(t,y)) dt
-— ° X —
2 y(x) - &« - / f(t,y) dt

o
iv) So a better estimate of the original solution is

Y2

P 4
T+ (v - ;2) = & + / £(t,y) dt
"d

which is exactly Picard iteration process,
Similarly if we consider sth term Lie series, Zadunaisky approach yields
Lie series iterative process.

1.2 Practical experience with Lie Series

Knapp and Wanner (1968) reported the numerical performance of Lie
series used non iteratively. In their calculations they applied (1,1,22)
using Gaussian quadrature, with g(x) taken as the first (m+l) term of
Taylor series, to advance a step length h, and repeated for a succession
of steps. Three different types of step size control were used
i) Constant step size
ii) Step size control which keeps the local truncation error of specified

size, For this they estimated the truncation error of Lie series

using the relation

*
p./o = / (’ {) }[ /] “(’//] fq’f 1.2.1,
4
2, 7, f/) 294
The use of such estimation is justified by showing that its order is
lower than that of the ignored part of the remainder term. The step
h was then fixed so as to keep max Ris (x+h) within a given

4
tolerance.



-12-~
iii) Opti mal step size control, which takes into account the stability
properties of the differential equations by multiplying the desired

error size in each step by the connection matrix. The elements of
QI (2)
gyt 72
(3 y‘o

are the derivatives of the solution yi(x) with respect to the initial

such matrix H (x) = < 1.2,2

values yko' The connection matrix can be calculated by differentiating

(1.1.24) term by term

o Y
)= PN (x-%)" r Q 7, 1.2.3
H‘k /a‘ylo Y=o r! [ ’B‘yk D ‘71 ]

In the course of a step by step integration of the equation using the

intervals x, < Xy g <X formula (1.2.3) yields the local connection

matrices,

()/ZJ) = ( B ) 1.2.4
’Bjk fZJ'_,)

Because of the chain rule these matrices are multiplied up yielding

H/]”): C/lﬂ) ........... (,/IZ)(’/I,) 1.2.5

the desired connection matrix.
Assume the differential equations are to be integrated over the range
Cxa,x”] using N steps Xo < X< L X, with the step size hj = xJ. - x‘;-l'

1f Cj is the error vector made at the point xj, then its propagation at

XN is given by
v)

€J = /‘//]ﬂ) /L/’,/IJ) €J 1.2.6

In the special case n = 1 (one equation only), ﬂj = qﬁj.hjp+1 where

p=m+ S + 1 is the order of the method, Then by minimising

~ /») ol -
Z €J = Z Hltw) H (%) € 1.2.7
J=l

Jz/



_13—

N
under the condition that Z /lJ = Ay -2, 1.2.8
L

one can show that the optimal step size control has to keep

-1
W) € Y
7 A 1.2.9
J

where Cj is the truncation error (1,2.1) and X'is a specified tolerance.

1.2,1 Computational results

Results are reported for varying m,s but keeping the total order

m+ s + 1 constant, and for varying k, ti sirc.- o, soussian nAodes

Example (1) Test of the accuracy under variation of m and s with m+s = /8

y, =1-e 7 (Sin x - Cos x), y(o) = o

exact solution y (x) = log (Sin x + e®)

h m s actgal error actEal error Error estimation for
of y(h) of y(h) y(h) (local truncation
error)

0.125 18 | 0 | 7.2 x107® 3.1 x 10 %7 3.1 x 10 %7
13 5 | 2.3 x 10°1° 1.45x 10 20 1.0 x 10°20

8 | 10 | 8.2 x 108 4.9 x 1021 1.5 x 10 2}

0.250 18 o | 3.25 x 107° 2.0 x 10t 1.9 x 1011
13 5 | 3.19 x 1077 6.6 x 10 1° 3.3 x 10 1°

8 |10 | 3.62x10° | 1.8x101° 0.2 x 10°*°
0.500 18 o | 1.3x10 3 6.3 x 10°° 6.2 x 10 °
13 5 4.1 x 10°° 1.1 x io'g 4.7 x 10 1°

8 |10 | 1.5x102 3.5 x 10 ° 0.08 x 10 1°

The Taylor series converging only for h < 0,5885, gives poor results for
h = 0.§, in spite of this the Lie series correction yields good results,
As can be seen the estimation of the local truncation error works

satisfactorily here.
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on the computational effort in using Gaussian quadrature is introduced

by Stetter (1973) and will be mentioned later in this section,

Exampie (8) testof the accuracy using different step size controls,

/’

y(o)

Answer is y(o0)

=7

y(1)

(o]

] y(l) =

100 000

?

0,9999 9999 995

3
y =-xy , x_=-1, y(-1) = Yo

= 0,9999 9999 995

Results for m = 15, s = 3, k 2 where k is the number of nodes in the
Gaussian quadrature.
step size -{ actual error |error estimation
control h x |of y (x) of y (x) Steps
-12 . +2
normal 10 0.29...0.0000023| 0 1,6 x 10_13 . 46
1 1.7 x 10 +on e 107
-14 . -0 . -0
optimal 10 0.24,.,.0.0000060| O 5.1 x 10_15 9.6 x 10 -15 32
1 5.4 x 10 20.0 x 10 80

This example has an extremely varying error function, because of this

constant step size is not advisable.

1.2.2

The advantage of the Lie series method over the simple power

series method

A comparison of the computational effort involved in this way of

applying series has been mentioned in Stetter (1973).

Let s be the number of terms in Lie series, m the order. of Taylor series

A
representing y(x), k is the number of nodes of the Gaussian quadrature,

then it has been proved (see Stetter (1973)) that the order of

Convergence of Lie series method is

P=m+ min (s,

2k)

1.2,10
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This result raises the question of whether this method gives any advantage
over a simple power series method of order m + s,

The Computational effort for evaluation of the coefficients of ; (x)
is proportional to mz, the Computational effort for evaluation of Lie
series is proportional to 21? for each node, thus the total effort is
proportional to m2 + 2k§2.

From (1.27) we should choose k > s§/2, so that we have an effort like
m2 + s3 for a Convergence of order P = m + s. This indicates that (for
large m), the highest order for a given effort is not achieved with s=o0

2
(i.e. power series method), but roughly with 38 = 2m, thus the following

choices of m, s, k should be reasonable,

m s k

- 4 1 1
4 - 10 2 1l or 2
10 - 20 3 2

Furthermore, as shown in (1, 2, 1) for constant p = m+s the actual errors
tend to decrease with increasing s and correspondingly decreasing m.

1.3 Chebyshev polynomials and their use in solving ordinary differential
equations

In this section we are going to quote some properties of Chebyshev
polynomials and the approximation of any function f(x), xg[—l,l] in
terms of them. This kind of approximation is known to be a leas/ squares
approximation, We are also going to mention some of the iterative methods
for solving ordinary differential equations in Chebyshev series.

1.3.1 Properties of Chebyshev polynomials

(i) Definitions

'7; ) = e (r G;O‘CY) -l cxs | Z

P 1.3.1
, * 0 <X = J
7"' /) — 17 /z - /) = s |
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(ii) Recurrence relation

e

7. v/
po M =22 T ) + T M) =0 1.3.2
(iii) Product formula
- _ L } 1.3.3
T Ttx) = 51T, 0+ 7, rn

(iv) Differentiation

[ / o
/1) = 7, ’
F z) Z Ar /r /1) 3 ﬁfl) = ZI("- 7:/()
rso

then ’::
Cop = D 2 (25%1) Ays, 1.3.4
55,: ) r=o0,1,..-
(’2“' = Z 2 (25+42) Aye,s
S=r

For the truncated series

7, . w-1,
Pi1) = 2 A T, P'ra) = Z G, 7, )
yeo

r‘ﬂ

C',,,_, = 2N Ay
2071 Aw-s Z! ----- 1.3,

W

Ca.2
C,r_,

(v) Integration

2"/4, + (:,“ S Fel, 2,0, M2

7, x) T £
/7;/")6/1 = zigm > r=y 1.3,
[T 7w ]y

A
2 re! v

(vi) Orthogonal properties

/ 77' for YzS5=o
/.
T g X
V.4

77/2 for r=S=o 1.3,
0 for 14 #:5



il 7 N Y=8=z o or N
e
X, (1) =
:5:- /r (.J) 7;’ J ) ’5@ y=3S# oor V 1.3.8
J:o
0 vy £
where J(d' - /",', "'J/T/E R d': 01y oonn SN

(vii) Calculation of Chebyshev Coefficients

(a) If £(x) is continuous and of bounded variation in the range

[;1,1] then f(x) can be expressed as the following infinite series

2,
2 A T )

Ve 0o

FIZJ = _2’- Ao T;/x) +A’ T;/-() T

where

!
g -2 | fumm
r Tr..-, VIi-x?

T
- 2
;'7: ;/f[é,,y) Gard o8 1.3.9

This is a familiar representation in the theory of Fourier series.

N
v 2

(b)

1f (’r

4

Pl3) 7./%) » reoipuw

Azo
=2 5" plGaAT). G (LAT)
N %.. N ~ 1.3.10
where ZA: 6’, _é_l- s hmosls e . N 1,3.11
N
then the expression
n_,
’?/’U: Z G 7,7x) » n<wN 1.3.12

rso

is the polynomial of discrete least squares best fit

i,e, that which minimises

v 7,
Z/ 2/:(;(‘}-— 2 (’,ﬁ'/x,)f

e o rso .

2
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and the minimum is

7 2 2
) Plu)-2 G 7 /a)f

‘nl’ yeo

In particular the function
N ou
Pr = Z (’ 7"/1) 1.3.13
N
=9
is the polynomial of degree N which fits f(x) exactly at the data points
X, of (1.3,11) with k = o,1,,..,., N.
For the rest of the properties and re'lated proofs see Fox and Parker (1968),

Clenshaw (1962),

1.,3.2 Chebyshev Solution of non-linear ordinary differential equations

(i) The Picard method

This method (Wright, 1964, Clenshaw and Norton 1963) solves the

first order differential equation
/
g ) = /3(1:)’) , x€[-11] 1.3.14)

with the initial condition y(xo) = & by means of Picard iteration

(rer) x )
x) = x + / Pttty ) /7 1.3.15

o

1f at some stage we have an approximation

(r)
m) = Z /4 /S /x) 1.3.16

se£o0

we can #ind the corresponding approximation

(r) Jr) iy (r) 1.3.17

-— I - e o
P =Ffmgd)= 75 B, 75m
Sz 0

The B's can be determined exactly in some cases, e.g. if f is linear
with polynomial coefficients, or can be found by collocation at a
prescribed set of points using (1.3.10), then using the known formula
(1.3.6) for integrating a finite Chebyshev series together with (1,3.15)

we get
/r+ l) o (re ')

Z_ As 74 1.3.18
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which could be used at the next step. The error analysis will be
mentioned in the next chapter,

(ii) Newton's method

Expanding about the solution at the yth stage gives

(r+)

S = Ptey) (02 g ) b S
‘e j/rr'}_ /{”,}5 /f;/r/} _ /Vllj/ﬂ} _ //fé /2‘,/”} 1.3.19

+
a linear differential equation in y(r 1), which can be solved using

the method of superposition.

Norton (1964) used Chebyshev series in the [/ 7n: st Proatbrons
(ret) Yoo (rH)
o) = Z As s
Se0
(r) W~ {r)
é/ x) = ;Z /s 7;77)
S<sv
’ Mol / )
(r+!) / (rr’) __
1) = /s 757x)
=20
r) - J—
/_7(:,/}:2 By 7s (4
sSeow
»!, e
P, )= ) ¢ Ts™
4 st (r)

then substituting in (1.3.19), using 1/2 Cg as an approximation to fy(x,y )

and equating coefficients of Ts(x) we get

/
(re/) frer) (vl
= Bs+et @ (A4 =4 )

As
using the relation

/ /
28/45: AJ-I‘_AS*/ s S22 1,2, "~ ~n”

we get the set of linear equations

(7r+1) lres) (re1)

'/2("' (/45-: = Ases )' ?SA: = E

i) [r)
e = (B-""" -BJ-I)+/$G(AJ-I -ﬁ-"-fl/ LS 1,2,- 00 M

-

where

(rel) (r)
for s > N we assumed to be zeros and the equations are

s 3
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solved successively, A modification of this method in the case when c,
is small, is mentioned in Norton (1964).

In the next chapter the use of Chebyshev series in Lie series will
be developed and analogous formulae to those in (1,3.1) (i) will be
produced and used as a basis for an iterative method of solution of
differential equations,. The error analysis for this method has been

given in this chapter and will be applied to results obtained.
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CHAPTER 11I

SOLUTION OF NON-LINEAR INITIAL VALUE PROBLEMS IN

CHEBYSHEV SERIES USING LIE SERIES METHOD

2,1 Lie series in Chebyshev form

2.1.1, Relations for infinite Chebyshev series

Consider the non-linear initial value problem

/
y () = f(x,y) ,  xe€(-1,1]
) 2.1.1
y(xo) =¥y
Let the auxiliary initial value problem be
1 ol
y (x) = £(x,y), X € [‘1.*q
2,1.2
y{x ) =y,

A
with a known solution y = y(x). If the differential operators D,Dl,D2

are as defined in (1.2.5 - 7), the truncated Lie series is of the form

J/I) (/fz)-r Z f (%- f) D DJ; _ 2.1.3

A =0 Xo Jﬂ)

and the remainder is

. =
) (z t) y 7
Rew = | 5 {(0F), ,,,~ (D D), ) e
now (2.1.3) can take the form
A / 7, i o
72 = J ) b ¢ o
J J + [ 2‘” piw T /( [Dzb'y]bwz) '
X
Fooeeeees + J/}r J/'[1>ll>‘7] a‘f & - a/;§
2 2.1.5
where Dzj‘: f/;,yj- EIJ;Y) 2
D,(DY)=[FmY)- Feag)] ’?3_5— 2.16

D, (53):[r/;,y) - F/,,y)] D (DP)
79

and so on


http://_-l.ll
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The functions involved may all be expressed as Chebyshev series

r

J(l) = 2 4 /l)

(

d‘l(ﬂ; Z 4 7, ) e 21,7

substituting in (2,1,5) we get

Z’ 7,00 = 21é7ﬂv+ /(f'é,fm)%‘
Ye

ree L Y=o
> tl N’ ~

+// (25” 7;-/*))#«/#-' ........
1, X, rro
3 t; t'

N’A
+ /(2 B_,,T_/*)) Al S
Xy %o v reo ’1e

Now performing the integrals in the R.H.S. of (2.1.8) using (1.3.6) and
comparing the coefficients of Chebyshev polynomials in the two sides

produces the infinite set of equations

Z = ’é -+ /?0 é, -+ ﬁl ﬁl . - p_t B 2.1.9

~S

where

I
n
-
RN
.
S
—

s B4 .4 .. - )7,

dependent on

2m>
<
"

~
iJD)
w>
3
4
By

and Ro, R1"""""Rs are matrices derived as follows:

For the matrix Ro consider the first integral



o

A o)
/'
/ Z B.,, 7, ot = Z A 7, v
fzo reo
A~ N o0 A X
[ttt BT - Bz
r=2 el red Yo
l0) A
so ﬁ = /?o go , where
] 7 ) 7
- -1t
Ro = 7;/" _'jﬁ (fll':')‘ ’:U) (Zi;_:_;,“)_ 7;1/‘0 ....... T
rel
! -1
7 0 7
4 0 7
4 (2-1-n)
1 1) =1
ar 2r
L L f t, -, —
In general if ) = / -
. fzo p 7:-” / 8,,7;/0 Ay - S
(‘.) Ser A Xy Xo P £ = e
then _Af = Qa NB,
3 Set
i.e. /QI = ?o > ,p? = po > -- » A?, £ Ro 2.1.12

In particular

2 [ -
= L
R | (¢ 2) (200, 50)) (Gm_ 7). ™ gy
7 re 2
ST (L)) (S G (fe BB ) (B g
2 'S "7—:’)
/ 0 !/
—~ - 0 A,
¥ 1 24
-1 /
1 ; 0o —— 0
4rir-1) 2(r%1) 4rlrei)

2,1.13
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and
RB F-( 7, -7
= N(-8%-3) _(6+3%¢ T\ (107-57,-5) [ W-27p-27-00%) _ . _t\ [Tres 37, 3% 73
° 24 ) - 2 )( 40 )/ T B 2 U= I Y T )
3+2% 37+ 73 72 _L (7'5-jﬁ 27¢ - 7% -1 e e e . 1,7
( /6 ) ( ;; J) (72’ () '—2_0__) (—4_8_-) z‘/—é’:&-%)
-L L ,B) (7 9-27,44%) (573-3%) (67-6%-')... =L .
9 (h '7;/ (——ﬂ’:' ) ( &4 ) ( e ) ( /92 ) 8 7’;'—:_-7’3‘)
Z’-s, 0 I BT
32 S0 4?0
= -3
0 0 i 0 -/
0 /92 320 192 950
—_—t -3 3 )
Br(r)(r-2) Brirt1)irez) 8Y (r-1)(re1) 2 /)/rn)o
- 2,1.14
2.1.2, Iteration process
The relation (2.1.3) may be used iteratively as follows
(i+1) 73] s x «
) = Y + Z x-£)
) = (-2 2Dz Dq:/} o s ) 2118
Feo 4/! f‘ I
+J é‘/

/0} A
with (y ) = ‘j/‘()
'y

and in (2,1.5 - 10) we replace y(x), y(x), £(x) by y( )(X), y 1) . (i)(x)

respectively,

In practice we use a truncated Chebyshev series of order N, so

v,
Jlm,—: 2 ﬁ 7, ) l

ﬂ*O ”4 {ry)
(1) = Z
/"/‘() s é = 04’, ----
feu e 2,1,16
[D,DY] = '8 -~
2 #) Byr r ) a = o,y

+J rx) =0

where Ailg o for r»>N, (i=o0,1,...) and since the B'g are the coefficients
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(r)
of derivatives, thein ne9lecking BJ, for ¢ > w44 2.1.17
The relation (2.1,9) becomes
(r41) 73 & I " .
— e 2.1.18
a =4 +-Jfﬁ~f£3° +ha B+ + Ry w B

where the matrices RjN’ (j=0y1,..49g) are of order (N+1) X (N+1).

The matrix RoN is the top left corner of Ro in (2.1.12) with

ROI/(') ,4/+I) = Tﬂ-l i

2

Similar to (2.1.13) one may replace R, ., R R by R 2,....R "}
o 1IN’ "2N'"°°°°’"sN oN '*° oN

but in our case the use of truncated Chebyshev series will make the

3

2
matrices Rd , R ON' " slightly different from the matrices R

N 1N’ RZN""'

The difference occurs due to the appearance of terms like Tr(x), r>N

2 3
in the matrices ROA, ' Ro” y s+ While we replace these terms by zeros

. . 2

in RlN , RZN , for example the difference between RON and RlN occurs
2 ;

in the location (1,N) when R-_ (1,N)-R,, (1,N) = Twe ™

4
But from (2,1.17,18) this term is multiplied by Bf”d which is zero,

This justifies the use of R 2 in place of R Similar comparisons

oN 1N °
r , ] 2
between RoN and Rr-l,N , r=3,4,..,. justify the use of RéN ’RoN seses
s+l | .
RoN in place of RoN 'RIN’ oy RSN in the products RS

The iterative procedure works‘as follows:

(i) Work out the analytic expression for ﬁ,(x,y),(Dfly,...

(ii) Starting with yP=§(x) as the Taylor series expansion of y about
X = X, using the derivatives already calculated in (i),
differentiate to get E(x)

(iii)From (ii) we can find Aio), r=o0,1,....,N using (1.3.10)

(iv) Evaluate %, f, £,., (Df)”..... at X, = Cos éZZ , y(o) k =0,1,.....N
(v) Use (2.1.6) to find the values of Dzy, D2(Dy) DZ(Dzy),.... at

X k =0,1,..00,N

kl
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(o) /o)
(vi) Use (1.3.10), to fina (B , 8 ,
~ 0 -~
(1)

(vii)Substitute into (2.1.18) to getiL

(viii) Repeat until the difference between two successive evaluations

A1), (i+1)
=

A is less fhan a specified tolerance,

The predicted error improvement in i steps (i~ s . ‘2ficriit/? /A;;C):r an

m+l, . (o)

increase from O(Ix - %, > iny to OC | x _x°|m+1+1(s¢0) in y‘ll

For this iterative process we use the notation G to indicate the

EN
dependence on s (number of terms in Lie series) and N (number of terms

in Chebyshev series).

2.2 Error Analysis for the iterative process G

SN

Consider the system of n first order non-linear differential

equations

) = By, )
J, ¢ I Ia®) z 2.2.1

; (‘-= 0,2, s ”}

Sy () = iy
let y(k) be the kth iteration on y(o), then

' s x

(he') (+) (x-f)x «
Sy o= gt 2_ oy { D, D J‘-f o Via 2,2.2

ae? oy, ¢, Y l¢)

*
.let ¥y be the exact solution
lher)

X
i.e. J_*”) = {/Iv x)  + / (_{:sj_‘;) [(D’f) - (D:/)) }dt‘ 2.2.3
g 7 : e

then the error of the (k+1)£h iterate is

* /Qvu
‘/‘.u)- 1) = // /[(Df) -(Df’) & ey, ... S2, 2.2.4

e.9%¢) Yr¢)

x. ’.

#

Ny * o
let J. = Z Ay 7,2 erproximakly

r=o
(4) 7y +) _
Joo= 2 /4{'/ /p &) e e e paes 2.2.5

f—a

(Df),j/x) /3*,-’ 7"/1)

(D/’) W= Z_I B(ki. 7,2

Y=o
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Since in this section we are using only the sth derivation of fi we
use the notation Bir for the coefficients of Dsfi dropping the suffix
S.

From (2.2.4), (2.2.5)
/N

# {lﬂ)
ﬁf 'QSA/ l' ) 2.2.6

N

where Rs“N is the matrix defined in (2.1.18), and so if’.l_gi satisfies

the Lipschitz Condition

* (4)
" @'.'— NB’- ” < Kl'/ //'él ’d //'f' A’lg //dg /—‘k)/,* +k l‘dﬂ 4, I 2.2.7
#
then //ﬁ /\//@W//Z //ﬂf’/jj }//
i.e.
[ e ()] § i} . -
”ﬁfﬁl Il Ky Kig =~ kin ﬂ,
* ry) €
I ﬂz’é; Il Ky ke .- Kan I4, '/Jz ”
: |
: < ” RSN" i
N N I 2.2.8
! I
“ﬂ) £ (k)
"r-n- A, | Kni Kag --- Kan 4, “A.
- - L _
let ,E(i) be the error vector ([ ﬂt- d{'””, ,//f_):_ _,?:'7// )T, then

)

[ E") < 1 10 it £°1 22us

2,2.1 Lipschitz Condition and the Jacobian matrix

”
Any function f(x,y, ... ,yn) may be approximated by Z B Tr/.l)
’
re=e
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The coefficients B are obtained by a collocation process as stated in

(1.3.1)(vii)
here - . -

w -2L K(’.) 1; ,") ce s ‘ro ,”.l) f- f. /l’) [ﬁ (Io;i()'o)l
B - 4 L 7,%) T ) 7 Aw-t) 5 7, () P4, 7).
~ ¥ :

Lom W) ) b)) | | P Y

Hence if Y
JI.M) = 2 ,4‘.’ 7;'/;)

r=0

then B=—/§-Tf(fél’éz) ..... ;é”) e e e e - 2.2.10

~

where T is the above matrix of Chebyshev polynomials, and ’E’ is a vector

....Iyﬂ/’.’

ey yﬂlyl))

-whose components are the values of the function f‘x;yi,.... 'yn) at xk = 6;%’[

k=0,1,....,/4:

Now we are going to show that a Lipschitz Condition on B similar
to (2.2.7) is equivalent to the assumption that the Jacobian matrix of
E(él' e ﬁn) is of bounded- norm, To show that we use the mean

value theorem in the form mentioned in (M.Urabe (1967)),

¢ 4
)= E (4 )]

~ 2.2,11
?h | L 94 2
A2n { I ';-ﬁ;l d hun
|
% 19k QP
?Aia | : V4 R hAna
C
| | 2.2.12
| | -
| |
| |
|
V) ek
0Asp) 1 DA, ’a"th
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i [ %,l(ﬂ) Jszﬁ) J,;)”(/}J 2.2.13

(ad

* ® : (k) (&) (4
-8 =271 [ 3, (4" 0140 (4-4]) 25 +

o

/ ¥ (k)
...... + / cZ.;n (’/5“-1—47 ('4‘{—’4(“))-(’4,,_,4,1 )ﬂf 2,2,14

(-]

i //J;”- (,/_,9)//5 K,* then
: #
/// (7;1' (ﬁ +p(£f—,d{ﬂ)) /ﬂ//s A’, s 8= 2,0 A
an (4) ¥ . )
d //gl"'é // £ 7?/" //7-// { /(/ // j,’—’/!/ // SR o+ kﬂ //d” _4, /I

” w (k)
= Z M‘ //ﬂ’ ',C’:' // s M‘,_. are Constants 2,2,15
=1

i.e. The condition that the Jacobian matrix J_(A) is of bounded norm
implies the Lipschitz Condition (2.2,15),
From (2.2.9) a sufficient condition for convergence of the iterative

. process G is
p s» N

//ps”//////s//</ 2.2.16

2.3 The Behaviour of the matrix Rs N

We investigate the behaviour of the maximum eigenvalue and the norm

of the matrices R first when s is fixed and N variable and second

s N’

for fixed N and variable s,

2.3.1 Fixed s and variable N

Consider the matrix R o = ( Y}J) with x =0, and let

. mel 2
a, — Z / rld, 2.3.1
J:I
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.then a, = f/,rz‘(‘-_,) . b= 2, - N
a’y-r/ s 1/2/\/
= ({’)l*/‘z)lf —5—)1--- = (L)z_* ”/, ZS-"I 2
L iy 2 ! | ?S(Sfl)
=4 L1t J(h + oy vin)] s

Then from Hadamard's theorem (see Cohen (1973)).

2
/”"/7?0/.//’s '7f_ a
using NI > e N (/zzf,v—2)

,V

then ”(‘/o V7 '1/: 2.3.2
| dhh, [ < (o) - = a,

So if )‘- ’ ( f:l, et Ah#D are the eigenvalqes of R then

W s
m:‘n/}‘-/ < /cdz/'qo,u/ Né "77£

For N euen unid Xezo tie Charackeri’sht eguafion fafes rhe form
W=t veg #ef V-5 »
Y oL e " I Z NN 2
- ! )y e (el R A I T &) e
2 MEXN p 2 (40! 2/ 3! A
From rhe Popsp puws Ferms max /Al and From rhe First 3-fevms menli)nt
2/ X rY
La 9eneral max /)l g S 2.3.3
~

where C is a constant depending on the point where the initial conditions
are taken and C is small for x°= o and larger for xo= 1. From (2.3.3)
we can see that the maximum eignvalue decreases as N increases,

Tables (1), (2) show the behaviour of the maximum eigenvalue
and the spectral norm as N increases, the initial conditions being
taken at X = o and X = 1l respectively. Both tables show that the
maximum eignvalue decreases as N increases and it takeé lower values

when X, = O. From table (1) we can notice
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that the spectral norm can increase with N and this is understandable

since the norm is always a larger bound,

Table I) x, = 0

N Max.eig.val. spectral norm
10 0.117 973 1,110 739
15 0,085 396 1,136 349
20 0,065 304 1.151 607
25 0,054 101 1,158 971
30 0.045 430 1.164 917
35 0.039 742 1.168 372
40 0.034 804 1.171 523
45 0,031 378 1.173 573
50 0.0:28 239 1,175 472

Table 2 X =1
[o]

N Max.,eig.val. spectral norm
10 0.186 720 1.492 437
15 0.131 301 1,490 793
20 0.100 855 1.490 235
25 0.082 190 1,489 982
30 0.069 231 1,489 845
35 0.059 842 1.489 763
40 0.055 832 1,489 710
45 . 0.055 335 1.489 674
50 0.053 332 1.489 648

The larger maximum eigenvalue for xo=1 can of course make the difference
between converging and diverging; thus, for example the iterative

process Go diverges when applied to

,50

y'(x) = 20y , y(1) = 1
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while for

-2
y'=20y , y(o)= ¢=°

the same iterative process converged in 44 iterations,

2.3.2 Fixed N and variable s

Let the maximum eigenvalue of the matrix RsN be denoted by ’sN

. S+1 S+1 . .
Since RsN = RoN , 'sN = fBN then for any fixed N the maximum
eigenvalues go down as S increases. Table (3) shows the values and
also the spectral norms.

Table 3
4 = (f )s+1 Spectral norm
N ] sN oN
10 (0] 0.117 973 542 12 1,110 739 308 49
1 0.013 917 756 64 0.529 326 736 87
2 0.001 641 927 04 0.163 067 253 78
3 0.000 193 703 94 0.048 305 606 44
4 0.000 022 851 94 0.008 128 705 15
50 (0] 0.028 239 674 82 1.175 472 641 69
1 0,000 911 599 55 0.529 950 921 09
2 0.000 025 545 70 0.196 693 122 16
3 0,000 001 279 43 0.048 890 934 63
4 0.000 000 041 86 0.010 057 373 06

From the results of this and previous section it follows that the

iterative process GS should have its behaviour governed by the product

N

R N |l lI K “ where ,IRS.Nll is smaller for larger s, fixed N

and for larger N, fixed s, The behaviour of ||Ks I is dependent on the
function fi. This is the result in Chebyshev series which corresponds

to the results (1,1.35), (1.1.41).

Note on linear differential equations with constant coefficients

Consider the linear differential equation

y' (x)=F(x,y) = dy+f(x) 2.3.4
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now D"F (x, _ el s -1, $)
) = N Y+ N Py o+ ) Prx) « ... g Fl ot )

then from (2.2.4)

Ne X0

4
* Yy * (o)
o ) - fx) // ------ / N A Jrw - S ) dtdl, ... Sty 2.3.5
Xy

o

If J = Z A, 7, )

2

1)

J

L}

/W)
2 A Trw

N
y=.o
then substituting in (2.3. 5),performing the integrals and equating the

coefficients of Tn(x) in both sides we get

B A= 00r.) (44" 23,6

where R) N is the matrix defined in section (2.1.2).

Proceeding with the iterative process we get

g;— ﬁ(r)= [_ ( 3 /Qo ”)w] r (ﬁf— ,é’/o,) 2.3.7

which is the actual error after [ iterations.

In the non linear case it is difficult to get an explicit expression for
the actual error, but we can find an expression for the error bound as
in (2.2.9).

2.3.3. The accuracy of the iterative processes

Each of the following examples is solved using the iterative

processes Q) N"""'G3 N

(i) y/ = 20y y(o) = e_20 xef—l,l]

. .20(x-1)
Exact solution y =€
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(ii) .y/ =4e’, yG-1) =0 xe (-1,1]

3
Exact solution y = log (—%5)

(iii) y/ = y2 , y(-1) = o , x G[—l.l]
. 2
Exact solution y = 3-2x
. / “Y, 0 x+1 x+1
(iv) y =% (1 -e "(Sin (57) - Cos (<27))), y(-1) =o , x €[-1,1]

+
Exact solution y = log (Sin (551) + exp (5§l) )

(v) = 1-y2 | y)=o0 , x€ [-1,1]

Exact solution y = Sin x

(vi) y/ =14y? gy =0 ,xe [-1.1]

Exact solution y = tan x

In each of these we used N = 50 and the program stops when all the

wefficients A in two successive iterations agree to a specified tolerance
. -6 . ~-11

E. In example (i) E was 10 , in all the rest 10 .

Table (4) shows the number of iterations needed to achieve such

accuracy.,
In figures (1) - ( 6) the L2 norm of the error vector Es,r calculated
after r iterations using the iterative process GS,N is plotted against
the product r(s+1)
TABLE 4
Iterative process Number of iterations
S N EQ(i) EQ(ii) EQ(iii) EQ(iv) EQ(v) EQ(vi)
GO,50 40 10 19 8 9 13 é
S so 20 6 11 6 5 8 %
62,50 .14 4 8 5 3 6 ;
63'50 yl 4 6 4 3 5




_35_
In example (i) (the linear case with coristant coefficients), the four
error curves coincide (and this can easily be justified from (2.3.7))
while in the rest of the examples the graphs show that the errors for
constant r(s+l) are slightly larger for larger s,
Some of these examples are solved by K.Wright (1964) using picard

andNicolovius methods which are equivalent to G respectively,

, G
o,N’ "1,N

A small N was used and tolerance 10_6 and the next table shows his results.

TABLE 5
No, of iterations
EQ picard Nijcolovius N
(ii) 12 11 9
(v) 8 6 7
(vi) 17 33 12

Using the same number N and the same tolerance we get the following

results for the number of iterations,

TABLE 6

£Q - Noé of itegationsG N
O,N 1,N 2,N 3,N

(ii) 8 S 4 4 9

(v) 7 5 5 5 7

(vi) 9 8 7 9 12

These tables show that it is possible to get for larger s when N is fairly
small slower convergence,

2.3.4, Computational effort

A more valid criterion for assessing the value of using Lie series

for this type of problem is by considering the number of function

evaluations necessary to achieve a given accuracy., In % N Ve use

N + 1 collocation points and the processes Go;N’ Gl,N’ GZ,N' GS,N
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demand at each iteration the evaluation of the functions shown in the following

table.
TABLE 7
Iteration No.of
process Functions evaluated functions
A
G, N y, £, f 3
H
A ~
Gy y, £, f, fy 4
H
~ ~
GZ,N y, £, £, fy, f£xy, fyy 6
»
Gy vy, £, f, 1x, ty, fxy, fyy, fxxy,
L
fxyy, fyyy | 10

The following table shows the predicted effort needed to achieve a fixed
order of 342 r, starting with § as Taylor series of order 2 denoting the

number of function evaluations of the iterative process Gs,N by Vg

FEM

TABLE 8
Iterative No. of iterations No.of function
process qr N needed evaluations Ratio
G 12r 36 r (N+1) 1
o ,N
Gl,N 6r 24 r (N+1) .67
2
G2,N 4r 4 r (N+1) .67
GS,N 3r 30 r (N+1) .83

Since the behaviour of the accuracy is slightly different from the
behaviour of the order of the error shown by the graphs, then one may not

expect to get the same relation between Computational efforts of Go N
?

G3 N shown in table (8) for a fixed accuracy. To show that we use the
?

practical results in table (4) and the computational efforts in table (7)

to estimate the Computational effort used to achieve the specified
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accuracy for each example, and this is shown in table (9).

TABLE 9
R . .. i .. |Predicted
EQ(i) EQ(ii) EQ(iii) | EQ(iv) EQ(v) | EQ(vi) Ratios
v, 6120 1530 2907 1224 | 1377 | 1989
v, /v |0.67 0.80 0.77 1 0.73 | 0.82 0.67
v,/V_ 10,70 0.80 0.84 1.25 | 0.67 | 0.92 | 0.67
. ) [l
| l |
Vy/V_ 10,92 1,33 1.05 1.67 | 1,11 i 1.28 0.83
|
G
Best 1 G 50 | G 50 6,50 | 0,50 | Gy 501 G 59
I terative or or
process 52’50 Gl,50
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e B » X
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EQ. (iv)

Graph ( 4 )

r(s+l)
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EQ(v)

Graph (5)
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EQ. (vi)

Graph ( 6 )
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CHAPTER III

A SURVEY OF NUMERICAL METHODS FOR TWO-POINT BOUNDARY VALUE PROBLEMS
IN ORDINARY DIFFERENTIAL EQUATIONS

There are now very many suggested methods for solving linear and non-
linear boundary value problems, a recent comprehensive survey is given by
Aktas and Stetter (1977). In this chapter we review only the methods which
have some bearing on the project of this thesis, using the classification
suggested by the above paper. The following standard notation will be
used,

(A) For linear two-point boundary value problems we consider the set of n

linear ordinary differential equations

y = A(x) y(x) + £(x) XE( A, x,7] 3.1.1
where A(x) is an nxn matrix with elements Aij(x)’ i,j = 1,2,......n,

z}x) = (5,0, y,(x),0nnnn ,yn(x);

£(x) = (£ (x), £, (x) £ (x)7

Ix = 1), g (X)sennn, £ x)

The boundary conditions are assumed to be separable with initial conditions

yi(x°) = c:,L , 1 =1,2,....,v 3.1.2

and terminal conditions

yiﬂﬂxﬂ) = Ci_ , m=1,2,,,..,n-vy 3.13
in £l

(B) For non-linear two-point boundary value problems we consider only

the second order non-linear differential equation

y// = f(x,y,y/) , X € [xo,x”] 3.1.4
or y, = z
/ v x € [x,,%,] 3.1.5

z’ f(xlyrz)

with the boundary conditions

y(x,) = & y(x”) = p 3.1.6

The methods described are:
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3.1 Quasilinearization which allows (B) to be put into the form (A)

3.2 Shooting methods, including for (A) the method of adjoints and
method of sweeps, and for (B) Newton Raphson correction

3.3 Parallel shooting or Multiple shooting

3.4 Series methods, concentrating on Chebyshev collocation methods
such as Picard method and Newton's method

3.5 Analytic methods including two types of continuation methods

3.6 Nicolovius method

3.1 Quasilinearization

In this technique we linearize the non-linear boundary value problems
around a nominal solution satisfying the boundary conditions, then solve
a sequence of linear boundary value problems in which the solution of the
kEE one is the nominal profile for the (k+1)§f. In the limit the solutions
of the linear two-point boundary value problems converge to the solution

of the non-linear boundary value problem. Consider the problem (B),

RONME

let ( ) be an approximate solution satisfying 'the boundary

conditions, Expanding the R.H.S. of (3.1.5) in the neighbourhood of

y(k), z(k)) we get

(
/ then) (ke!)
(ke P

J’ =

/ *'- @f . (l'i) #) P /’f:) (#)
z * = Pl " (9 ‘/)+9—Z/L/,,},ft()z - )

LZ )+ ™y
0y J/{)zm

— - - ’0‘)-‘ r —
[~ /(kt1) 0 [ 0
i.e. J/ ! J/
= + 3.1-7
! (kt) ( (k)
z @) ) (/:) z (f-f'f-f;’)
2] k) J ¥
] [Vl (P | (65 e
with y* Dy =, y® Py - B 3.1.8
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Solving this linear system using any of the methods used for linear

k+1l k+1
systems gives (y( ). z( +1)

), and this can then be repeated until the
process converges to the exact solution, A discussion about the
conditions under which this method converges and the rate of convergence

is mentioned in Roberts and Shipman (1972).

3.2 Shooting Methods

By shooting methods we mean the methods which solve systems of
initial value problems instead of solving boundary value ones. In this
section we are going to discuss two of the methods used only for linear
boundary value problems, that is the method of adjoints and method of
sweeps, and one general method, Newton Raphson solution.

3.2.1 Method of adjoints

The idea of this method as developed by Goodman and Lance (1956)
is to make use of the adjoint equations, defined as a set of homogenous
linear ordinary differential equations whose matrix of coefficients is
the negative transpose of the matrix of the original set. For the
system of equations (3.1.1) the adjoint equations are

. T
P = -A(x) P 3.2.1
~ ~

. . . th . ., th .
Multiplying the i— equation of 3.1.1. by Pi and the i— equation
3.2.1 by Yo adding the resulting equations and summing over all n

we get

n ful
Z ﬁ/_ Pt jl./.r) = Z P‘ w) .10 3.2.2
=1 & ‘=1

¢

Integrating over Cxo, th, we get

'y

—

HAw
7 ”
Z P tz,) f () - ZB'/"’)jf”‘) = /(2 ProBe) gy 3.2.3
¥y, A o=

iz
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Equation 3.2.3 is the fundamental identity of this method.

To utilise

this identity integrate backward (3.2.1) (n-r) times with terminal

conditions

(m)

P, (x,) =1 , 1 = 1im

i;éim

m=12,,,,.,, n-r

[t}
(o]

3.2.4

th
where the subscript m refers to the m— backward integration of the

adjoint equations and the im refers to the subscripts on the specified

terminal conditions yim(xﬂ)' Now

(m)
P,'™ (x> Y, x) = 1. 4 (x) =c, 3.2.5
lm ~ 1'7- # 1lii 1m
and (3.2.3) takes the form
n (m)
Z P rro)]/x,)-J (4y) 2P /z_.)j /10)_/2 p,“,wafz 3.9.6
l rei 2y
The R.H.S. of (3.2.6) is known for the (n-r) specified 9im(g”) and

corresponding Pim(gw), hence this yields a set of (n-r) linear algebraic

equations in the (n-r) unknowns yr+1(x°) ...... v ¥,(x,).. In matrix form
) 4—I -,
[ Jw/z j [ ﬁ:rm s f;(')a;) (j fx, ) 2 P n,)j/l.,) Zﬂ P”/):) /’ /J)c/lf
JH /%) P::: ) - a/?)llo) ol
N X
In-v) (n-r) .
Ljn%)d i R ™ coeees /%)J _‘Z‘.c-{f”’ -'7'_ 1;’,7;;:) g4 - [‘2"/{’” r}," de

Then after calculating the missing initial conditions yi(xo),

3.2.7

i =r+l..., n

—
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we can integrate forward to get the required solutions,

Detailed discussion of this method with implicit boundary conditions

and solved examples can be found in Roberts and Shipman (1972).

3.2.2 Method of sweeps

Consider the set of two equations

— . M -
J] J f
= /4[1) g 3.2.8
J B |k
| | ?
h
mere Am) = JTam a0
(Z)!
with the boundary conditions
3.2.9

Y, (%) =a¢ ¥, (x,) = B

The method of sweeps (Scott {(1975) or factorization method or method of

f.elfand and Lorkiustskiyevskii (Berezin and Zhidkov (1965)) is a

method which uses a Riccati transformation to help in finding the

Now consider the Riccati transformation

missing initial conditions,
3.2.10

Y1 (x) = T (x) Yo (x) + ry (x)

Substituting in (3.2.8) we get
? /
(/2 (x) { a,t[a,- au] Ntx) = Gy, v, (x) - f /x/i
/
+ {[a" - Qg ] fyt2) - F ) £1X) + plx) -f;/l)f =0
Fhis is Frve jP

/
r A, + au"qzz)";"all";z 3.2.11

/
G = [a,-a, ] - Biogu +Em
3.2.12

with the initial conditions

vy (tw) = B

3.2.13

r}/lu) =0 s
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Solving (3.2.11-13), for_y"‘lx), and yy«x) then (3.2.10) gives from (3.2.10)

Jpltey= [o- ”z'”o)}/r, [45) 3.2.14
From (3.2.9), (3.2,14) we integrate (3.2.8) forward to get the required
solution,

3.2.3 Newton-Raphson method

Consider the non linear boundary value problem (3.1.4) - (3.1.6).
A formal approach to the exact solution of the problem is obtained by

considering a related initial value problem, say

/
u’ = f(X, “,u’) » X E[ Ao, 2w] 3.2.15

or ‘L, - ,l/

/ e 3.2.16
y - P/z,“/?f) ’ Xf["hx/v]
with the initial conditions
ulx,) = & , V(xg) =s 3,2.17
We denote the solution of (3.2,16) by
u = u(x,s) 3.2.18
to point out the dependence on s,
Evaluating the solution at x = xﬂ we try to find s such that
#(s) = u(x,,s)—fF =0 3.2.19
If s* is the exact solution of (3.2.19), then
y = u(x,s*) 3.2.20

is the solution of (3.1.4).

To solve (3.2.19) one may use Newton's iterative process

-1

S’w': s" - [(%’%{f))’] Fs7) (7-“’«'7----) 3.2.21
S

where qﬁ(sy) could be evaluated using (3.2.16-19) with s = s’
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is the solution of

g ( 0 ¢(s)

P
s /7

/
P(x,5") = @(x:57)
Crr ) = (2F) . Prs” CIAW oy | 3.2.22
Q(1,5) = (’3“):" P(A)-f(a-”-)yQ/z,_v )
evaluated at x = xﬂ, where
U Y 3.2.23
P_—: 2__ ) Q: o . 2,
s ER

satisfying the initial conditions

(X,87) = o » %.5") =
px.s') Q(%.57) =1 3.2.24

3.2.4 Difficulties of shooting methods

The application of a shooting method may be faced by two main
difficulties, First, well conditioned boundary value problems may lead
to unstable initial value problems with rapidly growing solutions, This
causes a 1loss in accuracy in solving the corresponding systenn?‘(s) = o,
In some cases greater accuracy in calculations.may overcome this
difficulty. This is not always practical, and later in this chapter we
will discuss the parallel shooting method which can frequently reduce this
difficulty,

The second ditficulty arises from the dependence of shooting methods
on assuming the missing initial conditions and integrating the differential
equation over thé given interval, It is of crucial importance that the
resulting initial value problem has a solution over this interval,

In some ill-conditioned or scmetimes called sensitive problems, one can
only choose the missing initial conditions within a very small neighbourhood

of the exact ones. For example the problem

/7
y ¢x)= 16 Sinh 16y y(o) = y(1) =o0

is given by Keller (1968); the exact solution is y(x) = o, and the tfue
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s s ! . -7
initial condition is y (o) = o, yet if we choose s »10 the solution
of the initial value problem is singular in [0,11. Continuation
methods and parallel shooting frequently help to overcome this difficulty
as will be shown later in this chapter.

3.2.5 Relation between method of adjoints, method of sweeps and
Newton Raphson method for linear equations

Consider the linear boundary value problem (3,2.8-93), Let the
tal luti
fundamental solution be nl y;‘ where
Vi Yz
p -
fe ) T o] _[©
- ) = 3.2.25 .
(¥
XZ ) O \2zﬂnd 1

!
\

Ji

9, Y, [ [ . 3.2.26

where - Qa, Ctyy | -
Z‘ W = 71 ﬁ 3.2.27
. - + oo
Zz Ag an ZZ l;
L[4 -a L]
and | Y, _ " A1y Yu _ %, a, a, %,
] ) . =
Vi Xz A2z | Yie Ve e, Q|| W] 2228

Substituting the boundary condition in (3.2.26)we get

=z & - b = -—JL‘ .
G o Gm g [P ety g ] s

Then the missing initial condition is

r/z(‘7°)= 3“7__ p'?a/lu)’[d’-f,/lz)]}{’(,”)
y;l /4»9

17, /%) 3.2.30




(i) Newton-Raphson method

Assuming the missing initial condition yz(xa)=s' then the approximate

solution at x = xN is

c—]—l =[w-7)] Y, ()t [S-0 (]}, (2n) + 7 t0,) 3.2.31

The correction equation is just (3.2,28), so CDJQ is just Y

> 21 SO
ordinary shooting produces
__[( _
= §- M 3.2.32
Grrecled );’ (,)
substituting from (3.2.31) we can easily see that S = g

corrected

i,e. Newton-Raphson method gives the correct value of the missing initial
condition in one iteration.

(ii) Method of adjoints

For equation (3.2.8), the adjoint equations are

-

Qa
p o Qg P
2 e , 3,2.33
fz &2 Qg2 [2

and we consider the particular solution satisfying

ﬁ(‘(”):/ » 6[»?”)_’—0

3.2.34
the relation between any solution y(x) of (3.2.8) or (3.2.27) and any

solution P of theadjoint system (3.2,.33) is
z, W
47+ B, =/(ﬁff+/:/3)c/f
o
%

Hence in particular

7(1,) - 7/4) P ) - ’7/1.)/7(;.)_ /(f}’+ )Jx 3.2.35
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similarly the relation between any solution Y of (3.2.28) and any

solution P of (3.2.33) is
o™
[Y,ﬁ-rY,f?L =0 3.2.36
-]

Hence in particular for Pl(xN) =1, P2(x ) = o

N
ﬁ’ﬁﬁ) = m (Xy)
B =Y, (2) 3.2.37

Now the method of adjoints states that

dz(lo)— [P—-N P/JL)‘/(F,P-r )a’l] 3.2.38

Pm

substituting from (3.2.35) into (3.2.37) gives
sz (%) = [p ot Y (W)= 7 (2,) + ] I10) Y, (2w) 4 ], (%) }:‘/1,.4)]/)/2,/1‘,)

and this is the same value again as in (3.2.30),. Hence for linear

NewFon's
equations adjoint method and[shooting give the true valué immediately.

(iii) Method of sweeps and Method of adjoints

In equations (3.2.11) - (3.2.14), if we put

_f;/z)
0 B2 e L (o fivnetnya)

This gives the equations (3.2.33%, (3.2,34) and (3.2.38)
i.e. method of sweeps gives the same results as the method of adjoints,
A comparison of the numerical behaviour of these two methods will

be mentioned in the next chapter.
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3.3 Parallel shooting method

The idea of this me thod as mentioned in Keller (1968) and Cebjci
& Keller (1971) is to divide the interval [xo,xN] into sub intervals,
solving appropriate initial value problems over each sub interval,
and then simultaneously adjusting the initial data in order to
satisfy the given boundary conditions and appropriate continuity
conditions at the mesh points.

Consider the boundary value problem (3.1.5), (3.1.6) and divide the
interval [xo'xN] intoe the sub-intervals [xo'xl}"'[xN-l'xN]' To start
the iterative process, the following sets of initial conditions must

be assumed:

rJ (1,) o Jzr) Ay

> = s Pzl 2,0 Mo} 3.3.1
Z (%) S | 7 (1) ,“r

solving over each subinterval we get the solutions

(‘jo (’)5) s Zofl).f.) for x € [X.,Z,] Z
3.3.2
jr(z“)‘f'/ur) 2 Z, (2.0, M) for xe [x,.7,,,7],
' Y= 1,2,.- + pet
These solutions must satisfy the continuity conditions
rdo(l,,s) _ ) }. - (y’ {xll X|l/ll) 2
Z, (x,s) M Z 4, b M)
L 3.3.3
= Ve
Wr..““)r--' r-l) - Ly - Jr (202200 12) > fz 8,0 M=l
hzr-r (lrl\p., a/‘f«.;) }" Zp(tr, A s M)

and the boundary conditions
b4 = 3.3.4
o )= P

i.e, in a vector form
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[ (3)1 -J, (2,,8) - Y
20 (%,8) = /4 3.3.5
S (20:h,, 1) = D

Ze (X022 M) - KA

1l

P(3)= | B

LJ”.‘(‘Y”; )”-l) /‘p-o) - FA

-
5 =(s. ’)\n’/“' L Y /f«.;) 3.3.6

where

so.lving (3.3.5) using Newton's method

- [(22) ] #e

~

Gf/ﬁ)) we Solve
s A-y

2%

To find the Jacobian matrix

P=Q ]
d = FFP+EQ }

(2
w
[+

once with the initial condition Q (%) =!

szo)= 0 J

and the solution is denoted by [3 (x) » Qpfx) for xe[ o, z’]

P(r) 17 o
| (o] |1
P, 1) \iprmm J respectively

/] 7X)
dr (x) a,

. N2l

and twice with the initial conditions

and the solutions are denoted by

for X E [Jr ,Z’.“J > rzil,2, -

) (2)
gn_r)=21° . B m= 93 > };‘; /1)=2‘Z’_

where

DS 2Ar /4
(n
2o faz (» razb‘
— om— 3 (’) - 4 /1) T —
q)o (1) = s Q -;a—a': > @ Mr
Then J("__): ?—_ﬂ}:_) =l Rrav - V]
@S s” @ @) o -1
en 'H':) ﬁmflz ) -1 0
((
@,” 1) Q(‘” (73) 0 -
()
- E'_'”w)

2 )
(7
L™
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¥+1

and substituting in (3.3.7) gives S , the whole process is repeated’fintil

it converges to the required solution.

The difficulties facing ordinary shooting have been mentioned in
3.2.4). Keller (1968) showed that parallel shooting yields an
exponential reduction in the error growth factor, which helps to overcome
the problem of fast growing solutions, For the case of sensitive problems
where the difficulty lies in guessing the missing initial conditions,

Weiss (1973) shows that parallel shooting yields an exponential increase

in the domain of attraction for the initial guess, On the other hand

we need to guess many parameters compared with few in the case of ordinary

shooting. This may make the problem more difficult. To overcome this

difficulty we are going to discuss in the next chapter a starting procedure
to help provide approximations to the missing initial conditions.

For the linear boundary value problems George and Gunderson (1972)
discussed the determination of the subinterval lengths taking into
consideration the conditioning of the final matrix used to determine all
the shooting parameters.

3.4 Series methods

In a2 series method, the solution of a boundary value problem is
expressed by a finite series, The most common application of the series
methods are using Chebyshev series or Fourier series. Concentrate on
Chebyshev collocation methods for solving boundary value problems such
as Picard method (Clenshaw and Norton (1963) and Wright §1964) and
Newton's method (Noxrton (1964)).

3.4,1 _The Picard method

Consider the second order non linear boundary value problem (3.1.4) with

x€[—1,1] and the boundary conditions

SJeD=o ', = F 3.4.1
Integrating J// = ,P(:»J- ‘J’) 3.4.2
' . [}

L4y
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we can define an iterative process

(1) =\ + Mz + /ff.’/l,],-,d,-l) (6/’()

ey

?

where } and/M are evaluated such that

Jl'ﬁ(-’) = A, JI'H(U = F 3.4.4

For a general index we have yi(x) satisfying the boundary conditions

/
(3.4.1), and its derivative f; (x). From the values yi(x‘), v, (xs)
and f(x (x,) / (x_))where x_ = (o L4 s = 0,1 N then usin
s ¥ (X, v, (xg s =ls=; ,s=01,...., ing
(1.3.10) we can compute the coefficients ar, a: , Br where
LA
)= P a, 7,
, reo
ey - X ¢ 3.4.5
g4 = Z Q] T,
’ y=v H'l,
fflljt.ljl.) = 2 8’ 7;/-7) vt .
o pre / /
Let - (x) = 1p7%) 3.4.6
‘%"I (x) = 2 Ap 7 jl'u ',2__'0 Af 4
r=9

then substituting from (3.4.5) into (3.4.3) we get

:i’ ::3/
2 Ar 7;/1) = N Torx) t #7720 ‘*//(2 3,.7;,'(1)) (a/x)z 3.4.7
rae

Yo

and from the boundary conditions (3.4.4)
Ao= @t P24+ Ay +- )
A,z a-P- (A+As+s )

-

3.4.8

Using (1.3.6) in (3.4.7) and equating coefficients of T}(x) in both sides
we get the new set of coefficients Ar. r =0,1,,..,,N,repeating until
the process converges to the required solution,

This method fails to converge in many problems; to explain, the

following notation is used. The iterative process (3.4.3) is written as

S, = Fl4)=p+82+ [[Fmg.5) () .,

+1/




This is equivalent to

/
Fl1,)= “_’.21/—? + (/i;-”)z + /G’/zz{} f}'f,%lﬂ,‘&’lf}j«” 3.4.10

-1

where G(x,t) is the Green's function of the reduced problem
L(y) - /] »
=Y = r(x) J1) = J0) = o 3.4,11

So. if y*(x) is the exact solution of 3.1l.4
! / ’
Fl35)-Fl4)= /K/bf)[f{z‘.ﬁu,y'ﬂ)} —f{z“f/ﬂ,]‘./ﬂf/a’t‘ 3.4.12
-1

d F( *) * this i *
an y ) =y so this is y Yir1

The convergence of the process now depends on the behaviour of the right

hand integral: for example, if
I.\_ I/ Ill .
Frug,9)= -#J . 3.4.13

then (3.4.12) becomes,

! £ |
gty = p [ Cme)[ S~ ] ot e ie

f 23]

*
Since y (x)-yk(x) =0 at x =+ 1 it has an expansion in terms of

the eigenfunction of 3.4.11, i.e, as a series

+
= (; 'iZBL
(ya),&a) 2 &{?ﬂﬂ) 5

3.4.15
nzv

| /
and then /C’/bz‘}&(mu}[_{- A7 = .:_4_—— Q{zwljz";‘-"-
2
=i

Coner) it
. * 4 2 .
so that ultlmately‘ AN Y I)/y-jkl if 47'/42 > 1 3.4.16
/

that is the process will then diverge. This treatment is given in

Cellatz (1960),
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3.4.2 Newton's method

This method is using the idea of quasilinearization with the method
of superposition and expressing the solution in terms of Chebyshev
polynomials, Consider the non linear boundary value problem (3.1.4),
(3.1.6). Expanding the R,H.S. in Taylor series about OZJW) ,déak), we

get Newton's iterative process,

4 / ’ ’
Sp “ IO A G 2 POA )9S 5

where (9(1) = = (1:‘7" Ay

and /1(1) = %5 (2, .Y,-,y;)

Ny ,,I o
let ) J,‘ 2) = Z ar 7;/1) > J‘-" (x) = 2 ﬂy /r rx)
rase e
’ =/ A7
y‘f y = j' a, 7, /% s 1 = D Ay Tom

’ ou—v /4 p ’ '
] p— -
F,’:yf}jl') = L br /r/’” ? (]I'ﬁ ) = 2 A’ rf-/’)
[]

heo = O ¢ Trm s o9 = D0 Tl
;? rtr ﬁé | ’

’
For simplicity h(x) and g(x) are approximated by %(%, 4 C, respectively.

Substituting in (3.4.17) and equating coefficients of Tr(x) we get

7 _L / /
- l fand
/]r 7 G Ar -7 6 Ay = d 2 vzl M 3.4.18
/
where dr = br - ‘zL [;lar - EL (; a’- 3.4.19

From (3.4.18)

(4.-40)-% " (4],

re

\

4#!) - 'z,' G (fgr-l'ﬂrw) =d,.,"/fu 3.4.20

using the relations

/ y ” / /
27‘ 4,- = ﬂ,;"‘ﬁr;, ’ zrﬂl =4‘-I—/""’

3.4.21

we get the recurrence equations
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G Ar—l = Gﬁf#l t2r (2 ﬂr’—Coﬁr)'f ‘?(dr'

+/

"ﬂ/r-l)

/

! 3.4,22
A,, = A, +arh,
for r =y ,M1,......,1

Every solution of the system may be expressed as the sum of a particular
/

solution Er’Er (r=o,1,....,N) and a linear combination of four independent
solutions of the corresponding homogenous system.

Co Br.; = Co 6fﬂ tar (2 Br, "(“’IBr)
Br_’ = B "'2/ B’-

r+
/
r

3.4.23

/
let Fr, F and Gr’ Gr are two solutions of (3.4.23), then

Ar = Ef +/uF;; +7€r
where J and ¥ are determined with the aid of the boundary conditions.
Where co is small it is difficult to produce linearly independeni solutions
and a modification to this procedure is mentioned in Norton (1964).

3.5 Analytic methods

These approaches replace the given boundary value problem by some
analytically equivalent mathematical problem and attempt to solve the
new problem numerically. From these methods we are going to choose the
continuation method which is closely related to the application of shooting
techniques, In these methods two approaches are discussed (Roberts and
Shipman (1972)). The first approach is to perturb the integration
interval [xo,xN] and the second is to perturb the differential eﬁuation
itself.

3.5.1 Continuation method (perturbed interval)

Consider the non linear boundary value problem (3.1.4), (3.1.6)
(i) start by choosing the missing initial conditions, i.e. the initial

conditions becomes y(xo) =& , y/(xo) =S 3.5.1
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(ii) Integrate (3.1,4) forward until overflow problems or numerical
difficulties appear. Choose the final value of x as X such that
the solution has a good behaviour in [xo,x.]

(iii)Solveeqn. (3.1.4) over (xo, xi] with the boundary c9nditions

,j (X)) = o0, J/XI) S F using shooting method

(iv) To extend the interval from [x , X ] to (x , X 3 let the initial
o 1 o2

conditions resulting from the solution in (iii) be y(xb) =
/ _ . .
y (xo) = s,. Then solving (3.1.19) over [xo,xz] with the
boundary condition y(x,) =& ,y (xz) = F

(v) Repeat for the terminal values Xys Xpeaes until x = xN

at this value the original problem will have been solved.
Detailed discussion and solved examples can be found in
Roberts and Shipman (1972),

3.5.2, Continuation method (perturbed differential equation)

Consider the boundary value problem (3.1.4), The application of

this technique starts by writing the R.H.S. of (3.1.4) in the form

Prng,g') = Pexgyg) +@04.4) " 3.5.2

such that the boundary value problem
”

(] = P/-szljl)

with the boundary conditions (3.1.6) is solvable numerically.

Then we solve the sequence of two-point boundary value problenis
J”;. P+ /2 @ . peold, s N

where /% z0

ALY

C s Cs . . th
and the missing initial conditions for the solution of the k— problem
are taken as the initial conditions for the shooting method solution of
the (k+l)-s-E problem. 1f a sequence A./? can be found such that each

problem (3.1.4), (3.1,6) has a solution and such that /£'=1, for some N,

then the required problem will have been solved.
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3.6 Nicolovius method

Nicolovius (1961) suggested an iterative method for solving linear
and non linear boundary value problems using Taylor series with integrated
remainder, To describe the method consider the system of n non-linear

boundary value problems

J 0= flay)

o~ ~ 3.6.1

with the boundary conditions

h[lj(;//l,} ' 4 (2,))= 0 3.6.2

Use a Taylor series expansion about some point X=X, , including the

remainder term in integral form and using the notation

o (f) = £, (ug)
then the exact equation is
f! J : P.-1
f)=Y./y) + (x-% NEIVE L. L / t. 4 )
o g ‘;%,"ﬁl":uu( "")*(e--o-!zﬁe-( Aw)(3-2)" ot
) ]

This can be written as an iterative formula implicit in 9i(k)

(i (#) bt e xd )
d‘, x) - ‘y‘ fll) - 2' ____‘_I_I_Q. E',J (zu g /Il))
J= '

in the form

e S ) ey
= 75 . , ¢ -
(ﬁ -1) ! Z ¢,P, ~ ( ) (1 ¢) a/f
! 3.6.3
(k) ‘
The derivate F‘J (1, ;Z N’.)) can all be written in terms of n

(k)

unknown CZ'(h)(Or a smaller number if x. is one of the end points and

1

some values of i are given there), Then substituting x = Xy, X = Xy

in (3.6.3) and using the boundary condition (3,6,2) gives a set of non-
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[k .
linear equations for the unknown J/ (x) . The integrals are evaluated
in terms of the previous iterate which determines the profiles
In the case of a single higher order differential equation, consider the
non-linear boundary value problem (3.1.4) with the boundary conditions

(3.4.1). Then expanding the solution about x = o and similar to (3.6.3)

we get the following iterative formula

(k) (h) ! th) P _J o2 W sk
(y(l): (O)f'zJ (0)'f2 -'I‘D F(D;J(a}:d(c)

Je2 J!
%
- il h-1) /-t
Yy D F(f]lt)«] ) (- “) A 3.6.4
o
( Using the boundary conditionswe get

(4) (k)

(¢) /(4)
Z ‘) D f(o; (o) JJ (o)

= () - (o) +

J32
(o}
Pt (#-1) /(I) 3.6.5
/D Fr¢,d r¢) ) (27 Fote
—l )
d-z ) 10k
B = J’ /°J + J m + Z D Fle.y o J/m
J=2
/ll) /{‘_,
/” /D Rl S . (f))(/—t) Vs
3.6.6
) /(h)
From (3.6.5) and (3.6.6) we solve to get re) . Ly ro) and substitute

them in (3.6.4) to get the required approximate solution,
To show how the method was practically used, the next example is given

by Nicolvius with n = 2, p = 3, Y =Y Yo = 2, fi j = fj' f2 j ='{i

!
J = nP'(X,J,Z) =Z+’/g_ ‘72 ’ J(-I):o
Z, = 4, ()2 'j-f;‘o-'/z 40, %

3.6.7

1
U]

lé; (x.5,2) = —J-f ]Z-f ‘]’3

9, (v42) -z——‘-y + 4z +«yz

o ' 3 32 2
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Y
Z = (x,4,z)= Y- L -3 922 y2%, 2 43
93 24, 2) -y 70 yz 50‘7 +50'y +5aa‘yz
N1
= ) = -2 A 3 2 :
‘y = F"{I,J,Z J TJZ 5 J 1‘73 -7 /250(7
-z +4 9y Lt L 1 -2 7% 2 4t
.’,' (1,42 = 5 J /0 ]z z 125 250/z 7/759 Jz

For x, =0, p1 = pz = 4, we get from (3.6.3) with these functions the

iteration formulae
3

;
J/n: J"/o) +t 7 a"ﬁ- F-(0.g,/2.z )

c..

+ L

X
kS
= Rt S, 00 g 0)(x-¢) ot

o‘\

J.
P 4
= 9 0, :, (o), zZ, (0) 3.6.5
/ J' J { l ‘ )

Z‘/x)s Zé(o) -+

&"hvdul

¥ 4
ya 3
Tz Gt 8.2, (0) (2-2) adt
o
(‘ -")2)----- )
substituting 6-1 _9". {J=1,2,3) in the R.H.S. of (3.6.5)
and using the boundary conditions. in (3,6.4) we get
0= £ Jto) +_£ zre) - / Jro) + _.—JIDJZ/") - —‘— z'0 +—L- J(o) ——- y/o)zro)
" ym-J- / /’(t ), g ,(8) (14 o’f
{
-4 _ ] 2
2 = -— 2100 - 5' ylo) - _L—‘y(,)z(o) -"-'J/O) + —L Z?ﬂ?) + —i;]’mzn’)-/;; J o

? oo y/o)z/ ) + e j/a)zro) + 4 / G (e, d, (¢, 2, /0 )¢ -8)> o/

Solving these two equatlons 1terat1ve1y for Jre) , Zro)

lem = F(j‘{o),zﬁ(o))-fff- /J / (¢,0,,0, 5,/1‘))(/#)3/;‘
+/5 O/ J (¢, /_,/‘)’2;4-/“))("”3‘/‘ 3.6.6

Z,= G (.};b;,z‘m) +7i_

-+
+l/
o

3 3
/ — - - -—"’" —
where F(X;)/) = —790 y2+ -{;5 yz + %0 Z 400 Y fLoo Yz'f'//o }’Z

0
//2( £, 9, 18)F, 1 (2) (14 ¢) db

N =~ }\\\’\

[0, 0,3, 00) (14t 361

X

- = J
/JaaY-l"é—o-;-;‘yz
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Q(Y,z)=-2% y24 2 yy_3 2, 2 3
= £ -3 z - c e/ 2
4o T Y %o * Zoo 4 Ty ,Iz,.._gzo_a' Yz ?
3

y"’_’.,! 3

/‘00 8000 Yz

For a general index we have Jz—!/x) ’ ZA-,/Z) and ,z.’(o) 'ZI-I(O) R
we use (3.6.5) to get "z_'//), z"-’rz) and sub§tituting in (3.6.6), (3.6.7)
and evaluating the integrals we get two non-linear equations in the
unknowns (}2/0) ,?‘/a) . Solving to determine them and using (3.6.5) éives
J[ o) Zﬁ () and the process is repeated until convergences,
The above example is one which fails to converge using the ordinary
Picard method (corresponding to p1 = Py = 1) but converges with the values

given, Further discussion of this method is given in the next chapter,
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CHAPTER IV

.A series approach for solving two-point boundary value problems

Introduction

In the first part of this chapter, section 4.1, we report practical
experience in applying the.Lie series method in Chebyshev form to some
of the shootingtechniques mentioned in chapter III. . The method is
here simply used as an alternative way of solving initial value
problems, and its performance can be analysed in the same way as has
already been done in chapter II. Details of the techniques used are
given in (4.1) and practical experience in (4,2).

In the remainder of this chapter we derive an improved method for
solving boundary vglue problems using Lie series, based on alternative
ways of successively improving the solution series, This method can
be described as a function continuation one in which acceptable series
solutions are derived iteratively using intermediate approximations of
various types and orders, The method is described and the errors
at different stages are discussed in (4.3). Practical implementation
and results are given in (4.4), The results are discu§sed.and
conclusions drawn in (4.5). Comparisons with other methods and

suggestions for further work are given in (4.6).

; Note on practical examples
The following examples are solved throughout this chapter using

various methods,

(i) fu = (yll2 - yz) e ¥ - xe" xefo,3]
“yo) =1, y(i) = 3ot
Exact solution y = (1+x)e™
(ii) y” = 16 Sinh 16y , xero,l)
y(0) =0 , y(1) = o

Exact solution y(x) = o
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aiy? = 3o . xe[1,1)
y(-1) =0 , yQ) =o0
av) y? - -3 . xef1,1)
y(-1) =0 , yQ) =o
W 7= 2y . xefo,1]
y(o) =4 , y() =1
Exact solution y(x) = ?T%;TZ
i) y7 =07y - Geot x+ 2 tanxy’ , xe(F , T]
y(165=o ,y(:%.)=5

4.1 Lie series method for a single higher order differential equation

Consider the non-linear differential equation of order n

) .
= Plag, g, ) L xern] 4.1

or (y'l = Jz
, Ié[.p}[} e iraea 4.1.2

In = Pl dpe s

where

g - [.yujz).._..Jx,)T

and let the auwxiliary system be

A/ P
J = 9
5. . 4.1.3
2 T 3 ;oxef-1,1] '
)
Al
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T

Vol P ~ ~
where ,&,7= (.f/,,yz PR )_7,,)

Then the truncated Lie series expression (2.1.3) becomes

x x
— P -
J@ = Y + [%-5,] dé 4 /fz 4)[,- /] e
-1 zll’é/t) 2 ]It
£ 4 Hn-z ! )
+/ (x - y_ A .y
4 Ty D4, oo z:ﬁff Bl 40 ool
l‘d.y/l/ s;fhl
. A S 2
nmy = +
(j' ’ J ) 2 //’ 2 [Dzby] ¢ 414
r=n7-1 2 by/.u
and for a general index i we get
. g LY
¢
j 'y 2 4 Z //1 )[D;DJ] ot 4.1.5
‘ ren-i l'a//eu
For the second order case
JI:Z ke sa e N -
Z” )Ehly/z) > xé[-l_,l] T e 4.1.6
3 A 3 (( f‘),‘
= -+ 4- r
J Z Y] [DZDJ] o+ 4.1.7
r=1 -y ) é:.;lz“
25 v [P E) Hty [
5 ] e
_ S-i x
Zzz"Z/“‘”[DDz] 7
2 LY ," 4,1.8
r=9
A
= 2

/”’“ 7 "/f"‘/[/’/f/’/] Ao+~
]1

£1]/2 z
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4.2 Application of lie series method to initial value methods for solving
non-linear boundary value problems

In this section we are going to use the Lie series method (Gs,N)
in Chebyshev form with y(x) taken as the first four terms of Tayldr
series to solve the initial value problems appearing in shooting techniques.
The use of Chebyshev polynomials also simplifies the integrals appearing
in some methods. We compare the numerical behaviour of the Newton Raphson
method with the method of adjoints and method of sweeps using quasi-
linearization applied to the non-linear second order differential

equation (4,1.6). we assume 4 /s svfficieatly sma/l/ Ch=x,-2,)

4.2,1 Application of Lie series to the method of adjointsusing
quasilinearization

Consider the boundary value problem (4.1.6) with the boundary

cenditions

Jr)= o > J)=p 4.2.1

(k)

As in (3.1) we use quasilinearization about a current solution y "(x)

to get the linear equation

[ ) VT 0 Al T .
[ g ) 0 1 e o
= +
(k1) + 4.2.2
RN O e .
L _ L sz 1L | - f,‘;"

with the boundary conditions

(k+1) (D]

J o o= R 90! =/3 4.2.3

Applying the method of adjoints, the adjoint equations for (4.2.2) become

- [D]JW’ S g (
")? - [&]j’.’z“’ R

Plz f,m;ﬁa@)

n

i

= hinB.5)

wDe

F ()= - Pi=o 4.2.4
. 2 .
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we solve these by G2 N’ where

%II) = [+ (x-1) f?, (1.1, 0) # /%usz, (1.1, 0)
4.,2.,5
é(X)= {"’)/;(’;Iaﬁ)‘f {.{——;IJZDf;/’JIIO)
. , . i 4.2.6
F=F . B =P
; Y 4,2,7
P=p 2y # 4] /- 5
) ) ,+'/(;>,-,)tfm *//x/)[(f;‘)/” wlB-B)]
| , - £, pres
% o
| -+ /I't) A
l/ 2 X(G;a‘/zm (;/ﬁ)-f/f}/; -,P,,y-fﬂz'fng {’hll{“‘g’é)j‘,‘;/t
4.2.8
_ a 2 . x . “
e: f?-l-_’/(fzg)bﬁ/{ +//I-é)[—/ﬁ'ﬁ)-{g)dﬁfzth)(ﬁz-ﬁz)l fa’t‘
X 2
+/’

z-t) A 2
[t e et

4.2.9
The fundamental equation simplifies in this camse to
‘Zﬂwu _ [ 1 4
=gy LB oarey - [[r-by-te],  Poo dx ]

4,2.10
If the integrand

s , PZIXJ[F- pyj'[;ZZ/’izw is expressed in the form
Z cx(.k)’l‘gx) '

4.2.11
4) !
(k1:) * (,/1) s ('r 7ret 7r-
z tve b Ap-aprn-[Lrsf7e 7 F (0 -T00) ]
2

Now we solve for y(k+l)

4,2,12
1
(x), 2 (k+ )(x) using G3 N with the initial
(k+1)
conditions y(k+1)(-1) = X and z (k+1)

(-1)=s evaluated from (4.2.12)

-

'z ﬂﬁzﬁ) @aé?fﬁa-‘;)) Atﬁ?
7 2, P

~
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(de)
A (be1)
(] 1) = o+ t2+1) § o /IH) Fl-1,a, ét Y *—li}Df/, aﬂ/ 4,2.13
A (&+Y) Alk'vl) A (het) A

and z = (j' > F = J e 4.2.14

X
= (k) (her) (x-2)(p-P) , ¢ / -4

- i 7 r-£)*

J =4 + J/ 4 f7f' )iz '// [Fz 2 ‘1/] z:3 :/?

* /";{J S(pxz ehpzt b, Pk )(,P f)}

ey “:9.3 2.14

and = (£+1) ‘-y-f(uv} 4.2.16

1

It will be noted that the same f - derivatives occur in 4.2.8
4.2.9and 4.2.13, because of the use of GZ,NF“ one set and Ga,Nin the
other.

For the sake of comparison as will be shown later, we apply the
method of adjoints in two directions, First we integrate the
differential equation forward and the adjoint equations backward
and we denote this direction by F and second we integrate the
differential equation backward and theadjoint equations forward, this
direction is denoted by B. In this case the initial conditions for

(4.2.4) are

P‘ (-)=1 . Fy:=e 4.2,17

and (4.2.12) becomes

¢) ¢/ 1
fiett) _ G f_ Ire _7-.
Z (t)=é’{’))4’ /3/?(’)'*[‘5' et *2 (;,,’ ')]‘j 4.2.18

Each of the initial value problems is iterated until the L
norm of the difference between two successive vectors of coefficients
is less than a specified tolerance g, and the same € is used as a

(k)

stopping criterion for k, the final solution y
k k
y( )(1)_P y( )

The number of terms N of Chebyshev series is kept constant in these

(x) being such that

£ t (for case F) and (-1) - & |< & (for case B),
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calculations,
The results shocwn in Table 1 show the number ©f iterations used in

solving the differential equation (4.1.6) using G and the number of

3,N
iterations used to solve the adjoint equation using GZ,N'
TABLE 1
No.of
iterations
Eqn. S No.of rounds | Direction| Tpl, |[Diff. Adj. N
° k ¢ Eqn. Eqn,
(i) 0.4 5 F 0.1D-8 |25 21 31
(1) 0.6 5 F " 32 27 "
(1) 0.6 4 B " 30 20 "
(iii) 0.5 5 F 0.1D-10{ 22 22 "
(iv) 0.5 4 F " 16 16 "
(v) -1 4 B 0.1D-8 |31 29 "
(vi) 0 1 F " 6 6 "
4,2,2 Application of Lie series to the method of sweeps using

quasilinearization

As in (4.2.1) we start with the boundary value problem (4.1.6) with

the boundary condition (4.2.1) and use quasilinearization about the

(h) ztk) to get (4.2.2); (4.2.3). The Riccati

(x), (x)

current solution y

equations become:
2

. ]
4,2.19
v Y
fg:jz(h’;l'ﬁ}""‘(fj) W @ ﬁ/Z' _/F’pj‘y—éz)(ﬂ (‘:
ljlz ' j/Z
For the case F the initial conditions are
=0 . )= s 4.2.20

we solve (4.2‘19) by GZ,N where
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A _ 2
o= (x-1) 9, (o, B) + /f;’l Dg(i,0.f) 4.2,21
he B+ (x-09(h o)+ L DY, (Lo,p) 1.2.22
A ;\ PVl A
‘9’ = /I. ) ‘92 - ,2' 4,2,23

Ny

I

4,7 17)

-+ / (5’ 5’: a/f-f//l-!)[-(,? le’r)(j 3)] o't

2 4

b [ (e e B P et oy ehys e F 3645 ))
(3.-§,)3 A 4.2.24

2, 00¢)

- r, /(_92 y)a’if //z—é) [f,(}’” n)-F+£z](3,- -3)- 16 %) (9,5, f oY

J'

N\\

f/a;,fztf—[(&ﬁ;;]z+l’,,r)q t(Be~(fey +hry *hye £)3 '(&z"@”pﬁz)

(814 b3 RN b)) 5) [ (ke By # Beb ) 2697 5T ]
(31 ‘29 )j dé 4.2.,25

t,7te)
ey A= GO D

and Z ) 7, (-1) 4,2,26

1 +1
Now solve for y(k+ )(x) ' Z ( )(-1) using G, . with the initial

(k+1) ) = S(k+1)

condition y (k+1)

(-1) =,z

(k+1) s y(k+1) as in (4.2.13), (4.2.15). Again the same

(-1 evaluated from (4,2.26),

and find y

f -~ derivatives occur in both sets of equations,

For the case B the initial conditions are
(v)=0 , hH=x

(k+1) B - 121
and Z (‘) = v (1) 4,2,28

4.2,27

Again, each of the initial value problems is iterated until the H!)
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norm of the difference between two successive vectors of coefficients
is less than a specified tolerance ¢ and the same g is used as a stopping
criterion for k, the final solution y(k)(x) being such that ' y<k)(1) -]3l<£
(for the case F) and y(k)(-l) - & |< % (for the case B), The
number of terms N of Chebyshev series is kept constant in these
calculations,

In the results shown in Table 2, the number of iterations used
for solving the diff-equation (4.1.9) using GB,N énd the number of

iterations used for solving Riccati equations using G are listed,

3,N

TABLE 2

Ba. | S, | rouas | Direction | 1€ 0Dl | W

k Diff, precesr
Eq. Eq.

(i) 0.4 5 F 0.10-8 | 25 44 31
(i) 0.6 - F " Blows up "
{i) 0.6 4 B " 30 24 "
(iii) | 0.5 5 F 0.1D-10 | 22 24 "
(iv) 0.5 4 F " 16 21 o
(v) -1 4 B 0.10-8 | 31 32 "
(vi) o 1 F " 6 7 g

Note: "Blows up" here means that the solution of the Riccati equation

becomes infinite in [—1,1].

4,2.3 Application of Lie series to shooting method (Newton Raphson)

The Lie series method 03 N is used to solve the differential eqﬁation
(4.1,6) with the initial conditions
k) :
J{-z):q y Z(1)= S _ 4.,2,29

as in (4.2,13), (4.2.15) and the solution is denoted by y(k),z (k).




The correction equation becomes

= QR /x;sw)
- (5)uy o P+ (R)

Pex é")

@ 15"

P-ls®)=

We use G3,N

P o= txe) 2 (1, ).

’ A

¢ = F

P =P+
+

In this case G

?OfaFIQ)

/"

X

J
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(%)

Qr-ls”)=1

]t [ fex thy? t £eF 2y )

x-t)(§-7)

cr-¢)°

—':?T" (;;x 4 4;'2

=1/

3,N

same fderivatives occur.

2 ;p/q

*ézf *pj*'fz)ﬂyzw

) w
zm Q)

to solve (4.2.30), starting with

The new initial condition is then found from

g0, _p
gt )=

fher)
zZ ()

and the process is then repeated.

g+)
S =

(4)
S

P(’J S“’)

Z

4.2.30

-ll’-r

X
rr-2)°? 3 '3
+_/ ZLR) o 0 (7 3:});160’

(¥-7)

t‘lPl?

is used for both sets of equations since éxactly the

4,2,31

The same criterion gg before is used

for the solution of the initial value problems and for stopping the process.

Table 3 shows the practical results:

TABLE 3
Eq. So N Tol e No.of
Iterations
Diff.Eq. Corr.Eq,

(i) 0.4 31 0.1D-8 25 22

(i) 0.6 " " 28 26

(i) 0.7 " " Blows up

(ii) 0.1D-4 " " Blows up
(iii) 0.5 " " 22 18

(iv) 0.5 " " 16 13

J



_76_
o
Note "Blows up" means that the solution y(x,$ ) becomes infinite in [-1,1'1

4,2.4 Comparison of methods

In solving theg initial value problems we used GB,N to solve the
differential equation and the correction equation in the shooting method,
since they are using the same f derivatives whi-le we used GZ,N to solve
the Adjoint equations and Riccati equations to avoid using higher £
derivatives than those which occur in solving the differential equation,

Comparing tables (1) and (3) we can eaéily notice that method of
adjoints and shooting method have almost the same behaviour while
comparison of tables (1) and (2) shows that method of adjointsis more
stable than the method of sweeps specially in the case F in the non-linear
case. while for the linear case they have the same behaviour,

In these three methods we have the same difficulty of choosing.s, so
as to find a starting profile. For this reason we are going to develop
a new method which helps in providing a starting value for shooting

techniques,

4,3 A series method for solving non-linear boundary value problems

4.3.1 General idea of the method

Consider the second order non-linear boundary value problem

cy//;- P/I,jlj/) , j/o)s o, J(/‘),/Z 4.3.1

/

or Jg =z z
z'= F(vu9,z) , Xé [0 4]

Jlo)=a ,  glh):zp

The interval here has been taken as fb,h} for convenience in describing

4.3.2

the order of accuracy,

The related initial value problem associated with this is

u”: f/l,u, «£’) L hte) =&, u'ro)=s 4.3.3
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or Lt’: v

- “, ) s Xéfo.h]
y’_ FIJ, /

4.3.4
Ulto) =do ,vlo)=S§

Let u(x,s) be the solution of (4.3.4), if (4.3.2) has an isolated
solution, for which z(o) = s*, it is known (Keller 1968) that u(x,s)
is unique, that it depends differentiably on s, and that s* is the

unique solution of the equation

F(s*) = wuh,s*)-P =0 4.3.5

Note however that for u(v,s) to be finite in {o,h] it may be necessary
to restrict s to some neighbourhood of s*,
Now let um(x,s) be an approximation to u(x,s) given by a Taylor series

of order m, and consider the related equation
% (S) = Uy (hys)—f = o 4.3.6

The solution of this equation, if it exists, will be called sm. The
process to be described is in two stages:
firstly, the determination of sm from an initial approximation so, and
secondly, the use of s, as a starting value for the shooting (Newton
Raphson) process,
The questions which arise are then,
(i) under what conditions does such an Sh exist
(ii) its value as a start of the shooting process, which depends
on its accuracy as an estimate of s*
(iii)how may- s be determined
(iv) how does this method compare with the use of ordinary shooting
starting with the same initial approximation S,

A brief theoretical analysis of these questions will now be given.
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Practical results will be given in succeeding sections.

4.3.2, Existence ofsm

For equation (4.3.6) we have for a SOLPreently cmall 4

Uy (2,8) = A/1,5) },?h (2,s) 4.3.7

m+1 m—l
where R is O(x) f , 1.e. Rm is bounded and of known order,

Since equation (4.3.5) has always a solution s*, then for large enough

m, equation (4,3.6) has a solution S

1t

If u(x,s) is continuous in Nf

{("-’)I“ ["M],/S-s"/sf’}
f(m)/ 2efo,4] . /S-S'IsJ,’;,}

then fm > f i.e. /l.'/"::,% since any s for whichM(x,s) is continuous

and u (x,s) is continuous in N
m fm

0= x _<_A has also “m(x,s) continuous, whereas the reverse is not true,’
While s' always exists such that g _,.S'A._.p , sm may not exist for
small values of m pl.,

4.3.3. Accuracy of 5,

Since um(x,s) is expressed as a Taylor series of order m, then
um(x,Sm) = o + XS, + X5 f(°l46 Sip) + e b _1_0 p,,, 5n) 4.3.8

and the exact solution u(x,s) can be expressed as an infinite Taylor

series.

* xl * z"’ Y .
Uins) = «+ x5 t g Ploa,st)+ s T2 D Pre, #,5)+- 4.3.9

P
Hence Ym (% 3m)- tix)s*) = 4, (’134-}—“’103»,) r U, ) - tly, $*)

= O (") , (SM_:fj(a(xJ)
since U, (A,5m) = B = wu(h,s*) P
O = O(A™) +(Sm-5") [ heeen.. )
i.e. Sw-s* = 04 ») 4,3.10
Explicit expressions for sm-s* using various types of series are

considered in the next section,

4.3.4 Determination of Sm

To solve the equation (4.3.6) for s, We use the Newton Raphson
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iterative process

oy ¥
S.m = S, [um(;, S,, ) /3_]/(’()41.' = C’,,(s;) 4,3.11
QSm [,;
QUm
where i;;:‘ is the solution of the differential equation
(F) U + (f) 4,3.12
1'5 1:5,.

U(0)=O ’ U’/0)=/
and Um(x,s:) is an approximate solution of (4.3.12) expressed by a
Taylor series of order m, Note that since sﬁ—s* is of orderh ™
this equation need only be dealt with to this order. With a proper choice
of smo, the iterative process (4.3.11) will converge to sm. (See graph 7)

4,3,5 Conditions for convergence

For the equation (4.3.5), Kellier (1968) proves that under certain
conditions ¢has a positive derivative for all s, hence #(s)=0 has a
unique root (see Keller (1968) theorem (1.2.6), pp.l1l6)

*
So s can be obtained using the iterative process

’Vfl _ s #(S'y)
S = G(s")=S8 - 207 4,3.13

x
and the rate of convergence will depend on so-s' and GA’(S).

Since from (4.3.11), G(5) - Gm (s) = O(A'"fy, then (4,.3.11) and
(4.3.13) have approximately the same rate of convergence, The graphs- 7&8
of some practical results agree with this statement.

A general estimate of the domain of convergence of (4.3.13) is
reported in Traub (1964).

7p T = 55, IS—f’([‘iand /C'”(S)/ < op  for
SeJ, then MM <[ IS a supPreient Coneition Por Convergence
Alternatively if [ G (S)-Qrt)|< K|S-Z/ v s.teT

* o ” .
and k¢ , then [§-5 /4# where /G/S)/g;// in J
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This is enough to ensure S= G(s) is contraction mapping, since

el P »
S -8 = ¢ ;K) ( S"_ g")z for K be tween S" and $*

[ Gls)-Gls*)| <« r[s0-5")"

s MP /% -s”/

50

So we have interval of existence of solution [ g - ¢* [ < f

and interval within which Newton converges ’ S - :*l <_I$ < f
”

For the iterative process (4,3.11) if /C {s)/ <2 M and
m - L

= o me
so interval of convergence for (4.3.1l1) is
mr/ _/_
[S=Sm[<f-0(4 € M .
This implies that the outer range for s, 18 ¢f e - io aihiat s Al of
ordinary shooting since s* - sm = 0(h\m+1).

4.4 Practical applications

In this section we are going to discuss how this method is
applied in practice using various combinations of series, We adopt
the following notation throughout this chapter.

TLm: for the method which uses a truncated Taylor series of order m

. ””
i1,.e, ”m - “/I,) ~+ (I'IO)alro}'f ceae = /’-2’:} Dm”/lo) 4.4,.1
Ml

TPm: for the method which uses a two-point series of order m

U = Ao + A, (¥-%) + A (7-%)(x-%,) "AS/"-’-)”—"‘?.«}* A /1-1,)’/:-4;.;/2

57 2L
2
SA’" (7-%o) (X-2,) for m even
- e + s g¥
2 for m add
Ao (7-70)° (270
4.4,2
Here the coefficients Ai' i =o0,1,..., m are calculated such that u(x)

and uh$X) and their higher derivativesup to some order agree at both
ends «f the interval (xo,xN]

For example, for the differential equation

) 4,4,3
Cy = f{ll_-/)y,} ) xe[lo)-?y]
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where J) = Jo Sl =Y, 2 1.4.4
’ /
Jx) = So o JTw) = s, I
then Yo = A, + A, (X-2)+t Ay (-2 )(X-20) + —cevo o + As ,,,%)3“,_1”)2

where using (4.4.4) and the conditions
r I
D Js )= D J%) _ |
/ ,- ’ (a:o,l,?) 4.4.5
DJ; /J”):DJ/II)

and x _xo = h, we get

“ ~ -
T I [ A
Jo ! | A°
!
Iy 1t
A,
se | = { - h
< ; A3
~ 1 A A 4.4.6
r ? 44
° 3 -2 24 P!
2 3
Wl L 2 4k 240 a7 [T
T’LLm n: For the method which uses (n+l)-term Lie series with G(x) as a

Taylor series of order m and the total order P= m+n+!}

n X
: r
¢ e. = + Z - r 4.4.7
UP ﬂ,,, / x-1) [Dzb u] d/-
reo Zo f,’ a,,,
TPLm n' For the method which uses (n+l)-term Lie series with ﬁ(x)
?

as a two-point series of order m.

4.4.,1 TLm me thod

We have not used this method in practice since better methods are
available and will be discussed in the next subsections, However it
is simple to explain and to analyse, and forms a basis for the methods
which follow,

Consider the non-linear boundary value problem

/

J =z ( 4.4.8
z I: f/ﬂ,y, z) ’ J/'/):a’) J{,}:B J
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(1) Guess a value S, for the missing initial condition

i.e, z(-1) =5.° 4.,4.9
(ii) Form the expressions "
2 -2
I M50) 2 & 4 110)50 + 2_;_!!_ Pl-1ya,S5) #---- + _"'_:”’Z D pries)

2m (1)55) = JM,/I,S,)

(iii)Subsitute this approximate solution into the correction equation

p=2@ . Z
Q@ (EY}J,.,,Z,.. P+ (fz-)j,,,,f,,,Q - F(”P’@/j 4.4.10

Pl(-)z0 , Qr-1) =1

and form the expression

- rre1)? m m-2
ﬁ, (2,80) = tat1) + _—’;') Fl-1,0,1) + ---- + __.._——"":{ D Flle)
(iv) Use the iterative process
S$12 8o = Lt )-Rl/B (1s.)

(v) Repeat until s converges to the value Sh
(vi) Start with s=sm and apply shooting technique using an accurate
initial value method,
An explicit expression for the rate of convergence of this method
and for the error sm-s* for a linear equation, is given in the appendix
for the case m=3,

4.,4,2 TLL me thod
m,n

2

We have shown that if';tx) is found from Q(x) by using Lie series
of order n, and if ?(x) is a Taylor expansion of order m, then ;Ix)
agrees with the Taylor expansion up to order m+n :that it is a more
economical way to obtain this expansion, and that some practical
experience indicates that it may be somewhat more accurate than the
order indicates. Hence this series is used as a basis for finding

a starting s, in practice with m=n=3, It is more efficient to use
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» 0 . . A
m=n since the same f-derivatives occur in y and Lie series. The method
can be described as follows,.

(1) Shooting from one end

(i) Consider the non-linear boundary value problem (4,4.8) and
assume the missing initial conditions z(—1)=s0

(ii) Starting with 9(x) as a Taylor series of order 3
~ 2 k4
JH) = o + (72150 + "’;U_ Ert,a,s,) + /I;Q DF (~14,5,)

2
and Z M) = So + (x+1) Fl-1.4, 50) + _Clif_ll DPl-1.4,%)

(iii) Iterate once on y(x) using Lie series iterative process

3 N to get Y(x) and z(x) where

th) = ,yrx) + //t £ (F- /’),. »J{*/_;a[f /f_f)],’;;’/

¢/ ‘b (o), #-£], 7
E/x)‘-z/x)-;-/ (ﬁf} //,& //I f)[f/ff)]an

- -7

. /7 ”-ﬂ’[zof) (p-£1];, . o
(iv) Subsitute y(x) and Z(x) into the correction equatlon
pe o
= - = Flx,p,
QR = () I;P+ (f’):v,z @ = Fly,p &)
Pt-)z o ) Q)=

A
(v) Again for the correction equation we start with p(x) taken

as Taylor series of order 3

A = /zﬂ 2
plr) = (x¢1) + (f;)_’ﬂ

Q@) = 1+ (re) (&) + /I___*_Q [ (DP),]

s, ,

(vi) Iterate once on P(x) using the same Lie series iterative

+—€$’J-[(Df)]

1,95,

process G to get Ekx) and Q(x) where

3,N

A F4 A
Pz pu) + [ (1-¢) (F-F) ¢ "‘/” ﬂ[//’) {/-’F) o

- )P

] &

=~/

4
1

j[(of)] (F- ;-)j

v,z J
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—(5(1) = &f){) + /I(F-/A')t ; At + /”-é)[/é}fxiﬂ--fj]* oAt

A
-/ e -/ 2,00

X
/J'fz A
+ ) Erwn,] (F-F) o
=/ J,2 2190
(vii) Use the Newton iteration process

S;=Se= [J1s)-P]/ PlLs.)

to get the new value of z(-1)

(viii) Repeat the process of one iteration for solution and one
iteration for correction until the value of s converges to
a value s.

(ix) Start with z(-1)=s and repeat the whole procedure but in
(iii) and (vi) we iterate using Lie series until it converges
to a specified tolerance, that is we apply the normal Newton
Raphson shooting process using Lie series as an initial
value method.

An explicit expression for the condition under which the process

(i =—» viii) converges, the rate of convergence and the error s - s¥

is given in the appendix for the case TLL Table (4) shows the

2,2°

i practical results.

TABLE 4
l No, of - No, of
. b *
Eq. So iterations S iterations s E1 s2
Stage (1) Stage (2)
(i) 0.7 Tx2= 14 0.50011 30 0.5 0.1D-81{ 0.1D-10
(i) 0.4 6x2=12 0,50011 30 0.5 0.1p-8] 0,1D-10
(ii) [0.1D-4 3x2=6 0+1D-12 1 0 0-1p-9| 0,1b-16
(iii) 0.5 5x2=10 -0,231801 20 -0,2318162{ 0.1D-8{ 0,1D-10
(iv)- 0.5 4x2=8 0.274716 20 0.274676 0.1D-8] 0,1D-10

Sl is a tolerance such that the difference between two successive estimates of

s is less than el and Ez is a tolerance used in solving the initial value
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problems such that the L,, norm of two successive vectors of coefficients

is less than £2 and the same tolerance is used as a stopping criterion

(k)
when IJ (,)—ﬁ/<£z. Here stage (1) means the convergence from S, to

s and stage (2) means using shooting method to find s*; the number of

iterations mentioned is the total number of iterations used for solving

the differential equation and the correction equations,
To assess the effect of the number of terms taken in the series used

a small experiment was done using equation (i) only and these results are

shown in table (5).

TABLE 5
n m 5, No, of s '} No,of s* t €
iterations iterations 1 2
Stage (1) Stage (2)
3 0.7 7x2=14 0.50011 30 (42) 0.5 0.1p-8 | 0.1D-10
2 3 0.7 7x2=14 0.50035 30 (42) 0.5 0,1D-8 | 0.1D-10
1 2 0.7 Tx2=14 ' 0.5094 43 (59) 0.5 0.1D-8 | 0.1D-10

In stage (2) for plane figures we use m=n=3 and for bracketed figures we use
m=3, n=2,.

(II) A note on Nicolovius method

It seems appropriate here to mention the Nicolovius method which is
also based on Lie series and to point out where it differs from that used

here, The method here converges when

)2

. 1 ) x ) x 3 )
Ja) = g + / fz-f)(;’-f)j At + /Q_:J_ [E1E-£)]. ,/H'/ "'/’H[(Df)z(f-f)] ol ¢
-1 -1 F T Y ,3

— — A -
and y(1) = F where y, y both have derivative s at x=-|

In the Nicolovius method, applied to this problem we will have

(#) s
S )= X s lrrys 4 (220 2,?(-u4,:) + 22 ppl-tsass)

+ / rx {) [ Df J Wt /4

and solve y<k)(1) = f? , where the integral is a known quantity from the
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previous iterate, i.e. we solve for s in the first four terms only while
the integral . depends on the previous value of s, This method is a
direct extension of the Picard method (Clenshaw and Norton (1963)) and one
might expect to find the szme difficulties which face the Picard method
occurring -here,

(I1I)Shooting from both ends

(i) Consider the non-linear boundary value problem (4.4.8) and
assume the missing initial and terminal conditions are z(-1)=so
and z(1)=ss° and let the solution over the sub-interval [-l,o]
be denoted by (yl(x), z.(x))and the solution over the sub-
interval fﬁ,l] be denoted by (yz(x), zz(x))

(ii) As in I(ii) we start with g, as a Taylor series of order 3
d/\ A/
and z, =y,
A A
Iterate once on '1 and zlusing Lie series iterative process G3 N
!

as in I1(iii) and store the values ;1(0) and Ei(o)

~
|-
=
(¥
N

to get Yy and Z

(iv) Substitute gﬂx) and ;l(x) into the correction equation as in

I(iv) with P1 and ereplacing P and Q.
(v) For the correction equation we start with ﬁ& taken as a Taylor

/

A A
series of order 3 and Q1 = P1

as in I(v)
A ~
(vi) Iterate once on P1 and 2N using the same Lie series iterative

to get P, and @ as in I(vi) and store i;(o),a'(o)
_ 1 1

process G3,N 1

(vii) Repeat (iii), (iv), (v) and (vi) using y_, z.,, p.®., SS instead
2 2 2,2 o
of y, z, Pl’cﬁ » 8, and the initial conditions are taken at 1

instead of -1 and finally store the values ;2(0),22(0);;2(0),25(0)

(viii)Use the Newton Raphson correction -
Ss{_| S| _ |FP@ -Rro g, t0)- 3, (o
33, 33 gl -G Z,00) - Zyl0)

(ix) Repeat until s and ss converge to 5,55, then using these as a

starting values for ordinary shooting from both ends with
iterating to convergence in (iii) and (vi).

The practical results are shown in Table 6,
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A similar experiment to that reported in Table (5) was done
for the same equation using this method and results are shown in
Table (7).
4.4,3 TPL me thod
m,n

1

For the same number of derivatives of y evaluated at both ends
one caﬁ get a polynomial with order twice the order of Taylor series
by using two-point series, This is suggested by Olsgn (1977) who
uses two-point series in conjunction with quasilinearization and the
adjoint mefhod. For this reason we are going to apbly twb-point series
as a replacement of Taylor series in III and discuss the. practical
results, In practice we used this method for m=7, n=3,
(i) As in ITII(1)

(ii) Generate the two-point series of order T as explained earlier

A 2
J= Ao+ Aiz#i)+ Al+i(7-1) % -~ + A I'lﬂ]‘/I-/)
A Al el )
ZM) = //4) ) U‘ll z) takes the values of y when zc[./)o:?,
n
/ x) takes the values of y(x) for x é‘['o,/]
A Al A Al
and zZ, M= Yy Z,/4) = f 1x)

The steps (iii) = (ix) are exactly as in III. Table 8 shows the
practical results,
A similar experiment to that reported in table (7) is done for

the same example using this method and results are shown in table (9),

4.5, Comparisons between the different methods

4.5,1. Series methods and straight shooting

Corresponding to table (4) we solved the same examples under the
same conditions using straight shooting, that is allowing the iterative
process 63 N to converge in the steps (iii) and (vi), The practical

1

results are given in table (10),
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TABLE 10
No. of
*
Eq. So iterations s Tol &
(i) 0.7 Blows up 0.5 0.1D-10
(i) 0.4 65 0.5 0.1D-10
(ii) | 0.1D-4 Blows up 0 0.1D-10
(iii) 0.5 40 -0,2318162 0.1D-10
(iv) 0.5 29 0.2746763 0.1D-10

Comparing tables (4) and (10) we notice that

(1) For equation (i) with s°=0.7 and equation (ii) with so=0.1D—4
straight shooting fails to start while the series method T’I..Ls’3
converged,

(2) When both.methods converge to the solution, method TLL3'3

converges faster and uses a smaller total number of jiterations

as the following table shows:

TABLE 11
Eq. TLL3'3 Shooting
(1) 42 65
(iii) 30 - 40
(iv) 28 29

Similarly corresponding to table6 we solved the same examples under the
same conditions using shooting from both ends, that is allowing the

iterative process G to converge in the steps (iii) and (iv).

3,N
The practical resuits are given in table (12).
Comparing tables (6) and (12) we can find that the above two advantages
are valid here also.
(1) For equation (i) with s°=0.6, ss°=0.8 and equation (ii) with

S, = 88 = 0.1D-2, straight shooting fails to start while T’LL3'3

converged, ' —
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(2) When both methods converge to the same solution, TLL converges

3,3

faster. The following table shows the total number of iterations

for the two methods,

TABLE 13
Eq TLL3’3 Shooting
(i) 68 106
(iii) 42 70
(iv) 42 56
(v) 103 118

Corresponding to table (8), the same examples are solved using y as a
two-point series and straight shooting; the practical results are given
in table (14).

A similar comparison between (14) and (8) shows that
(1) For equation (i) with so= 0.6, ss° = 0,8 straight shooting failed

to start while TPL
H

7,3 converged

(2) TPL7 3 is again faster than straight shooting as shown in the
1

following table of total number of iterations

TABLE 15
EQ TPI.,,T_’3 Shooting
(1) 50 105
(iii) 36 66
(iv) 40 52
(v) 78 114

In all the above comparisons the number of iterations can be used as a
measure for comparing the effort involved since we use the same iterative
process each time. Also looking at Tables (13) and (15) we note that
TTluL3 has an edge over TLL3’3.

To compare the rate of convergence from s_ to s and from S to s*

using TLL3 3 with the rate of convergence from so to s* using straight
’
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shooting we used example (i) with S°=0-4 and plotted ls-sf\ against r,
the number of applications nf Movton corv2ction,.Thisis shown in graph (7)
where the dotted line rofers to stage (1) from So to s and the solid line
to stage (2), and also to straight shooting. The graph shows that stage
(1) and straight shooting have approximately the same rate of convergence
up to E.ag would be expected from the analysis, and hence of course there
is considerable saving in using the series process, When s has reached
s, there is no further gain in continuing to use stage (1) and shooting
will be necessary,
. . (k) x| d

A similar graph showing the relation betweenl]y -y and r

is also plotted for the same example and again agrees with the above

statement.

4,5.2 Computational effort

In the previous section the relative advantage of this class of methods

over straight shooting has been demonstrated. ln this section we analyse
the computational effort involved in the same way as was done in 2.3.4 , by
counting the total number of function evaluations, A comparison can then be

made of the efficiency of using different types and orders of ; and different
numbers Of tawms in Lie series, This has been done for straight shooting, which
is of course a very similar investigation to that carried out in 2,.3.4, and
the results are also found to be similar. A more interesting comparison is
between different distributions of computational effort between the two
stages in the series method, and also between the total effort involved in

the series method and in straight shooting under comparable conditions.
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4.5.3. Number of function evaluations in different methods

The effort depends on
N the highest term used in Chebyshev series
r1 the total number of iterations used in applying Lie series to
cifferential equation
K the number of times missing initial conditions are corrected
r the total number of iterations used in applying Lie series to
the correction.
J =K+ 1 when shooting from one end and J = K + 2 when shooting from
both ends. Table 16 shows the effort in each stage in terms of these
quantities allowing for the cverlap where functions needed in the correction

equation have already been calculated in applying Lie series to the

differential equation.

4.5.4, Computational effort, straight shooting

Equation (i) is solved under various conditions and the effort involved
can be calculated from table 16 . The values obtained are shown in
tables 17, 18, 19.

The results from the three tables confirm for this example the general

conclusion reached in 2.3.4, that G2 N is more efficient than 03 N for
’ H

initial value problems. They also suggest that, again for this example

(G )is better than (02

G, ), that is there is an advantage in

G
2,N'" "2,N N’ T1,N

calculating the additional function required for G2 N in the correction equation
L

rather than using simply G1 N there, Comparisons between tables 18,19
]
A
suggest that with the same initial values calculating y as a two-point series

is more efficient than using Taylor series and shooting from both ends,

as would be expected.
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TARBLE 16
Method y Eii?:iiggr P Effort for correction
TLy | 9r;(N+1) +J | TLy | 3rp(N+1) + 2K
3,8° C3,n
TP, | 9r;(N+1) + 23
TL, Iry(N+1) +J TLq 3ro(N+1) + 2K
3,8 %N
TP, 9r1(N+1) + 2]
TL, Sty(N+1) + 27 | TL, (3r, + KY(N+1) + 5K
2,8° G2 n
TP, | Sry(N+1) + 4J°
TL, 5e,(N+1) + 27 TL, (3r, + KK(N +1) + 5K
2,8 CLn | Te, [ seyNe1) 43| TL, | (Br, + D(N+1)
TP5 51‘1 (N+1)
TL, 4r, (N +1) TL, (3r, + 2K) (N +1)
1,8 C1,n
TP 4ry (N +1)




TABLE 17
TLL (one end)

Method 5 9 r J 5 ry Total effort
Gy 453 C3.45 | 0-4 ] TLy| 35| 6} TL3 | 30 18646
Gy 458 9 45 | 04| TLy| 35| 6 | TLy | 43 20440
Gy 45% Gy 45 | O-4 | TLa | 47 6 | TL3 | 43 17006
3 H L4 y/
69,455 C1.45 0.4 TL3 +7 6 TLj 83 22506




~100-~

[ 1 €

8%9L7 ot | s6 | P | zt| 19| “ar| 90| wo | Tl
€ €

PY1ET ot | z9 | Sz | zt| 19| ‘Zax| 90| w0 | 7 % ST
[ ¢

Z%50¢€ ot | z9 | fmw| zt| es | ‘fax| 90| w0 | SV % ST E,
€ [ 4

29162 ot | zs | S| zt | ec | ‘4ar!l 90l w0 | 57 € SV &y

110332 [eB30L 3 (2 d r I £ Ogs s poYyIaR

(spu@ y3oq) 141
61 TIEVL

[ 4 [ 1

%Z89¢€ ot | set| w| et | | B 90| wo | 7S
[ 4 [

08182 ot |z | S| et | | S| 90| wo |7 % 57 %
[ [4

vZ€2€E ot | z¢ | S| 21| ws | | 90 wo |57 % 57 &
[ €

9562 ot | zs | S| ezt | ws | f1w | 90| w0 |57 &y SV E

31033° 1B30L A (2 d r 11 £ Oss s POY3IsN

(spue y30q) TIL

81 dTEVL




-101-

4.5.5. Computational effort, series method

In a similar way we can use the results reported in tables 5 , 7 ,
(9) to calculate the effort inQolved in solving equatioﬁ (i) by series
method under various conditions. The efforts in s£ages (1) dnd (2) are
shown separately in tables 20, 21 , 22 ,

These results can be combined to give the total effort involved in
solving equation (i) under all the conditions considered, the final

comparison of effort is shown in table 23 . b

Note In stage (1) an unnecessary number of iterations were
added due to requiring a tolerance 0,1D-8 for the accuracy of s while s
is accurate to 3 decimals only in some cases, This waste of effort could

be avoided by relating the tolerance with the predicted order of s .

Comments

(i) From table 23 the minimum effort occurswhen m=3, n=2 in stage (1)

and using (G G2 N) in stage (2) in TLL case and when m=7, n=2

2,N' s
and using (GZ,N' GZ,N) in stage (2) in TPL case; TPL shows a slight advantage

when compared with TLL (both ends).

(ii) Comparing tables 17 , 18 , 19 with 23, we notice that we used
worse starting value for 50, SSo in table 23 and still the

effort was less than that of straight shooting which was shown in 17 - 19,

4.6 The series approach as a new continuation method

In the method TLLh N we start by assuming the missing initial condition
]
z(-1) = so, expressing 9(x,50) as a series of order m and applying one

iteration on ? using (n + l)-term Lie series to get y which is a series of

order q = m + n

. = +n+
i.e, y -y = 0O(x + l)m o+l (as discussed in chapter I)

‘\\‘“ “:'ll-i‘:: " ita,,
1 4JUL1978

fyoriot
LIBRARY

I,’
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TABLE 20

TLL (one end)

Stage (1) Stage (2)
Effort G3,N G2,N
ry |, ry r, K |Effort r, r,| K| Effort
7 7 3885 18 12 | 2 9115 24 18| 2 8112
7 7 2947 18 12 | 2 9115 24 18] 2 8112
7 7 2898 24 19 | 3 {12568 32 271 3] 11247
TABLE 21
TLL (both ends)
Stage (1) Stage (2)
Effort G3,N G2,N
T, | £, T r, K |Effort r, x, K1 Effort
44 1 44 24420 24 20 1 4 | 12710 36 281 4| 12360
16 | 16 6736 24 20 | 4 |12710 36 28| 41 12360
16 | 16 6624 32 3016 [17408 48 421 6] 17158
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TABLE 22

TPL (both ends)

Stage 1 Stage 2
Effort - G31N G21N
r) | o ri | J | ra | K | Effort |r; ro | K | Effort
26 26 114456 12 4 10 2 6360 12 12 |2 4534
26 26 | 10998 12 4 10 2 6360 12 12 | 2 4534
38 38 | 15732 13 4 10 2 6774 14 12 | 2 4994
TABLE 23
TLL (one end) TLL (both ends) TPL
™m
B A B A B

13000 | 11997 37130 | 36780 7 20816 | 18990

12062 11059 19446 19096 7 17358 15532

15466 14145 24032 23782 5 22506 20726
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Then we do the same for the correction equation by applying a Lie series
of the same order starting with ﬁ to find p of order q, and then using
Newton Raphson correction to find Sl' the new value of the missing initial
condition, The process is then repeated starting with §(x,sl) and

continued until it converges to s, where

[5’—- E/=’O(2’,—x,)’ = 0(24') for the range ‘_—1,1]

s is then a better start for applying the shooting method than So. But

if the problem is too sensitive then s may not be close enough to s* to
enable the shooting method to be applied. In this case we have to increase

the accuracy of ;_ For this we suggest the following continuation procedure.

(i) Start by assuming z(-l):so and use stage (1), one iteration for solution
and one iteration for correction as explained in (4.4), converging to

= ()

s,

(ii) Use g( ) as a starting value for z(-1) and apply the same method with

two iterations for solution and two iterations for correction until it

=(2)

converges to s
=(k)

(iii) Repeating the process we get the sequence s , k=1, 2, ..... whose

limit is the exact solution s*.

Notes
(1) We may stop at-any stage and apply the shooting method when s (k) is

*
a good enough approximation to s

(2) From the theory of Lie series, if §(k) (x (k)) is k th approximation to
y(x,s*) then
Jos) - Tex,5%) = Jlns*) - T sty e 5%y -5t )
m+(ner) b . —

put x = 1, then l _S (“ - o[)m-—l"f"f'J‘
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The above method has been applied to example (i) and the results are

shown in table 24 and plotted in graph (9).

TABLE 2k,
Stage No. Starting value No. of Final value
K stk1) Iterations 5k
1 0.4 4x2=28 0.50011
2 0.50011 2x4 =28 0. 5000017
3 0, 5000017 2 x 6 =12 0. 50000001
Shooting 0.50000001 18 0.5
The tolerance used here was 0,1D-10 as a stopping criterion. The example

is a very sensitive case,
For future work a study of the most economical way of using this
continuation technique could be carried out using practical results and

relative convergence rates,

Using series of fixed order we obtain starting values in non—
linear boundary vajue problems for use in normal (Newton) shooting
methods. This approach can work when Newton shooting fails » and

i £ipmi . . i
IS more efficient 5 jt s deperdent on the interval length.
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Appendix A

Order of Accuracy of sm-Linear Case

In this appendix we find explicit expressions for s_ ~-s* using

various types of polynomials of order m applied to the linear two-point

boundary value problem

J =z (

zlz‘ #/t)-o a’/;){j.’ X/X)Z (”
J/O):A/ ’ J/‘):ﬁ

The exact solution of this, expanded 1in powers of h, corresponds to

z(0) * where

W

* - -of - 2 et 34 » 4
N T f{—"’x.,-f“’———-*/'—‘“* £
X

? . 7 . y
-G 0 o 205 Lox-an)-5 47 4024

[ ,2

3 . o 7 2. v /3 #
# A2 (o) -2 XU Korre 30

_Mt)(:—/4,t?+gt'x:) (d'f' +9")‘f‘ ("f*s‘)x ‘f’+¢)f

(1) Using the cubic two-point series TP,

Assume z(0) =

Sgs z(h) = 5, and form the cubic two-point series
"
J = Aty alx-h) e gyzt(n-h) e (2)
A, =«

A,
A, - 7:7 ( B-As.)

1)

£(p-7) z VN E))

Aa- ;ti,-[/l/S.H,)—anav]




Find s, and 5, such that

J”(O) = f{o, o) So) , (j/’(‘.): r(‘)P’S') e ee - (4)
i.e. Sg(%#Xo).rS, {%).,xd(r[z 4.‘*0)—,3/7‘;’_)4}; so - (8)

Se (F) #8 (Lo k) +a(E)-R (5 +4)-F=0 @

where f: F(4) and 4 « $re)  and similarly for4f and } .

The solution (s,, s,) is obtainable as long as

2 _ 4
7 x ) -x 2o

le. /2—4,{ (""X.)-I’X.Xﬁa

So expansion provides a limiting length via

- bh (A e )-A X5 o

re. A < 7
V4 xl+%?

Solving for s, we get

- _ i ’ _ e C o"‘é
So = El:i, [{;,Xb_/,{(_ﬁ},)xo_ ) g7+ hod | PR }
_ ? p.y) v -) ’ ’t/"'f;/ ) 5
/ {%—X,ﬂ* (7F_£,_ %.X,-f B = + /F?;’)Xo‘%o/q'-ﬂ.,pg)}
-+ -
and

I E R R P e PR P

. . . » 3 .
Since P-4= o(k) , this gives S'-5,* o(h”) in accordance

with the general result obtained in 4-3.3.




(ii) Using Taylor series of order 3
JIS) = a+ x5+ L2 (4 +har X 5)+ X DP/o«:)

if 5(3) is such that cy”' 53)) ,3 » then

O (BT) - (E)x, 4 (ﬁ,;—“)/xf-zx:-me}-wf
"”1 (B2) (Xt XX+ 6 %,8) + Xa fug 1p)

- -é— [(ﬁ’ﬂ’pg’) + ‘X’/q'q!:#-#o)]&
and

B =) A R DRI I Y R o9 I

i.e. the same error as with TP3 but with the opposite sign.

(1i1) TLL2,2

With y, a Taylor series of order 2, used in 3 terms of Lie series,the

4)

order of y is 4, and if s is such that

I (k") p
then

$*- (“,-_-f-—-i/zd)( s nh X} +6')( +r0 X! X 4164’ HIZ }f

which is of order h%.




ABEendix B

Explicit Conditions for Convergence to 5

Consider the non-linear boundary value problem

’

J =2z

= Ptndz) 0
Jle)=a, YW=

(i) TL,

Assume z(0) So

then J(r,s,): ot xS, *-———f”“’S) +—‘1-3—(f +ffu+/’/’)’4
°o.4,3s
(1

s

W

X+ Set g Floo®s5y + - (h *@So*f,n)o”
¥ 30

\
s 20 |

N
o
J
For the correction equation

? 3 ) 2
Buusy = xv FE(omsy +F (g rhesrhal 1o RY)
29, %0

13(1,5,) = |+ é‘ g(o,d,s,) +—{L(f,z */;zzf'lng" g’f /;Z)

°.q, 3o
The iterative process used is

S, =5, - [y(. 50) - f3 ) G (S.)

(b&)

and so since

dIIS)L By s

C’/S‘,) Lg'(L"”.)]z ?"2’"};2 +'£_(,;zz ! g’zzs" *;}z 7‘h"‘z)z'a'f‘.". 3k &' ’ Evz)j(j(’d.) —P)

For ccnvergence IG'(SO)| <1, 14 some nepfboorhood oF st

(j(';so) P)XP('S)] (J- fee? 7 ral 1re JZz Sete f, Jz +l2’27f-' fzr))l

and the rate of convergence will depend on |G'(so)|.




(ii) TLL
2,2

For the same non-linear boundary value problem, let

r
JISy) 2 o r x5, + %ff(o,qf,so)

2(’;59) - S°+ ”f{aad, So)

x 2
then f (£.50) = -0( 4+ Z5o 43;2;’(94’,5.:)* / (x:f) (ﬁ;+/}z+ ﬁ;f) o

o él;};

For the correction equation

ﬁ(z,s,) = X 4 Z;za fz (c.,2,5,)
A
Q 1,56) = | + x ﬁz (‘JdISO)

Fruss e a e Zp tnny ¢ [ T8 hyee 1,07

PlL%)
and so since 2(_‘_’_(_’:5’;). PlLS)

A o' (1rse —
%-;o = _e__[—l—s——) 1{3(’;50)‘F)
[?(',So)]

Again for convergence /7— /< /
5,
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