W Durham
University

AR

Durham E-Theses

Duality and neutral pion electroproduction

Wilkie, Thomas D. B.

How to cite:

Wilkie, Thomas D. B. (1979) Duality and neutral pion electroproduction, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8403/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way
The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8403/
 http://etheses.dur.ac.uk/8403/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Duality and Neutral Pion Electroproduction

by

Thomas D, B, Wilkie

Thesis presented to the University of Durham

for the degree of Doctor of Philosophy

September 1979

The copyright of this thesis rests with the author.
No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

‘“.am Univ?‘;\.
Q% science P\

1 FEE 195 )
SECTION
Library




And I gave my heart to seek and search out
"by wisdom concerning all things that are done
under heaven; and, behold, all is vanity and
vexation of spirit. For in much wisdom is much
grief: and he that increaseth knowledge increaseth

SOXTOW,

Ecclesiastes
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Abstract

The implications of Duality, in the form of Finite Energy
Sum Rules, are examined for the photoproduction and
electroproduction of neutral pions off protons, The
Collins and Fitton model of high energy pion photoproduction
is extended to accommodate the features of the photo-
production FESR, The analysis is extended to glectro—
produciion and it is shown that a simple modification of

the model will fit the electroproduction cross-section.

The implications of this modification are discussed.




Chapter 1 : Hadronic Physics and Photon-Induced Processes

Section 1 Introduction

It is a commonplace tb observe that photoproduction pro-
cesses are strikingly similar to ordinary hadronic interactions,
The distinctive patterns of bumps and dips in hadronic differ-
ential cross-sections are found also in photon-induced pro-
cesses and many attempts have been made to explain photo-~

production using the models and ideas appropriate to hadronic

physics,

This identification of hadronic and electromagnetic pro-
cesses was given quantitative expression by Sakurai (1960) in
his proposal of the Vector Meson Dominance model (VDM),
Essentially this proposed that the coupling of photons to
hadrons took place through a transition of the photon into
a (virtual) vector meson carrying the same quantum numbers.
Inked, the usage has become so familiar that the isospin
singlet part of the electromagnetic current (which is a U-
spin scalar and therefore of mixed isospin) is habitually

referred to as the « -part of the photon, and similarly for

the I=1 e -part.

The hypothesis of vector meson coupling may be illu-
strated by observing that the annihilation of e+e- at centre
of mass energies below ~10eV is dominated by the production

of the vector mesons e and P . It is thus the
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case that virtual, or off-mass-shell, photons can couple to
vector mesons and the assumption is made that the same thing
happens for real and spacelike photons (see figure 1.1),
Assuming this vector meson;electromagnetic current coupling
(the current field identity), the basic result of VDM is to
relate photoproduction or electroproduction processes to the

corresponding vector induced reaction
— S,OUT(_ZL 1.1
A(Xa—>bc) 0 é;p % 1';%2>A(Va—>bc)k’=m3
Y v

for transverse polarizations of the photon (which by gauge
invariance are the only ones allowed in photoproduction) and
a similar expression with an extra factor of :%? for
the longitudinal polarization. (For the metric, sign con-
ventions, and normalizations used throughout this work, the
appendices should be consulted). A vector meson propagator
and a coupling constant are thus the only items required in
this model to relate the electromagnetic interaction to an
entirely hadronic one, One can form some estimate of the
relative preponderance of the p-like to the > -like parts

of the photon by an argument based on SU(3). The coupling

constants ger Beo and gp may be related within SU(3) by
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where © is the ca-«P mixing angle:

P= cos® P+ sin® J
w=-sin @ 4)“ + COSD w

For ideal mixing tan© = Y_ZL one obtains the ratios

This result can be obtained also by considering the quark
content of the particles. This approach is perhaps more
satisfying in terms of physical intuition, once one accepts

the existence of quarks., It also is more readily generalised

to the new vector mesons 4/ and I .

But the interest of photon-induced reactions is not that
they can be reduced to hadronic processes - although there is
an extensive literature on VDM trying to do just that - they
have two important features which are peculiar to the photon
as a probe of hadronic structure. One feature is that it is
technically not too difficult to prepare beams of polarized
photons - and this is a powerful tool for discriminating among
various phenomenoclogical models. Asymptotically, a clean
separation may be made of natural and unnatural parity ex-
changes in the t-channel, since unnatural parity exchanges

dominate the cross-section for photons polarized parallel to
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the reaction plane (Stichel 1964, ader et al 1968), and

vice-versa.

The other feature of photon beams, in addition to
polarization, is that they enable the external mass of one of
the scattering particles to be changed almost at will,
Referring to figure 1.2 it can be seen that in the case of
neutral pion electroproduction the mass of the virtual photon

can be varied kinematically (we treat the electrons as massless),

k? == 4EE'sin’Qy, | 1.

It is with this property of the photon, and with the reaction

X Pp—>TT°P

that we shall primarily be concerned in this work,



Section 2 General Features of Neutral Pion Photoproduction

We shall briefly discuss the prominent features of neutral
plon photoproduction, using the language of t-channel Regge pole
(and cut) exchange, and then on to indicate why the reaction

was considered to be of particular interest,

In table 1.1, the allowed t-channel exchanges and some of
the physical particles which have these quantum numbers are
summapised. In figure 1.3, some data on the differential
cross-section are plotted. The gross fe@ﬁz;es are clear.
There is no forward spike, anéZtﬁgLAata[{;;n over in the
forward direction., Thisreflects the fact that pion exchange
is forbidden in this process by C-parity conservation, The

other prominent feature is the dip in the region t = -0.5

which is followed by a secondary maximum,

From a theoretical point of view it is to be expected that
the natural parity exchanges will dominate this process as they
are higher-lying in the j-plane. As the p exchange must couple
to the > -like part of the photon, and the <> exchange to the
p-part, the argument in the previous section generates the
expectation that &> exchange will dominate by a factor of 3
over the Q-exchange amplitude, Since the w -couples pre-~
dominantly to the (s-channel) helicity non-flip at the N-N

vertex, it is also expected that the s-channel single flip




amplitudes will be dominant, this is borne out also by the
turn-over at t=0 (only the non-flip amplitude is non-zero at
t=0). The ratio of the cross-sections for photoproduction
off protons and neutrons (figure 1.4) indicates that there
is only small interference between the I=0 and I=1 exchanges
(the latter changes sign between the two reactions),
Similarly, evidence for the dominance of natural parity
exchange comes from the large value of the polarized photon

assymetry (figure 1.5).
y =(92-95) /(5% )

All this is reasonably well understood and accords with
expectation, the real interest of neutral pion photoproduction
lies in the mechanism employed to explain the dip at t = =0.5,

There are two basic and conflicting philosophies.

One approach observes that the trajectory function of
the ¢« itself has a zero at t = -0,5 and that for a number
of reasons (see e.g. the discussion in Chapter 6 of Collins 1977)
the inclusion of a factor &(t) in the residue function of
the > Regge pole might be desirable. This so-called nonsense
wrong signature zero (NWZ) in the amplitudes then has to be
filled in by a strong cut (which is comparatively featureless

in t) to produce the observed dip.




The alternative approach is to use a comparatively feature-
less t-dependence for the residue of the <o -pole and to
produce the dip by strong destructive interference from a
cut, Regge cuts may be regarded as arising from multiple
exchanges of Regge poles and in this strong cut Reggeized
absorption model (SCRAM) the cut expresses the diffractive
effect of absorption in the s-channel amd the dip in the
cross~section is a diffractive minimum, In an explicitly
geometrical approach the peripheral single flip amplitude
would behave like J; (R I-t ) where J; is a Bessel
function anmd R is the interaction radius ( - 1fm). The
Bessel function has its first zero at around t = -0.5 with

this value for R (Harari 1971).

A large number of fits have been published for neutral
pion photoproduction and both approaches reproduce the
features of the high energy data (Ross et al (1970),

Gault et al (1971), Worden (1972), Barker et al (1974).



Section 3 Variable External Mass

The extension from photoproduction (k2=0) to electro~-
production (k2 < 0) was early suggested as a process wherein
the two different approaches might be distinguished (Harari
1971).

Although many more amplitudes will be present for electro
as against photoproduction it is still possible to measure the
production of 1T‘° by transversely polarized photons and <o
exchaﬂge will still dominate in the t-channel. If the
explanation of the photoproduction dip in terms of a NWZ is
subscribed to, its position is unaffected by any variation in
the photon mass and so the dip in n° electroproduction should
remain at t = -0,5 with this explanation. However, if the
photon's interaction radius were to change with its mass,
then the diffractive or geometrical approaches would expect

the zeros in t of J (R It ) to move.

What evidence is there that the interaction radius of
o
the space-like photon decreases as -k~ increases? A number
of models have been proposed (Cheng and Wu 1969, Bjorken et al

1971) suggesting that the photon interaction radius

R - S_—;z K- 1.5




_9-
Certainly, Harari (1971) expected significant changes for
0< -k%¢1 Gev®. It is the case that in quantum
electrodynamics the effective radius for producing lepton
pairs in an external potential decreases as -k2 increases,
and a similar effect may be expected in the context of a
parton model explanation of the hadronic "potential". From
the proton's point of view, the incident photon might be
regarded as acquiring a finite transverse size. This is
created by the transverse recoil acquired by the photon as
it produces parton anti-parton pairs in its interaction with
the proton. When the photon is far off shell, it lives only
a short time (because of the uncertainty principle) and can
produce fewer transverse parton pairs, amd so have a smaller
transverse recoil, Thus a highly virtual photon acquires a

smaller radius from the proton's point of view.

Other arguments in favour of photon "shrinkage" can be
obtained in the context of the Generalised Vector Dominance
model (Fraas et al 1975). In this model a Veneziano-like
spectrum is assumed for the vector mesons and interference
terms are allowed between different mesons coupling to the

external photon,

In the differential cross-section for the photoproduction
of vector mesons e)bJ,cP - "elastic"” photoproduction - this

prediction can most easily be tested. The forward

elastic amplitudes are predominantly imaginary and
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the effective interaction radius for the diffractive com-
ponent of the scattering can be determined from this.
Assuming that the cross-section has a simple exponential

behaviour in t
ey 1.6

then in the impact parameter representation, the imaginary

part of the diffractive amplitude is
2,2\ -
Im A(b) ~ e (-b%/R") 1.7

where the diffractive slope ¢ amd the radius of interaction

are related

c = R2/4 1.8

This is reasonably model independent and indicates that a
measurement of the slope of "elastic" photon and electro-
production can verify the prediction of photon shrinkage,

It should be remembered that this is physical shrinkage in
impact parameter space as a function of k2. This would take
place at constant s and should be distinguished from Regge

shrinkage of the differential cross-section.

One test proposed by Harari (1971) was QO production.
The experimental data are confused in this reaction, some
results claim photon shrinkage others deny it (Ahrens et al,

1974; Talman, 1973). Nonetheless Fraas et al claimed
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support for their model which gave prominence to higher
recurrences of vector mesons having flatter slopes than the
elastic reaction. In fact, it is experimentally difficult
to obtain a pure QO signal from a non-resonant Ir-w  back-
ground and the shape of the Q distribution may well be t-
dependent, However, some recent experiments (Joos et al
1976, Francis 1977) seem consistently to indicate that any
downward trend in the exponent is not significant. One
process which gets aroumd these difficulties is qf meson
electroproduction which is also diffractive in nature, Such
an experiment has been carried out (Dixon et al 1977) and as
can be seen from table 1.2 the exponential parameter, although
shallower than in photoproduction, yields no evidence for a

significant variation with lkzl.

(3trictly, a distinction should be made between the
radius associated with the diffractive component of the
hadronic amplitude which can be determined from the slope of
elastic scattering as above, and the non-diffractive part
which is related to the first by unitarity in some complex
way. 3ince one expects almost no non-diffractive components
in JP—NPP it might be argued that the above evidence is
not completely convincing, but it seems unlikely that the
non-diffractive radius will behave radically differently,

see Harari and Schwimmer 1972).
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Section 4 Neutral pion electroproduction

At the time the experimental evidence for photon
shrinkage was ambiguous but the effect was expected
theoretically, and so the first data on pion electroproduction

above the resonance region were awaited with some excitement.

When published (Brasse et al, 1975) the form of the

differential cross-section (figure 1.6) came as a considerable

shock.

The dip at t = -0.5 completely disappears or more
correctly the secondary maximum after the dip is washed out amd
the data continue to fall, almost by an order of magnitude.
This effect is most clearly seen in figure 11 of Berger et al

(1978) which we reproduce as figure 1.7.

The relationship between the electroproduction cross-
section and the corresponding photoproduction formalism is
discussed at length in appendix B, We here simply quote
equas B?7 and B8, (We work throughout in the one photon
approximation). The electroproduction cross-section is

related to the virtual photon scattering cross-section

(SLN by a flux factoréﬁpzr————— [—ﬂ EEE

= -+ £+ 2 + 2¢(E+1) cos
o =ga - gar - gomoap  -gorl f L9
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In the experiment by Brasse et al the value of <P was chosen
to be 90° thus elimina.ting‘ the scalar-transverse interference
terms. 3ince the unpolarized term and the transverse
polarization term can be regarded as respectively the sum

and difference of terms polarized parallel and perpendicular

to the reaction plane

do: = l{do; dos
at 2(%% ' dt)
do = 1@, - da)
it tat! at

then the above, at cP = 900. can be written as a sum of

positive terms

do, =(byder - (YOG - o 1.10

Assuming that the previous argument in the photoproduction
case holds good and that natural parity exchanges dominate

:t-‘- and unnatural parity giq" (and é’[ﬁ ),
then the measurements of Brasse et al represent an upper bound
for the natural parity exchanges, Berger et al, however,
performed their experiment at cP = 0 and so were able to separate

g.f.'f and g‘i’.’u and, neglecting the contribution from
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5%& could then muake a direct comparison of the real and

virtual photon scattering processes, figure 1.7,

Berger el al continued the measurements to small t and
found that the forward dip was present as in photoproduction.
By using the data of Brasse, they evaluated the photon beam
assymetry parameter and its value, together with that of éﬁ?
clearly show that the electroproduction process is indeed
dominated by natural parity exchange. They also found an
overall k2 dependence consistent with a e—pfopagator

dominance in VDM.

These features of the data are in accord with what would
be expected from a continuation of the k2 = 0 mechanisms
into the spacelike region (c.f. the discussion in section 2),
It is therefore all the more surprising that the data for
| tl ~ 0.5 diverges wildly from expectation, what is also
surprising is that the washing out of the secondary maximum
occurs so quickly, at k2 =-0,22, It is ironic that,
as we have seen, the non-shrinkage of the photon should have
removed the chance of making pion electroproduction a

definitive test of dip mechani~ms, and the process itself

confounds all expectations by having no dip at all,
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section 5 Theoretical model

The basic problem of peutral pion electroproduction
having been outlined, an explanation must be sought. We
shall do so following the tradition of regarding photon-
induced interactions as being hadronic in nature and shall
seek an explanation in terms of t-chanrel regge pole and cut
exchange. However, not enough data exist in the high
energy region to determine the features of a model, To
supplenment the data, a tool that is both phenomenologically

useful and theoretically powerful will be employed - Duality.

In the next chapter, a brief sketch will be given of
the theoretical importance of the idea of duality; its
principal phenomenological tool, FESR, will then be expl-
ained and its application in photoproduction reviewed; a
brief final section will point to some difficulties in
squaring Fi3R and Regge absorption models, The first hint
that perhaps the photon is not as hadronic as has heen

assumed will be found here,

In the third chapter the behaviour of the individual
resonances in photoproduction will be studied in the context
of one phenomenological observation arising from Duality -
lines of amplitude zeros at constant values of the energy
variables, It will be seen that, quite apart from any

difficulties of extending Fegge models to the low energy
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region, the resonances themselves in photoproduction behave
in a manner different to 7w N scattering. An extension will
be presented to the photoproduction model of Collins and
Fitton (]97”) to account for this behaviour as manifested

in the finite energy sum rules,

The evaluation of FESR for electroproduction is
presented in Chapter 4 together with a discussion of the
behaviour of the resonance form factors as a function of

|l§2| . The extended model of the previous chapter is

then made to accommodate this electroproduction behaviour,

Some conclusions, predictions, and suggestions for

future development are presented in the final chapter.

As the formalism of electroproduction is exceedingly
complicated and the literature confusing, a copious series
of appendices are included which, it is hoped, provides
a comprehen:=ive and consistent account of the amplitudes,
observables, and formalism used in this field, No claim

for originality is made for any of the material presented

therein,



Table 1.1: Allowed t-channel exchanges in pion

15" 1°a)"
YpP T n | \/F
e £
Yp > Tp ~Va ©
yn —=>rn \/;‘? °

p, B ™, AL,

photoproduction



Table 1.,2: Value of the slope parameter (c) as a function
of k2 for 4D electroproduction

K% (GeVz) c (GeV-Z)

0 4,01 T 0.23
-0.23 3.40 L 0,34
-0.43 3.84 % 0,46
~0.97 3.14 % 0.38

(From Dixon et al (1977))



Figure Captions

Fig 1.1

Fig 1.2

Fig 1.3

Fig 1.4

Fig 1.5

Fig 1.6

Fig 1.7

e'e”™ annihilation and the formation of a vector

meson from an off-mass-shell photon

The one photon approximation for neutral pion

electroproduction

Photoproduction differential cross-section at
Puab = 6, 9, 12, 15 GeV/c.  (Anderson et al
1971).

The ratio of the cross-sections for photo-
production off protons and neutrons at P,

= 4,7 GeV/ec.

The polarized photon assymetry at 6 GeV/c.

Electroproduction cross~sections

(&)%’%‘%ﬁ". @do')as a function of t, for

k*a-032,-0'56,-0-96. The interaction was

measured for s = 6.5 GeV2.

Comparison of electroproduction é%’ at k':-0a2
with photoproduction data., The complete
disappearance of the secondary maximum can be

clearly seen. (From Berger et al, 1978).
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Chapter 2 : Duality

Section 1 Theoretical Aspects

The Duality hypothesis was a bold attempt to provide a
dynamical postulate completing the theory of the s-matrix,
It assumes that all particles are composite and lie on Regge
trajectories., These trajectories, however, are presumed to

be straight and to rise indefinitely.

fhe hypothesis was stimulated by the discovery in the
1960s of large numbers of hadrons., Previous attempts at a
complete s-matrix theory, such as the Bootstrap model, had
predicted a small, finite set of particles and Regge
trajectories which eventually turned over and decreased,
It was finally shown (Collins et al, 1968) that the measured
widths of the Regge recurrences of the e were incompatible

with the N/D Bootstrap.

A consequence of the indefinitely rising trajectories
of the Duality hypothesis is that there are an infinite
number of strongly interacting particles. Thus the extra-
ordinary richness of the hadronic spectrum, one of the
features which principally distinguishes it from the leptonic

spectrum, is used almost as input to the theory.

Of course, some simplifying assumption has to be made

before anything can be done with this very general hypothesis;
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it happens that the approximation is a physically intwitive
one. It is assumed that hadronic scattering proceeds in the
resonance approximation. Thus, the s-channel scattering
amplitude is built up solely from sums of s-channel
resonances. This is well known at low energies where
:iupersion relation analyses of partial-wave amplitudes have
discovered many animals from the hadronic zoo; at higher
energies, it is assumed that resonances are so close
together that the observed smooth behaviour with increasing
energy obtains, and may be represented by crossed-channel

(t-channel) Regge poles as an average,

In practice this is not enough: to get any results
it is necessary to work in the narrow resonance approximation
strictly, the zero-width approximation, This is, of course,
a gross violation of unitarity, and therefore of one of the
fundamental axioms of s-matrix theory. However, it may be
argued that there 1s sufficient ambiguity, both mathematically
and physically, in the location of a resonance in the cut
complex plane, for this assumption to be a reasonable start-
ing point, It should be remembered that the conventional,

unitary Breit-Wigner formula for a resonance

e I3

$=5a + MR‘?

A

2.1

- .. Al L oo

't is a pole on the first sheet, which latter is the
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only one since the amplitude has no branch point cut. But it
is precisely when one wishes to introduce analyticity i.e.
branch points, that the separation of "background" and
"resonance" contributions to the amplitude loses clarity.
If we demand that scattering proceed only via resonances,
then we must be able to distinguish unambiguously the
resonance and the background components in the amplitude;
the only case for which this is mathematically possible is
in the 1limit of an infinitely narrow resonance. In such a
case analyticity is satisfied by ?oles on the
real axis without branch points, and hence with no back-

ground,

As a general remark one may assert that appreciation of
resonances and their relation to stable particles, holds the

key to hadronic physics.

The study of Dual Models, incorporating the above
defects and promises, was launched by the publication of
the Veneziano Model (Veneziano 1968). This provided a

surprisingly simple functional form for a planar dual model.

A E) F70-%) T7 0~ )

r_'(l—"(s"‘dt)

2,2

(- o(,—o(t)J doe % (o)™

u

(- oi-ee) B (-, o)
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For a process having resonances in all three channels, the
amplitude becomes the sum of appropriate Beta-functions, The
third term of such a sum giving rise to Gribov-Pomeranchon
poles in the s-channel at Aonsense wrong-signature zero
points, a role analogous to that of the double spectral
function. It was quickly realised that the formulation in
terms of beta-functions was susceptible of generalisation from
four particle scattering to a generalised Veneziano model of
N-point functions. Multiparticle processes are outside our
remit however, nor shall we deal, except briefly, with non-

planarity of dual models.

The publication of Veneziano's paper revitalised the
s-matrix approach to hadronic physics, and a wealth of papers
appeared exploring its implications. The theory soon moved
from its intuitive physical base to heady mathematical heights
(Olive et al, 1974), In recent years there has been some
excitement at the similarities between relativistic dual-
string models and non-abelian gauge theories. In retrospect
this might not be so surprising since both dual-strings and
QCD (quantum chromodynamics) are non-perturbative attempts to
provide a theory of extended objects, We will not require to

go beyomd the implications of the 4-point Veneziano function,

It is worth noting that the particle spectrum of the
Veneziano model is particularly rich. Not only does the

number of levels occupled by particles increase indefinitely
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but their degeneracy increases also. The consequence is an
exponential growth with mass of the density of levels

(Fubini & Veneziano, 1969), This behaviour is characteristic
of a system with an infini£e number of degrees of freedom and,
in fact, the Veneziano multiplicity is similar to that of the
statistical model (Chiuw et al, 1971). The interest derives
from the fact that the number of resonances which couple to

k particles of lower mass, grows only polynomially with mass,
This fascinating, but seldom explored, area (Gliozzi 1970)
has been suggested as a dynamical explanation of the
suppréssion of the two-pion decay mode of the p”(1600),

by Odorico (1977). The exponential increase in multi-
plicity of higher mass states also indicates that thresholds
infinitely distant in energy still provide a non-zero
contribution to the amplitude, evaluated at finite energies.

This is a considerable contrast to the bootstrap model,
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Section 2 Phenomenology

The preceeding sketch of the theoretical aspects of Duality
ignores its historical deveiopment. That crossed-channel Regge
poles represented an average description of the effects of
direct-channel resonances was a concept developed in a paper by
Dolen, Horn, & Schmid (1967). Prior to this, it had been
assumed that at low energies the principal dynamical
mechanism was resonance formation to which Regge poles, con-
tinued to low energies, provided background; at high energies,
the resonance contribution died away and Regge AXchange was the
only dynamical mechanism. In their critique of this Inter-
ference Model (Barger & Cline 1967), Dolen et al showed that it
led to inconsistency: sum rules were derived (Gatto, 1967)
which would require the sum of positive resonance residues to
be zero. A brief rearguard action was fought (Donnachie
1969), showing that a generalized interference model was
credible if one allowed each resonance an arbitrary phase,
such as occur naturally in nuclear physics; but Duality

proved phenomenologically and theoretically too attractive.

It should be noted that our inability rigorously to
separate resonance from background still disables a final

choice between the two from the experimental evidence alone,

Dolen et al also provided a phenomenological tool of
ma jor importance to quantify the "average description” of

resonance behaviour in terms of Regge poles: Finite Energy
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Sum Rules (FESRs). These were derived from Dispersion
Relations, together with the assumption of Regge dominance of

the high energy part of the amplitude.

Using the crossing symmetric variable »= % e

obtain
< 00
S R NI SE: + —'-f cb“ St
A ",'i‘r . \‘P?(T:T—)‘ ” “TJ\) 15%—) 2.3
$/= su

3 and Ds is the absorbtive part of the "s-channel

physical amplitude

$===e§£ and Du is the absorbtive part of the s-channel

physical amplitude

Assuming the amplitude has a Regge asymptotic form

™ FIORY
A ok £V ST
(\3 > ( 7)“ irun'n'-:( Y ( ) 2.4
wa -1
L VAl Y

S >-0 (bomoo)n T AR o (‘%—,)?—J%’ %‘,)d-’

it 4
> Abt) - ARGEY = BT ;’rf Ao’ Dot ) =T A%
Dy S7

~r
+#f_w1\>f T Abtic) = T A%

D -

u

=R LRl J»D(a H-£RY7 - i,zm Loe87(3)

B =D

D+




-2 -

If we have included all Regge poles such that Abaﬁ)-—ARéaé)

~ L k>l , then the LHS of the equation vanishes

faster than the right hand side. Performing a binomial
expansion of the RHS in terms of én then the coefficient

of 4 must vanish,

Mot) - ARG k) = - & {RF (- 3)" - R )
S Lo (D,628) -2 0= )
= S::l\s‘ (Du Got) + %’J(‘%ﬁ)d—')(; -, ‘\3;)-' ]

Hence
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Where, by assumption of Regge saturation of the high energy part,

we need not integrate to infinity, but only to a cutoff energy .N.
N
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Sr

- (@) @)

Only those poles for which € = 41 contribute to the RHS. If

w S
the amplitudes have definite crossing properties: R = 9 K
t)w = 7 I), thenn7 = 1, crossing even amplitudes are evaluated

using higher moment sum rules.
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The lowest moment (7 = =1) sum rule becomes

wR s b o 2 () ()

2-5

Higher moment sum rules are

T o (’R‘ + D)™ R“’) * [: N {Ds(o’,f) « ™ Du(\s’,é)} v

ey e ()T -
pbles

Functions which are crossing odd/even contribute only to even/

odd values of n.

The zeroth (n=0) moment sum rule was obtained by requiring
the first term in the expansion of powers of %5 to vanish, the

nth moment sum rule comes from setting the (n+l) th term in

the expansion equal to zero.
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Section Applications

A complete review of the use of sum rules in hadroniec
physics will be found in Ferro Fontan et al (1972). Their
review includes an extensive treatment of FESRs, their
extension Continuous Moment Sum Rules, and the related

superconvergence relations,

Dolen Hornand Schmid used FESRs to examine the
properties of Reggeized t-channel p-exchange in TN
charge exchange scattering. They obtained from the low
energy data an effective one-pole trajectory function
oeft(t) close to that of the @ as determined from fits to
high energy, cross-sections. They also evaluated a
secondary trajectory (using high energy values for the
itself) but obtained a rather high « : 0,3 + 0,8t. This
value probably reflects the inaccuracies consequent upon
evaluating higher moment sum rules., Resonance parameters,
as obtained from partial wave analyses, have a not inconsid-
erable uncertainty associated with them; evaluating higher
moment sum rules weights the integral towards the upper
limit of integration amd it is precisely the higher mass
resonances contributing there whose parameters are most

uncertain,

As noted in Chapter 1, the differential cross-section
for a given process is characterized by a given pattern of

peaks and dips. Dolen et al succeeded in identifying such
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features of the high energy cross-section as consequences of the
low energy resonance behaviour. Thus the near-forward peak
in =r N charge exchange was identified with the fact that the
spin-flip amplitude is an order of magnitude larger than the
non-flip near t = 0 in the resonance region. Similarly

the dip at t = -0.5 GeV2 was identified with a zero in the
spinflip amplitude at low energies, It should be noted that
these are model independent features, they occur because the
resonances, at t = 0, enter the spin flip amplitude with the
same sign but with alternating sign to the non flip; that all
prominént resonances have their first zero in the flip
amplitude simultaneously within the range -0.6 & t < =0.4,

GeVz. excepting the nucleon and P33 which cancel each other,

The great success of this technique and its apparent
predictive power, soon led to applications to other process-
es., The kinematically similar KN process has been investig-
ated (LElvekjaer & Martin 1974), as has T~ p — 7°n
(Harnard 1972). In photoproduction, one of the first
applications of the technique and its extension, Continuous
Moment Sum Rules, was a rather unhappy one;' an attempt to
identify the mechanism of the forward spike in charged pion
Photoproduction, The conservation of angular momentum
imposes certain constraints on the complete scattering
amplitude at t = 0, but Regge exchange amplitudes have a
definite parity - that of the exchanged Reggeized particle,
Exchange of the unnatural parity pion cannot by itself satisfy

the constraints on the amplitude at t = 0; a popular solution
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(Leader 1968, Capella et al 1969) was to suggest the existence
of a Reggeon of opposite parity which would conspire to meet
the constraint, A model of the forward spike in charged
pion photoproduction, usiné such a conspiracy mechanism, was
put forward by Ball et al (1968). As a result of a CMSR
analysis, Bietti et al and Di Vecchia et al (1968 a, b)
claimed positive evidence for the existence of the pion
conspirator, and they enumerated its properties. No such
scalar particle has been seen and it has been shown by Le
Bellac (1969) that such conspiracy is incompatible with

other Tr-exchange processes,

In a masterly couple of papers, Jackson & Quigg (1969,
1970) showed that a model containing "evasive" Regge poles
could fit both the high energy data and the CMSRs: the
forward spike was attributed to an associated pion cut.
The cut is of mixed parity and so can conspire with itself
to satisfy the angular momentum constraint. Jackson and
Quigg gave a more sophisticated analysis of the properties
of the relevant FESRs and they showed, by developing a
"pseudomodel”, that it is possible to relate directly the
FESRs and the high energy, data without a definite commit-
ment to a specific dynamical model, Thus, echoing the
result of Dolen et al, that the high energy properties of
a process can be deduced in a model-independent manner from
the FESRs, Jackson and Quigg concluded that there was no
evidence in favour of a pion conspirator in charged pion

photoproduction,



- 29 -

FESRs assume that the high energy part of a scattering
amplitude is superconvergent once the leading Regge
contributions have been removed, Given this assumption,
model independent informaiion may be obtained from the low
energy region about the high energy behaviour, However,
consistency with FESRs may be used as a test of particular
high energy models. Thus the remark of Dolen et al
becomes important, "if a secomdary pole or a cut is
unimportant in a high energy fit above the integral cut-
off, then this singularity is unimportant to exactly the

same extent in the low energy sum rules".

Worden (1972) produced an exhaustive comparison of
all the then available models for pion and eta photo-
production. He pointed out that pion photoproduction
provides a highly constrained test of Regge models, The
residues of the dominant exchanges can be estimated
approximately using factorization, exchange degeneracy,
vector meson dominance, SU(3) and the naive quark model,
The high energy data are accurately measured, cross-sections
are available for all four charge states, and polarized
photon and polarized target asymmetries have been
measured, Finally, the low energy data are sufficiently
precise to allow partial wave analysis and FESR evaluation,
Worden concluded in favour of a Regge absorption model with
nonsense wrong signature zeroes (NWZ) as being in best

agreement with the triangular consistency conditions
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outlined. It is of interest to note that he dismissed the
SCRAM model (Strong Cut Reggeized Absorption Model - Kane
et al, 1970) mainly because "the sum rules are strong

evidence against it ",

Since then, a number of different fits to high energy
pion photoproduction have appeared which have made use of
FESR constraints on the parametrization. One of the most
interesting (Barker et al 1974) used the constraints not only
of FESR, but also simultaneously of fixed-t dispersion
relations (FTDR) from which FESRs (with the assumption of

Regge dominance) are derived,

Guided by general Regge-style ideas rather than a
specific model Barker et al obtain a parametrization of the
data involving a large number of parameters which are then
interpreted in the language of Regge poles amd cuts., This
interpretation was more fully carried out in a later paper
(Barker and Storrow 1977). The main conclusions of the
first paper concerned the zero structure of the imaginary
part of the non-flip amplitude: Barker et al found no zero
at t~-0.2. In the context of the Dual Absorptive Model
(which does not require explicit pole/cut separations) and
most Reggeized Absorption Models (Collins & Fitton 1974),
such a zero in the non~flip amplitude is to be expected.
Barker et al also find evidence for NWZs in the contributions

to the single flip amplitudes identified as being pole-like.
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There is, however, a slight puzzle as to why the position of
the zero of the same pole in two contributions to the single
flip amplitudes should vary slightly in t : one occurs at
-0.4 <t < -0,5and the other at -0.5 < t < -0,6,
Since our interest here is only in the application of FESRs
as a constraint to Regge models, we will discuss specific

features of this model later.
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Section 4 Regge Models and Duality

At the time duality and FESRs were proposed, there
was considerable doubt as io the importance of the Regge
cut contribution in describing high energy scattering data,
But the presence of diffractive phenomena, such as the
cross-over effect in wT*p, K*p, p*P  scattering,
required the introduction of a t-channel mechanism which
could accommodate this. The mechanism of absorptive
cuts to provide peripheral t-dependent amplitudes was

adopted.

In the resonance region, prominent resonances also
occur in the peripheral partial waves and so the intro-
duction of cuts provides a qualitative correspondence
between the crossed and direct channels, reflected in the
continuation of the fixed~-t structure from high to low
energies, However, a rather startling result has been
obtained by Worden (1973) who showed, in the context of

T N scattering, that all current Regge absorption
models do not obey duality in the form of FESR constraints

and that no simple satisfactory modification can be made.

The basic problem is that the models, at high energy,
are required to have strong absorption of the imaginary
parts of the amplitudes in order to reproduce the peri-
pheral behaviour of the resonances contributing to the low

energy region; the real parts of the high energy
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amplitudes however do not possess a peripheral structure and
therefore are only weakly absorbed. To achieve this, most
absorption models have one component which contributes with
opposite sign to the real‘and imaginary parts of the ampli-
tudes and which is low-lying in the j-plane O >  >-I ,
As these Regge amplitudes are continued to low energies,
the low-lying cut component increases relative to the pole
contribution until it completely swamps the pole and there
is too much absorption, This over-absorption, linked with

the shrinkage of the Regge pole contribution to the peri-

pheral partial waves, removes any simple peripheral impact

parameter structure.

One way out of the impasse is provided by the Dual
Absorptive Model, which explicitly prescribes a peripheral
structure to the imaginary part of the high energy amplitude
but makes no statement regarding the real part, This
model is claimed by Harari (1971) to provide at least
qualitative understanding of the dip structure of many
processes, However, the elucidation of the j-plane
structure of the DAM is not clear and could be extremely

complicated as no attempt is made to distinguish cut from

pole.

It has, however, been suggested (Bronzan & Jones 1967)
that a finite branch-point discontinuity, which arises
when cuts are calculated in the eikonal approximation amd

which gives rise to the differing energy dependence of pole
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and cut noted above, in fact may be theoretically unsatis-
factory, since it violates t-channel unitarity. One
alternative which has been explored (Cardy & White 1974)
suggests that the cut discontinuity vanishes at the
branch point and that the coupling of Regge cuts to
external particles proceeds through the pole. This pole
enhancement of the cut would yield a similar energy de-
pendence for both components of the 7T N amplitudes and
so would continue the peripheral structure of the high
energy amplitudes down to low energies without over-
absorption, or the components getting out of step.

This would essentially provide the "shrinking cut" model
required by Worden (1973) and which seems to be indicated
by an analysis of the large |t| effective trajectories in

-8, KN scattering (Collins and Fitton 1975).

It should be noted that although this "pole enhanced”
or "shrinking cut" model was successfully applied by Collins
and Fitton to - N charge exchange scattering, they could not
get a fit to neutral pion photoproduction using it. It is
significant, phenomenologically, that this process does not
exhibit large -t shrinkage, and interesting that, theoretically,
the process is not constrained by t-channel unitarity since,
as mentioned in chapter 1, we work only to first order in the
electromagnetic coupling., This transition from soft to hard
cuts is illuminated by the resuits of Irving (1975). He

compared the magnitudes of the poles and cuts contributing
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to TN—>QN » Yp>Ttn ,amMd ¥y, p->7'p and
found that the magnitude of the cut contribution increased
as the variable external mass became more space-like. He
suggested that this was connected with the transition from
structured hadrons, whose coherent scattering is represented
by Regge-pole like behaviour, to point-like hadrons in the

scaling region of electroproduction,

If the option of a "shrinking cut" model of absorption
is not tenable, as the above Collins and Fitton‘argument
indicaies is the case for photoproduction, then we are left
with Worden's alternative of altering the very low~lying
J-plane structure in order to accommodate the discrepancies
between the high and low energy regions. In this regard
it is interesting to note that Barker and Storrow, who are
not constrained by any of these Regge model problems, find

an important role, nonetheless, for low-lying contributions.
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Chapter 3 : Photoproduction

Section 1 Photoproduction FESR

In the previous chapter we surveyed the theoretical
motivation for, and some phenomenological applications of,
duality. We saw that the constraints of FESR were early
applied to relate high energy features of scattering data
to low energy behaviour. We have seen, also, that in a
departure from this original programme FESR have been used
to discriminate between specific models of high energy
processes, That such a departure might not be justified
follows from one analysis which found that all Regge
models of "7 N scattering require modification to accommo-

date the features of FESR,

In this chapter the FESR for neutral pion photoproduct-
ion will be presented, and the integral over the resonance
region will be compared to that of a specific model of the
high energy region. It will be shown that, for this process,
the discrepancy between left- and right-hand sides of the
FESR equation do not stem solely from deficiencies in the
high energy model., Rather, we will see that the dip at
t = =0.5 which characterises high energy é{ data cannot
easily be related to the behaviour of the data in the low
energy region, To establish this conclusion, we shall
examine the behaviour of individual resonances and see that

their behaviour contradicts the expectation even of a naive
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Veneziano-type model, We shall see that in other,

related processes such naive behaviour is found,

We will find that, in photoproduction, duality is
satisfied (even semi-locally) but for the contribution of
the Born term and the P53 resonance. To cope with this
unexpected behaviour of these low energy contributions
within the framework of the chosen high energy model, we
must extend the model by adding a term, low-lying in the
J-plane, specifically to be dual to these terqs. This
daugﬁter-like addition to the high energy model is in the
manner of the modifications suggested by Worden (1973) for

reconciling Regge models with FESR,
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Section la The resonance integral

As may be seen from eq 2.3, FESR are derived from dis-
persion relations., The amplitudes appearing in dispersion
relations, and hence in the FESR integrals, are considered
to have only dynamical singularities in the v -plane,
However, we shall be discussing a Regge model which is
parametrized to yield Regge-type behaviour in s-channel
helicity amplitudes and it is these amplitudes which will
appear on the right hand side of the FESR equation. ~ Such
amplitudes have a simple singularity at t=0 arising from
the half angle, or angular momentum conservation factors.
These are the factors (—§i>€? appearing in AR (eq 2.4).
It should be noted that they are simply dropped to obtain a
Kinematic singularity free (KSF) amplitude, before the FESR
is derived in eq 2.5. s-channel helicity amplitudes are
used as we shall be going on to discuss a Regge absorption
model, and this is most easily described as an s-channel

phenomenon.

At low energies the s-channel helicity amplitudes are
linear combinations of multipole moments, each multipole
being an eigenamplitude of parity and angular momentum.
The multipoles contain kinematic singularities such as
square root branch points in s at threshold and pseudo-
threshold, as well as the half-angle singularities in t.
The singularities in s cannot be removed as simply as the
half-angle factors, However, there is an invariant

amplitude decomposition of neutral pion photoproduction
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where all the kinematic singularities in s and t are
siphoned off into spinor terms leaving the amplitudes
with dynamic singularities only. (In fact, for photo-
production there are several such decompositions).
Further, one can form linear combinations of the in-
variant amplitudes which are still KSF and which, at
high energies away from the energy region of the singu-

larities, approximate the s-channel helicity amplitudes.

In our case, the choice of invariant amplitude is
determined by one further condition. We are going to
examine electroproduction and so the amplitudes sﬂould be
capable of extension into k*3#0 regiﬁns without kinematic
singularity in k* This last dictates the use of Ball's
(1961) invariant amplitudes Bi (s, t, k2) i=1, .... 8.
Apperdix C and D contain a full account of the definitions
of the Ball amplitudes., The inter-relationship of these
three sets of amplitudes - the multipoles amd helicity
amplitudes in whicﬁ physical quantities are easily
described, and the Ball amplitudes - is set out in

appendix C, and only a few points will be noted hers.

Kinematically, one requires 16 independent amplitudes
to describe a reaction with the spin structure 1 + £ —
0 + 3. Because parity is conserved in electromagnetic
interactions this number is reduced to eight. The fact
that the photon current is conserved further reduces the

independent amplitudes to six., For photoproduction the

masslessness of the photon introduces the further con-
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straint of gauge invariance which results in only four
independent amplitudes, Note that gauge invariance arises
only when the photon is massless and it is therefore in-
app&;pria.te to use a set of amplitudes constrained by this,

when an extension to electroproduction is contemplated.

For helicity amplitudes we use the notation (,4__ Jron\
where /Ll(/L.) denote the final (initial) nucleon helicity,
and A is the photon's helicity (A= for photoproduction).

The four independent amplitudes are therefore

f++l< s-channel single helicity flip

f--1
f-+1 s-channel zero helicity flip
f+-1 s-channel double helicity flip

The relationship between these amplitudes and the KSF Ball

amplitudes at high energies is (Appx D).

{:H +F__| 4 —JTL,/—T'\)BC

n

SR -2’ 9(13,—.,,,8‘)-{:\/2_'5’3
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where » = =Y
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"
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The terms discarded in making approximation 3.1 are lower
order terms in ~ , and even at a P, ~ 5 GeV/c they
represent factors smaller than 10%. The approximations
hold good also for k2 # 0. The combination of single
flip amplitudes isolates the natural parity contribution.
The unnatural parity combination is expected to be super-
convergent since there are no Regge poles with the quantum
numbers of the t-channel in this combination, (This con-

ventional wisdom has been disputed by Barker et al (1974).

-It may be seen from appendix E that, for yp->p ,
the amplitudes Bl and Bé are crossing even, and the
amplitude B3 is odd urder s ¢ u crossing. We must use
odd-moment sum rules for 13l & B6 and even moment rules for
B3, if we are to evaluate right-moment FESR, For these
right moment FESR we can thus add the s and u-channel

discontinuities of eq. 2.6 to yield:

3.2
-3 (B-mR)- TR - [H, SB6H - m B b
- %2—1\8‘\)783(\))&) :Z\) = #‘["1— J‘) ru("»*)
ARy + V[ Bt - 1 ( do fr8)
N Sr e
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The Born term residues are listed in Table 3.1. The
angular decomposition of the invariant amplitudes may be
obtained in terms of multipole moments, the eigenamplitudes
of parity and angular momentum, by substituting equations
Cl0 in eq. Cl2. The multipole moments were defined by
Chew et al (1957) and are now used mainly for historical
reasons: as can be seen from eq Cl2 the relation between

multipoles and invariant amplitudes is a complicated one.

The main dynamical input (as opposed to formal
requirements) is to characterise the energy behaviour of
the resonances. As we shall later make -extensive use of
the Devenish and Lyth (1975) analysis of electroproduction,
we follow their Breit Wigner parametrization. For each

multipole amplitude le

1+
M )= We ™ (%) Mg

Sg=S - iwWg M
— (2, VM fa e x®)
M= 7p (%) L 3.3

X=0-3%

' is resonance width, W, resonance mass, q is 7 N

R
com mentum, and MR is the multipole coupling. However,
Devenish and Lyth adopt a rather more complicated para-

metrization for the By, (1232) magnetic multipole:-
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3
M|+(S>= kg _ <9z M}?n b
ketr (1% =) (1+ 2%a?) - ccq?

where a2 = 21.4, ¢ = 4,27, Qg = 0.2254. The relation between

the magnetic and electric multipoles is given by

E, () =019+ -0125) ki ,, )

X = S—Mz - 015

A w

3.5

The structure of ¥P ->1T°P scattering in the resonance
region has been frequently studied, and there are several
multipole analyses available (Moorhourse et al 1974, Metcalf
and Walker 1974, Devenish et al 1974). Only the last of
these has been extended to electroproduction amd so we use
the multipole moments, determined by that analysis: they are
listed in table 3.2, However the resonance parameters in
neutral pion photoproduction cannot be uniquely determined,
each of the above three analyses reflects the preferences of
its authors. Regardless of the powerful tools employed,
such as dispersion relations, some model-dependence in-
evitably creeps in, It is advisable, then, to check that
conclusions derived from FESRs using these parameters are
not affected by changing the parameter set. Therefore,
in addition to the FESR evaluation discussed here, the
calculation was performed using the other data sets, The
results were not inconsistent with the evaluation using
Devenish et al's parameters, Any numerical differences

were within a 10% band.



This procedure of taking multipole parameters from
different analyses of the experimental data probaply
provides the most realistic estimate of the overall errors
in the calculation. As explained above, the absolute
errors in the FESR calculation reflect not only experi-
mental uncertainties in the parameters but also a systematic
bias from the underlying analysis., For that reason, rather
than attach errors to any one set of multiple parameters and
check how they are propagated through the calculation, we
have chosen to regard the FESR error band as being défer—
mined by the spread of the three amalyses. We used a maxi-

mum value of W = 2,07 GeV/c as the integral cut-off.

A computer program was written to evaluate the integrals
of equations 3.2: the numerical method adopted was the
trapezoidal rule, The results, evaluated at -t values of
o0, 0.3, 0.5, 0.7, 0.9, are displayed on graph 3.1. Higher
moment sum rules were evaluated with a view to calculating
an effect K(t) for photoproduction purely from the reson-
ance data, However, since the next right moment sum rule
for the single and non-flip amplitudes involves o terms
in the integral, the process is weighted unacceptably to the
higher mass resonances. But the fourth resonance region is
quite badly understood, so the results of the evaluation are

essentially meaningless,




Section 1b : Evaluating the Regge integral

Graph 3.1 contains also the results of the integration
""L‘_ LSO L el $#CHLE 1 \’\/e ~ @
over the Regge amplitudes continuéa down int?(the SCRAM
model of Collins and Fitton (1974), hereafter referred to
as the CF model., This represents an extension to photo-

production of a model developed to describe TN charge

exchange scattering (Collins and Swetman 1972).

A complete analysis (R.L. Kelly 1972) of the T N
scattering amplitudes had provided a determination of the
amplitude phases which contradicted the bhases of‘then
extant Regge cut models, (Incidentally the analysis con-
firmed an earlier prediction of - N amplitude phases,
resulting from FESR calculations). To solve this
problem Collins and Swetman modified the phase of the It =
0 amplitude by including g@éafiétrong cuts, calculated

using the eikonal/absorptive model,

To fit photoproduction, Collins and Fitton used the
t-channel isoscalar part of Berger and Phillips®' (1969)
five-pole fit to T N as the absorbing amplitude. That
this amplitude is applicable to photoproduction follows
from the work of Chadwick et al (1973) who showed that
the couplings of P and P'to ep and Yyp (scaled by
vector dominance) were almost identical to those for

T N. The only Regge poles needed in this analysis

were the §> amd < |, With this comparatively
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ec.onomica.l parametrization, which nonetheless has a
satisfactory physical interpretation, the differential
cross-section, the neutron/proton ratio, polarized target
assymetry, and the pola.rized photon assymetry were all
fitted for pion photoproduction, However, SU (3) pro-
vides a very strong constraint on such yp-> 7°p
amplitudes: a linear combination of the Regge exchange
amplitudes for neutral pion photoproduction must also fit
YP—>7" P » One of the most convincing tests of the
Collins and Fitton model is that it fits yp> 77'“}3 and

¥P> r) P simultaneously.

Following CF we define the photoproduction different-

jal cross-section to be (Equ. B6).

2
B} 1 . >
:L'L—Z- - 327 (5- m)* ° 38"’?/4‘/4., IE";/“:I I
(mb/Ce\/z)
where the factor of O.jaﬂj is explicitly extracted to
afford dimensionless amplitudes. In particular
o 2 e 2
de (yp>mop) ~ T F - fF
2
dr benoen) ~ TS
Where R
R
R . '_'Lzﬁ_‘. - « (0). Cu
= - < LV )
{:“-z,‘l, e ( b) (?; < T) /My
R F /R .
Chapy = peape, + &% (log £ - T 3.7

3.6
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R
C,“t,“v: is the trajectory coupling strength at t=0
R
(see table 3.3) Qmypm, is the t-slope parameter of

the Regge residue.

The absorbing P + I)'amplitude has a similar form

Cp’ ’ yy ﬂ(plo
A = Lo:,-scac”‘é + Ec,e.ptso «7) (ej i) ©
Cp=h, + 0(;;([%,{ -
3.8
CP/—L\1+ 0(}/3/([031;-4—317_

The parameters for the absorbing amplitude are displayed in

table 3.4,

The cut amplitude can now be calculated from the

absorptive/eikonal prescription. For x = o

K
cu.t . _"__. d {0) ﬁ 4] g
{:“1.;“': = b(;o e {r) C'/“-z/"'l (—i—)z -4, o7
g cp

y
(Cp )” CRCP9+0((0)I+__P_ P
T Sr+Ce dp) d<pr) 309
L E‘o Aa / CPI ngxP/Cch/é (‘ —LT dP/(O)
€rcr S/ [Cprrcy CR + Cp’ So

= = cp
For n=o, x=2 the terms of ( CP+CR) are replaced by

(& (22) -t 2s)
P CP+CR Cp+ Ch




The')w are the SCRAM cut enhancement factors. It should
be noted that the above parametrization differs in sign
for n=o0, x=2 from CF's published paper, and will produce
f-+1 amplitudes of opposite sign to those graphed on

fig 6 of that paper. The above sign convbn{:::}on is

correct and was, in fact, used in CF's actual numerical

work,

As noted before, this model gives an excellent
representation of the high energy differential cross-

section data for energies down to P = éd%v.

However, FiiSRs are conventionally evaluated in terms
of > and the Collins and Fitton model has Regge be-
haviour in s. We have therefore taken the opportunity
of repeating the CF fit to photoproduction, this time
expressing the amplitudes in terms of » . It was
found that the quality of the original fit could be re-
tained with a slight variation ip the Regge trajectorys®
slope parameters (whichAtg:tzgs;é;béependence of the

amplitudes). It is these parameter values which are

listed in Table 3.4,

Modified in this manner, the CF model was used as
input to the FESR integral, Although they have a
physically simple interpretation, the model's amplitudes

are extremely complicated formulae. It is not possible
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to evaluate their integrals analytically and so a
computer program was written to evaluate the FESR
numerically, The results are graphed on figure 3.1

for comparison with the resonance integrals.
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Section 2 Behaviour of the Amplitudes

It can easily be seen from figure 3.1 that the two
sides of the FESR differ in magnitude, t-dependence, and
sign, in the single flip and the non-flip amplitudes,
Before attempting to repair the disagreement, we shall
look at certain interesting features of each component

of the FESR equation.

As remarked in the introduction to this chapter, an
FESR is not merely a convenient way of constraining
particular models of the high energy region: the
integral over the resonances is supposed to give model
independent information on the behaviour of the inter-
action at higher energies. But it is difficult to
see from fig. 3.1 how one could be expected to predict
that the high energy cross-section should have a dip at
t = -0.,5. We neeq not be constrained to a particular
model to expect that dip to manifest itself as a zero
in the single flip amplitude. As we shall go on to
discuss, there are strong theoretical reasons for
believing that such a zero at t = -0.5 should propagate
down to low energies, and therefore that the resonance
FESR integral should have a zero at this point. We
might also expect the non-flip FESR to exhibit a zero

at t = -0.2, as explained in chapter 2 (section 3).
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The quickest way to understanding the resonance FESR
is to look at the integrand itself, The individual
amplitudes are graphed, at selected t-values, as a
function of W (com energy) in figure 3.2. It can
clearly be seen that in the single flip amplitude, on
which our discussion will focus, most of the resonance
contributions do fall to zero for 0.3 ¢ -t <0,5. However,
the contribution of the By,. (1232) is dominant in the
single flip amplitude and, although it does fall with
-t, it does not have a zero near t = =0,5. It is
largely the exceptional behaviour of this resonance,
clearly illustrated in the graphs of the‘amplitudeé,
which is responsible for the -t behaviour of the FESR,
(there is also a contribution from the D13 (1514)).

The final item which determines that the FESR should not
have a zero in the place expected from continuing high
energy behaviour down to the resonance region, is that
the Born Terms in photoproduction are comparatively small

and are unable to cancel the F33 or the D13, Odorico (1975).

The graphs of Fig. 3.1 show the "global" duality
breaks down, However, Armenian et al (1974) showed that
the much stronger constraint of "semi~local” duality is
obeyed by neutral pion photoproduction - except for the
133. This is a conclusion which might be expected from
fig 3.2 amd the remarks above: apart mainly from thePa3
the resonances do appear to be locally dual. For

Armenian et al, semi-local duality also requires that
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the imaginary part of the low energy amplitude should
oscillate about the values extrapolated from high energy
data, However, the real part of the low energy amplitude
should, they argue, be more slowly varying and given
approximately by the Regge phase applied to the averaged
imaginary part. This follows because the sign of the
real part changes as energy increases through the
resonance; thus, if the next resonance is roughly of

the same width, spaced one width higher in energy, and
its imagimary part has the same sign, then the real .

parts will interfere destructively,

Armenian et al used these simplé observations to
relate the imaginary part of an effective Reggeized
simple flip amplitude to the square root of the
differential cross-section at low energies, i,e. on

average

Keqqa
-~>T 8 SR cos _i() L do
7z ¢ =)/ %

3.10

(where K is a kinematic factor).

They found that the expression on the right hand side

did indeed oscillate about the Regge extrapolation and
thus th.t semi-local duality formed a powerful constraint
on both real and imaginary parts of the amplitudes in the

resonance region,
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However, their argument depends on having densely
packed resonances, so th.t the smoothing of the real part
actually holds. The 133 is separated from the higher
resonances by a large gap in energy and so its real part
is not altered. They ignored the detailed j~plane
structure of the process by using an effective trajectory
and it is precisely in the low energy region that the
Regge extrapolation is most sensitive to low lying

singularities in the j-plane.

The twin conclusions of Armenian et al: that duality

33
not cooperate in such relations, were highlighted by Odorico

implies relationships among resonances and that the P,.. does

(1975). He pointed out that the Veneziano model was
explicitly designed to satisfy FESR (Veneziano 1968), and
that it entailed constraints among resonances. Although
the higher resonance contributions in Z'P-a7rﬁ3 have
zeroes in t at approximately the desired position, this is
not necessary for duality to hold. Thus the Legendre
functions for these resonances do behave like Jp (Rdczﬂ) :
their zeroes are approximately coincident with the lowest
t zeroes of the Bessel functions for the amplitude of spin
flip = n, The positions of the zeroes are uniquely fixed
by the resonance mass and spin, Where the resonance con-

tribution does not ~f3; » then two resonances can conspire

to produce a zero amplitude at the appropriate t-value.
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If the Veneziano formula (2.2) is used in an FESR

expression we obtain

1 r da® Tm Vist) - in ift"((vf(+J;((tf%<_,)2

= 0<-’— n ‘0(&) + :\o‘!
M «®) M)
The right hand side of the expression is zero for ()

3.11

= =1, =2, voes —-Yo+l. If we regard the middle
expression of 3.1l as a sum of s=channel resonances 6f
spins up to j = jo which form the resonance contribution
to the FESR, then the zero at ©{(t) = -1 can only arise
from a cancellation between the j=1 and j=2 resonances.
The shape of the j=1 pole is already fixed (since it
has a zero at X(t)=0) and so, to get the &(t) = -1
zero, the strength of the j=2 resonance pole must be
fixed with respect to that of the j=1 residue, The
zero condition completely determines the residue of
the j=2 pole, In fact the Veneziano model is very
highly constrained, the j=3 s-channel resonance
residue is similarly fixed by the &(t) = -2 zero,

and so on, In order to get more zeroes one has to
introduce more parameters (resonances) on a one-to-
one basis. Veneziano (1968) showed that his formula
satisfied FESR for |o((t)] < D‘(S'o) (= Jo) .
This 1limit may now be understood in terms of a balance

between the number of amplitudes and FESR zeroes and

the number of free resonance parameters available.
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This Veneziano illustration exemplifies how, at
bottom, duality demands a lot more than that of
the resonance amplitude should mimic the Bessel function
zero structure for the amplitude. We should not
necessarily expect local duality in the sense of match-
ing high energy and resonance zeroes, but also a set of
cancellations among resonances which, in theory, could
be strong enough uniquely to fix ihe resonance

couplings.

However, we have seen that, in practice for Y'P-> 'rr")o
this theoretical expectation is not fulfilled in our
analysis of the FESR., We have seen our conclusions
echoed in a different analysis by Armenian et al,

Two questions arise: do such cancellations actually
occur in other processes and, if they do, why is pion

photoproduction different?

It will suffice to mention only one example where
resonance contributions which do not individually have
a Bessel function zero structure cooperate to produce
the required zero. In the classic -TN charge exchange
reaction there are only two invariant amplitudes, con-
ventionally denoted A and B, In the non-flip com-
bination A + ~> B the Born term makes a sizeable con-
tribution and, because of the simple t behaviour of the
Born residues, there is no possibility of a dip in the

required place of t = -0.14, However, once again the


http://ionally.de
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P53 contribution is large and the two combine to produce a
zero in the required place, in the averaging FESR sense,

Similarly, at t = -2.5 the F, D, and F15 (1682) all

13
combine to cancel out in this amplitude, although this
may be considered too high a -t value for FESRs to be

applicable.

Further evidence for the coopérative behaviour of
resonance contributions to scattering amplitudes may be
found in the papers by Odorico (1974). He fourd a
consistent pattern of lines of zerces in the
Mandelstam s, t, u plane for a varietx_of processes.
Once again these patterns were held to determine the
couplings of leading resonances in the amplitudes.

From the observation of linear zeroes, Odorico derived
dual constraints on certain resonance decay modes which
previously had been explained only in a Quark Model con-
text. But there are some couplings e.g. K.* _— K7
whose experimental Suppression is inexplicable in the
quark model and which can easily be accommodated in the
linear zero dual constraint picture. More recently
Odorico has sought to show that the model can comprehend
the experimental suppression of the low pion multiplicity

decay modes of the e’(léOO).

Neutral pion photoproduction differs in three respects
from the processes which can be fitted into a consistent

pattern on the lines sketched above, At a fundamental
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level the interaction is electromagnetic, not purely hadronic,
in nature. It still remains an hypothesis that the two can
be explained in the same terms, Secondly, the photon is a
vector particle which introduces spin complications. Most
of the processes in which dual constraints have been ob-
served are pseudoscalar-fermion interactions, Finally, the
photon is a U -spin scalar, it is not in a definite

eigenstate of isospin,

(dorico suggested the extra amplitudes, introduced due
to the vector nature of photon, might hold the key to the
movement of the zero in t. But he was unable to suggest
a set of amplitudes in which the desif;d resonance con-
spiracies would operate. (It is easy to check that they
do not operate, for example, in t-channel helicity amplit-
udes). In any case, there is a fundamental difficulty in
proposing a unique set of amplitudes in which to perform
FESRs. There is no reason to justify an arbitrary choice
of amplitudes apart.from their success in obtaining the

desired conspiracies - which seems slightly circular.

The best way of investigating Odorico's suggestion is
to look at the behaviour of the zeroes in a process with a
similar spin structure to pion photoproduction, Since no
vector projectile other than the photon exists, it is
necessary to look at a process where a vector particle is
produced in the final state, and apply time reversal. One

such process, which is experimentally accessible, is
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T N - QN . This has been recognised for a long
time (Contogouris 1967) as an important process. For if
all the scattering charge states are measured, then a clean,
model-independent separation of the t-channel Regge
exchanges can be made and an unambiguous determination

made of a single trajectory's properties.

If I, and I,, represent the t-channel isoscalar and

isovector components respectively then

TP et p ~ T

2
TTP> QP ~ I I, - {,}
T p — p° N ~ 2-“,]

The IO component can be extracted from these three

interactions

k| -5l k)

3.12

and only the ¢2 has the correct quantum numbers for this

exchange.

A number of people (Crennell et al, 1971; Michael
and Gidal, 1972) have isolated the cw-exchange, the most
recent analysis (Haber et al, 1974) coming down in energy
to Wecom = 2,86 GeV. All find a pronounced dip and

secondary maximum for the <o -exchange component.
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However, the photon has mixed isospin and is uncharged,
it is therefore impossible to separate the relative e and
&2 exchange contributions to Yp —>1T°p without recourse
to a specific model, Many high-energy analyses, indeed,
do not make such an explicit separation, (Barker et al
1974), One cannot therefore learn much from comparing the
pure > -exchange process of eq 3.12, with one

contaminated by e—exchange.

In the resonance region of pion photoproduction,
however, one can separate components corresponding to t-
channel isovector and isoscalar exchanges. This follows
because the scattering proceeds (in the s-channel) through
resonances of definite isospin, whose coupling to an iso-
spin configuration can be determined, We separated the
resonance amplitudes into components corresponding to
definite t-channel isospin and found that the behaviour
of the Born term and 133 contributions to the ¢ -exchange
component did not differ from the behaviour of the full
amplitude: neither a Bessel function zero nor a cancell-

ation was observed.

Unfortunately, the W -exchange behaviour is only
accessible in the resonance region for photoproduction, and
has only been measured in the high energy region for
TN - oN . It is singularly frustrating that a direct
comparison cannot, therefore, be made, As one comes down

in energy through the resonance region in photoproduction,
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the t = =0.5 dip in the cross-section will be washed out
as the influence of the P:’3 SrowWs. If this arises from
the spin complications introduced by a vector incident

particle, then the same behaviour will be seen in the

’rTN =@ N Is=0 cross section, If, howaver,

the complication is due to the electromagnetic nature of

the photon, then the dip will persist in TI'H - (’N .

The resolution of this question is of cansiderable
importance. For if Odorico’s conjecture is correct and
the zero movement follows from the complexities introduced
by spin, then the undeniable success of FESR in N (and
to a lesser extent in KN) appears moreh as a lucky coin-
cidence than a manifestation of a deeper dynamics,

If, on the other hand, the behaviour follows from the
electromagnetic nature of the photon, then it confirms
the indications (section 2.3) that neutral pion photo-

production is not as purely hadronic as had been thought.
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Section 3 tixtending the Regge MOdel

To illustrate the behaviour of the Regge contributions
to the FESR, we provide in figure 3.3 a comparison of the
FESRs and the amplitudes at Pl = 6 GeV/c (fig. 6
of Collins & Fitton (1974)). It can easily be seen that
the zero at t = -0, 4 in the single flip amplitude is not
present in the FESR, Instead, this zero is shifted out to
t = -0.9, However, the zero at t = ~0,2 in the non-flip
amplitude is retained in the FESR, The higher -t behaviour
of the non-flip FESR does not reflect the amplitude's t-
structure. (It should be remembered that the FESR in Fige 5.3

contain (-t.)n/é factors for ease of comparison).

The amplitudes (and therefore the FESR integrals
in the CF model are the result of a complicated interplay
of poles and cuts, each with their own energy dependence.
If the Regge amplitudes were controlled by a "shrinking
cut model” as deséribed in the previous chapter, then the
single flip amplitude would be expected to maintain the
zero at fixed t down to threshold energies and so provide
a zero at t = -(’,5 in the FESR. We saw in the last
chapter that it was not possible to describe photo-
production using such a model, and we have seen from the
preceeding section of this chapter that such a model

could not satisfy photoproduction FESR constraints.
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In the Collins and Fitton model two poles are exchanged,
and each pole has two associated cuts which are determined
by the position of the cut discontinuity in the j-plane
and not by the pole position. Everyone of the exchanges
therefore has its own energy dependence, and their relative
contributions to the amplitude change as the value of
decreases into the resonance region. Since the effective
o's  of the cut contributions to fhe CF amplitudes are
higher than the «o's of the poles at large -t, the zero in
the single flip amplitude, produced by pole/cut inter-
ference, is shifted to larger -t as the energy decreases,
The interplay of the six contributions to each amplitude
(and FESR) is very complicated; in figure 3.3 we show
also the FESRs without the P’ ocuts. It is clear,
particularly from small -t single flip FESR, that the CF
amplitudes are heavily over-absorbed as the energy de-
creases. This was the main reason that Worden (19?2)'re—
Jjected SCRAM models in preferende to NWZ models for photo-
production. But it is not clear that the alternatives
are actually more successful, Barker et al (1974} pro-
vide a comprehensive fit to the high energy data, the
dispersion relations and the FESRs; iq particular they
avoid the t = -U,2 zero in the non~flip amplitude and the
t = -0.5 zero in the single flip FESR. To achieve the
latter, they require a number of Regge-like terms in

their amplitude, and the identification with physical

exchanges is somewhat heuristic. But more importantly,
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as we have seen in the preceeding section, the single flip
amplitude (as determined from the resonances) does not
exhibit a zero shifted from t = -0,5 until one reaches
energies Pub ~ 0.8 GeV/c. The FESR zero shift for
this amplitude reflects the large weighting of the I33
in the FESR integrand and not the amplitudes behaviour
for 0.8 < Pub < 1.5 GeV/c. The “zero shifting
mechanism” of Barker et al's amplitudes starts to

operate before this and so only "global", nol semi-local,

duality is retained.

We have thus seen that the strong“cut reggeized
absorption model fails to meet FESR constraints in
photoproduction; that the modified "shrinking cut”,
absorption model would fail also, even were it available
to us; and that although abandoning absorption in
favour of NWZ apparently offers one way out, even this
is not without difficulties, Since it is the behaviour
of the P]J' which is the principal feature of the
resonance amplitudes, the most reasonable way of
meeting the FESR constraints while retaining the main
features of the CF eikonal model, may be locally to
simulate the E53 behaviour. In other words we shall
introduce a "daughter" pole, lying low in the j-plane,
to provide a reasonable approximation to the resonance
amplitude, when integrated over in the FESR, this term
will rectify the mis-match between the two sides of the

FESR.




It is interesting to note that this approach is one of
the alternatives proposed by Worden (1973) in his discussion
of duality and absorption models. However, there is an
extra element to our introduction of a daughter. Worden's
difficulty was to persuade the Regge models to continue the
high energy t-structure down to the resonance region. Our
problem concerns also the behaviour of the resonances
themselves, a feature whose interést is independent of

specific high energy mcdels,

Our method was, in fact, to obtain a fit to the FESR
using CF + daughters and then to check the correspondence
with the individual amplitudes. Care was taken to ensure

that the quality of the fit to high energy data was main-

tained.

A number oizparametrisations were tried to fit the
wn .~/C

FESR without[mining the high energy fit, the simplest
‘ d
successful one was an effective daughter term, o ~

o”~2  With the following form:

fo - et (L9 COCh ot g
[ - il e7)7 Ol oAt ()
T L J 1

c = a + o(/‘Z ([os% —&17')

0 2
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We list the values of the parameters in table 3.5 and display

the resultant (CF + daughter; fit to the FESR on figure
3.4,

In the next chapter we will examine this extended

model in the light of the electroproduction data.
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Table 3.1 The Born Term Residues

Amplitude Residue
B, -g (F, + 2m 1-‘2)
B2 E
B gh
B
5 0

Fl and F‘2 are proton electromagnetic form factors

€ is - NN coupling constant



Table 3.2

Resonance

511

S11

33

2%
37

F
P11

D13
13

13
P33
F15

D

D

O

1+

1+
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Resonance parameters

Mass

1.505
1.688
1.232
1.850
1.940
1.434
1.514
1.680
1.971
0.649
1.682

Mass and width are in GeV/c2

Couplings are in /u_l)

Width

Vel

0,11

0.114

0.3
0.2
0.2
0.33
0.07
0.1
0.15

0.14

E

0,542
0.099
-0,071
0.0
0.014
0.0
0.721
-0.071
0.171
-0.340
0.332

3.51
0.0
0,156
0.495
0.269
0.05
0.036
0.028

0.113
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Table 3.3 Parameters of the CF model

[F%)
o(’ oiz 1.01
Gv 2.19 15.56
Gor 10.07 20,02
A4y 4.2 1.07
a,.- 0.02 1.61
/A" 2.88 1.51
A, 2.93 2.89
2 2,70 1.65
Table 3.4 Parameters for the P' P, poles
| P P’
oo 19.92 Eo -43.31
h, 2.02 b, 0.23
A 0.4g z:(,:f: 0.55

2

1.1
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Table 3.5 Parameters of the daughter amplitudes

A o) -1,71
o’ 0.9%
Gt+ =124
-+ 17.2

G- ~0.46
A+t 1.64
a-3 1.26
.. -0.,03

b 1.45



Figure Captions

Fig 3.1

Fig 3.2

Fig 3.3

The results of the FESR analyses. The resonance
integral is the unbroken line and the Regge

integral is the dashed line.

a) 1is the Fu&SH of the natural parity combination
of the single flip amplitudes
b) is the double flip amplitude FESR

c¢) is the non-flip amplitude FESR

The resonance amplitudes as a function of

centre of mass energy for selected values of t,.

a) Single flip amplitude
b) Double flip amplitude

¢) Non-flip amplitude

The shape of the imaginary parts of the Hegge
amplitudes at P. = 6 GeV/c compared with
the FESRs. In both cases the unbroken line
is the full amplitude, and the amplitude
without R® P’ cuts is shown as a dashed
line. (Note that the half angle factors
are present in the amplitudes, ‘and also

in the FESRs).



Fig 3.4 The fit to the resonance integrals of the extended

CF + daughters model of equation 3,13.



GeV’!

GeVt

Fig. 31(b)

8



10 3[

GeV?




Poalod o 0 Vi Ty S PR O I O E AT ¥ 1 Y1

G0 a0

iHll;r:iHillu.i!L-

SN -

l:i‘

-/

19 @an

I

S taett® vty

LIIJJJ lI Illlll LlL‘JII llllllJl LLLLlllllll lLllLLlJ

1. 60a 1. 9ud R 1Y & Sood
W (GeV)

"Tﬁmmm;

FHTTCPRODUCTION  T=-0.5  SIHGLE FLIF RHF CIMAGD

-~ "\'}
N

G(-:V-.|

RREIHIY

< 0an

x:mm;ninmm‘mmm

\]
0
—
-
~
v
1N

—-.l!‘:iiiililrﬂll‘;t‘

i .

\ ’__‘-__‘.'__/—" —

lJllJ'l" Lt lllJLLJJJ"liLLLJlLLJL{IL]IIJ"

.uuu 1 £t angg R 1] ol

Fig. 32(a) v (Gev)


http://LI.UXLi.lXl

T I R R T N SIHGLLE P oftE Clhnl

St a0

25 Goe

lmnnmzzm

-~
+

{3 piRi

_LLJLilll‘ PLLLLLY lllllJJ11-TTTTTI]—;111111 1111t LLLl

1. a0 1. cpBe 1 .9000 2.2uad 23000

W (GeV)

FHOTOFRQOUCTY LY T=-0.9  SIHGLE FLIP AMP (IHAGH

E

r_
=

4o N

RANRE

BB

25 .00

-mili

H

T
P

it i!lHll.

100000

|

b -o

~~ .
nmm nuuh.)_\ LIH'Jj/Ill_Ll.J_LLHIHJ_lLll

1. sy U 2.0

W (GeV)



Pl Tvn fgnus s et V=0 o paUBLE FLIP Ade ol Mies s

DTN LT

GeV’™

T

{5 G

S

(]
[an(]
D]
[

l]H!liH]Ilﬂ7TiHil}Hll“ii]ﬂiitf

*TLlJ._LL,Jl lLLLJ_LJ.J_LLLlJ_lJIIlllllllJlllllllLlnLu_l_]
agn . &GRo 1.2998 2.20084d Q.50

W (GeV)

PHOTOPRODUCTION  T=-8.9 DOUBLE TLIF AHF CIHAG)

25.003a

2

GeV ™ ~

15 .60y

TTTTTTITTIT]

w
Laet]
o

N

IIHIIHI|H|]H

=5 .6a0

it iil!

-15. 600

Pl

11J_LL1}I -|!JJJ lJlIlJJ_lLLllJ ILJIJ lLLJJJJ_LlilJ L.~1JJ

RETYIN] {50 witg 2oreng NI

Fig. 3.2(b) vleen)




FraTokRoUuY Tt Te-00 7 BIUELL § L 1F vt s Ji
oty

-2F7
CeV =
TR L]

n
e

-5 0Ol

-15. 38

IINE

NIl

I!i]u!

|

|

T
!

FHIVCRRODUCT IO

S5 dud
bt
-l

-5 . Bon
IR AT

HTTT

maNEEN llJI |llJJ_LlJ_LLlJJ_IJJJ LLJJ_LIII_LLlJ_LlJJ INEREE

1359 _EQ0N 30U 2. 2000 "-“GUU
4

W (GeV)

T=-0 3 [OUBLE FLIF AMF CIHAGD

VAV

lITIT!]TI liiITWI IiiliTT]llll

T
|

Titthinh

|~

HLLd L Ill lLl A ll‘|.]Ll Lididd L. 1L llJ-LlJ LLI lLJ_LlJJ

LRSS 1. RQ0D D BRI TN CR I -

W (cev)-



Foa dab b atien Yo T-non ot FOTE il X TH&ES

ot

A %_ /\
.Eﬂuéé_
pBA E.:_
é;_LJ__LLLLI.l] L1111} IlJJ' EREEREN llll [HS lllll i 11! "!l

1. 200 1. 6000 1.9000 .2aog 2,300

W (GeV)

PHUTOPRODUCTION  T=-0 § HON FLIF WP {IMAG

e oed —
5.05‘?
g0 E
~18. 008 E:_—:z__
:—::;ll.l_lllll ll_LJHl|Lll.llllLJJll_J_lllllLI__LlJlllLJ..LUl

Sy L RTETEIN S

Fig. 3.2(c) W(Gev)



RN Al ACSTOCRTIN S0y T HN SO PR £ 1) 1 I U BNPY £ R R AT PO

RN
]

Yool T

—— ey

TTiTT ol

S oona

JiTIHlIII

| -1 0o

T

Pyttt IlLJJ HEREE ILJII 1111 lllll__LLlliJJ

) A S 51S {5009 1.94Q40 2.2udd 2 .5000
W (Gev)

SE

PHOTOPRODUCTION  T=-0.3 HOH FLIP AMP C1MRGT

10 dud

T e
I]Iilll I

n

L

Q.0

T

-5, RN

1

iHllH!l

!n
l

- 10,030

I

]
[y

ARARNENN J JrrRL) l L1 '1_LJ_LJ ll L. II“IJ_Ll L ‘ EMNUEENE |l

LI _v_.l_\ S RERTAEY I Il|b| SR 00

----- W (Gev)

‘——iili.'




Single Flip Amp (Imag.)

—>
0 12 %
GeV'
2k
AR
A
r Single Flip FESR.
2t . TS~
Ve AN
AN
\
\\
1+ ~
\\
N
/
0 2 A 6 8 10 12 _?2
GeV
_1 L
_2'_

Fig 3.3(a)



2 Double Flip Amp (Imag.)

A
t Double Flip FESR
2»-
1 e -
P Py
.
0 2 . I 8 10 >-t
Gev?

Fig 3.3(b)



Non Flip Amp(Imag.)

Non Flip FESR

1.0 12

Fig-3.3(c)



8
GeV’

o 3 3 5 5 3—>-1
2t \ GeV?

Fig. 3.4(a)

GeV?
Fig.3.4(b)



Fig.3.4(c)

.9
GeVv?



- 70 -

Chapter 4 : @Electroprcduction

Section 1 : Introduction

How does the analysis presented in the preceeding chapter
generalise to electroproduction? We have seen that the
resonances in photoproduction have an unexpected t-
dependence, duelprincipally to the;P33. This makes it
difficult to relate the high and low energy regions. _ We
have seen that our chosen high energy model does not fit the
resonance FESR integral and has to be modified to take
account of the over-absorption inheren} in a SCRAM model
extrapolated to low energies, and to account for the
unexpected t-dependence of the resonances. Two questions
immediately present themselves., Does the unexpected be-
haviour of the Py persist to k%0? If so, can the
daughter terms introduced in section 3 of the last chapter

accommodate this?

However, as we saw in Chapter 1, neutral pion electro-
production has a peculiar interest. The dip at -t ~ 0.5
and the secondary maximum, such prominent features of
photoproduction, are not present in the electroproduction
differential cross-section, see fig. 1.6 (Brasse et al 1975).
Since we have already identified problems in the region
-t=0.5 for photoproduction, it is tempting to try to

connect the two phenomena, The first part of this chapter
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will describe this attempt.

In fact, we will find that the behaviour of the
resonances cannot be extrapolated to account for the cross-
section. Rather we will find that a simple modification
of the absorbing amplitude which is used to generate the
cut in the CF model Provides an exéellent phenomenological
description of the electroproduction data for all -t and

for all -k2.

Section 2a Resonance Integral

In section la of the last chapter we discussed the
reasons for choosing Ball invariant amplitudes as the
kinematic-singularity-free approximation to the single,
double, and non-flip s-channel helicity amplitudes, The
only amendment needed now is to parametrize the k2
dependence of the résonances. The electromagnetic
from factors of the resonances in pion electroproduction

have been evaluated by Devenish and Lyth (1975) and we

follow their determination.

Devenish and Lyth parametrized the kz dependence for
each resonance multipole as a multiplicative form factor

i,e.

Mek?) = Gk Me) Ce)= |
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where G(kz) is itself a product of poles lying on the
real k% axis: (There is a cut along this axis from

2
a pseudothreshold of 2t to (m R*™)

~n__ v\~
G (k) = 3’ (l - fz) o

ek ek k) 2pats ks ks fmgen)’

The k12 and k22 are the variable parameters in Devenish

and Lyth's fit to the electroproduction data.

However, the physical multipoles, considered as
functions of k%, have kinematic singularities and are
subject to constraints at thresholds and pseudothresholds
in k2; and the form factors parametrized above apply
only to multipoles with the sinéular behaviour divided
out. That such problems arise can be seen from equation

F3 in Appendix F;
L
Mo ~ 2 ar X k| Tm F

Since Fi is a singularity-free combination of Ball

L.
amplitudes, the singularities arise from the X, ,k;}

factors and take the form of square-root branch points
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as k2 — threshold or pseudothreshold (equation F2)

i
Defining (Pz = (’ = (:‘:.T:)t) where mp = mass of resonance,

the threshold amd pseudothreshold behaviour, k2—> me B m,
is determined by looking for the slowest decrease in F3
as ‘P“‘ - O . In fact one may take linear combinations
of the physical 'mul'tipoles to remo(re the slowest decrease.

Devenish and Lyth chose the following combinations:

o<L+ = (u—ll > (L M + EL+) = ‘Pf 4)+w oy

2507 B

Bur = (o) (Mo - D) EL)
"9 5,

£ = P 97 B
VA

P P S

i
-
<+

]

4.3

=
-
)
I

I
-
)
\
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It is only the reduced amplitudes &H , (3u . Sie El_-, M,., 5—‘,-
which are analytic functions of k2. and which have the form

factors described above (4.1).

The factor n in equation 4.1 now becomes, for each

reduced multipole,

Ny = L+ %(n«»-l)

Vl@ = (L + ‘{‘(Vl-l) $= L+',‘.‘

U b4
neg = ( + i(n—?)
My = L+ J(n-) 5= L-%

where the n on the RHS of Eq 4.4 is the asymptotic power
of (kz)"l required for the resonance contribution to the
total cross-section, It is set equal to 3, except for

the P33 which has n = 5,

As noted in appendix F, the scalar multipoles have to
satisfy certain constraints at ‘Pt = 0O , these are

accommodated by

S = elktm, W] E, (1
(k*- o) (k*-b)

4.5

(V2N
e

]

Il

< fk (e kz)l i (ML_ - (L-l) EL_)
(k-a) (k*-b) L




where
b = (3 m; + m* —a.)(l + o (WI;— m")-')

¢ = 2 m,\?’ ((""ﬂ + m)l—a)(a - (mQ—rn)l)( m',: -mt - a,)_'

and a is a free parameter

and S°+ = < )k GWJki)) Eo+

k* - a

It is interesting to note that the results sketched in
Appendix F are identical to those obtained by Devenish,
Eisenschitz and Komer (1977). These authors derived the
multipoles® constraint structure by expressing the reaction's
vertices in terms of kinematic covariants. Their purpose,
however, was to obtain a universal form factor behaviour,

the phenomenological parametrisation outlined above is more

than adequate for our purposes.

Devenish and Lyth published several fits to the
electroproduction data. They found that the parameters of
their fourth fit yielded the best representation of the co-
incidence data for ep—> ep'rr° , and recommended that these
parameters be used. We have therefore used this set of

parameters, They are listed in table 4.1, It is doubtful
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that the FESH would be seriously affected by using other
fits from Devenish and Lyth's paper. Having amended the
photoproduction program to take account of the k2
dependence noted above, the FESR integrals were

evaluated for k% = -0.22, -0.55, -0.85. The results

are graphed on figure 4,1,

It may be seen that the integrals all have a
reasonably smooth k2 dependence. In particular, there
seems to be no evidence for a fixed pole in any of the
amplitudes. Fixed poles are not excluded by unitarity,
when we work with a process to first order in the electro-
magnetic coupling constant, (However, such poles would
only be expected in pion electroproduction if the pion is
elementary, According to the parton model (Brodsky, 1972)).
For the single flip amplitude the magnitude of the integral
increases for -t > 0§ ,» the zero moving out in t as
-k2 increases, In view of the previous chapter's dis-

cussion, such behaviour is perhaps not surprising.

Section 2b Amplitudes® Behaviour

In fact some qualitative explanation of this behaviour
of neutral pion electroproduction can be found in terms of
the quark model (Moorhouse 1975). Using naive constituent

quark models one can calculate the transition amplitude for
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radiative decay of an N* to the nucleon ground state,

This is simply the -time reversed reaction to the transition
of interest to us here, In the quark model description,
certain helicity amplitudes are preferentially excited,
contributing to the removal of the zero from -1t ~o0.§

for those amplitudes.

It is usually assumed that the N* ié de-excited
by photon emission from a single quark: the orbital
angular momentum, 1, of the N* thus resides on that
quark and the photon is emitted in an yL tyor EL state,
To first order, these naive constituent models give the
correct answer for radiative transitions in photo-
production. - However difficulties arise for k< #0
even in the neighbourhood of photoproduction. Indeed,
even the nucleon form factor is an unsolved problem for
quark models in the region -k2 < 2 GeVZ. For larger

kz, asymptotic expressions may be used and seem to yield

answers more in accord with experiment.

Using a non-relativistic harmonic oscillator model,
Close and Gilman derived expressions for the kz.behaviour

of the N¥ — YP helicity amplituwdes for the D,, and F

13 15

resonances,

Au = a2 I* =) exp (- k) eoc?)

A3/2 = —\/3_' a e_xP("' ”("1/60(1)
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These amplitudes are linear combinations of the multipoles
used throughout the rest of this work; the above simple
form occurs in the proton Breit frame, elsewhere we have
used the centre of mass frame. o is the spring
coupling constant for the harmonic oscillator, g is the
quark gyromagnetic ratio, and a contains the quark

magnetic moment,

It was observed that - : consistentywith other

aspects of the quark model (Copley et al 1969).

. ' " leads to the vanishing
of A3 in photoproduction. This occurs for both the
D13 and F15, and is borne out by experiment, The
exponential terms in the above expression are most model
dependent anﬁ thus least reliable, but since they are
common to both helicities we can make reasonable
statements ahout the ratio of the two, (Clearly, A%
increases with respect of A3/2 as the photon moves

2
further off-shell, amd for |k|~ | the D, should be

13
predominantly helicity 4. However the helicity %

amplitude does not give a zero at -t = 0.5, This switch
from helicity 3/2 to helicity 4 means that the magnetic
multipole decreases more slowly than the electric with kz.

The Devenish and Lyth analysis agrees qualitatively with

the quark model's predicted helicity structure.
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The argument has been taken one stage further by
Alcock et al (1977). These authors showed that the
form factor behaviour found by Devenish and Lyth was
compatible with the algebra of the relativistic quark
model (Feynman et al, 1971), Guided by this model,
they expressed the helicity amplitudes as linear
combinations of form factors (three for the
transverse, and-two for the longiiﬁdinal, amplitudes).
They did not derive a functional form for these but
regarded them as free parameters for all the resonances
in the 1=1 multiplet (with a second set of five para-
meters for the 1=2 multiplet). They found that the
quark model could fit the Devenish and Lyth analysis
very well and that there was no deterioration in quality

of fit as k2 increased,
In figure 4.2 we present the form of the resonance
amplitudes for selected values of t am k2. That the

P33 still dominates the amplitudes can clearly be seen.

Section 2c : Regge FESR

The Collins and Fitton Regge absorption model used
in this work has no explicit k2 dependence. In our
modification there is of course, an depemlence implicit

in the definition of
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Since we have adopted Regge behaviour in ~» (not s)

the Regge integral does vary with k2. This is demonstrated

in figure 4.1,

Before any comparison can be made with the resonance
FESR, there is one further factor, - Guided by the ideas of
vector meson dominance, we multiply the Regge amplitude by
an effective vector meson propagator (see equation 1.1).

Our model amplitudes are therefore, the sum of the CF pole~

and-cut exchanges and the daughter terms of equati~n 3.13:
k)

Ak?) ~ (l - —-1) [ Rw) + Do
My

If VDM were taken literally then a separate e—
propagator should multiply the c¢o -exchange term of the
CF model, anmd an o -propagator _thc Q -term, However,
we have already obscured such distinctions by using an
effective daughter-term, We therefore treat nne as a

free parameter and assume the propagator represents the

effect of several vector mesons,

In fact, nn§ is the only parameter which can be
varied to ensure the prescribed equality between the
resonance integral and the Regge model. Unfortunately,

it is easy to show that such agreement cannot be obtained
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simply by varying m2 . It turns out that the modified
-t dependence of the resonances necessitates a similar

alteration to the Regge side of the equation,

In the preceeding section we saw that the variation
of t with k2 followed from the anomalous behaviour of the
P33, D13 and the F15' In Chapter 3 we introduced the
daughter terms to accommodate such a low-energy effect.
Once again, therefore, we use the daughter terms to improve

the agreement. The simplest parametrization was fourd to

be (referring to equation 3.13)

C«i— (l(1> = C:[+<O> (’ = A+t kl)

b () be) (I + 8kY

GLU = GRe) (- g k)

ap- &) = @)l + A1) b7
5l - ale (- 4-+ k?)

L P (kl> = a @)+ A kt)

Il

The agreement between the two sides of the FESR equation can

be seen in figure 4,1, The parameters are listed in table

h.2,
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Section 3 : Electrovnroduction cross-section

As discussed in Chapter 1, the high energy differ-
ential cross-sectinn for neutral pion electroproduction
was considered an interesting and possibly crucial
experiment. That the actual measurements confounded all
expectations has also been noted, The experiments confirmed
the conventionhs of dominance by natural narity exchange;
and justified the neglect of scalar terms in the cross-
section. The disanpearance of the dip and secondary maxi-
mum, which occurs at small -k2 presented something of a

mystery, however,

Two related attemnts have becen made to try to under-
stand the nﬁzzling electrovnroduction behaviour. In the
first, Vanryckeghem (1976) carried out an FE3R analysis.
He confirmed thét in the resonance repgion, at least, the
contribution of scalar amplitudes is small enough to be
neglected. He also found no evidence to suggest that a
fixed vole mipht contribute to electroproduction. He
modified the nhotoproduction model of Barker, Donnachie
and Storrow (BD3,1974) to obtain a fit to electroproduction
differential cross-section. Following -DS, Vanryckeghem
chose a Regge-style paramatrization of the imaginary narts
of his amplitudes (calculating real parts from the phase-

energy relation rather than FTDR as: BDS had done for

photoproduction).
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Tom Acfo b k) = T Gy b, k) %7

(Note that these amplitudes are t-channel helicity amps)

where

A, = 0 477 + 0.9t
Ay = 0-477 + 0-33t
0(4 = —0-]77 + o-§5t

A, represents an effective w/e rule, ofy the
correspording cut, and o, 1is a low-lying singularity.
Vanrykeghem chose to explain the k2 dependence of the cross-
section in terms of this fourth component, (It is interest-
ing to note that BDS claimed this could be replaced by a
J=0 fixed pole in photoproduction). He allowed the residue
and the Regge slope to vary as free parameters for the three
values of k° # 0. Vanrykeghem thus ohtained a fit to the
FESR and to % , but at the cost of a strange |k|”
dependence of his free parameters., He chose to explain

the electroproduction data in terms of a cancellation
between co -exchange aml a strongly enhanced singularity
lying low in the j-plane, He showed that, in this model,
the dip's absence from 4%? persisted up to at least

d
s = 12 GeVz. But it is apparent that at higher energies



the low-lying singularity will disappear and the conventional

photoproduction-like form will re-assert itself,

Barker and Storrow (1978) later extended the work of
BDS, As part of that, they extended their model to
electroproduction also., Guided by general ideas about
cut enhancemen£ as a function of k2 (Irving, 1975) they

parametrised the k2 dependence of their cut residues as
2 -Bk®
G(k“,t) = (L+A (1L -e )) G(o,t) 4.8

Like Varnykeghem they also had an overall k2 dependence

in the form of the E>-meson propagator, this being common

to all terms.

Barker and Storrow claim a qualitative success for
their cut enhancement model, uéing A=20,5and B = 8,
But they are not avle to explain the k2 = =0,22 data, no
matter how rapidly the cut enhancement switches on. They

attribute this to low energy effects.

Since these two analyses stress the low-energy
contributions to the eleetroproduction cross-section, and
since we have already seen some interesting features in

the t and k2 dependence of the resonances, one might look
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to the electroproduction model of section 3 to provide an
explanation of the differential cross-section, However,
it can easily be seen that this does not happen. The
daughter parametrisation of chapter 3 was chosen for two
reasons, It had to mimic the very low energy behaviour
of some resonances. Since the Collins and Fitton model
provided a good fit to the photoproduction cross-section
the daughters had to fall sufficiently fast with energy
not to damage the high energy fit. For these two
reasons, it turns out that the daughter contributions are
too small to effect the drastic alteration in the behaviour
of the cross-section in going from photoproduction to

electroproduction,

In fact it is possible to obtain a very satisfactory
fit to the electroproduction c;oss-section for all values
of -kz, with only a simple modification of the CF model,
Our path is somewhat similar to that of Barker and Storrow
in that we modify the behaviour of the cut term as a
function of k2 . This is in spite of the observation by
Barker and Storrow that cut enhancement depends on h.ving

predominantly real cuts rather than as we have Michigan-style

phases,

Modifying the "high-energy" part of the Regge model

means, of course, th.t the parametrization of equation 4,7
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will no longer hold. It thus becomes necessary to modify
both parts of our Regge model simultaneously to obtain a
fit to the cross-section and to the FESR simultaneously.

We shall discuss them separately and since the modification
of the CF model introduces some unexpected points we will

deal with it first.

: ’ / .
We choose .. modify the absorbing P+P amplitude
as a function of k2 as follows, For k2=0, equation 3.8
gives us

. < — -
A=iorse’” + E,e® s o(_P/(t)(e_k%rz

0

) ey (9)

/ . ’ .
CP = L-'l + 0( P ({_03 Sio —_— ‘:i"—r) CP/ = hz +- KP/ (los 2’-'0 — 4_57_7')
We alter both the residue and the t-dependence of the

absorbing amplitude

O".,.(kt) = o7(0) (I— r-ki) | E.(k?) = E,() (l - rk 1)

4.9

h ) = h.6G) (- k) ha(k) = hoe) (1 - Hk)

The only other k2 dependence comes from the factor

-1
(l - k"z) which is common to both poles and cuts.

My

There are thus only three parameters in this extension

of the CF model r,H, m?

[V



- 87 -

This parametrization of the cuts is common to all
the helicity amplitudes, The remarkably good fit to the
electroproduction data is demonstrated in figure &,3.

The three parameters for this fit are listed in column

(a) of table 4.3,

As mentioned above, this modification to the hign-
encxrgy part of the model is reflected in a modification
to the parametrization of equation 4.3. This part of
the fit is displayed in figure 4.4 and the revised
parameters are listed in table 4.4, The best fitting

parametrization is (see equations 3.13 andli ,7)

d
c++(l<1) C++(0)( 3++ )

avs (k%) = ap@)(l + Auk?)
b(k?) = be) (1+Bk)
)= GLE) (- au-kY
a,. (k) = aw-@) O+ Ar-k?)
Gy &)= G4@)( - a-+kY)
a-+ (k*) = a_s@)( + A_+I4‘)

However, a fit to the differential cross-section of

4,10

'equai quality to that obtained by equation 4.9 is possible
through modifying only the single flip amplitude, In fact
we took a functional form identical to that of equation
4,9 but assumed it applied only to the single flip
amplitude cut. Thus the other helicity amplitudes had

no k2 dependence. The parameters for this fit are listed
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in column (b ) of table 4.3. As can be seen, these
parameters are very close in magnitude amd sign to those
of fit (a) which were common to all the cut amplitudes,
It happens therefore that the single flip parametrization

of equation 4,10 is adequate to describe the FESR.

The two fits to the differential cross-section
agree so closely that we have not plotted the second .
one - figure 4,3 will suffice. A chi-squared of 1.05
per point (30 points) was obtained for both fits to the
cross-section., The implications of thege fits, and of
the value of the parameters, will be examined in the

next chapter.



Table 4.1

Resonance form factor parameters

Resonance

S11

13
37

11

13

Di3

D"

Mass

1,505

1.688

1.232

1.850

1,940

1.434

1,514

1,680

1,971
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Multinole

E
o+

O+

5.63

5.16

0.545
0.43

0.04

0.82

0.9

6.85

0.04

0.08

0.82

4.715

4,715

4.0

0.43

0.041

0.25

2.29

0.09

2.867

3434

0.04

0.046

6.85

B8.46



Table 4.1 Continued

Resonance form factor parameters

Resonance

D3

15

Mass

1.649

1.682

- 90 -

Multipole

k3
A
1.09

P

4.1

0.553

l.14

A
1.94
4,12

1.51

2.98

6.69

6.59
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Table 4.2 Coefficients of k2 for daughter parametrisation

of equation 4,7 and figure 4.1,

LI 2.34
€y 1.27
g, 4,92
A, 0.97
Ay 47.2
B 0.919
) .
m, 0.5

Table 4.3 Parameter of equation 4.9 yielding fit to

electroproduction cross-sections displayed on figure 4.3.

(a) (b)

m, 0.68 0.54
r 1.4 2.54
H 15.25 19.1

The parameters of column (a) result from modifying the
absorptive contribution to all the amplitudes; column (b)

results from modifying only the single flip amplitude,
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Table 4.4 Revised parameters for daughter pole

(equation 4.10) giving fit displayed on figure 4.4.

e,, 2,38
8 4 1.26
LI 0,506
A, 0.886
A_, 0.649

}
A, _ 48,1
B 0.252 -
m2 0,68
v




Fipure Captions

Fig 4.1

Fig 4.2

Fig 4.3

The resnlis of the electroproduction FeSh

2

analyses for k= -0,22,-0.5%,-0.8%. "The results

of the integrals over the resoninces are
plotted as full points at t=0,-0.3,-0.5,~0.7.
-0.9. The integrals of lhe Regge model of
equations 3.6 = 3,9 are plotted as a broken
line to display the k2 dependence reSuliing
from the v behaviour, see page 80, The solid
line is the fit resulting from equation 4.7 of
the Collins and Fitton model extended to

°
incornorate k° dependent daughter terms.

a) is the FESR of the natural parity combination

of the single flip amplitudes
b) is the double flip amplitude FECK

c) is the non-flip amplitude FESR

The resonance amplitudes as a function of
centre of mass energy for szelected values

]
of t and k“.

The fit to the electroproduction differential
cross=section of the parametrization of

equation 4.9, fit (a).



Fig 4.4

The fit to the FE3R resulting from the

parametrizations of equiations 4.9 and 4.10.

As

in figure 4,1 the resonance integral is

plotted as full points and the Regge fit is

the solid line., The integral of the modified

Collins and Fitton model of equation 4.9

(i.e. without the daughter terms) is shown

as

a)

b)
c)

the broken line,

is the natural parity combination of
the single flip amplitudes
is the double flip amplitude FESR

is the non-flip amplitude FESR
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Chapter 5 : Conclusions and Predictions

Section 1 Discussion of electroproduction results

The parametrization presented in equation 4.9 of
the preceeding chapter is remarkable in a number of
respects, The first one is that it is the only
modification of the Collins and éitton photoproduction
model which will fit the electroproduction data. Many
alternative parametrizations were tried and had to be
rejected as they yielded inferior fits (or, more properly,
"‘could not be made to fit the data). In particular, the
behaviour of the poles amd cuts was separately investigated:
it was found that no modification to the pole amplitudes
along the lines of equation 4.9 could be made to fit the
data; neither could strengthening the cut residue alone
(in the manner of equation 4.8) yield a fit; and the
uselessness of strengthening the pole residue was quickly
apparent. It is thus necessary to attempt to understand

the implications of equation 4*q~

To take the slightest point first, it is reassuring
that the value of mv2 is to close to the 0.6 Gev/c2
which would have followed a pure Q -component in the
VMD model, This is remarkable, given the uncertainties
associated with normalisation and systematic errors in

the experiments. (Brasse et al assess their systematic
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errors to be about 10%). The only element which can

2 -1 .
absorb such errors is the VMD factor (1 = L y » Since

2
m
v
it is common to all terms in the Regge model, Thus

2

m, = 0.6 GeV/c2 should not necessarily have been

expected.

Superficially, the parametriiation of the cut term
as a function of k2 is similar to that found by Ixrving
(1975) for charged pion electroproduption. In his

;"'&ns éwin

analysis, Irving noted a herdesing of the cut contribution

as a function of k2 which he parametrized as

C k4 t) = (1-0-48 k) Ge exp(i+o0 13k at)
5.1

Since k2 £ 0 for electroproduction, this means that the
value of the cut residue increases with -kz, and that
the "diffraction" peak broadens as -k2 increases. This
latter corresponds to a shrinkage in impact parameter
space (b-space). Irving conjectures that this is
related to a transition from a hadron-like photon

(for k2 = m: , 0) to an increasingly point-like
photon, as would be expected in deep-inelastic
scattering, It should be noted in passing that the
behaviour found by Irving is not that expected by
Harari, as described in Chapter 1. Harari indeed

expected the photon to shrink in b-~space as -k2

increased, but he expected that the diffractive
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! s
slope c ~ k2 . Irving has c ~ k .

The results of Chapter 4 also indicate an increase
in the cut residue. The effect, for neutral pion electro-
production, is some three times greater than in the charged
pion case, However the size, and more especially the sign,
of r 1is the main surprise of qu@tion 4,9, We have
several times remarked on the su&ﬁenness with which the
anomalous behaviour of the electroproduction cross-section
sets in, That the dip and secondary maximum vanish for
so small a k2 as -0,22, may make the magnitude of r
acceptable: the k2 modification to the CF model has to
be dramatic, if the dramatic data are to be reproduced.

The puzzle is the sign of r .

The results of Chapter 4 run counter to Irving's
conclusion, noted above, As -k2 increases, the
diffractive peak of our absorbing amplitude shrinks,
It will be more illuminating briefly to discuss this
point in terms of the impact parameter representation

of the scattering amplitudes,

The Collins and Fitton model, with which we have
been concerned in this work, uses the eikonal
prescription to calculate absorptive cuts for photo-

production, The details and motivation for the eikonal
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model are exhaustively discussed in Collins (1977), and
only the salient points will be rehearsed here,

Using the distorted wave Born approximation, the
scattering amplitude can be obtained as a function of

s and b (impact parameter).

Aib) = X R(s,b) exp (L )h(,P(s,B))

where we have made the simplifying assumption that the
absorptive amplitude is purely pomeron exchange.

(Note that it is precisely this assumption which Collins
and Fitton showed untenable in pion photoproduction),
For the photoproduction exchanges the eikonal amplitude
has the form

Xk LG (o (b)) £

gms So 2c < 5.2
The pomeron amplitude is identical except that, due to
signature, the - t term does not appear. The
pomeron term is therefore almost purely imaginary.
Kquation thus becomes, on expanding the exponential and
putting in cut enhancement terms (1*) explicitly,

R ) R P
/\ G;l)) ~ in + L X jki )<
5.3

= X (- axf)
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For the non-flip eikonal amplitude (n=o) the Regge pole

has a Gaussian b-dependence, but the effect of the cut's
destructive interference is to kill the peak at b=o and
enhance the amplitude for higher b, Depending on the
value of the cut enhancement factor,'1 » the small b region
can be completely absorbed so that the scattering amplitude
is dominated by b~ ) fm - peripheral scattering.

For nf0, the presence of a b" factor in equation 5.2
means th.t the pole amplitudes are already peripheral,

and so absorption has less effect. .

Because the absorbing amplitude in the CF cut model
has contributions from both P and Pl » the absorption
is no longer purely imaginary and the second line of
equation 5.3 no longer holds. The complicated form of
the absorbing amplitude also makes it rather difficult
to calculate the exact eikonal, However, it is clear from
equation 4.9 that, for the absorbing amplitude, ic
decreases as a function of -kz. The Gaussian peak in
b2 of the absorbing amplitude corresponding to equation
5.2 therefore broadens as a function of -kz, driving the
peak of ( | — A r)<PI ) out to higher b thus making

the scattering more peripheral.

Unfortunately, it can easily be shown that the
peripheral peak is driven out to such large values of

impact parameter that a simple. physical explanation
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becomes difficult. For our purposes it will suffice to
take only the single flip amplitude with the parameters
of fit (b) from the previous chapter and to consider only
pomeron exchange as the absorbing amplitude. As we have
noted, this is only an approximation to the true amplitude,
but the effect is so gross that a more complicated cal-
culation is not required. Using shis scheme, equation
5.3 was evaluated for P, = 6 GeV/c amd k% = 0, -0.22,
-0.55, -0.85., The results are displayed on figure 5.1.
It can clearly be seen that the effect of the k2 modi-
fications to the CF absorbing amplitude is to drive

the peripheral peak from b ~ 1.2fm right out to

b ~ 4-5fm. This is rather disappointing since it seems
unlikely that such high values of impact parameter have
any physical meaning. Conventionally, hadrons are
regarded as h.ving a spatial extension whose radius is
~1fm. It is difficult to accommodate a value four

times this,

Section la : Prediction

Since it was impossible to ad just the daughter
contributions to account for the electroproduction data,
it must be concluded that the form of the cross-section is
not a low energy effect, The absence of dip and secondary
maximum will persist (if an absence can be said to persist),

at higher energies also,
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This conclusion is at variance to Vanryckeghem, who
chose to regard the cross-section's behaviour as a low

energy effect. However, the size of the parameters in

equation 1.9 do alter the ~>  dependence (as well as
t-dependence). The conventional expression for the o of
a R®P cut
/ / N
dc = dR + (O(R NP) t
dg+ &p
) >, CL/ / -
assumes log( ;50) 4 X » Which clearly does

not hold for our choice of parameters. To illustrate
the energy dependence, we plot in figure 5,2 the
predicted shape of the differential cross-section for
=6 2 _
P. =6and 12 GeV/c and for k“ = -0,22, -0.55,
-0.85. For the purposes of comparison, we plot also
the photoproduction differential cross-section, weighted

by the factor

2 \-%
(- 2%)
068

It may be seen that the dip and secondary maximum do not
recur in higher energy electroproduction. (We have
used the parameters from fit (a) of the preceeding

chapter).
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Section 2 : Conclusions

We have seen that the properties of photon-induced
interactions are far more interesting than might have
been expected from their apparent similarity to hadronic
processes, Indeed we have seen that, at several crucial
points, the photon has confounded xreasonable expectations
and predictions and that there a;e intriguing glimpses

of a non-hadronic behaviour for the photon.

These points of difference arise as we extend the
energy range ard the mass-range under consideration, In
neutral pion photoproduction, one of the first unusual
features is that the process shows no signs of "Regge"

0_“ lhrs& H,"/
shrinkage/as the centre of mass energy is increased,
AY
Collins and Fitton interpreted this as evidence for "hard"

rather than pole-dominated cuts in this reaction.

On the other hand, when neutral pion electroproduction
is extended down in energy to the resonance region, the dip
present in the high energy cross-section at t ~0'§ is
not reflected in the experimental behaviour of the
resonance amplitudes, A numher of sophisticated Regge
models of the high energy region have been proposed to
accommodate this, However, it should be clear from the

discussion of Chapter 2 that FESRs were originally proposed
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(in other reactions) because the high energy dips were
continued into the resonance region. This continuation
was quite independent of any specific high energy model.
We have seen that in a real sense the behaviour of the

P33 in  T° photoproduction is non-dual and have chosen
to accommodate it by introducing a daughter term which
does not conlribute significantly-dt high energies.

We have seen that Odorico attributes the resonance
region behaviour to the kinematic complications of a
spin-1 projectile, We have seen also that this con-
Jjecture might be confirmed by examining 1Tf1-> Q N

The alternative approach seeks a dynamical explanation
in terms of the electromagnetic nature of the photon or
in the move away from the e mass shell , Since a
predicted change in helicity structure of the resonances
is actually seen in electroproduction, one might perhaps
incline to the second explanation. However the agree-
ment between the quark model and experiment is quali-
tative, and the model does not satisfactorily explain the
photoproduction behaviour, Perhaps examining 1T”4>9N is

the only model independent way of checking this point.

Certainly, the off mass shell behaviour of the photon
confounded all explanations, We have seen Harari's
hopes for a definitive test of dip mechanisms shattered
because the photon did not shrink (in b-space) as -k2
2 Onivey,

<

> scleNcE O 9
A >

P e
SECTION
Library




- 102 -

increased in diffractive electroproduction. We have seen
that a strong cut Reggeized absorption model can fit neutral
pion electroproduction data. To do so the slope in t of the
absorptive part of the amplitu&e must be modified,
Unfortunately, it foes not appear that the consequences of
this modification have a simple physical explanation, As

in Irving's investigation of ch.rged pion electroproduction,
we do not find the behaviour sugé;Sted by Harari. The

form of the electroproduction differential cross-section,

so different from that of photoproduction, is expected to

persist to high energies,



Figure Captions

Fig. 5.1

Fig. 5.2

The impact parameter profile of the single

flip amplitude from fit (b) of Chapter 4 for

= 6 GeV/c and kK = 0.0, -0.22, -0.55,

-0085-

a)

b)

The predicted shape of the electroproduction
differential cross-sections at P,

= 6GeV/c and kZ.= =0,22, -0.55, =0.85.

For comparison the photoproduction

profile, weighted by (l - g—_-:g)—z is also

shown,

The electroproduction cross-sections at
p. =12 GeV/c. The photoproduction
case is also shown. Note the change of

scale with respect of a).
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Appendix A : Conventions

As stated in text, the formalism of electroproduction
is complicated and subject to. some confusion, In these
appendices therafore, we give a complete and extensive
account of the conventions, normalisations and formulae

used throughout this thesis,

Dirac Matrices and Spinors

We choose the representation of the Dirac Y

matrices to accord with that of Bjorken and Drell (1964).
Thus,

] denotes commutation

denotes anti-commutation

The metric tensor is chosen to be g =

CC O
[eNeol o]
OP.—‘OO
= O OO
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The inner product of a four-vector and a Y matrix is denoted

by yu€= @ = ¥OET -y

Throughout, we are concerned to describe the kinomatics
of pions, photons and nucleons (specifically protons).

We therefore only require the Dirac spinor for a spin -

Wl

particle travelling with three-momentum P . This

will be denoted u,(f)

- ~

| E+m) X
uw = \/___‘—ET“:- ,?_"_EX . (A1)

ehrtr po =E, and X 1is a Pauli 2-spinor depending on the

spin direction,

”X,+ = [ O] for a particle spinning parallel to its motion

X _ = [?] for a particle spinning anti parallel to its motion

To construct a matrix element one requires the hermitian
conjugate of the Dirac spinor uT. easily obtained by noticing
that O-L-r= &, , but a more useful expression is the adjoint

spinor T = ut ¥ °

Ly® = = [X'Cgp), X (Erm) "

Note that in this convention Wi = 2m
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At all times a contravariant four-vector will be denoted

M

_ - o
P" P "'(P)f)
The magnitude of the three moméntum will be denoted IPI

to distinguish it from the corresponding four-vector p.

c =F = 1 throughout
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Appendix B : Cross-sections and Normalisation

Kinematic Notation

Referring to fig Bl the following identifications may be

made:

1, = incident electron 4 momentum ll2 = me2
12 = outgoing electron 4 momentum

Py = incident nucleon 4 momentum pl2 = m2

P, = final nucleon 4 momentum

q = final pion 4 momentum q2 = }A?

k = final photon 4 momentum

d
I

=3 (P + P,)

In almist all cases we work in the centre of mass
(com) of the photon-nucleon system, that is, the one

defined by

We define two sets of the usual Mandelstam invariants:
one referring to the complete lepton-hadron system; and the
other to just the hadronic subsystem, regarding the photon

as the incident projectile.
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For the complete system

w
L]

0 (1l + Pl)2 : the square of the total com energy

K® = (11 - 12)2 : the square of the momentum transferred

from
= 41,°1.° sin® () {the leptons to the hadronic

system, and the square of the mass of the

photon,

1/ is the angle between the two leptons.

"For the hadronic system

2

s= (kep)' = k°+E} =(Er+5)*: P
P°=E , ¢=Exr, p =8
t = (k-q)*

= wt o+ ke 2k°E, - 2!&//1/ cos ©
where © is the angle between the incident photon and the
scattered pion,

u= (k- P2

We shall find it convenient to use another variable

V= s = 2k.P = 2k°W —-k?* & E-pr_k*
2 2

= sS—mm® + t-s k"

p
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In the centre of mass system

y. )
9] = Eem)™ (Eo-m)
k| = E+m)™ €, -m)
For the definition of cross-sections, we shall require the

concept of Lorentz Invariant Phase- Space (Lips) as

explained in Pilkuhn (1967).

The volume element of one-particle Lorentz Invariant Phase

Space
dlips (p) = 4% - _c_l_fgl S(p2- )
25(2_"_)'5 (1'rr)

For n-particles with 4-momenta Pi ... Pn

dlips (5 prvonps) = @m)* §*(p- Zpc)am)™ T 42

=l 2 E;

Cross-section Formulae

The use of Lorentz Invariant Phase Space requires

covariant normalisation of momentum eigenstates \f3:>
N

e p) - (2v)* 2E S(p™-P)
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To obtain the scattering-matrix elements, we first
decompose it into connected and disconnected parts (Eden

et al; 1966) shown schematically in Fig B2, We can

correspondingly define a transition matrix element from

(Fls

where l L) denotes the pre-scattering eigenstate of the

L> =S¢ - . ()¢ 53(PF-B;)T

system, and l ( > the post-scattering state. C(learly it
is the elements of the T-matrix which describe any inter-
action which may have taken place, and their square is

the probability of a given transition,

We seek an expression for the differential cross-
section for both photo- and electroproduction of neutral
pions off protons; The cross-section is the probability
of producing a pion in an element of Lorentz Invariant

Phase Space divided by unit incident flux: 1i,e.
do = L |17)* als : L
a = ? c tp3 S+ 9 P‘l) 1

The flux is the number of particles incident on unit area
in unit time, which may easily be re-expressed as the ratio
of the relative velocity of the two incident particles to

the invariant normalisation volume;

F o -l s 2e)”

= 4l g’ V-l
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= 4 /50 L]

where l [,’ is the magnitude of the com 3-momentum for the
incident lepton. (The use of this expression for the flux
forces the covariant, Wi = 2m normalisation of Dirac spinors

on us ),
2 ‘ .
do- = PRV |7 | JL‘fi (‘n ‘L>P»Lz)

2. _ (B1)
= mlj—l J'L"f” (ST;&)Ll)‘[[I"P‘(Sii*P!)‘[S

where we have separated the leptonic and hadronic parts of
the system, using a well-known recurrence relation. We

may simplify further

. 2
‘J.LLPS (S.,.; P., Lz) = (;'-Fr) J_z;gz J;%g S(L,J-F,—Lz‘PH)

_(L)}* J3P, 3l 57 - L -
=G 9L Lk e -L-W)slarn)

_—.(;)1 nn Pl S5 - L -w)

27T 21

~ 8
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Defining \A/-,— = L: + \A/, u,sinj c(.-sL,_= “:.,_llau‘éil J.Q-,—

c[,\a/-r = \"/'7‘ ,,(;2./ c”!“l |
Wi

(o]
FS

d Lips (sT;P“,Li)=(QLTr) ol A2, AW S (2 -w,)

4\/\/-’-..
= “:.'ll cl-ﬂ-r
am?' 4 v
= kA

(1_"_>z 8IL_:IE

using k% = (L, =La)" = 2md = 2L7L] + 2/L,]La] cor
Thus

2
dLips (63 B L) - Lk 1P
25 2 [ (L]
Putting this expression into (Bl) we obtain

de o U T Al (i)
dL* Jcp ds 2" | L] Sy
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For the purposes of comparison with experiment it may be

easier to express [1—,-/ S+ in terms of laboratory frame

measurements

’ LJLST = m*E, where E 1is the lab energy of
the incident electron.
similarly ”),) s o om ]<L where k, is the lab, energy of
the virtual photon and ,‘l“’
-is the com 3-momentum for the

hadronic part of the system.

By a calculation exactly similar to the preceeding we

can simplify

dlips (5;4q, z) - | A4 (B2)
A 7]
where, this time, we have integrated over the azimnthal

angle.

We finally obtain an expression farthe differential
cross=-section for pion electroproduction in terms only of

quantities measurable in the laboratory:

do - ) (83)
c“(l cl ‘.0 elS Jﬁ 2'1 T4 m3 E-L.a kL.




All

However, we wish to obtain a form for the electro-
production differential cross-section which is comparable
with that for pion photoproducﬁion. By use of the
recurrence relation for Lorentz Invariant Phase Space we
have kinematically separated the hadronic and leptonic
parts, There remains a dynamical leptonic dependence in
the matrix element which must be_mgde explicit, This is
a long and tedious process whichhwill only be sketched

here; a complete exposition may be found in Dombey
(2969).

Making use of the one-photon approximation, we may
write down an expression for the T matrix in terms of the
electromagnetic current operator J, . For comparison
with high energy photoproduction data, it will be useful
to set down an equivalent expression in terms of helicity

amplitudes. (We use s-channel helicity amplitudes

throughout ).
y23
- e
T = g €. |

where e¢, = <L,~ f Spel L,> - referring to leptonic vertex

77m.= <3Y’13}~ld> - referring to hadronic vertex

A

= photon helicity

(B4)
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Y

From QED, we know the dynamics of the lepton vertex and

may write it down at once

€ = Uy Y W

To connect with the helicity ampl%}udes we may take
ay = el () "

where the polarisation vectors e,bfk) are

|

e/-t(*’) = 7 (o, ¥l -L,O)

en () = g (Il, 0, 0, k7

Assuming the leptons are unpolarized, one may now
construct a photon polarization density matrix by summing

over the spins of the electrons

»

]
44 = 5 2 aj ay

e+o = Po+= "P-a = —eo- = v__£_(+_£L 51

|
I-¢ 2
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Thus, for the unpolarised cross-section we require

Z 171" - g‘: % (’11’[»%." T, T S 1)]

fpins spins

(S

= & __L_ { - ,ﬂ,ll—lﬂ}1—2£l72}z+ ZiQe_(
2k* -z

; 7,7 %) +/s'o+z'2f2e(*r:, r, e T T e‘p)]

| ‘: wEé .
New/choos® - 4): o along keq fixes the helicity amplitude

phases to be that of Jacob and Wick., Use of parity

invariance allows the removal of the T_1 amplitudes,

Putting -F}M_ d for T4 where ft, ( Iu,) denote

final (initial) uncleon helicity we obtain:

Z'-Z IT,i:%: — { fu F+ l ’F +al lF._,Ii + 2£(

£~
l ++o ‘1C *OI ) 2£Re (F++l F-- fi—-: (—)fl) cos Z‘P

e L”‘P‘/’?(g“ﬁf" B F”"f"-‘l +{+—lf—to +{—+of—t’)} o)

We wish to connect with photoproduction (for which the

photon has only two helicities). The photoproduction cross-

section is

2
dovy = 4'_\A/llkl [T 1" dLips (s; 9. p2)
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and using equation (B2)

d | 1>
[o 20 = '
It Twskr 4

et ot

= (|F++|} * H\+ -1 +H‘-+lll+ lf—-:r)(Bé)

25’

1}

Using this as our starting point, we may now define the virtual

photon differential cross-section to be

)

|

R LT
* 2 (H_‘++o)7‘ * I]C“"ol?_ 2Re’ (FH' F--*l _{+-l F—i;)icoszzp

~

- 2/ (1 +5) cos cp Re (Q.H ++o FH-o]c_-, FJ-—I ]c-fo
+ £i0 F-T:)] (87)

= ‘l"_u, + E:_f_‘:’.._s + :7[;77’-,- z‘_ccsz&-&- %%"r\/iio-l-f co:zp

JdE

in a familiar notation.
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Comparing this expression with equations (B5) and (B3) we have

do- a | Lol
dk*d P Lo ¢ 2% b m3 E K, & T

- | _e_") T )t
2'% e w3 ES L \K I- €

= | (_e_f 1 2% -wmr) dov
L O AR d¢

- = va’ (é) dos
223 Mgt (-g) \-k* 2

- rmode ' (83)

d ¢

r e

2
where = 283 a1 E,_{ G-2) (_-@‘-‘z) is the conventional

factor, extracted to show the correspondence of electro-

production and photoproduction cross-sections.

Note that in the first line of the above we have
explicitly inserted the spin-average for electroproduction,

this was not present in eqhation (B3).

Finally, lengthy calculation and use of the identity

* 2
Zz-‘e,lz&,b-on € £5 = 4 apo K* v bplis + bnlis
SPin

will yield an expression for the polarisation parameter £

-1 _ - ”,‘_L’ 2 Y
€ = ] 2 = b i_.“‘

where \k_ is the laboratory scattering angle,




Figure Captions

Fig Bl

Fig B2

The one photon approximation for neutral pion

electroproduction,

The decomposition of the S-matrix into

connected and disconnected parts,



Fig.B1

Fig.B2



Al6

Appendix C

a) The Invariant Amplitudes

There does not yet exist a complete analysis of neutral
pion electroproduction in the resonance region, As
mentioned in the text, there are a number of partial wave
analyses of photoproduction available: Devenish et al _
(1973); Metcalf and Walker (1974); Moorhouse et al.
(1974); some of which rely on dispersion relation tech-
niques. The desire to perform dispersion relation
calculations indicates the use of kinema£ica1 singularity
free (KSF) amplitudes. Some discussion of this point is
contained in Berends et al (1967), but that reference is
heavily oriented to photoproduction, In particular an
“explicitly gauge invariant" set of amplitudes (Dennery
(1961)) is manifestly unsuitable for continuation to
electroproduction processes. We therefore choose the
set of amplitudes due to Ball (1961) which have been

shown to be free of kinematic singularity in s, t, and k2

(Hearn (1961)).

We introduce a maximal set of kinematic covariants
M;i (£=lr“.?) which depend on hadron spins and momenta
and have the Ball amplitudes Bi as dynamical coefficients
As this is an electromagnetic process, parity is conserved;

for a weak process, there would be 16 amplitudes.
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Referring to equation (B4)

Me = Iy 2P. w (c1)

M, o
pooF Toye 2qp u
£ —

Mr‘- = U ¥s (’)’/*) w
6 ——

Mu = Ty P w
Ead —

Mp = &y Kk v
g _

M = TGwe K i Vadied

T- e wyof ZK-K4B + 2P B
2

(c2)

v 2q.cB> + 2keB* - /B 4+ yPc B

t ke R” + }41.287} w,
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b) Current Conservation

The above expression is modified somewhat because
the electromagnetic current is a conserved quantity, In
particular we show how two of the kinematical covariants
may be removed to yield a maximum of six amplitudes for
electroproduction (cf the six helicity amplitudes of

equation (B7)). The basic result comes from QED:

. e QF‘ = <L1I -S/,.. (0)! L,>

T, =N Su@| )

—

From QED £ = W, Y W,

The photon current is conserved at both vertices i.e.

3 TG = 0

which, in momentum space, gives us the two relations

(c3)

It is apparent from the first of these why the photon

polarisation density matrix in Appendix B had no time-like
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parts, Using the invariant amplitude decomposition of
T/,,, (c2) the second relation becomes

2k*B, = (t-k*-n9)By - su B,
(o)

However, the first of the current conservation con-
ditions tells us that neither B, nor B7 appear in the

electroproduction matrix element. )

The only constraint placed on the Bi's by current

conservation occurs for zero photon mass squared and

is

(b'/"}) By = =& B

(c5)
2Bs = =z« B, - &-1*) By
. By itself, current conservation allows the elimination

of two redundant amplitudes out of the original eight.
"It does not place any restriction on the form of the
'ele_ct';-oproduction transition matrix T. This may be seen
"geometrically": the first of the two conditions states
tha‘,t_. €. and ’(,., are perperdicular (in 4-space); -thus

T = TF'::,“, does not involve any component of g

parallel to k«. ; the second condition, however, tells

us that any such parallel component is zero (Lyth 1971).
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The photoproduction matrix element contains only 4
amplitudes. This is because, in addition to current
conservation, a massless photon is gauge invariant: i.e.
the photoproduction matrix element is invariant with
respect to substitutions of the form €, —> €. - g\ kh
Clearly, this satisfies 1</4. iF=O only for k*=0
and is a special case of L9~7"~£ 0. A massive photon
is not gauge invariant.

Current conservation also imposes conditions on

the amplitudes {; which will be introduced in the next

sectiaon:

cP,+jlg. aP3+zP;'K°an=o

0 s

A o
o v ki d - -0 )
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o

c) The Multigée Amplitudes

In order to connect the matrix element with the eigen-
amplitudes of parity and angular momentum i.e. in ordexr
to perform partial wave analysis, we first split the
expression (C2) involving Dirac 4-spinors into an equiv-
alent one involving Pauli spinoré}. This is essentially

the procedure of Chew et al (1957) (hereafter referred to
as CGLN).

Equations (A2) now become:
—_— -'/ T +
H/,L Ys = (E,_'l‘wn) 2 [’x_ zl , x (E,_-#'M)]
-
w, = Gﬂ +uw) 2 65,+WO pé
-k X
because we are working in the hadronic com where
f)"‘i 1 = =P

Use of the identities

£° - £ k© —grrk
9{ T les ~ £° K - o k -ke
and’
¢ g kxg kees - 2°2-

s -1°xk ¢ o kxg
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quickly shows that there are eight independent kinematical

factors which may be written (i ‘i’ =4 )

«

k~°.\

~

Foasd+ird o ke J. + ok 1e s raiqe

ok kr Ik + g ke §-aq e fh-gk e Py (e7)

U\—A

By convention, the ‘P"‘ are chosen to be such that

S ogMe - AT,

| (c8)
This imnedlately leads to the following identifications
§, = (Eem)™ (6 )™ (v-) 8' - 87)
o = - oo™ ((Wom) B' + g*)
D = €l G Euron) (187-8% + (Wi (%‘ - 87)
di = € +m)* v €. -} (B7-28° _B ))
| & = €+ nd® Eurw) €-n)(28°- B' -8 + (wm)(% - B"‘))
P . _(s;-myt(s,-m)"* (610 (B - €rom” 0 B'+8%) - 284+ (W2 8- B7))
<P:’ - amm) 6 419" (8'(5.-»4) +(E+6,)B? + 26,87 - BS

+(\/em) 85 45,) + EnBY) +k°(28* + (WLm) BY))

g

4)’ = € -m)*Erw)” B'E-w) +E+6)B*+ 26,8 + B
- (W) (B_‘__ (E,+E,) + En B’) + I<°(9_34 (e ) 8_7)
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Current conservation allows us to express Bu and B7 in

i ’ /
terms of the other B™; and cP, and ﬁ; in terms of the

ther Ji . e thus obtaini-

P, = Erm) Evm) ™ (W) B~ B

P =) €)™ ((W+i)B'+ BY)

d3 « E-w)* ) ) (287874 L) (8- BY))
o - Eor B o287 () 8- 7))

§r = b o) () (B~ LB R

8-y (¢ ekt ) 8" (N )

e -, (€ +w) "Eam)* [--n) KB+ (o) B~ Eom) 210/ (

8" (V) )) s b gk e )f6™ 287 ()@ B)) |

The cP;, have a simple relation to the eigenamplitudes of
‘parity and angular momentum, originally defined by CGLN,

However, because of the relation (C8) there is a

multiplicative factor of ?v\/t/ connecting our p“ amd the

conventional fi
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L

), = &xW T (LM, +E)R @ +(M-H)+E,

f = gV > (M. 1) + v )P/ @

_s S
~ w
n 1]

8w W ; (I"l,_, -E,-M,. —E'L_) P @

=
]

£ W 2 (L+)S,, B - LS R @&
g W T Lsi- - G i) R’ )

-
o~
[}

The B, M, S are the electric, magnetic and scalar

transition amplitudes respectively. We display

their relationships in table Cl,

d) Helicity Amplitudes

In Appendix B, we obtained an expression for the

differential cross-section for pion-electroproduction

using helicity amplitudes. We are now in a position

to connect the invariant amplitudes and the helicity
amplitudes,

Our starting point is equation (CB):

T = léii '):1; ~:f':x:l

Following Jones (1965), we take the photon 3-momentum -

to define the positive z-axis, and the x-axis lying in

the hadronic scattering plane (diagram Cl). The

)Fif,hﬂ

W L (M) R @) + B +M.) R G)

(c10)
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polarisation vectors for a photon with helicity tl or O
%] ]

become €. =j'—u,|_"(0,*',":;°) € = ;-‘((l_d,o)o) “o)

where the photon momentum ,<,.., = (ko, g, 0, Ug])

With the above convention, an initial-state proton

with 2-spinor (Io) i.e. spin along the z-axis has

negative helicity: X._  Similarly, in the final state,
wSQ/z
a proton with 2-spinor (,iMO/?_ i.e. spin up along

@ -direction, has negative helicity. By making a
conventional assumption of f-P = 0 and evaluating the 2-
spinor decomposition explicitly one may obtain the
identification of the helicity amplitudes and the multi-

pole amplitudes:

'F++l

B o (8« de v % (B0 40)]

f-o)
fi

B oY or D (54 ,)

J2' sl'v;"% “59/2. (‘P'S“)O#-)

(c11)

F-}-{‘-.O‘. '-.= ]J!;_—I casg/z (‘Ps + ﬁé)
¢—+a “ "t-’ “""% (‘Ps' - ‘P‘)

-~

for = @S {d -4 - 29 (- )]
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The first two amplitudes are the single flip amplitudes
present in photoproduction; {;_| is the double flip
amplitude; €L+| is the non-flip amplitude, The

last two are present only in electroproduction,

With the three sets of equations (C9, Cl0, Cll) we
have the fundamental, properly nofhélised relations
between the amplitudes, It will, however, be useful
to write down the inversion of equations (C9), i.e.
to finmd the expression for the invariant ampligudes in

terms of the sums of multipoles.
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For brevity, we identify

v,
Z, =€ +m)® 2 (6, +m)

Y, = E-wm)t A (E—z'M)VL

E;, = 2\/ { - 4L' }

%I?z EAA
’ IV PR - 2 1B (k0 aihid Lt
B = fp (6B - 2m 108 +(kuzbnt -l )

(M _M-w.)cl’z) + _k*(\»/m)(ﬁs - (Wew) 4&)}

2.2, ) VY 2y 2, Y, Y, 22

S B (e - teald]

21 2.7,
(c12)
By = -1 Mg;gﬁ N (w-.w.f&z 7

B, = "WIFT‘{ 2k B, + (-m*-k?)B; +(k° wihid - L‘E,r)
W k) s )]

VY 2o A A

)
By = ‘156‘7‘.»7{
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e) Other Amplitudes

To ease comparison with other work, we give below the

relationship of the Ball amplitudes to the invariant

amplitudes used by Dennery (1961) and Donnachie (1971).

>
o
u
»
s

=
P
u
[}
N
xR
o

(c13)

|

>
U"
u
)
vy
+
N
(VY
&
+
[\ A+
'l
t €
Nj-
AXJ
N

It is clear that these "gauge invariant" amplitudes have
kinematical singularities. Although these are outside

the physical region, we prefer to use the Ball amplitudes

in,tﬁegdispersion relations (and the FESRs derived
therefrom), Note that if the kinematical covariants

used b& Fubini et al (1958) are adopted, the singular-

ities may occur within the physical region.
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Table Cl

The multipole amplitude for pion electroproduction.

J L Parity Multipole Notation
144 L=jt=21  (-1)V 2~ By,
1-3% L=jdt=11  (-1)F 2l Ey_
1+%: L=jd=1 (-1)¥* 2L M,
1-3 Le=jpb=1 (-1)+? ¥ My

1 1 L L
1+4 L= j+3 = 141 (-1) 2 514
1-4 Le=jt=11 (-1)¢ 2" Sy

1 = angular momentum of pion-nucleon final state
J = total angular momentum of pion-nucleon final state
L = total orbital angular momentum of photon

Only (Elt, le) contribute to photoproduction

Lowest 1
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Appendix D

1) Asymptotic Behaviour of Helicity Amplitudes

We evaluate finite energy sum rules (FESRs) of the
helicity amplitudes discussed in the previous appendix.
The helicity amplitudes contain various kinematical
singularities (factors of (E,- wO , 5w ... )
as functions of energy and k2; we require to eliminate
these in order that the FESRs may be integrals over

functions containing only dynamical singularities.

Using equations C11 and C9 we can show that the
helicity amplitudes approximate to singularity free
combinations of the Ball amplitudes, for large values

of s,

a) Single Flip Amplitude
{;+| . F‘—I = ’"’C%i (? 4>)
\/zl M { 2 (- B -B) - XK (a8, ¢ 8‘)}

A NS N
Put B = By + ‘_;L.—‘- B, (;ae, uvé/)

:-b Q""‘l + C""l o - /_z_é » B‘ » -'i-—

The approximations used are already reasonable for

i
w
c

PL = 5 GeV.
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b) Double Flip Amplitude

F+-| =v2' cos Q/z. it Q/Z (4)3 - cp’*)

- =t {%,28 -B, +{Whwm)ft B, B,) : (2B; - B, - (wtm)

v =t {483-81+2m(;8‘-8,)+... { (02)
> r+-l x “fﬁ-’ 8'3

c) Non-flip Amplitude

(:-H = V2 cos {‘ (‘Pl "Pl)} + Py

a /2 0(8,— mB’c) - t/2' B, (p3)

2)

Asymptotic Behaviour of Invariant Amplitudes

Using Ball & Jacob's expression (1968) for the Ball
amplitudes in terms of t-channel helicity amplitudes,
and assuming a Regge-type energy dependence of S"(-'
for t_t;e helicity amplitudes, we obtain the following
hig.h'en'ergy behaviour forthe Ball amplitudes:

B,, B., BY, B,, B, ~ 5%
B,, B- ~ X

and we define
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Appendix E ; Isospin and Crossing
1) Isospin Decomposition

It is conventionally assumed that the isotopic spin
Properties of the electromagnetic current are those of
an isoscalar and the third component of an isovector,

(but Sanda & Shaw (1971) suggest an isotensor component).
Thus

PIAEEE TN YO Yo

This allows an isospin decomposition of the invariant

amplitudes originally due to Watson (19)

1

Bo'z:,, + B Sz + B i[ra, ]
B9 + B I + B ¥

where Tg, T are Pauli (iso)spin matrices amd @
is the isospin index of the outgoing pion. The matrix

elements of the various charge states are shown on

table El.

" - Careful attention should be paid to the definition
of the charge conjugation properties of the pion-nucleon

state, We follow Martin and Spearman (1970) (p268)

Clws> = -]7r%)
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The usual field-theoretic convention is C lv*>=+l1r:”> in

accord with C |T°) =+ l'rr°>

One may connect the isovector transition amplitudes

x . - . . [ .
R with those of definite isospin 7, £ in the

3,
final s-channel state B " , B &
+ Y .
B* - 48" . 2B™
I | 3 3
B - (8" -B")

Thus one obtains

(<]

Gropl Tlyp) = B + 3B

<‘IT'*V‘,"J‘! YP> -E B°+ {_%— (83/2-_ Byz)

éropl Tl yny =T B+ 4 (6% -BY
&enlTlyny = -B% ¢+ %Bg/‘ » BA

Thus it is only by investigating y-scattering off
neutrons as well as protons that a separation of the (—> ~like

and & =like contributions can be made.
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2. Crossing

For the process yp - T°p only, the amplitudes

have the definite crossing properties ( sé»> w symmetry)

Bl ) = B, ('\)) B;(\b) z - B.!(-\))
B'z ) = B, G‘“) . By ) = - Be(-»)
Be®) = B») Bg ®) = - Bglo)

The above follows from the simple expression for YP ™ 1T°P

in terms of definite isospin amplitudes:




Table El

+,0)
Matrix elements of 9( for all churge configurations

¥p>TP xm>1’n yp>7tn Xn-=>mTp
+
3 1 1 0 0]
) 0 0 -2 /2!

9° 1 -1 -7 /3"
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Appendix F

1, Form Factors

From the use of the Ball invariant amplitudes, the
behaviour of the multipole form factors, and the constraints
they must satisfy, can be easily derived. We follow the
approach of Devenish and Lyth (1975). Devenish et al
(1977) arrive at consisten.t conc1u§,ions in an intensely

detailed paper.

We express each multipole in terms of combinations

of the Bi.

EL+ N ?11—\.\—/ ZT::_H) [J% {‘P’ R e "pz Fn@ "‘1’4)3 Fiae) - B &)

2Lt

¥ <P,+ GL+) R -Riea®)

2L+3 )

Eu g 4| 48R0 AR6 - LR -RE

2L+

- L), Pa@®-R6) z
2L-1
(F1)

Mu- = ?-T:-V i-(fﬁ)‘f‘[’i {‘Pl PL@) "'pz Pw/ (3) - ‘p? Plrl&) - Pu-l (?-‘-)}

AL+

M= 87w fJ [-dRe)+ hR O+ P RE) - Ruee) }

) 20+

Sus = 7 ;(T'Jj::le [fPue R

S - 5o B fi [ @ + f R |
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The notation is as in Appendix C. The inversions above

may be accomplished by liberal use of the formulae;

I
N

j. Pb@) P:H @) ‘[2

f"
~

! /
f P, &) Pl ds

g PL(E) Pu-/s’(a) d2 = 2

! /
fp‘_(z) P (?)azz =0

and fpn(%) PW"’(%)J,E = VW(VVI-}I)— Vl(VH\-I) p;r mz=wnild VH'A, v+ b

The (P.; are combinations of Ball amplitudes with kinematic

coafficients,

(P'=2,22_ Fi = X.F, ‘Pl.\:zlzzyzzplf
‘Pz"YleEz. =X7.F:z. ‘Pr‘-i‘zynzz‘:-;
4)3=\/-Y12: =X3F3 ‘—I':,%,Y,.F_‘

Now (E, twnY’": (\h/*-wl) (l - Mkz).‘)y": ™y
N AWA i J2 g

from which it may be seen that as k™ —> (mg +m)? the

Xi have the following behaviour:
xl,xq,,x6 N ‘p+ l(z—> M_E

X'Z, X's,X;' e CP_ k™ — w?
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Since the Fi are combinations of the Ball amplitudes which
do not involve kinematical singularities, the above gives
the behaviour of the ({)‘-, at the threshold and pseudo-

threshold in kz. It remains only to derive the threshold

behaviour of the legendre polynomials P, &) .

Since there are no kinematic singularities within the
F., a fixed - s dispersion relatidh.may be assumed for the
imaginary part (Jones (1965)). This may be inserted into
the expression for the multipoles, and the order of

integration interchanged.,

Schematically, for any multipole ML

ML ~ ; ai)(,: [ J% Iwr I'—,, ("é))<1) pL; (%)

a.i = numerical
coefficient

on substituting the fixed~-s dispersion relation this

becomes
. , o
~ 2 a;X;Yia F.e) T F; LL’
i -1 ¢ hpt P
Howevér;

_éf' =’ pL (z*) = QL(%)

-1 2"‘%
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where the (J () are legendre functions of the second kind.

1

o0
N AN YA ‘

where we have used: +-F = la/ US’ c’-3)

The full expression for 2/ is

/ ! ’ 2 o —
T = [@AJTRT (EA{_—_I‘_t + k t'rr)
where

| = mem- g, .
- 2w
Thus for the thresholds cP*—a»o , k>0, ami, for finite ¢’

2/ - 00,

The constraints on the multipoles therefore appear at the
lower end of the above integration. For large 2’ the
behaviour of Q. &') is

/ - L-1 L""
Q L 6‘/) ™~ 2 -~ ’ k I

From this we made finally deduce the behaviour of the multi-

poles at the thresholds in kzz

[ %

My ~ L a X [k|” T F
SR (F3)

We “shall briefly illustrate the method by deriving the

constraints which must exist between El + and S,. at the

1+
thresholds, We shall then just quote the relationships

for the other multipoles,
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We shall require a recurrence formula for legendre

Polynomials (Sueddon 1956) : = Pb(%) = i'l'ﬁ((ul) R,,(E)+LE.,(2))
CP; = l‘:'z A {202 E(z B, 'M"""’) By - 2\"/(5"""') (82“6"/“‘")3!. 83)]

AGER —Ikl’Er)Fz}

9 -5z, {_ y'z[kiaﬁ(\{m)gg_z»/(s +m)(82+&/—m)433)]

gk - KER) R, ]

Which as ‘P_, -0 become
P ~ kol k] = R,

.CP‘ ~oT ‘p+ 1 Wa) 7, + 4, "?“5”1{2’;;

And as cp_-*o become
Po ~ PrmWm)F + 4. k°lkl19] = R

°Pe, o ko}k”z/ @ F,
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Now

o0
EH = ?::'W 2—(1'/_*!7 EI]]ETJJ#[Q"@,) 2' 21 ImF -Q,,6) Z/K T Fy +

Va2 T By b (81,6~ Qi) + T, 2,2, L ! @) -Qune J)]

and

\ ! / LR 1 /
S04 FVT 2(1'»/) wmu«li Jf {’Z'Y' R(B, + b) B:) Qur @)

+2,%, k% k| T 2_L+3(Q-+2)0¢M(2’)+(LH)Q‘,@’)) Y2, k°faf 1K1

Tfy o () Qun &)+ @ 21) |

L-H
The relevant relationships appear as we pick out the
slowest dependence on 2,20 , 3" oo , |kj3 0, k¥ w2

gliving

l ] ! 2
El,+ ~ &xlW 2l J9)Ik Y, 7/1 EA IMF&('{L%/J Q.- 6)

l ! | .
Sk ~ Tl 20 gy Y2 KoRJ Ik T F;(-u—‘”) Q.. @)

S E, ~ Y22, Sit

il k]
-~ )(7‘ st
k® [l
N ko S-L+ wLen }('L = M:'

I |
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We have therefore

5L+ — ,é_} E‘L.;. N =P+ - O
k°
Sc- = - L) Ikl E, . > o
t L
Si- > I (ML- - (L") EL—) r >0

(M)
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