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THE HOMODOPY OF -F@,ARD CLASSIFYING SPACES

~

=V
ABSTRACT : Let Y21\ and | be the topological groupoid of germs
O"leneaé'ao'n Pf?se/u.n .
of exriented loc ?L C

(8
diffeomorphisms of422: Then a,E' spectral
2z
sequence is constructed with the E™ terms computed from the
v oo
homological properties of 711_, and E is the bigraded module
associated to the filtratibn of the homology of the classifying

space)1371 given by Haefliger in!:HH3].

Let S2) and A’ il)Qj ----- St1}  be the objects of the category
—_— _S
C?AS with morphisms S; and 71p641khe space of functors fronxC:ES

\'s . . 1Y
to 71 with the usual topology on 1 . We prove that
2 4

T = e trre

b) If GL?« is the group of linear transformations of lpq/\uth
—--'v
positive determinant then if V! (ng 7<Z;Lz) is the

=r
map obtained by taking derivatives of 'b'(lé() for 24¢<S+l ,Vérf,

s T, (T (8) —> T, ((61,))

is an isomorphism for t <4,
g»
These calculations go a long way towards calculating the E terms

of the above spectral sequence,

The spectral sequence is constructed for a large class of topological
groupoids refered to as well formed topological groupoids, and the
corresponding theofem on the high dimensional homologies of
topological groupoids is proved for a special class of well formed
topological groupoids which include the known topological groupoids

associated with foliations.
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CHAPTER I
BACKGROUND .

@ m et val A 3 A 5



1 Introduction:

,
Let anbe a paracompact topological space such that for each 2c &M
' , wL
there exists an open neighbourhood L/ of 2C and embedding(P:(/-—ﬁﬁz

) vi
into the real vector space of dimension M, AA I4’:’Ls a topological

manifold.A topological manifold is a space used to construct a
host of geometries such as Cﬁ’manifolds and foliations, Haefliger
in[Ha )\ ,[_H(-\rl] and EHV—VQ showed how, by taking germs of an atlas
on topological manifolds, structures on ﬂ1 naturally corresponds
to T':— structures on Mm'where T':L is the groupoid of germs of
local homeomorphisms of ﬂ2W¢ with the germ topology. Haefliger also
showed how.codimension Y foliations give rise t071$~structures on
a topological manifoldl“"& By specialising to subgroupoids of
we restrict the type of foliation. In this way we get Crfoliations,
analytic foliations and even PL foliations corresponding to the
subgroup01ds_r;,~ 1q$ of germs ¢f local homeoniorphisms of
that are respectively germs of C' differentiable, analytic and
piece wise linear local homeomorphisms of ﬁl
.The TL-structure of a structure on a topolégical manifold is the
homotopy version of the structure because it has the two
complementary properties:
a)-n— structure can be defined on an arbitary topological
space and it has most of the properties of a principal
G -bundle; 1"— structures have a classifying space ’BT‘
constructed in[]*ﬂzj which is constructed in the same way
as the Milnor construction of a classifying space for

principal G- bundles given in EMIQ—] 0

b) The T'— structure contains most of the homotopy properties
of foliations, for instance, Thurston LTHI] shows that for

- oP \ . . o campr i
f?%-structures concordance classes of foliations correspond

1-1 with
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G

homotopy classeé of'Pifistructures together with concordance
classes of monomorphisms of the normal bundle of 17;:structurej
and the tangent bundle. Another well known property which
illustrates the richness of the T;?structure is Haefliger's
"classifying theorem for foliations on open C?p manifolds
given in [HAZ] .
The classifying space BT for a subgroupoid of 71; is the key to
the homotopy provrerties of foliations,
Several interesting results oh the homotopy properties of’BF;,E?::
and BT‘{have been proved in [HF\'S] , EMHZj and [TH2] , But connected
with BTV is the homotopy properties of topological groupoids
and the relationship between the classifying space and the groupoid.
This thesis develops somc of these connections betweewn BT and T s
and computes homotopy properties of T‘ for a speéial class of
topological groupoidép.
The connection between 13T1'and T1 has been shown in Haefliger's
construcion of'BT1 from 71 but the construction does not give a
useful spectral sequence. On the other hand Segal's classifying
space constructed in ESEIJ has a filtration which gives a spectral
sequence, but because the topology it is difficult to show that
Segal's classifying space is a classifying space for 71—'structﬁres
in the case T‘ is not a topological group. We re-construct ET‘ in
a way which is similar to the construction of éegal's classifying
space and then use Segal's filtration to obtain & spectral sequence
whichcorresponds to the spectral sequence of Segal's classifying
space for T”N - wWhere T1 is a special class of topological groupoids
refered to as well formed,

In Chapter I1I we explore ways of calculating the terms of the

1
spectral sequence showing that the E;glt terms vanish for open




Hars

sub topological groupoids of —F;when '(:57, , and for T'; the
homotopy groups up to 2-! are calculated for TW;:. Given time it

is felt that the terms of the spectral sequence will be sufficiently
simplified to provide useful imformation.on the homotopy properties
of BJH or T' for a large class of topological groupoids, for
instance the CS term in E:l,b could he removed and the connection
between H.?/ (T‘;) and the classifying space of the group of CV

diffeomorphisms with compact support could be elucidated,

ORIGINALITY:

Some attempt has been made to exclude all proofs which are given

elsewhere,
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Definitions and Nokation,

Let X , Y be topological spaces and>eX , If £:U=>Yis a map of
an open neighbourhood U of ¢ to Xf then the_ggzg_of(k‘p)denoted
Germ (xu(l> is the equivalence class of all maps 9 VY where V
is an open neighbourhood of Y such that there exists an open
neighbourhood bj of X for which 'Flk)== ng} . We will often talk
of a germ of F%U-—*X/without refering tr the particular point xell
and if U/CU we put Germ LU/) -F) = ighl_um (x.F) \xeul} « A local
homeomorphism from,x'to.Y‘is a homeomorphism Wil —>V of open
subsets of X'and\{ respectively. We have the space of germs of local
homeomorphisms of a topological space)( « Such 8 space of germs is
an example of a topological groupoid,given in EHFYKJ « For definition

of category terminology see [_SPD Chapter 1 Section 1, A Topclogical

Groupeid is a small category T1 such thal every morphism ig an
equivalence, together with a topology on.T1(taken to be the space
of morphisms) such that four structural maps, given inl:LHQYJfor
instance, are cortinuous when the set of objects, denoted CDU%Tl, is
identified with the identity elements. For a topological groupoid-F
and morphism !X —> Y in |l we put R(¥) = X and L(N=1Y .
A topological groupoid gives a classifying space’BT1 constructed in
LHFYSJ .« We wili refer to this particular conétruction as the
Haefliger -~ HMilnor approach. Tor the definition of manifolds and
CJ topology, the weak C'topology is used in our case .to agree
wiﬂl[PHf] ' see[ﬁ4U|] . For Tangent vector bundles and bundles
in general see EMIQJ and[:STE] e For definiticn of Automorphisms,
Submersions and Regular-maps see[jDH’j o FoXr Algebraic Topology
terms see [SPG and for ClJ Complexes see E'-—-W \]. rost of the

definitions used are given just before they are used and proofs of



the elementary properties are omited if given elsewhere,

The Theorems and Lemmas are numbered in the order that they appear
in each secticn; if more that one number is used the Theorem or

Lemma being refered to is outside the section which referenced it,

chapter
In this case the figures from left to right correspond to naﬁ%e;,

r\U\mbe(‘

section, chapter respectively,



CHAPTER II

A SPECTRAL SEQUENCE FOR BT,




1. The alternative construction of 87—7

1n constructing B MMusing the Haefliger-Milnor approach [ HA3] we
start with a special set AT construct t.he total space ET a5 the
equi\.raler.-ce classes of a relation and then give Eﬂa special
topology. %e then note that T’ acts from the left on ET‘to zive the
orbit space BT'. The alternative construction first chooses a
topoleogy on AT vhich agrees with that on ET and then carries out
the intermediate constructions in reverse, The action on HT'byT'
provides the orbits CT'and the equivalence relation provides the

quotient space B fromCT? .BTis then shown to be homeomorphic

to BT‘.

. . . . T - :
By using the alternative construction of Bl'we can come closer to
seeing the homotopy properties of the classifying space because
CT is easier than ET' to work with, Especially when evaluating

spectral sequences,

In constructing the topology of ETtne notion of weak and strong

topology ic uscd, together with some othoer topology constructions

given here:

Letx be a set then a topology for X is a special subset of the
setof subsets of X .If L and O are topologies forX then T is

.. A : .
wcaker than(stronger than) O when & L (L CO’)_ If 0Cis a

topology for X then a basis for O is a subset 8C O~ such that for

UVeo :
U = U
ve U Veg




(7]

A subbasis: for O is a subset ]-?,C-O- such that the set of subsets
of X generated by finite intersections of mcmbers of /3lform a basis
for OC . The topololy is uniquely determined by its subbasis and

a funtion f: X —> Y +to a topological space Y with subbasis B is

continuous if the inverse immage of the members of £ are open in X .

1 LEMMA: If {X;| L‘ef}is a collection of topological spaces, X is a
set with subsets {U; IL‘C—:J% and {#‘- U —> X, lféa:gis a collection
of functions then there is a strongest topology T for X which
satisfies

uc, ‘ed is open in X

fir Uy ~—>X,,ced is continuous.
and it has a subbasis given by the following sets

~f . . . .
'F‘- (V) where ((.:T and V is open in XC ) X &}ﬁ.
. -'
Normallyx is included in the collection FC (V) and P/can be also
regarded as coming from {}‘Gé).

Before leaving the topic of lemma 1 it should be noted that in
LHULj it was mentioned that the meaning atriputed to Ystrong
topology" is ambiguous, however the context that it has been used
in for137]removes thie ambiguity and the basis generated with our
definition of basis for the lemma 21 agrees with that given in

[_M_T,'l(:] by Milnor.

A special class of constructions similar to lemma 21 gives the

following definitions collected from LHULT],



0
i
v

Let X, Y be topological spaces and £:X—7 a surjective function
such that 2
-1
set ECY is open in Y iff-F(E)is open in X .

Then f is an identification. This gives the following

2 IEEMA: If £:X—Y is an identification and Y —>& is a
function of Y into a space?, then a necessary and sufficient

condition fer the continuity of 5 is that of the composition 9°~F

Let -{::X—>\r denote a surjective function from a space X onto a

set Y . Then there exists a unique topology on X the identification

topology such that‘P‘ is an identification. Let X be a topological
space and Q a vartition of X then if P:X—>Qig the natural
projection of X ontoo\ and we zive che identification topology

with respect to P then GL is a decomposition space of X . If X is a

topological spare with an equivalence relation ~von it, A/ gives
rise to a partition x/ru and the decomposition space X/N is the

quotient snace over the equivalence relation v,

Ve recall that T is a small category and associated with each
morphism is a left and right object. If O(rs-f_‘are the objects of T
put L-'T"_”O("ST‘and n:T— O(’ST'ac the mans which assign the left
and ri;ht objects respectively. Fro;nT‘ we can construct Xd,T' as the
set of all T'N—>T such that for all (deN L FW)=LEE), T

acts on X"T\ in the following way: if AeT'ns YEXT such that
R&)= L(b’(l')) frp (€N then put (.OKOXBU) = e¥l) ror (&N,

To represent the action of Tlon setsz such as X L orT‘we introduce
N . . . R . . . — 1
the following conventions. 1f A is a set with function L A 30("5”)

then we put TQH as the subset of 1'XA given by




b
Sie

TRA = { (A ¥)eTxA| R&Y= L(¥)

- 20 . - . .

Also if A has a topology then'T'XF)ls the topological space which

. n I N .- . . YA . X
has the topology induced by the inclusion into | ( that is the
- . . - . . °°
inclusion map is an embedding). The above action of T on X~ T now
gives 1he map

, @ 42 oo
MV TIRXTTT —> X7

AT T
where W (o ¥)=%eY Similarly we get the action >: 1 X [—>|

due

to the composition of morphisms in the category T' .

Let X be a set with map L_‘.X "‘>O(3$T‘ then we have the following
f‘
abstract definition of an action of 1'on X : a function _d:T'X X—2X

is an action of I on >( if
R MRX) —2%s gk
\ |
N _ ¢ \VJ
TX X > X
conmutes where 8(X) (b”, .\()):(’U“(X, é"), D() .

A
-t — .
If T'acts on a space X by V! | XX >X then we have the equivalence
relation ~Von X defined by X, ~ X, iff there exists 2 Y€ T such that
V(KI D‘l)tb‘z*the corresponding equivalence class of Dcé.—)( is the

orbit of X,

Put & as the set of all meps € IN=—>K such that ()= 0 for
only afinite number of E—N/ t(()>0 for &N and
< t)=1
T (e IN
Sumasn DD .
put IC'-A "">ﬁ-( as the function € —> (1) . As a topclogical space

A"D vwill be given the strengest topology such that the maps
T P AT IR v ce IN

are concinuous.




4 0

- b2
«n constructing BT\we' will not use the topology on AT so for
D
the moment put AT as a topological space with set b’; X T‘ “
)
ror tE€A put

- {enN [twgo]
'S
O¢ is not empty and:(fini'te. 'e can now introduce the equivalence

relation on AT . .or (f,)&),(tl,n)&: Aw‘(\ Xo’or' put ({-UY,)N({'z,X—L)
iff

't| =€t
and b’l]O'_’tl — X,L’O—

N) is an equivalence relation and ET is defined as the quotient
ET = ATV~

Let ’P.‘HT‘—-)ET'be the natural projection to cquivalence classes.,

— odd .
On N put U= ﬂ't eA H;UH’O} for Ce/)\} and definethe map
X! [7L X XODT‘ —>T a5, for (YY) & D_i,X XODT')XL'U?J) =X(‘\).
- ot —_—
If we put U = PLUix X T')then I¢ and Xy in A’Tﬂuniquely‘ define

maps {:,; and X! in EN by the following conditions

Ue x X°T

Lw N AN

A\ 4 X
_ -tl. te o [R uc > ‘-r]

for :‘eN commute, the maps €y and X¢ play a central role in provirg
the classifying properties of BT s0 im the Haefliger-Milnor
treatment the topology.on ETis set to the strongest ‘vopology which
satisfies

a) the sets U are open in E 11

b) the maps t{ are continuous for ( & N}




baad
v

"
. . l i S y e /M
c) the maps X .H\ > are continuous for L

Lemma 1+1 can be used to construct explicitly the usual subbasis

for ETV and U = tC (O,lj

The equivalence relation commutes with the map L-'AQDR YMT'—">O("ST1
given by (£,¥) —> L-(X“)) and with the action of /' on
ATx X T to give a map L1 ET? 2 D(rST1
action 30 (T1X\LT0 —>ET defined by the conditions

AT TRAT —2 5 AT

,P K J/l‘k'P L \/P

= =5 Obs(T MY EN —2 s e 7

and an

commute,

We put BT as the quotient space of orbits of the action Yon ET

Put T ET'—> BT as the natural projecticn to orbits.

The alternative construction starts with choosing a topology on
ATY such that P:MAT' —>ET ig un identification. The
topology on /'H—‘ is given as the strongest topology on A1 which
atiafies
a) Dz X X is open for e
b) the map U( XJ"‘ Xl‘) T is continvous for (e N
c) the map AT bﬂz is contlnuous for L&-/?\/
Ve have that

% LEMMA : The map P: AT! —S ET' is an identification.
Procf : For UC ET'the corres pondence U > f' (U) is bijective

between the subbasis elements as given by Lemma 2¢1 so it follows

-—' -~
that U is open iff P (U)is.



P
)

Instead of constructing ETrfrom AT we put Chas a space which is

homeomorphic to the gquotient of AT by its orbits undér the action
7 given above. The following gives a description of CT7.

Let A C/N be a non empty subset of /)\/the pair U‘hé} gives rise

to a small category Cn which has morphisms Q<G (where a U E A )

and A as the set of objects..Put'r T’(pf)as the set of m%

from C,q to the categoryT‘ . T’(H) has the maps, for a & (-, a, (- én,
—n_at_.(,-: T(BR) —> T' given by. Tr;g,_(b’) = b’(q-é("). The

topology on T‘(”) is taken to be the strongest topology such that

the functions T’_aé._(,- are continuous.

The functors XE:T?(IN) are uniquely determined by the map

77@‘. /N—>T1 , given by Y,Vaf () =¥ (¢ (1-(> , and conversely
if KN —> T1 is such that

| o(((‘+|)oag(|,'> dor ald e N

is well defined, then there exists a (unique) ¥ & T7(/7\J) such

that be =l , For \(e X#T‘ define the correspondence
g)/a/f N —> Tl by
: c) : .
Séa,(.() :X((-{—l) 0\6(() Vlv'(' lé':N

then ¢X ((+1)o ¢X ()= bf’(iﬂ_)o T(ct)eY (:'*()--:,b’[l-)
= b’(u‘-t?_)—'o ¥ o)

is well defined. This by the above observation defines a unique

map Y ! §<°°T1 —-———>T'(/N) given by the propérty
Vi) () = @) tor ceN, ¥e X T,

1—-

Note that where the context removes the ambiguily F) will be written

in place of CA_ s+ hence the notion T‘(’F]‘) .




. m - x. T
IR YA A > N THUIN) is surjective
\J l [
because Y has a lefil inverse (1 | (”\/)"—5>< TV pgiven hy the

definition : Fere ¥e= T'(/N), ((¥)(K) = Y& K) For K& N

) od
Define cT 2s the lovnological svace A%T(!l\’)?.‘ut with the topology

= T
giver as the identification torolozy of 4wV AT ——> A% | (/N)

To construct RT amain we will construct a syace 'BT‘ from CT-‘
and then show that —BT‘ and BT are homeomorphic. To do tre

.corstruction we need the following.

Tet F: A —>TS be a functor hetween caterories A and B lei C
be a sub categgory of F) then F}C iz the funcior F/C-‘C"""\‘B
trat asgsiyns tha echjinet F-"(a) to tlie object A of C and tle

morphisn F(W\)to “he morrhis: WL of C . F(C iz the resuyiction of

F to the subcatepory C .

cn CT'ecnsiruct the fellowing equivalence relation AV, For
g eq

(’h)&)) (("L;X'L) < Awﬁ TMN)) (fc)xdm(fuxl)iff
a) €. = t.
P) \6\|O';_“= U"—IOZL

where l is ta¥Xen tc bte the restriction to a subealegory. Ful

ST : . T = T/,
BT as the topological guotient BT = CT/w

put T T —> BT as the natural projection to

equivelence clacses,

4 1RMEA: Tor ACIN JAFE ) TuIE X7
v (¥ 1Ch v (1)) Ca

<=

3§ ek, VA = Yo ¥ lA .




Proof: Suppose Y C‘\X | Ca = Y‘(b,"')| CH’ We note.that
for C,J'é/)\/a'nd L‘Sd.’ I
\((_h’._)(féa.r) — Y, (¥) _°K\(f> '
Since: A‘?E}ﬁ‘there exists an WK&R , so for c&lNvie set g = K& ¢
or (&K with
¥ (2) = ¥(4)
which gives
A OV =R O L ce B,
‘ put ¥ = b’.(‘*\ "YQ(K)—| then we get
X,.(i)= Yo ¥(0) for 211 (& A .
which gives ¥, |A -'—'X‘,X‘LIG . |
Conversely : suppcse K‘ li’-} = Yo X’L‘pr then we get that for
L, & A with (¢ §
YOG es) =%, (3) el ()
- o :
= X U) o T°b/°b/>.(‘)
- Kn.(é)—,° ‘b/'a—(")

i — V((’L)((‘éb‘)'
Y(¥) [Ca = v)\Ca

D

5

In the case that A:I)\/ the lemma shows that the inverse immages

)

of points in CT‘ are infact orbits of the action of T! on /4'[—' .

If X —>SY i a furction between sets ithen we can define an

eguivalence relation on X by : for o (reX a~iist €(a)=f() .
la)

The flvreset of + denoted by X/—F

is the set of equivalence clessss and the equivalence clasczes are

x
AN

refered to as fibres of the map —F . IfX has a topology~ then

is given the identification topology.




|

SMMA - T | AT
5 LEMMA: A /n-op /r'r' o (1vv)
Proof: Suppose Mo P(4,, %) = MeP ('(‘HXI)
Then there exists an & T! such that .

' (¥, P(tT)) = [JEIVR2Y

this means that, by definition of ';;,

—?C{-‘L)X')_> :—?('&'onxl)
=> tu=t KOV log =0

and by lemma 4 this gives

tr=e, W v(B) g, = v(¥a)|e,
:——5 To (_lX‘f‘)(f,,bﬂ): T o (/‘l_‘I‘V)(fm.’\&m)

Conversely suppose

Fo v (b, %) = T o (ax) (e, ¥a)

Then we get there exists a,'Ké;ﬂ such that
£, =k, and Y, ’ O, = Yo X,_’(}’]:’

from lemma 4. This in turn gives

S (¥ P(te, %)

\

Ple, ™)

=N TTeP (4,¥) =TePl,),)
Toconstruct thé homeomorphism between'BTTand1?T1we note that

BN = BT =@T/4 )V~ AT =
AT 5o (or) & (AT e ) 17 = C%='§V—'

where 4y indicates the obvious homeomophism,

The astute reader will notice that WOT' is very much like the
"eclassifying space™ TgTbJ givern in [_SE] . The difference

being that T%T%q is homeomorphic to ﬁ?ﬁ- with a weaker topology.




At this stage it should be noted that the construction is functorial

st

in the sence that if we have topological groupoidsTﬁ and71‘with a

continuous functor @ :7j|-—->71_then 4:induces a continuous map
n == o Pad

‘P (@T‘, "“"'>T§T' and the correspondence -F —5 -F is a

functor.



Spectral Sequences

In this section we will introduce the basic definitions and proper-
ties of spectral sequences, where the proof of the properties are

ommited. For proofs not given here see Spanier[ SPIJ.

Let R (usually taken asZ ) be a fixed principal ideal domain.

A bigraded module E is an indexed collection of modules {Es,t |

g|f-é74} . A differential d:E—Eis a collection of homomorphisms

d: Es & > Eg_v, £+4v-t such that A%z0 and v is a fixed
integer. ¥ is the degree of A . The homology is defined as the

bigraded module H (E) where

H (E)S.t- — KQJ’LVL.(A: Ese ™ ES_V“E*V—.‘%(ESW,E-V-H)

K -.v' ,- ‘v
An E spectral sequence is a sequence £ I-—- l‘/l .S for ¥Y=K such

that }

a) gvj.s a bigraded module and Av-'Ev—'aEvis a differential

of degree v,
b) For V2R there is a prefered isomorphism
H(EY) x ET!

A homomorphism (,DZ E"’El between EK spectljal sequences is a
collection of homomorphisms CPV-' E;.t _"—')E.étt for VY 2R
such that it commutes with differentials and such that the induced
map between the cosets : CP;‘-H(EV) - H(E'{\j:ommutes with the

prefered isomorphisms,ie:-~ the diagram

Hier) s (e
89 S¢S
E\ri‘l qpv+( S Elv-(-\

commutes,




Ce?

[
&
A1l the spectral sequences that we will be considering will satisfy

E\E)t — O for %40 or +4 O, Such spectral sequences are refered

to as first-cuadrant spectral seguences, 'With this limitation in

mind we have that for given St there exists an v! such that
v/ vl
A A
E s & E% £

and we put E;ﬁ_ as an isomorphic copy of one of these modules.

Tet A be a graded module ?_H,,H:eZ} suck that Ay =0 for 40
A filtrationfof A is a sequence FsA of sub graded modules graded
by § FsA¢Y such that RAC Ky A and FsA =0 for $40 , F is

convergent if U SR = A . Given a filtration Fon A the

associated bigraded module is G’/H) given by

G‘(’q’)s"t = FS‘AS*E/F;—n Aset.

S is the filtered degree and £ is the complementary degree, and

S+ & the total degree of an element of G‘(n)S'rL— .

1 THEOREM Let F be a convergent filtration of a chain complex C

' 1
which commutes with its differential, there is an E spectral

sequence which is first quadrant spectral sequence where
: ( )
Ege X Mt Fs C /’:H C )

4 —
A" corresponds to the boundary operator of thé triple (F%(Ur@,,cj
< .
F§-2(:) , and Eis isomorphic to the bigraded module
CrP4*»(C) (associated to the filtration

Fo He ()= cw [He (FsC)—> H%(C)] )

Also the speciral sequence construction is functorial.

2 THEOREM ILet T C—> ¢! ve a chain map preserving filtration

between chain complexes having convergent filtrations, If for some
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Y3/ the induced map T :E=—FE "is an isomorphism, then C induce

an isomorphism
Ty He () & Hye (')

in the homology of the chain complexes.

Let O be a finite non empty subset ofN then 7 is an ordered simplex

and members of O are the virtices of O .The realisation lU" of O

is the topological subspace of /.\oc given by
lo-| = ftexs|ew)+o => L‘éa"}
a linear map —(—‘ between ordered simplexes Ul' and Olis a map
such that for titi & 16|l ana Ael |, A €(t)+ (-2) £¢) =
f(at, +('—;\){-L).If 4. 0,—> 0, is a function then if we put for

vertex Ue Oy, Celg)as U(ay =0 if a# Uana v(¥) =1  ye
get a linear map § induced by 9 given by 5— 1167} =102} where
%_(U\';%(U'). All linear maps of ordered simplexes are induced and

are continuous.

( A +|
Let Aq":: IE_';”“ )7*‘-” and e.v_, AN > 4 be
the linear map induced by the map
a' Forz &LL‘

. 6:,;“ (&) —

Jﬂ Ford d'P/L.

Let X be a topological space, for 92| a singular Z - simplex 0O

of X is defined to be a continuous map

o AT —> X
For 25| and | & (4% %+l the ith face of O , denoted by o) ; is
defined to be the composite ¢ 94~ Q. .

: . —_

oY) = G’OC?'A —> L X
note that ifg>l and |4 J<{ &€ 27| then
((yu))u‘) = ( o))

The singular chain complex ofx , denoted by [_\()(), ig defined as

the non negative chain complex

Y]
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A= IC,A%(Y).D‘}/’E ) £

where Ai(X) is the free abglian group generated by singular

&

i— simplexes for 4.>© and A7, ()O?—O otherwise, and for 122
:ﬁ/ is defined by the equation

i L

Y= £ ) ¥
| &£ & 2t

If C'-X —> Y is continuous define 'PAO‘) — A( Y) as
the chain map +(&) = feo for a singular Z— simplex O .
F- —_> P is a covarient functor from vopological spaces to chain
complexes., Composing this functor with the homology functor which
assigns the homology of a chain complex tc a chain complex we get
the singular homology functor. The graded group FPGK) with

H(X)q, — Hq, (A(X))

is the singular homology ofX .

We will have recource in the sequal to'bonstructiGns which involve
special sub complexes of AQ() which give specizl homology theories
such as framed homology. However they require extra structure such
as frame bundles to be introduced and will thus not be introduced

until they are needed.

Vie also have the graded group {1(x'\/) for tdpological spaces
Y C_X where .
H(MV)b = +H/<A&®%FO>

in accordance with the usual notation we will write 44i,(¥w‘[)

and H;()() for H (X, Y)a‘/ and 'H(F),‘./.

The treatment for singular homology can be extended to singular

homology with coefficients in a module G-. If Cis a chain
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complex with differential & then C®G is a chain complex with

differential @ ®1 the homology of C with coefficients in the

module G- is the graded mocdule H(C ®G-) and is denoted as HCCjc‘)
vhere the modules of H(C >G) are written as Hz(C[)G‘) . Ye will

write

Ho (%5 6) = He (A0, )) ®F).

From chain complex theory we have
P - - . e . / .
ALEMMA Let - C —>C pe a chain man betveen freely generated
1
chain complexcs such that /C,* : H(C) 2 H CC) . For any R
. /.
modulie @ ’ /(: induces an isomorphism 'D)g 'H CC)G—) ~x HCC D G‘) .

]

Using lemma 3 we can extend 2 lot of our resulis to homology with

¢

icients in & module G . But we wili ommil the proofs for the

general case.coefficient module,

Let A CBCC be topological spaces than (C, B, F]) is a topologicsz
triple, The boundary operation of the triple (C,B,A)is a
homomorphism 94 : Hq, (¢iB)—> Hqﬂ(@,’q) induced- by the
boundary operator of the triple (ACC—), A(S), A(A) ) irnfact if
o e
0— A T K M0
e A(CXACB) , and {E”}E: H (C,B) "ve nave
W fzl= {L'f 2" T e H(B.A).

A Tiltration F ¢CX°CXI C " of subsets of a topological space

b) every compact subset of X is containedin some X( .

Using Theorem 1 and putting FgﬁAQO): A(Xs) . we get
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4 TEsA I {><§S is a filtration of the topological spaco )(.
- . 2 P a o s . , .
"here is an E~ spectral sszguence which ir a First guadrant spectral

sequence wlrere

(ﬂa'corresponds to tre houndary operator c¢f the triple (XS|7(S—|)
Xg-)), and Eis icomorphic to the bigraded module G-Hy (X)
associated tc the filtration . :

FoHy ) = o [He (%) —> iy (UAKK))]
Also the spectral sequence construction is functorial and if the
filtration ?_Xg% is convergent

My (U A (X)) = Hx (X)

The dimension of an cordered simplex U is the number of vertices

oD o
<z> )Q-:: Lj | o
J
then if CS == (A"o) XT](N)CCT', where the topology on Cg is induced
by C'lﬂ,ano’ ’Bg:ﬁ CCS) i
Qﬂ C;1§° C:—T§| Cl e

gives a filtration of BT such that

[§s is the filtration, and hence spectral sequence, that we will

be considering first, the spectral sequence is given by lemma 4 ,

not

]
n

There is ore draw back and that is that the filiration

convergent so the isonmorphisn .
? . My (U A(B)) R P (BT)

has to be proved by some other menns,

1,
v

—a

To sunow tlab %_@s‘ﬁ ig rnot convergent it ig sufficie:t to show Lhs
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oD =
corresponding filtration { (A ) 39 A is not converpgent,

This is easily done because conszider the ccmpact subset K of I

given by !

{o,'TL\VL(—::/)\‘l}

put V& & Ayb as the map Sg: N — R_ given by

v (}- 4\) é"' | t
; 2.3, ..

y I

[
B

o)
WD = hgr if k

f

then we get the map ¢ K —> A"o civen by
55(.1‘;1) = Qu For ne N i

and ng(O) = (\‘O,o,-- )

is centinuous, but the immace of ia then compact,

i=

e
However we caxn prcve the isomorphism X
.
al

Hy (VA (RS)) % My (BT)

. . . 2
by refering to Haefliger's consiructions, used in r_pr bj ’

to show that BTV is a classifying space. To provide motivation

we will quote the following property of the singular homolorny

.theoxy:

5 LEFMS: Let X be a topological space and 2B & H’;g (X) then there
exists a compact subsect K of X such that if (: V\CX) (;_*.(Z-')"—:Z:
for some Z’é: H;(K) .

o4 e O chalerre L

However we nced a stronger conditior than Lemma 5 we nzed thet K

is also hausdorff, however L need not be an inecliusicn, to construct
members of UA(BS> .f"rom ACBT") . It ET' was a hausdonff

topological space vie would have no probiems in constructing K '

R (N e ¢ e

this is not so 1in general so we will have to resovt to a "Cl"

version of K,

R Rt ad

P




Given a set x and an indexed collection of <topological spaces
$Xi )¢ C—Jﬂs and maps 'C'i" X
coinduced on X by the functions %C,’g 15 the vieakest topeclogsy

such that the functions {‘F.?} are continuous, Let ip‘?‘)-_—: Q be

a collection of subsets of a topological spacex then the

=) X then the topology

topology on X is coherent wlth Qlf the topology on X is coinduced
from the subspaces {Hqs by the inclusion maps AC_X,

[ ‘7"")
Put AQ/ — v e A with the topology induced
IL\4‘L+I

@ [ ]
fromA .Note that A‘l/ has the topology which is coherend with
) -\
5_6},@\% )% and is coinduced by the map S_ € 7,% Ve now have
the following definition Let .4 be a closed subset of a space X .

x is said to be obtained from A by adjoining n— cells ie.g}“

where W20 | if

] K '
a) For each g, Q& is a subset ofx
- LW
b) Ii‘e =€5 NA , then fox He&,e € is
"
disgo.lnt from 601 6/.
n
c) Xhas a topolegy coherent with T_/q d?j
d) For each J/ there is a map
, n AV\ S —_ (‘éw é M)
£, (A% §1%
wn “
such that -C (A) —_— e ),F maps A A ( Ah)
homeomorphicaly into ed —-CJ y and ed’ has the topology coinduced
by -(:& and the inclusion map edv\ CQd 'Cd' is the characteristic

map of Ed . A(velative) Clcomplex (X H)COHSlSCq of a topological
space X, G closed ACX and a sequence of closed subspaces(X) for
K> 0 such that

a) (X)o is obtained from A by adjoining O-— cells.,

b) TFor K> , ()(BK is obtained from (X)K-' by adjoining
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a
=

WK -cells.

c) X = U(%BK _

d) X has a topology coherent with { CX)K)A?.S .
CXSK is the K -skeleton of x , if X = (‘/&)M for some W_then

the dimension ofx isp, and)('is constructed by adjoining a
finite number of cells thenX is a finite C W) complex.

A pointed space is a pair (X,’fo) where >< is a topological space

and Yo 1is a point in X e XA is a baze point, Let T]T\CK,BL‘,), n>,|

be the homotopy groups of the pointed space (X.Xo) and To (X)

the path components ofX « For a continuous map -F: (X,xo)——B (Y,‘ﬂa)
between pointed topological spaces we put —F#: \ m (X ,xo) —_
m(‘() 19,,) as the homomorphism induced by -10 . A map -{:: X —> Y is

an l -equivalence if it induces a 1-1 ani onto correspondence

of the path components of X and , 3nd for o & )K ’ ‘.e#_ '-Trf-,iy\,")
-—-577‘;();((&3))13 an isomorphism for O4L 2 < VU and an epimérphism

for =N . A map -F: X —>Y is a weak homotopy equivalence

if it is an N -equivalence for all W em.

6 THEOREM: For.a topological:pair (X,H) there is a map -F:(CwX,A)-—'>
()(,H’) such that 'F is a weak homotopy equivalence and (CNX,I‘}J

is a CL\J compleX,.

7 THEOREH¥ : (Generalised Whitehead Theorem)

if .P‘.\)(-‘»Y is an W_-equivalence then

£ He (XY — Hq. (YY)

is an isomorphism for Z &£ N and an epimcrphism forg =k . The

converse is true when X and ¥ are simply connected.

8 LEMMA: Every W) complex (Y\lé) is a hausdorff topolcgical space.
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By using lemmas 5&8 and theorems 6&7 we get by noting that a

subspace of a hausdorff space is hausdorff,

) \
9 LEMMA: Let X be a topological space and 72 & H*((X)then there

exists a compact hausdorff space K and continuous function \C K‘>X

such that there exists an &/¢ Hyg (K) satistying 4 (2/)=% .

Let X be a topological space then a partition of unity on Xis a
collection of maps SCP(X -—'>I3 such that for X & X only a
finite number ofECP‘- ()c.)'g are not zero and S @ (x)=) for all>eX .

Let ES AS X X T C AT'  and put ”ES = TT o ('*V)(C5>
for § > © then we see that @g C_(BS .

10 LEMMA : Let V\ be a compact hausdorff topological space and

10: K —> RT‘ be a continuous map then there exists a continuous
PA%d

/\' ——
- map .‘l‘ K ———-‘3@3 for some 820 such that £ is homotopic to £ .

-

Proof: F: K —> ?‘ﬁ .We can identify'_B-F with 1$1' via the
homeomrophism given by Lemma 1--5 this givesﬁ the same
classifying properties as BT! and the constructions on H—Tax-e the
same for BT and RT'. £ K >BT pulls back the T-structure
& on RT' induced from T s to give a T' ~ structure 'F*( ‘O)onK
Since K is compact there exists a finite open cover %_‘_,{; lls(gm'ﬂ
of K and cocycle )/‘.d' : UcnUJ‘ —=>T for -F*(‘-«J) since the space
K is hausdorff it.is normal and by Urysohn's lemma we can construct
a partition of unity {(P l'é“é"“]such that U= (0)1]
InEHA3] Haefliger constructs a map into BT which gives for BT

a map .? K ———Ef_g such that \9*((«3) — -F*(Lo\- But by the
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S, NS
classifying properties of BT we get 'F and ‘F are homotopic.

11 LZMMA: Let K be a compact hausdorff T,opological space and Kla
compact (closed) subset of K then if £: (K, Ky —> (BT ;7—3.53
for some  then there exists an ¥>S and map —,Pv" CK,K,)") ;l?; which
is homotopic to {3 relative to;-@—r for some v>§ .

Proof: is similar to that of lemma 10 as far as constructing ’@V
i‘romfp where 2ue care is taken to ensure that the cocycle chosen
to represent F*‘(w) restricts to the cocycle on K//ivnduced by ﬁ(ta)
We then note that the canonical homotopy from -F to p construced
by Haefliger in [Hﬂgjfor s gives a homotopy with the required
properties; this is checked by noting that only a finite number

of nen zero compments of £ in (f:\b’) E Unm (F(K'))is used in the

construction of the homotopy.

We need a "kernel" version of Lemma 5. Spanier provides it on page

- 204 ot [SPI].

12 LEMMA: Let X be a topoiogical space K’CX compact and if
i € K’CX ) T éHg(Kg)and C,k (Z):O then there exists a compact subsp-
ace KCX such that /K and if &'.WIC.'K then a"’* (z)=0,

”~

Forx a topological space and 2% & H*OQ we have a map + - K——)){

70N

- . s -/
constructed for lemma 9 such a map,together with- z:.:.€_-+H -f(l\’;such

that .Q(_LE’):Z- is called a canonical suppori for &,

ve can use lemma 12 to prove the following:

1% LEMMA : Let (NA) be a topclogical pair,2 & Hx (”)r)
£ K—>A and ZI be = canonical support for F . If -rr:,;,(ii,’)é'; H*(K)

ero then +there exists a compact hausdorff space K/ with & K

[

is
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and extention € :W —>% such that if (: W CK! is the

inclusion map then (y (2 V=0

Proot: Since ('Flf K—>A )%{>is canonical there exists a CW
complex Q with K CQ and a weak homotopy equivalence o&: QA —> A
such that ap': &K . Tet Zol be the mapping cylinder of oA

and V' Z o ——>X ZALS retract. Then R is a closed subspace
of Z‘,gand Y is an extention ofD(which is a weak homotopy
equivalence., By Theorem 6 there exists e Ct\/ complex (P. Q) and
weak homotopy equivalence o <Ps&) . (2&.6\)) Put o/ =Yook
then oL/ is a weak homotopy equivalence which exdends oA to (e
Since oigg (2') = © we have if d': k C ° +that J—* C;:_’-_l)-_—:o

We now apply lemma 12 to Z/é—//f*.('(), KCP, to get, if ¢ l/\Ck’,
a compact subspace K‘of P such that Ll*('z):-o. We now obtain the
required #l: K/ —>5% as -Fl-—..—_ DL,]KIO

If (C,BB is a chain complex we will adoiat the following convention:
by %2—_’3 & Ha)g CC) we mean @& = o and {Zg is the cocycle
class corresponding toz= . If we need to distinguish between

different homologies we will use different brackets.

14 THEOREM : Th& inclusion map

c JalB AC'I?!)

S=o
between chain complexes induces the isomorphism
[ —_— =
Hye (80,008)) = m(g*r')

Proour: We will first prove the thecrem where 8. ig replared b ri'?t
d ’

——

and \' by 3

Surjectivity : let i?ﬁ} EH,g ) then by lemmaS there exists a

canonical support ( £:K-—-> I?TU %’3) for 22 &, Let 'F be the map
;ﬁv- [,( _.—3-@3 for some S5 6 given by lemma 10 then: we have




F(=)e aBshna ror §F (@05 & Hx (BT)
Pyt = F ()= f({2y) = I=5.

hat 10 2or [ F @] My (&) dx (LFE@D=1{=1.
Injectivity : Let Z& é:A('—g?) and L[Z&1 éH#(?S) _such that
Jl,* (_LZ:[):O. Choose a can onical support (f K —> 39, SZ,?)
with $§2'3 & Hx (K)  then 1et £kl —> BT ve the
extention given by Lemma 13. ‘Flf (i(’, K) —> Céﬁ) ES) so0 there
exists an Y23 and fr‘v K ,’-—78»’ given by Lemma 11, E.al-] éH;f (“('J
" is zero and {313 homotopic to ?klﬁ( P2 7§;; y 80 we get

C21 =£¢2)= (Fi)y (D= £ @=T)=c.
Now '-@_3 C B¢ so -

. 0 AR C QA
(=0

By a method similar to the above surjectivity proof we can show

that K,);f is surjective. We thus get a commutative diagram

iy (TAB)) = Hy (BT)

A
%}' Hx (QDOA(&)B A‘*

where &'N- is an isomorphism and K* is surjective., This means L'*

must be an isomorphism,

Let -F . 0, —>0, be an order preserving function between ordered

simplexes, Then -P gives a function TIG>‘ T'((I;J >T‘((ﬂ,>
defined by

The correspondai.ce F [~

> T’(F) igs a functor from order

preserving maps between ordered simplexes, and _P("p) is

always continuous,
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Let O be an ordered éimplex, put }c-f O~ /N, then fcr induces
an inclusion J-s o < O™, put 26 - IN—>06 as the map
which assigns to (& Nthe smallest element J- in 0 which satisfies,
] ‘.___ac/ = wmin [—kl}
Ke O

oty
¢
" J

then 245~ is order preserving and satisfies ﬁi6.° aPchso

T’(%a') : 7o)

map

> T7(/N) is injective. So we get an injective

LW T(g0): ol x TIE) —> T

Pt (6= {t—éﬁﬂfe =0 fthen for Y& TN), + & |&]
have I — T C&’g-)(b’) and for ¥ 'e T(c)

T (2:)¥'| 0
This means that

o[ dox T (4s)]: 16IxTe) —>RT
gives a bijective function from lg‘f XT‘(O"} to T C/Gg'/ )Qﬂ(/)&f))t
However this means that for S22 O

(]
':DCM(G'): S
where <&——? means that there exists a bijective map. This

suggests that

H*F (E%ﬂa ) Bs-;} AN Hag (l@"l%?(o‘))
Dim(e)= S

In order to facilitate the proof of this type of identity we will
adopt the expedient of simplifying the topology of the

topological groupecids that we congider, but in doing so we must
ensure that we can still aprly the computations to the topological
groupoids that interest us. In the next se¢ction we will introduce
such a restricted class of topological groupoids and then

= .
compute the E " terms of their spectral seguences,
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Well Formed Topological Groupoids

To help compute the IEl'spectral sequence we wili restrict our
treatment to a special class of topological groupoids, which still
encoﬁpas the topological groupoids which interest us, A topological
groupoid belonging to this special class will be refered to as

well formed topological groupoid,

To simplify notation we will put for subsets A.Bof topological
groupoid T'

Ao = § Bao¥, T |¥eh el & BROW= LW}

1 LE’v’r‘lAt Let Tl be a topological groupoid then the map V’X —>

——1 (/N) is continuous.

Proof : Let @<L~ and UC T! ve open in T . then ﬁa{:(,l— (LJ-) is

a typical member of the subbasis for .T{(OV)IS topology. Let

C ey (TTQ;L, (u.\) this means C (Y oCle) EWU. By the

continuity of composition and the inverse map there exist

neighbourhoods Ch\;tik of (e} ana ((6) respectively such that

U(;‘ o (kg € U but thu’s means that
(*"(ummw(uu))c Taee (W)

where Xa(ua‘) N X ) is of course a neighbou'c-hood of

C . Cis an arbltary member of V (/Ia,_o_((/\))so v (rat—u(u))

is open. adJ (L&) is an arbitary subbasis element of 71(ﬁd) S

topology so YV is continuous,

Let T1 be a topological groupoid. A subset fiof'T1is tubular if

the maps L, R [+ » Ol ! are injective open maps. The

composition of morphisms jn.T’is tubular if()‘V are tubular open
sets in [ gives JoV is a tubular open set.

T—

D o
definition of the topology of X ]‘

see next page for



71 is called tubular if it has a subbasis consisting of tubulér}
open sets, its composition of morphisms is tubular and taking

inverses maps tubular sets to tubular sets.

] Tj/
A sudb groupoid [k of 77 is open when is an open subset., 1t is
easily checked that an open sub groupoid of a tubular groupoid 15

tubular.

2 EXAMPLE: Let T")‘ be the topological groupoid of germs of
local homeomorphisms of a space)( then TTiX is tubular. In

particular, if X is ﬁze/then wve get the topological groupoid
71k)
a, ’

0 o
77¢, and open sub groupoids of TTQ, »y such as 7q{_%k as

examples of tubular topological groupoids.
3 EXAMPLE : Discrete groups; the open tubular sets being points.,

It should be noted that in the case 'Tjﬂis a topological group
which is not discrete then it is not tubular. In order to
~include topologizal groups in our treatment we will use the class
of well formed tnpological groupoids. This contains the class of
tubular groupoids. Let X’Qr'have the topology induced from the

‘>T7 as the

product space |' that is, put ;Z( XTI
projection X.; (O) = B/(() then the topology on X~ 11 is given as

the strongest topology that satisfies for each (‘&N, Xt X3 ——S
T is continuous. ¥We now define our class of topological group-

cids as follows:

Let T be a topological groupoid then it is well formed if

a) the maps , R, L: TV —5 OsT' are open maps
b) the composition map V. T’)?T‘ —3
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“ -,
-

is open
¢) the map

v X — S TUN)

is open,

4 LEMMA : Let T, be a tubular topological groupoid, then for ¥ &
X&ﬂand neighbourhood U of b/ there exists an we /N with open
neighbourhooa U,__ of L.(A’) and tubular opensets Wy cT! por Cen

such that for (<& wvL

U(__-: L.(U.’) and
= \ s
Ye (O X'(w) UL
(=Y
. . . T .
Proof: Since (/\,13 a neighbourhood ofX and | ' is tubular there exists

an W &MNand tubular open sets(a—):- such that
W

¥ e (\ X (o) C WK
Put U ﬂL(

L'-‘—(

) UL is . nd‘t empty and open so

;)
= L7 (u'_)ﬂ(;;t "FoR e IN

is tubular, and we get

¥e {\X (W) W,
5 LEMMA : If T\ is a tubular topological groupoid, then the map
v XPT THIN)

is an open map.

i /L
Proof: Let UL C X”T! ve open . Then for J&UW, by Lemma 4, there

exists an v\e/)\/ , tuvular open sets U(' fori=! to , open
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Y
neighbourhood U., of L(Z) such that

Ye Q¥ (W)

Now, we claim that

v(n

n-|

((‘\74)) - ﬂ T_I—.(:L—\!'\'I (L‘):r’l ° wl)

,..._p

(where-’ra\gb_ was given in section 2 to define the topology on
T'(N) ). To support the claim we note that if the(:‘ was replaceé

by C then it wonld be true, and then usc¢ the following: If a «

f\ T, (.

= Lty

and Glev)) € ooy such that
A (& e ) = b= (o) o e (1)
However a(¢¢ t=i) s a(v-1¢ () is defined for (& (<. so for

L& R(ed)) =R ()

and we get

' 0 ) then for | ¢ (< W there exists C(O) e W,

4

allgr+) = CU'H)"'%?QU)
for €V < W | because CUL0) (r(")éui . So

G\éf(f\i"(u))

21 -
~We now note that Wy 7! Otg_‘)t for | & (< W are open subsets ot T1

S0

Y( n X--'((") )) is open in T-'(n\/)

l"

It now follows that Y(MS is open, anrnd since u is an arbitary open
subset V is open, We thus get
6 EXAFPLE : A tubular topological groupoid is a well formed topolog-

ical groupoid.

7T EXAMPLE : A topologiéal group is a well formed topological

groupoid.



QL

It is easily seen that the topology on ‘P(/TV) in the case that T\
is a topological group G— is the same as the product topology on
GKGx---- and V: XmT" > T‘(/N) is just a projection
of GxrGw----- to GXGx ---. where \r(%“...,am..-):

(%2-'9») 9; 0()1.) - 3 So Y is open.

7 LEMMA : Let O~ be an ordered simplex and jg' 0" C /N . Then the
map T1 (§s) : T'(/N)=>Tk)is an identification map.

Proof: If we use ia-i IN —> 0~ given in the last part of section
2, we have 7‘,0_ is order preserving and io_oac =] +this means

the diagram

.
T (&) ) T (N

N, s

T(6)

commutes. If UCP(O’) is such that I (J’a—) (U\)ls open then by
continuity (ﬂ(&f ° | 'Zo—)) U is open but by the commutative
diagram this is exactly equal to u y SO L(is open. Because T‘(da—)
is continuous we get

Uc 7(r) is open <=5 —j(c)a' ( 3 is open.,
For (> let Ui CT ——Ti be tne map (tlb’)\—————-—s ()
and tor ordered simplex (¢

Let Us ::{t éAw[-(;(():(:O‘B'
: I TN
Tor (QO_Q)M

> (o)

be the wap ’{76_ ('('|\6>“

J0or o IN.

> TY 3’0-)( )’) , where




8 LEMMA : If T is a well formed topological groupoid then tﬁe topoleg

on CT‘ is the strongest topology which satisfies
a) for (> ) U CT —> . is continuous
b) for 2\, (J. XT’(/N) is open

c) for an ordered simplex O

Po - (ﬂ DL. ‘))g'ﬂ(/N) —_— TICO—) is continuous.
(e
Also themap |xv :r ATY —> CTt is open,

Proof: If we define the topology on CT? to be the one given in
the hypothesis of the Lemma and show that | %V is continuous
and open as a result then it follows that IKY is an
jdentification and so CT' has the correct topology assigned to it.
In our proof we will thus take the topology on CT' to be that
given by conditions a), b) amnd c),.

| *V is continaous:

a) Let O be an ordered simplex and (,L open inT'(o')'then if
5! =
w = Pa-(w) we have W= (QO'UlISX T‘(da') ((A)
L
but 1 (JO'S is contimuous and we have (W' == (T1 (d’>°v)(u') is
open in X °T! , Choose for (,d € Sl i<y an open subset U.‘d'
of T_’and put

U("—“— ﬂ Tr;'eb(k)ab—)

actr
a e
\ ' N
such ('S form a subbasis of the topology of 77(¢) . Let ¥& (',
Since L\)/is open there exists an ordered simplex & and open sets

Uie TV for (€ 0  such that
I — |

ye N X (u)cw

= ou



~ A

&
.

A
we note that we can replace LA; by L)( where
/\. - . -1
and still retain the above identity,and.because L. is open the

4 N —
sets _u( for €0 are open. Also if

{ ==,
Y'e 0 X7 (W)
LecN(
then there exists an
—_ A
ye O X7 (&)
CEQ
_ | :zxj : .
such that ¥ '5- (i , but the condition for membership
of‘U' in(~)/depends only on ?f’,a' « In fact
¥!'e ! =5 tor a,-€0,aL(r we have

() oY (a) & War.

wnee ¥ e N X7 (A

‘eontd
but without loss of generality we can choose T < i by putting

ai - L:—,CUL) for \:é a-_o—:- .

So we get that LJ’ is a union of sets of the type
A

AKT(ED y Qi osensn T

(€T

This means thathj is open.

b) et (& M and (A be an open subset of |/ then

Gxev)” (U (W)) = 7N (W)

which is open .

From a) and b) above we can see that every subbasic set is




£

mapped by (I‘AY-)-" to open sets in HT‘ » 50 it follows that XYV
is continuous. |
H-\f is open:

Let U be an open subset of FH and ({:J)éu Then there exists

an open subset LJ of A and an ordered simplex O with open
sets U, T fort€Csuch that

lox X N (QWXV‘ (u:))
=wWXX1TN (N Ocx Y (3)

fe6”

= wWXXTN (0 U)X (Qj('c'(u.-))
= w0 U XM (u) = W sny,
(&0

is an open neighbourhood oi‘(fnb’) contained in (L . Applying |wV

we get
wa {0 X (A5 W) @
~ Put %:7( e (6) \ = e X’ such that §(&x &)
a’w) oY (@) and Y() Clha for
&, Ay (reo—}

Then («)“: g ({\ec_;(—:'(u\)B I (()O'Bﬁ(wl)

[ .
but WO I 18 open because V' is an open map which gives Lo/ is
-] .
open by Lemma 7., We see that @ is WX T‘(N) nPo- ((4)‘) s0 is
open in CT' . Hence since X is an arbtary member of (A we get

that the map [XVY is open.

9 LEMMA : Let ﬂ be a well formed topological groupoid and O

be an ordered simplex. Then the map

b X T (9,) @ loo(x T'(o) —> CT




%

0 .
is continuous and is an embedding when restricted tou M',' o(for

notation see the end of section 2).

Proof: The topology for CY' is characterised by Lemma 8 and a
topological subbasis is given by Lemma 1.1. First of all (a:ay Tl@’r)j'
(M) need only be shown to be open for subbasis sets (/L o '
a) Let 4J be open in 2. ana put (Y = u:,((,.,)) for some l‘e/)\),
then _

(fox T (20)) (W) = ' ()
where €;' (£,¥)1—> { tl) 1r teo”

O otherwise

w——

and t. is obviously continnous which gives t; v'(‘«)) is open.

A : A\
b)Let O be an ordered simplex and LL) be an open subset of TI(6 )
o k% T o

then put A = l&_(w), 1t (dexT(9,)) ((A,q’:%

A .
then we have O CO™, because (+i F) is in this set gives
0-coy ama Opco,

Now U= (‘28— (7; ) X "rj"‘( A’é‘—-)(w>

o (fex TG (w) = (10 (QTXT (04 )

A
but if 2:0 C O then we get that | -
Drodtt = €a'°(30' °€) = € since 710_°d:0—=1_ so by the

continuity ofT‘(C) we get that |
: - / —~ !
(3% T (26)Y (u) = (1010 ((,0:))x Tie) ()

is open.




The (/{\S given in a) and b) in the above constructions form a
subbasis for topology of. C.T]so it follows that the map

is continuous.

On the other hand we can show that the inverse images of (A 'S

form a subbasis for the topology of ld'l)(—ﬂ(d') « For instance if
A

we set 00=0 +then

(t)‘a-*—r‘(?frrx'(‘*) — IG?'I x (’Q in the b) cases
and (&gx'ﬂ (ig)).'C(AB = t(—lt‘«)) in the a) cases.

10 LEMMA : When T is well formed, open sets in CT’ are fibred by
the mapﬁ_that ig if U_is open in CTland a.bre T—\ such that
T (N= T () and 4 e A then we get (el .

Proof: it is sufficient to prove this for a subbasis of the

topology on CT . Let 0 be an ordered simplex and
~ v\ .
U=0 U; X T,(G”f) (_V) where V is open,
Leo

1f G:(; L E) )6(/\ and ﬁ U’\) X\)‘:ﬁ((lpwz)for some (_‘{L\Xx)é cT
then £, =ty =t say and &/UE:XJO; Since te /) (:\_QG—CUE

E0
put € as this inclusion then we get ¢

78 = T(e)e T MY
= Tie) » T'Cra )(Y,)
T'(&b’)(?)/t.\

Il

\
80 ('Pq.\\()/'z.) e .
let W= b(:'-'(\/) where C &N ana V is open., Then by an




e
!

r -

analogous reasoning (L is fibred byTr « The sets (/L so far consi-
dered form a subbasis for the topology of CTl so the lemma follows .

]
Recall from section 2 that for $>1 Cg‘-“—(ﬂ )S%T'(/N) and
ﬁ—(cg) :'Eg . We have the following.

11 LEMMA: Let 77 be a well formed topological groupoid then
Z?/C, r C—> B is an open (continuous) map where CCCT
and B = T (C)

— — f
Proof : Suppose U is open in CT', Then for A & [T CC)/)]T(_(A)
there exists ¢ €C ana well such that 17 (e) = [T(U) = & .

But by Lemma 10 we get that Ce (A and so & CC/'(A>
Hence [J (c\ NiT ((/LB C F( -e (/L) and we thus get
T( Cn (/L> =R 01T (W) « But by Lemma 10 we have

'ﬁ'"-(ﬁ" (u,)\ = WU  which is open so ﬁ:(l&) is open since the
topology on 18T? is defined by the idenfification—ﬁ:— . The Lemma

now follows from the arbitaryness of the open set M 0

12 LEMMA : Let |{ be a well formed topological groupoid, and C—

be an ${—dimensional ordered simplex. Then the map

ch l{_, T(((f) OLO'X'—,(‘Lr)

SR

is continuous ai.d embeds /()?'/ ){-{-7(0', onto an open subset of ‘Bg .
Also the image is 'TT(IOEI)( 77(/)\/)) .

Proof : The first vart follows from the continuity of the maps.

Consider )U’.‘ X1 (Y < Cch . is open in (S because



=
&a

BIxT() = Co 0 (A T XTON))

&0
so by Lemma 11, 1 (/ogjx'ﬂéoj> is open in S . First of all we
note that Qe maps onto T (I€/RTIUN)) vecause if (+,¥) e
|6 T'(N) then Of =0 and .
T (@6) (T (§)())] o= T(de) oT (%) =T (5 ) (¥)
T (£°0s) °T' (¢)(Y)
| =T(¥o)(¥) =¥lo™
o Qe lt, )= T (6,7) .
Qs is injective because if Q—. %) (o, ) elsl K1(%) then
Qs (tr8) = Qe (£ ¥.) eives E(=tyrand
Y, = T (‘Zr)(X\)}r = T (%TBCYL) ,4— = T’- .

° ~
Last of all the map is open because if R is image of o~ x P(G')

[l

in CT' then ﬁﬁﬁq-, by Lemmaj1, is an open map. Using the result

given in Lemma 9 we get that CQJ’is an open map.

/ . o )
Let €'¢ be the subset of /6'/ defined by

‘ | o ¢ |
e/o— ={telol | £tO 2 e ea'}

then by Lemma 12 we can regard e:;- XT'(O') as a subset of Eg

when Dim (U')=S y Wwhere the inclusion map is induced by QG‘ . Ve
will in the following be interested in the homotopy properties of

the inclusion

(BB ) C{Bs, Be— U E€bx T )

o, Dewm(6) =g
where ecr is the usual interior of a simplex given by

57 X L Ly > ‘ Por (e & (
o= Lt =l | B> s5TEm) 3
We will also need for an ordered simplex the notion of the

boundary simplex /67 given as
. ©

/157 = /o) — o]

and similarly the boundary

/ Ca/
3! . o e (=
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We note that the constructions for Ef; are mapped to the correspon-
ing rconstructions ibr'hr/tw'the linear map which maps "vertices "
to vertices. If a set is obviously a copy of /6/ up to
homeomorphism then we will freely use the constructions on to
induce corresponding constructions on the copy without refering

directly to the construction on the copy.

Considexr CS_Then we cam see that(:g is covered by the collection

-

& I6(x TV(IN) | Dewma (0)= §,61is an ordered simplex j.

and the H§/Y?F1(0V) are disjoint and locally finite, Turther mcre
by using the topological subbasis for CT1 we can see thatfdﬁﬁ~7kﬁV)
is a closed subzet of CT1 and the cover of (?S ic leecally finite(in
other words the points of Ck have open neighbourhoods which only
intersects a finité number of members of the collection.) Since
the component in lyiaof elements in C[1 are mappeé injectively by
78 , that is T (&, Kl_\) 277(;'31_15'-2_) —> €, =t we can
with the aid of Lemma 10 give the following

COROLLARY: If T' is a well formed topolegical groupoid then

i&o'UO'JXWUN)) | Dim 0= § 3

is @ locally {finite covering of 133 by closed' subsets,

14 LEMMA : Let T be a well formed topological groupoid, then the

inclusion, for $>|, given by

is a homotopy eguivalence,



A

o/
Proof : Consider the map a(’o-'. ( lol, lﬂ"l _——'80' >—> 05"]) HI'])
given by, for + & \&| , Cec“, D= 1+Diwm(c)

(0 —B rer g
| —DMm

. [

\ -

i

a

where M = min '{{ZU)‘} . It has the property that if Ky is the
(&0

inclusion K4 (IO’I,(O'l.) _ ([a*[) lo~[— €;>

then JG—“KW:]_ and there exists a homotopy relative to I&'I
°rs / _ 3/
He: Ix (Io], e —€4 ) —=(lo]icl- €% )
such that (Ha.)o is the identity map and Q’fa-)l is b(,,_ocﬁ,-. These
maps are usually used to show that the inclusion Kc— is a homotopy

equivalence, bu’ they can also be used to prove the lemma. Consider

1ol X TWUIN) in CT'. Uy gives the map

i Tx (s, i5] - €L )>< TW(IN) —>
, | (le],16)=E ) x T (IN)
given by HO‘ (V,(L\G»: (Hr (V"‘:),X) . We now

get that there exists a unique map -

5T (BeyB=U €6 ) —> (Bs,Be— U E«

: D ()=
that satisfies; for a0) Dewma(6)=S the diagram ©=3
A
Tr (161xT(N)) He S lolx TUN)
ix T B IT"
vV H h4
T %X Bg — — > 1-55 ' commutes,

A — A
He obviously preserves fibres of T and the maps Hg agree on

S"' 7 :
(%) |7"TT(IN) being constant on this subset of (g . H is

continruous because it is continuous on the localliy finite closed
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cover {_ Qe (10l *1_' (IN)) ‘—D“M‘YZS?} given by Corollary 13.
Now put D '.Es U L%rsx T() —> ES-! as the map
D) = g.@d Then De=land K o)
to Es;l

to the identity map, so K is an homotopy equivalenée.

15 LEMMA : Let T‘be a well formed topological groupoid. Then the map

e (U (Em8r) ) TU()) —>Hy (B by € )

Dw(o)= Din(o)=3

induced by inclusion is an isomorphism,

Proof : By Lemma 12 we can identify a 7’\7—‘("') , by using Qe ,
with an open subset of BS. Let grbe a slightly larger simplex than

62— say given by

Oy = Lte o IJC( >>q~cmmﬂ) Fo e ]

put Z = RBe — U Qg-%—-'(c') . Now T ’(e )‘TVO))

Diw(e)= S
€ o T (N) which is closed in CT! and by choosing a slightly
larger simploex ?5- than éﬁ- we can include the closed set é—o—x.

T‘("\/) in -e;o-' \Aj’—l (/N) which is open in CS and such open

sets are dijoint in C_g o It now follows that the union of closed

sets U € XTI(/N)
-D(IM(G’) =S

is closed in CS» 52 by using‘the fact

that e‘fx TTCO.)) U 60‘7‘ ‘ (/N) and Lemma 11 we get

=
<'D'.W‘ (0)=$ Deualo)= S

that # is open in Bs . By a similar argument we can ccnstruct

a closed setzﬁi » and open set T LouCh that 2#& C_"Z,|CEL C

’BS —_— U eo—- X -’-](0_) bty putting
D (o) = o5
:—él — ’KS_—- W, ch- XF(G')
D)=

e p——

= +, is homotopic relative :



[any™
{~J

Z.= 12s— W, é::g%—‘—l(o—)

Do) =S
where @* = {\_t e |65} \tu)> /(,'D.M(r)ﬂ}
e _ {telf (t-U)> eyl

s0 &2 C- 1nterlor(’BS—DU es KT‘["')B in Bs

and U (é——o-) —és"gc—)KTI("') -

Dow(r) =5

(BS ")’35 — () éof XT‘(‘T) > is an excision map which induces
Do) =S

isomorphisms. Howevcr

v (e/ ‘? ))KT'(G‘) . U (ec‘,er E.’_:r_)‘)("["’(r>
Dim(md=3 Do)z S

is a homotopy equivalence, which induces isomorphisms in homology.

By composing these iscmorphisms we get the required isomorphism,

16 TLEMMA: If Ik is a well formed topological groupoid, then the

maps {Qo—- | Dow (67) = ’} induce the direct sum
representation
S QoY @ Hy ((161,61)XTE)) X Hr (Bs Bs-r)
(:D{\MCO'):S

Proof: consider the commutative diagram

@ H, (0o Ie1)%T@) . B9l Hy (Rs, Bs-1)

\\/ ) L 0 ~—
® H. (51,151~ € )d10) H{Bs , Bs —U &LxT1))
‘, c- o l 'll\ /\\ e
‘ T s/
y @ Hy ((En CXTE) ——s (0 (e, 60 Te))

where the-horizontal waps are induced by the maps (4 and the




4.J

vertical maps by inclusion. By using Lemma 14 the two top vertical
maps are isomorphisms induced by homotopy equivalences, the bottom
left vertical map is an isomo;phism being induced by a suitable
excision and by Lemma 15 the bottom right map is an isomorphism, The
bottom map is an isomorphism because the éEQr‘x'F(Uﬁ‘Sin Tgs are
di.joint closed subsets. We thus get that é:GQc%;B:is an

isomorphism.

Before continuinz to a calculation ofcii'we will look at +£K(CKTH'5D
)(’ﬂ(o—)) in more detail.

The following Eilenberg - Zilber theorem [;E?:ij is usually used

to calculate the homotopy of a product of topological spaces.

17 THEOREM : On the category of ordered pairs of topological
spaces K and Y there is a natural chain equivalence of the
functor A (XxY) with the functor A(X) ®A (Y) , where

is the ‘tensor product.,

In our treatment we will restrict curselves to the cases that
interest us when defining the relative version and the "homology

cross product",

Let (XJT§> be a topological pair and >/ a topological space then
their product is LX,B)?‘ Y = (XXV,E'AY) we note that since
the complexes A CK) ?)( A(Tj) are . free the natural equivalence
in Theorem 17 gives the natural chain equivalence
A, @ A o AGYRALY) __, A(xx¥)
| ) =\
2 (B) A(BY®ALY) A(BxY)

this gives the following homology cross product, where G is a Z.

moduls, given by




M HE (B ® Hy (Y36) —> Hpeq (BT 6)

as the cross product

H o (Ao%cg)) ® Hy . (4CW)® G)

alxY,, @ A8 &)
Hpiq ( /L\.(l?)
fpllowed by the functional homomorphism of the chain complex to

Hpra. (AXY) /5 (gxY) ® G )

; we have the usual Kunneth forinula :

18 THEOREM : The homomorphism M’ : HP(‘YH'B)@H% Y:6) —>
HP;..?’((X,B)XYJG)J'.S an isomorphism, if H* (Xﬂ?) is a free ahelian

group.

" The proof is by direct application of the Kunneth formula given:
in Spanier [__SPI] and the properties of the forsion product,

} Let 0~ be an ordered simplex and §a‘ AS————N‘TL where S-:T)n'w\(d")

‘  be the map defined by fo__({:)(()'}) —= t() where the vertices
of 0 are given by wvijL Uy L - -0 & U_S_HI Then ?r-i‘s a

_8enerator for A (|0'| \)/A (lo"l)

19 1EMMA : Let J st & Hy (lo], I6]) . ve tne class
corresponding to the cocycle %0_ . Then for 7,>/ o

Hy Gotyis)= $° s
" 274 [{8s}] o 2=5

where Z [tg’o—}] is the free group generated by {%r} o

The precof is standard; H i/(ld‘“(()"]) can be compuited as the

-




L

ordered homology of the simplicial complex pair' (L<;‘( ) and then
note that the generator is mapped to {i{gafg by the natural

equivalence between homologyv theories.

The mép %Ea’ has another useful property which we will use; ;ia—
is induced by an order preserving map in the sense that §§5-is
linear and if ZX_g are the vertices of Ag then %0' ng Ag G

is order preserving, so we get the homeomorphism
- . Y T
T (8 [5%): T(A) —=T (o)

Another property of interest is that if Tj is a single point € ,
- ~D
then.T1 is a tubular topological groupoid with A homeomorphic
'l;o'ETl and the subsetis ng correspond to (Af*) S. S0 by using

Theorem 18 and Lemmas 16,19 we get in a some what round about way

that
=1 -
Com He (@S0 = @ Hs (161,161)
I\M(ﬂ')Q
. S - o>y §
with the generators given by 5 /\ "“> [0 L_.(z& .

For an ordered simplex O let Z= be the inclusion

= . O Uo81) < ((6)°@)° )
D)=

then we get:

20 LEMMA : Let-TTbe a well formed topological groupoid and

33‘) £ 20 then the following maps are isomorphisms:

Co® Hy (T1(0%)36) &8 @ H (10, wl)@%(T(AS) G)
Dem(sd=¢
wlClb)y @ H(o1,160) 8 H (T0),6)
‘:DI'IM(U'):’S _
M e Hew (O EDNXTIE)

L >




¢ b

7¢

i&""—i“l Hg‘-t-{—_— (ES,(ES—l) N Eju_E

and thus C'S ® H.t (T‘ (Ag)) G') ,Q: Egl‘,{-

We shall now construct a boundary map 3| L R Ht (T‘(QS)JG—)
—_ CS-—I @Ht(T(A"")J'G)which commutes with di given in Lemma 2-4
when X, ="TRB¢ . Let O be an ordered simplex, represent the

vertices of & by WV, &V L. '—Uiﬂ where 4 is the
dimension of O . Put Oy = %_U'. yoo eV %s the L th
face of O , and (I(d‘) o~ as the inclusion
' . . £ 3 & g
This gives the diagram (where S=9 )
T iH)O
T (¢y)%) ,
T(s) —> T (o))
e [ AS s-1
T(e IR » lTVg’m 1)
(J)A) >Au) "'1 -1
nEs)! ST (By)) < 4*)

Put }L\J as the composite along the bottom row.We now have the foliow-

ing commutative Jdiagram for an S dimensional ordered simplex O

(6] 1601)x T (&) L2 (ol 16 YR T (A D
n i

oyl ~
17‘?(26'(()'11\ ) (le, (61 ) x T (3°)
| TG )
UGL)]I\G—MDV\ (6) Clot;1el) x THe)

| Qs | Qo
(\(‘35"\\, Bs—~x ) C— _ (%Q ifBg-q>
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Let M be the natural chain equivalence p': Ax)BA(Y)—
A(XX Y) feor topologicél spaces X , Y given by the Eilenberg -
Zilber theorem,

Kyt (16161 )XT (A —> (Bg, Bs-)

be the composition

\
/‘F-T(grl
Us) 18 % T (4°) ail )

(151, IO'I)XT‘((Y) Qe >U§S|?5")

and

O S A(ES l) 04 A(,QV) B —_ A(RS)

[y (Ry- ﬂ A(M 2) A(Es—')

—> 0

If Lo is a cocycle cof A (Lebgj then put %‘02}'5 as the correspond-

ing class in A u)gj/,{_}, (Isg-.) and [__"stas the correspending

class in 2\ (,r‘gs)/A (@5—2)

Let W be a cocycle of A (T' ([Sg)> and 9* the boundary operator
of the above exact sequence,Then we get \

a*ib?c—/\/\ (?0_@)(«))—&; — OL" DDZG‘ M€ ® ("3) Js
| = &' [ Ky {\}\Lél )fw)&w)]
OU' f é(") Kcr( ) (l’/“‘ )lu\(%o'( \QLO)JQ
A [ﬁH Ky M (Sow @ mi (9)) ]
= 1 ém !«(V(\)M(%m‘)@,u () §,.,

hence we get the following dlagram commu.tes

Co® He (T(EY) 2o Coq® He (NET))

|

[

A S
\)/ Koy \ \ {K‘r*%
\ .
, | 2 )
H Sttt /\?-a *) PJ» | ) "'"“‘"q‘" —e lt’e Sttt -i /(g‘-‘“ R@Q‘ 2 /’

where Lka‘an is the comosiie isomorphism given in Lemma 20,

and 'r)‘ is the boundary operator




' ; | ; o
9,5, ® bé) == 2(.—3 (§(5‘(6)® Hig U’”)

we thus get the:

21 THEOREM : Let Tl be a well formed topo].o-gical groupoid and BT

the classgsifying space for 17 . There is a convergent ffzhpectral

sequence with E’Qz.f X Ho (Cg@ He (’P(&SB)G_ .' ;)‘) where

the boundary operator is given by
P . L
2 (EOW) = £ Coi)® Mog (W)
= . . : :
and the bigraded module associated to the filtration of
H¥ (BT\,G—) defined by | \_l
Fo Hu (BT )G) — (m LH* (ES ) > (Eﬂ) H,J :
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Tubular Tovological Groupoids.

This section will introduce a useful general construction for
tubular topological groupoids when the tubular topological

groupoid is "realisable" a property that will be defined. The
construction is refered to as 1lifting 'P to a shift of embeddings
and provides a local homotopy lifting of maps of compact hausdorff
spaces from the object space of 71 to B itself so we can choose
the nature of the image in the objects of 1j produced by the map
L 'Y —= 0beT! as long as we stay in a specified neighbour-
hood of the image. But to do this we will look at a characteris-~

ation of realisable tubular topological groupoids;
Let T7 from now on be a tubular topological grcupoid.

Let Z(:—W and U ve a neighbourhood of )/ which is tubular.
lu) and [R(WL) are open neighbourhoods of L{(¥) and R{¥)
and the maps L]LL &. iilu_ are homcomorphisms put H{W):
R(U) —> L(u)as the homeomorphism L,H‘D (RIM)_‘ o Then tc
¥ we can associate the germ Germ (i{(X) ;F((Lt)) . where, to
refresh the readers memory, this germ is the germ of the map p4(u)
with domain R(Y¥) and range- LQ)= ¥4(LL)(E(J)) . It is interesting
to note that the correspondence Yl——> Germ (R(X), HLL*)).

is independent of the neighbourhood .

1 LEMMA: Tet ¥ &1 anda U , V be open tubular neighbourhoods of
then Germ (RQ{), H(u.)) = Germ (Z(?ﬂ, H(\I)} .

Proof : since Tj;isftubular there exists a tubular neighbourhood W
-1
which is open and ¥ & WC UNV s H(W)= [__‘;4, o (RlWY =
ince is an open neighbourhood
HW [L(w) = HV)|L(e) SPce Rlw) 18 2R oF

B e

R ARt e b et e i B atic B e At

P
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of |(¥) we get the regquired identity.

The map § —> germs (R’L\’),H(“» is 'l;lj.us well defined. It is the

can onjral map = from Ik to the groupoid of germs of local

— T
homeomorphisms of ObsT ¢ Germ(O(YSl ) o To shorten the notation wve
will write G'(T‘) for Germ (OU‘ST‘) .

Let X be a topulogical space and h: U, —> U4 a local
homeomorphism then put Germ Lun) l'\) as a set of germs Germ(w.'vs)
where > &(r, . The groupoid of germs of local homeomorphisms

is converted into a topological groupoid by using the topology
which has as basis the set of all sets Germ (U\Ul/\) where b U,—>U+

is a local homeomorphism.

2 LEMMA : The map F:.1' —> G'(T') is open continuous, and a functor

between topological groupoids when [ is a tubular topological grow

poid,

Proof: the proof is routine being split into parts.

i) for ¥,,%. e\ and J, 0¥, defined we will show that F(¥°%)

= F(?S.)D'F(?SL) Let U, and U, be tubular neighbourhoods ofb/, andxl

respectively now u,°u7_'is tubular and it is easily checked that -
. -1 '

HeU) = HEY| R (INLW) ° HILY | RWINLU)
from the definition of H s SO since K(M\)(\L(“z)is an open

neighbourhood of K(};ﬂ)‘—"i-(d’-z)we have the required identity,

ii) units are mapped to units.

iii) the map F is continuous. To show this let O/C‘-'r' and /\/ be an




3
open neighbourhood of F(¥) & G‘(.T') .Since N 1is a. neighbourhood
>UqL 4 O6AT' such

that F(¥) € Germ ((/\.3 h )C/\/.This means that R(¥) W, R is

there exists a local homeomorphism h: U,

continuous so there exists an open tubular neighbourhood W of .4
such that p&t&\ C:(i, , also by the definition of F  +there exists
an open set U such that R(b’)eu3C.R(u)and H) |H~$ — L\_[u,s'
But again by continuity ofIZ there exigts a tubular neighbourhood
U such that R(G)C U3 and ¥ & (A CA ,This means that H(G)=
H (Uﬂ l QCJ) — L\. | R(l;) and f&(b) C‘-‘—Ta(a) vhere E(a) is open,
Hence F(U\)C Germ (K(a)| HL&)>C—N and is a neighbourhood of IZ(X\).

iv) F 1is open., This follows from the fact that for a tubular

open setl/| Germ (KCU\)) H(UD is open in ECT‘) .

o Y
Vie are interested only in topological groupoids such as T‘z,T'z’,.

and T! (;j which have F as an injection.

A tubular topological groupoid is realisable if the canndnical

map is also injective .

"It is interesting to note that not all tubular topological group-~ids
are realisable and a study of such topolugical groupoids would -
provide an intexresting study in topological groupoids.
3 EXAMPLE Let X’be a topological space and ,Z be the integers
with discrete topology then on ZZ)<)< define the comosition
rule . .
(hha)o(m,a) = (n+wm, a),
2[‘%)‘ is then a topological groupoid with objects)( o« Which

is not realisable.

In the case that Tl is realisable we cén identifyT] with an open

subgroupoid of G‘U‘) « In the following treatment we will assume
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that this has heen done,

Tet X and Y ©ve topological spaces and (X —>XY pe g
topological embedding such that (:, (x) = (= lv*-(:c.)) for some

continuous A X~—>Y +thenl, iz a level preserving embedding which

is the graph of the mapo{ * K —>Y ,Fote that every continuous map

has a grzph.

Let Tl be a realisable topological groupoid and OsT! its space
of objects. Let T vea topological space,Then a T- shift of E is

a tuple (l‘.', L‘z, Wuwz \ A) with a pair of level preserving
embeddings Cl) L‘Q_ VP —D P‘?\Obswand a homecmorphism A!\da"’"’w’g
of nieghbourhoods W ,(A)p__ of L‘, (PB and L‘Q_(—PB respectively which is
locally of the form fl_ﬁ‘a R ;Q being a homeomorphism ;\\ v —V of
open subsets of O{’ST‘ such that Germ (_M, 3) - —'F:(,Tl) .Also

we require that (5 = &Oﬁ .

et 2= ()2, U.,Uq_.c‘¢> be a |'—%hift of P then define F(z)
asf:P —> T where for % & P and some local represeniation

AxB, —(—*—ab ArR, oF d, flx) = Germ (0((3‘)\2) where U, is the graph
of A , and GoAYYE PR . -F is continuous and well defined, £ is
called the_Germ of the T-shift & . Denote the set of T'— shifts
of P by ﬁT‘(l_’)and the sel of continuous maps Q—IP“‘?"_F by FM‘\.(PIT,\‘

4 'HEOREM : If P is a. compact hausdorf{f topological space and 71
is realisable then the map

B AT(P) ——> Fau (PT1)

which assigns the germ of a N shii"&to—"’é is surjective,




£

Proof @ If ?————N‘ is continuous (”(P) is compact. So there
exists an integer W such that there exists N local homeomorphisms

di‘-u( >V, OF" OLs T such that
£(P) C . G—w(u\,oQ c F (1) |

During the proof tl. is cover will be refered to as an K- cover,

We will use induction on VL where the following hypothesis is used.

Hypothesis H(W) : if £ P—> T has an W-cover and is

continuous then -F is a germ of a T'— sghift of ? s, When ‘P is

compact and hausdorrfr,

Suppose Germ (_u.,AZ.) is a b—cover of £: P—>T . Put & as the
composite

Pt R0k T
and & as

P4 5T s Obs T
then put (| = [xedk , 42 = [*f y L, = PrUG Wa = PrUy
(where U, = A, (W) ) ana A= Ixd,. &= (¢4, ey Wy, U-L,GQ)
obviously a TL shift of P and E(E) :'-F.

This shows that hypothesis HU) is true.

suppose H(m) 1is true for WA | . We will show that this
gives | (wm+)) is true. Let £:P—>T! bée a continuous map
from a compact haus doxff topological space P , and the wm~+|
homeomorphisms

£o€; L —> Ve ey LWH}
be an w+i—cover of £(P) . rut 'P-— U \C (Cerm CU;, Ae )) and
T= (ﬂ (Germ (Uumrt | Ruae )) . ?' PndT are open so0 S= PLPAT
== P—T is closed and compact and N P' so H satisfies the

— >
hypothesis of H(u«) Jow T —T10 Pl=pP—Ii / is closed and
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Gl
o [ ~A —
compact and (f—?) nb '-’—fé so, since ( is compact and

hausdorff y ¥ is a normal to pological space s0 by Urysohn's lLemma

G

there existls a function CP.- P [o,lj which is continuous, takes
the value O on S and the value | on .P— P/, cp—'((;o, Jﬂ) is
closed inP and hence compact and hausdorff ,further more QD—,(COI"—:‘.‘])C
P’ S0 'pl@ﬁlﬂ:o‘!’i‘nsa'{:isfics the hypcthesis of ‘H(.""') . Hence
there exists a | — shift of Cp_.'(Col'%J),%:(l}ﬂ'v_nwl;u‘u d\) We
shall extend & to a"shift”on an open- neighbourhood of LJ, y 1in
Pr O3 T .For = e:cﬁ'({-‘-al!’?—])here exists a heomeomorphism CQJ('. 'E),Bc"‘>
@2>¢ of open subsets of O(;s"l‘ » and an open seti /Q,C_ in CP-((CO!"‘J) -
such that % dac =d A XBiac and (D E AsxX B
Since ﬁrx. is open in CP_"([:O,)/L]) thére exists an open subset H/D( in
’P such that F)/:)L ﬂ@a'Cf-’-O\ﬂ) 7—”9%- Put
’B:Dc = (S_ 4 & B O Upy| Germ (4dx) = Germ (%'dmﬂ)g
and B, = Auc CE'lx\) o 'B.’:,L is open so b= Ao \r@'wc_
is a homeomorphicm d;lc g 'E’()L —_— EL)L betwecen opeﬂ subsets of OGSP',
mso Germ (Bio b ) = FCTYD . Put W! = U f A% B |
>C C= Clpkl([O; Vz']\)s and construct 'bu—,f in a similar way. Define
d'-_ l,d/-———-‘) LJ.L’ as l)CC()gc on I'/")/-,CX’B’l'JQ . (/‘Qiis
well defined because if (@,ls) € Al x E{:(_ N r‘])cg_\,(E(:_g’.

I % dg(ccﬁ(-") — ,*dw-\-((a)(r) — \%d-ﬁ.(al(i‘) .

p{'u ' qy"(r_ol %_j} is a restriction of d,, , so A and:.;pl
/ oo
agree on (,J’()(J‘/ 50 can be extended to a map ALY L, /?U,_ —> W, 10y
Put bt W, , b W as the interiors of W ana W,

respectively in Px OLg T . Then put
Wg = b W DWW D@ () T
We = tafla Dy U@L H) Vi
and define of : W<g —> Wy as, for (Clllr) o W=
F(@) =4 A0 o acF (L))
(a, Awn(6) oihervise,
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Wg and ULr are open, d is surjeciive axd since

WA @ (C 1 TBY% Obs T = @7 (L x U L N (052N
and Z( is level preserving we get that 0{ is injective. 2‘7
restricted to Luw+t L\J,) (,d,l, oR CP"((—';_, l”j)x Umt1 is a
homeomoxrphism of open sets in ?X OLs T 50 we conclude
that since it is also bijective a is a homeomorphism of open
subsets of Px Obs T . X s locally of the form l%z\\ where

&f U >V is a homeomorphism of open subsets of C0S T

Ay —
and verm (U , d) C F (Tl) . S0 & is a candidate for a T—

shift of :P construction.

Put AP —> OGs T ag K = E'D{“ then the graph ofc><J
say J"I is contained in (JJ3 . This is so because:

i) if =< e CP_’(E_OI'-L,_]) then a‘ﬁc“‘) = C((>) ard is
contained in W, N CP"C EO)JS_-D?"O("ST, which is open so d’l X&.
LA{--(U.).We also note that d and 02 agree on some neighhourhood of
& (). . "

ii) if ¥ & CP-'((—%_H]) then, since ’C":T‘, £(=) -= Germ (

9‘dw+«> for some Qe Uqu | 50 },!?C)é- CP_I(C‘%.! |])Y\Hmﬂ-

iii) if >c ¢ QQ-,(£—}_.S> then as for ii) £(x) = Germ (4,62,

Aw-n) Also from the definition of <! we have Cerm (oi(?c) A s )

£Cx) , thiz means that B‘;( is not empty and 4,(?¢) =

(x1300)) € ArxBa C !

We conclude that if )In,_ = ;{— o & , then 7= (o{na;?.;b\]g.(t)‘”
’o\) is a TL’ shift ofP and further more by inspecting the
proofs given in i) to iii) we get that alse = (') = £ . Hence
proposition H(m) implies H(\M'ﬂ) , and since H () is true
by induction H(Y‘) is true for all v & N
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1)

' X
Let x and \/ be towological spaces and put \/ as the set of
continuous maps from X +to Y .Define for F}CX, RCY the

3

subset «

X y'}‘ . - . i o i \
of Y ) is usually given the compact open topology which
has as subbasis the collection of sets LK)' ‘/\> where K is
compact and (A 1is open. For our purpose we will use an alternative

topology the unifcrm tonology on Y" given by the subbasis {’LU\V},

(L open in ¥XxY where
‘ <;L&> — {l+:é% >0<\ (1}-P)0An€5 <;7<_3L«>i}
and /A is the diagonal map., It is easily checked that {( L'\.7}
is a basis for the topology and is infact the ccllection of open

sets in the uniform topology.

5 LEMMA: If T‘ is a realisable topological groupoid and P is a .
. P }

compact hausdorsf topological space then the map CAT‘ ——2 O T

given by A(t) = 720'("‘ is continuous when uniform topologies are

used.

Proof : This lemma comes from a general property of continuous

maps: PxX] -*—l—t—&—> Px OGsT! is continucus so yf
U P O Tt is open we get ((‘FK)—|(CL) is open and
aL~l<UL> :4(\~§R)~’(U\)> » which is open. '

Let Fx —>Y be a continuous map between topological spaces

then a system of local sections of -{‘ is given by the set of pairs

§ s, S2)| > eXT

such that ({5 is open in y and contains £(x> and S:.,_ is a

continuous map S‘,( P Ay % which satisfies for 9 & u,()FoS,(-:'Lu
:-(.



6 TEMMA : IfT' is a realisable topological groupcid then, using
. (o) N ™
. | !
the uniform topology for O(fsl" and T’ we get that for P a
compact hausdorff topological space

I TP > Obs T

has a system of local sections,

Proof:Let 'QET]P then by The(;rem 4 there exists aT— shift for
Pyza= (1) ia, W)Wy, o() such that (&)= .
Put O_(_ = U, y for 4 C-;—a{'— there exists open sets U, CP
V., Os i1 such that %_ — u,)&\/l C_U, and cA ] ULV,

I
is of the form [¥ &l’ ,where A iV."‘Vz. is a local homeomorphism,

rut Ty P Dls T —= O 4y the projection I (£,3) =&
then Germ (“?.Ua) é@ ) é:l ,define Q]a (4) = Germ (TLU ,0[) .
This gives a map S(‘. u,p *——""‘5 “ which is continuous, we

given by for 9/& <u13>
3p(g) = Q@ o (Irg)eh

Now [ o Sf.(gjﬁx) = fo gﬁ(xl%(x)) - G (ox) FoRr x & P

0§ (<Oe> a0 Fe 75

is a candidate for a system of local seltions.

have S_F

10 complete the proof all we have to show is that the sections
A *PP “
<(A+‘> —> are continuous. Let g & 40F> and
4\/3 be an open neighbourhood of 514 (9) .zet T, : P XOLsT—P
be the projection T_‘ (< ‘U&) = >C then W— ( Tk 29}9(\/) is

open and for x &P

QT‘—t S é\{o@(“c, %CX.\) ( ¢, ?{z (> | %‘DC)))

Qx §F o (\xg)ol )o AC:).
(I~ Se(8) ) e Alx)
< V
80 9 ¢ c LW and in particular g & L WN O'F> . Bb” using the

Il
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above formula we now get
Q4 (& wnUpd) c<v>

s0 since V and are arbitary choices we get S\ is continuous
> g

From now on we shall restrict our attention to the case when CXﬁT‘
= Wj’ for some Zéﬂ\/ and [! is realisable., However it should
be noted that a lot of the results can be extended to manifolds
in general,

Another constraint that we will apply to our treatment is that
we will consider only those F'S which are hausdorff compact and
locally compact. For such spaces T and for arbitary topological
spaces)( the uniform topology.and the compact open topology of‘KF

are the same,

Let 'P be a compact hausdorff locally ébnpact topo]ogira] space
and T1 be an open subtopological groupoid of T 2_, where 472¢

then T\ is realisable, C)bsPCL ”Zq’ L is a complete sub

topological groupoid of 1 7, ifs Obsl' = RL

In view of Lemma 6, we know that the neighbourhood structure of
(ﬁ21)P is important.(ﬂa?)Phas the usual vector space structure
induced from that on 'IP?’. In fact for 'F,;é(mq)]))%é-m
we have
(=9)x) =-8(x) gor xe P

Q{:fe)(pc) = FX+F) for > &P

(Ag)= = 2. 3> for x P

OGO =0  for el

Let \/ be a vector space over.ﬁl then a norm on \/ is a real

- e e

- ———




valued functien )
vV — R
with 209 gdenoted by 1ol for every x & X which satisfies
the three conditions:
For any two vectors A and (& in \/ , We have
o+l & llall+ el
For every vector 2 in \/ and any real number A , we have

(x|l = lol. li=cl]

¥or any vector > in X , {>cll = © implies x =0 .

ﬁlﬁ’ has severél norms, an example of a norm is the sum of the
moduli of a vector's components, Let /| ] be a ncxm on ﬂii then
this induces a norm on(ﬁZ%)P in the usual way. In fact since P
is compact and for x, & RrR*, Sxo _ "

By () = L & R =l <85
is always open the functions on 73 are bounded when continuous,
so we get the norm for £ & (T{Z‘L)P ’

pell= SuP 3l feolll .

xcP

For Sd>o l'P ECFEW)P put .
R (0= 2o e@YT] 19-f1485

Then we get the following :

T LEMMA: Let P ve locally compact,' compact and hausdorff

topological space then

$E; 0 Fe(RY)F1 8503

is a basis for the topological space (‘R‘UP °

wov Yoy




Proot: wor | & <‘P\%)P and g>O\le't '@e§8 C{_} then
since 13 is compact there exists a S|\> O satisfying S>S,
such that for all x e P M£0) — 9(.1) I < 8: . So if we
choose g;_"-? J(_(:_ (%"SJ { S).>o) and %-S;. (%> C;P_}&,(F)
Since 9/ ig continuous,; for == C—.:'P, we can chcose an open
neighbourhood s of >C in P which satisfies 2 ((hsx) c_?sl/l(?cd).
since P is compact we can choose a finite sequence ;.. J(u

of members of © such that the graph [% ‘3» of 9— has the immage

covered by

N

b = U Uy, X Bs,y, (3&)

Now l/\} is open and so 4L\)> is an open neighbourhood of g« +Als0
we can note that if | & 4\«)> then for all ®C & |

[l ?(x);hbt)//é I 9-(Jc)—- 40 Y|+l W) — 9| For some ¢

é g’—/z'f' 8‘77/:_ = SL

so 9 e dWw> < B (9) < TBg () _

and since ‘;1 was an arbitary member (‘f’—E-é (-F)we get'_B&(f)is OpEelL,
Let N be an open subset of P)( Rﬁ, such that \CE<N> where 1C

is an arbitary member of (ﬁ&ﬂp . For >c &P we have, since 1‘1 is
continuous, that there exists an open neighbourhood u;( of > mdy,>o

such that
() (Us) € Use :B&%—(@(’f)) c U xB, (F) C N

P is compact so there exists a finite sequence Xjs>---%wm. of

members of 'P such that

U = U UsXBanyy

i=|



and  fe du> . | . _

put S = mit 5 8%/4 b then 550 anair heBy(f) |
[& (% vn

_for > &= uf’(u'

| W) — Co £ ThGo) — eI+ 0 — £6 ]

Since for ¢ &P there exist an |=(&W guch that > & (s
we can conclude that he /\ N> . Now l/Lwas an arbitary
member of Eg('p) S0 ’@g(‘(') C4N> « The collection of sets of
&
the form <N> where N is open in P‘Q ﬂ?-.'/forms a
a

topological hasis for GR ) Hence summarising we get 1[:;]'1;11: the

—— .-
collection of sets of the form EQU") where Pe(\ITE ) and 9> 0 ,

give a topological basis for Q’qu t"

Combining Lemmas 6 and 7 we get the following :

. c
8 Collary : Let T( be a complete sub ltopological groupoid of T(KV
P
where %.> %Y then for each F&T‘ there exists a 5570 and continuous
[ ) P ) -1
map S ' /Bs\c (R"‘F) —> T‘ such that ot 28 =1 « Where of course

R, (Re£) o R

We note that (BS (JZ"-(") is convex in the following sense. Let
%2 & Re(Rep  then (-4)9, +t9, & Ty(Ref)for 06,

as can be checked by using the difinition of a norm. Also if I: is

7?3-3 (RO'F) given

by h: t \"-—>Q‘t)9i+f%q, is continuous and we have W gives rise

the unit interval (closed ) then the map h: |

— G
to a homotopy K ‘.I_Y\’P—-—) \' “ In this way we can construct




fpe
.. =P , 1k
homotopies in ['" which connect a~given member MWL of | with a

- _J f, -
member Il which is close to MM and has a specified map Ro YU in IR |

Our first application of the above constructions will be the proof
of the following theorem, which will be proved in stages but is

quoted here to provide motivation.

9 THEOREM : Let 'ﬂ be a complete sub topological groupoid of |
the topological groupoid of germs of homeomorphisms of open

subsets of ﬂzﬁz, then
Hy (TH(8))=0 dom 220 £23..

'P
\ %
We notice that if % ana £ &(R ) where T is compact locally

compact and hausdorff topological space then first of all

B = LU
UsCe) = (xig)e PrR* | £y -yl 48]

and is open, In the proof of Lemma 6 the system of local sections

where

L4

were of a special type which gives

o
10 LEMMA : Let 11 be a complete sub topological groupoid of .712,

where 4.0 and fzeT1Pthere exist a system of local sections
a5 P
S B&c (R°F>"‘-> T
(as given by Corollory 8) which have the two following properties:
A
a) there exists a continuous map &' US{_(R""F)—éT such

that S(4y = S » (1eg)e A .

b) if 9 I->P is a continuous ark in I° and ‘éfém such
that for F&L (9-(+),9) e Uee (R £) +then
. -\
C(9(»,9) = SV, %),




L9}

0

Proof :property a) comes directly from the construction given in
Lemma 6, and Lemma 7 where we take s ‘ as a restriction of S_)c_
For property b) we note that for each {-ef s Since @' is
continuous, there exists an €O such that for S&.l \ Ig"f)‘;ewe
get 3 (9(&‘) ‘4) = g\(%& "3’) from the construction of %\_F_ .
Put \/.(_ - Se,.__, ' S (%U) U) - §(.?({—)l‘é)} then we have

shown that \/_6 is always open and non empty so there exists a

set T C T: such that I: = U T_. \/'t‘ and for ‘E,](:L. l‘)
te

\/t‘f\\/ + 525 —> £, = {' o However I:_ is connected so

we conclude that V_(:—- T foranl +t&T .

Civen the system of leccal sections provided by Corpllory 8 and an
G— [ T‘? we can construct an equivalence relation M“on UW_(EV\C}\
given by for (Q\)(q) ;G\u(ﬁ_)e U&C(QO«C) let Q‘LU{J‘() /\J(a,_,(r,_,)
when .

a) b= (J’—;_ and

b)there exists a continuous arc %‘ L —> P such that for

tel (9({'), (r.) & qu_ UZDJF> and a,= gy, CL-;_:‘(}(I),
The relation o~ is obviously an.equivalence relation. Put
CD{Z () §£ (’2 ﬁ)/rv

and give O,ﬁ the quotient topology and let r_p U&f (ROF) DQ{‘
be the projection of members of Ug\c(RO'G) to "their equivalence
class. From Lemma 10 we get that there exists a map ZF " Q‘,_, ——*)Tl

such that

s

1N reyeeme mewres
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.J\
comnutec., By Lemma Z2¢1e2 <i¥: is continuous since 8 is.

[y

A convenient way of summarising our efforts so far is the following

Lemma,

11 LEFMA : Let 71 he a complete sub topological groupoid of ’ 2,
where @)O and FG' then the following diagram commutes and is
a diagram of continuous functions, when P is compact, locally
compact and hausdorff topological space,

13——10————>T‘

4
FAS
Ll % KDF)OA, S 7

|
vV
USn ((E°-F) 2 QF

It can be seen that if &F satisfies Hcl,-\—w_ CG}P) =0 for

NW>0 then we have a good chance of showing that Theorem 9 holds,
We will show that a special subset orf CQF can replace CQF. in
Lemma 11 which satisfies this condition:, in order to enable us
to calculate the higher dimentional homoiogies we will resort to
using a special class of spaces to represent CRF called compact

polyhedra.

The following will give the definitious and properties in brief,

For further details sée for instance [:QPLJ.

A simplicial compiex consists of a set EIIZ of virtices and a sct

:-{?S} of finite non empty subsets of E}I} called simplexes

such that



|

P2

a) Any set consisting of exactly one vertex is a simplex.

b) Any non empty subset of a simplex is a simplex.
Ve shall identify tlie simicial complex with b( .

The dimensio& denoted by 'Dgw\(g) of a simplex N is ‘the number
of vertices in & minus | anﬁ the dimension of a simplicial
complex K is

Sup E Drwa(s) } ¢ is a simplex of K }

A simpicial map C'D ‘ Kt —> Ko, from simplicial complex V\' ’

to simplicial complex W -_ is a function Cf from the vertices
of K‘ y to the vertices of L(?_ which maps simlexes to simplexes.
The simplicial complexes and simplicial maps forms a category of

simplicial complexes. A sub complex L—- of a simplicial complex \’(

is a subset of WK which is a simplicial complex: in this case we

wreitel. C K .

For a simplicial complex let JK, be the set of all functions &
from the set of vertices of K to 1. su¢h that
a) For any <A s U e bl (U)+ O_S'is a simplex of IK

b) For any £ , i_ AlLL) = |,
Uew

If K'=¢ we define |K| = ¢

| K| has a metric A defined by

[N
A(6) = Z L= B

for v(,lg Cf{Kl . This gives a topological space H/(M . For QG-K

the closed simplex I$|is defined by

Q)= foke K| |s(p)+e =>ve s




. )
We use the metric Lo define a topology on I b\ and choose a
' ~ -
- s . " " <o (O L 7
topology on l‘<l viilch is conerent with i_lk\ l Se K 5 to

give tne ltopological space ”<\ « A triangulation (‘<1{:) of a

topological space >< is a simplicial complex V( and homeomorphism
—F: K| —>X | 1f X has a triangulation, X is called a

clyhedron, A firite polyhedron is a2 polyhedron which can he
jY I I

triangulated by a triangulation with a finite simplicial complex.
Note that a fini*e polyhedren is a-compact and lecally compact

hausdorff topological space.

Lf qu V<""> hfl_ is a simplicial map then the function
[@1: K] —> [ &iven ¥

Pl ) = 5 L) vle ke
CP(U‘)::?)J

is continuous and gives a covarient functor from the category of

simplicial complexes to the'category of topological spaces,

3

A semi simplicial complex )<4 consists of a sequence {'xh“’\"‘!)

of disjoint sets together with a collection of maps in
each dimension WL :
. * P
At Xuwr —> X u, =42, M2 tpe L face operator;

o4 xn '

which satisfy the semisimplicial identities:

a)  didy = A, d ol d

>><“+‘, }::\,2',.,Vn+\ahe é degeneracy operator;

B A%y = Siad Y
o A&:iS; =I| , C=d, 40

&) oSy = Sidin 7 AR
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The elements of Xm are called the kh— simplexes of >\ S

This is the definition given by A.T. ILundel and S.Weingrem in
[ LW I} chapter III. We will use the results on SSC
(semisimplicial complex) given in [,LW‘] to construct our finite

polyhedron in the usual way,

Let Ab\ be the topological space AV\': { (£, ""f‘“"S enz‘w[é(?‘?
and % 4;=1 with the topology induced from Rll} .

pirst put d¥ | AN AV (b bue) > (B 8GO )
and %}ﬁ. S AT (B b))

and then construct a topological space lX\ frem a S‘SC.X o

> (fwl,_h,t},ﬁ}1|+t4+a-”fhﬂ)

Given a S$C X to each member X, & va—l associate a

n \
copy (/g\“,%v\) of A , and let M(fl,'be the disjoint ltopological
union of such copies. Generate an equivalence relation /v on M(X)

by defining the elementary equivalences:

w -|
(ot )~ (6 deoc ) foran € d
WA\
[$he s (€, Seme)  mran EEA
Put [X | as the quotient space of M(X) by ~ with quotient map
Nt Mx)y ——> x| Put LEeT= (1), e

topological space |'7’\\ constructed from the S'SC_X is the

geometric realisation of X .

12 LEMMA ¢ Let >( be a $3C X theanl is a polyhedron, further more
if \Y\‘ is a finite ClJ complex \Y\f is a finite polyhedron.
Proof : by [_L-\Ul] construct the 8SC SAX  from x and show that
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a) |So\?<‘ is hom'ec)morphic to lxl
b) Sk is regulated S8<C which in turn gives thatlng‘
is a regular C_\'\/ complex

¢) a regular CW complex has a triangulation.

a),b) and c) show that IX’ is .a polyhedron. The statement on
finiteness of the polyhedron in the special case that l)(l is a
finite CLJ complex can he checked by following through the
construction of the triangulation of /XI .

Let X be a topological space and for W2 \)Sh(x)be the collection
of continuous mans from AV‘ toX . .Then SCX)‘—'-‘“?_SV\ |n=1, .- 'S
has a o5C structure with lm‘ face operator _d{ (UL') =6 d‘#'-'
and C)% degeneracy operator gox CD'K)'-—'-O‘MD Qr where GL‘E: QVCK\)

Let &2 & AV\CX) and 22 =0 then there exists an Y'»| and

integers W, together with continuous maps X :Ah—-'*éx such that
=z = é.:fl’h"xt' '

By applying degeneracy and ‘f-alce operators Lo the collection {

%7(; l[:ﬁov} we can generate a sub 38 S@&)or %Q Furthermore

]g(z)lC{g(x_\,] and IS(E)] is a finite polyhedron, because the

number of nongenerate simplexes is finite and hence ‘S(E)Iis a

finite C&/ complex which by Lemma 12 makes it a finite polyhedron,

M -
Put 4. A — ’SCE)I as the composite £ I—> (€ xe) == (6>x)
(é(is obviously continuous. Also it is well known that the map dx.‘h(x),
___.._)‘)( given by J A (VL (¢ ')C““)) = Au(f) is continuous so put

g = 3%\‘ g(%),l to get that

AN 2 s | S@)]




IEG
cc?(r:'lmuten, Check . (9"(9;)({’): axﬂ:ﬁ ‘)‘C‘])':- > (+) put =l
é:"»’l.; vy then we get 9;% (2:/) "-:E . Also

et = ém}tgg - () 2 4 nidi(yi)
where. d&(%dl}‘s = Vl_(dag (‘E)lbﬁ

Let [X63>be the free abelian group generated by S(Z> then the
homomorphism FA(&) *-'DAIQ(E)] given by F(2)(+)= V[({'/"C)
gives 32! = 9F () = F(de) =0

We thus get the following

1% LEMMA : Let X be a topological space and = be a cocycle
in [&Cx)then there exists a finite polyhedron \géﬁ))and a map

%" ’S(&)}——) X such that 9*2’/-:,2—_- for some cocycle 2:/6_—}
A(SE)).

Such a polyhedron for the cocycle Z is a carrier polyhedron

)
with coclcle 2 for 22 .

Lemma 13 shows that in proving Theorem 9 we need only consider

the cases when P is a finite polyhedron,; which should simplinyF_

We will now go into a development of this observation which will
show that the diagram in Lemma 11 can be restricted to highly
linear maps between simplicial complexes. This will show that CQF

can without loss of generality be replaced by a fimite polyhedron

of dimension less than or equal *to i e« To do this we will need
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cell complexes, nolyhedrs; and their properties.
A A
ONS C er ﬁl which o

P, e T 1 Syl -~ A
Cave hA a2Vl dig oot ot S o of
—_

ig defined by a set of linear equations and inequalities,

f:ix) = C; por <=1+ 3
Li0G) 20 For =\ ot

A
for >¢e—§ o The space’ﬂ~ is the support space. for S .

Ve will be intevested in only compact cells., A finite cell is a
cell S which is bounded; A cell S 4is a closed subspace of its

support space so a finite cell is compact,

A face S| of a cell S is a cell obtained from S by setting soume
of the inequalities that defines S to equalities, A cell, since it
is defined by a finite set of linear expressions has only a finite
number of faces and the set of faces of a cell O depends only

upon the set S °

A cell complex is a collection V( of finite cells in some

which satifies
i) Kis finite
v ) ! / /_.
ii) if OO0 EK then0n6 is a face of 0 and & or 0'/?0’-,”!.

iii) all faces of cells ofl( are members of P< .

The space IK)=.LIU— is called a euclidean cell complex,
OeK

The product nf two cell

KxK'= $oxo'|ome KK ,C)"C—“:K'
l(}(K’ is & cell complex and \K‘ﬁ'/»‘,": !b(\le'} )

comnleves K,

CeJ Y

14 EXAMPLE : If I is the collection of faces of a cell then V(is a



cell complex and “(I is a cell.

. "
Let V( be a simplicial complex then the map f)3h<l"”;7'mz is
linear if for each simplex CTe:M: with virtices Zﬁ,-—-lfk
e\lo| maps
¢

A geometric realisation of a simplicial complex V< is a linear

map E: || —> Y which is an enbedding we have the well

known ;

15 PROTOSITION : Every finite simplicizl complex has a geometric

realisation,

a ] @
1f €:] K| — R is a geometric realisation then K= {f[/bf)!
SeK;S is a cell romplex the immage of K .

If a cell complex is an immage of a simplicial complex it is a

Euclidean simplicial complex, we will alsc refexr to |K\ as a

[ 4

Euclidean polyhedron.

16 COROLLARY : A finite polyhedron is hemoemorphic to a Kuclidean
polyhedron,

Another example of a Euclidean polyherdon is obtained by suitably

subdividing a cell complex, A sub division of a cell complex W

is a cell complex L<I such that
1) Kl= ||
ii) if S$! is a cell orf W/ . there is some cell S of |
IK such that S/ S

(this is similar to the definition of gimplicial sub division,




cee [SPI] ).

17 PROPOSITION : Every cell complex has a sub division which is a

Euclidean simplicial complex.

In [.SPF} Chapter 3 Section 3 the notion Qf simplicial sub division
is introduced ; it is easily checked that a simplicial sub divisicn
of a simplicial complex gives a corresponding sub division of a
cell complex when it is a LEuclidean simplicial complex.
This correspondence gives the following properties borrowed from
simplicial sub d.ivision theory.

Let WK be a cell complex put mesﬁi( As

mesh K= sup{ aiamS | S e L<3

wvhere we have chosen some metric for the real vector space in
which lKI is embedded and .for a compact subset S of this_space-

the diam (S) is the largest distance between two points in S °

18 PROPOSITION : Let V( be a cell complex and §>0 then there exists
1) C
a sub divisionL<,ofL< such that mesh K'<® , and the sub division

L(‘ can be chosen to be a Euclidean polyhedron.

This is proved in the usual way by barycentric subdivision after
using Proposition 17 to triangulate IP<I °

We will use the following convention: if K is a cell complex which
is also an Euclidean polyhedron then we will use K to designate
the corresponding simplicial complex and I ch_ the topological
space for the cell complex and IWIS the topological space for
simplicial complex when theme spaces need to be destnguished,

otherwise the subscript will be ommited,
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Let !K‘ and Ka_ be cell complexesg then a cellular map is a

continuous man C}Q y /K,}a_‘")“’(z/r\\.\-'}vich ig Jinear on each crll

of L(\ and maps cells to cells, in the sense that ii'cre:bq , then
Q9(0ﬁ<£:#<1_. Alpo if k} andl(é_ are Euclidean simplicial ccmplexec
then there exists a simplicial map qp .for {2 such that ny is
identified with {) by the homeomorphisms of the geometric

realisations asscociated with the Euclidean polyhedra; So we can
translate the simplicial approximation theorems to approximation

by cellular maps theoremg, We will not do this here but content
ourseclves with the definition of cellular approximation to make our
treatment viable.

A cellular approximation qD:lkiJ “":>’kij of a continuous map

Q: “(,i-———>lﬂ(1j for cell complexes hi and h(q_ is a celluiar
map such that if O‘é—[(L and p@%} e 0 then Cp(o‘s.)e G .

19 LEMMA : Let the hypothesis of Lemma 11 be satisfied then the
diagram, by suitable restriction and homotopy of —fL , can be

replaced by the diagram

L

=17 > .
r N A
| 3
MR

Kel — 7 Qe

vhen (P is a Euclidean polyhedron, where IVCF\ is a Euclidean

9 #*
polyhedron C '_DT\:'RV )Fis & cellular map ~nd ‘F is
homotopic to *F' , furthermore ’k%\ is a neighbourhood of the

immage aff and Xl(<¥“ can be Euclidean simplicial complexes.

L
Proof: Since P is compact subspace of (say) TR ) Ugf (RD'F) is
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m ‘% G q-
P 1/ ,
bounded in I K m so there exists a copy of A inﬁ ’ 15] ’
, . - ;- \ N vk 24 _ _
which is & Euclidean polynedron in #< that contains the immage
 [PA 9~
of (/{S-F (fa° 'F) under the projection(n— of PFR into 02 .
This means (/3(: (QO‘F) is contained in "PXIS! . Put P=|P, s
the product of two cell complexes is a cell complex so by
= v+
proposition 17 /V”‘IS' is a TFuclidean pclyhedron in )’P\ .
By proposition 18 there is a subdivision of P_X S which has
a mesh less than S-F/Z_ which is a Buclidean cell complex, say Z(’ ,
Since 'P is a Luclidean polyhedron there exists a Euclidean
. /
simplicial complex :)— such that /J/’-’—P and a subdivisionK, of kK,
—_ !
for which there exists a cellular map -F . |Xl — IK;] that is

~a cellular approximation of —F' o Since the mesh of K: is less

[yl

than gf’/'?' we have the immage of 1() is in Ug‘r:. (12"@)3,31(1 in fact
()g_%— ({7) is in Ug(- C{&ov@) » Consider the union 'K_{_‘. oi all

¢alls of l(. that have a point in common with the immage 01“1” then

l'/\/_f: is a Buclidean simplicial complex. Now
K@ - Uﬁ ‘F/g ('F )

because the mesh of l’(.(_‘ is less than g_p/?_ . Put FF:::.

/\
restrict S

Oxc and

<30

~\
to § to get the required diagram.

If we look at the construction of QF from Ug{,(ﬁ°'c)\vle see that
TT-F(KF> is liomeomorphic: to L(F/N where ~V is the equivalence
relation used to define Q_F . ¥Ye will now prove some properties

Q-
of L(L/v . K{L is a Fuclidean simplicial complex. Let (721"}’\;@
be the R RE—R*,
be the support space for !(—{’- . rut ‘£ x i as the

., ' '] ll . .
K.(:["‘“‘-’Ik(—‘%v the projection

prcjecticn (6\\(53\:-*~~> o and -1y 7

To equivalence classes,



Let géK\C then {(S) is a cell. From the definition of the
equivalence velation we have tnere exists an &€y (5)—> £(5)

such that

s —E> €s)

- : L) . (] : L3 )
commutes, || 1is an identification so gs 1s continuous.

20 LEMMA : Tor Self((; and a & T(ED
Ty Nng = e (Es@)NS
when Tr“l (a) 1S =+ ¢ .

Proof: There exists an X & —L_I:l(‘l-)(\g if ‘6 é“{(:) and Ng-
then €00 =€y) so T (&) NS C E7(EC)NS= € (€&))NS,
Mso if 72 SN @hf(f(x)) N8 then W I— K given by

> 2=+ (L) gives for 6&’[, €e L\C(’J = t2(z) +
(I—=¢t) €(»x) == €(x) and hasR and °C as end points so 2C

i

(since T maps into K ). Hence &=& n’h’(amg and we get
T ayns> ™ (€s @ )N3 .

- —~ T e\ s 2(s)
21 LEMMA : Fer 3 & IK¢ the map (53— E(8)g 4

homeomorphism,

Proof: Since eg is continuous TTC-S) is compact and ‘((S) is

hausdorff it is sufficient to prove that fs is bijective. Since

£: S > F(S) is surjective the diagram for -€s gives fs is
surjective, For injectivity we note that if a,lre TI-CQ) such

that 'ES (o) = ég(tf} we have from fLemma 20 that - S‘:{:%
NS = €ENNS = € (£, 1))N S =T (DN
so F ye& THYNT(E) => T(Y)= a=.

' 0
99 PROPOSITION : Let l/\ and K "pe cell complexes with carrier

. X
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o , | kA
space a . then KK {5 3 cell complex and IL,(/]K’,:M!/” l

o

also there exisls a cell complex J (w‘hich can be chosen to be a
l prating
Euclidean simplicial complex ) for which 13l —'\V\‘U“'(l and J

{ !
restricted to lkl and ,K’/ gives subdivisions of K and K .

Let /q be the family of complexes produced by taking finite inter-
sections of the cells E(S) ’ SE K,F 0 }C) is a finite family and

P

by Proposition 22 we get a triangulation | of

(/lal

“C"H into a Euclidean polyhedron which
gives subdivisions of members of /Q . We can use this fact to
{riangulate K,F//v . That is thare exists a Fuclidean simplicial

complex T— such that

[T]= U la|

ach

and for each A& H)T_)Mf is a subdivision of Q .

o =
For each %lfzm when it is not empty € (‘9’)0%{; is a Euclidean

- cell complex with complex given by e

_d—-g = §9n '] S eK*C}

if A& J9 and Qe:l(,p is such that fcr all &€ (’(.F which satisry
' e !
o= 'ne (‘é—) is a face of 9 , and S .satisfies = SO

~
€ ((A)then S i3 a canonical representation of A .,

23 LEMMA : For A& C\g_ given above there exists a canonical
representation, 5 of A and if (rér\)g, is a face of &4 and t’is

a canonical representation of (~ then £ is a face of S .
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Proof : If g;gl é‘:K_F and S (1 {“'(1'5'- S ﬂ (%) & then
(SGS’) (1 ‘C-'(%‘):Ok but %OS' is u 1ace of S and S' / 80
since K is finite,

NS ] sne'(g=a, seK]
is the required cenonical representation of O . For the second part
of the Lemma we note that UL-C A& go CNA =G0 which gives
(S ﬂ{:)ﬂ€~‘C‘a') —tNEt (‘3))'but = is a canonical representaion
of bmso FCSNE=DE=SnE o0 £ is a face of § by the
definition of cell complexes,

T 28

The Euclidean simplicial complex and the map 6 ¢ gives a

triangulation Lqu ! }Zs 3 09 ¢ 3) '

24 LEMMA : Given the cells §,,$., & l(_F and the above triangulations
of T (S;) and l](S)J then if 7, (5, YNIr \92_)1—7)) Rg,(ﬂ(s\/ II‘);I)
and ’ZELCT}-(S‘I)[‘ T'—CSLJ) are sub simplicial complexes of lgl and

_—
l S)L respectively.,

Proof : I'lI‘S‘L note that if S & Kc and €. is a face of ;9-5 then
Z:,' = 65 '6’1‘) This is true because for a_c_—-f(f.‘) there
exists an>xX &t such that 6(3‘-):-0\ which gives
ey =TG) = € ¢ (@),
Now consider the hypothems of the Lemma , if L&) (S, )n”(n}
there exists an X (& S. and X.& g-,_ such that >¢,"~»?C.  and “(JCJT
We thus have an arc l'\ v L —= -\T{ (_xl) with end points X,

and Y. . This gives, py using the simplicial approximation theorem,

a sequence 9, ,..-- , 0y of cells in _J_@(x‘) such that the faces
CiNGGe @ for (=ltou- and x €07, X2 € O . Let
6’( be the canonical representation of 5_‘ in Kf and '( the

canonical represanthlon of o’n o Since 9 2 3(, ’SL;‘\))(L and
() )
£ 1) (\r\—! are faces of c‘, and G-v\ respectively, ‘H 'md'{.\ -\ are


http://xo.ce

(U
A

re°pr>r‘tuely faceo of g( and ‘;,\ and C(”()é— (/@ )n fc{“‘) Ve
thus have = ' €C )ﬂf(a"') = ’ ‘S', L ("Fl) () 6('&\-)3‘00‘,
But consider

T = [\— {(‘A)

L=\
we have fﬂ {- (D(-) ?—‘¢ %0 6('3">é‘3 )'(:‘L is a face of 8‘_1

as well as -C S0

2y 8= € 'hs 5. |R=€/ IB

and using this as an inductive step, by induction

ff ]?S — Cp( I]S . f?s IE;
50 we have [:5_3| (B_‘) - IT( SI) N Tr(SL) and since B is a

sub complex of 'T| in the sense that B is 2 union of cells of [ .
Hence }Q;: (g—;, (E) and h - ( 9 - (E)) are sub 31mp_LJ.r‘1r_._L
complexes of \2‘ and lgz respectively., Since & es, (B) and (-
was an arbitary member of T—(34>f)ll(sz) we have - noting that a
union of arbitary family of sub simplicial complexes is a sub

gimplicial complex - the required result.

Lemma 24 gives the following:

~ 25 COROLLARY: K(-%v is a finite polyhedron with a triangulation

which has dimension £ 4 .
The proof is by direct application of Lemma 24,

We will now indicate, before proving theorem 9, how the above

results can be extended to [ (ES)
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26 LEMMA : Given for (=Lto S the continuous maps h,: X —> |
which satisfy Ta < h‘- == thr}‘. for all (‘ai:( to § then for 'JC<:=>’\
and

. - . ,
9e( &4) = hiG) oh (), h, ()= Rehs)
F(>) is a functor from C[\"‘ to [ (that is 9(x)é.Tl(A-s_|) )
and %"-X >T1(Eg-l) defined by X b——> %(x_) is

continuous.

Proof : Letx e X and NV be a neighbourhood of 9(x) in T(A 9"') ,
then by jche definition of the topology on T‘(Es") given in
Chapter 2 Section 1 there exists open sets /\/U%&) in T' such
that
g e () Ty (NGed)) <N
<y

Tl is a complete sub topological groupoid of Tu)i and the H(".S
are continuous, so there exists open subsets V,; and V,; of ”2%’.-
neighbourhood (! of >c, and homeomorphisms Cc( . \/' e AV
which satisfy, for uye (A, he (4) = cexm (Koh;(%)ld‘-)and

Genv (V“ ,o'(c') C Nu/_—.&) , (note that %(léi')': he ). By
suitable restrictions ( such as put'ting‘ V:ﬂ Vl-;_ ) we.can make
the V|; independent of ( and equal to say V . Germ (Vy; >Aa'"d\:-‘\)
is a neighbourhood ofg(’-')(f‘é)so by restricting \/ further we can choose
N so that Germ (VQ; \ AJ ooQ;‘BC N (féé) for all ( and
and V is an op.n neighbourhood of Re he(=) . . Hence for W/ =
un (l?."l'n)—’(\/) ; o¢ &UI ,and u' is open and for Y & wu/
g(t‘/.-.;a‘)(lg) & /\/(\'é_a‘> 50 %((A')CN , and since °C is an

arbitary member of X Ty 2\/ is continuous.

If the maps h\' satisfy the hypothesis of Lemma 26 for a

topological space then g/ is the derived map into T (ZXHJ .

| ,



27 LEMHA : Let Y be a com mact locally compact hausdorff topologic

, : TITS _
space and for $%0 +. P >TU-\,) be continuous then there

exists an open neighbourhood W or (\X'l_l—,é)"wcxﬂ("))in. Px R¥ s
. D, D
where A P—> P is the diagonal map, and a continuous map

g.‘. W — F(A_s> such that
a) go (!XTHQ[OF)"A = £

b) if ] > WN €-£=c) for some & TR?/ is continuous
then g(l/‘\@)) = 4 (‘1('))

=S T
Proof : For (=1[ to St/ the maps Trléc' —F(A )'—bl

continucus so there exis tq by Lemma 10 continuous maps

"](‘ r U 8(“ ‘-LO‘F)( 1y ® ) —> T

such that

a)  hio (Ix Meof)en= Mo f

b) if h' L —> US(W.‘_—( °£)(Wlé‘°£>n€ (l) for somexe"_ﬁqj
is continuous, then W (lfl(o)) = L\; (b\(')) .

Yow if we put S = W\ng(ﬂ'\ ) °'F)} an.dl./zua(Tﬁ&{’{)then by
applying Lemma 26 we lgc—zt by putting cd>_ ecual to the derived map uf
{L\"S the required result.

Wsing Lemma 27, and putting DDF = ——,c_._( °'{: for q(‘f 'P————')T'(A‘S)
we can generalise Lemma 10 to apply tc T](.[ls) ¢n place of T‘ « This
gives the corresponding generalisation of Lemmas 1i, 19, 20, 21, 23

o

and 24 and lastly of Corollary 25.

Proof of Theorem 9
Let f2%e H‘,\,r7 (‘ﬂ(Aﬂ) where N> | then by Lemma 13 there exists

al
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o " . iy
a carrier polyhedron TD with cocyele £ for Z 5 we have there

exists a continuous £ ————ﬂ’(&s) such that {5 ({4‘_’,’}) ={e},

By the generalisation of Lemma 19 Cerollery 2% there exists a

A
simplicial complex K¥l and maps —F,f: S. such that

5 . ‘
P ——T(&)

AN A

I
V+,4V commutes,

t*
dimension of b(p , and F is homotopic to {: . Hence

fet - e ()
£ (=)
G (FL23)

pasead 3;*(10)

Since 22 was an arbitary cocycle the theorem now follows.

B

I

Theorem 9 shows a pmperty of tubular topological groupoids which
can be realised in the case that —r‘ is an open sub topological
groupoid of 71%1 : the proof of the theorem being easily extended
to such topological groupoids in general, The next section will
concentrate on rcomputing the low dimensional homotopy groups of

S
] <2k.) when 71 is the topological groupoid of germs of local

diffeomorphisma.
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v°

T1
The Low Dimeuntional Homotopy GCuouvps of G- .

- -~

T.ﬁ/ the groupoid of germs of C diffeormorphisms has two

components corresponding to whether the germs were derived from

orientation preserving or orientation reversing diffeomorphisms .
e Ve

We shall cencentrate on T% the orientation preserving component

Ty
of l a

P to simplify our itreatment., In :7_:'1\: wve will define once )
and for all the base point b/o as Xo = Germ (D ) 3.) where fL?’hv\t’/KI/
is the identity map.,

et € & GL‘L be the identity element of the general linear group
G—Lrp of ﬂai, then we can define a map (%—7\: ) Y,}"':‘ (_GL%E)
by essentially taking the differential of the germs: ior 'b/é:r‘—z}; ’
let !4', U —>V be a C-v’ diffeomorphism of the open sets U,V in
'HZ?/ such that RO &WU ana ¥F= Germ (ﬂ({), lq) . Tet Al \P\(H be

the differential of l/\ at R(k) « how put V(b') as the non singular

matrix with entries v(h’);e; such that for co-ordinate maps

fr<a<> >
>
| )| 2V
ey - bu R(?f) i L(¥)
it 1is casily checked that 1fb" F—L; is such that 0 0() y! is well

defined then
\7(‘6#5") = "29()‘)'2)(3")
and that v (T]‘,r \X°§ ‘——>CG‘L$,€> is continuous for Y2/ ,
[
Let G‘Lc[, be the component of GL@, which is arc wise connected to

the identity element, We will prove:

T TEEOREM : Given i,?fl and the map »’ described above,

Vi T (Ty) — T, (GLg)

is an isomorphism for Y|, +<9 .
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7.
Where “{_ (XB }ct nomotopy group of a path connected spaco;

If X is not path connected then the homotopy group will depend

upon which component the base point is in.

v
The definition of W canr be extended to T‘$ and the above thecorem

gives the Corollary:

2 Corollary : For xp & l

e T (1 ey —> T (6ly, v0x0)

is an isomorphlsm for v2| , tL%

v

Proof: has exactly two components, as Gégf does, Let V&GL@

'y
be a reflection say
Voo (O, - 3‘1,\)*""" (03 ---3(7,)
— Ty v
then define VvV . P?/ —_— 717?’ as the map
F Y G (V(RWD), V)oY

obviously\? is continuous and ;":—_:.- identity.

Also define A~ G-L-@ """"GL?, as the mayp

/~~

Yy i gr—>Vvg

then we have —
T, ——sT"

1 .

v | .

Vv v g 2:— i
G-Le_ S G-L commutes and VY =identity.

~J
Now \f and Y map the components homeomorphicaly to each other so

if Gch is the component containing €_ we have

e (T2 “‘“"T— (GL‘&)
— N
LV-] 37 — 'V:k

M, (% () — Mo (¥ (6T,))

is a diagram of iscomorphismsz by applying Theorem 1, for L"L'?/ s, V2] .
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In proving Theorem 1 we will rely heavily upon the use of omeCLSLOH
and imersion theory which has been developed for the C case, hut
- V - . ~ J) .

the C case can be included as a corollary of the C%case by using

a smooth Lermma. So we will first concentrate upon the C% case.

When dealing with submersions we will make use of the usual constru-
ol .

ctions such as C differentiable manifolds, bundles H‘ovex-wq, spaces

of regular maps and the exponential map given in_D“IZ:], We will

also use the notation given in A. Phillips' paper on submersions of

open manifolds [PHQ .

Let %vqu Sub ( g‘/xﬁq’m\,{ TQ‘L) be the space (with C' topology) of
submersions of the=dise gv%ﬁqr‘rinto [{)sq’, that is & & gt\j’, is a
smooth map Q. 3\;( 5%—"\; mwsuch that the differential dq has maximum
rank and is thus nonsingular, Also put ( : Sv‘—-—‘; 8 X D?"vas the
inclusion U & D t——> CX(D) » Then we can construct a , not
necessarily continuous, map

G Sox(y— Fuu (S TS
( where Fun (S T“’u) is the space of maps from Q +o’—'l°: ) as follows:
Let (4.6) & §q Kga. then for % there exists an open neighbou-
rhood U of ((x in gv O%—\éuch that C\l U and (J‘!U\ are Cgbembeddings
of LN to the open sets Q(Us)\ and (}‘LLL) respectively. Put D C\(u‘) -
(W) as the map D %W — (T‘ub(‘\l‘*)-‘(%) and put G (a b—) =
Germ (0«("(‘() } D > . G—(Oq(r) by its construction and the germ

v
tonclogy owv ﬂ?’ .8 continuous,

| T A I \
l ! Y . .
We are interested in the groups “L 1, o ) where (o 1is a base point

vhich maps to € under VW .
LA 4

S\:\:—" %LC'XM'—-):H;—\)&H&V‘“, 5”( = 3‘

(=1
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put G—S\ras the base point & ’;C\JO;O""D), and reguard T’—»\(X;'x“)
foxr a topological spa.cex as the homotopy classes of continuous
maps (’ (SM>“)"""> (X, ) then we can restrict Fun (g‘/TPb)

these maps which genervate llh (T'.?/) to .give I‘un (S 11,) . We

need a corresponding version for gﬁ We have & speclal member

€ e Sg/ given by mapping to an open tubular neighbourhood of the
canonical embedding of S;\rinto mﬁl/fo: VLZ as follows: Let M “f-.,—vnz
be the projectici: into the first component of ?6;-— P D‘L- p

the projcction L3<;>--~ ’(7,-4) —2 ""1:'—“’(7/\/) and ”2 be identified
with IR ><'/ L) then for (> 4) C‘:S\ﬂsq;v put

e(xy) = (<O+R)), Pm.(‘a))

Let, for €> 0 ()"e i'b‘r"—> TP\‘:I’ be the smooth embedding

J.(_ (S > “’-f-e(,%) There exists an 'Za >0 such that d'c ( 'b(f’)

c e(s K;Dq’\') tor 5‘, PE>O For such an € there exists a unique
smooth embedcing U‘G. . D" — b '?" D y TV sucn that &(__,7; eC’J(.: .

For &> © such that Zf‘\e . Tet
Sre)= Saesy| ali(@)=dug

For convenience later on ,let f'ékgbe the

£/ =) 1
J

.~ - ¥~
{ffm)“ \ ] V4 (O N

then we get a secnence of inclusions

"V(é)c_ Si(g.) ¢
Put U Qri ('é \ 87, is the set of all A€ S?/ which

Y
. However S‘. 5

agree wi'the on some neighbourhood of ‘ﬁ{z,D) “ b‘(\bi
with the topclogy induced from= 4  is
properties that we will need so we will adopt the expedient of
slight 13 Ch ing +“he topology of 57, §{,(’?§~)n closed bLecause if
a (f, \ (f;n) then there exists an > & () (D/ such thatQ (x) “ée(’f)
bt /\/ ‘}_Lr( gﬁ,]& MJ#L( )jj.: a neighbourhood of Oywhich does not

interaect ’_, ( Define the new topclogy on gcl,as follows:



oS

;3
CC S\v’\; is closed if and only if C':Sg_or there exists an (& /\]\'_/ y
such that C < _S';(‘C;)and is closed in —S—;,(i_,)‘ Hote that Silael<oj
is an embedding in the new topology so §v‘)-, is Hausdorff, Furthermorc
ir K is compact and -F'/(""a—g\‘rp is continuous then therec exists
an (&/N such that F(K) C QQ(@.) This is the required property
for ?:2;, in the weaker topology ’Q-;; does not have this nice propecrty
Let —EV'.': E(’Cu»---"lv-‘-.)é‘g')‘,'}%;h.en we will choose g. small enough so that
o -
Jg, (D) € DXV,
This fﬁnditio‘n_v;i]']_: rbe used later to simplify a proof.
1ir G = G’l g‘[)(g‘], we get that v SR 00
G Tix Sy — Fam (81T )
We shall now work towards showing some properties of ~G—— that will
be used in the proof of Theorem i,
Let ( Q‘v"’"\’ gff- ovv‘oe the map Cr oo¢ b—> (_u\o) . Then we

have

VA a -
3 LEMMA : Let ']0 & Fun (S‘ [Rﬁ, oo , and V(.q, o Then there exints
\e
an 4 & S\7/ such that
\4
a) A is connected to & nhy an are HIT — S‘z,

b) for (uy) & KDY (3¢ abay)) e Ue (£)

Proof: ’\Rq}.s contractable so by using the proof of Theorem 5¢10 in
[:_HI\} there exists an arc |4y ! L "'“‘"5?’4%(%\? ﬂl‘i’)into the space of
smooth regular waps of QV into .ﬁaq’with the C' tonology such that
Lo (0) = €ol and lho(l) 6%—6&({)0 Now for eachue EQQ(QV, mq"_)
there is associated a normal bundle given as follows; using standard
fibre bundle terminology Engj there exists an embedding which

is a fivre bundle hcemomorphism @!x-' T-gv'"':? 35*(—[_1'21) of the

4

\ 5y
tangent bundle of S” into the pullpack of T—IRK{/('l:Zh_e tangent bundle
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z ¢ ¢
of TP\ ) by »C , given as follows: For Y& and UeT in the
fibre o.f(é.we put €’>< (b)) = ("hd’:c(\r)) where A>¢  is the

[4)
differential of > . The Hormal bundle No¢( for X & Reg (%TT‘R")
e ’ Y VA

is the quotient bundle 3C*<Tni")/€éc(r5 ) . If we use the

. —Mm¥ .
standard metric tensor in ! ﬂl given by identifying each fibre

of Tﬂ?ﬁ/ with f/lﬂl/ and Lifting up the scalar product of vectors in
/'_/201/ ; then we can pull the métric back to a unique metric owv
>c¥ ("_/(R@') anG identify /\/5(_ with the subbundle MJ_D( perpendicular
to E_" CTSV). Avrcs in a space give rise to homotoples and vica versa
by using the exponential correspondence theorem \:SPll so we will
use the same symbol to denote either case. Because L\o is continuousg
in the C' topology we can construct a hundle homomorphism which
is an embedding e’ T VR L —> l/\*o (."rﬁzo") and for fixedt&l
restricts to the above embedding of Tgv for l/\o(f) . Again using a
metric induced from T.I'E(L‘we have a hbundle /\«" over g\%_]: which is
the set of vectors perpendicular to TSVY\I in WZ(TTRQ")\ .
Since I is contractible there exists an isomorphism of bundles
5 N XT = W
such that Jo is the identity on NUA(D) v I\/ is a manifold with
boundary with the usual diffcrential structure derived from S;‘/[_ST’].
It can be seen by inspecting the isomorphism that it can be chosen
to be smooth.Take a" as smooth, Then for fixed {‘&I we can
construct a submersion kt: gvXISVY“"‘bR‘L which restricts to
l’\okt—) in the following way. LetDX be the disc oundle for a vector
bund.].e)( given by N = {LT“::X \% On )< l} fer a specified
metric g on % . Then since gv is compact and hb({’) is a local
embedding there cxists an %I satisfying e/&'>3/5° such that, for

v ¢/
xXe gand U‘é:DN in the fibre of 2(, ¢ : (>(\u~) > e*‘an U=

- e . .
gives a submersion of DN into < s, Where e—f\P is the




&9
exponential map for the standard metric on me‘, l\'owélt.' DN_LI\O(H@N
is a-smooth emhedding so l"t §U °d't is a submersion of .
Since d and €xP are smooth maps we have l;:—D’Vlho(o))'\r — Rq/ gives
an arc in Reg (DN.Lh,(o)’ R‘L).Now lhe gives .a submersion which has the
property: There exists a smooth isomorphism

v oSBT —> DN Lo
such that if S". N )Cl)("-———bgk is the map (7 S ) — (3¢ |SV)

then the diagram <
i

ho 1
:DNJ_L. (o) —> f‘R
commutes so we get the arc he g:1'g;1vcn by ht_—- 14 O\/" . By
expanding" €.°S. , to e we can extend I/\_ to an arc H that connects
pul A

e with lq oV in % . It can now be checked that L\ ©Y is the
| 1 _ i

V
required & & S 4.

v -V
4 LEMMA : In Lemma 3 Qaﬁ can be replaced by 37’) if 'F("')f- 66‘@)
= 4 1

Proof : For the moment let E36 ve given., Let © = E"-ém l “x\[é]}}
T-.L'bq’ be the bundle of ¢~frames, that is, the ordered sets
(U}_,... U‘?’) of linearly independent vectors in TD"' y and
Sect (Tq/'D(L) be the space of sections with the compact open

- '_. 4 q’ . o
topology. Put de -.bq'—'—")m as the smooth embedding '9(—-—-'76‘3*' e(i‘)

1

Since a, is an enbedding tnere exisls a feild of f,“'t‘ra")es
('U‘, N U?/> given by d{ai(v" —_ '15_7',.) = («am)

aha
co-ordinate to IE. from '2‘3-—

l

where TTL‘ is the projection of the {
and the subscript X means " at the point x," If S X |—D
)
T N
(b, - --. M‘?/)’L is a section of I‘E.D then there exists a

unique element 9_(.‘: G:z_; such that
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(U7), =" E A (W) s Addh= Y
where O is the centre of the disc Tﬁi— « This gives a correspondence
&' sect (ToD*)
the homotopy inverse being
o' g 1———> ()

. - q ¥
where (U} )x == Ad (9') ‘(\)‘a.‘>° Let )_'(/: G..L% _— Su(r(bp R)
be the map thot assigns to 9.6: GL‘?/ the submersion g \——>€(#)+égg;,
and Sub (D&L Rq’) the immage of
I of . ‘L)
W Gleg — S (D% fi2

is a2 homeomorphism and hence a homotopy equivalence, Let M be an

> G-Lg, vhich is a homotopy equivalence;

open manifold of dimension M=9., For -Fe Sub (I’V\ | ﬂzﬁ') the space
of submersions of M to ﬂZ‘L’ put vaé Sect (Tj,f"\«> as given by
(Vﬁ)k: (’i’“ )y o ’}‘ofl )uc
Tﬂ°‘€' D'h},
then by [PH lj Theorem B , v is a weak homofopy equivalence,
where for topological spaces X ,Y and map -F'. X '—7‘>’ which is

continuous ‘F is a weak homotppy equivalence if it induces a bijection

between patih components and for each * é/\( ’ T/—y\ (K,T") —>
“h()/, F("O is an isomorphism for W>O ,

v g
The diagram _ Su(r ('D‘z, m%) —_> Sed-' (Tq, )

u 1e
— 4 W
Sub- (OVR") «—T— GlLy
is a commutative diagram of weak homotopy equivalences, so we get
—_— . N - e M\
Sul (DRY) C Sul- (DY IR™)
is a weak homotopy equivalence for each €>0, How thers exists an
' - .1 S‘f, -V : 2 AN =
- embedding d€ DY —s 3% such that c)é = Cove if & is

sufficiently small. We will assume that € has been chosen for this
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to be true- this alwayé being possible. Then we have a continuous
map 11 : 3\; > Sul-(D*, m‘i,) given by T @&l
é\; =T ( Sat- (DY R*)) then by [PH 1) Temma 4+1
L 9‘;

SVX -54.-—\( is constructed from :)_é (Dq‘> by thickening up an

> a‘-‘jé‘, pu't

» Suk( DY, ﬁlq’) has the covering homotopy property because

added® handle of index % Z-! .Consider the diagram
. A
-l Se

p—

L)

"') C. Sul- (DY HZ“)

P2

:
I T
v

Sul- (DX 1R

The vertical maps have the cocvering hoﬁotopy property and the bas2
map is a weak homotopy equivalence., Also the fibres are mapped
homeomorphically to fibres so applying [ PH |] Lemma 1 in Appendix I,
the inclusion S‘L C gi/ is a weak homotopy equivalence. By
Lemma3 there exists an [~ & g}:and arc . connecting [~ to € in g\;/
such that for (>ig) ¢ S¥ DW"\T (u‘ 6-(5“%)) = U\E./“(F) .
Now let -

V? = {xe”aq‘ l e = fell s G/P } . for P>v, V= V?.\
and V Wsub-‘\/ Vis a compact manifold with boundary and
(;-l-#) c V-3V. 1et But UK‘LV) be the space of diffeomorphisms
with the C topology that leaves V fixed. Theﬁ by constructing a
vector field that agrees with the vector ((*). — ((K) in a disc
containing (r(-)() and \ﬂ('*) in V and is zero in some neighbourhood
of ¥V and-intergrating it we can, since \/ can be extended to a
compact manifold without boundary, construct a continuous map
AL — F)-U&(W},V)such that A(0) is the identity ana A()(6&)=
CF) = 4 Now consider the map 1T —> SVQ/ given
by lT +) = ’\“’\og‘&) (7’ is continuous, 0-(0) = €, G'COCe) = e(*),
and for (nyg)e Sk DFY (x) (6w)) e U (€) et Sulby (DR
be the ub:paon of submersiona of D to “‘\ \'lr-l"ch naps O to €Gr)
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then we will need the following fact which will be used twice:

5 SUBLEMMA : If L\,_\‘/\ T — S’(.; (p*R*) are arcs, h,(0)= ! RO
there exists an arc h,,_ T — (s:* (D 4 ) and a satisfying

I>8>0 such that for + &L
A \> .D‘i/
a) 1/17_ (=) = L\L(é)(_x) ror. 121>§ | =c e
b) there exists a neig}'xbourhood (/ of © in 'Di/such that
e () (%)= h. () for o U .
) R (o) = h, (o)

Proof of sublemma : Put _Dq‘:'-'- {"em’b ")‘“é g‘} « By the
compactness of X y the fact that the épace of smooth embeddings
is an -open subtset of the space of submersions E.MU |] and a
submersion is locally an embedding there exists a $,>° and a
continuous arc {é T — Ew(r(D ’D ) into the space of smooth
embeddings of BS to ])?’ with the C topology such that

Ur)h)"f — h. (e g

Put § = gui: "ﬁ(k)(’()"tne“ by compactness [>$%o . Put $=
teT xeb

\+
.

then |> §>pand @ : I —> EBEwdl (Dg ,D ) By [_Pﬁ I] Sublemma 3+3
there exists for each t&T a neighbourhood 'D of ¢(+)&E""6'(DS’D )
and continuous map M{: 'Df_. a— Iquf' (Dew ——B ) to the space
of smooth diffeomorphisms of 'Dq’ to 'bq' that leavL-D—.Ds fixed
such that for % & Dy | . -

M@ BB =39 |, H(FB) = identity
By continuity for tel , there exists an G,L_>O such that for
|&£-31 /‘é’c | ¢(S)6Dt .« Multiplying by a member of prb«-‘*'(Dq' D'L )
' maps /-}WF('DQ’ Dg 3 homeomorphically to At (D D D ) so fer
Q , b~ satisfying a<G-, albe (t*é{_’ ,‘(‘ff_k) we have for a4 S £(~
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Mo + S My (@(s)) o Me( Fla))™

gives an arc in AM"(.D‘L Dq:' ﬁi> from the identity which satisfies
Ma (S) o fla) = GO
Since I is compact, with the usual metric of(a(l) « (4-—6—' , let
£ be the ILebesgue number of the covering (£ —€&, ,t"f'C:e)lt&f}

then if we choose Vﬁé we can construct for (=1to n

M,y [55T — Aur (0%, D% D7)
which have the properties of /"\4.0- above. The composition of
members of A(wl't D D 5‘;_) is continuous, so we can construct

pe T —> Gt (D% D*-P%)
;uch that /4({‘) 0 52{(0 = ¢ ang Mm(0)= identity by combining the
above automorphie;ms: Define M({’) inductively as follows, f«(o);identity
and for t € [_L—:" = j AL &) = Ht-‘ /K('H M ( L—-\)
Put lr\ T ——s Sulyg (b‘bm ) as the arc L\ () = h, (e M (t) then l’\

is the required arc,

(J’U) is locally an embedding so there exisls an CJ>D ysuch that
(;'(t)OTel is an embedding and (rl(l)°35’ (Dq’_)CV,,By using a construction
‘used in the proof of [ PH i\ Lemma2 *1 there exists an arc 1’13 in
Su.ﬁ( (Dq’ 'h ) which connects (,( 'vt with (:(:I‘ (D;T'D\ / o By using
Sublemma 5 we cai: construct an arc ‘Mr in gulrg (D“',[?\ ) that for
some neighbourhood ofab‘b agrees with ‘r’(‘) °5-é for all tel ’
U(l)o\)—e/ = h,r(o) , and for some neighbourhood Uoro agrees with L\g‘
Select € so that

3>9¢/ U

-

For given A0 let Ra\‘-b —>D" pe the map > >3 ., Construct
N, 5 v . -_— 1

. an arc - 1L —> 37, as follows, if Jg .)e (D"’) -—)Dq’ be the

" inverse then put
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W (D) For scd Tt (DY)

L) (x) =
h(t) 07-;" 6 For & de! (DY)
Je (Da) ’°Ke// (D)CTQ (U_) so (1) e S;

Also (J"[D) = (r’(l) and because (/o Je’ (D* )< Vs ana 7 is
"constant" except on perhaps L‘)_é (D"’) for C"a%) & SVX 57/

(1 6"03(x0) ) € Uer (£)
(;-"(I) as well as being in 7, is connected by an arc in Sf, to €
whlch is in Sg, . Recall that S7ICS7/J.S a weak homotopy eguivalence.
So there exists an arc b“ in §; that connects € +to ”(l)
Applying Sublemma 5 again there is an arc ()‘ in Su(f (D“’ /R?')
which agrees with (- Té" on some nelghbourhood of @D % and
agrees with € ":)-g_: on some neighbourhood |/ of © so define the arc
HT —> Sy oy

F Fer x ¢ Tz (U9

[odz Oy For ¥ & Ty (DF)

’ v
From the construction of (J’ we see that H is an arec in g?— fromgE
. (T
and furthermore for (."t‘a‘_)é MeD? v, (’Cu H(I)(M'—é))é ue(:(:)

This gives the required construction for H .
We can now use Lemma 3 and 4 to prove:

—— v ——‘05 -
6 LEMMA : Given -Fé_ Fun (g, | oo then there exists an (4,6) &

—_  /
o~ Vv v —
S gq X S?/ such that (-(a(-) is connected to f by an arc in

— —a v
'.‘F:‘u“(%",'-lf), and Q. is connected to € by an arc in S‘l«'

* Proof : By Lemma 1+10 we have the continuous map S u \'*‘“p\ »T'

which has the properties a) and b) of Lemma 1¢10. Now by Lemmas %




A
N
!._,'1 ]

and 4 there exists an arc M in g\; such that H(e) = and HO)
is such that for ('ac;VoL) & Svﬁ'D‘l’— ('J(. HOO) (e, ‘6)3 C USF\HO(’)
Define br: S “31 ——;2 as the map U (> w)i—> Le S(’HH(I)(":%D

where |- is the map obtained by taking ‘the right units of T .
A
Now o § (3. HOY () ) = HOD(xey) Since S

A A
constructed from § in Lemma 1+10 is a local section, S is

continuous and T‘ﬁ,has the germ topology; for (Puyg) & N D
Vil
there exists some open neighbourhood u of (i ) in ‘/\.D and 2
smooth diffeomorphism OQ\/\/l - l"J’L of open subsets of Rq/such
_that H(D(M\ C L\J' and for ()('l %') & u g(u’ H(I)(Nl Y )“
QM(H(I)(X,L# d) , but this gives LJ'“A do H(LIW . Since
o9\
we get that & Sq, and
G-(H(AW) = S o (1% HU))"A“ which by the convexity of ugf(ROF)
is homotopic to ‘F . Furthermore, since go(hk H(1))e A""(*)‘”
Qo(,x,e(*))__. §fé{,{(4))-,— X,,}freggl,because H) & [ 9 . 1f we put

o= H('); (OL;(J'\ & §‘;‘C'§\‘/}/ is the required pair,

(Y;le-) was an arbltary member of $kD

7 ILEHHA : Let a1 L — %q,)(%% be an arc then for te&ll
G—(“Lt)) is connected to G-(aip)) by an arc in Foum ('pd“j S ik >

v
Proof : Let M™ S Dq; " M g K-Dq’— ‘:g\;c th,.—_) S\AD?;-
he the inclusion, and AH‘”(N) be the space of smooth difiecmorph-
isms of N that leave, }N the boundary of N y fixed. Put for
tel | (a,(+), 6(1({'332 (), By using [ PHI] Lemma 3+1 on
stability of subnersions we get that for each téfthere exists an
€f>o and continuous maps
'\).(-{’\, v (1) ! ({:'6{_; tfef) _.___-),f‘;u(_(/\)) such that
a) WV, (D= Up B = identity ' \
b)  a(S)o &: a; (e (£)(8) o 3 W Clevl \t‘:(* CrE,

. “:‘ “ JQ: FE°

5""
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Let (b’,)(r ) & S X S then we have a continuous map

el
C\)((rn()- 3 S )CD 7/ given by the following construction:
-V
e there exists an open neighhourhood U of °Cc such

For n¢ & gx
that (J"Iu A= Lﬁ(‘«\\ and (,-,_IL,( ! (,L~—>(r1(l4-) are diffeomorphisms
to open subsets of ’2‘2/ Put CQ((Y‘)(&)(X) = Germ ((J‘.(-”é), b;_olr,—'),
Q((’:J(JL) is obviously contin_uoﬁs and G.(G-( ,(;1)-: Qa’"u(fa.)°(
By using a relative version-of EPHi]Sublemma 3«3 there existe by
suitable adjustment of €f50 y a neighbourhood u't- of the disc
{*—ISX'D?' and modified V| , Y, such that V((:)(S)lut and V%, (f')(s)/
_are identity maps on ut — since Q, andql are constant on such a
neighbourhood, Let h: T*S Ve——m—=>§ )Cbi’ be a homotopy Wluh‘ﬂ(o)=(
which collapses a disc of g about ¥ into E*?,XDD?’-V and moves
the rest of Svtc; S‘Q Di’V‘N then put b\ and L“L as the arcs inf"ﬁ
given by, for_Eé-I ,Yé:g S & Et"‘é,e, Jf-"f'et ]

h (E)() = Qau(t),a2(%)) el (£)0

o (E)(3) = QUAE)eB NS, Az @) p5le)(5)) sk (EX

Now l’ll(l):l’lz(l)) h,(®) = G(a({')) ; and ho (0) = G (a(s)) so by
joining h‘ to L\'L we construct an arc in :ﬁi that connects G—(Q({))

‘with G(a ('N) . e have shown that if /V is the equivalence relation

£V

onIgiven by §"V(‘ if there exists an arc connpr-tlngu\auywunu:hCU

—» .
in T1.7/ then the equivalence classes are open subsets of I: y But

T is connected so there is only one equivalence class and o~T,

~.
To shorten the notation put F — g '\cb . Let% be the
bundle of L—i‘ran es of the tangent space or 1—- ) \U'; . ))‘C Y}/--\r
where \f‘ y - J}/ are linearly independent tangent vectors at >c ,

Let Sect (_E) be the space of sections of a bundle then we have a

.map gvp —> S\QCI‘(EFY given by, for ¢ & SVXFDD?;V, CLC—:S;
(vé\);c - S T ST, >>c

3Ted ) IMea ! ST, .a
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where TT. °eq, Tr,_o()\) i T‘L 0 Q . 1s reguarded as a set of co--ordin-
ate maps in some neighbourhood of 2C ., Now if the metric on Fvis
chosen so that i1 depends upon the submersion Q(:-.Fvby.making it
induced by Q from’ﬁzqfthen V defined above. coincides with the
gradient map used in E‘PHF] Theorem B . So, because the induced
metric is a continuous function of & in the compact open topology,
2 S“J'(TiFv)is a weak homotopy
equivalence, For €>€ such that £.3€ we have the maps .

T.: S5 — Sub (PFRY), Tt Seck (T3 F¥) — Sect (T, DY),
_:_w_here T?,D% is the bundle of 7~ frames of tangent vectors of Dq/,
éiven by. for Qe S\g/ ) A E gebF‘(EFV))TE(CL):ao:\;_and

AV (T (&) = & Je (DY)

where O(’Jé. is the map obtained by taking the

N
by applying Theorem B V: 3y

differential of U(: and applying it to the vectors of the section

ﬁ(i) .Wle have the commutative diagram

vV o % (ToFY)

where V on the bottom row is defined in the came way as the top

row V . By [_Pi’-ll Theorem B,' EPHII Lemmzs 4+1 51 Y on the
bottom row is a weak homotopy equivalence and the maps'U_ and.ﬁ_ have
the covering homotopy property. So since V is a weak homotopy
equivalence ‘7 induces a weak homotopy equivalence _b_e_tween fibres;

if we put See'{"e(ﬂ,r’:v) = ﬁ—-'( 7°Je'~‘e) then \7 g;{é)—:\gebl'('—(@i:/)
is a weak homotopy equivalence, Note that ged'(__,tlpg,l:v) is the set of
sections that agree with 76 on —\Te (’Dq’) . Let fa.:\ & ( SVI GTsz,)

. be the set of all continucus map's of gvim';o @—LT;: that map S&(Dq')to

" the identity element € in GL-7/ . Yor eff_h = g‘edf_’_(T:z, F\:) and

-—-w \ C L
X & t there exists a unique A (a)(x)erbg. such that



A r

. {
.a".. '\.; LS

M el (Ve), = @)

so by continuity of )4(&)(3(.) construction we have a map

M S&Zd‘e (_T;I’F\') —> (F-v| GLz_)which is continuous. Let

/C\x: gzd-e (T‘i F“) B f;wecg\; (}r—l:i)be the map ﬂ(“)(’()rl"\(“)(f(x))
for a & SC&CT%—F\—) andxé—g'v

8 LEMMA : The man F\‘: S—ch"e (Tﬁ, F\r> ——5—?@(976?1)18 a homotopy
equivalence for '—f'l > e> 0', vy< ., |
Proof Let D — T be a diffeomorphism which leaves Sv"{"}
. fixed point wise and is such that if U= L_IC;Y& (-D‘L)Sﬂ S;{O.D then
eD(U\XBq'—V) contains Te(D.’) . Let M ’1(_:—:\: CSVG—'L—"L.)
%e (Tq,FV)‘ be the map defined by for & We\%\cifp>
and (xy)ye =V

(8 gy = B (V€0

-r"v
N"/u' = lidentity, construct a homotopyH 17\820(“ (T;L |

D

J=>Sect; (13, F)

given by for(»>.4y) & 'Fv ytel oud @& Sad“ (Tq,F )
He () g gy = ML (Dex +5)) (V€ e
Then H, = identity and H,= f*"l“- . So M is a homotopy inverse ofH

— ¥ ool
10 LEMMA : For §,3€>0 the inclusion R : ruwe( S, G-La,) C

Four (S«, @7,) is a homotopy_equivalence,.

Proof: First consiruct the homotopy G L% [-hﬂ —‘SE'J'j given by

~ 2= 4+ (-t)U=2) for —l&>&0©
G, (x) = ) -
t i '
z/ >t + (1=t) for 0 &%)
- using G- we construct the homotopy M : LW ¥ — 8V by
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(4. -~ Xypa ) PO 301
Hk(-x\, Cr 0 X ) =
( 6,00, R G, R £ 1) # |
where R, ()= - [6, 00T for |al# [,
| — >t |

Let R : ﬁ—w— (Sv| GTL‘L) —2 '{_i_;:’\_e (gvl th:-i) be the map
such that for ae ﬁo(s", G_—Ei,) , ot & SY
(@)= acH, (x>

We will show thatk— is the homotopy inverse of k. o« Consider
':"ﬁ: Lx Fun /LSV. 07[1,3 = ;T; (SV. GTL) given by for
e B (8% GLq) s xeSY, tel

Ho(ay (> = ae Ky ()
now since 7). CD"‘") . \\ CD"’) C ']) )QD we have that

(Fmé(- G—Lq,>) _ 1—-1»46(_$ G'LQ,) and Ho=‘- identity,

herice by using H we have Kok is hometopic to identity map and agsin

by using H) kol is homotopic to the identity.

Now the diagrams

Ty (L) > Seck, (RF) = LA FM(‘S GLy)

N N | I
5 G L Seut, (T, FY) B i (57 610)

for LLa commute and the homzontal maps are weak homotopy equivalen-~

ces, Because of the way in which compact sets map into Sq, we gen
A — A —_—
Tw RepeV v =V RofoV = (e T

=V
vhen restricted to Q.i(é;) and we have the following ,

—

= _
11 LEMMA : If © 9 -2 g'), is the map €: al—>€ ang A is

the diagonal map A g; —— -‘:;'x S 1 then the diagram
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> Fon (59 Cla)

-~ Ro/aov
g‘i/

-1
To(Ex1)o A Aty - (A4
S

L . 2 —
Fun (T > Fon (8Y, Cly )

A .
commutes and the top line RO/W oV is a weak homotopy equivalence,

Proof : The fact that R"I‘:‘\"'v is a weak homotopy equivalence
follows directly from above and the fact tl:at if X is compact and
Lok —> '§;/ is continuous then F(K)C gq\: (éi)for some (&N,
The diagram commutes :if 05("—-—3-:: ) X e S’ there exists an

: N v
open neighbourhood U oi‘t(x) in F" such that &.’U\_is an embedding.

elu is automaticaly an embedding and 5
—‘ a D I _}__ - - - \ )
Ao (5w 15 )= (an.oa\’ Tg*e
Now (,&‘o Vo.)a( is defined by
da:i .?;- N v e - 3—- \
3T Ma Jq (i)

and

I
Q
4N
b
—
S
.
K]
N
o
o\a
=
J
ola/
?
—
|

because A€  is linear. Also X_D(Cf"(e Jo b 5!(%))-?(@(( ) et
so we have on applying de" to both sides of the equation that -
defines VY that ' : -
~\ [ O M
de" (- 2= ) .
9T, Mg J plves)

i )

— / ? -
o A AR V(G e @A) (37> 5 ey |

A - -
but this means that A (/" 9‘74 ) = V(G“’(’E‘N)OA(‘J) and the
diagram commutes .
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od
Proof of Theorem 1 wFop (C  :

= v

Surjectivity: Let A & _IT{_’(GLt)then there exists an A& S(i/ such
\ A A

that the homotopy class LA°’2°/“‘°V(M} of AelRopr °V@ is of ,

ﬂ
since AoRoM °V is a weak homotopy equivalence. But by the second

half of Lemma 11 this means that the homotopy cless [@'(‘he)] =
L@(“teyle Tl't(ﬁ;'f) is mapped by KQF toX ,
Injectivity: Suppose Xé f;v\— (St)f_'—?/o ) such that the
homotopy class f_5] is mapped by 37# to the identity element in
7/—;.(6_'1:4) . Ty Lemma 6 there exists an (M(f) E;§;:/ such that
@Ca.b) is connected to ¥ by an arc in ﬁw— an:ﬁ;), and Cc
is connected by an arc Cto € in §;, o First we note that
V#f.a("ﬂ(’)] =" Eeﬂ"o Also by Lemma 7 LC—'(Q- ("J-l—;L-é: Ca\tb‘ﬂ"'[.ﬂ
But by Lemma 11 LA okofXo V((’)_j-— #LC—-('e lr)j pW rd-] =Oand
there thus exists an arc in %1' that connects € with (- o Applying
Lemma 7 ag "'1 we get E.Cr(e)(")] = LG‘ (elc)j , but if
1. R¥—> R¥ is the identity map G (£.€)0) = %m((’(x),i).mhe

inclusion % CR‘L is homotopic, keeping the base point, to a

constant map. We thus get an arc in ‘ (gt 1,) which

.connects E‘—— (ﬁ.@ with the constant map so we get
’ =5\ _ A
LYl <= EL,—(K‘G—)J: LG\

[N
Proof of Theorem when C :

To prove this we will need the fg}lowing smoothing Lemma,

Y 4
12 LEMMA: Iet £ N )Q..D DR be a C submersfon which is C
in some nelghbourhood W of L*‘}%D) then there exists a C submersion
f N D """—31 such that r = (\‘9 for some closed

neighbourhood W of L= ¥ixD U S '[U- » 2,0, )3 .

oq-Y

v Dq, -\
Procf : Reguard S X D" 45 identified by € with e(g ) and



R

S‘r identified with ‘\('gv) s then SVX’B‘VV is an open subset of 12"/ .

Let 1D be an open disc in gvsuch that D is inl/. B= S\LD is a

compact subset of ]quand there exists an open neighbourhood \/ of?

— v, 8¢°Y .

such that Vv & S XD and V N\~ =¢ . By using the

Smoothing Lemma 4-+1 in[Mun and the fact that there exists an§7vo

such that $ close Csmaps to 10 are submersions we get the required

result, By using a proof siﬁilar to that given in Lemma 6 and if

we replace :ﬁ: byT; , the component 'ofT';, that contains the

identity element ‘Xo , then for 'Fé _FU\-VL (SV T‘s ) there exists

an aAge Qapand a C submersion U SV D"' _-——bf?” which agrees

with € on some neighbourhood of ¥ such that G(a, 6-) is connected

by an arc in T—'uu.\ (Q -]17/> o) -.L « By u51ag Lemma 12 there exists

an b€ Siand en arc in Fg, (VT —q,) that connects {(ai-) with

G‘(“l()’)where the arc is constructed in a similar way to the constru-

ction given towards the end of Lemma 7. Since ‘F is an arbitary

member we get that if t'g'. T‘:: —%—_F;
o T (T30 — T (T7,)

_is surjective for V"(l . But we have the commutative diagram
ol LsH= “ (T -
N .
S ‘ﬁ-_t(G'L7,>

and for 1:47,,\)#. on the left is an\isomorphism S0 ('g#; is injective

is the inclusion map

3
2
Vit

\5

and by the surjectivity of CS#J l's#- is an isomorphism and Y#- on

the right is an isomorphism, This completes the proof of Theorem 1,

. L . ]
Let S> 4 then define a map ! T‘; (As>"><6[_£>where <6:£?,)

* the S-fold product of G‘Lq__ y DYy ¥ Y -—————-><WT[]€2(’)). V"“um Y))
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~ s

then it can be easily seen by using Lemma 127 and a similar proof

to that given in Theorem 1 that we get the following extention.

13 THEOREM : Let ¥\ ,0¢td%, 221, %>, | then

W T (T (3))—> T, ((GL,))

is an isomorphism,
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