W Durham
University

AR

Durham E-Theses

Matching storage organisation to usage pattern in
relational data bases

Osman, Izzeldin Mohamed

How to cite:

Osman, Izzeldin Mohamed (1974) Matching storage organisation to usage pattern in relational data bases,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8364/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses

e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/8364/
 http://etheses.dur.ac.uk/8364/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Al

. | - .
D e O o5 g

W A ab -

'+..and say : My Lord! Increase me in knowledge ",

QUR'AN XX,114

Matching Storage Organisation
to Usage Pattern in

Relational Data Bases

IZZELDIN MOHAMED OSMAN

B IY
1)

B.Sc. {Kharcoun), M.Sc. {(Braarcen)

A thesis submitted for the Degre= of
Doctor of Philosophy

of the University of Durham

October 1974 e
& AR
I3 OCT 9.8

1Y R fE~1 N

~.Lig. A

Department of Computing

University of Durham

ABSTRACT

-+

A significant improvement in the performance of & base

)]

systems may be achieved by dynamically optimising the storage
organisation and the access patihs in accordance with the

usage patterns.

The principle of defined relations mav be employed to ensure
that & given relatiocnal data base is-tuned to match ils usage

pattern. This thesis describes some original contributions

to the solution of the update problem of defined relations.

Soue methods of improving the response time without impairing
the utilization of disk space have been investigated, and a

generalised page replacement algerithm for the manadement of

the data base work space is recommended.

The arguments in this thesis are supported by examples drawn
from existing relational data bases. As a whole, the thesis
emphasises the benefits of organising the data base in a

manner dictated by the activity of its users.

" ACKNOWLEDGEMENT

I am grateful to Dr. J. Hawgood for admitting me to the
Department of Computing to carry out research for a Ph.D.

and for his perpetual encouragement and help.

I wish to express my sincere thanks to my supervisor,
Mr. J.S. Roper, for his invaluable encouragement and helpful

advice throughout the research period.

The support, encouragement and guidance received from
Dr. T.W. Rogers of IBM UK Scientific Centre is oratefully
acknowledged, as i1s the permission of the management of the

Centre for the use of their facilities.

I am grateful to Ti. P. Hall of City University fcer his

encouragement and criticism cf some parts of this thesis, to
Dr. R.G, Casey of IBRM San Ju~e {(Talilcxnial for his co-opeiration
and kindnesg, and to my ccllieague, Les Knight, for his

co—-operation and help in setting up a geological data base.

I have also benefited from the discussions I had witn Stephen

Todd, Nigel Martin, Ian Clark, Peter Mason and Barry Aldreu.

I am thankful for the University of Xhartoum for their

financial supporrt.

Finally, I am indebted to Mrs. P.A. Croft for typing this

thesis.

To my late father

" CONTENTS

PREFACE

THE STATE OF THE ART

1. The evolution of integrated data base
management systems

2. The description of data bases

3.- The relational and DBTG approaches

CHAPTER 1 DESCRIPTION OF THE GEOLOGICAL DATA BASE
l. Geological Information Systems
2. The Dhata Base

3. Volume of the Information

8. Final Remark

Geological References

CHAPTER 2 ON DEFINED RELATIONS
l, Introduction
2. The Potential Advantages of Defined Relations
3. The Management of Defined Relations
3.0 Cbjectives
3.1 Updates
3.1.1 Updates at a Higher Level
3.1.2 Updates at a Lower Level
3.1.3 Summary of Updates

3.2 Deletion of Relations

iii

iii

29
29
31

34
36
37
52
60

61

3.3 The Definition of Relations on other Relations

3.3.1 Circular Definitions
3.3.2 Redefinition of Relations

3.3.2 Assignment of Defined Relations tc
Relations

3.4 Final Remark

CHAPTER 3 'A GENERALISED PAGE REPLACEMENT ALGORITHM

Introduction

The Statement of the Problem
Replacement Techniques

Ideal Replacement
Experiments

The Preferred Set

Summary

CHAPTER 4 FURTHER GENERALISATION OF THLE REPLACEMENT

1.

ALGORITHMS
The Dependence among Relations
1.1 Generalisation uf the LEC and LECS Algorithms
1.2 Experiments
1.3 Conclusion
Rapidly Changing Reference Patterns
2.1 Generation of Reference Strings
2.2 The Modeis

The Justification of the Principle of Defined
Relations on Cost Basis

The Estimate of the Probability of a Defined
Relation remaining Explicit

64
64

66

68

69

71
71
72

74

[
@)
<

O
s

110

111
115
122
122
122
123

129

132

CHAPTER 5 THE SPLITTING OF RELATIONS IN ACCORDANCE

WITH THE USAGLE PAT'TERN 135
Introduction 135
A. Domainwise Split . 138

I The Splitting at Physical Storage Level 138
1. Updates ld4
2. Logical Filters 145
3. The Overhead of Splitting 147

II The Logical Level (the Splitting of Relaticns) 147
1. A General Approach 148
2. Boolean Filters 150

3. The Influence of Splitting on Access and
cpu Times ' . 152

4., Comnarison of Approaches for Coniunctive
Boolean Filters

5. Summary 162
6. An Experiment 163

III The Formation of Subsets for Domainwise
Splitting i66

B, Tuﬁlewise Splitting

1. The Levels in the Hierarchy 174
2. The Profitability of the Method ' 176
3. The Choice of tbe Splitting Domain 179
4, The Formation of Portions 17§

5. Comparison between Tuplewise Splitting and

the Indexed Sequential Organisation 182

6. Final Remark 184
CHAPTER 6 DEFINED RELATIONS AS INDEXES 185
l.1 Defined Relations as Indexes 186

1.2 Experiments 190

2.1 A Criterion for Efficient Indexing
2.2 The Choice of the Domains to be Indexed
3. Indexing as a Form of Splitting

4. Summary

CONCLUSION

REFERFNCES

APPEND1X 1 DEFINITIONS

APPLINDIX 2 THE I5/1.0 SYSTEM
APPENDIX 2

APPENDIY 4

APPENDIX 5

=)
o
id

PRETYRRED SET

&
=J
el
E{
=
t
-
> f
o

201

28]
o

N
N
(9]

N
N
for

PREFACE

For the sake of readers who are not acquainted with the
terminology of the relational model, Appendix 1 provides

a brief explanation of relational concepts.

A brief survey of the evolution of relational data bases

follows this preface.

An early version of the experimental prototype relational
data base system IS/1.0 was made available to the author
by courtesy of the IBM UK Scientific Centre, Peterlee,
Co. Durham, for the investigation of data base problems.
A brief description of the IS/1.0 system is given in

Appendix 2.

Chapter 1 is the analysis of a geological relaticnal data

bacc. The ceclcgical reiercnces are compiled sspanately
at the end of Chapter 1. In the text Roman script has

been used for geological references.

Chapter 2 introduces the ccncept of defined relations and

contains an original contribution to their update problem.

In Chapters 3 and 4 the management of the data base
workspace is discussed. The problem is formulated as a

generalised page replacement problem.

Chapter 5 discusses the partitioning of data base relations

to match the user's queries.

Chapter 6 investigates the possibility of improving the

response time by the judicious choice of secondary indexes.

The arguments in the thesis are supported by examples drawn

from existing data bases.

THE STATE OF THE ART

1. The evolution of integrated data base management systems

The rapid technical growth in the field of computers has given
greater speeds, the possibility of storing large sizes of
information, and increased complexity of processing. The
evolution of high level languages and the arrival of direct
access storage devices have widened the fields of computer

applications and have enlarged the community of users.

This proqgress in the technology had its impact on computer
files. The file is no longer seen as part of the prograr.
The data describing the file is no longer stored in the procorasm

-~

n stosed in the file i

but has now b

i

cself., Files have bkecome

[(}]
o

mt el ArmA Sve e s b maeea
= -) = a el e e H k3 =3
aroec onc arxegc ncnec Tac cALG e

e o - -
moyre 1hozy [T

1
‘\

I many pirogirains

ct

instead of only cne program [Senko et al 19711].

With large files processed on—line, new problems and technigues
have evolved. The sequential processing of an entire file tn
access a single recorxrd for a transaction is no longer satis-
factory. A well-designed file organisation provides a way

of immediacely processing transactions one by one, thereby
allowing the data basc to keep an up-to-the-second stored

picture of the real world.

- In spite of the attention given to the design of information

systems, there is little in common between different systems.
This is due to the rapid technical growth, the newness of the
field and the wide difference in the needs of the people

embraced.

2. The description of data bases

In the above-described environment the work on the description
of data base systems has taken two general directions [Senko et
al 19731 One approach has been to improve descriptions at a

gross-feature level. An example of this group is the CODASYL

Systems Conmittee[CODASYL 1971].

Other workers have constructed more detailed system—independent
cgescriptions. More recently with the recognition of the
importance of data base systems, useful publicaticns have
apreared, for example by [Childs 19681, the Data Base Task
Group (DBTG) [CODASYL DBTG 1969],[Codd June 1970],[Engles 1970]

and the [GUIDE/SHARE 1970], to mention ornly a few.

The latter group developed into two schocls following tuo

apparently different approaches: the DBTG and the relational

approaches.

3. The relational and DBTG (network) apprcaches

Some of the salient features of this approach are:

(i) Two stages of data definition are required. The
first is performed using the Schema Data Definition
Language and the second using the Device Media
Control Language. The.process of data definition
may be performed in a series of stages. [Olle

September 19731

[
|-l
A

The programmexr sees the data only as it is defined
in the Data Definition Language by the data base

administrator, i.e. the data base administrator

iy

has more control over the mapping to the physical
storage.

(iii) It has a network view [Appendix 1,B] together with
a network handiing technique. Since the relational
model does not support networks at the schema
level, the DBTG approach is usually referred to
as the network approach.

(iv) The programmer navigates his way through the data
base using 'one record at a time logic'. [Bachman

November 19731,[McGee 1974] and [Olle September 1974]

There are many existing applications patterned arfter this

approach, e.qg. by [Phillips 1973] and [Sibley 19741].

3.2 The relational approach
The relational model is based on a sound set thecretic approach
to data. The data is conceptually seen in the form of data

tables (called n-ary relations or relations).

In ordesx to interact with this data the user necds to know the
names of the relations and the domains (attributes or column

headings) of interest to him in each relation.

Codd's relational model provides the following advantages
[Codd 1274]:

(i) A simple structure consistent with the semantics of
the stored information. This makes it possible to
use a logically simple language to interact with the
information. The relational data sublanguages are

high level ianguages, e.g. SQUARE [Boyce et al

October 1973] and SEQUEL [Boyce et al December 19737.
(1i) A uniform view of data in the sense that there is no

distinction between attributes and relationships:

both are represented as tuples. Therefore, a small

set of operations is reguired in the data sublanguage.

(iii) It is a complete model, i.e. all data structures
commonly employed in data base systems can easily
be cast into relational form.

(iv) It possesses data indcpendence [Appendix 1].

Relational data bases can support networks at the subscheme

[Boyce et al December 19731.

When the relational model was introduced, the mathematical
aspect of it attracted the attention of those in the computer
community who are mathematically oriented. Indeed, it is
extremely difficult for a non-mathematician to follow the early
literature on the relational model. Some of the terminolegy
was alien to the data processing community which is mostly

concerned with data bases. The reaction to this was!

"The development of the computational aspeét of information
handling, and computer design itself, has been university-
led. However, data bases and data processing have been
mainly developed by the practitioners; data processing
has grown to immense proportions with the theoreticians
lagging far behind. This may be because there is little
or no theoretical basis in most data prccessing systems,

because the theoretical basis is trivial, or because the

vi

world has grasped at the computer, which was designed to
be a computing engine, and force~drafted it into its role
as an information engine, leaving the thecoreticians far

behind." [Bachman 1973]

When the friends and foes have tested the validity of the claims
supporting the rational model, some informal agreement seems to

have emerged. This is summarised in the following:

(a) The user's view of the data and the qucry language
offered by the relational model are viable. This
agreement is reflected by the suggestions made for
using the relational model as a user interface to
data bases which are not relational [Qilie 187471

[Bracchi et al 19747 and [Dee et &l 1973]

(b) Some concern is expressed about the feasibility of
efficient implementations of the ielational model
with all its powerful capabilities. It is not
known how much of the system resources can be tradad
off.for the user convenience, This has led to the
develoipment of new approaches to some problems which
came into existenre with the relational model,

e.g. the proklems of the third normal form, the

development of efficient join operatcrs, etc.

However, the proposition of the relational model has stimulated
research and investigation in an expending area of computer
science. With the rapidly progressing technology, the
increasing number of casual users and the constantly decreasing

cost of computer resources, the model that offers the maximum

vii

user convenience is bound to survive.

One approach to improve the performance of data bases is to
gear the storage organisation and the access paths to the user
requirements., In this thesis the discussion centres round
the tuning of storage requirements ir a relaticnal data base

in a manner dictated by the usage pattern.

Some of the facilitiec of the relational model are employed
to achieve an optimum utilization of the data base resources

and to improve the response time.

Automatic methods for the adaptation of the data base structures

to the requirements of users in a multi-user environment are

suggested. In this respect the thesis is a contribution to
the emerging research field of self organising data management

systems [Stocker and Dearnley 1973].

The problems treated in the thesis have stemmed from the

practical needs of a relational data lase system.

viij

: __C_l_l__qp tex 1
DESCRIPTION OF THE GEOLOGICAL DATA BASE

In order to have a first-hand pragmatic experience and an
insight into the operation and problems of r=lational data
bases one needs:

- a large volume of natural real world data

- a group of uscxs who are interested in extracting

information from that data for their own benefit.

Such an environment existed in the Department of Geology at
Durham University. The vast amount of geological data and
the complexity of the queries involved will, to a reasonable
extent, fulfil the purpose of a research woxkexr in the field
of information systems. In this chapcer, I wili describe
this sample data base in some detail. In later chapters,

frequent reference will be made to this data base.

The provision of a data base for geclogists is not a new
proposition; however, all previous efforts [i,ii] lack data

independence,

l. Geol<gical Information Systems

There are vast amounts of collected data in many fields of
geology. The present problems stem from the fact that a
large proportion of the material is unpublished and with the
absence of standards in the nomenclature, duplication in
research efforts arises, for example, analyses have been
carried out on rock-forming minerals which are already
analysed somevhere else. This duplication is attributed

to either the lack of communication or to the different names

given to the same rock-forming mineral.

TR AT
',/\.‘\m\“ .

SErALLYY.
l 3¢ 10K
Lig:-ARY

Geologists feel that large data banks for geological data will

be an emerging basis for international communication in this

fieldliii].

There are many files of data on rocks (rock files) and data
banks in different places tailored to suit the specific
requirements of a community of users; Many Departments of
Geology in universities have such special purpose systems.
An example is the RKNFSYS (Rock Information System)[i] which
is a Fortran based system with its own naming and coding
conventions. It has its library of programs which process

any of the files required by the user.

2 P i L . S - 1 - 3 LI B Y o~ o
A similar example is a pilot project on the storage and

retriewvzl by the computer of gealogiczl infermation from coxned
boreholes in Central Scotlandliv]. This system has its own
qusiy language, noming and coding cenventionclvl,

On the national level the idea of national systems was
investigated by geologists in USA and Canada. If this is
fulfilled it will spare the potential loss in time, money and

achievement resulting from the ccctly masses of data being

allowed to grow in unrelated and uncoordinated ways. Such
a national system has been developed in Canadalwvil. The
system adopts national conventions. It sutfers from the

disadvantage that a programmer or a geologist trained in using
the system is needed to phrase the dueries before they are
submitted to the system[viil, The retrieval program uses
Cobol and Fortrans. A similar national system was developed

in the usafviiil.

28]

2. The Data Base

The Durham University geolouical data base was to be set up
for a group of minerals known as amphibolesfix]. Amphiboles
represent a small fraction of the recognised rock-fcrming
minerals (Figure l); They occur commonly in a wide variety
of rock types throughout the world. Amphiboles are useful
in the interpretation of the mode of formation of.their host
rocks, and hence theixr ijmportance for geoloyists and

petrologists.

Many problems arise when considering the analyses and other
information on amphiboles. This is due to the absencc of a

unique attribute of any of the minerals.

"Numerous varietsl namas have becn given o the amphibcele

minerals, and many names have been introduced tc distinguish

iJ.

minerals with minor differences in chemical comnosition or

optical properties. It is

fu

ot surprising, therefore, that
thea amphibole group has a surfeit or terminology, much of it
adding to the natural difficulties of identifving and naming

members of a mineral group in which a wide variety of atomic

substitutions are possible.," [ix]
Figure 2 shows some sample data. It is ambiguous, complex
and lacks a natural unique attribute. As seen from the

example, the same name is given to several minerals, or
rather several items. Some of the properties have been
redetermined by cther workers and the results of both deter-
minations are to be available. Many analyses are published

jointly by more than one author.

)

/

' ORTHO-8RING
SILICATES

\\\

ROCK FO‘?:V‘?E&\C M!NZ R:’\LS

ETC

Gl,\QmFT /

M

HUi‘ ITE
ORILINE

PYROXENE

GROUP
’

/

/

CHAIN SILICATES

\ \\
AN
\r A
N\ sILICATES

N\
\

\,
RM“EWOR'K
- 3 \ui] S
SHEET o oS
Slucm“7 \
W/
\ \ \ \ / FELDSPAR
\._ ‘\. *\ ‘\
\ _\ \ \‘\
\ \\ \
SN
N N\
\ \‘\ \\

N\

AN\

\

6 MEGABYTES
- OF DATA

afe
etc
AtiPHIBOLES
Pectonite
Wollastonite
. 2800
ANALYSES |
Fig:!

1.

Mineralname: Hornblende. TFound in Cooma District, New

Scuth Wales, Australia.

Analysis published by W. Joplin in 1939. Analysed by
W. Joplin.

Ref: Geol. Soc. Amer. Bull.
Chemical analysis: 8102 50.8%

Tlo2 0.36%
A1203 9.42%
etc.

Trace mineral Zn 6000 parts per million

Optical properties: < 1.642, B not recorded, ¥ 1.66,
S 0.017, 2VK£ not zecorded, ¥ :2=22,
D 3.119

colour: pale green

pleochroism: «< colourless
 pale yellow-green
% pale green

Mineralname: Hornblende. Found: not recorded

Published by Howie & Zussman in 1955. Analysed by.
Howie & Deer

Ref: American Mineral
Chemical analysis: SiO2 46.8% etc.

[Chemical analysis redetermined by Deer in 1970.
Ref: Geol. Soc. Amer. Bull.]

Mineralname: Tschermakite €tc.
Mineralname: Gedrite eese etc.,
Mineralname: Tremolite N - o

Mineralname: Tschermakite Hornblende etc.

(This is a Tschermakite as well as a Hornblende.
It is a sensoustricto Hornblende and a sensolato
Tschermakitelx]).

" FIGURE 2

3. Volume of the Information

The information on 2800 amphiboles has been collected. Each
cf these may contain chemical information; geographical
information, bibliographies, etc. It is known that at least
twice as much information is available and it is conceivable
that this figure could be doubled yet again if more obscure

literature sources could be scrutinised.

Associated with each amphibole analysis over 120 attributes
(properties) have been recognised. The items of information
related to each property are not simultaneously available,
The frequency of their availability varies considerably

(Figure 3).

4. The Choice cf the Primary Key

As seen from the data structure (Figure 2) there is no natural

primary key. In many cases no single attribute ox a grcup cf

(19

attributes uniquely identifies.an analysis, e.g. minerzlname,
author name, reference or date do not necessarily identify a
unique analysis- In many cases they mdy identify a group of
analyses for which the author used his own reference code to

distinguish between the members of the group. In fact the

whole set of data related to a specific analysis is unique.

An artificial key has been introduced to the data. This is

a serial number indicating the order in which the analyses

were collected for the data base. It uniquely identifies each
analysis. The user need not know the value of this number

for the analysis he requires. He should, instead, provide

the values of some attributes which together uniquely identify

TOTAL NUMBER OF ANALYSES = 2800

2800 analyses with Chemical information *

100
1500
400
440

1088

=
o o]
-
N

852

*Iiach chemical

Geographical information

Optical information

Colour information

Reference information

Information on Physical Properties
Pleochroism information

Trace Elements

Occurrence informaticn

Description of the technigues used in
the analyses

analysis is made up of an average of 10 oxides.

Total number of different oxides recorded to date is 65.

Included in the 2800 entries are 130 duplicate chemical
analyses.

" FIGURE 3

the piece of information he is seeking. The data base system

uses the analysis number (reference number) to tie different

properties together.

5.

The Formation of Relations

To fit the data into relations the following points were

investigated:

(i) The natural relationship within the data items:

(i1)

The

meanings of data items allow us to divide these

items into related groups, e.g. the data items

related to geographical positions form a group

separate frcocm the names of the optical properties,

etc.

The
The

the

(a)

(b}

(c)

nature of the anticipated queries:
data base was required to answer queries of
following form:

List all chemical analyses published by

Larsen, E.S. (author).

List all Rebeckites (mineral name} with

Fe203=0 and Fe0>0

or Fe203>0 and FeO0=0

[N.B: FeO=0 means it has been determined
and found to be equal to zero. A different
query will be: (List the analyses in which
FeO is not determined)]

Is there any analysis from Uganda (geographi-
cal position) with Cu0>30% (Chemistry)

published after 1960 (reference, date).

From which geographical liocations were

these samples collected?

(d) List all the Gedrites (mineralname) or
those minerals in which Gedrite is used
adjectively (e.g. Ferrogedrite) which
contain 40-45% of Silica {(Chemistry).

(e) What is the name of the mineral whose
properties are nearest to the following:

2V = 86° (Optical property)
absorption formula x>y>z (Pleochroism)
Al 03=20% (Chemistzry)

2

and has a trace of either Zinc or Cobalt.

These queries show clearly that thé user sees each
analysis mainly as a separate entity and all the
various attributes (Chemical; Optical; etc.) as
properties linked within that entity, i.e. he sees
the data as is listed in Figure 2 and only to a
limited extent he lioocks for properties spanning
ali the analyses. In relational tcrms: for the
majority.of the cases he sces the data in terms

of tuples rather than in teixns of domains.

In other words there are two different, ox rather
conflicting, views of the data. ©One view visualises
the data as groups of analyses while the other
visualires the data as properties. As more views
of the data may exist it seems inefficient to set

up relations representing every view of the data.

The data base relations would be set up in accor-

dance with one view and hence when new users request

http://visualir.es

relations expressing other views, these relations
will be constructed at a substantial cost. The
free storage space availaﬁle for the data Lbase may
be utilised to hold soire of the latter relations to
avoid the cost of reconstruction. How a relational
data base may handle such a situation in an optimum

fashicn is dealt with in Chapter 2.

(iii) The frequency of availability of data items:
The frequency of availability of attribute values
varies considerably: Some attributes belong to a
certain group but the frequency cof the availability
of their wvaluecs differs very much fiom that of the
values ol the other attributes in the group. If
the whole group is considered one relation, many of
the objects of the relations will have their values
marked 'not available'; This leads to a large
percentage of ‘'holes' in the r»elation. To miniwize
the number of such 'holes' those attributes whose
values are simultaneously available will be grouped

together to form a relation.

Having looked at (i), (ii) and (iii) let us consider the

following two extremes:

~ One relation can be formed with all the attributes aé
domains (e.g. 120 domains for the data under consideration).
The absent values of the attributes are tc be marked 'not
available!. This will require excessive storage and access
time. Figure 4(b) illustrates this type of approach. The

information in the example is usually published in this form.

10

Physics

Ref,# Properxty Value
1 Ilardness 16
1 S.G. 3.05
1 Tensile strength 12
2 Hardness 14
2 S.G. 3.2
3 S.G. 3.8
P (a)
Physics
rnef.# idlardness S.G. Terugile~strength
1 16 3.G5 12
2 14 3.2 NA
3 NA 3.8 NA
(b)
Hardness S.G. Tensile-strength
Ref.# Value Ref.# Value Ref.# Value
1 16 1 3.05 1 12
2 14 2 3.2
3 3.8
(c)
FIGURE 4
Possible Formations of Relation Phvsics
L; 11

~ A large number of small relations with reduced redundancy

can be formed as in Figure 4(c). These relations answer

some queries very rapidly (e.g. List the minerals whose

5.G.>3.2).

form is achieved by having relations in the third ncimal

form. In that case time consuming joins are necessary

for some queries.

Somewhere between these two extremes lies an cptimum design of
the relations.

are:

(1)

(11)

The major factors to be noted at this point

how much cpu time can be traded off for disk space,

i.e. how far can redundancy be tolerctcd,

the possible changes in pattern and frequency <f the
queries requiring that particular data. It is
noteworthy that in the example oi Figure 4 it is

often not possible to transform one form to another

'V}

by wreans of relational operators. Some operators
cshould be defined to perform the transformation.

Thie shows the need for extensible query languages.

It is expected that forms 4(a) and 4(c) will be required by

the majority of the queries and because it is easier to cbtain

(¢) from (a), (a) was chosen.

The geological data was converted into relations as follows:

Chemistry (Ref#,0xide,Quantity)
Mineralname (Ref# ,Mineralname)
Geography ‘(Ref# ,Country,Province,Locality)

For some other relations the reduced redundancy

Average storage

s No. of tuples @O' 9f size per tuple
Relation name | (cardinality) | (Guaree)| in bytes (with-
out overhead)
1 | Reference 3350 8 148
2 | ANALYSIS 1520 2 16
3 | Mineralname 2444 2 52
4 | Geography 2208 5 76
5 | Occurrence 1812 4 716
6 | Optics 1180 15 98
7 | Picochroisu 440 5 67
8 | Chemistry 29076 3 14
9 | Trace 1888 3 9
10 | Physics 518 3 14
11 | Technique 852 3 35
12 | Structure 1024 4 17
13 | Colour 77 2 22
14 | Redetermination 213 2 4
15 | Coexistence 50 2 4
16 _Symmetry '95 2 16
FIGURE 5

Specific Description of the Relations

13

Relation name: Chemistry

no. of tuples = 32000
no. of domains = 3
) TAverage" - . . .
Domain Name Type Size Value Distribution
Ref# Integer 2 bytes 2500 values ranging between
1-2500 each value, occurring
at an average of 12 times
OXIDE Character 8 bytes 65 valves ranging from A-7,
The freguency of occurrence
of values varies consider-
ably, i.e. between O to 2400
QUANTITY FLGCAT 4 byties about LCIOC values ranging
between 0.0-100.0, Values
generally occur once

Queries:

The queries which wexe answcred using thc above relation

were as follows:

. Given Oxide and Ref#, retrieve quantity 23%

. Given Ref#, retrieve analysis

(To be joined on equality of Ref# with
another relation)

. Given Oxide and a Quantity limit,
retrieve the tuples

FIGURE 6

Description of the Contents of a sample Relation

Optics (Ref# ,Alpha,Beta,Gamma, ..c.cseees)

Pleochroism (Ref#,Foxrmula,X,Y,Z)

Colour (Ref#,Colour)

Physics (Ref# ,Property,Value)

Trace (Ref# ,Elemeni ,Value)

Reference (Ref#,Author name,Analyst name,Date,....)

The primary key is underlined

[For details of the size of relations,; see Figure 5]

In the above relations none of tiie domains has elements (objects)
which are themselves tuples(sets). This ensures that all the
relations are of the first normal form [Codd August 1971, Codd
November 19711]. Updates (deleticns, inserxtions and change of
value) are convenient because the domains of the relations are
chosen such that any natural piece of information fits in onec
relation and sc in mest of the casec each dcliction and chanys

in value affects only one tuple.

Repeated groups were not eliminated in all +the ca

15

4]

S, 2.¢g. in
relation Reference in Figyure 7(i) when a reference has more than
one author we have a tuple for each author, i.e. the journal
name is repeated with each author's name, which leads to the
obvious redundancy. The other alternative is to have two

normalised relations as in Figure 7(ii) and 7(iii). However,

normalisation has the following disadvantages:

(1) an extra relation is needed to get rid of each
repeating group. If in Figure 7(i) the queries
were tc require a search on ANALYSER (e.g. retrieve
the tuples where ANALYSER=DEER), then the original
relation would have been normalised, giving the

three relations (ii), (iv) and (v). This means

:
|

that the data base system has to cope with a larger
number of relations even if they are not required
individually by the users. Accessing a larger

number of relations makes the queries more complex.

(ii) the considerable number of join operations when the
original. relation is needed, i.e. eliminating repe-
titions avoids redundancy at the expense of cpu
time due to joins, This is particularly inefficient
when there arc no-statistics available showing the

probability of a join being required.

(iii) the data departs from the natural form in which

it origirnally occurs and the user find, it di Fficonit

- R Ty T
ulli\ibb FELO It TV e

sualise multivalued acty

|

cO Vv

sation is only used for storage and update purposes

|97]

and is transparent Lo the user.

There was no need to eliminate transitive dependencies because

they do not exist among the attributes of the data.

6. Data Capture, Preparation and Validaticn

When the data was collected the mineralnames were preserved and
no coding was performed. This is more convenient for the user.
However, the relation Mineralname maps a mineralname into the
corresponding reference number, i.e. coding of mineralname is

internal to the data base and is transparent to the user.

The remaining part of this section is discussed in further

.1 in [x3.

.

deta

3=
[+3}

http://ffj.cu.lt

REFERENCE

Re f# AUTHOR ANALYSER DATE JOURNAL etc.
1 HOWIE DEER 1955 American Mineral
1 ZUSSMAN DEER 1955 American Mineral
2 JOPLIN JOPLIN 1939 Geol. Scc. Amer. Bull.
3 EVANS HOWIE & DEER 1968 Amer. J. NSCI
4 LASNIER 'NA! 1969 Contr, Mineral & Petrol
A FORESTIER 'NA' 196¢ Contr. Mineral & Petrol
5 CARMICHAEL CHAPERLIN 15870 J. Petrology
(1)
AUTHOR i REFERENCE
Ref# AUTHOR Ref# ANALYSER DATE JOURNAL evrcC.
1 HOWIE 1l DEEDR 1655 merican Minexal
1 ZUSSMAN 2 JOPLIN 1939 Gecl.Soc.Amer.Buli.
2 JOPLIN 2 HOWIE & DEER 1968 2mer. J. NSCI
3 EVANS 4 TNA! 1969 Contr. Min. & Pet.
4 TASNTER 5 CHAPERLIN i370 I, Patrclogy
4 FORESTIER
5 CARMICHAEL (iii)
]
(ii)
ANAT.YSER REFERENCE
Ref# NAME Ref# DATE JOURNAL etc.
1 DEER 1 1955 American Mineral
2 JOPLIN 2 1939 Geol. Soc. Amex. Bull.
3 HOWIE 3 1968 Amer. J. NSCI
3 DEER 4 1969 Contr. Mineral & Petrol
5 CHAPERLIN 5 1970 J. Petrology
(iv) (v)
" FIGURE 7

Numbcr of Relations

Size of Data Base

Type of Access

Number of Queries

System Configuration

16

6

6 x 10" bytes

Single User (Batch)
pseudo-terminal (Batch)

- 2=

2741 terininal

25 Queries/week
(while in existence)
Total number = 500

360/44

280K Core

3-2314 Dpisk

2 Magnetic Tapes (Backups)

" FIGURE 8

" The Geoleogical Data Base System

7. The IS/1.0 Geological Data Base System

The geological data base has been implcmentced using the IS/1.0
system (Figure 8). The IS/1.0 system is a general purpose
information system based on relational algebra. A brief

description of the IS/1.0 system and language is in Appendix 2.

In this section I will discuss the actual queries that were

data base because they vary from

-

submitted to the geologica
the anticipated queries. The discussion is independent of
the query language and is based on the operations that the
relational system carries out. These operations may not be
transparent to the user. Before discussing the queries,
however, I will site an example of a user exiencion for the

"18/1.0 language to handle a particular type of query.

7.1 User extensions

Tn IS/1,0 user extensions are norm incs which crc
interfaced with the system via system macrecs. As an example,

consider a user-written TABULATE function.

TABULATE operaﬁes on n relations of deqrees d d?,...,d_1 and

ll
a given dcmain common to all n relations to produce a new

relation of degree dl+d +...+dn-(n-l), i,e. it forms a rela-

2
tion having the domains of the input relations without repeating
the common domain. All the occurrences of the common domain
are included. When one of the input relations does not con-

tain a certain occurrence of the common domain, null objects,

represented by blanks, are inserted in the tuple.

In Figure 9 an example of the operation of the TABULATE routine

is shown. The routine takes as input the names of the three

j
O

COLOUR
REF#
1

3

LIST;
yields:

1

3

OPTICS

COLOUR REF# o B X
BROWN 1 200 100 60
GREEN 3 80 70 29
STRAW 4 50 59 72
CHEMISTRY
REF# OXIDE QUANTITY
3 SI02 40
2 FEO 5
4 SI02 42
4 AL203 8
4 FEO 2
TABULATE (COLOUR, OPTICS,CHEMISTRY) ON (RFF#);
COLOUR L 3 X OXIDE QUANTITY
BROWN 20 100 60
GREEN 80 70 29 SI02 40
STRAW FEO 2
50 59 72 SI02 42
50 59 72 AL203 8
50 59 72 FEO 2
FIGURE 9

Example of a User Extension

relations to be tabulated, i.e. COLOUR, OPTICS and CHEMISTRY,
and the common domain REF#. The resuit of the tabulation may

be stored back in the data base under a new name.

Though space and time consuming, TABULATE has been a useful

function for the geological applicaticn.

7.2 Queries
The queries submitted to the data hase are grouped into five
major types. Examples of these types and their frequency

of distribution are shown in Figure 19. These types are

influenced by the choice of the underlying relations, e.q.

1 € - . o e E] BT -
normal form, becousc two scoparate gelecitiong £011

join would have been necessary.

The querics may be classified accorxding to the compliexitv of

the structure of the query as follows:

Simple queries: These are the queries which interrogate only

one relation at a time. These are made up of types 1,2 and
3 in Figure 10. They constitute 37% of all the queries on
the geological data base. Indeed a differert design of
relations would have led to the variation of the fregquency of
such queries, As redundancy increases, queries tend to

become simple:: and vice versa.

Moderate queries: These queries interroyate two relations or

more at the same time, They constitute queries of type 4 in
Figure 10, which account for 58% of all the queries. 1f,

however, more redundancy is allowed in the data base, then

Type Queries Fregquency
1 From a given relation retrieve those tuples 20%
for which the value of one domain is ygiveu,
e.g., Has the element niobium (Nb) ever been
recorded in an amphibole
i.e, From relation TRACE retrieve tuples forx
which ELEMENT{domain (2) }1=NB
2 From a given relation retriewve those tuples 10%
which have a given value of one domain and a
~given value of another domain.
e.g. List the analyses published by AKOI in
1970
i.e. From relation REFERENCE retrieve tuples
for which AUTHOR=AKOL & DATE=1970
As (2) but disjunction replaces conjunction 7%
Retrieve certain tuples of a relation and *58%
jJoin these to certain tuples of another
relation.
e.g. Obtain the optical properties and the
chemical properties for each analysis
of the minexal TREMOLITE
From relation MINERALNAME retrieve tlie
tuples for which NAME=TREMOLITE
Form a projection on REF#[domain 11 and
assign the resulting relation to
relation R
Join R with CHEMISTRY cia the equality
of REF# and assign the resulting
relation to S
Join S with OPTICS on the equality of
REF#
5 From a given relation retrieve the tuples 4%
" | for which a domain has one of successive
- values. Given one value and an increment,
i.e. a selection process for which the
value to be selected changes dynamically
e.g. a. YEAR=1960
b. Select analyses published in
NATE=YEAR
¢c. Perform operations as in queries
types 1,2,3 or 4
d. If Year=1974 then STOP
e. Year=Year+l. goto b.
.UPDATES.NO' of updates per 500 queries = 23, i.e, about 5%:

3% insertione, 1% deletions and 1% changes in value

*¥16% queries with a single join, 28% with two joins, and
14% with more than two joins

" FIGURE 10

22

most of the resulting join operations will be avoided.
This would have led to the diminishing of queries of this

class and the increase in the number cof simple queries.

Complex queries: This class of gueries inveolve lcops and

controcl variables. The programmer finds it difficult to
track the stages of such queries if the data base query
lancguage lacks builit-in counts and loop faciliities. Queries

belonging to this class are time consuming although they

account for only 4% of all queries.

The queries of types 4 and 5 take less cpu time if the objects

of the requested domains are ordered according to their value.

¥
4

o

el 3
Wa L

v

- >
1001 OL

bk
o7}
(nn

e

Y

This demonstiraltes the need for the co

o
o]

o
-8

-
>

in relaticne., The zortimg shoul

-

2

-
!

¥ nanac 7 T wmoaRad
T Necec L Le nole

n

[&)] el
LR, S

to the set primitives like union, intersectior. etc., but the

cecncert of ordering the elcments of o sct agcording te their
value must be accepted as a practical necessity for efficient

applications.

©
o

Sorting is important in the following case

(1) In removing duplicates (Purging)
Consider the query: In relation Chemistry, how many
different oxides were analysed? i.e. to find the

number cf different object values.in a domain.

If the operators of the relational data base perform
according to their standard mathematical definition,
then the result given by any relational operator is
a set (i.e. without duplicates). Thus, this query

may be answered as follows:

N
W

(2)

Form a projection of relation Chemistry on

doméin Oxide. Assign the result to a one.

domain relation R.
The cardinality of R is the answer tc¢ the yuery.
However, if the relational operators are not stcond=cd,
e.g. IS/1l[Notely 1972] where the duplicates are not
removed by the projection, then the answer is oktained
by first performing the difference of null and R and
then finding the cardinality of the resulting relation.
To remove the duplicates in the projection or to obtain
the difference requires %(n+l)—n object comparisons
where m is the cardinality of R and n is the number of

the different wvalues in the domain [sez Zvvendix 37.

If relation R is sorted, only m comparicons axrs reguiied.
It pays to sort R whenever such a query comrs up if

(n > 2.77l0g_m) [for procf cee Appendix 21, This
“

true in the case of the abcove example (n = 65, m is just

under 32000).

To ansvwer the query: How many authors have published
works on amphiboles, it also pays off to sort domain
Author of relation Reference (for domain Author n=1317

and m=3350) .,

In Joins:

Almost all the joins involved in queries of type 4 are
joins on the equality of the primary key (Ref#). If all
the relations ares stored sorted on the primarv key, this

will reduce the number of object comparisons from (m., x m

1 T2

to (ml + m2) or less; where m1 and m2 are the cardinalities

24

http://OxJ.de

of the relations to be joined.

The overhead due to sorting is tolerable becéuse sorting
is done only once for each relation. The overhead due
to merging is tolerable if the proportion of the updates
is small compared to the number of queries (retrievals)

as in the case of the geological data base.

Reducing the join time is essential because join lis an
operation characterising the rclational model and because
having read the literature on the relational model the

user will find it tempting to store his relations in the

rr
jng
l-.J
N
o]
]
H
|
0]
(2
Hy
(0]
H
=
&
Qs
o2
U
ot
4
D
ct
o
()
)
.
o
'.J-
3
o
o))
5
[0}
o]
O
-
~
0
a}
o]
]
9]
@]
6]
1G]
0
H
s

relaticnal data base implementors bacouzae it has proved
to be a performance problem in the implementation of at

least one current relatioral data hasel[Todd 16741,

(3) Sorting is also essential for the efficient performance

tn

of some user-written functions and application preogram

such as the previously described functicn: TABULATE.

8. Final Remark

Some of the characteristics of the geoloaical data base may
be similar to those data bases established for research and

scientific information.

One interesting result, however, is shown in Figure 1l1l. The

N
U1

number of published analyses is exponentially increasing with
time apart from two kinks marking the first and the second

world wars. This demonstrates the following:

(i) the necessity for harnessing the computer in processing

the ever-increasing volumes of information.

(i.i) the importance of the judicious choice cf designs for

files so that they are xobust enough to cope with the

huge number of additions.

26

Number of Amphibole published analyses

p Date in Syears interval (see [x])

A

- 22-895l
- €961
- 856
- €66l
- 816l
- Cv6l
- 826l

27

DATE

- €26l
- 8261
- £26|
— 8161
- ¢16l
- 8065l
LO-€06l

Figll
1000 -
500 -
400 -
300 -
200 -

100 -

o

Geological References

(il

[ii]

(iid]

[iv]

(vl

[vil

[viil

[viii]

[ix]

Lx]

CHAYES, Felix

CUTBILL, J.L.
WILLIAMS, D.B,

BURK, C.F., Jr.

HMSO

GILL, Elizabeth M.

BURK, C.F., Jr.

DRUMMOND, A.D.

CLARKE

DEER,
HOWIE,
ZUSSMAN

KNIGHT, J.L.

"Rock Information System",
Geophysical Laboratory,
2801 Upton Street, N.W.,
Washington D.C. 2008

Package for Experimental Data
Banking, Systematics Associration
Special Volume No.3, "Data
Processing in Biology and
Geology", edited by J.T. Cutbill,
1970, pp.105-113

"Computer Based Geological BData
Systems: an emerying Basis for
International Communication”,
Proceedings of the 8th World
Petroleum Congress (1971)

Report No.71/73, Natural Environ-
ment Research Council, Institute

of Geological Sciences. Also
Report No.71/15
"Geological Data Banks", Atlas

O TN

il - T - el i
Cemputex Nleport 1272

"The Naticnal System for Storage
and Retrieval of CGeological Data
in Canada", Geophwsics Thiforeation
Society Proccadings, vol.1, 1869,
PP.1=7

"Development of a CGeological Data
Retrieval System", Western Miner,
February 1969, vol.42, No.2,
Pp.47-50

"Automatic Data Processing of
Geological Literature by the
United States Geological Survey",
Geoscience Information Proceedings,
vol.l, 1969, pp.8-12

"Rock Forming Minerals", vol.2,
p.203, Longmans 1972

"The Classificetion and Interpre-
tation of Amphiboles™, Unpub. Ph.D.
thesis, Durham University (UK),
1974

Chapter 2
ON DEFINED RELATIONS

INTRODUCT1ON

Some relational data base sysiems such as I5/1 [Notely

1972] and SEQUEL [Boyce & Clhamherlin 1973] allow the user to
Treate his own relations as subsets of the main data. With
such a facility the user may impose his own view of the data
in the collcction. If a large number of relations are
created, disk storage space problems and other maintenance

Aifficulties can arise.

The concept of definced (derived or implicd} rcelations is
introduced ds a b"Lu.L‘q_.jc: Alldlld\d'ciueﬂ'c. MleaSuarc,. Deiiied Yelations
are subsets of the data that are not assembled physically

until they are reguested by a guery. The user submiis to

the system a definition of these relations expressed in terms

of data base relations using relational operators.

e.g. A user who is interested in the minerals containing

Al.

9 may issue the following IS/1.0 instruction:

V3

DEFINE (MINERALS_WITH_AL203) ;
LOAD (CHEMISTRY) ;
SELECT (OXIDE=A1203) ;

BEND:;

[In the following discussion this definition is expressed as

Define Minarals_with_Al2C3=Chemistry:COxide=A1203;

Lad

29

The system decodes the definition and stores it in a retriev-
able form. The defined relation will then be available to
the user at the same logical levcl as the other data base
relations. As far as the system is cencerned, the defined
relation remains a stored definition (i.e. implicit) until it
is requested by a query. The implicit form takes negligible

disk space.

When the defined relation in its implicit form is referenced

by a query, e.q.

LOAD (MINERALS _WITH_AL203) :
SELECT (QUANTITY>8) ;

LISY;

it is then created, i.e. made explicit, by carrying out on

the stored data the operations indicated in the definition,

N
ot

T 2 4 e oW A
NITH 27,20

P . -
LR b Lo B Kol
TiiC \—\.Atl.l.\—s

[#5]

=

4
3

e.g. to create the relation MINERAL

of relation Chemistry are accessed and those matching the
seiection criterion are written back to disk as tuples of

the relation MINERALS_ WITH_AL203.

The explicit form stays in the data base and the relation

will not be recreated if it is requested by another query.

The processing cost to create the relation may be very high.
"It is a function of the use made by the various parts of the
computer system. This cost mainly represents the cpu tinme
and the i/o time spent in processing the definition and
assembling the relaticn. The cost wvaries with the conplexity

of the definition and the size of the relations involved in

[\]

the definition. The explicit form may take a substantial
amount of disk space. However, if the implied relation in
its explicit form is requested by a query, no additional

cost 1is incurred.

At some stage in the process of c?eating and querying
relations the available data base space may be consumed.

One or more explicit relations will then have to be made
implicit in order to free space for cther requested relations.
A replacement algorithm is needed to decide which relatiocn

is to be made implicit. This is discussed in detail in
chapter 3 and is followed by the justification of defined

relations on a cost basis in Chapter 4.

The definition cf the defincd rclaticn m=

N .
’ lalalah s R al v v
ocont2in usEer-

[

written functions or application programs.

THE POTENTIAL ADVANTAGES OF DEFINED RELATICONS

(1) Virtual storage:
The user is freed from worrying about the constraints
of disk storage space. He defines as many relations
as he may want and as fai as he is concerned there is

an infinite 'viitual' disk storagye space.

(2) Improvement of the response time:
These defined relations are very useful in providing
the answers for recurring queries (e.g. the above
implied relation MINERALS WITH_AL203 answers the

query: which minerals contain Al203).

Some users may have narrow needs such that their
requirements can be more efficiently satisfied by a
set of pre-structured gueries in the form of implied

relations.

In both of these aspects, reprogramming and compila-
tion times for gueries are saved. In addition, for
some queries the time to recreate the relation
answering the query is also saved. The response

time will thus be improved.

Self-optimizaticocn of data structures:

Consider the following 4-~relation data hase:

Relation Citizens (Name,Address,Status,Tncome No.of
Dependants) ;

Define Tenants=Citizens:Citizens {status)=Tenant;

.

tatus) =Landlord;

Citizens

Define Landlordge=Citizen

in

N
%

-~
[5/]
-
in

Define Others=Citizens:Citizens (status)=0thers;

The relation Citizens is permanently stored (base
relation) while the three other defined relations,
Tenants, Landlords and Others, will be physically

materialised when requested.

Alternatively, the relations Tenants, Landlords and
Others may be stored permanently (i.e. made base

relations) and the relation Citizens defined as follows:

Define Citizens=Tenants UlLandlords UOthers

(O]
N

By monitoring the usage of these four relations the data
base system is able to determine the best strategy under

given conditions.

This facility gives the data base systcem a choice between
the alternative methods of storing the same data which

enables the system to self-optimize its data structures.

2 P IR E i | L. A ~ P o=
in aetail in clhiapier 5.

Cl

This is discusse

(4) Indexes for domains of xelations may be delfined as

implied zelations. This improves the response time

N

and may lead to the optimization of data structures.

This is also discussed in detail in chapter 6.

(5) In batch data base systems the system can look @« aud
reorder the queue of requests to take care of thz

following:

(i) cut down the processing time by making a
relation explicit and grouping tcgether. all

requests that use this relation.

(ii) define some relations to cater for irepeated

queries.

The main disadvantage cf defined relations is that they delude
the user by giving him different estimates of the computer time
required to answer his query. As relations switch between
being explicit and implicit the processing time of the query

will be greatly influenced by the state of the defined relations.

However, the seriousness of this disadvantage may be offset by

W
(V3

providing the user with a maximum estimate of the computer

time required tc answexr his query.

THE MANAGEMENT OF DEFINED RELATIONS

In a data base with a defined relations capability, some of
the system operators have to be adapted to take care of the

hierarchical structure and the dependencies that exist

be

T

ween the relations. Some posesible application of defined
relations lead to logical problems which cannot be ignored
[Notley 19721]. In the following discussion, recommendations

and algorithms are suyggested to take care of the following:

(1) the update problem
{2) the deletion of relstions from Lhe syslem
(3) the definition of relations:
(i) circular definitions
(ii) redefirnition of relations
éiii) assignment of defined relations to

relations

All these recommendations and algorithms are the independent

contribution of the author.

In the examples the normal set notation (M for intersection,

Ufor union etc.) is used for relations.

3.0 OBJECTIVES

In the following algorithms we aré not concerned with search
algorithms which get at tuples and carry cut the actual
operations. We are, however, concerned with the algorithms
that deal with the logical part of the problem and hence pave
the way for other algcrithms to care for the particular details

in particular implementations.

34

| i i
Y X
/ / \
X1l \
X2

/ ,,
\

\\»x

Y and X are base relations
Y1l is defined on Y
X1l is defined on X and Y

-
1

IPigure 2.1

In figure 2.1 a hierarchy of defined relations is shown. 1In
such a hierarchy the user may not be aware of the relationships
aind the dependencies that exist amony tiie data base relations.
I+ is therefore advantageous to provide the facilities by meaus
of which the user can perform all the operations on a defined
relation without restrictions. Ideally, the user should treat
the defined relations in exactly the same way as any other base
relations. The restrictions force the user to be aware of

the dependencies between relations. That is, the

system should possess a higher degree of data independence.

It is therefore desirable to have the user activities (queries,
application programs, updates etc.) independent from the logical
representation, the access path and the level in the hierarchy
cf the data. The user need not know whether a relation is &

base or a defined relation, is implicit or explicit, nor will

he need to know whether it is an existing relation oxr a mere

collection of pointers to some other relations.

However, giving all this frcedom to the user is nice as long
as the consistency of the definitions and thec defined relations
is preserved., Hence, the objectives of the following algo-
rithms are:
(1} to give the user the maximum freedui
(a high degree of data independence).
(ii) to preserve the consistency of the

information in the data base.

Updates can be divided into:
(2) insertions
(b) deletions

(c) changes in obhject values

The changes in object values are conceptually taken as

deletions followed by insertions.

An insertion is seen as a union of the tuples to be inserted

(i.e. the updating relation), and the relation to be updated.

A deletion is logically seen as the difference 9f the relation

to be updated and the updating relation.

The Update algorithms

Let us divide the updates into two:
(1) update at higher levels

(2) update at lower levels.

Referring to figure 2.1, updating X or Y is an update at a
higher level with respect to X1, X2 and Y1, X1 respectively.
Updating Y1, X5 or X4 is an update at a lowexr level. Updating
X1l is an update at a higher level with respect to X5 and an

update at a lower level with respect to X and Y.

3.1.1 UPDATE AT A HIGHER LEVEL

In this type the update is [iltered down and reflected on all
the relations defined on the updated relation. The corres-
ponding definition is applied to the updating relation

successively at each level,

Inserticns
Examples 1 and 3 illustrate this type of inseriion. The
insextion is essentially carried cut at cach lcovel ac followus:

(a) The definition is applied to the updating relation (the
relation containing the tuples to be inserted). Tha
resulting relation is the updating information which

will be passed to the following levels.,

(k) If the relation to be updated is explicit, the updated
form will be the union of the relation and the updating

relation resulting from (a).

The exception to the above rule is the definition containing
" the difference operator when the second relation is to be
updated. Example 2 illustrates this type of definition. 1In

this type the insertion is carried out as follows:

37

Example 1 (Insertion)

Relation Y Relation X Relation X1
40 A C 20 B G 8 T D
8 T D 8 T D 3 L S
3 L S 14 N M
L S
4 A Cc
Relation X3 Relation X5
8 T D 3 L S
2 Q R

Definitions: X1 = Y intersection X

X5 = X1 difference X3
Relation I (the updating tuples to be
incerted in relation ¥
4 A C !
5 M D

After the update:

(i) = YUIL Y

4 A C
_____ Mm...D
40 A C
T D
L S

(ii) I = I intersection X I X1
X1 = X1U1I 4 A C 4 A _C
T D
L S

(iii) I = I difference X3 I X5
X5 = X5U1 4 A C 4 __A___C
3 L S

38

Example 2 (Insertion)
Suppose in Example 1:
definition:

(iii) X5

X3 difference X1l

(iv) X6

project [1]1 (X5)

After X1 is updated:

x1 x3 X5
A C 8 T D pA Q R
T Q R
L S 3 S T
Suppose I is X6
4 A C 2
3
{(iii) (I = I} the definitiecn I
. . A C
contains difference and the
2 Q R
second relation is toc ke
updated.
X5 = X5 difference 1 3 S T

[Alternatively,

(i1i) I = X3NI
X5 = ¥5 difference I]

Now I is the relation with the tuples to be deleted. The

update continues as a deletion operation.

(iv) I = projection [1] (I) 1
4

X6 = X6 difference I X6

3

Example 3 (Insertion)

Relation X5 Relation X3
8 T D 8 T D
3 S Q 2 Q R

Relation Y as in Example 1

Relation X1 is implicit

Relation I (updating tuples)

4 A C
5 M D
X1l = Y: select Y[1]<20

[
(D
‘e

£32,05]) (Join X1 & X
)

After the update:

iy v = Yz Y
- *4

5
40
8

3

(ii) I = I: select I[11<20 I
X1 is not updated because it 4

is implicit 5

(iii) I = Project(Cf1]1,0[31,0[5]) (Join I &

Lo}

-t e o me ——

1
X3: I[1]1>X3[11])
5
¥5 = X501 X5
4
5
8
3

Example 4 (Deletion)

x1 X3
8 T D 8 T D
3 L S 2 Q R
3 L R

Relation Y as in Example 1
Delete from relation Y the tuples for which

This is eqguivalent to specifying the

to be deleted as
D = Y: select ¥{1]>3

Relation D (the tuples to be deleted)
40 A c
8 T D

Definitions:

Y

X1 select Y[11<20

X5 = X3 diiference X1

After the update:

(L) Y = Y difference D

(ii) D D: select D[1]<20C

X1l = X1 difference D

(iii) The definition contains a difference
and the second relation is to be
updated.

D= X3ND

X5 = X5 Union D

.]

Y[1]=-3.

tuples

The update continues as an insertion operation

o

(]

Example 5 (Change in object value)

X1 X3 %5
8 T D 8 T D 2 Q R
3 L S 2 Q R

Relation Y as in Example 1.
In relation Y replace the values Y[1]>3 by 10.

This is equivalent to the deletion operation of Example 4:

L

0] A cC
8 T

v}

followed by the insertion

I
10 A C
10 T D
Definiticnss: X1 = Y. celsct ¥[l1l<2ZC
XS = X3 diffcxence X1
After the update:
(i) ¥ = (¥ differcnce D) union I y
3 L S
1¢C A C
10 T D
(ii) D = D: select D[11<20 D
8 T D
I =1I: select I{1]<20 I
10 A C
10 T D
X1l = (X1 difference D) union I X1
3 L S
10 A
10 T D
(iii) D = X3 intersection D D
8 T D
(I = I) I NULL
X5 = (X5 union D) difference I X5
2 Q
42

(i) No operation is performed on the updating relation.
[Alternatively, the same result will be reached if the
definition is applied tc the updating relation with

-]

-3

the difference replaced Ly interscctio

The updating relation is passed to the lower levels as a

deletion and the process continues as a deletion operation.

(ii) If the relation to be updated is explicit, the updated
form will bhe the differance of the relation and the
updating relation [resulting in (i)]J. This applies

to all the relations at lower levels.

Deletions

a relation (D) containing the tuples to be deleted ci a boolean
filter which selects the tuples to be deleted from the relation
to be updated. The extracted tuples constitute the updating

relation (D).

Example 5 illustrates thz mechanism of the deletion. It is
the same as the mechanism of the insertion (described above)

except for the following:
In (a) and (b) the union is replaced by the difference.

In (i) only the alternative method is applicable. The
updating relation is passed to lower levels as an

insertion.

In (ii) the difference is replaced by the union.

[l
(93]

The insertion algorithm for updates from hicher levels is as

follows:

procedure insert (R,I,DIFF2) recursive;

boolean DIFF2; relations ®,I,IN;

comment R is the relation to be updated
I is the relation of tuples to be inserted
in R
n the number of relations defined on R
D, is the k! definition from R to the

lower level l1sks=n

D* is Dy with difference replaced by
intersection applicable in the case
of deletion

DIFF2 a logical variable true when Dk contains
difference and the second relation is
to be updated

X is the kth relation defined on R;

k

if R is implicit then goto EXP;

if DIFF2 then R:=R-I else R:=RUI;
EXP: if n=0 then goto EXIT;

for j=1 step 1 until n do;

begin; DIFF2=DIFF2 and <Dj contains difference and

th relation defined on R is the second

the j
relaticn>;

*if DIFF2 then IN=I;

comment in case of deletion IN:D*j(I);

else IN:=Dj(I);
if INT=null then
insert(xj,IN,DIFFz);
end;
EXIT:

end insert;

The algorithms for deletion and changc of object value follow

from the above algorithm.

Discussion

The significant advantage of this approcach to

0
t-h

is the restrictio

eliminates the potential cost cf creating all relati
the hierarchy. One main disadvantage, however, is that the

application programier has to give the gvstem

for each function he adds to the svstem.

For exampie:
The defini£ion: X1=SORT (Y) ON Domain{(2);
When the updating relation I is ins2arted
Isorted=SORT (I) ON Domain(2) ;

X1=X1 Union Isorted;

This is a wrong resuit. The correct result is

X1=X1 MERGE Isorted

(The only change is the replacement of union by MERGE, which

a2 restricted form of the union.)

In the case of the deletion:

45

updatcs to explicit rorm:

is

After deletion Y=Y differxrence D

Dsorted=SORT (D) on Domain (2)

X1=X1 difference D
or more efficiently

X1=X1 DEMERGE Dsorted
where DEMERGE is an operator which takes a tuple from the
second relation and searches the first relation, tuple by
tuple, until it {finds
either a tuple eguivalent to that of the sccond relation,

in which case the tuple of the first relation will

be deleted;

or a tuple of scrt key (sort demain{s)) valve greater
than that of the second relatimn'e tunle.
Tt rereats this until one of the two relations is exhausted.

The above update mechanism will be extended at implementation
stage hy adding rules which account for complex cases, e.d.
when the defining relation appears mcre than ounce in a single
operation.
e.g. R _ 1is defined as S_ join S_ (R =S *S)

o o o O O o

Let R =S *X (where X =S , X _ is a dummy relation)
o "o "o o o' “o

R
(o}
To update So and Xo by I.

Since So and xo are at the same level we can start by updating

any branch to the next level.

o
(<)}

Starting from left to right:

1. The relation to be updated is So
(a) Update So

Sl=SO\JI (Sl'Rl'°" are the updated versions of

SgrRyeess)
(b) Update Ro

= H a4
R =R_ U (I*X)

, \\/

Ry

2., The relation to be updated is Xo
(a) Update Xc
xl=xou I {a dummy update)

(b) Update R,

= - ®
R2 RlL)(Sl I)

i.e. updated R=RokJ(I*Xo)lJ((SoLJI)*I)

= { {T* %* %
ROLJ_I so)u(so I) U(I*TI)

Generally, when the defining relation occurs more than once in
a single operation of the definition, occurrences are updated

one at a time keeping the other occurrences fixed at their last
value. The update for each occurrence is carried to the next

level.

47

The proof of the algorithm for higher level update

(1) I is the set of tuples to be insexted
So is relation S after I is inserted {(after updatc)

Ro is relation R after update

The insertion is defined as:

SO=SLJI A

P
/

K

Given (i) relation R is defined on relations S and A
as R=A NS
(ii) the definition holds after R and S are updated,

il.e. R =AN S
o o
To prove that
R =RUT_
where I =ANT (the methed followed in the
insertion algorithm)
Proof R =A NS
—_— o o
=A N(S UI)
={AMNS) U(ANI) identity

=R(\IO

- 48

(2) The proof of the insertion algorithm at higher levels
when the definition contains diffcrence and the second
relation is to be updated.

Given (1) SO=SL)I the definition of insertion

(ii) R=A-S the definition of reletion R

w

on relation

(iii) RO=A-SO the definition hclds after the
update
Prove R =R-1I
(o}

Proof R = A-S
—_—— o o

= Af\So

=aAan({syD

= AN((ENI)

(ANS)NI

49

(2) The alternative approach for definitions containing

difference and the second relation is to be updated.

Given SO=SL)I the definition of insertion
R=A-S the definition of relation R on relation S
R =2-S the definition holds after the update

IO=A{\I the insertion

o o
Proof (i) Ro = A—So
= Ar\So
= AN(SvI)
= A (g n-f)
- AnsSnI
(ii) R-I_ = (A~-S)-(ANTI)

= (AnS) NTAAT)

= ANSN(AVUT)
=SAANGBUI)]
=SNAI(ANR) U (ANT)]

=SN[PUANT)]

In the case of deletions SO=S-I and R°=R\JIO. The proof

follows from the above proof.

Example 6 (Insertion at a lowexr level)

Definitions:

(a)

(b

\
J

X1=Y:Y[(11>20

X5=project X1 on ([1],[41);

To update X5 by relation I

i
30 C
40 T

To update X1 by 1

30
40

51

N

td

3.1.2 UPDATE AT A LOWER LEVEL

In addition to the conditions imposed on ordinary updates,
e.g. the compatibility of the updating relation and the
relation to be updated, the fellowing conditions should ke

sutisfied for updating relations at lower levels:

(1) The update should not result in loss of information

»]

at upper levels, e.g. in Example 6(a) when relatioun
X5 is updated,; the updating tuples cannot be united
with relation X1 because these tuples supply
information for only two of the domains of X1.

In such cases the update will provide incomplete
informaticon and should: therefore bé prohibited.

Updaiing X1, huwever, does not lead to missing

LCI

information in upper levels. The system should
prompt the user to update the relation at the
lowest level whose update does not violate condi-

tions (i) and (ii).

(ii) No ambiguity should result at higher levelis due to
the update, e.g. relation R is defined as the union
of relations S and Q. When R is updated the data
base system cannot readily know which of the
updating tuples should update each of S and Q and
which should update both relations. Whenever such
an ambiguity exists, the update operation must be

prohibited.

(iii) The updating tuples must satisfy the definition of

the relation to be updated. In Example 6(b), if

.52

relation X1 is updated by relation I, the system
must reject the last tuple because it contradicts
the definition of the relation to which it will
belong. Similarly, if a tuple is to be deleted
from such a relation, an cquivalent tuple must
exist in the relation; otherwise the deletion is

meaningless.

With these constraints, more weight is attached to the
consistency of the data base information on the expense of
the user convenience. Indeed, inconsistency in itself,
regardless of any okher repercussions, may perhaps lead to

more inconvenience ‘.0 the user.

With updating at a lowex level, al

3

o o™ Ay ok sk abal = ol
ot each operater In the

definition requires a different updating algorithm. Some
onerators in the definition causc amkbiguity with insextions

only while they do not cause ambiguity with delections. For
other operators, the defining relations in the upper level
must be explicit. Even if the update operation is to be
delayed until the implicit relation is requested, the implicit
relation has to be materialised in order to check the

validity of the update. However, all the definitions do

not lead to ambiguity in the case of deletions.

It would therefore be a sensible decision to prohibit inser-
tions and value changes from lower levels.,. However, let us
see the behaviour of some definitions containing the usual
relational operators. The relational operators may be

divided into two groups according to their performance when

53

relations having these operators in their definitions are

updated.

(1) The_regular_ cgperators

These operators have two major prcperties when the definition

of the relation to be updated contains one of them:

(a) they do not lead to ambiguity
{b) the updating relation (tuple) can be passed to

higher levels
A third property is not possessed by all these operators:

(c) they do not require the prcsence of the defining

LR

In short, they almost have the same advantages of updates at

higher levels. These operators are:

(i) Selection:
Definition X1=Y:Y(11>2

When I is inserted in X1 Yupdated=Y y I

The update to be passed to upper levels = I
When D is deleted from X1 Yupdated=Y-D
The update to be passed to upper levels = D

(ii) Difference:
Definition X1l=Y~-X
After insertion X1=X1UI
Y=Y VUI
X is not affected by the insertion
i.e. the first relation is updated by I.

I is passed to higher levels

(8]
o

Since IN X=@, the second relation should be made
explicit to check the validity of the update.
After deletion X1=¥X1-D

Y=Y-D

X is not affected by the deletion
i.e. the first relation is updated by D.

D is passed to upper levels

(iil) Join:
Definition X1=Join (¥Y:¥Y[1]>2
& X:X[1]<5)
After insertion: X1=X1y I
Y=Y I
fzf
X=XUIX
where I_= projection (on the domains of Y) (I)

Y
I_= projection (on the domains of X) (I)

w

Validity t

(D

sts:

(W)

(1) tuples of Ix and Iy must satisfy their

corresponding term of the boolean filtex.

(2) either IX must contain (X:X[1]<5)

or Iy must contain (Y:Y[13>2)
The second condition necessitates the presence of
the defining relations (X and Y) in their explicit
forms. It is advisable to make one relation (e.g. X)
explicit and if condition (2) is satisfied, the
updating tuples of the other relation (e.g. Y) will
be passed to higher levels without the need to make

Y explicit.

55

After deletion: Y=Y-D

Yy
X=X-D
X
where DX = projection (cn the domains of X) (D)
D, = projection (on the domains of ¥) (D}

v
'

The above conditions for the validity of the insertion

apply for the deletion.

(2) ‘'Lhe_irregular operators

When a definition contains one of these operators, the
following problems arise:

(a) ambiguity of insertions.

(b) the defining relations have to be explicit in order

to either check the validity of the update or to

pass the tuples to be inserted to higher levels,
These operators are:

{1} The unieon
e.g. Definition (a) X1l=Xy Y
After insertion X1=X1U 1

X and Y cannot be updated (by insertion)

It is sometimes possible to avoid ambiguity, f£for example

consider the following definitions:

(b) X1=Y:Y[1]>20

(c) x2=Y:Y[1]<20

(d) X3=X1lux2
i.e. X1 and X2 are defined on one relation and are
disjcint

projection([1]) (X1)) projection([1]) (X2) = @&

56

Now, let us consider the deletion using definition (a).

After deletion X1=X1-D

whexre Dx = XND

D YOD

o

Dx and Dy will be passed to highexr levels.

Since deletions are possible, changes in value will be
poussible becausc the tuples whose objects are to be changed
have been known from the deletion operation. 1t should

be noted, however, that for the deletions and vaiue changes

to take place, the defining relations muct be explicit.

(1i) The projection
Definition Xl=projection([11,[21]) (V)
After insertion X1=X1UTI
Y cannot be updated (by insertion).
After deletion X1=X1-D
Y=Y--Dy
where Dy = projection (on domains of Y) (Join Y and D)

(Y:¥[13=Dl1] & Y[2]=D[2]).

Dy is passed to higher levels,

Similarly, since deletion is possible, change in object

values is also possible.

Alternatively:

Consider the following example:

57

¥ %1
4 5 A 8 5 3
2 6 B 4 6 4
1 2 C 3 2 3
3 4 D] 4 8
1l 4 E 7

X1 is defined as project ([21,041]) (Y)

Now let us delete D
2 3
4

co

After deletion X1

6
To update Y, we will delete all the tuples of ¥ whose
second and fourth object values equa’ le [irst and

the second values of any tuplie of D,

After deletion Y
4 5 A 8

2) n 4
1 4 E 7
This can be generalised as follows:

Y after update = Y--Dy

D_ (tuples deleted from Y) =

<

m
U v: (vidrds1=p, 114 veir213=p [2]e...& YIilpI=D,lpID)
J=l - -

where 1[i] is the ith domain in the projection 1list,
e.g. in the above example the list is (2,4)

Dj[r] is the rth th

object (Domain (r)) of the j
tuple of relation D
r=1,...,p } where p,m are the degree and

j=l,...,m cardinality of relation D

(iii)

Now, if ¥ is a defined relation and is implicit, we will
pass D upwards after noting the domain of Y correspond~
ing to each domain of D. This information is in the
definition. The above expression will then be applied

to relations in upper 1lcvels.

Within these limits the defining relation need not be

D]

xplicit. However, if the defining rclation (the

(

relation to be updated, e.dg. Y) has another reiation
defined on it and the definition of the latter reliation
contains selections or joins on domains other than
those in the projecticn 1list, the defining relation (Y)

must be explicit.

Scme user-written operations

e.g. Suppose a user wants to keep a relation sorted on

a

]

ertain domain. He will submit the following
definition to the system:
Xl=sort(Y) on domain (1)

After insertion X1=X1 MERGE (sort(I))

¥=y\U I
I is passed to higher levels.
After deletion X1=X1-D, or for better perxformance,
X1=X1 DEMERGE (sort (D})
Y=Y-D

D will be passed to higher 1levels.

This example shows the following:
(a) both insertions and deletions are possible.

(b) the tuples to be inserted must be sorted before

w
\0

they are inserted (merged). The system should
know how to deal with the updates at the time
of the submission of the definition. This is
a necessary condition for all definiéions con-
taining user—defined operators unknown to the
sys3stem.

(c) the defining relation need not bc explicit.

Local Insertions

A possible solution for the problem of insertion at lower

levels when definitions contain the union or the projecticn

cperatorse follows

Tn such a situation we cannot add the updating information

)
rt

to the data base because it lcads to ambiguity. & possibkble
improvement in the situation is that the system creates a

base relation containing all the insertions.

e.g. relation C is defined C=AU B

When tuples are inserted in C, a base relation T

is created by the system, i.e. Dafine C=AUBUT.

Whenever tuples are inserxrted in C, they are kept

in T,

The i:.isertion is not carried to all the relations
above C, It is retained locally and C has

up—~to—-date. information.

3.1.23 SUMMARY CF UPDATE

The above discussion shows that it is possible to update

relations at higher lcvels without the nced te recrcecate

60

implicit relations.

On updating from lower -levels, the union and the projection
operations require more control information from the user in
order to achieve successful insertions. Deletions and

changes in values are possible.

With user-written functions, the operation to be carried out

on updating relaticns should be specified.

Having dealt with the update problem, let us discuss the prob-
lems associated with the definition and deleticn of relations.
Since these are system operators the rules de-fining their
operation may chanye with changing systems or impiementations.
Here one way of solving the problem is suggested, bearing in

in mind the objectives set out at the beginning of the chapter.

3.2 DELETION OF RELATIONS

By deletion of a relation is meant, in the usex's view, the
total removal of the relation: its name and information content

from the data base, and the freeing of the space it occupies.

The following rule is suggested:
All relations may be deleted by authorised users

except defining base relations,

"This may be explained as follows:

(a) Irn order to delete a defining base relation (e.g. X and
Y in Figure 2.1) the user must first delete the relations
dependent on it. However, if he is not authorised to

access some of the dependent relations, he will not be

avare of their presence and he will thercfore delete

his own dependent relations.

(b) A defined relation at the bottom of the hierarchy may

be deleted (e.g. relations Y1 and X4).

(c) A relacion in the middle of the hierarchy (i.e. a
defined defining relation, e.g. Xl, ¥2 and X3) may
be deleted. The system deletes the physical
representation of the relation but it keeps the
definition. It then assigns the defi.ition to a
dumny name. The dummy name is substituted in the
definition cf the dependent succassors,
e.qg. Definitions X1=Y:¥Y[115

X5=X1:X1[2]>1GC

X6=X1:X1[2]<10
Delete {%1) changes the above definitions as
follows:

dummy=%V:Y[1]>5

X5=dummy : dummyi 2]1>10

X6=dummy : dummy[23<10
Dummy is only a definition to pass updates.

It will not be physically realised.

The Deletion Algorithm

Delete (R) recursive.
A, If R is a defined relation goto B;
(R is a base relation)
Al: if R is a defining relation goto A3;
A2: (Base non-defining relation)

Destroy relation R; goto FINISH;

62

A3: (Base defining relation)
If the user is authorised to delete some of
the relations defined on R then goto A5;
A4: (user unauthorised).
Print message 'You are not authcrised
to delete R'.
| goto FINISH.
A5: (user authorised to delete some or all the
relations dependent on R)
List the relations dependent on R which the

user is allowed to delcte.

P LI

3
il

s

Ask

e user if he wants all these relations
deleted?
Tf the aneswer ig¢ Yes gobo A7;

A6: (Answer is NO)
Print mcssage 'R
delete scme of these relations'.
goto FINISH,

A7: If these are all the relations dependent on
R goto A9;

AB: (some other relations are defined on R)
Destroy the user's relations dependent
on R. List all the relations that have
just been destrcyed. Print 'R has been
destxroyed'.

Mark R not authorised to the current user.

goto FINISH.

A%: (the user is authorised to delete all relations

dependent on R)

Destroy R and dependent relations. List the

destroyed relations.

goto FINISH.

B. (R is a defined relation)
Bl: Is any relation dependent on R? If Yes gotn C.

B2: (R is the lowest in the hicrarchy)
Destroy R.

B3: Is the new lowest relation a dummy
definition? If NO goto FINISH.
Remove the dummy definition.

goto B3.

LD
il
l—l
mn

a defined relation with some relations dependent

Destroy R (if physically present)

Assign the definition to a dummy relation name.
Substitute the dummy name in the definitions of
dependent relations.

FINISH:

3.3 ' THE DEFINITION OF RELATIONS ON OTHER RELATIONS

3.3.1 . CIRCULAR DEFINITLONS

This is the definition of a relation directly or indirectly in

terms of itself.

With circular definitions the system can store the same data
in more than one form. Depending on the usage and the other
characteristics of the data, the system can choose which forms
to store such that the storage utilisation is optimum.

e.g. Consider the following definitions:

64

(a) Y=X1UYl
(b) % X1l=Y:¥[11>20

Yl=Y:Y[1]<20
The information in relation Y may be stored in onc of two forms:

(a) as two relations X1 and Y1 while Y is now a defined
relation to be assembled only when it is requested.

(b) as one relation Y with X1 and Y1 as defined relations.

However, serious inconsistency may arise if this facility is not

carefully used.

In the previous example X1 and Y1 arc disjoint and the definitions
are always trve. Now let us considcxr the fellcowing cxample:

Define 1. Yl=Y:¥[1]>20

It is not always obvious if these definiticns are consistent.
The system has tco perform.much time consuming testing beforc

it decides to accept or reject the third definition. Even if

the definitions are consistent, a vonsistent update for X1 in

(2) will not necessarily be consistent for (3j.

As definitions beccme more complex the overhcad for checking
the validity of updates and definitions becomes enormous. It
is, therefore, sensible not to allow the user to submit such

definitions.

However, it is suggested to allow the system programmer to

submit definitions of the following type:

Define Y1=Y:Y[13>20
major path
X1=Y:Y¥[1]=<20)

Define (auxiliary path) Y=X1UY1l

The system uses the major definition only. At reorganisatiom
time it decides which path gives better performance. The
preferred path is made a major path and its definiticn is used.

The other definition becomes an auxiliary path.

This concept can be extended such that the usexs can prompt
the system on possible auxiliary paths. Because the check
for consistency occurs only at reorganisation time (or after
a reasonably long period of time) the overhead will be within
a tolerable limit. In this way the incousistency can be
avoided at a low cost while benefiting from the main advantage

of circular definitions.

3.3.2 RELEFINITLION OF RELAILONS

e.yg. If relation X1 is defined as X1=Y:¥[1j>20
and relation X5 is dependent on Xl;
then if X1 is redefined as X1=Y:Y[1ll<20
the information in X5 will be inconsistent with

its definition.

It is required to set some rules to avoid such inconsistency.
However, if no relation is dependent on the redefined relation,’

then the redefinition is harmless.

It is suggested that redefinition is to be allowed and that the
system seeks methods by means of which it can avoid inconsistency.

One method is sugygested below.

- 66

[T ——

The redefinition of a relation should be seen to amount to the

deletion of the relation and the definition of anotheir relation

having the same name as the deleted one.

If the user intends to redefine relaticn R then he is

either aware of the relations dependent on R and he may or

may not want their information changed in accordance
with the new definition;

he is not aware of the dependent relations (he may
not be authorised to access the relations dependent

on R).

The following course of action is suggested to be followed by

the system:

™ 3 .-

- s~ — o m eem b — a3 - R 2 mmam = e Ymm e Ay AT e -
if N is a base relatic then 1t cannct Lo yrederined.

Goto FINISH;

If no relation depends on R then R will he redefinad

and the old data is destroyed. Goto FINISH;

If the user is not authorised to delete some of the

relations dependent on R then goto G.

The system gives a list of the dependent relations
authorised to the user and asks the user if he intends
to have these relations affected by the new definitiomn.

If he does not want them affected goto G.
Make R and all his relations that depend on R implicit.

Redefine R. Coto FINISH;

67

http://rfi.lat.ion

G.. Change the definition of R replacing R by a dummy
name, Substitute the dwmy name in his relations
dependent on R (if any). Delete the physical

representation of R.
H. Enter R as a new relation defined on its predecessors.

FINISH:

By this method the uscr is free to redefine his rclations
without creating inconsistencies in the information or the

definitions of relations.

3.3.3 ASSIGNMENT COF DEFINED RELATIONS TO PELATIONS

(i) When a relation ig assigned to a defi)

iatieon the
resulting relation carries the information of the
defined relation at the time of the assignment. The
resulting relation is independent of t+he hierarchy

and has no connection with what happens to the defined

relation.

(ii) If a defined relation is assigned to another relation,
the new information in the defined relation may not be

consistent with the definition.

The fellowing method is suggested:

For the instruction R:=S (meaning set the content of relaiion R

equal to the content of relation S) where R is a defined

relation:

A. It is advisable to first check that the user wants

R assigned to S. A wrong instruction may cost time

(V]
1Y

ﬂ
e
o

(ii)

consuming operations.

The assignment is considered as a deletion of the tuples
of R followed by the insertion of S in R. Before doing
that; the validity of S to update R is checked, i.e. the
nevw information in R should be consistent with the

definitions at higher levels (as explained in the

]

revicu

cticn).

n

c
=

[0

R

Make the relations dependent on R implicit and assign

and copy S to R.

Sune of the orvoblews considared abhove anply to relational
and non-relational data bases (e.g. the guesticn of how
far the user is allowed to change the subschema arises

in non-relational data bases). The rw-lational mode’
with its underlying well-deiined mathematical operations
makes the approach systematic and possible to generalise,

as has been shown in the case of the update.

For the purpose of illustration the author has implemcated
some of his above-mentioned recormmendations in IS/1.0.

The listing of an IS/1.0 session is shown in Figure 2.2.

1Sxan21
ISX457Fk
ISX482R
1SX4E52k
[S¥452R
1S€X4501
ISX4ECI
1£x421C
1SX4E01
[SXx433k
ISX4cCd
1SX452Fk
ISX45CT
1SXx4301
X

ISx1C11
[SX45N01
ISK4EC]
X4

1£X4501
ISXx4501
X¢

1£X45C1
[Sx4501
15X45C1
IsX4501
X4

X2

[$X45C]
15X48CG1
YCU CAN
Xé€

X4

X2

T8X45C1
X2 HAS
[SXasCi
TSX4501
[SXx45CT

1S/1 SCSSIOGN START-UP, DATF=73.04.03,
CCMMANC INPLT ASSIGNED TC REACER
MESSAGE OUTPUT ASSIGNED TC PRINTER
RESULTS ASSTGANED TGO TERMIMAL
ki ASSIGNED T1C NOLIST
MESSAGE LEVEL LCGIN LCGCLT;
CNTOPT
FLEASE SIGNCN
SIGNON{IZZ);
THANK YOU, 122 - FLEASE GC CA
ASSIGN Rz SLLTS PKINTER;
KESULTS ASSIGNED TC PRINTER
/% CCL NDUES The FUNCTICN CF CEFINE*/
OOL{X2:LOAD(X) 4 SELECT(TCP(1)=CANACR) ,LCAN LL(*NCEKETFH
IS DEFINED CN X
CEANGD CONFIRNFL AT 1€.E8G.51
/*RECRLCER TS ECLIVALENT TC PRCJECT*/
DCL(X4:LCAC{X2),REQCRDER(2,+21));
IS DEFINED CN X2
CHANGE CONFIRMEL AT 17.C0.12
BCL{X&:LCAD(X4), LTAC(Y), JUIN(TCF(LI=PCN(L)}));
IS DEFINED CN X4 ANC Y
CHFANGE CONFIRNMEL AT 17.00.19
/% DATA HAS ALREACY BEEN LCACEL TN RELATICNMN Ix/
INSERT(I,X4) 3
/*INSERT TAKES 1ST RELATICM AND INSEFTS
CAN NOT RE UPDATELC «PLEASE

TINE=16.58

A'1,CCIH35

ITS TUPLES "IN ZNC KELNX/
TRY TC UPCATE RELATION

SCRUBILY);
/+SCRUB IS E<UIVALENT TC DELETE®*/
NCT DELETE Y <YCU MAY DCLETE THE RELATICAS CEFINEC ON IT:

SCRUB(Xx2) 3

REEN DELETECD
(CFANGE CONFIRNMEL AT 17.C0.56
DCL{X4:LOAD(S),LCAD(R) ySCLECT(TCP(1)=PEN{1))]);
REDEFINITICN CF X4/

THE FGLLCWING RELATIONS ARE DEFINEDR CON X4 :

X¢e

CC YCL WANT 7O RFCEFINE X4 ?
YES;/#USCR'S RESPONSE*/

X4

18%4501
ISX45C1
1Sx42¢C
ISx1011
1SX427C

1S CEFINED N S
CHAMGE CONFIRNEC AT 17.C1.05
cND; YESS
[S/71 SESSION SHLT-DCWN INMMINEMNT -
CHANGE CONFIRMER AT 17.Cl.20
ENC OF I1S8/1 SESSICN, TIME=17.GC

ANC R

FLEASE CCNF IRV

70

" Chapter 1

A GENERALISED PAGE REPLACEMENT ALGORITHM

1. Introduction

In a relational data base having a defined relations facilit
some relations are maintained in definition form until gueried
while others are explicit. An efficient replacement algorithm

n | 1

! to manage the content of the frceco space available

N

is noede

42

for the data base as defined relations alternate between the
state of definiticn and the state of explicit representation.
Such an environment is analogous to a virtual memory environ-

ment and the defined rclation is analogocus to a page.

In this <h inc

[a]
[oh
()
D
[}

b=

=1

D
[t
W

m #n

n
,J)

aptey a replacement aliqoritt

v
=] R

L]

ie described. It is discussed as a alised p:a -

Jo)]

enegxy

L)
PJ
n
{J

ge replac

O

ment problem in which the pages have variable sizes and the
cost of a page fault is A Tunation of the particular page
referenced. It is shown how the conventional page replacement

algorithms are found to perform inacveguately.

New algorithms are proposed for reducing the cost incurred
because of page faults in response to a series of referenc-s.
Also included are the results of simulation experiments which
have been run in order to compare the cost of performance of
these algorithms with standard techniques and with the minimum

avhievable cost.

The problem of dependencies existing among relations (i.e.
relations defined on other defined relations) is left for the

next chapter where the replacement algorithms are adjusted to

deal witﬁ the problem.

~J
b=

2. The Statement of the Problem

The total data storage space available to the relational
system may be visualiscd as cconesisting of two parts (see

Figure 3.1):

(1) a base storage area in which is stored the relations

from which all defined relations are ultimately com-

L

and

putec

(2) a dynamic storage area {or the free space in the dat
base) in which the system may temporarily maintain

explicit forms.

Data removed from thea dynamic store is not lost since it can
always be reconstituted from base data by applyinyg the
appropriate definition. Tt is assumed that a pre-assigned
amount of space is available from dynamic storage, and that
the system gcverns the contents of this area. The problem
of managing the dynamic area s0 as Lo maximise overall

efficiency is analysed.

At some stage in the process of creating and querving
relations, one or more explicit relations will have to be
deleted from the dynamic storage in order to free space for
other requested relations., A "replacement algorithm" is
the name for the process that decides which relation is to
be overwritten. Ideally the replacement alygorithm should
function so as to minimize some overall measure of the cost
of meeting the storage constraint in responding to a series

of queries.

QUERY ——»9

YIGURE 3.1

RELATION
DEFINITIONS

YV

STORAG

MANAGE MENT|

RAssBr AR
L A S ‘.r‘.'f!c

STORALE

N

EXPLICIT
EVALUATION

i

QUERY RESPCONSE

zas2 and dynanic steorage areas

It. is noteworthy that this problem is a variation, indeed an
extension, of the conventional demand paging prcblem [Mattson
et al 1970, McKeay and llcare 1972]. In a memory hierarchy,
core storage space typically is less than the sum of data
requested. Pages of data mu.t be traded back and forth
between a bulk storage device (e.g. disk) and the high~speed
core, Rules must be put into effect for determining which
blocks of data should be maintained in core and which should
be replaced by freshly referenced data. The system tries to
estimate which of the pages currentiy in core will be
referenced in the near future, and which pages will not be

nceded for a long time.

Ordinariiy the hierarchy implementation is such that both the
page size and the cost of fzatching a page from bulk sterage
are constant. In contrast to this, the cost of creating

a defined relation depends on the complexity of its definition,

and relations so formed will vary in size. Thus the proklem

t-n

of anticipating queries in order most effectively Lo assign
relations to either implicit or explicit ferms is eguivalent
to that of designing a replacement algorithm for a memory
hierarchy employing unequal page sizes and variabie fetch

costs, Table 3.2 illustrates the correspondence in detail.

3. Replacement Techniques

In this section the performance of conventional paging
algorithms in the generalised paging environment is examined,
and two new replacement techniques are proposed. These

methods are compared against idealised replacement strategies.

74

CONVENTIOHAL PAGING

Page exception, i.e.
needed is not in core

page

ACTION:
1) Select a page to be

replaced

2) Page in the required
page

COST:

Cost is due to reading
in a page

Cost is usually fixed

Overhead of the replacement
algorithm is significant

PAGE SIZE:

Page size is usually fixed

Table

IMPLIED RELATIONS

Required relation is in
implicit form

1) Select une or more
explicit relations
to be dropped

2) Convert the required
relation from implicit
to explicit

Cost 1is due to conputing
the implicit reliation

Cost varizs from one
relation to another.

'he cost for one relation
is time varying

not as

Overhead cost

criticel

The size varies consider-
ably from one relation to
anothex. The size of one
relationis time varying

The cffects of updates are not directly considered in this
analysis, In order to consider updates the model assumes
the particular strategy explained in the previqus chapter,
i.e. relations are updated in place and that an implicit
reiacion is not made explicit for updating. Updates are
accounted for by permitting cost and storage parameters to

be time varying.

In view of the dual nature of the replacement problem con-
sidered here, the term "page" will often be used to refer to

a relation in its role as an object to be shuffled in and

out of a limited storage space. For simplicity the algorithms
are described as if only a single page neéds to be replaccd.
This is strictly true only if thc page sizes are uniforn.

Ir the case where the incoming page requires additional space
the algorithms must be applied iteratively, eliminating

successive pages until sufficient storage is free.

In the discussion, reference is made to time, which is thought

of as a discrete sequence indicator t = 1,2,3...

The observed numbexr of references ic the ith relation up to
time t is deroted uz (i =1,2,...,r where r is the numnber of
defined relations). The processing cost to create the
relation from its definition at time t is denoted cz, and the

storage space required is identified by sg.

The performance of the following replacement algorithms is

compared in a relational context:

76

1) Least Recently Used

2) Least Frequently Used

3) Least Expected Cost

4) Least Expected Loss per unit size

5) Arbitrary Replacement

1) THE LEAST RECENTLY USED (LRU)

The page selected for replacement is the one that has ncot
been referenced for the longest time {Mattson et al 19790].
As t = 0 we define variables w§=o for each i=1,2,...,n.

At t = k when a reference is made to page i

1

k k k-
w.=k and w.=w.
1 J

for i # i
J

The LRU rule is: at time t repiace the gpage i for vwhiczh

t .t
wo<w, j=1,2,...,n Jj # i
i]
This rule is fiegusntly cited in studies of conventional
paging systems. Note, howewveix, that it does not employ

sige and cost characteristics in arriving at a replacement
decision. Therefore it is to be expected that LRU is
most appropriate for the case of uniform size and cost,

and will not extend readily to the more general case.

2) LEAST FREQUENTLY TSED (LFU)

Under LFU the page replaced from the storage at time t is
that page that has been referenced the fewest times over
the interval 1,2,3,...,t. If the least frequency of
usage is possessed by two or more pages an arbitrary rule
is used to break the tie (e.g. the cne that has a smaller

reference number is replaced).

A precise description is as follows. Whenever a
reference is made to page i at time t its reference count

(usage count) is updated by 1.
u, = u, + 1 i=1l...r

At any point t=k when the dynamic area is full and the
need for replacement arises, replace page i which has the

smallest reference count, i.e.

uk < u? j=1,...1, j# i

This algorithm has the advantauve of simpliciiy in
application and small overhead in storage of the Jdata

required for the algorithm.

3) LEAST EXPECTED COST (LEC)

The expected cost of fulfilling the next request if relation

it is the product of the probsahility of

V1 3
JRRARL

c

reference to i and the cost ¢

=

At time t
t _ t-1 " .. .
u; = u g + 1 The reference count for page i.

The proportion of requests referencing page i up to time

t is:

ot
3
t

The expected loss when i is not in the storage may be

estimated as:

t

deF
x
a

78

O

——

Hence the problem is to find the page with the least

expected cost at time t.

Since t is constant in

this ensemble, it suffices to

replace that page 1 for which

t

(ui X

is least.

[
Ci)

Note that if pages have equal cost then LEC is LFU.

7 EXPECTED LOSS PER UNIT S5IZL {LECS)

algorithm weights

the size of the page.

This algoriﬁhm reduces

t

parameters (Ci, SE) do

the variable parametex

the expected cost uzed in {2) hy
i. that minimizes ul.'.CL i=1,...r
L°741
t

the LU when the cost and storage
not vary with the index 1. In

case it has the virtue that frequency

of usage, creation cost and page size are all included in

the replacement mechanism. The weightin: is such that if

two pages have identical cost and usage frequency, then

the one occupying more

space will be replaced. Such an

argument supplies a heuristic justification for an inverse

weighting of the page size.

79

5)

This argument is further strengthencd if one considers
situations such as the following. Suppose that n pages
of unit size and cost and one page having size=cost=n
units are in the buffer at a given time t. Assume that
all have equal usage, uf. Which should be replaced by

an incoming request for n units of storage?

Mow the contribution to the expected cost at time t+1,
if the large page is replaced (assuming that u§ are true
probabilities), is (uz)(n). If the smali pages are all

replaced, the expected cost due to one of them being

. . t
requested at time t+l is (nui).l. Therefore the loss
is the same in either case, and the LEIL critericon reflects
this.

In a later section, the solution of an analytic model of

the replacement problem in order tou oObltaln the su-calle

Cu

3

"preferrcd set® will provide a more formal justificatio

of the LECS method.

ARBITRARY REPLACEMENT (ARB)

This algorithm replaces a randomly chosen page. It is
useful in order to demonstrate the actual imprcvement in
performance obtained by each algorithm over arbitrary

selection. An algorithm whose performance is the same

as or worse than ARB may reasonably be discarded.

At time t=k choose the page to be replaced as follows:

generate a random number m between 1 and n

{where n is the number of pages in the

80

dynamic area).

‘o X tn \ . -
(ii) replace the m paye in the buffer,

4. Ideal Replacement

This replacement algorithm is suggested and proved by Casey

and programmed by the author [Casey and Osman, April 1974)

The performance indicator of a page replacement algorithm has

been taken tc be the sum of the costs of reconstituting

®
1)

o}

[

individual relations in respcnse tc a given sequenc
requests, Replaczment algorithms up to this pcint have
been assumed to be non-anticipatory; they receive no informa-

tion regarding an incoming request until the mowent of

joF

ecision; when storage must be provided for ihe referenced

o]
¢t

b2l
(%

e

In order to evaluate these algorithms, it is pertinent to
inquire what the minimum achievable coust might be for a given

reference string. To ask this question is to seek the

performance of an algorithm that examinas the whole raguest
sequence in advance, and formulates an optimal scries of
replacem~nts using this information. This algorithm "cheats"
in that it employs information not available to the other
routines. Consequently, it is not a competing technique

for fulfilling requests upon demand. On the other hand,

the performance it attains is a feasible upper limit in the
sense that a very "lucky" replacement algorithm could yield

the same result in a given trial.

For the case of uniform page sizes and costs, several methods

81

exist for finding the ideal performance [Belady 1966,
Mattson et al 1270, Parmelee et al 19721]. The optimal
replacement strategy is not unique, soc that different con=-
structions are possible, Mattson et al have shown that
one optimal rule {the so-called OPT algorithm) always

" replaces, among the pages currently in the 'buffer', that
page which is requested furthest in the futuie. They
proposed an algorithm for determining this replacementc
series in two passes over the rcfercnce string. Later
work [Belady and Palermo 1974] has shown that a single pass

will suffice.

These results do not appear to extend directly Lo systems
possessing unequal storage sizes and costs. une can
appreciate that an optimum rule must, roughly speaking, be
reluctant to dismiss from the dynamic area an expensive
relation that occupies little space. However, the precise
method embodying such rules is a complicated funciion of

the reference string and the storage and cost paramet

b
Ui

{

b el
da

| ad

Unlike the OPT algorithm, it is not easily expressed

words.

The algorithm investigated here uses a search technique to
determine an optimal replacement sequence. The methoeod is
best illustrated by a graphical constructicn, Appendix 4,
fiqgqure A4, This construction shows the tree generated as
various replacement decisions are .exanined in response to

requests for new relations,

82

A node of the tree is associated with a particular list of
storage contents. Such a list defines a “"state" of the
storage. Modifying the buffer in order to accommodate a
request results in a new state. Ordinarily there are a
number of choices for relations to be deleted to make way
for referenced data. Thus from a given ctate there arc a
number of possible transitions to succeeding states. These
transitions are indicated by the branches of Figure A4

(Appendix 4).

Tf all possible transitions are evaluated in response toc a
given reference string, then the tree generated grows expon-
entially as a function of the time index. Tach wvath Trom

root to leaves corresponds to a diffexent replacement

strategy. Somewhere in this exhaustive set of strategies
are the minimum cost paths that we seek. However,
exhaustive evaluation (i.e. genexating the entire tree) iz

too expensive and time consuming for even moderate sized
problems. The evaluation algorithm investigated here
"prunes" the tree, eliminating states from further consid-
eration while retaining an optimal path. In experiments
this pruning has been found to be quite effective so that
only a small number of states in addition to the ocoptimal

one survive each pruning step.

The algorithm may be described as follows. Consider the
nodes remaining unpruned after the kth reguest has been
treated. To each node corresponds not only a state but

a cost-to-date as well. From this set ©of survivors generate

83

the complete set of states attainable in response to the

(k+1) request. Now prune these states using the following
rule:
Pruning Rule Definitions:
Xi = set of stored relations
corresponding to state i
C, = the cost incurred in arriving
at state i1 from start
. . th
cp = the cost of retrieving the p
relation when it is not in the
buffer
Designate by F.. the set of relations that are i sialte j

but not in state i. (In ordinary set theory parlarce we

would write ij = X, ~ X.). Then w2 prune state j if

3 i
there exists another state, i, such thaat:

cy = ¢ +Zc(p)
p‘pji
This condition has a verbal interpretation. If the cost
of arriving at state i added to the cost of transforming
from state i to state j by retrieving the relations in Pji
is no greater than the cost associated with state j, then
node j is pruned. A mathematical proof that this pruning
algorithm retains an optimal path in the tixee is given by

Casey in [Casey and Osman, April 1974]. In Figure A4 the

states pruned by the algorithm are shaded.

(02

P

With the aid of pruning it has been practical to conduct
evaluatiocn experiments assuming hundreds of requests and
10-15 relations. On the other hand, the technique has
limitations and would benerfit from further refinements.

To illustrate, suppose that in a particular case ther-e are
20 relations of unit size and one relation of size 10 units,

all sharing an area of size 20 units. If the builer is

full of unit-storage relations, then whenevar the large

\
relation is requested there are (lg) 185,000 possible
transitions to new states. Furthermore, the pruning rule

will not eliminate any of these nodes.

Attempts to improve the algorithm will cent: e on thc use

of future references to prune the tree mure heavily. 1Tiis
would conceivabkly result in a rule analogous to thet embodied
in the OPT algorithm, except that the time until a relation
is referenced must be weighted by its costs and size in

deterniining whether it should be discarded.

5. Experiments

5.1 Measurement of the Relation Parameters
An experimental comparison of the page replacement algorithms
was conducted using size and cost parameters of relations

from the geological data base.

Some of the recurring queries were converted into 27 defined
relations. The cpu time to create each relation from its-
definition was measured. Because the IS/1.0 system was cpu
bound, the cpu time was a sufficient representation of the

cost. The size was measured by counting the number of blocks

occupied by the explicit relation.

The most frequently used 1l relations were included in the
comparisons. The characteristics of these eleven relations

are listed in the followina table.

DAG
(re?it?on) SIZE cost
1 12 31
2 5 20
3 3 8
4 2 24
5 6 4
a 4 2
7 1 2 |
8 8 29 '
9 30 50
10 13 29 .
11 7 24

Cost and Size Parameters (11

relations). Size units are in

lkb blocks. The cost isg scaled

from measurements of cpu time

required to create the relation.
In addition, the statistical properties of the 27 defined
relations were investigated. No single standard probability
curve closely matched the distribution of size and cpu cost
associated with these relations; however, a normal density

function gives more satisfactory agreement than a uniform or

skewed distribution.

In the early version of the IS/1.0 system simple i,/o

co
[«3}

operations required an excessive amount of cpu activity, thus
the correlation measured between size and cost was rather
higher than one might expect in a commercial data base system.
Even so the correlation coefiicient was only 0.41. Another
set of cost and size paramcters was drawn from a data base
concerned with land usage in the Greater London Council

[Aldred et al) 1974]. The correlation cocfficient of size

U

and cost is 0.35. For this application, aiso the size andg

cost parameters are not heavily correlated.

On the basis of this examination of data base characteristics

it was dGecided to neglect correlation between size and cost,

4

and to simulate larcer data bases using sizec and cost para-
meters drawvan indepeandently from Gaussian populotions having
the observed sauple means =nd standard deviations. Conse-
guently, parameters were generated for a l1l00-relation
collection having mean size equal to 36 units with a standard
deviation of 37.2, and a mean cost of 120 with an =.d. of

137.6.

The tests were also repcated with independent parameters
drawn from exponential, and from composite normal-exponential
distributions, with results similar in nature to those that

follow.

5.2 The_Generation_of Reference_Strings

In order to test the algorithms, strings of random references
(numbers) having several lengths and a variety of properties were

£

constructed. Since the characteristics of the relaticn that

affect the performance of replacement algorithms are the size, the

87

creation cost and the frequency of reference, strings having
various leveis of thesc properties wege generated. Because
of its slower processing speed the IDEAL algorithm was run
only on the eleven relation set and with a string of length

500.

The reference strings were created as follows:

v
R

A reference string for the ll-relation data base.
The string length is 500.

i) Uniform distributions: eachk of the eleven
relations had the same probability of
occurrence,

ii) Low cost weighting: the four low ¢ost pages
ocourred three times as fregusnlly as thae

remaining pages.

iii) Large cize weighting: the four pages with
the largest size occurred three times as

frequently as the remaining pages.
iv) High cost weighting: the converse of (ii).

v) Low size weighting: the converse of (iii).

b) A refererce string for the 1l00-relation data base.
The string length is 3000.

vi) Low cost weighting: the twelve low cost
pages were assigned five times the frequency
of the remaining pages.

vii) Large size weighting: the twelve small
pages were assigned five times the frequency

of the remaining pages.

2]
@

viii) High cost weighting: the convexrse of (vi).

ix) Low size weighting: the converse of (vii).

In these strings, successive references were sﬁatistically
independent, whereas in a real data base operation the
sequence of references would probabkly be correlated. This
condition would tend to improve the probability of reference
Lo recently accessed relalions and thus the replacenent
algorithms would perform better than in the simulation
experiments, The random reference sequences employed here
may be considered a "worst case" situation, useful for

cumparing techniques.

’ o1 e £ f ol tad af N

5.2.1 Generation_of weighted strings_of_ reguasis

To genersts & reference shiring 2, of length T o=sueh that hhe
. 8

The total number of relations is m.

The toctal number of large size rclations is n,

Let the large size relations be relations number WyeWo
A

e & o and w ')
n

l) j = o.

2) j = j+i. If j > L then STOP.

3) generate a random number, i, between 1 and m+(a-1)n.
4) if i > m go to (6).

= i, go tq (2).

entier ((i-m) / (a-1)).

froipiepus i it ot gt it gy SlapUEY Mofpuimplmrp-f =gty

The simulation program works as follows:

i) Input the relation parameters (sizes and'creation
costs), the cost of answering a query from explicit
form, the dynamic storage sizes for which the
experiment is run, the cost of deleting the
explicit form of a relation and the refecrence

string.
FOR EACH STORAGE SIZE REPEAT STEPS (ii) TO (xiii)

ii) Set total cost, the number of successes (hits)
and the numbcr of relatiocn swaps = o. Set the
reference counts of all the relaticns = o.

iil) Pick a reference from the string, reference to
relation I.

iv) Updatc thc reference count of relation I.

v) If ;elation I is EXPLICIT then go to (x).

vi) Update the number of page faults.

If the available storage > the size of I go to
(xi).

Using the replacement algorithm evaluate the
replacement criterion for all the explicit
relations and choose the relation, k, having
the minimum value of the criterion.

Add the size of relation k to the size of the
available storage.

Set relatien k implicit.

Update the number of relation swaps. Update the

total cost by the cest of a deletion. Go to (vii).
x) (Satisfy the query from the explicit form.)

Update the total cost by the cost of accessing an

explicit form.

Update the number of successes (hits). Go to (xii).
#1) Create Relation I from its definition.

Update the total cost by the cost of creating I.

fu

Update the available storagc sizec by subtracting
the size of relation I.
Set relation I explicit.

xii) TIf the last reference has been proceszed go to

{(xiii) else

Lo}

o to {iii)

xiii) Print the dvnamic storage size. the tctal cest,
the number of successes, the number of page swaps
and the number of page faults.

xiv) STOP.

—_

5.4 The Results

Figure 3.3 shows the performance of all algorithmes against
a uniform reference string of length 500. This curve and
the following ones illustrate the va;iation in processing
cost as the amount of dynamic storage space is increased.
Each cost curve is monotonically decreasing since the
frequency of page faults lessens as more relations are
maintained explicitly. When the dynamic store is large
enough to accommodate all the pages, all zlgorithms perform
as well as the ideal. Figure 3.4 shows the same results

normalized against the minimum cost curve. The cost axis

now represents the cost relative to the ideal.

Figure 3.4 illustrates clearly the need to considexr size and
cost in making page replacements. The standard algorithms
for uniform pages, LRU and LFU, perform essentially at the
level of random replacement. Thecy continuously diverge from
the ideal until the Storage size is large enough to accommodate
all the pages, when their curves become discontinucous and
drep suddenly to the ideal performance. The two parametex-
sensitive methods, LECS and LEC, on the other hand, actually
begin to approach ideal performance after an initial

divergence.

weicghting, type (ii). and figur~ 3.6 shows the cost of the

H

algorithms relative to the minimum achievable cest. The
variaticon in the cost of replacement ketween the aloorithms

is not large because the penalty of a wrong choice hasg a

low cost.

In figures 3.7 and 3.8 at large dynamic storage sizes the

LEC behaved better than the LECS. This is because:

(1) the size parameter became less significant.
(2) the reference string is weighted fcr high cost,

_and (3) the LEC concerns itself with the cost only.

"In figures 3.11 through to 3.15 the &lgorithms are compared
against an idealised algorithm "The Preferred Set" which will
be explained later. With a longer string in these cases

the parameter-sensitive algorithms give a clearcut reduction

in cost, The performance of ARB, LRU and LFU is nearly the
samme except in figqure 3.13 where the high cost penalties 1lead

to distinct differences in the pexrformance of the algorithms.

Essentially the same conclusions are reached. The inclusion
of size and cost information in the replacement strategy
results in a c¢learcut advantage in performancec. In fact,

a particularly unlucky set of relation characteristics can
lead to worse-than-~-random performance by LFU or LRU. This
occurs in case (v), figures 3.9 and 3.10, be.ause relations
requiring large storage area but having low cost tend to be
maintained in the store, vhereasz the stcrage space could

better be used to hold high-cost, smaller relations; in spite

of the lower occurrence rate of the latter.

In figures 3.14 and 2.15 the success functicon [Mattscn et al
1970] is plotted against the dynamic storage size fox all the
above algorithms with input reference string of types (vi)
and (viii) respéctively. The success function is the pro-
portion of times a requested page is found in the storage

(explicit) over the total length of the string, i.e. hit ratio.

In figure 3.14, if an algorithm (e.g. LFU) maintains the
frequently requested, less costly relations, this will lead

to a larger number of successes but the cost of computing

the less frequent, more expensive relations may be high enough
to offset the gain from the successes, Thus in contrast to

conventional paging, a high number of successes is not neces-—

{1

sarily a merit for the algorithm.

93

Ny
6000 -
N\
O
5000 - -
\ \o
6 4000 -
O
2000 -
2000 -
. 1000 -

T T T T T T
40 50 GO . 70 80 S0
DYNANIC STORAGE SIZE
FIGURE 3.3 : Cost/Culfarsize for uniform aigiributicn (siring type (i)

|

3.0 - /L/

. COST
\

RELATIVE
D,
<
e
e, ™
EN

2:0 ~ ' R

A
.°EB o
o |
_II'O _ IDEAL-
I T T T T T
40 50 60 70 80 30
DYNAMIC STORAGE SiIZE -

Fid 3-4 Reiative Cost/Storage Size for uniform cistribution (string type(i))

70
X102
? 60
.
AN
8 40 - \\(%,
AR
N\ D\\ X\
30 ~ n\\\\ \“E‘\
AN
R\ N N\
20 - N NN\ ’“‘\
o \c" \
\ \\ N\

.|o_]l | \xx\f

i
-\\:ii
0 Y 1 T 7
40 50 60 70 80 90
DYNARNIC STORAGE SiZC

FIGURE 3.5 Cost curves for low
cost weighting string
length = 500

96

4-0

Ja
fr -
A/
301 /
&
V
-
wn
O .
o /\ L.LRU
w 7] “
é / _‘f'e———-m\f-
p JA)
—<Jt N\ /
!a.:l 2:0 3 <
© n/‘&\
5/ '\G’S’/ N
\
/
/ & LESS o \
0
/ \ 0l
EY) 0 \\
(o] o}
-0 - _IDEAL
40 50 60 70 80 90
DYNAMIC STORAGE SIZE ———=>
FIGURE 3.6 Relative cost for Figure 3.5

97

LT P T e TP

L9]

i1SCO

(@
o

90 -

- 80
SIZE

60 . 70°
DYNAMIC STORAGE

50

40 .

st weighting (string type (iv))

o
(&)
£
o
xI
I~
byl
o
e

98

1

T

50

4-0

Il

- /7
”/IIINH \
//A //../,/._,@\a\
“\ \ w \ w
! Wi
/,/ | /Pw\ Um\r, Q\K
] 2
A
AN
1
5 o c

1500 3AILvV3Y

90
—_——

70 80

60

1D}
<
@)
N
48]
(O
<1
o
O
=
w
Q
=
<
Z
>
(]

r-
[\
Oﬂ
2
} -
o
N
>
o
O
o
=4
o
o
x
@
.
2
(T8

40

GO

.
-
p—

x10

40 -

COST

T

40

. .Fig3-9€coSsT/B

50

T 1 1 T

10 70 80 90
DYNAMIC STORAGE SIZE — =

UFFER SIZE FOR SMALL SIZE WEIGHTING (siring fype(v_))

100

IDEAL

o

1
70

ZE

T
60

50
DYNAMIC STORACE Si

40

4-0

|
o

0
<=<——1S00 ZAllY

|
o
&
RE

d

-0

Fig 3-10 Relative cost for fig 3-9

P Wy

SR T

P

~
-~

101

O

- ! — | IR SO -
B
.
TN
AT
{4‘.\\'\
V.
N
A
'n\"n\
AN
N

0

T I T I
5CO 1000 1500 2000 2500

(siring_ivpe tvii)

102

1 1 1
36 - pa
| A
| W \A
N &N
=N \
a8 \(«\ N\]
x10 \i AAA
-|Y
28 - o Y \
24 -
20 -
[
wn
o
O
16 -
12 -
8
4 -
0 | 13]
o] 500 {000 15CO
DYNAMIC STORAGE S

T 1
25C0 3000

70—

Fig 3-12 Cost/Buifer size for large size weighiing (string typelvii))

103

32 -

4
XI10

28~

COST

I |] &
500 1000 1500 2000 2500 3000 3500
DYNAMIC STORAGE SIZE

et/ Buffer Siza for high cost weighiing (stringtype {vid)

)
[9%)

1)
=]

2Z1S 397HOLS DINVYNAQ A NOILONCd £5300NS

——p N

A A~ -

String length

o o o o o Q @) O o
O (M) ol D '9) 0)} ~ (0] ()
o | | | |] 1 J |
3 B 0. I8
S I\
QN
>, 8\\N |
\ \\\%K
— « \&
C?~ s ‘\\n~ < 62\
O MY v, C Lﬁ\ﬂ [
o NN R\
e N0 \.
\(D“‘“\"—_. 4’? '-
_ 6}\ \QNT\é/‘\
ég— o D\§b\\;}l
o . . A AR
NN
0O DO, D
NN
N 2\
Q] .
Ol = \ XN
z NN
Z \
N o \ D\\
O ' N A
o1 4 o X
°lg ANERANY

> 0 SO,

Q) \\
8] N
o1 @ O Ol
o| N \

m

0O x
o \L\
\ W
Q] mRie
(@) \

Ol

FIGURL 3.14

105

Stccess function for
string type (vi)

E|

i-¢ b

~
=

SSI22NS

NOILONNZ

1115

e { Novmbor of Successes
'CESS FUNCTION | . P

(iAo

ZIS JOVHOLS JIAYNAG A

=
-—

. _——_—.J“\)
© - N u) 0 N o)
O | | [] 1 ! 1 1
S | o %
S| < D% ° <<¢:,\A)”< .
7o \.‘5’\..0*:\
10 0 X6
_ (,.‘.\\\\ ‘\\"
p @
NN
D\ O\I\?((“ o\\
2. SR
O ' \ . \\\\ O\>\
A\
R o) Q
\ \ \ \
\?
O \ \
>3 () 1] \0 8
21 A
‘O -‘2 AN TN A
O 2 D—‘l oW ohdt \ \
: B
= AN
; 3 a 2D
gl N\
8" = [}Gﬂl}:\b A
51 W
2 S
ol N D\
@
8-
(@]
H
o,
(@]
(@) ! ! T

10s

However, in figure 3.15 the high cost relaticons are referenced
more frequently. The LECS maintains the expensive relations

and hence it gives a high hit ratio.

6. The Preferred Set

The experimental results obtained above consistently favour
the LECS algerithm over the other replacement tachniques.
However, they leave open the question: is there a better
method. or does the LECS rule indeed yield least cost among

demand replacement strategies?

m
i}

his guestion cannot be answewrad in gencxal, but thore ic
an answer to a related theoretical guestion, and the result

Zurnishers additional understandin

fOf TETT end its limii=ticons,
The question is formulated as follows:

Given a fixed amount of stusrage and o refeisnce stiring,

which relations should be permanently stored such ithat the

C

cost of fulfilling the requests over the given tiwe intexval

is minimum?

This question has been answered by Cascy [Casey and Csman,
to be published] and the resulting set of relations is known

as "The Preferred Set". The solution is given in Appendix -

5.

This algorith:: does not guarantee an optimal set for all
storage sizes but it serves as a uscecful bound on the cost

reduction achievable.

The preferred set criterion is:

i) ror each relation k form the ratio 2, = Uy -C

k

k

<
u]!

(where Uk,Ck and Sk are the usage count, the cost
and the size of relation ¥ respectively).:
ii) Arrange the Zk in decreasing order and keep in

storage those that have the highest Z

k*

This is precisely the LECS technique. The LECS does not
know the string of reguests beforehand. It aliso employs

cstimates for the frequency rather than tirue probabilities.

Thuc the LECS method is an approximation of the optimal
technique for managing the dynamic storage in response to
randomly (i.e. independent successive occurrences) occurring

references.

For comparison purposes, the cost performance of the
preferred set is plotted along with the LECS and other

algorithms in figures 3.11 through to 3.15.

7. Summar

It has been shéwn that the task of autométic workspace
management in a relational data k=se environment is a
generalisation of the conventional problem of assigning space
in a given buffer area among a set of data pages of fixed
size. The management objective is to mininuse the total
cost of page faults, where the cost of a fault depends on

the page identity.

Experiments in this extended environment indicate that
replacement algorithms previcusly considered for uniform—

pages will not‘perform adequately. In some tests the

108

http://mininij.se

well~-known LRU and LFU algorithms give results about equivalent
to random replaccment. An apprecialble reduction in cost can
be achieved by weighting the replacement test criterion with

the page cost and size parameters in an appropriate manner.

A furthexr justif

=

cation of the intuwitively derived LECS

replacement criterion has been demonstrated in the "preferred

1

set" analyszsis. Thc LEC for

[3]
Q
~
|—I
ct
®
H
l-.l
O
b
[a]
9]
2
Fl
]
ct
T3
[¢]
i
[}
«2
d]
0

replacement in the same ordexr as a system which is stocking
a buffer so as to minimize the expected cost of meeting the

next data request.

A relational data kase is the prime example of a system which
realises thesc generalised assumptions cf a pagi
However. it is worthy of note that some operating svetems,
for example the Burroughs B5500 MCP [Burroughs 19661 have
émployed non-uniform page sizes and so the resnlts ohtainad
here may possess wider application. In general, the problem
of allocating resources under storage type constraints occcurs
in many forms in a number of systems context. Thus the

results obtained may be capable of wider application.

j-
Q
&>

Chapter 4
FURTHER CGENERALISATION OF THE REDLACHMENT ALGORITHMS

Introduction

This chapter is

3]

n extension to the previocus chapter. Thc

following topics are discussed:

(2)

(3)

(4)

1.

Chained dependency:
The LEC and LECS algorithms are extended to account for
thc case when relations are defined on other defined

relations.,

Rapidly changing usage patterns:

If the usage pattexrn is such that oniy a small subset
vl relations is used over a period ot time and then
suddenly another subset becomes active and so on, then
under such circumstances the frequency of reference

for each relation does not give sufficient indication

of the probability of that relation being referenced
in the future, The attempts to solve this prokhlem

are explained.

The principle of defined relations is justified on

cost basis.

A method for estimating the prokability of a relation

remaining implicit.

The Dependence among Relations

Up to this point we have assumed that the cost of accessing

a defined relation

ot
[+
=
(1

s on cne of twe values: a negligible

quantity if the desired relation is available in the dynamic

storage area, or else some positive guantity if it must be

reconstructed from base data.

More generally, however, a relation may be defined on othor
defined relations. The dependencics among relations may
be represented as a directed graph (Figure 4.1). Here

recursive (circular) definitions are disallowed, i.e. there

Base

(13
12

must e no cycles in the graph of dependencies
relations need not be shown explicitly in the graph, since

they can be made available at negligible cost.

Consider now a relation X having the dependencies shown in

figure 4.1, The cost of forming X in recsponsce o a requeost
ig contingent on whether its subcomponents A and B a2rc in
expliait form. Lat. CX ba the cnst of aalalating X from A
and B, and let CA‘ CB be the cost for creating A and B Irom
base data, We may write the cost function for X as:
C(X) =0 if X is explicit
= Cx if A and B are explicit but X
is not
= Cx + CA if B i¢ explicit but A, X are
not
= C, + C if A is explicit but B, X are
X B
not

Cx + CA + CB = T(X) 4if none of A, B, X are explicit

l.1 Generalisations of LEC and LECS

Now let us extend the LEC and LECS algorithms to the case of

such chains of dependence. The LEC criterion depends on the

DEPENDEN

9(50.30)
11 (24,7)

6 (2,4)

A B
- DEPENDENCE HIERARCHY

" Figure 4.1

CIES AMONG |1 RELATIONS

10(29,13) | (31,12)

3.(8,3)

2(20,5)

, (24,2) 8 (29,)
\ / \ / \ / \ S
. 514,6) 729

a——>b = a is dependent on b 5(4,€ stands for

Le.

is defi Felation no. {(cost.size
a is defined on b € (cost,size)

Figure 4.2

112

U

product of the number of references (usage count) for a
relation times its cost. We will, therefore, extend the

concepts of the usage count and the cost to account for

these depcndencies.

In Figure 4.1 relation X will be requested to help in com-
puting relation D whenever D is requested and found not
explicit. The usage count for relation X must be extended

to cover requests for X for the sole purposc of computing

dependent relations.

Thus, the expanded usage count for relation ¥ frcm time = O
) . .t c
to time = t, denoted bx 1s defined as the number of times

X is directly requested, U , plus the nump2r of times X is

4
L
X

P el E R~ -~ Y N N N -—_ ~ral - < -~ [N~ NP o P B | .-
regucstcd in ordcr to assenmble one of its dependent rclations

(C or D).

Let us also definc the occupancy of relation D (e&) as tha
ratio of_times D is in the dynamic area to the number of
requests for a;l the defined relations., It will be assumed
that the probability of a request for a relation is indepen-
dent of the presence or absence of that relation in the

dynamic store.

The proportion of times D is not in the dynamic area

(1 - ©7)

D

. The number of times D is requested and fcund implicit

_ .t P,
—UD.(.l eD)

113

t
Hence, Fx may be expressed as:

- t _ ot L _ &
Fx = Ux+ UD . (1 G)D) + UC . (1 ec)

This expression may be used as an LFU criterion which accounts

for dependencies (Improved LFU).

The cost of computing X when it is implicit depends on whether
A and B are cxplicit or implicit. An expression for the cost
can be found by multiplying each cof the four pcssilkle values

listed above by its probability.

Hence,

C(x) = [T(x) - C(A) - C(B)] . Pr (A,B) + [U(X) - C(B)]

i

. Pr (A,B) + [T(X) - CAY) « Fr {(A,2) + T{(X) . Py (~,B

where:

n _ t t - _ et et
Pr (A,B) = QA . (1 - Eb) ' Pr (A,B)= (1 - A)' B
Pr (A,8) = 0. . 6

Pr (A,B)

-6 . -8

Similarly,

Cc(D) = T(D) . Pr(X) + [T(D) - C(X)] . Pr(X)

Therefore, for LEC we use the product FE . C(i),(i=1,2,...,n),

which reduces to UE . C. if there are no dependencies.

1

Similarly for the LECS we have the expression FE . C(i) which

S,
i
again reduces to U§ . Ci for the case of no dependencies.
S.
i

14

1.2 Experiments

1.2.1 7The Simulation Experimecuts

Dependencies have been assumed to exist amcng the previously
menticned 11 relations in the manner shown in Figure 4.Z.
Siiulation experiments have been conducted as described in
Chapter 3. In ordexr to evaluate the cost of creating a
relation R the list of relations which define R is examined.
A recursive procedure finds which of the decfining relations

is explicit and accoxdingly it evaluates C{(R).

The reduction in cost due to the presence of the relations
defining relation I in their explicit form is evaluated as
fecllovis:

integer procedure r(i); cumnest reculsive;

irteger i,Jj,k,it,h;

comment: i is the relation for which the cost reduction
due to explicit defining relations is to
be calculated.

f(k) is the creation cost of xelation k. It ic
the reduction due to explicit defining
relations,

deb(i) is a global array of the number of relations
on which i is dependent.

d(i,h) is the hth relation on which i is dependent;

if dep(i) = O then r:= O;
it:= O;

for h := 1 step 1 until dep(i) do;

begin

k:= d(i,h);

115

if status(k) = 'explicit' then it:= it + T(k);

else it:= it + r(k);

At any instant of time when a relation is rcferences, the
occupancy for each relation that happen to be explicit is

updated by one.

When the LEC oxr LICS criterion is appilied, a recursive
procedure evaluates the expented cost of each relation using

the expression for the expected cost.

Similarly, the Ideal replacement algorithm was adijusted to

account for dependencies.

2.1 The resulis

'..l

The string of type (i) (Chapter 3) was used to investigate
the effect of dependency on the behaviour of algorithms.

This is illustrated in Figure 4.3.

Comparing with Figure 3.3 the cost nas dropped for all algorithms
due to the reduction caused by the dependencies. The LRU

and LFU algorithms d» not take into account the effect of the
dependencies, thus their cost of replacement is relatively

high. The LECS is near enough to the ideal. In fact the

size parameter is very important in the case of dependencies
because the cost parameter is generally reduced. E.g. when

the dynamic store sizes are 80 and 90 units the ideal replace-

ment strategy, found by inspection, is to maintain all the

P

‘ ‘ A 6000
5000-

4000+

COST
(J\’
Q
| O
///’
“\
J /
+ e/§>
4/

<
".*.‘ ‘A_ \ .
o q%j\\\ ¢\ L,
S A
2000~ \ o VoG
/ A

'OOO"‘ \ ~
\ \‘Q?‘\\:\-—-\-é‘).
o :
x:‘ii\:;\\\
T
0] . ' 1
40 50 60 70 80

DYNAMIC STORACGE SIZE

FIGURE 4.3 Cost/storage size for uniform
distribution with dependencies

g e ghm g §3F bar e vt W =

e Sartr e Snaw 0T g ge e my

RELATIVE COST

/1 5'00 1 H i i 1
LAy
//// \\\3*“—-——e
A ARB A \
+. LF Q\
U ,,+——'“:;7 \\
>o0” S / \
\\)
- \!
' A
/D>\‘\?r / \\ \\\
£ 2
2.0C- 5 S@“
0”0 \\\
A
.,L.:_E_Q:__-o—"‘
00~ Oz IDEAL
T | i] X T

40 50 60 0 80 S0
DYNAMIC STORAGE SiZE
FIGURE 4.4 Relative cost for Figure 4.3

1=
=1
w

A P € E R A — 2t e e« <«

S

Py
e e u—
I
S00 4000

3T
i
A\Q_ (o]
A\\\ hlg
- s_ o r Q
V/atE
o
S0 184
e o P rRGE
) \\ \\ M.\/J_ N o
y L W G
q o_\\. . D\ o\ S % :
(3
\A\ ..._.\\ / \ um m]
a » -
< 7 \o o€
> _\ \V. \D o nnuu g5 .
S / EEE n
)Y \o\\wé\\\\\\\.- :-\.\ »Obn_\o D/\ o\ M .;nm.
e\N\&\\ . %Vo\\ \ B MW &
R 7 |
D_ o/\ :
. i m w
| _ _ 5 &
9} .m/uN @ 40. /_1 _ _ :
N YN & 2 _ _ 5
Y - & © _ e
< o il
[V

i

A e'\‘%
N
5{_ -] \\0_
o A\
¢ \-«;
. < [AG)
-] (@ 'oA
284 \ A\\i’a
x10 o O *"r
- \
24 - \\‘r\‘ \? 2
o \ \
\ 0 a
- ¥\ 55
& 20 - AR\
(&) \A

12 4 o\
\ o \3\
o AN
- A
8 \O\D _\
R R\t
o 0 -
4 | \o\ \a
O A
NoN S
\9"\‘-@‘:@?}0____
O T T T T T T T 1
0 500 1000 I500 2000 2500 3000 3500 4000

DYNAMIC STORAGE SIZE
Fig4 -6 Large size weighting with dependency

12¢

—>

relations explicit except for relations 9 and 1 which are to
be swapped in the dynamic storage. This is because their
cost, when other relations are in the dynamic storage, is
small and their size is large and no other relation depends
on them. It is interesting co note that this ic the exact
strategy followed by LECS after the initial fluctuations.
This is because it takes the size into consideration along

with the other parameters.

The relative cost for Figure 4.3 is plotted against dynamic
storage size in Figure 4.4. Comparing with Figure 3.4 all
the algorithms converge towards the ideal behaviour at larger
dynamic storaye siz=s, There is no abrupt fall towards the
ideal as in Figure 3.4. This may be due to the fact that
some of the larger relatiors that formexly used up storage
space have now relatively smaller cost and so the penalty for

keeping them implicit is reduced.

Dependancies were also assumed to exist améng 50 of the 10C
relations of Chapter 3. Seven groups of dependent relations
were formed. The reference strings of types (vii) and (viii)
were run against the 100 relations. The cost curves are

shown in Figure 4.5 and 4.6 respectively.

In Figure 4.3 through to 4.6 the significant improvements of
the "Improved LFU" over the "LFU" reflects the validity of
the model adopted for estimating the frequency of dependent

relations.

The curves also show that the LEC does not give significant

improvement over the "Imprcved LFU" because with dependencies

the influence of the cost parameter is reduced.

1.3 Conclusion
The LECS method can be extended to the case of data that is
defined on base data through a sequence of operation steps,

and where the results of these steps may themselves be avail-

fu

EFle in the system ab a yiven time,

The experiments have shown that thec extended LECS aloorithm is
still the kest of those described so far which accounts koth
for the relational dependencies and for the time-varving

contentgs of the dynamic store.

2. Rapidly changing refcrence paiterns

The present LECS algorithm weighs references to a relation
equally regardless of the point in time at which the references
took place. This may not give a satisfactory prediction of
the coming requests in a heavily used data base with a rapidly

changing reference pattern.

Here, it is sought to extend the LECS to account for strings

of requests having a rapidly changing pattezn, For this
purpose a string of requests was generated and it was run
against the three simulation mecdels, The results are reported

below:

2.1 Generation of_reference_stixings

t
(o)
=

In these strings a subse f the defined relations is referenced
for a period of time, then abruptly another subset is referenced

and so on,

.

Strings of 600 requests for 20 relations were generated. -
Each string represented one of the combinations of the period
length and the number of relations in a subset {working set

size).

Given a pericd of P references and a working set size of w

relations, the references are generated as follows:

i) pick w relations at random from the 20 relations.
ii) generate a random reference toc one of the w relations.
Repeat this P times.
iii) if the number of references denerated is less than the

reguired length, go to (i}.

2.2 1he Modeis

These models adopt difterent ways of weighing the frequency

term of the LECS criterion.

The cost of xunning a string of reguests against a model was
estimated by finding the area under the cost curve, i.e. the
cost is proportional to the product of the processing time and
the size of the storage space. Using the familiar trapezoidal
rule, the total cost of running the string is calculated from

the costs of running the string at 12 storage sizes.

i.e. the cost due to an algorithm

C,. + C
_ 1 12
= h (———5———— +C, +Cy+ ... Cll)
C, + C
of "1 12
5 + C2 + C3 + C4 + ... + Cll

where Ci is the cost of running the string of requests
. . th .
against the model for the i storage size.

h is the fixed interval between twc storage sizes.

123

2.2.1

One possible model forweighting refercnces at different times

is as follows:

For relation i update f; periodically at the end of the pt'

h

period by the weighted number of references occurring during

that period.

the attenuation coefficient for weighting
past references

- " ~) - th

the nmmber of references within the p
period

total number of weighted references until

the p-1 period

The parameters a and the length of the period have to be

estimated.

The choice of a and a period length to suit

different patterns is difficult. Moreover, there is usually

a phase shift between the period of pattern change of the

string and the period in the model.

Each generated string of requests was run agcinst the above

model using a range cf periods. For each period « was varied

between 0.01 and 0.939. The values of « and the period that

give the minimum cost are kept.

An attempt was made tc find some relation between « and

opt

the parameters of the string, so that given a certain stiring

124

COST

<Ol%

- . e Pm. e e ¥ NI R Bt S s a AT oy B W gt

~ 9
-/, V
8

|
i
N |
3 : f
i
0
o ;

, H
m~]
oy "

4

h

1y "

II '- :

p © :]

|

4
@
® i
0 |
0 3
=
S i .
6— -

y A
I i I |

FIGURE 4.7 cCost/storage size for
rapidly changing patterns

the value of (%pt could have been evaluated; however, no

correlation was discovered.

If this model is used, suitable fixed values for « and the
pericd should be specified. Therefore, this model is not

ng nf rapidly changing

-

suitable for the autcmatic handl

patterns,

2.2.2.

The second model is as follows:

? At time t update the usage count of rclation i as follows:

'his gives more weight to the recent references.

This simple model proved to be satisfactory in almost all the

cases

In Figurc 4.7 this model is called Improved LECE . The
string used in the experiment has a working sct sizec ¢f iC
relations and a period of €0 references. In this experiment
and others the performance of the LRU is improved when the

reference pattern changes rapidly.

This model suits the strings of rapidly changing patterns.

It is also simple to implement.

However, it is envisaged that if the strings of reguests are
very long (e.g. 1,000,000) and the counts have not been reset,
the model will not be capable of giving reliable weightings,

e.g. if two relations are referenced at times t1 and t2 which

are X references apart, the weights added due to t, and t

1 2

will practically be equal when t1 and t., are very large.

2

In such a case the counts and the time indicatoxr have to be

-)

scaled down, i.e., when relation j is referenced at time t:

if t=7T _ where ' is a large number
ui - ui—l i=1,2,...,r
ghen Jt =1
ug = u% + t
else if t < T then “2 = ug—l + +

Again the choice of « and T is a problem as in 2.2.1.
However, for a large T the method becormes less sensitive to

-4

the value chosen for « .

2.2.3 The wmaximum likelihood method

The references to each relation resemblce o time varying serie
of events. The change in the rate of referencc is used in
the replacement criterion so that the relation whose usage is

expected to increase is given more chance to remain explicit.

The model given by [Cox and Lewis 1966] was adopted after
minor adaptation. The maximum likelihood ecstimate for

relation r, designated Gr satisfie

0y nrto r
= e e L bR =
Y(Gr) Gr -Grto oz i,r O
l-e

where Y(Gr) is the derivative of the expression for the

likeiihooa estimate w.r.t Gr'

b

n. is Lhe number of references to relation r

excluding the last reference.

Tt, is the sum of reference times
i,r
.excluding the last.
tO r is the time of the last reference.
’
The above eduation is solved numerically for G .. Using

Newton's method the solution reguired an average of 17
iterations at the first instance and subsequently, using
previous results as approximations, only about 8 iterations

re sufficient to find the rocot within a reasonable tolerance.

ach iteration requires two evaluations: one ior che abuve

equation and the other for the equation of its derivative.

Whenever relation r is referenced at time L:

t = t
o,r
g, = ub
i,r r
ut = ut + t
r Y
n = f
r xr
fr = fr + 1 where fr is the reference count

In order to choose an explicit relation to be deleted, the
above equation has to be solved for each explicit relation in

the above described manner.

The results are comparable with theose of 2.2.2 when the string
of requests has one pattern of references. As the changes

become rapid its performance gets worse hecause the number of

(28]
[\
e}

references within each pattern is too small to give a good
prediction. As this model is time consuning it is not

reccemmended in its present form for this situation.

3.
The justification for the use of defined relations on a cost
basis is a typical case of the disk space versus cpu time

paradox. Here, two approaches are discuss=d:
(1) the special case of the dgeological data base.
(2) the optimum size of dynamic arxea (work space).

3.1 Defined relations in the geolocical dats bdse

Consider the tollowing statistics:

i) cost of answering 27 queries from base

relations (IBM 260/44 cru time) 2162 sec

overhead of answering a query from an
explicit relation (cost of access

to an explicit form) 2 sec

size of disk storage to hold all the
27 explicit relations: 150 blocks

each of size 520 bytes 78 kb

ii) if all the relations are explicit and
each relation is reference only
once over a period of 1 month, then:
the gain in cpu time is 2108 sec

disk space ovefhead is 78 kb-month

It is evident that a high gain is achieved by trading of £
11 tracks of IBM 2314 for 35 min. cpu time of the IEM 360/44.
Therefore, it is fair to conclude that for cpu bound systems

such as the I5/1.0, defined relations improve tlie performance.

"]
o
+3
oy
m
(o]
go]
ot
'.J-
=
£
S
w
',J
™
o}
(o]
Fh
t
=2

_____________________ e_dynamiT _arca
Here, the optimum disk space to be allocated for defined
relations is estimated. The estimate is basced on the

observations of the response time and the characteristics
of the relations, An expression for the optimum disk

space to be allocated is presented. On the substitution
of the charging rates of the particular installaticn, the
optimum disk space is cobtained and hence the retention of

the currently allocated disk space can be justified ox

unjustified.

S- Gy
Disk stcrage size
(Dynamic area)
Consider one of the LECS cost curves oi Chapter 3. For

each curve the ccst decays exponentially till the storage

space becomes large enough to accommodate all explicit

relations (S = So).

Let the time of running a string of queries bhe
-bs
T =1 + ae
where: a is the cpu time to satisfy all gueries from

base relations over a agiven period of time.

r is the cpu time to create all the defined

relations for che first ilime.
b is a conctant dependent on the replacement

algorithm, the characteristics of the
relations and the string of requests.
cq is the cost of one time unit {cpu time unit)
or elunsed time unit depending on which
time is used to estimate tihe cost).
is the retention cost of a unit of disk
space for the given period of time.

[e.g. The 12 observalions of the LECS curve

b

n fiounre 3,12

(O R e

B

were fitted to the above eguation with a Chi-sduared of 1.

they fit with a probability of 0.395,3

l-l-
(0]
d-

From the above figure:

It is required to minimise the cost function

s.c. + T,
2 €1

substituting for T

bs

. + - < s¥g
S.C, + clr c,ae 0SS S=5p

which gives

1 c a\
Sopt = b 199 \"&.

For example:

21,

Assuming the string of requests of the dgeological data base

131

is represented by Figure 3.13, fox which b~ 0.009,

The IBM 360/44 system installed at Peterlee does not charge
for the use of its facilities. In other places where this
machine is installed, a flat hourly rate is employed. The
NUMAC system sexvicing Newcastle and Durham universities has
an IBM 360/67 run under the Michigan Terxrminal System (MTS).
The MTS has charying rates specitfied for ald the system
components [MTS Users Manual 197117. These rates were

scaled down to suit the IBM 360/44.

cpu_time Disk space 2314
M1'5 01667 units/sec ©.0C00175 units/kb-hr
36C/44 .C041L7 " i camc

I’or the above-mentioned 27 relaticns (SO=7Skb), ovar a time

period of 10 weeks the optimum disk space is about 56kb.

4.
Here we want to estimate the probability (x) of a defined

relation remaining explicit.

The dynamic storage is managed by a replacement algorithm,
e.¢. LECS, The values of the replaczment criterion o0f any

paged-outl relation are recorded, e.g. the values of G are

reference count . cost .
recorded where G = Size . Over a period

of time, knowing the number of relations paged out under the
same dynamic storage size, it is poscible to estimate the

probability of a relation remaining explicit.

The following table explains the method of recording the

valves of G and the evaluation of x at a given instant of time.

[
w
[\

UCLID41d0 S53T] 404 SAND 2D040;S0S) §-4 Bl
(UOTIBSITID §DIT, & FO shiepy

T Y

2 09l 021 . C3 ov 0
1 1 —_—] i ! O

K]

ks

— .»VO

- G-0

IDAIAINS 1O AQigDaoid

X

135

Number of Cumulatlze Prchability Probability
relations 22?2i§og; of‘remgiping of remgiging
paged out paged out implicit . expli01t
G=100 1 1 0.05 0.95
10<G<100 o) 1 0.05 0.95
1<G<10 8 9 0.45 0.55
C.55G<1 10 19 0.95 0.05
0.12G<G.5 C 19 0.95 Q.05
G<O. 1 1 20 1.00 0.00

Now, if G can be estimated for a relation, it will be possible

tc predict its chances of survival in the dvaamic storage.

o

n Tigurc 4.8, the probabkility, %, is

53
[d
0
(hd
vt

ed against the value

of the c¢riterion G at various storage sizes. The utora

n

=2
=

™
0
o]

sizes are expressed as a fraction of the total storage (S)
required to hold all the defined relations explicit. The
probabililies are infiuenced by the replacement cigorithn used

and the typ2 of reference string.

In Figure 4.8 a string of type (vii) (Chapter 3) is run under
the LECS algorithm. This set of curves also gives the extra
disk space to be added if a relation of a given G is required
to remain permanently explicit. For example, at a certain
instant of time when S=0.3, a relation whose G is 40 has a
probability of survival, x, of 0.64. If x is required to be
greater than J.8, then S has to be about 0.525. Therefore,
enough disk space should be added in order to increase S from

0.3 to 0.525.

Chapter 5

THE SPLITTING OF RELATIONS IN ACCORDANCE
WITH THE USAGE PATTLERN

Introduction

In a data base whose relations have a large number of domains
or a large number of tuples, queries may only require a subset
of the whole relation. The distribution pattcrn of references
to the domains is usually nonuniform and therefore it is more
efficient to separate the parts which are frequently referenced
from those which are only occasionally referenced. This is

conceptvally similar to a well-known method in data processing

~ -~ anpd - ~ 3 -y, ¥ P - gl e —~ e~ - T o~
where records are kept in two separate files: one for the
meving hit group (c.g. moving customex's file) and thoe cther

for the records which are not referenced during a gsritain

period of time (e.g. dead customer's file). Here, the case
is more complex because we consider varying frecguencies of
reference for different groups of fields or records.

The possible ways in which a relation may be split are as

follows:

A, Domainwise split

This method is suitable for relations having a large degree
(e.g. relation Optics of degree 15 and relaticns Use and
Property in the GLC data base whose degrees are 13 and 42
respectively) . The domains that are frequently requested
togethexr are kept in one portion. The splitting can take

place at one of the following levels:

I Physical storage level

Traditionally data base files are stored record by record.
In this type of splitting the file (xrelation) is parti-
tioned when the data base is reorganised. Each partition
holds the fields (domains) which are requested by one
query. The records (tuples) are linked by pointers or
by position. In the extreme case of'partitioning single
fields (domains) are stored separately, in which case the
file (relation) is stored field (domain) by field, i.e.
the records are completely transposed. An example of

this extreme case is the ROBOT system (Record Organisation

W

Based COn Transposition) [Burns 12727,

IT Logical level (the splitting of relations)

In this type of partitioning the relation is broken into
a smallexr number of relations (obtainea by projections
including the key domain) in such a way that the initial
relation can be regeherated by logicai opcrationz, ce.g.

join, union, etc.

B. Tuplewise splitting

Here the partitioning is effected on the basis of the object
value of a particular domain, By selections on the object
value cf a domain the relation is resclved intgc smaller
relations such that it is possible to recovex the first

relation by forming the union of the constituent relations.

C. Splitting by normalization

This is usually performed at the relation design stage.
This type of splitting will not be discussed in this chapter.

Some examples have already been given in Chapter 1.

(-
[33]
N

Objectives

The objectives of this chapter are as follows:

(1) To construct a performance criterion (the gain in
computing time) expressed in terms of the configu-
ration of the relation (the numbcr of portions, the
numbexr of domains in each portion, etc.) and the

frequency of reference to each group of domains.

(ii) To examine the various ways of monitoring and
recording the pattern of reference to domains and
to choose a method which keeps a reasonably large
amount of information within an acceptable overhead

{in storade space and compulting timej.

(r:

(iii) To find the particular configuration of the relation
(the set of subsets) which optimises the performance
criterion obtained in (i) using the reference

PRI~ S -0 § S

information recorded in (ii).

In the chapter, (i), (ii) and (iii) are discussed for domainwise

splitting separately and then for tuplewise sprlitting.

The theoretical analysis, justification and proofs for the
domainwise decomposition of relations at a logical level (typa
II above) has been thoroughly worked out [Palermo 1970,
Delobel & Casey 1973, Delobel & Rissanen 1973]. However, the
objectives listed here aim at improving the data base perfor-
mance by splitting the relations in accordance with the way in
which the user's queries reference the domains of relations,
Thus the recommendations arrived at will be applicable to

realistic situations.

137

Transparency

The partitioning recommended below will not be scen by the user.
It is more convenient for the user to be familiar with a small
number of relations satisfying his requirements rather than
bother with a large number of parts of relations whose forma:-

tions are varying.

llowever, a clever applications programmcr can achieve greater
efficiency for some queries by interfacing with the data base
at a lower level and choosing access paths acccrding to the

actual current states of the relations.

A, DOMATIIIWISE SPLITTING

The pexrformance criterxion for cplitting

Tha domainwise snlitting of relatione wednres the accass wime

I THE SPLITTING AT PHYSICAL STORAGE LEVEL
R n S1 S, Sy
m
——————————— k ——— —— —— — —————

Consider the relation R with cardinality of m and degree n.
R is stored as k portions without redundancy. Portion i has

a subtuple size (row size) of S; bytes. 1ls<icsk,

Let the number of input buffers be £

(f is adjusted such that f2k)

the block (buffer) size in bytes be b
the disk seek time (head movement time) tS
the disk relational delay time tr
the data transfer time/byte t
the cylinder capacity_in blocks C
the relation tuple size in bytes i = ﬁi_si

the proportion of non~consecutive

blocks which require a seeck e
Assumptions
(1) Assume that each portion of the split ralation is stored

n

in a different cylinder, i.e. a scek is required when

moving from one portion to another.

(ii) Assume that the influence of the nmultiprogramming

either form.

‘Define the degree of multiprograrmming interference (d) as the
proportion of times the disk head leaves its former position
to service a request for data not pertinent to the relation

under consideration. Although it is difficult to accurately

determine this parameter, it will help in drawing some conclu-

sions later.

Consider the access time for a query requiring the reading of

one portion (say portion one):

139

Number of blocks = % X Sl

Access time per block head movement time + average

rotational delay time + data

t.
5=
transfer time (b x tt)
Head movements take place:
(i) when we shift from one portion to another.
(1i) due to multiprogramming (d times)
(iii) when one portion occupies more than one cylinder
(i.e. an average of 1 movement per blwck), or

C

some of the blocks are not in the same cylinder.
Head movement time/block for one portion'
t (g + d+ e)

Access time/block for one portion
1 t
(

=tg(gtd+te + 55 + b ox t,
Access time for one portion (portion one)
= %.x Sl(Eg ttoxd+t o xe+ EE + b x tt)
C 2

If the relation is not partitioned then the access time

= % X Z(ts +t . xd+t, xe + tr + b x t,.) — (1)
— s s —_— t
C 2

= I

= bAZ

where A = (ts + t xd+t xe+ tr + b x t,.)
ol s s - t

2
When the relation is stored as k portions and cnly k buffers
are available (i.e. f=k) the access tim2 tc read the file

(relation) record by record

r". .

=2 % Sl s+t xd+t xe+ r+hbxt, +kxt))
PO\ e 7 € s

k
=5 x (A+kxt)y s, — (2)
i=1

oig

(k x tS * the head has to jump from one cylinder

to another)

However, generally when f buffers are available we assume that

blocks c¢f the ktn portion will be read consecutively in the

f-k remaining buiffers. Hence -;—(2) will be:
/; kK k-1 5, « t) T
m) e S
== @A), s. + (k-1 '8, + ——— —
b \< i TR LSy ETETT) (3)

In general, if a query requires p portions when £ reading

buffers are available, the access time

N\

. o p-1 S

(m e { C (-) — 'F T
o ‘.AZJ.Si + oty I(p 1)_.2;‘8i + (f_——-P————-—(D_” }) for p>1l

\ Ii=1 i=1
= 4

m =
5 A s Sj -— for p=1

\ where j is the index of the one portion requested.

Now let Q be the number of queries requiring relation R ove
a certain period of time.
. be the number of queries requiring a set of
portions Wy
1<i<u the number of sets of portions requested by
queries
u < the number of possible combinaticns of portions

(2%-1)

P_ . be the numher of portions i

wj

3
9]
(L

t
-t
.

Time t¢ answer Q queries
Af P .>1 then
G
/ P\ i L - 1 '\\l\
u <. /[N 5 T : W3 \ |
it i o =1 "S5, -+ < [.
=B§ l \ Z,.d S\\ W] / ‘ 2_‘ 1 (f"‘ ',P_wj".l_)),}‘/ q‘,_.'J
j:l =l i=1 ’
else A ., Sj S —_
Lranple

For an IBM 2314 disk,

assuwming block size oi 1 kbytes

C = 120
-3
tS = 60 x 10 sec
t, = 12.5 x 10 ° sec
-6
- 10
tt 3.3 x 10
Assume that the effect of multiprogramming is negligible,
i.e. d =0
e = 0,01
A=t (i + d + e) + EE + b xt
s'C ! 2 t
A=t (1 + 0.0 + 0.01) + E— + 103 X 3.3 x 10-6
s 120 ‘ * 2 '
_ 1l
= ts(120 + 0.0 + 0.01 + 0.1 + 0.05)
= 0.17 t, = ,0102 sec
Consider a relation whose domains are:

object size in bytes

A/c No

Balance

4

K
[y
(@)
1
(o

o
1-3
N

(4)

Suppose we have the following statistics on 1000 queries

(i.e. Q=1000) :

No. of queries requiring domains 1 and 2 = 800 (80%)
No. of queries requiring domains 3 and 4 = 100 (10%)
No. of queries requiring domains 1,2,3,4 = 100 (10%)

Let us work out how much gain is achieved by storing the

relation as two portions:

A/c No. Balance
and
Name Address

Assume £ =3, i.e. only 3 input buffers:

(access time without splitting
% saving in access time = - access time with splitting)
access time without splitting

m m m .. /
= A.D.Zx1- A.f. (4+4)40.8+A.. (2o+50),o.1w¢z+ts(8+_7?0))%xo,1

m
A.B.Z

- Ax78xl-(Ax8xO.8+Ax70x0.1+Ax18+th4d)
Ax78x1

_ 78-(6.4+7+7.8+4.1 5s)
‘ A

78
_ 78~ (_2_1.'2 + 0.246
= - 0.0107
78
= ET,—%-S;S— = 0.419 (42%)

Note:
(i) As the degree of multiprogramming, d, increases the
saving increases (e.g. in the above example when d=1

the saving in access time will be 71 &). This is

133

because the head will move from one portion to the

other at no extra overhead.

(ii) The saving also increases with the increase of the

proportion of the randemly accessed records, e,

1. Updates
Updates consist of insertions, deletions and changes of
ohject values. Let us compare the nuwiber of portions

accesscd for the updates when the rclation is stored with

and without splitting.

No. of portions accessed

without splitting with sulitting
“3 o re—— _— o
I \]
- | Y N e
one portion -=--- Xk portions ----

Jype of update

Change of value:

of one object 1 1
of i values 1 varies between 1 and k
of a whole tuple 1 k

Insertion (1 tuple) 1 _ k

Deletion (1 tuple) 1 k

The updates do not favour a large numbexr of portions, In

general, we need k accasses per update. Now we add an update
term to (4) assuming that the whole portion has to be accessed

for the update.

Ac

©

=

o]
-

XS]
-
-~

. . . Co m ,
the update accegs time without splitting = g N-A.Z.
. . s m
the update access time with splitting = B.J.(A+k.t

(where N is the number of updates)

i44

Since the term for the updates is the same as that for the
retrievals requiring all the k portions, we will add the
number of updates to the number of retrievals requiring k
portions. Hence, expression (4) will account for the

retrievals as well as the updates.

2, Lcaical filters

In some queries the records to be retrieved are those which
, satisfy a logical expression (logical filter) stated as a
‘ selection criterion in the query. The logical filter may
contain conjunctions or disjunctions. Each type cf filter

has a different influence on the access time.

As an example let vs consider a relation R having n dnmains
partitioned as shown:

R

2
I

!
!
|
|

T——

[______
|

--------- k portions ===—===——w-

e.g. to select those records for which domain(1l)=a and
domain(3)=b ... etc. (where domains 1l and 3 of R are in

different portions).

The selection is carried out on each portion separately rather

than moving from one portion to the other and hence saving in
access time is achieved. If one of the terms (e.g. domain(1l)=a)
is false, the search will be stcpped and the time to access

the other portions is saved.

145

2.2 Filters with the_logical_ operator_ OR

— e e e Rs e v A e R P s e et s e S b e e s e e Bt e ey S —

e.g. to select those records foxr which domain(l)=a or
domain (3)=b (where domains 1 and 3 of R are in different

portions).

. . n .
In this case one of the portions has to be read F-7 times

(wvhere n is the number of blocks of the other portion with

data satisfying the filterj. This ty

filter leadc to

)
th

PISEN]

f
b

loss in performance due to the increase in the access time.

| The model developed so far may be extsnded Lo account for
the abovz two cases but this approach has the following

disadvantages:

(1) The model has to take into consideration the particuiar

method of dealing with (storing) intermediate results.

)
et
[
u
Q
Qs
}.‘
o+
)
£
w
PI
(@]
£
w3
£
ct
o)
[&]
(t
t
>3
[0
3
Q
(91
[0
o

(2} Wheir (1) wias in

became complicated.

To avoid this Qisadvantage we will assume that the loss due

to disjunctions is exactly covered by the gain from conjunctions.
This assumption does not favour spiitting because the number

of queries having disjunction terms is usually far smaller

than those having conjunction texrms. This is evident in the

case of the geological data base (Chapter 1, Figure 10),

the analysis of the queries of the data base described by

[Senko 1971] and the GLC data base (see Table 5.1).

3. 7The Overhead of Splitting

(i.) The management of the buffers is dynamic and depends
on the number of portions of the relation requested
by a guery. Therefore, the Read/Write routine will
consume some cpu time ir choosing the best buffer

allocation strategy for each query.

r
Q
o
O
[}
h)

{ii} Extra space

'_l.

each domain the respective porxrtion.

b
»
{
{

(iii) When tuples are to be inserted in order to update a
relation, the updating tuples have to bhe split
before the updating of each portion takces place.
Extra working disk espace is required to held each

L S N]

updating nortion scparatelyv.

In conclusion, splitting in the manner described above is
beneficial and desirable when most of the following

properties of date exist:

(a) a large number of domains with an unegqual distribution
of reference to domains.

(b) large sizes of the less referenced dcmains.

(c) a relatively high number of randomly accessed records

or a relatively high degree of multiprogramming

interference because both of these significantly

increase the access time when no splitting is performed.

ITI LOGICAL LEVEL (THE SPLITTING OF RELATIONS)

In this type of splitting the usexr's relation is partitioned

by projections. For example, consider relation S whose

first domain is its original primary key or an artificial

primary key (e.g. tuple number) intrcduced to facilitate the

Relation $§ has domains (d,.,d,;:..,d.)
172 n

To split S as follows:

.

51 = projection {(d dz,...dm) of &

1!
S = iacti (3 F g
5, prejection ‘Jl’dm+l""dr) of S

n
Il

d) of S
n

3 projection (Ei,dr+l,...

Sl,52 and S3 are set up and stored as base relations.

Relation S is now defined in tcrms of its projections

S = equijoin on dl of § and S3.

115

Generally, for queries regquiring more than cone relation {(portion)
simultaneously, portions must first be assembled into one
relation equivalent to their equijoins on the primary key.

This is done by submitting to the system a definition of a

new relation as the equijoin of the relations (portions)

requested by the query.

The defined relation will be explicit in the first place and
-the query will be answered. The defined relation may then
be maintained explicit and can answer similar queries. This
depends on the availability of space in the data base file
and the characteristics of the defined xelation such as its

creation cost, its size and the freguency of reference to it.

For example, if a query requires domains in Sl and Sz, relation

will be defined as:

12
812 = equijoin on dl of Sl and 52
515 is made explicit and the query is answered. For how long
Sqis will remain explicit depends on the aforementioned

conditions.

The Overhead

Let us consider the fcllowing two exbtremes:

(i) An environment where the combinations of relations
Sl,S2 and 53 which are requested by queries (e.g.

BT T |
1

1 be maintained exp

M~ rP—_\—'\r\v- AYFAvhAnNA T Al o A -]
oo - luJ\-’J. A e L) i 'v—----x - v’-’\A tnaa -y

of the equijoin for setting up each combination.

(ii) 2An environment where the cembinations required
by gueries have to be set up by equijoins for each
dguery due to scarcity of space.

The overhead is the equijoin cpu timc for ecach query.

The overhead depends on the data base environment. It is

time varying and will always lie between these two extremes.

The partitioning will be beneficial if the major overhead
(the equijein cpu time) can somehow ke minimised. It can
be shown that splitting may possibly be beneficial only if
the relations are stored witih tuples sorted on some key because

that will significantly reduce the join time. In the discus-

sion that follows we are concerned with relations which are

[=]
L
\D

sorted on their primary key domains. If the relation has no
primary key, a system gencrated key such as thce tuplc number

is added to the relation before the splitting is perforined.

2. Boolean Filters

Consider a relation S having k subseis (Sl,SZ,...Sk) where

S$,%.,...5, are defined as above.
el k

Consider the queries invelving i subsets taken, for convenience

i

as (Sl,SZ,...Si).

(a) For a boclean filter with conjunctiocns (AND)
Let R = S, join* 52 join* S3 «v. join* s,
(where joint is an equijoin on the nriwary key) —(al)

Select (R:Bl&BZ&B3...Bi) = Seleut(R:Bl) mntersecrion
Se:Lect(R:Bz} * ® " 3 8 0 Fr t 9 8¢
intersecticn seiect(n:ui) —{a2)

(where Bi is a logical expression containing a domain

of R which is also a domain of subset Si'

e.g. domain(2)=5, also domain(2}=5 and domain(3)=2 1if

domains 2 and 3 are in the same subset,)

Substitute (al) in (a2)

L] - = - 3 3 ® S 3

select (R'Bl&BZ&B3'°'Bi) = select(Sl.Bl) join* select(2 Bz)

ttt " join select(Si:Bi) —(a3)

If any select{S.:B.) =NULL then the wnole expiession (a3}
will be equal to NULL. In other wecrds, the selections

are performed on the individual sub

{=

ets and the result of

n
N

the selection is equijoined on the primary key if no

150

result is a NULL.

Maximum number of equijoins = i-1l.

In this type of query the resulting relations to be joined
have a reduced cardinality. If certain conditions are
satisfied it will be more beneficial to treat queries of
this type,; which require more than one portion, in a manner
different from that stated in (1l). This will be 2xplained

later.

(b) For a bhoolean filtexr with disjunctions (OR) the following

expression can be obtained similarly:

e I T T L L P Y etk 4md e
SeleCt\n.BIVb2VB3...Bl) = De]eCL(Sl'Bl’ JUL“*L?J\ LY
L e X o Al o . \ I
Jvlla I.Ii\} uv*ect\uzoBZ, :]\._-.1'. Sl:.l O L T B S R
join*S,. ... Uselect(S,:B,) join*S,....join*S, — (bl
i i"7i 1 i-1

i.e. perxform a sclection on jT‘h subset and edquijoin the

result on the primary key with all other (1i-1}) scubscts.
.th

Store the j result,

(Repeat this for j=1,...,1)

Perform a union of the i resu.its.
Number of equijoins = i(i-1).

From the above analysis it is evident that for logical filters
having disjunctive terms a large number of joins and data
movements will be required. It is therefore sensiblie to
define a relation on the subsets required by the guery (by

means of an egqui

2
d

oin) and then perform the selection con the

explicit form of the defined relation.

151

1”72
= > !
= select(Q.BlfBZVB

i.e. select(R:B.VE VB3...Bi) without splitting
2
3...Li)

" - Oin*S Goin* C
vhere Q 51301r 52301n S3...301n S5

This is to say that queries having logical OR will be dealt

with similacly to the general type of queries described in (1).

3. The influence of splitting on access and cpu times
using the general method (1)

When a query requires more than one portion, the required
portions are joined into a single relation. Since the
portions are stored with tuples sorted on a certain key, the
subsets are accessed block by bleck for the joirn on the
equality of that key. As the join operation is performed.
the query is answered at no extra access time overhead. The
joined subsets are then returned back to disk as one relation

so as to avoid repeating the join for repeating queries.

The access time will thus be equal to the time ¢ accessing
i portions plus the time for returning the joined i portions
back to the disk as one subset. The expression for the

access time is similar to that of (4).

An overhead due to the equijoin is incurred. This is equal

to the cpu time cof 2(i-1)m key object comparisons.

Given the expected available storage size and the characteristics
of the relation to be formed, i.e. its size, cost of creation

and frequency of reference, the probability of the relation
rcmaining explicit, X, may be estimated from the isostorage

survival diagram (Chapter 4).

L
(84
o

The expected number of comparisons duc to equijoins will thus

be = 2(i~1)m(1-3x) .number of queries —(5)

The expected accecs time (cf exnression 4) for i subsets

if P _.>1 then
(——- Wi

D - (o]
i (*Wj ! UP*I'J ")
N : 2 2 -~ S [1~ Y '3
A.}: S, + le(w3 1). ‘?—_’_-. 54 (F=7 =173 l(.J. /.).qwj
\ i=1 g 1=3 W ;-
P
g\
+ Al) S,V . (1-x)q .
= My .'_:_‘l l/ W}
b
(3%
+ A\ifsi - X.q,
i=lL]
else A.5..9 . —_
‘2222) qwg (€)
The underlined teinm accounis fur the access time for answering

the query from the single explicit relation.

].J
m
rt+
o
0}
43|
~
D

= of subset i tuple including the key domain.,

The above expression accounts for the updates in the same way
that has been explained before. For later reference the

following special case 1is considered:

The access time for a relation having i subsets for one query

requiring more than one subset

m . I Si mA :i;s
=5 A-zsj + ts (i-1) 2 Sj + —(f'_—(-f:_—l")‘ (1-x) + o = J —A(7)
J= J=
Assuming f=i
m \ 1'
= Pl(a + it) {1-x) + A Z;S — (73}
b[s if= J

=
(1]
(&

4. Comparison of approaches for conjunctive boolean filters

Here is a comparison betwecn the following two approaches For

ansvering a query having a conjunctive boolean filter:

(i) to form a relation from the portions required

by the query by means of an equijoin,

or (ii) to access each portiovn separately and perforim
a selection and then equijoin the relations

resulting from the selection,

(i) The expressions [or the access time and the number of
comparisons fox iLhis approach have been given in (2.3) and

(2.1) respectively.

{ii) Let us assume that the system follows the following steps

in answering a query requiring i portions:

2, Perform the selecticon on the portion and transfer the
resulting relation back to the work area on disk.
(Stop if the result is Null.)

3. Repeat steps 1 and 2 for all i portions.

4. Access two resulting relations. Perform thg join and
take the result back to disk.

5. Access the result of the last join and the next
selection result. Perform the join and take the
result back to disk.

6. Repeat step 5 until one resulting relation is formed.

Let us suppose that mrj tuples of portion j satisfy the boolean

filter Osrjsl j=1,...1

i.e. rj is the fraction of the tuples of the subset satisfying

the boolean filter.
If any rj=0, the result will be NULL.

For i subsets the total access time and the number of object

comparisons is as follows:

Steps 1,2 and 3 above

Time for accessing i portions for the selection and taking the
result back to work area
. 5 .
= %ﬂaJ + Sﬂk.a. whexre a_, = E.A.S
« & o« Knmpmed []
jgf J J&T 3]

Step 4

Access time for the first two subsets

Assuming the object values of the key domain to be uniformly

distributed, the join will reduce the number o tuples of the

X=1 resulting subset by r, when joined with the ktl.j result, und

k

vice versa.

Access time for returning the result ryry + rr,a,

2
= rlrz(al+a2)

Number of comparisons= r.m + r.m

1 2

Steps 5 and 6

Access time for i-1 subsets = the access time for the relation
resulting from joining subgsets 1 and 2 + the time for accessing

the selection result of subset 3 + ... +

o
[84]
v

= xyry(agta,) + ria,

+ rlrhl (al+a2) + Ay

+ r.x

l'ZrJ—l(al+a2+"'+ai—l) + r;a;

5 43)
1.4.21'3(1.4 |E12 ":.13, +

+a

Access time for returning the result = r

x r r., 1 (d +a +a) + ..

1 2 73

+ rir,r. ,(a,tayt...ta;)

(the time to return the last result is not included)

For steps 4,5,6: the time for accessing i subsets for the

equijoin = %;1

the time for ret

i L] i
= z;a. + 2}1 (nﬂlr‘)'j;ajj + zjgfrjaj —(8)

Maximum number of comparisons (for steps 5 and 6)

rlrzm + r3m

+ r,ro,rm + r

1%2%3 4"

+ r m+ r.m

1%2%i-1 i
Total number of comparisons for equijoins (steps 1 to 6)

= m(xr,+r r.ro+...+r. r,xr,)

171" =2t F1T2%3 1

LY «r ot
+ m(rl+12+r3+ rl)

2

i
\;“"‘I

l'] RN (9)
= T, Y. —_
\&=f x=1 k£ J)

—

(TL6T) Ouss &g paqrIdsady

S ST9eL .

r4

[*uoTx=o3TI2> uTol SY3 Sey UYSTUM UOTILTST 2yl FC I3SENs 3yl Sursn N0 paTIIed usaq saey

PINOD UYOTUm 0 3sow ‘surofl paxtnbox ssTxond ay3z FO ¢£8S ?'oSseq elep TedTboTosb syjz ul)

AN - G 0} " W x9Tsdeasybnog
3T ueyl ssa7 mloH X L 9 A4 " u 19 ;
%5 ,_OT X § sl 80T sseg e3eq TesT60TO8H et
sezepdn I 10 g
UCTIORTSS 0 a2
AitTR2UuTRPIRS UT buatA®RYy SISATTF
aseaIo9Y TEUCTIDWILT ueaTooq U3TM saTISaNy

abeieny auvl Fo sbejusdxag

Thce cxpressicons (8) and (9) demonstrate clearly that for-
small values of rj the access time and the numbexr of compari-

sons for method (ii) will diminish. E.G. in the geological

data base the average r=5x10 ' (see Table 5.1).

The parameters that decide which of +he two methods to use
I

arez

(a) the prcbability of survival, x;

(b) the average fraction by which the number
of tuples diminishes after a s=l=2ction,
r;

(c) the number of subsets, i.

The parameter r influences the above two expressions for the
number of comparisons and the access time (8 and 92) in approxi-
mately the same manner, i.c¢. the sign of their rate of chenge
with ¥ is th

R e))

HYJ

in

same. This alsc applics to x with expres
5 and 7. The method chosen will therefore be better than the

other in both the number of comparisons and the access time.

Comparing the number of comparisons in methods (i) and (ii)
(5 and 9)

Choose method (ii) if

, i
2m(i-1) (1-x) > m(zi%:iél + ir)
r i l-ri
x < l-310 Y I =0 —(10)

For at least two of the data bases in Table 1, method (ii)

should ke chosen.

fd
(%2
o

http://expre.se

Simplifying (8) using the average value of rj, i.e. rj=r; we
obtain:

1 l:'_‘.— .-L -{/
= Ja, + 2 }

=] J =2
Comparing the expression (7a) and simmlifying:

Cheoose method {(ii) if

.

} i f i, i-17 Lk] i
(A+it) (1-x)+al STs., > Al > s + 2 Y :r". 9 S*J “ 2r)8
S } 4 J o : J

e

Ll
.
i
)
J

-

i] i 1:}r i i
(a+it) (1-x)-2ax] 3 S. > 2A 3 |x". 3°S.

A
-

J
. t_ ' . ‘ ! %& '
(l._- b\ (l_)_n. nl . ~ [-- . ‘1:;.|
t+1lo—} bt AL‘J ' 'o > 4 4 :. J-__'-,'- J'L

which reduces to:

A /_ "‘- .
A A i & =5 7
141 (<5 o
A S.
3

It is difficult to simplify this expression without making
approximations., However, in oxder to choose methed (ii) the
right hand side of the above expression should be small.

This is true when:
(a) r is small

(b) S, Sn+1 n=1,2,...,i-1.

Usually r<l, so the smaller values of Sv1 will be multiplied

by the longer series of r whose first few terms have more

D

significant velues because they are raised to small powers

In practice this that

-
3

=}
]

9]

after the selection operation we

10}

no
e G

nick the resulting subsets for the equijoin in the ascanding
ordex of their size. In this way we minimise the amount of
data being traded back and forth between the disk and the

main storage.

For example,

i=3 5,=40, S
A=0.25¢t
S

2=60, S3=100

r=0,1

Chocse method (ii) if x < 1 - 0.2 2 . 0.01 . 100

13 ~ 200
X < 0.96
From the experiments in chapter 3, x=0.98 I8
usually too high to ke cbtained. Therefcre,

choose method (ii).

r=0,65

1 - 1:3 _ 0.082(40+60) 2
X < i3 200

Choose method (ii) if x < 0.48
‘[Suppose we accessed the subsets in the following

order: S,=100 S,=60 S,=40

1 2 3

1.3 _ 0.42x(100460)2
x <1 =733 500 '
X < 0.23]

N.B:
1. If the degree of the influence of multipregramming is high

such that A==O.67tS

then for r=0.1 choose method (ii) if x < 0.95
r=0.65 choose method (ii) if x < 0.35
r=0.9 choose method (i).

<. The above values of r are very large compared to those in

Tabla 1,

[
(=)
@)

QUERY '

C

\
\ . ~
Only \\ es / Query \‘.
. y = l answered from L—-

one subsel]
is requin':d/ \\ one subset /

y

8 \
Query onswered yes/ Hos the query
from the \\ got a conjuctive

requesied subseis | baolzon filter _
' \ P
| o
\1/
no
~ ~ /\\ C2
— e
/nre the requir;c\ " // is ths \ voe / Query .:'\swered\
P B Y
subsets cireody inciude defined reletion >._- >.__I frotn an
Y in o definition cplicit vip;;cii ralation
no
ul
’
Decfine a relotion Make e relation
. in terms of the explicit. Answer
requested subsets the query
> STOP <

Q Definote gain due to splitting

| o—)

I Gain or loss depending on the naoture

of the query, the parcmeters ot the
solit relaticn and cf the system

cqure 5.2

*
r.l

follow method (ii) for all cueries having conjunctive boolean

filters.

5. Summarv

escribes an algorithm for the

Cu

The flow diagram in Figure 5.2
management of queries requiring a partitioned relation. There
iz a definite performance improvement due teo splitting in the

following cases:

1. When the querv is answered from only one subset
(circle Cl in the diagram).

2. When the query is answexed from an expiicit

o

relation defined as the eguijoin of the requesied

- 1l - O ‘
y NS Q1agrarnm; .

|

- S JE R | i
sukbsetvs (<lsrcle Co2

When the query requires more than one subset and the selection

boolean filter is conjunctive (box Bl in the diagram), copu time

due to comp~risons is traded off for gain in access time. This
case does not always improve the performance. The gain in

performance depends on:

a. the size of the whole relation.

b. the number and sizes of the subsets requested
in the query.

c. the value of the parameter r.

d. the cllarging algorithm of the installation,
i.e. how cpu time is weighted against the
access time,

e. the judicious choice of the subsets and their

constituent domains.,

[
[5)}
N

When the subsets to pe eqguijoined to wnswer a cuexry -
(box B2 in the diwgrax), the loss or gain in performance
depends on (a), (), (&) and (e) above.
The freqguency of each 0f the above mentiocned four types of
gueries is needed in orcder to estcimate the ¢ain in access
time due to such splitting. The expressions for the access
number of comparisons obxtainaed previousiy for
eacn type are multiplied by their respective Ifrecucncies.

Given the cost of cpu time relative to the elapsed time,

the reduction in cost can be calculated.
6. 2An experiment
The follcwing exuample, Figure 5.3, gives th2 response time
of gueries on a relation with and withcout eplitiing. Thi
gives a feel of the magnitude of the potential gain wnich
can be achieved by judicious splitiing.
A GLC data base relation PROFERTY
(Streect#, Propp, Cldause, ..., etc.)
degree = 42 .
cardinality = 27323
tuple size = 124 bvtes
The relation is sorted on the primery key (Sti).
The following portions were forrmedc:
A = projection of PROPERTY on domains 1 and 2
B = projection of PROPERTY on demains 1 and 3

[

(¥8)

Resoonse Relotion uscu
tnrc(scc) in answering
Quexry LBM370/45 the query
L i) sclicct(Stiuceti=33&lron=99%) 1686 PROPILRTY
49 A
il) select(Qlduse=3) 181 ROPERTY
3
The resuliing
relation D==clccet
from B(0ldusc3)
2 1) select(3:t#=53) 46 {av.) PROPERTY
:‘Lnu‘ .A
The resulitinc
relation C=sclect
from A(5ti=53)
3 1) select(St#=53&0lduse=8) 124 PROPERTY
ii) Join relation C & D on C cardinalitv=125
the equality of St 5 D cardinality= &
4 i) select (St#253 QLduce=3) 128 (z.) DPROILNLY
ii) join A and B on eguality
of sti# 88 A and B
The resulting
relation EZ=eculloin
of A & B on Str
iii) select (Sit#=53 Olduse=8) 18- L
Results
Queries reguiring more than one poxrtion:
(a) Conjunctive gueries:
Time to answer cuexy 3(i) £rom PROPERTY = 124 sec.
Time to answer query 2(i) from poriions
by means of selections from A and B
and then joining the results = 41 sec.
« . Cciearcut gain
(b) Disjunctive ¢ueries:
Time to answexr guery 4(i) from PROPERTY = 128 sec.
Time to answer guery 4{i) Zroxm portiono
A anc & by means oi ccu~J,;?;hg con
the scrited primary key domain and then
answering the guexry from the result = 1306 s=c.
‘ . . a relagively small loss

file://i:/e-sns

I71 THE FORMATION OF SUBSETS FOR DOMAINWISE SPLITTING

When relation R is a candidate for splitting, some information
describing the reference pattern of the domains has to be
recorded. This information includes the frequency of usage
and the concurrency of refere..ca to the domains. When the
data base is reorganised this information is used tc evaluate
the parameters required by the splitting criterion (in X and
IT above). Accordinyly if the splitting is viable, the

optimum configuration of subsets will be determined.

The information to be stored is the following:

(i) the number of times each domain was referenced

(1i) the number of times each varticnlar combiw=tion

of domains was requested by a guery.

For a relatioun of n domains (i) will only redauire n locations
n '%l n!
while (ii) will require 2'~1 locations (i.e. :' fTT;iEYT)'
:‘=_|- »)

The latter can lead to very large storage requirements,
e.g. for relation Optics, n=15, we need 32,767 locations,
i.e. about 98K if the size of each location is 3 bhytes.
The access to such a large number of locaticns whenever

the relation is referenced is a serious overhead.

However, the following method is recomnended. A bit vector
of length n is stored for every type of query. The vector
has 1l's in the positions corxresponding to the domains involved

in the query. In Figure 5.4 the firxst quexy (Ql) requires

165

the first and the second domains.

This bit matrix method works as follows:

(i) When a query requiring relation R is decoded the
positions of the referenccd domains of R are marked
by 1's in a bit vector X.
i.e. Xi=‘l'; for all iel

where I is the set of the domains

O

R involvcd in the guery

-y

and Xj='0' d¢ I,

(ii) The bit table is searched for a match between
vectecr ¥ and the vectcrs of the gueries so fox
recorded. If no match is found vector X is
added to the table to increase the number of

types of guery by 1.

The storage cverhead of the bit table method is relailively

small. It is only n bits times the number c¢f the types oI

query.

The queries requiring a single domain are not added to the

matrix but the respective domain refexence count is updated.

Allowing for 500 query types (columns in Figure 5.4} for a
relation having 16 domains a storage of 1K bytes is needed.
From the observation of the usage of ra2lations Optics (n=15)
and Property (n=42) it is unlikely that the number of multi-
domain querv types will exceed 2n and therefore 2n is the

recommended numberx of columns. The storage overhcad is thus

166

oS SN\ b

DOMAINS
g W

Query

Query

N.B.

QUERIES

D
l\\
]
|
]
]
1
§
1]

o G — —|2

o
c O
O
o

l: SELECT FROM K (domain (1l)=5 & domain{2)=A);
2: PROJECT(R) (1,4,5);

etc.

SELECT FROM R{domain(l)= &« & domain (2)=8);

is a Query of type 1 for any value of a

and 8 and whether thelogical operator is AN
or 'OR. d pere AND

Also, PROJECT(R) (1,2); is of type 1.

FIGURE 5.4

167

Another overhead is the cpu time of matching a new query as
in (ii) above, The condition for a match is the equality of
vector X to a query type vector (a table column). The numbar
of comparisons depends on the type of search used, e.g. the
columns of the matrix may be placed in the order of the value
of their content. With the columns snrted; the number of
comparisons will be cut down but the columns have to be moved
whenever a new type is inserted. This poses no problem

because the whole matrix can be accommodated in core.

However, this is a standard probiem of a table whose key is
the query pattern and whose entry is the freguency of usage.
The compariscns of the various methods cf table updating are

explained in [Knuth, vol.III].

At time=t when vector X equals column ¢ of the matrix, the

< TN - P P [b o~ -
LOLLOWING A5 u):)ua{.\-:tﬂ z

(1) the number of references to column c
\uc=u6+l).
(2) the last reference (Lc=t).

(3) the recency weighted frequency (wc=wc+t).

At time=T when all the matrix columns have been used up, the
new vector X should replace column p which has the least w
of all the columns that have not been referenced during the

last 2n~1 references (i.e. Lp < T - (n=1}).

In this way the old reference pattern is discarded to make

way for the more recent pattern.

1€8

l1.. The choice of the ‘optimum set of partitions

Given the bit matrix of FPigure 5.4 and the weighted usage
count of each query type, it is required to find the set of
subsets which optimises the periornance according to the

previously mentioned criteriaou..

At reorganisation time the bhit table is converted into a
matrix in which each fO' bit is replaced by a zeru and each
'1' bit is replaced by a one. Each row of the new matrix
is multiplied by the weighted frequency of the corresponding
query type. The new matrix represents the variables for

a clustering process [Boyce 1968, Wishart 196¢].

: - b - ~ RPN | 3 R T e L S e L P, 4 R
A modificd clustexiny technique is empioyed for the analvsis.
Tn A standard clustsriag problan the pagrityude of the valoos

|J-
o]
r+
o g
}_I.
n
3
[¢)}
H
(t
P
Q

3 5 3 3 3 e 2 LS wmde by~ 2
ular applicaticn it is cignificant becouse iU

represents th

0]

frequency of cccurrence of that type cf guery.

The explanation of the clustering technigue used is given in

Appendix 6.

The output of the clustering process gives a maximum of n
possible choices of subset. Using the input matrix of

Figure 5.4 the cost of answering the queries is evaluated

for each solution set. The set having the minimum cost
is chosen. One of the possible solut’ons is the choice of
a single 'subset' with all the domains. This indicates

that splitting is not recommended.

A detailed example of the choice of ithe partitions follows.

http://becau.se

| 3]
{1

Exanpl

ettt A ettt .

) 0
(1}

Relation name ! USE

degree =13
cardinadliiy = 64501
QUERIES
! [| !
i
2 | I
3
4 I Pyt
n 9 ! |
Z6
St bl D] P e
E; S | iplji
o ! Hi! i
10 !
il Pl i
E | ! |
WSLd L] FURE
number of references
HEBHBRRENRAREE
Number of quaries examined = 13§
Number of multi~domain queries = 382
= 54

Number of single-domain queries

THE OUTPUT OF THE CLUSTERING PROGRAM WAS AS FOLLOWS:

No. of

_mnelilonn Partitions
13 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (il) (12) :1
2 (3,6) (1,2,3,6,7,8,9,10,11,12,13)
3 (3,6) (4,5 (1,2,6,7,8,9,11,12,13)
3 (3,6,10) (4,5 (1,2,7,8,9,11,12,13)
2 (3,4,5,6,10) (1,2,7,8,9,11,12,13)
3 (3,4,5,5,10) (1,2) (7,8,8,11,12,13)
4 (3,4,5,6,10,12) {1,2) (9,13} (7,8,11)
4 (3,4,5,6,10,12) (1,2,11) (9,13) (7,8)
3 (3,4,5,6,9,10,12,13) (1,2,11) (7,8)
2 (1,2,3,4,5,6,9,1v,11,12,13) (7,8)
1 (1,2,3,4,5,6,7,8,9,10,11,12,13)

ot

This is differen in
the rightmost subset is considered unclustered. Though the
domains in such a subset do not rossess a strong similaritv.
they originally belong to one relation. Also, the first sct

of single domains does not appear in a standard clustering

problem.

Now, the proygram chooses the solution set which optimises “he

splitting criterion.

Optimum set: (3,4,5,6,10,12) (1,2) (7,8,;9,11;:13)

,.-l
~I
—

from standard clustering in that in the latter

>

The clustering operations arc normally time consuming but in

this application the number of characters and forms (see
Appendix €) are small compared with an averade taxonomic
problem. Figure 5.5 shows the cpu time taken to cluster
and choose the optimum splitting set for relations of
different degrees. It should be noted that this will he
the actual overhead incurred by a data base system at the
time of reorganisation because exactly the same process will

be followed.

It is therefore appropriate to courlude that the overhead
cost of splitting is small compared with the costs related
to procsssing relations of largs deqrees. rnd that the

spiitting can be performed automaticaelly ot a tolesallie

overhead,
Fortrun Progryam
No. of No. of cpu time (sec) Virtual Menmosy
Domains Query Types ~_IBM 360/67 Kh
13 14 >~] less than 142
42 84 12 142
100 200 167 180

The overhead of choosing the subsets of a relation

Figure 5.5

[
~J
N

B. TUPLEWISE SPLITTING

A relation R is split according to the valuc cf a given domain.
The resulting portions are themselves relations. These
portions are formed by selections specifying a certain value

or & range of values of the splitting domain. Relation R

is seen as the union of these portions and the relation, Riem'
formed by the remaining tuples which do not satisfy the

selections.
i.e. for a relation of n portions

n
R= UP., where P =Rk
= n rem

This splitting has the following advantayes:

{i) It reduces the cpu and the access times for queries
requiring the splitting domain or selections with
conijunctive boolean filters containing the splitting
domain;
e=g; in Example 1

SELECT FROM CHEMISTRY (OXIDE=FE203%QUANTITY>10) ;

(1i) As shown in Example 1, it is possiblé to save storage
space by removing the objects of the splitting domain
in the portions. This can ba done if the relation
is split on specific values of the splitting domain

rather than a range of values.
The disadvantages of tuplewise splitting are the following:

(i) Each update requires some comparisons (of the order

nlog7n or n/2 comparisons depending on the organisation

of the portions index). Updates may also need to
access more than one portion depending on the values

of the splitting domain and of the updating tuples.

(1i) Queries requiring the other domains or selections
having disjunctive boolean filters containing the
splitting domain will need to access more than one

portion. This increases the access time.

1. The levels in the hicrarchy

As seen in Lxample 1, it is possible to furthex split the
vortions till the number of levels in the hierarchy is egual

to the number of domains of the relation. It will, however,

=
f-h

be difficult to update the resulting tree or relatiuns,
Cince wo are dealing with sclationc and net rccexdn cr
objects, the management of the avalanche ci the resulting

relations 8 Ledious, The wse OFf 1he anion and the otheaer

relational operators will ke erxhausting.

Therefore, in the context of relations, this splitting snould
be thought of as forming a one~level hierarchy of relations.
If, however, after reorganising tue data base the porticns
are stored as base relations and relation R is defined as
their union, then each of the portions may ke further split

as an independent relation.

On the other hand, if each portion is further split on the
same splitting domain, a multi-level hierarchy will be formed.
This type of splitting narrows the rande of the value of the

splitting domain covered by the portion, as will be discussed

later.

1=
RGN |
19

Example 1

Chemistry

f Oxide Quantity
1 AL2C3 1C
1 SI203 50
1 FE203 8
1 CAO 7
2 AL203 15
2 FE203 12
Z SI203 40
3 Cuo 3

Relation Chemistry split ou domain Oxide

CREMTSTRY
OXIDE
P N
Osz”i/////, ol
@gL‘GQQ} Se, il ey
£ % ™~
- \\~
1 1¢ 1 8 1 50 1l CAO
2 15 2 12 2 40 3 oo
OR CHEMISTRY

2927 92 T~ &
\ég s nbi
\o ol 8de
. 071:8'0 “ ll? 3
~ ™~

1 AL203 10 1l SI203 50 1l cao 7

1 FE203 8 2 SI203 40 3 Cuo 3

175

2. The profitability of the method

Let us follow a simplified example from which we can draw

some inferences regarding the profitability of.the method.

Assume a relation R is split into i equal portions.

Let the nunb2r of tuples of the whole relation be M
the cost of the cpu time per object comparison be 1 unit
the cost of access time for moving from one

\ portion to the other be W units

the frequency of queries and updates of j subsets f.

J
S
(3}; .

The cost of piocessing a X-domain selection before un

= kM + W (1sk<deqgree of R)

Afterxr splitting:
Queries on domains other than the splitting domain will
regquire all the i portions and will cost

\ .
fi(kd + iW)

Queries on the splitting domain and selections having
conjunctive boolean filters containing the splitting domain

require one or more portions

- . kM : . .
ij X Jj X (T— + W) j=l;e- 0,11

i
. . Cost with splitting = (]—i{M + W) . 2:j.fj
. =

for the splitting to be profitable

(K W).:j.f. < (kM + W)
i &= j

176

If we assume that all queries con the splitting domain will only

require one cf the subsets, i.e. I =0 k=2, ...,i~1; the above

k
expression reduces to
B, ey
(—i—‘+)(l+l-i)<((~M+w)
tee. (4 W (£ 4 A(1-E)5) < (ki + W)
!
which simplifies to fi1 > M.] _ 1
o N
=3 l -

where fy is the frequency of queries requiring
the splitting domain

f, is the frequency cf alil the other

i

queries
The improvement in performance increases wiilh the iuaden of
tuples of the relation. The increase in i improves the
performaince Lf Lhe {reduency or guerieg saticficd by a gmaller

number of porticons increases proportionally.

Tuplewise splitting trades oif the access.time for the cpu time.
It is ideal for a cpu bound system where the tuples of relations
are stored unsorted, e.g. in the geological data base the
splitting of relation CHEMISTRY into ten portions improved the
performance significantly. In Example 2 the results of
splitting into four portions are reported. If the tupies of
the relation have already been stored sorted to the splitting

dorain, the gairn in cpu time will diminish.

The penalty for queries requiring all the domains is relatively

low because the union is usually less costly.

1=
LN |
Jd

http://Vut.ii

Example 2

A subset of

relation CHEMISTRY was

split on the second domain

(OXIDE) into 4 portions:
1. ALUMIMN1UM
2. FERROUS
3. SILICON
4. COTHERS
An application program managed the access to the 4 porticns
by converting the syntax of the querics tc suit the new set-up.
BET'ORE SPLITTING AFTER SPLITTING
AVERAGE
QUERY TIME UERY TIME
1. LOAD(CHEMISTRY) ; 39 LOAD (ALUMINIUM) ; 2
SELECT (OXLDE=AL203) ; units units
2. TLOAD{CHEMTISTRY) : €D TOAD(STT.TCOMY : 12
SELECT (OXIDE=SI203) units SELECT (QUANTITY>10); units
&QUANTITY>40) ;
3. LOAD(CHEMISTRY) ; 39 LOAD (AT, UMINTIIM) & 54
GLI LCT (Ref#=212) ; mits LOAD (FERROUS) : units
UNITE;
LOAD {SILICON}) ;
UNITE;
TOAD’ﬁT IERS} ;
UNITE
SELhCT(1PF:—212);
4, LOAD(IEMISTRY) ; 58 LOAD {ALUMINTIUM) ; 11
SELECT (Ref#=212¢ units SELECT (Ref#=:212) ; units
OXIDE=AL203) ;
In this system of querxies of type 1,2 and 4 account for over
25% of the queries, the splitting will be Jjustified. The

frequencies of reference to relation CHEMISTRY in Figuxre i.6

justify the splitting.

178

3. " The choice of the splitting domain

A novice user will be embarrassed if he is asked to indicate
the possible splitting domains or the donmain involved in the
majority of his queries. The choice of the splitting domain
should therefore be automatic and is made when the data base

is reorganised. The frequencies of reference to the domain

alone and in conjunctive boolean filters are kept for each

o]

domain. If the domain with the highest sum cf freguencies
satisfies the splitting crilerion (a yeneralisation of the

forementioned one), the splitting ics periormed.

The references are weighted for the recency of usage, i.e. a

[a)

eference to domain Xk at time=t

=u + t

where u, is the weighted reference for domain k.

k

Given the splitting domain there are two possible methods for

splitting the relation:

4.1 The static wmethod
(a) The splitting domain is scanned and the range
between its lowest and the highest object values
is divided by the number of the regquired portions
to give the limits of the ranges of the value fox
each porxtion. The resulting portions will be

unequal in size,

(b) The reference to the portions is monitored and

accordingly porticons are further cplit as in (a)

| =
~1
O

DETINTTIONS QUERIES

abc
R
(a=splitting domain) Ql: select(a>2);
R=51L)52
a<2i a>2
N -
S1 02: select (a>8ab<5);
Sp=53U S,
2<ag?® a>8‘
;__S_...._—J
S 4
3 Q3: select(c=1l0):
Qi: salactla<=1);
G = 1
$1%55 U S
|
as-1 -l<a<2i
q A
S5 6 Q5: selcct(a=3gra=v.t);
S =S_1JS Q5: cclect{arliuaa<3);
6 778 [answered bv Sskisgj
S3=59VU 544
Fl<as<l] [l<a<?] [2<a<3| I3<asy
S? S8 SQ S10 Q7: selcct{a-8ac=4);
R
Ql
A directed graph with
S1 Sy
’// n// NS Q2| no closed loops. At
4
Q4 s \s s :
5 6 3 most one branch enters
c//\\“ J/\\l a noage
S S S S *
7 8 9 10

Note: Relations SS’S7'88’SQ'510 and S4 are now base relations
(i.e. the terminal nodes are base relations).

Relations R,Sl,Sz,S6 and S3 are defined split relations.

Figure 5.6

180

or they are united together such that the
references are more uniformly distributed

among them,

=]

The set-up time is the major overhead. The performance is

not very sensitive to non-uniformly distributed freguency of
reference to portions. Though the portion having a very low
frequency of reference degrades the performance by increasing

the access time, yet it prevents the waste of cpu time by not

being scanncd more firequently.

4.2 The dynamic method

As in Figure 5.6, a selection on domain ‘'a' is satisfied by

splitting R into two portions; one providing the apswer Too
the guery; and thc cther has the remzoining tugplcs. Zelaticen It

is defined as the union of the two portiocns. A selection

leads to a

1‘-

L. of & wortion i€ its

—

~——\ .- s ST . - — P N S
Laolean Filtesn contains

Hi]

.
the splitting domain only or if it contains the splitting
domain in a conjunctive expression. In both cases the valuc

range specified for the selection should be continucus.

The weighted frequency of reference for each portion is kept.
When the number of portions exceeds a specified number, some
of the portions are pruned and the others are allowed to grow
(split) further The pair of leaves (portions) having the
smallest frequency of reference is united and the definition

of its predecesscr is deleted.

e.g, In Figure 5.6 if S7 and SS are to be pruned, S6 is made
4~

5 deleted.

Yede
§~d

a base relation and its definition

The dynamic method has the advantage of following the pattern
of references. Né major ovexrhead is incurred when portions
are set up because one of each pair arnswers a query. Another
advantage is that since all the generated definitions contain
union operations only, complicated queries do not cause
complications, e.g. A join R will give

A join S, U A jJoin S, etc.

It is however cumbersome to maintain the portions and to
program the management of pruning and spliti!ing of portions.
The tree will permanently be influenced by the first few
splits and so some queries will continue.to be ancsvered by
more thain one portion irrespective of their Ireqguenay, e.d.

(Q7 in the example) beczuse only one kranch can entzr a nodsa.

This disadvantage is removed by reorganisation.

5. Comparison between the tuplewise spliitting and the
= : L :

crganisation

The organisation of the portions of the relation described
above bears some similarities to the indexed sequential
organisation. Since the latter is a well-establisned method,
it will be useful for the implementer of the above recommenda-

tions to borrow some of its techniques and to learn from it.

Tuplewise splitting of Indexed sequential

relations organisation

A method for ‘'organising' A method for the organisa-

relations at logical level. tion of files at physical
level,

A wnion cof the portions is Processes a file serially

formed when gueries require with the advantage of random

=
o al
na

Tuplewise splitting of

is
relations

domains other than the
splitting domain. (The
union should not necessarily
involve the physical linking
of one portion with another.)
For cther queries only a
subset of the portions is

scanned.

It has an associated index
which maps object values onto
relaticns. “'he index may

e bulll autumacical i¥.

May be refcrmed at the user

level.

The overhead due to updates
increases after splittine.
The index is not affected

by the updates.

183

Indexed sequential

organisution

access to skip inacltive

records.

I+ has an associated indcx
(or access file) which maps

key wvalucs onto location oo

indexes exisk at each levesl

Usually reformed at the system

level.

The file is altered and copied
for each update. The index

is also afiected by the updates.
However, with slight modifica-
tion to the index technique,
insertions can be held in an
'overflow' area assigned to the

cylindexr, thus avoiding the

copying after updates.

Tuplewisc splitting of
" relations

Needs periodic reorganisation
to redistribute the value
ranges in accordance with

the reference pattern.

-

6. Final remark

Indexed sequential

" oxganisotion

Needs periodic reorganisation
to restore it into a serial

file.

The improvement in the performance of tuplewiss splitting will

diminish to a varying extent if:

(a) the distribution of the queries among the most

T
¢ F
0
gé)
1))
(+
(t
0
3
8]
O
th
5]
(C

(c) the tuples are sorted con

referenced domain.

\ains is ne rly wniform,

the most frequentiy

i special indexing technique is appropriate for the above thrse

cases and is described in the next chapter.

http://querj.es

Chapter 6
DEFINED REIATIONS AS INDEXES

Introduction

The use of index files for accessing records, on the basis
of secondary key values, is a common feature. in infcrmation
systems. The advantade of indexing is the improvement of
the response time. If a domain within & reiation were to
have an associated index, then an okject within that domain

can be selected without requiring a serial search through

the domain. The use of indexes for red;

d]

cing the join

operation time has been discussed by [Palevmo 187271,

The selecticn cf the key demains (fields) ie of great
importance and is a major factcr that leads tc the improve-
ment in the nerformance, Two paossible wavs to approach

the proklem of setting up indexes for a relation are:

(a)-Form indexes for all domains in & reiltation
in aﬂticipation of possible queries. Thisg
has the disadvantage of vasted storaye space
and processor time for indexes which may

never bhe used.

(b) Form indexes for only those domains that are
frequently used as search keys. Bearing in
mind that a constantly changing pattern of
gueries would reguire the.destruction and
recreation of indexes, this methed leads to

better secondary storage utilization but

http://re.lat.ion

problems in monitoring.

In this chapter an attempt is made for solving this problem
within the scope of relational data bases by employing the

defined relations capability. The discussion consists of:

(1) the defined relations as indexes and the
results of experiments which support this
approach.

(2) a detailed consideration of the choice of

» the domfains to be indexed and the stage
at which the indexing should be done.

(3) indexing as a form of relation splitting.

1.1 7The definced rela-ions as incdcXes

Foir relation R of degree n and cardinality m
define relations Ri, i.e.(i=1,2,3,...,n)
Each of these n relations is defined on k as
R, = FORMINDEX (i,R);
In 1IS8/1.0 this is as follows:
DEFINE (*1*R); /*DEFINE RELATICW R1l%*/
LOAD (R);
FORM (1); /*FORMS AN INDEX ON DOMAIN 1 */

END;

The application program (FORM) which forms the index dces

the following (see Figure 6.1):

(a) It forms a binary relation, the first domain being the

domain of R which is going to be sorted. The second

domain is a pointer to a position in R (or a tuple
nuiber of R).

|

R 1 2 cevoeana e o
r
1 800 HASWELL
2 50 SHERBURN
3 1 NEWCASTLE
4 27 DURHAM
5 40 PETERLEE
key pointer (tupled;
Before sort 800 1
50 2
v 3
27 4
40 5
(a)

After sort

Domain 1
of R

R 1
27
40
50
800

ot

=N U s W

b(i)

Pointer (tuple#)

-

Rl 3\\

4
5
2
1K

Pointer (tuple#)

‘\\;ﬂje tunle numbaer of the
tsmallest! .
{ object value

~largest -

in domain 1L

i ——.

b (ii)

In the implementation Rl'RZ"" are referred to as *}*R,*2*%R,,...

Similarly

After sort

er (tuple#)

Domain 2
of R Pointer (tuplei) Point
R2 Durham 4 4
OR
Haswell 1 1
Newcastle 3 3
Peterlee 5 5
Sherburn 2 Z

FIGURE 6.1

a7

(b) It soxrts the binary relation on the key domain.

Two versions are available:

i) the defined indewx is a binary rslation of a
kev and a pointer (Figure 6.1 b(i)). When
selecting a value the binary index is searched

by a binary chop and the result is a set of

1

keys (orx null) and their pointers.

1i) a unary relation is formed (Figure 6.1 h(ii})).
It is a list of pointers to the objects of
the sourcé domain which have got a similar
position when sorted. This type saves the
storage of the key dumain and is usefnd for
domains of large size, e.g. 50 bytes domains
of relations Reference and Geography. It
consumes access time in referring back to

relation R for each object ccrparison.

Sortings:

The sorting mefhods employed weie tha (Ouicteort [Rich 1972
and the two way merge adapted toc f~ternal sorting. The
former is usuvally faster. The latter is faster for zemi-
sorted strings of data such as the Ref# in the geological

data base.

Updates:
The update performance after indexing is made up of two

parts:

i) improvement in updating the main relation R in the

cases of deletion and value changes.

icytad oinadn .

SUSNTIUT 2UY. Z2°9 sinHrg

" (eacage (Z)Y S2) XSPUT 9sTuefIo3r -f

*aroqe (I)VY se) AIZUus m3u ay3 3assul v

*3T ber:z
I0 AIlus ay3 a3sTaP I9u3Ty * (sroge
(1)g s¥) psdueus sq 03 AX3uUd BY3l 83R20[-f

*{untieren
3o wsED OYl ur se) Burxspur
U3Tm 32523 ST datea zo 25ueyd ayg

" (L9EGG=43V) 03

(d3NLC=sWeN) Io pov 9dbueys 5o
UTeliop poxaput -

ISLLOUE 10 UTEWOD sles oyl ohbueld
C©F XU UTCWCD POXepul Ue Lutsn -z

DIXGINT
Jou ST 83PpALTAXE DsSNeDdq PUDUIDAO ON

*@AOGR (T)g SY
(toeCyL=42/Y)
i0¥ a3j3ep Axrdxo oya aoate "H*O .
UTrRiRiGs) paxopurun ux ahueryd ANTVA
03 ASy UTwLUOpP DOHIPUT ur putsn [J0 ONYHD 3>

naoqe (75§

*Bbuixepur INCYITM SB SWRS

(SO PL=HUIVAAAIIKT) UDTUMm

xoz saTdaa dul § woxy @3xatop H-e
ABY UTRUOD pP3XIpUI-udU 2 bursn °z

~untiestTuebrosx owpotaxad
pur SUOTI2D0T PIOA ZO UOTIDONPOIZUT aBU3 HO
‘suoTlaTep
30 dnoxb yoes INI SOXBPUT SYJ FO UOTL
-estuebroax oay3 I bBburtAdooasa aya IsY3lT® "¢
sgnodge (T)VY Sse) poildlar o
03 Ax3u® Dyl =23¥207 03 swrl burussroxd T

189

.ENmOH+N 03} z/w 3o dbexsae ue

woxy sdoxp ucsTIedwod JO IaqUNU YL

*BUTXOP iT YTM I93SeI ST UOTISTIP IYL

" {TOTEYL=¢D/¥) U2TUm

JOo3 sar1dnyl 9Yyz § woxj 939T3p "H°s
{5y uTewop psxapur ue butsn °I NOIX3TIA o

*$9TAUS

PI3IASSUT OY] DILPOLNIOIDL OF SIXIPUT Y
10 uotiesTurfacax ayz b Buthdon sya 'z

“uCT3ADSUT DY IO uerarcsod oy

S5uTtpuTtz r03 {(WwibHOT+Z) UOIZDSISS ® JO
2WT3 Syl 03 jusTearnbs swrl Hutrssasoad *T

Burxspur 3NOY3TM Se aues NOIIMASNT VY

FTITTCXD ST HBPUT uUe udym XTINO PSIINDUT
SOXIPUT BUY Sutrzenpdn JO PeayIsAl

¥ uorieIax JoO @3epdn JO adAlL
souvermrxorxxsd azepdn ayz ur juswsaasoxdwrr

sweN ‘#D/¥ U0 paxspurl
(TLYAXEIAXT ‘Iunowy ‘sureN ‘#0/V)
S IO sSISpx0 burpueis : UOTIIRTAY

1i) overhead due to updating indexes. This is incurred
only when an index is explicit. The number of the
explicit indexes affected by the updaete depends on thc

update type and the domains involved.

The takle ir Figure 6.2 discusses the overhead due to each

type of update.

1.2 Experiments

In this section I intend to justify the use of defined indexes

by showing the improvement in the overall performance of the

data base brought about by such indexing.

The data base file had a Regional(l) organisation. Regicnalf(l
is a PL/]1 file organisation which allows the file to have
direct or sequential access as well as input or update

[(PL/1(F) Language Reference Manuall.

Within each relation the access to the tuples was designed o

M

be serial: I'or example, if tuple 1000 is requested when
tuple 10 is in the buffer, tuples 11 and 999 have to be passed
before tuple 100 is accessed. The overall gain would have
been many times higher if the design was made bearing in mind
the .possibility of such indexing. However, that was not one
of the design cobjectives of the early version of the experi-

mental system,

The high read/write overhead of the experimental system has
made the time of the sort, FIND and SELECT high. In spite
of this the experiments still give an indication of the power

of the method of defined indexes.

The FIND operator

This is a PL/1 written routine which 1s interfaced with the
system via the system macros. It carries out the function

of the select operator using indexes.

It works ag [ollows:
e.g. LOAD(R);
FIND (''OWN=PETERLEE) ;
i) it decodes the filter and initializes the search
parameters.
ii) it vequests relation named
*<the number of the domain whose name is ‘TOWN®>*R

%R

N

e.g. ¥

[~ T~ o e -~ -l - ~1 i ™ - o .
uSing the index relation and relagticn R, it parfcrmc

'_l-
|
!

o
ot

a binary chop and outputs the result.

Comparison of SELECT and FIND times

In the egperimental system the cardinality of the relation
to be selected.from should not exceed an arbitrary value of
(3200) . Therefore, the relations GEOGRAPHY and MINERALNAME
have been chosen for the comparisun between the SELECT and

the FIND operators.

Figures 6.3a and 6.3b shcw that if an index is created and
referenced a certain number of times an improvement in the
response time is achieved. Fiqure 6.4 illustrates the case
when the index is made implicit before a sufficient number
of references is made to it. Before it recovers the over-
head ©f a sort another sort becomes imminent. In such a

case indexing degrades the performance.

191

Relation GEOGRAPHY

2208

cardinality

degree = 4

1. A general selection
LOAD (GEOGRAPHY) ;
SELECT (REF+#=888) ;

LIST;

r 4

2. The required object
is smaller than the
smallest cbject in
the domain

LOAD (GEOGRADHY) ;

SETROT (RREF#=1) :

LIST;

3. The required obiect
is greater than the
largest object in
the domain
LOAD (GEOGRAPHY) ;
SELECT (RETF# > 3000) ;

LIST;

CPU time
(units)

114.7

101.8

113.7

FIGURE 6.3a

|
\D
N

LOAD (GEOGRAPHY) ;

ND (REF#=888) ;

LOAF(FFOCDAPH’.-
FIND (REF#=1) ; 51.1

LIST;

LOAD (GEOGRAPHY) ;
TIND (RET# > 3000) ; 54.1
LIST;

The time to create
the index {includes
the sort time)

LOAD (*1*GEOGRAPHY) ; 90*

LIST;

*Nett time without overheads

Relation MINERALNAME

cardinality = 2444
degree = 2
CPU time CPU time
{(units) (units)
1. A general selection
LOAD (MINERALNAME) ; LOAD(MfNERALNAME);
SELECT (NAME="'FERRO FIND (NAME="FLRRO
KAERSUTITE') ; 144.5 KAERSUTITE') ; 78 -
LICST; - LIST;
2, Object value too
large (case 3 above)
LOAD (MINERALNAME) ; LOAD(MINERALNAME);
SELECT (NAME=XENOTIME) ; 128.8 FIND (NAME=XENOQTIME) ; 60.5
LIST; LIST;
3. Conjunctive filter
and the result
LOAD (MINERALNAME) ; LOAD {MINERALNAME) ;
SELECT{REF #2500 & #FIND(REF#)ZSOO &
NAME=HORNBLENDE) ; 256.4 NAME=HORNBLENDE) ; 92
LIST; LIST;
4, Disjunctive filter
LOAD (MINERALNAME) ; LOAD (MINERALNAME) ;
SELECT (REF#=200 | FIND (REF#=200 |
REF4=5) 228.4 REF#=5) 106
LIST; LIST;

The time to create
the index

LOAD (¥*2*MINERALNAME) ; 100

LIST;

FIGURE 6.3b

1923

Ll
=
L c=2208 tuples
w200 -
wn
Z
o
0.
"
o 50 - \\
\
W
O N
& \\ SELECT
%100 — '
é \ \ F' "‘U
N FIND _ _ o=
¥ 1 1 |] I i 1 L}
I 2 3 -4 5 5 T 8 5
QUERY NUMBER _
(a)Example of o case where indexing improves the performance
- — — Response time
. Cumulative response fime
Averaqe response time = e - -
Number of quariec
wi
=
-
l.lJ - - — mmews
o 150 o . \ \\ two consecutive
c2> \ Z \ corts
o (@]
ﬁ \ \ \ SELECT
u \ \ \
< IND
< \EIND w _ \
W 50 ~
>
<
1] 1 ! 1} 1] i 1
| 2 3 4 5 6 7 8 9
QUERY NUMBER
(b) Example of a case where indexing degrades the performance
Fig 6-4
i94

file:///FJND

" c=16384 tuples
I8
o A
14
12 A
-]
i
‘ ;
- t
8- |
o i
i

10))
1

H
1

_ ' _1-4mlogom b
21 Q0% Tiog,m |
SELECT

| i_______ FIND] \

0o =t f | p— i AR DA SR RN ==

0] 20 40 6O 80 100 120 140 ieO
QUERY NUMBER

Fig 6-5 Effect of Indexing on performance (Theoreficai)

Some other functions were adapted to make use of the indexes.
This reduces the times of these functions and lowers the
overall average response time. Examples of these functions

are the IS/1.0 MINIMUM, MAXIMUM, REMCOVE, INTERSECT and DITFLER.

e.g. LOAD(R);

MINIMUM(2); /*FINDS the smallest object in domain 2.
Calls index *2R */

LOAD(R) ;

MAXIMUM(2) ; etc.

However, the results of the above experiments do not fully

justify the use of such indexes because the disk storage space

-

(UGN T -~ . . < L svrmsaryyde el lam e A ~ T 4-
yas not been taken into account and because the results

obtained are influenced by the characteristics of the implenen-

tation.

However, Figure 6.5 uses the theoretical values to depict the

effect cf defincd indcxes on retrieval.

2.1 A criterion for efficient indexing

As will be explained later, the efficiency of iudexinyg depends

onz:

(a) the references to the index

(b) the type of references whether updatcs orx
retrievals.

(c) the storage available in the system.

(d) the number of tuples in the relation.

To find a criterion for choasing the domain to have an

assnciated index, let us consider the following:

i) At any instance given the frequency of reference to the
prospective index, its expected size (depends on object
size and cardinality) and its creation cost (proporticnal
to m logzm : where m is the cardinality); then it is
possible to estimate the probability of the survival of
the index in the explicit form, x, using the isostorage

diagram (Chapter 4).

To estimate the cost of the computer time for the
creation and maintenance of indexes we need to know the
cost of the basic components, i.e. the number of the
disk accesses.and the number of object comparisons.
Here, the cost of computer time is Assumed to be vropor-

tional to the number of comparisons because:

{a) the number of disk accesses is related to the

—~
o
~

it ic simpler tc estimate the number of

| . comparisons,

ii) Number of comparisons for a one domain selectiorn if the
domain is not sorted is:
m
For each selection from an indexed domain
2 + logzm comparisons are required
Whenever the index is found implicit, it has to be
sorted. The expected number of comparisons =
(l.386mlogzm)(1~x) [Gerhard 1974]

where (l1-x) is the probability of the relation being

implicit.

iii) the updates:

The example in Figure 6.2 shows that:

(a) an update consists of two processes: locating

the tuple and updating part or the wholc tuple.

(b) evcn if the cost of disk storage is negligible
and infinite spacs is availsble, an index mayv
still degrade the performance (response time)
when it is updated. In the example, the index
on domain Name has to be updated f-r every

insertion or deletion and for scme valuc changes.

L]
The latter point illustrates the overhead of keeping an
index which is not frequently usad fnr loastirg funlse,
it is therefiore imporiant iv have two reference councs

for each index:

locate a tuple or a group of tuples for
retrieval or update;

| and MOD the number of times the index was modified.

A domain index that does not improve the processing time
is an overhead and should be destroyed, i.e. an index of
a domain must be destroyed if over a period of time the

expected number of comparisons without having that index

€ the numher of comparisons when the domain has an index.

i.e., LOC . m =< (LOC + MOD) . Logzm
Moo [w4\
ILOC ~ logzm /

198

- D -—.F_J.-._...-— & :.I.E.O__Q
or P = (;) where P T o0

If the sort overhead is included, then

/
m m
P 2(1’65:5 1.4 (LOC)) 1)

iv} The criterion:
Before creating an index the above condition, P, must be

gsatisfied.

Now, from (ii) and (iii)

LOC . m >{ 2 + logzm 4 l.4(l—x)mlog7mJ (L.OC + MOD)
i.e. x > 1 - _— \ 1 - 1
Tt - 1 4-17 1.4 log,m 1.4 m

mn

where P < -
logzm

——

It should be noted that x is a function of the usage, cost of

creation and size of the index (Chapters 3 and 4),

i.e. x=1*£f where k is a constitant.

((_LOC + MOD) . 1.4 mlog,m\
km)

This criterion insures that if the index is created, it will

be used for locating tuples frequently enough eo justify the

overhead due to the sort before it is made implicit. At the

same time the overall utilization of disk space is not impaized

by unjustifiably keeping the indexes permanently explicit

irrespective of their usage rate.

199

2.2 'The choice of the domains to be indexed

(a) Initially we define an index for each domain of Relation R,

The primary key domain (if known) is made explicit.

(b) When domain j of R is referenced the following procedure

is recommended:

1) Update the reference count of index j.
Depending on the type of reference update the
locate (LOC) or the modification (MOD) count.

2) If index j is explicit go to 6.

3) Find the probahility of survival x.
Substitute x‘in the criterion. If the
criterion is satisfied go to 5.

4; Oearch the domain withoul using aa index.

5) Create index j (Index j is explicit).

6) Use the index to answer the guery.

7) Stop.

Periodically or at reorganisation time the explicit indexes
are inspected to ensure that they possess the threshold ratio,
P, of MOD to LOC. Accordingly some indexes may have to be

forced implicit.

From the above arguments it is convincing that the choice of
the domain to be indexed should be automatic. The user and
the data base administrator may be ablz to choose correctly
the primary key domain and one or two secondary key domains
of a relation. Normally it is rather difficult to make any
further correct choices in a multi-user systemnm. If the

automatic features of the system are carefully designed, the

L)
O
@)

process of choosing the secondary key domains must be automatic.

3. Indexing as a forxrm of splitting

Suppose a relation R has indexes associated to most of its

L

exes are formed in accordance vwiih

Cu

domains and that these in
the above reccmmendatiocns. This implics that these indexes
have a high usage rate that justifies their being explicit.

It is possible to add a position {(or key) domain te the projec-
tion of R on the unindexed domains hence forming a relation

called R .
rem

R R, R_
1 3 ram
(Value, Position) + (Value, Position) (domain2 ,domainé ,position)
g\‘ A s
- e

\\ /
N

R {dowainl ,domain? ,domainl ,domaind)

The indexes Rl’R3E““iRrer are then made hase relations and R is
13

defined as a projection of the equijoin of all indexes and Rrem'
This is recommended when the proposed set—-up satisfies the

splitting criterion discussed previously (equation (6) Chapter 5).

Howvever, this also indicates that the formation of secondary
indexes using defined relations can be a first step preceding
the decision of adopting an inverted file organisation for

storing a relation.

4, Summar

The above discussion shows that defined relations can be used

201

as'secondary indexes, This solves the difficult problem of
deciding which domains to be indexed and prevents the wastage

of storage due 1o unused indexes.

|
|
. 202

CONCLUSION

The various data bases examined during this research project
exhibit different characteristics, in particular their
patterns of retrieval and update vary considerably. It is
therefore necessary for general data base systems to be

versatile enough to cope with such extremes, otherwise the

i}

4]}
%73

data base design may be estabklished on unfounded assumptions.
Therefore antomatic features should be built into data base
systems so that they adapt their internal structure to the

needs of the user environment.

The facility of defined relations is a powerful tool in

Fale]
1

axoressing the vser’s view and in reflecting the elfect of

variations of the usage pattern on the storage. These

n

advantages justify their inclusion in any relational data

bhase.

The LECS critexion, which takes into account the size, cost,
and frequcncy of refcréncc and the depcndencics among
relations, is recomnmended as an algorithm Ffor managing the
workspace of data bases. Experiments have shown that it

is reliable and theoretical analysis shows that ii is a good
approximation of the algorithm which gives optimum pexfor-
mance. The LECS has a negligible overhead compared with

the order of cost incurred in data base operations.

The examination of automatic splitting has indicated that
its overhead is not as costly as it seems. This automatic

process tunes the storage to the usage pattern which results

in significant improvement in performance.

The defined indexes offer a method for improving the response
time without impairing the utilization of disk space. Indexes
are created when the usage patterns, for the whole system,

indicate an overall benefit to the systen. This concept may

be carried over to other date.. bases with minor modifications.

The above-mentioned gains in performance are brought about by

¥

miatching the storage requireaentis

i

-

5 to thic usage panterns.
this manner the data base system is in a continuous proccss

of optimizing its performance.

However, it should be mentioned that the set theoretical

’
apprcach of the rclational modcl makes the formulation and

0

analysis cf data base problems easier, Apart from its cother
advantages,. the relational model is att lanst a good vehicla

for. research in the field of data bases.

Suggestions ror further work

The following are suggestions for further work in this

research area:

(i) To test the validity of defined relations in
a realistic data base situation where the

workspace is managed by the LECS algorithm,

(ii) A special mathematical formulation is required
for the optimum choice of portions of split

relations.

(iii) To test the concept of defined indexes in a

real data base situation.

204

Finally, it is hoped that the ideas presented in this thesis
are sufficiently viable to stimulate further investigation of

the above concepts.

8o
o
u

ALDRED B.K.
GULLAND P.
McARTHY P.
SMEDLEY B.S,.

BACHMAN C.W.

BACHMAN C.W,
BELADY L.A,

BELADY L.A.
PALERMO F.P,

BOYCE A.J.

BROYCE Raymond F,

CHAMBERLIN .
Donald D.

BOYCE R.F.

CHAMBERLIN D.D.

KING W.F.
HAMMER M.M.

BRACCHI G.
FEDELI A,
PAOLINI P,

BURNS D.

BURROUGHS

CASEY R.G.

CASEY R.G.
NACY G.

REFERENCES

"Interim report on the UKSC~GLC joint
project"”, IBM(UK) Scientific Centre, to
be published

"The programmer as a navigator", Communications
of ACM, Nuvember 1973

"Data space mapped into three dimensions”,
Technical Manager; Data Bank Systems, Honeywell
Informatiocn Systems, 1973

"A study of replacement algorithms for a
virtual-storage computer", IBM Systems Journal
5, No.2, 73-101, 1966

"On-line measurement of paging behaviour Ly
the multivalued MIN algorithm", IBM Journal
of Research and Development 18, No.l, 2-19,
.1974

"Mapping diversity: A compacative st
some numcrical motheds", in "Numeric Aoncny”.
!

1968, cdited by A.J. Cole, Academic Press,
London, 1969

Tz¥onomy, University of St Indvews, Seplemiber

"Using o STRUCTURED Ernglish guory longuage o5
a data definition facility", TIBM San Jose
(California), Dccember 10 1973, RI-121°9

"Specifying queries as relational expressions:
SQUARE", IBM San Jose, October 16 1973,
RJ-1291

"On relational models and languages", IFIP

TC2 Working Conference on "Data Base Management
Systems", Cargese, Corsica, April 1974.
(Preprint)

"ROBOT - A new approach to database management”,
Fourth European Conference on EDP Developments
in Department Stores, London, November 1972

"A narrative descr.ption of the Burroughs
B5500 Disk File Master Control Program'”,
Burroughs Corporation, Detroit, Michigan, 1966

"Design of tree structures for efficient
guerying®, IBM vUan Jose, October 1372, RJ-1115
"An autonomous reading machine", IEEE Trans-
acticns on Cemputers, vol.C-17, No.5, May 1968,
pp.492-503

206

CASFY R.G. "Generalised page replacement algorithms in a

OSMAN I.M, relational data base", Proceedings 1974 ACH
SIGFIDET Workshop on Data Description, Acce:rs
and Control, to be available from ACM HQ, 1074

CASTY R.G. "Replacement algorithms for storage management
OSMAN I.M. in relational data bases", to be publishcd
CHILDS D.C. "Feasibility of a set theoretic data structure”,

Proceedings of tr.z IFIP Congress 1968 1,
420~430, North Holland Publishing Company,
Amsterdam, Netherlands, 1968

CCODASYL CODASYL Data Base Task Group, Report on the
CODASYL Programming Language Committee; Report
CR 11, 5(70)19,080; ACM, New York, New York,
1969

CODASYL CODASYL Systems Committee Technical Report,
"Feature Analysis of Generalised Data Base
Management Systems", ACM,; New York, May 1971

CODD E.F. "A relational mcdel of data for large shared
data bhanks", Communication of ACM. Vol.13.
N2.6, June 1970

CODD L.l "Relational cempleteness of daia base Suu—
languages", Computer Science Symposium €,
May 24-25 1971, edited by Randal Rustin,
Prentice Hall

CObL E.1. "Furthexr normalizaticn ci the data b
relational model", 1BM Research Rewo
San Jose (Califovnia), August 21 197

CODD E.F. "Normalized data base structure: a brief
tutorial", IBM Reszarch Report RJI-935, San
Jose (California), Moverber 2 1971

COX D.R. "The statistical analysis of series of events",
LEWIS P.A.W. Methuen & Co. Ltd., 1966, pp.37-58

DATE C.J. "The relational and network apprcaches:

CcobD E.F. comparison of the application programming

interfaces", Proceedings 1974 ACM~SIGFIDET
workshop on Data Description, Access and
Contreol, to be available from ACM HQ 1974

DEE E.E. "Cobol extensions {0 handle a relational data
HILDER W. base", Report of WP5, Advanced Frogramming
KING P. Group, The British Computer Society, October
TAYLOR E. 1973

DELCBEL C. "Decompusition of a data base and the theory
CASEY R.G. of boolean switching functions", IBM Journal

of Research and Development, Vol.,l7, No.5,
September 1973, pp.374-386

EMGLES R.W.

EVEKETT Hugh ITII

GABRIELLE K.

WIORKOWSKI John

GERHARD Jaeschke

GUIDE/SHARE

IBM

KNUTH

MATTSON R.L.
GECSEI J.
SLUTZ D.R.
TRAIGER I.L.

McGEE W.C.

McKEAY R.M.

HOARE C.A.R.

MTS

NOTLEY M.G.

OLLE T.W.

"A tutorial on data base organisation", Report
TR 00,2004, TBM, System Development Divisicii,
Poughkeepsie, New York, 1970

"Generalised language multiplier method four
solving prohlems of coptimum allocation of
resources"”, Operations Research, Vol.1ll,
1963, pn.399-418

"A cost alleocatio.a model™, Datamation, August
1973, pp.60-65

"Minimal storage sorting: a.comparison of
different algorithms", Heidelberg Scientific
Centre Technical Repcrt, IBM (Germany),
January 1974

Joint GUIDE/SHARE, "Data base management
system requirements", W.D. Stevens, Skelly
0il Co., Tulsa, Oklahoma 74102, November 1970

"IBM System/360 Model 44 functional character-
istics, A22~6875-6

"Introduction to IBHM Juilrcct accass ciorage
devices and organisation methods®, IBM Trade
Wor1ld Corporation 1971, GC-20~164S5-5.

"T'ne art of computer programming", Vol.3,
"Sorting and searching", Addison-Wesley, 1973,
pr.506-542

"Evaluation techniques for storage hieirarchies®
IBM Systems Journal 9, No.2, 78&-117, 1970

ACM Computer Reviews, March 1974. Review
no. 26,533,

"A survey of store management techniques" in
“Operating Systems Techniques", APIC studies
in data processing, No.9, C.A.R. Hoare and
R.H, Perrott Eds., Acadewmic Press, London and
New York, 1972

"MTS Users Manual", University of Newcastle
upon Tyne, March 1971, p.1l8

"The Peterlee IS/1 System", IBM(UK) Scientific
Centre Report, March 1972, UKSC 0018

"Data structuring facilities in commerciailly
available DBMS", Computer Bulletin, Series 2,

No.1l, September 1974

N
(@]
(o]

T

PALERMO F.P. "On conservatively composable relations™, IBM
Research Report, August 27 1970, RJI-7S0

PALERMO F.P, "A database search problem", IBM San Jose
(California), July 1972, RJ-1072

PHILLIPS "An application exawmple of the CODASYL-LBTG
proposal’, Phillips-Electrologica BV, Main
Marketing Group rTomputer Systems, Apeldoorn,
The Netherlands, June 1973

PL/1 "PL/1(F) Language Reference Manual", IBM
GC28-8201-4, IBM reference Library, 1970

RICH, Robert P. "Internal Scrting Methods", Prentice Hall,
Inc., 1972

RISSANEN J. "Decomposition of files, a basis for cata

DELOBEL C. storage and retrieval", IBM Research Report
RJ-1220, May 1973

SENKO M.E. "Details of a scientific approach to
information systems", Computer Science

Syumposiwn 6; May 24-2% 1971, edited by
Randal Rustin, Prentice Hall
SENKO M.E. "Data structure and accessing in data bhase
ALTMAN E.B. systems", IBM Systems Journal, Vol.l2, No.l,
ASTRAHAN M.M. 1973

FEHRER P.L.

SIBLEY E.H. "The CCDASYL data base appruvach: i Cobol
example of design and use of a nersonnel
file", Systems and Software Division, Institute
of Computer Sciences and Technology, Naticnal
Bureau of Standards, USA, February 1974

STOCKER P.M. "Self organising Data Management Systems”,
DEARNLEY P.A. The Computer Journal, Vol,1l6, No.2, pp.lt00-105
SUMMERS R.C. "A programming language approach to secura
COLEMAN C.D. data base access", IBM Los .Angeles Scientific
FERNADEZ E.B. Centre Technical Report G320-266, 2 May 1974
TODD S.J.P,. "Implementation of the join operator in

relational data bases", IEE Colloquium on
"Information Structure and Store Organisation",
Savoy Place, Londor, March 1974 (to be published)

WISHART David "CLUSTAN USER", Computing Laboratory, University

of St. Andrews, St. Andrews, Fife, Scotland,
1969 (obtainable from the author)

209

APPENDIX E.

DEFINITIONS

Ay THE RELATIONAL MODEL

l. Basic definitions

The basic formal definitions are given first in section 1.1l.

They are followed by more informal definitions in section 1.2.

1.1 Formal basic definitions {From Ccdd August 19711

- v - s s G G s on 8o An e e b — & A2 Gad el

~—

{i) Given sets D.,,D,,...,D (not necessarily di nct) ;
1727 n ‘

R is a relation on these n sets if it is a set of

elements of the form(dl,dz,...,dn) where dﬁe DJl for

each j=1,2;...,n, i.e. R is a subset of the Cartesian

product D, x D_

the _)1-11 d oma

. D. is referred
J
R. The elements of a relation of

I
x
yl

o

=

_l’_lO

degree n are called tuples.

(ii) A data base is a finite collection of time varying

relations of assorted degreces.

Each distinct use of a data base domain in defining
relation R is called an attribute of R. For relation

R the attribute names are the domain names.

(iii) Projection: The projection of R on the attribute

list A designated s is defined as

'UA(R) = {r.A:reR}

(iv) Join: Let O denote any of the relations =,+,<,s,>
and 2, The join of relation R on domain B with

relation S on domain C is defined by

ﬁ)

R[BO'C]S = { (rs):re R/\s..'e.S/\(r[B]es[C])} '

210

provided that every element of R[BJ] is 6O -comparabile

with every element of S[B].

[x is ©O-comparable with y if x©y is either true or

false but not undefined.]

(v) Union (U), intersection (N) and difference (-)
are defined in the usual way. They are applicable

only to pairs cf union-compatikle relations,

1.2 Informal basic definitions

The relation is a table of data; e.g.

]

PAYROLL
N2ZME AGE SALARY
SHITH 25 2030
TAYLGOR 30 i5030
WILLIAMS 20 1200
BEGGS 37 5CCO

(i) In this model the smallest unit of inforxmation is the
object. Objects may be represented in the camputes
by integers, charactex strings or real numbers, etc.
(e.g. SMITH, 25 and 2000 are objects). These objects
are grouped together into any semantically meaningful
fashion forming a set (e.g. the set of NAMEs, the set

of AGEs, etc.). Such sets are termed domains (columns).

A tuple(a row) is an ordered set with one cbject from
each domain such that a relationship exists ketween

the objects (e.g. <SMITH,25,2000> is a tuple).

A relation is a set of all tuples of a given relation-

ship (e.g. the above data table PAYROLL is a relation).

211

The degree of a relation is the number of its domains

(e.g. the relation PAYROLL has a degree=3).

The cardinality of a relation is the number of its
tuples (e.g. the relation PAYROLL has a cardinality=4).

A Null relation has a cardinalit+vy of zero.

(ii) Relational operators:
Union: The union of twe relations is the set of tuples

common to both relations.

Intersection: The intersection of twe relatiocns
results in the ‘set of tuples of the two relatiomns.

Differxence: 1is the complement of intersection in the

first relation,

relation by subsetting and ordering the domains.

Selection: picks a subset of

)]

,.
h
oy
M
-t
F‘
e}
|
il
)]
0
*h
[V}

14}
<
m
i

relation satisfying & boolean expressicn toc fcxm a new
relation of the same or lower cardinality.

Join: The join of two relations is the concatenation
of a set of tuples from each relation which satisfy

the boolean filter of the join.

2. The primary key

Each candidate key K of relation R is, as defined by [Codd

November 1971], a combination of one or more attributes of R
such that in each tuple of R the value K uniquely identifies

the tuple (unique identification) and that if an attribute of

K is discarded it will no longer uniquely identify a tuple

(i.e. non-redundancy).

For each relation R in a data base, one of its candidate keys

is arbitrarily designated as the primary key of R. Usually

no tuple is allowed to have an undefined value for any of the

primary key components,

For the relation R whose domains are A,B and C. If all three
of the following time-~independent counditions hold:
R.A—-R.B, R.B.+#R.A

R.E—R.C

then domain C is transitively dependent on A under R.

a given collectimm of »alatior

n
-

) W QN G ST
1 AL SLAL= R

which the relations have a progressively simpler and more

ragular structure [Cecdd Novembexr 197137,

A relation is normalised by eliminating the following:
(1) all the domains that have tuples(sets) as elements,
(2) the non-full dependence of the non-prime attributes
on candidate keys, i.e. repeating groups.
(3) transitive dependence of non-prime attributes on

candidate keys.

When (1) is eliminated the relation is in the first normal form.

Wwhen (1) and (2) are eliminated the relation is in the second

normal form.

When (1),(2) and (3) are eliminated the relation is in the third

normal form.

213

An unnormalised relation is one which is ncot in the first

mormal form. [Codd August 1971]

5. Data independence

This is the indecpendcnce of application pregrams and terminal
activities from growth in data types and changes in data

representation [Codd June'l97d].

Data independence separates rhe appliuvation proyrams and the
user's view of the data from some asnects of the storage and
structure of data in the data base. Hence the application

rograms are protected from the changes in the external world
prog X g

B: THE NETWORK APPROACH From[Bachman 19731

A typical example of network structures is given below.

Tf the relationship between authors,; hooks and neoplie is
considered, it may be shown that thee is an m:n relationship
between bocks and people. Any particular book has a l:n
relationship with the persons who were its authors. From
the other points of view, therc is a l:m relationship between
a person and the books he may have authored. The figure
shows this network relationship. It is termed a network
because many people are related directly thrcugh one bocok,

or indirectly through books with a common co-author.

B

book pexrson

7

author

This type of network is called a compound network because two

h
I—-

different entity classes (book, person) are "bridged" by a
third entity class (author). Examples of compound netwoirk
elements are: book/author/person; purchase order/line item/
inventory; row/element/coliure.; resource/workload/activity.
This type of network structure cannot be handled easily in
hierarchical files because the dependent entity cannot be
associated with more than one independent enktity. The most
cemmon means of handling the above illustrated network in
hierarchical structures is through duplicate files, where
the network is broken into two ‘simple hierarchies. The
following diagram illustrates such a splitting of the struc-

ture of the abouve diagran,

book l person

R
|

J A

[

-
author/ author/
person book

If interest leads from book to author, a re-entry thxough ‘he

person file can indicate other books by the same author.

Network structures, then, are characterised by the fact that

two entities are related through one entity of another class.

215

iy P
APPENDIX &2

THE IS/1.0 SYSTEM

The IS/1.0 is an early version of a prototype general purposs
information system. It is a single user systcem based on the

relational model cof data.

1. The instruction set of IS/1.0

The set of I$/1.0 functions and language is stack based. Tt
handles the information in the form of relations. The stack
provides the temporary storage and the workspace. Relatione

are conceptually loaded from the data base to the stack and

nfor-

L.

operations are carried out on them independently of the

matiecn in the data bhasc.

All stack positions are relative to the top of the stack.

The top twe relations on the stack may be reforred toe acs:
TOP - the top item on the current stack
PEN ~ the penultimate item
1.2 The_system operators
LOAD(R) ; Loads relation R:on the top of the stack.
STORE (R) ; Stores the relation on the top of the
stack under the name R.
LIST; Lists the relation on the top of the
stack to the output.
DROP (n) ; Drops n relations from the top of the

stack.

216

1.3 Modification of the data base index functions

NEW{(R) ; Introduces a new relation into the index.
DELETE (R) ; Deletes a relation name from the data base
index. Iif no synonym exists the actual

data will be deleted from the data base.

l.4 The relational operators

UNITE; Takes the tep twoe elements of the stack,

&)

forms their union and puts the resulting
.element back onto the stack.
INTERSECT/DIFFER; Forms the intersection/&ifference of the
two elements on the top of the stack.
REORDEB(gomain, Is same as Projection{domain,domain).
domain}
[A logical filter is essentially a logical statement about the

top two elements of the stack.

logical filter = [comparison
(logical_filter,
P" logical filter

logical filter and logical filter

logical filter/logical filter]

\

SELECT (logical__ Selects/removes from the relation on the
filter).

top of the stack all tuples for which
REMOVE (logical_

filter) the logical filter is true.
JOIN (logical_ Joins the tuples of the top two elements
filter)

of the stack for which the logical

filter is true.

217

1.5 Other_operators

MIN (domain) Leaves a single tuple (of thc relation on
MAX (domain) the top of the stack) in which the object
of the parameter domain is miniium/

maximum,

GO0 label:; Non-conditional Jjump

< >
label:
IF (logical filter) label; Conditicnal jump

1.8 IS/1.0_session

An example of an IS$/1l.0 session is shown in Figure 2.2.

2. Application programs

These are ordinary PL/1l routines interfaced with the system
via the system macros and they can access the stack as well

as the data base relations.

218

3. The defined relations capability

IS/1.0 has the facility of defining relations on other relatiors.
An implicit relation is made explicit if the relation itself or
a relation dependent on it is required for retrieval or update
(cf. Chapter 2). The replacement algorithm of the I5/1.0 bases
its criterion on the usage count of the relation (Cf. Chapters

3 and 4).

4.
The system may be used from a terminal or from batch (pseudo-

terminal). It has backup facilities.

{(Notley 19721

N
-
Xe]

2
APPENDIX Qb

Given a domain in a relation, it is required to find the set
of the different object values in the domein. °~ This may be
found by either sorting the objects of the domain or without
sorting. It is required to compare the numher of obiject

comparisons involved with and without sorting.

Consider a domain in a relation of cardinaiily . L=t the

number of different objects be n. /x&
a \

I'y\

!“

'\:l

v 2

IX,

_l

\v/
R =

(a) Without sorting

mi- E) 1 » -
The steps followed arc:

i) take the first object from the domain and place it

in the resulting domain (R).

Set i=1,
ii) take the next obhject from the domain. Compare it
with all the objects in (R). If a match is found

go to (ii) otherwise place the new object in R
(and hence increasing the number of objects in R
by 1, i.e. i=i+l). This is continueda until all
the objects of S are exhausted.

iii) i is the number of objects in R.

The average number of objects having the same value =

s

220

http://J_v.y_i_j.wrvv%e2%80%94

T.et us consider the number of comparisons for objects

having the first value (e.g. x):

(The first object is placed withont making a

-

"~

FRuIXH000x
-

comparison. The following objects will be

e
o

_‘-

comparid with the only one object placed in

R)

=0 + (%‘-—1);;1

s P ¢ 4
s — —_——

— -
o T SRS e ant

Nunmber of comparisons for objects havincg the

—

T
I
\

~.

second value (e.g. b)

=1+ (2-1 %2

Nunmker of comparisons for abhjects having the
third value (e.g. s)
o
=2+(:“].)X3
a4l

Similarly, number of comparisons for objects

haVing the nth valiue
= (n- oo
= (n-1) + (n' 1) xn

Total number of comparisons

(0O+142+...+(n-1)) + (% -~ 1) (1+2+3+...+n)

= (n-1) x 3 + (2 = 1) (n+1) x 3
= %(n—l—(n+l)) + g X (n+l) x %
= -n + g(n+l) =.§(n+l) - n -;—(l)

221

N.B. If the objects placed in R are arrandged in such a

——

way that they are ordered, this wculd decrease the number

. m
of comparisons to a

ments will increase.

(b) With sorting

The following steps are follows:

i) sort the cbjects of the domain.

il) place the first okject in R.

iii) compare the last object plared in X with the next
object in the domain, If there is a match go to

(iii). If there is nc¢ match place the compare

.
|

object in R. This is continuved until the
of & are exhausted.

iv) count the number of objects in R.

Expected number of comparisons using quick sort

= 1.3863 m log,m [Gerhard 1974]

Number of comparisons for scanning through the sorted

domain

= (m-1)

Total numbexr of comparisons

]

(m-1) + 1.386 m log,m

It pays off to sort if (1) > (2)
g(ml) = n > (m-1) + 1.386 m log,m

dividing by m (m>0)

1 n 1
F(n+l) - — > (1 - =) + 1.386 log,m

=
; log 1i. The number of replace-

—(2)

- T

2n

n+l » 2 + = + 2.2772 1
2 -
l-=+ 2,772 log,m
n > m o2
)
m

n > 2.772 logzm

o
™
w

og.m
“2

APPENDIX éﬂ‘
After Casey [Casey and Osman April 1974]

Request 0 Pa

N B i

—— e e

Q
@
U
N
m
P
o
I

PIn
'~

|
_ 2 8 I5
3 | 8 5
. N\ , 4 |10 |20
N\ Buffer size =18
{ Oynaimic aica)

q lg_f;;)

35
B
B @
q .-:-:?V)
FIGURE Ad:

A sample rroblem illustrating tree

pruning. The numbers inside a node

indicate the buffex contents for the 4
corresponding state. Each arc is

labelled with the page deleted in

making a transition to a new state

(a star denotes that no deletion was

necessary; the requested page was
2 in the dvnamic area). The cumulative (2 3
cost is given above the node. -
..Blackenad nodes are thcse terminacted

by the pruning algorithm.

224

o
(7
APPENDIY @D

THE PREFERRED SET

After Casey [Casey and Osman, to be publishedl

MAssune that the frequency of request for the kth defined

relation over a given interval of time is u, . Suppose alsce

k
that the contents of the dynamic storage area is held fixed
over this time interval, i.e. no replacement of data is
carried out. This constitutes a violation of our assumed
principle of database operation: however, the assumption is
made only for the sake of argument. (As an eside, we observe
that such an assumption is valid if requescts are fulfilled by

esired dala in a user wulixkspace rakther than a

0]
ot
jors
V]
’-l
}-l
]
le}
rt
-
n
1%
a7

We now seek to determine what should be the contents of the
dynamic storage area in ordexr tc minimize thco cost cf
fulfilling requests over the given time interval. We call
this set of explicit relations the "preferred set". The
guestion will be formulated as the problem of maximizing the
decrease in processing cost compared with a system that
answers every request from base data (i.e. does not maintain
explicit forms). In mathematical notation we seek to assign

values O or 1 to each Xk such that the total cost reduction

G (%) =Zuk. Cp Xy
k Y ™

is maximized subject to the storage constraint

225

where So is the size of the dynamic area. The selection

variables XO determine the contents of the dynamic area.

For certain values of So the solution of this integer
programming problem may be obtained using a discrete
Lagrangian technigue [Evereti 1563]. For other values of
So the Lagrangian method does not guarantee an optimal set
of Xk' but does provide a usetul bound on the cost reduction

achievable.

The solution sct is obtained as folluws: for ecach k form

the ratic

k " 7k
x = T8
k
Now arrange the Zk in decreasing order. For convenience

we may assume that defined relations are actually numbered

in decreasing order of 2y Then foxr each x» ths azsigrmant
1 k = r
0 k > r

is a solution to the maximization problem for the case

So = 15‘ Sk
¥=1
Thus i1if the data base contains n defined relations this

method generates solutions for n different values of So'

Furthermore, for intermediate values of So’ say

the obtainable savings in cost, G(X), satisfies thc bound

r
= cx) € ¥ %o lesk)
U . C < G(X) < U . C K= U . C_
gk Sk &k Sk s,) e

That is, the cost savings rises no faster than linearly with

storage size between the derived solution points.

The interpretation of this result is that if the time varying
nature of requests is negligible (for example if requests occur
randomly) then the optimal system tends to maintain in explicit
form those relations having the higher values of Zk’ which is

precisely the effect of the LECS technique.

227

%
APPENDTX \D

Given a two~dimensional m X n matrix, F, holding the number

b
]
joJ]

of references of query types versus domains, it require

to cluster thc groups at different levels of similarity.

In the terminology cf numerical taxonomy the domains are

called the forms and the query types are called the characters

and the problem is a cluster analysis problem {Boyce, 196GE&€1.

Calculation of similarity

The forms are thought of as points lying in a multidimensional
space, the axes of which correspond to the characters on which
comparisons are bhased. The relative positions of the points
in this "“character space" are determined by the particulas

character values possessed by each form.

The distaince coefficients are related to a class of distance

functions® whose general formula is (a H8lden norm):

. 1
] = 4 - 0 r ™
dr(J'k)'—(ié:lrij Fikl *

where Fij is the value of character i for form j, i.e. the

number of references of type i query to domain j.

(If the numbexr of characters varies from comparison to compa-
L i g
P |
e
rison the distance is usually multiplied by n ¥

The ordinary Euclidean distance (r=2) is thus

d, (3 k) =(2}

1
213
Fi3 7 Tix|)

[\
[\
(0.¢]

The distances are evaluated. These represent the similarities

bhetween the forms. An n ¥ n similarity matrix is constructed.

Formation of gxroups

We start by having n groups (subsets) each containing only one
form (domain). These groups are called clusters., Each two

clusters which are most similar are joined (or merged) together

+

to form a larger clu:

o

M
n

‘erl

The similarity between two groups is measured by the distance
between the centroids of the two groups. This distance is
expressed in terms of the distances among the membexrs of the

two groups (x and y) as follows:

S A S|

d =8 - - W, - =4— W

- - ™o -
C 2t x «’C Y

X y

where tk is the number of the members of group k.

B is the mean of the squared distance

-

(1]

-l - —
ST

tn
o

members

the ty members of group k and the t

|

Qf group 1.

—k is the mean of the %tk(tk-l) squared dist

=

n

I,
G
{D
0n

within group k.

At the end of each step we obtain a set of subsets. Finally,
we end up with one set. The maximum number of these sets

(the possible solutions) is n.

229

