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ABSTRACT 

A phenomenolgical analysis o f two body s c a t t e r i n g data 
w i t h p a r t i c u l a r emphasis on the phase and energy dependence o f 
Regge cut c o r r e c t i o n s i s presented. 

A f t e r a b r i e f summary o f the Regge philosophy and approach, 
we survey the experimental data i n chapter two. We note t h a t a l l 
hadronic processes, as d i s t i n c t from photoproduction appear t o 
e x h i b i t strong Regge shrinkage a t l a r g e | t | c 

I n chapter t h r e e , we motivate the eikonal model approach 
and show how i t i s used t o c a l c u l a t e cuts i n TT N charge exchange 
and i n photoproduction. Most o f the phase problems encountered i n 
the naive absorption models can be overcome 5 provided we use the 
t r u e e l a s t i c amplitude (which we represent as a sum o f P + F 1 

poles) t o generate the absorptive c o r r e c t i o n s . We conclude t h i s 
chapter by discussing how the shrinkage o f the eikonal model cuts 
i s i n c o n s i s t e n t w i t h the ^ g f f ' s °f chapter two f o r hadronic 
processeso 

We digress a l i t t l e i n chapter f o u r t o examine the important 
r o l e played by t-channel u n i t a r i t y and show how i t can solve some 
of the problems o u t l i n e d i n the previous chapter by peaking the 
cut d i s c o n t i n u i t y a t the p o s i t i o n o f the pole. 

F i n a l l y , we propose a new scheme f o r c a l c u l a t i n g Regge cut3 
and i n the l a s t chapter construct a s p e c i f i c model f o r -n N CEX 
and TT° photoproduction. A d e t a i l e d examination of the cut d i s c o n t ­
i n u i t y provides a possible explanation f o r the d i f f e r e n t energy 
dependence o f these o s t e n s i b l y s i m i l a r processes. 

I n conclusion, we discuss the i m p l i c a t i o n s o f our model f o r 

the t r a d i t i o n a l (Michigan and Argoniie) approaches !;o Regge cut 

phenomenology and suggest some areas which may provide i n t e r e s t i n g 

t e s t s o f the model. 
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INTRODUCTION 
The strong, i n t e r a c t i o n i s characterised, as i t s 

name suggests,, by the st r e n g t h of the f o r c e as compared 
w i t h the other fundamental forces which e x i s t i n nature -
Electromagnetic, Weak and G r a v i t a t i o n a l . I n nuclear physics 
i t provides the bind i n g f o r c e which holds, the nucleus 
together against the r e p u l s i v e e f f e c t o f the coulomb 
i n t e r a c t i o n - The short, range nature of the nuclear force-
prompted Yukawa to p o s t u l a t e the existence of the. TT meson* 
Low energy ( ~ 1 kev/c ) nuclear reactions show a r a p i d 
v a r i a t i o n i n the cross s e c t i o n p l o t t e d as a f u n c t i o n o f centre 
of mass energy,, which i s w e l l described by a sum o f resonances 
given by the simple. Breit-V/igner formula. As the energy 
increases (~ 10 - 20 Klev/c ) the resonances merge to form a 
continuum which can, nevertheless, s t i l l bo i n t e r p r e t e d as a 
sum. of overlapping Breit-Wigner resonances. 

also accounts f o r the forces between a group o f p a r t i c l e s 
known c o l l e c t i v e l y as hadrons- A s t r i k i n g f e a t u r e is- the 
richness of the hadronic spectrum compared to the l i m i t e d 
number of p a r t i c l e s which do not experience strong i n t e r a c t i o n s 
( l e p t o n s ) . As i n nuclear physics, the cross s e c t i o n up to a 
few Gev/c shows prominant resonance, bumps which at higher 
energies begin to overlap i n t o a continuum. Hadronic resonances 
can be grouped i n t o SU(3) s i n g l e t s , octets, and decuplets f o r 
baryons and s i n g l e t s and o c t e t s f o r mesons, whose quantum 
numbers may be generated by the quark model - There are as yet. 
no f i r m l y established e x o t i c resonances ( i . e . those which 

I n elementary p a r t i c l e physics- the stro n g i n t e r a c t i o n 

974 J /0K 
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cannot be constructed i n the quark model from qô  f o r mesons 

and qqq f o r baryons). 
The successes of f i e l d t h e o r i e s i n d e s c r i b i n g 

Electromagnetic i n t e r a c t i o n s cannot be c a r r i e d over w i t h any 
confidence i n t o the strong, i n t e r a c t i o n s i t u a t i o n . One reason 
i s simply the s t r e n g t h of the i n t e r a c t i o n which p r o h i b i t s the 
u t i l i s a t i o n of the. normal p e r t u r b a t i o n expansion techniques. 
A f u r t h e r problem i s the complexity o f the hadronic spectrum, 
which makes i t . extremely d i f f i c u l t t o formulate a theory i n 
which each p a r t i c l e necessitates the i n t r o d u c t i o n of a new 
f i e l d operator* I f we t r y to construct a theory i n terms o f 
a l i m i t e d set o f operators, we v i o l a t e the democracy which 
appears to e x i s t amongst the hadrons by imposing the view 
t h a t some p a r t i c l e s are more, elementary than others. 

A more appealing, approach to strong i n t e r a c t i o n s 
i s i n terms of the S-matrix, where the aim i s to formulate a 
theory from a few general postulates such .-is crossing, Lorerits 
i n v a r i e n c e , conservation o f p r o b a b i l i t y e t c . . Here the main 
i n t e r e s t i s i n the s c a t t e r i n g amplitude and by i n c l u d i n g some 
a d d i t i o n a l assumptions about the a n a l y t i c p r o p e r t i e s o f the 
S-matrix we a r r i v e at the Regge approach which has been so 
successful i n describing, experimental data* 

High energy two-body or quasi two-body, 
processes are known to be p e r i p h e r a l , w i t h the angular 
d i s t r i b u t i o n s o f t e n showing prominent peaks i n the. forward 
( or backward ) d i r e c t i o n . Their presence or abscnca ^§ 
s t r o n g l y c o r r e l a t e d w i t h the presence or absence o f p a r t i c l e s 



(or resonances) i n the crossed t ( or u ) channel. The 
in t e g r a t e d cross s e c t i o n also e x h i b i t s a power law dependence 
as a f u n c t i o n of centre, of mass energy. Both of these 
experimental f a c t s can be understood w i t h i n the Regge framework , 
which places the known hadronic states on t r a j e c t o r i e s which 
are approximately l i n e a r f u n c t i o n s o f the square o f the p a r t id.?, 
masses. The p r e d i c t i o n t h a t the d i f f e r e n t i a l cross s e c t i o n 
should "shrink" ( become i n c r e a s i n g l y concentrated i n the. forward 
d i r e c t i o n ) w i t h i n c r e a s i n g energy, i s also w e l l v e r i f i e d 
experimentally. 

As accurate data has become a v a i l a b l e f o r a wide range 
of experimental observables (p o l a r i s a t i o n s , , spin r o t a t i o n 
parameters., asymr.etries, decay c o r r e l a t i o n s , etc.) the 
emphasis i n Regge phenomenology ha& s h i f t e d towards a d i r e c t 
study of the amplitudes themselves. I n one p a r t i c u l a r procass 
i t has become possible to e x t r a c t the amplitudes i n a model 
independent way. However,, many features o f the data cannot be 
adequately described i n terms o f the leading s e t o f Regge. poles 
alone. We here, adopt the most l o g i c a l s o l u t i o n t o the problems 
o f simple pole models - namely t h a t Regge. cuts are also 
important, i n the f u l l s c a t t e r i n g amplitude. 

The most fundamental d i f f i c u l t y w i t h Regge cuts i s 
the l a c k of knov/ledge o f the d i s c o n t i n u i t y f u n c t i o n . 
Most phenornenologists work i n the absorp/tive/eikonal model 
where the analogy to nuclear physics i s once, again strong. 
There i s also considerable debate about, the s t r u c t u r e o f the 
i n p u t Regge pole residue and the mechanism which produces the 



observed dips i n d i f f e r e n t i a l cross s e c t i o n s . 
Phenomenologists: are c o n t i n u a l l y appealing f o r 

higher energy data against which to t e s t t h e i r models. I n 
recent years, t h i s cry has been answered by the abundance of 
data at s u f f i c i e n t l y high energies to allow the symbol 
to; take on i t s f u l l meaning. The Serpukhov machine provides 
f o r the c o l l i s i o n of up t o 70 Ge.v/c proton beams w i t h a 
s t a t i o n a r y t a r g e t , w h i l s t . NAL extends the range up t o 400 
Gev/c. The CERN In t e r s e c t i n g . Storage King (ISR) f a c i l i t y 
provides a centre of mass energy equivalent t o a 3000 Ge.v/c 
proton beam s t r i k i n g a s t a t i o n a r y t a r g e t * At such u l t r a - h i g h 
energies,, the number of f i n a l e t a t e p a r t i c l e s i s so l a r g e as 
p r o h i b i t a d e t a i l e d analysis of the energy and momentum of en 

This has l e d t o the study o f " i n c l u s i v e r e actions" i n which 
one observes only a l i m i t e d number ( u s u a l l y one) o f the 
f i n a l s t a t e p a r t i c l e s . 

Much orf the data,, which has already come out of the 
new a c c e l e r a t o r s , such as the r i s i n g t o t a l cross sections 
and appearance o f s t r u c t u r e i n the pp d i f f e r e n t i a l cross 
section^, provides a f a s c i n a t i n g challenge to the i n g e n u i t y o f 
Regge- phenomenologists. I n t h i s t h e s i s we concentrate on the 
quasi two-body data over the whole, of the c u r r e n t l y a v a i l a b l e 
energy range, and look at i t s i n t e r p r e t a t i o n i n the l i g h t of 
various Regge. cut models. 



CHAPTER ONE 



l o l INTRODUCTION 
We approach the problems o f high energy 

('1 Y 

s c a t t e r i n g through the framework o f S-matrix theory " , 
where the 3-matrxx i s defined to be the operator which 
transforms the incoming system of p a r t i c l e s i n t o the out­
going system. The p r o b a b i l i t y f o r the t r a n s i t i o n to occur i s 
then given by the square modulus of S, <?.nd conservation of 
p r o b a b i l i t y then demands t h a t S be u n i t a r y . 3y e x p l i c i t l y 
removing t h a t p a r t o f S which represents the p h y s i c a l l y 
u n i n t e r e s t i n g s i t u a t i o n i n which the p a r t i c l e s do not i n t e r ­
a c t , we a r r i v e at a d e f i n i t i o n of the r e a c t i o n or s c a t t e r i n g 
amplitude (A)-. Maximal a n a l i t i c i t y o f the F i r s t Kind .̂"̂  now 
states tha"C the only s i n g u l a r i t i e s c f A are thos^ poles 
corresponding to p h y s i c a l p a r t i c l e s and the cute generated 
from them through the u n i t a r i t y equation 

A- A + - <2 A A* ci.D 

I n appendix one we" define the s,t and u channels 
f o r a general two p a r t i c l e s c a t t e r i n g process. I n the simple 
case of equal masses, A(s,t,u) i s the physical amplitude f o r 
the &-channel r e a c t i o n when 

o 
s > 4m ; t -S 0 ; u .< 0 

where s,t,and u are a l l r e a l . 
I t i s possible t o define an a n a l y t i c c o n t i n u a t i o n 

(2) of the amplitude i n t o the t-channel physical region* 
t ? 4 m 2 ;• j- u $ 0 
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The postulate o f crossing symmetry asserts t h a t the 
amplitude thus obtained i s the physical amplitude f o r the t ~ 
channel process. Therefore the s,t snd u channel r e a c t i o n s 
may each be described by the same a n a l y t i c f u n c t i o n A(s,t,u) 
evaluated i n the appropriate region o f phase space. 
1.2 THE CONTINUATION TO COMPLEX ANGULAR MOLiENTUM 

The angular momentum s t r u c t u r e of s c a t t e r i n g 
amplitudes has long formed a basis f o r experimental and 
t h e o r e t i c a l i n v e s t i g a t i o n . Following the work o f Regge i n 
p o t e n t i a l s c a t t e r i n g , i t v/as recognised t h a t the c o n t i n u a t i o n 
to complex values o f angular momentum provided, v i a the cross 
i n g postulate , a l i n k between the asymptotic behaviour of t h 
amplitude and i t s angular momentum s t r u c t u r e * I t i s the 
extension p.nd development o f t h i s idea t h a t forms the basic 
content of Regge thoery, where the high energy behaviour i n 
the d i r e c t channel i s i n t e r p r e t e d i n terms of the exchange 
of one or more comoosite p a r t i c l e s , or Regge poles, i n the 
crossed ( t or u) channel. 

The problem t h e r e f o r e , i s to extend the range of 
v a l i d i t y of the t-channel p a r t i a l wave s e r i e s , wMch f o r spin 
l e s s p a r t i c l e s may be w r i t t e n i n the form 

where A ( t ) i s the p a r t i a l wave amplitude o f angular- momentum 
J£ , and PCZ^) i s the Legendre f u n c t i o n o f the F i r s t Kind, 

The inverse o f (1.2) i s 
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AjU) « ^„ j M i t ^ ) ^ (1.3) 

This representation breaks down as soon as we 
encounter the f i r s t s (or u) channel s i n g u l a r i t y - t h a t i s 

(3) 
outside the enlarged Martin-Lehmann e l l i p s e .To obt a i n 
i n f o r m a t i o n about the a n a l y t i c p r o p e r t i e s o f A ( s , t ) outside 
t h i s . , r e g i o n , we replace the summation in. (1.2) by a contour 

M ) 

i n t e g r a l i n the complex angular momentum plane . . The 
p a r t i a l wave amplitudes are now (comnlex) a n a l y t i c f u n c t i o n s 
of S. close t o the r e a l a x i s , which are sub,j3ct to the 
c o n s t r a i n t 

In. order t h a t the new r e p r e s e n t a t i o n be unique 
(equation (1.4) does not gaurantee t h i s ) the continued p a r t i a l 
wave amplitudes must s a t i s f y Carlson's Theorem We shall;, 
f o r the moment,, assume t h a t a s u i t a b l e d e f i n i t i o n of A(Jt',t) 
e x i s t s . 

The step of r e p l a c i n g (1.2) by a contour i n t e g r a l 
i n the complex Jl-plane i s known as the Sommerfeld-•v/at&.on 

(1) 
transform . 

s 

A ( ? , t ) i s assumed to be a n a l y t i c i n the region close 
t o the r e a l a xis enclosed by the contour Ĉ  (shown below) so 
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only s i n g u l a r i t i e s of the integrand come from the vanishing of 
the denominator a t i n t e g e r values of £ «. Th.e argument of the 
Legendre Function i s taken to be -7JA_ t o compensate f o r the 

J! 
f a c t o r (-1) appearing i n the residue of the poles at i n t e g e r 
a. 

The c r u c i a l step i n the Regge analysis i s t o deform 
the contour —>Cg to expose the. s i n g u l a r i t i e s of A ( i , t ) , 
such as poles and cuts, f o r Re(X)>—K 

L i 

- I 

Provided the behaviour of the p a r t i a l wave amplitudes 
i s such t h a t the c o n t r i b u t i o n from the l a r g e s e m i c i r c l e 
( U|-**° ,Re(£)>- T ) can be neglected, then 

+ :fixed. poles + background. 
(1.6) 

I n (.1.6) we have e x h i b i t e d the c o n t r i b u t i o n from a 
s i n g l e Regge pole at w i t h residue \\(tJ and a s i n g l e branch 
cut running from JL- oL^) t o l*-oo w i t h d i s c o n t i n u i t y A(4/-J 
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The bfKj.cground i n t e g r a l i s the c o n t r i b u t i o n from the l i n e 

- i oc f- to + i oo — i which vanishes as Z 2 f o r Z-*•<». 

I.ip.ncV-ilstam has shown how i t i s p o s s i b l e to push the background 

to the l e f t (Re(>0 < - i ) so that the Regge terms always dominate 

the background a s y m p t o t i c a l l y . T h i s procedure i s w e l l known 
(1 3) 

1 % and a l t e r s non of the conclusions which we s h a l l draw 

from ( 1 , 6 ) . 

The i n t e r e s t i n g s i t u a t i o n i s one i n v/hich s-*«> (the 

s-channel p h y s i c a l r e g i o n ) . I n t h i s l i m i t 

and using the kinematics of Appendix one, equation (1-6) 

becomes ( n e g l e c t i n g the non Regge terras) 

•« \ A 

J 
- «* 

where s q i s a s c a l e f a c t o r , and we have absorbcc. a l l 

extraneous f a c t o r s i n t o the residue end d i s c o n t i n u i t y f u n c t i o n s 

and A • Thus the t r a j e c t o r y <x(0 completely determines the 

energy dependence of the f i r s t term i n ( 1 . 8 ) , the Itegge pole, 

term. 

We now r e t u r n to the problem of obtaining a s u i t a b l e 

d e f i n i t i o n of the p a r t i a l wave amplitudes i n which to -liiake the 

continuation provided by the Sommerfeld-VJatson transform. (A 

f u l l account of t h i s procedure f o r the general case of p a r t i c l e s 



3.0 

with s p i n can be found i n refe r e n c e (4) ) . F r o i s s a r t . and 

Gribov have shown that a s u f f i c i e n t condition f o r the r e q u i r e d 

continuation to e x i s t i s t h a t the f.landelstam r e p r e s e n t a t i o n k ; 

holds f o r the amplitude A ( s , t ) . We proceed t h e r e f o r e by w r i t i n g 

a d i s p e r s i o n r e l a t i o n i n s at f i x e d t,. i n v o l v i n g both the s and 

u s i n g u l a r i t i e s of A. 

D and D are the d i s c o n t i n u i t i e s across the r i g h t and l e f t s u ° 
hand cuts r e s p e c t i v e l y . (1.9) i s only v a l i d up to the number of 

su b t r a c t i o n s required to malce the. i n t e g r a l s converge* S u b s t i t ­

u t i n g (1»9) i n (1.3) and interchanging the order of I n t e g r a t i o n 

g i v e s 

where Q.r,(2) I s the Legendre f u n c t i o n of the second kind and 

(1.5) to be unique the l a r g e J? behaviour of the amplitude 

must s a t i s f y Carlson's theorem. The exchange f o r c e s represented 
p 

by the u - s i n g u l a r i t i e s i n (1.10) involve the usual f a c t o r (-1)' 

which also' appears i n p o t e n t i a l s c a t t e r i n g . (Lilajorana f o r c e s ) . 

This- v i o l a t e s Carlson's theorem. The way out of the d i f f i c u l t y 

i s to define amplitudes of d e f i n i t e signature $ ( = - 1) 

<*?v (1.9) Tt 

IX 

2. * f̂ «-» 4 £ 

As we have already d iacussad, f o r the continuation. 



I l ­

ea 

( l o l l ) 
4. 

Thus the signatured p a r t i a l wave amplitudes A.£(t) coincide, 

v/ith the p h y s i c a l amplitudes f o r even/odd values of k r e s p e c t ­

i v e l y . 

Looking a t the pole term i n ( 1 . 6 ) , we need to r e p l a c e 

the f a c t o r | — 1 by [ *p«t*fc) + which,in the 
L SCAATTK . J I SCv* TV« J 

high energy l i m i t , becomes 

- i i t w U ) 
^ , 

( (1.12) i s often c a l l e d the "signature, f a c t o r " ) 

So the e f f e c t of introducing signature i s to r e p l a c e 

by (1.12) i n equation (1..8) with a s i m i l a r r e p l a c e --mat 
e 

ment i n the cut term, g i v i n g 

A l l of the Regge formalism o u t l i n e d above may be 

g e n e r a l i s e d to the case of p a r t i c l e s v/ith s p i n . Problems such 

as the need f c r amplitudes of d e f i n i t e p a r i t y , kinematic s i n g ­

u l a r i t i e s and c o n s t r a i n t s and the a n a l y t i c p r o p e r t i e s of th?. 
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t r a j e c t o r y and residue f u n c t i o n s are d e a l t with i n d e t a i l i n 

re f e r e n c e ( 4 ) . 

1.3 REGGE POLES IN S-CHANNEL HSLICITY AMPLITUDES 

The f i r s t term i n (1,13) i s the co n t r i b u t i o n of a s i n g l e 

Regge pole to a t-channel h e l l c i t y amplitude. For marry purposes 

( p a r t i c u l a r l y when considering absorptive c o r r e c t i o n s ) i t i s • •• 

convenient to work i n terms, of s-channel h e l i c i t y amplitudes. 

I n p r i n c i p l e the connection between the two s e t s of amplitudes 
( ? ) 

i s provided by the h e l i c i t y c r o s s i n g matrix 0 Cohen-Tannoudji 
(5) 

et a l w r i t e the c o n t r i b u t i o n of a t-channel Regge pole to an 

s-channel h e l i c i t y amplitude, as 

where N i s the net s-channel h e l i c i t y f l i p . 

N * U»vK)-ltVts)l ( L i s ) 
and 

( l . l o ) 

The quantity t i s the value of t when Gs =0 and i c 

defined i n Appendix one. S i s u s u a l l y taken to be 1 Gev/c r-nd 

the f u n c t i o n F p (<x(t)) denends on whether the pole chooses 

sense, nonsense, e t c . . 

1.4 EXCHANGE DEGENERACY AMD NONSENSE V/ROKM SIGNATURE ZEROS 

Phenomenologically, Regge poles of opposite signature 

appear to occur i n (exchange degenerate) p a i r s such that 
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(1.17) 

where the s u p e r s c r i p t s r e l a t e to even or odd s i g n a t u r e . 

Equation (1.17) i s a statement of weak exchange 

degeneracy (EXD). Strong. EXD a l s o demands e q u a l i t y of the r e s i d u e s . 

Strong EXD therefore imposes a severe r e s t r i c t i o n on 

the pole terms i n r e a c t i o n s where a p a i r of EXD Regge poles may 

be exchanged. For example consider 

(A) V*°*\ where the f u l l amplitude i s 

(B) Y<*<\-o V<*°̂  where the f u l l amplitude i s p 

(The s i g n change i n the rho c o n t r i b u t i o n r e f l e c t s the property 

that the rho i s odd under charge conjugation.) I f strong EXD 

holds, then ( s e e ( 1 . 1 4 ) ) 

p i ? * * ) " tfU) * e."1™ ) o d d s i g n a t u r e 

* 7» 1*0 ̂  * * C"*") S0* even signature 

(7/e represent the c o n t r i b u t i o n of a Regge pole to the. f u l l 

amplitude by i t s t r a j e c t o r y l a b e l . ) 

Now assuming t h a t oe{k) and. Slfc) are r e a l f o r t < t , we 

see that the amplitude f o r (3) i s purely r e a l , w h i l s t that f o r 

(A) i s the same apart from a r o t a t i n g phase f a c t o r . 

Strong EXD therefore p r e d i c t s e q u a l i t y f o r tha c r o s s 

s e c t i o n s and zero f o r the p o l a r i z a t i o n i n both r e a c t i o n s . 

S i m i l a r r e s u l t s are obtained f o r p a i r s of processes connected 

by " l i n e r e v e r s a l " ( 4 » 6 ) . 
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Re a l 

For example :.-

-* VC 2* fc^* Ro t a t i n g 

VOp-* -re® A fc** - Real 

Vx*A W** * K* Rotating 

K > -* K ' A " K** " K* Real 

VCv\ K K Rota t i n g 

F i n a l l y consider the signature f a c t o r ( 1 , 1 2 ) . At 

r i g h t signature points ( oi even f o r <5 even e t c . ) , the denomin­

ator g i v e s a pole which i s : nofo removed by the numerator and 

must therefore, be c a n c e l l e d by a zero i n the r e s i d u e ^ ( t ) . 

Strong EXD means that we must use the same, r e s i d u e f o r both 

s i g n a t u r e s , so ^ ( t ) must have a zero a t the wrong signature 

points a l s o ( s i n c e t h i s . i s a r i g h t signature, point f o r the 

other SXD t r a j e c t o r y ) . But the c a n c e l l a t i o n of numerator and 

denominator i n (1.12) occurs automatically at wrong signature 

points l e a v i n g an o v e r a l l amplitude zero, known as a wrong 

signature nonsense zero. 

1.5 PREDICTIONS OF PURE RSGGE POLE MODELS 

I n (1.14) v/e have a simple formula which can be 

d i r e c t l y confronted with the experimental data. I t i s most 

e a s i l y t e s t e d i n the few r e a c t i o n s where the t-channel quantum 

numbers are s u f f i c i e n t l y r e s t r i c t i v e to allow the exchange of 

only a s i n g l e Regge pole. I n one such process, pion nucleon 

charge exchange (CEX), enough data e x i s t s to allow a complete 

separation of the amplitudes (see chapter two). V/e l i s t below 

other processes of this; nature together with the upper l i m i t of 

the a v a i l a b l e energy range. 



Reaction ExchangeCe) Max P i a h (Gev/c) 

A 

48 (200) 

n 

n 

v. 

o 50 (200) 

10 

4.25 

We have i n d i c a t e d i n brackets a f t e r the f i r s t two react­

ions the energy range which w i l l soon be a v a i l a b l e from the MAL 

machine. 

ence of the Regge pole c o n t r i b u t i o n are coii'pletely f i x e d once 

we have s p e c i f i e d the t r a j e c t o r y o t ( t ) , provided c<(t) avid 

If ( t ) are both r e a l . Furthermore, they are independent of a l l 

h e l i c i t y l a b e l s , so t h a t i n a given r e a c t i o n , a l l h e l i c i t y 

amplitudes corresponding to the exchange of a p a r t i c u l e r Reg^e 

pole have i d e n t i c a l phase and energy dependence, \'!e s h a l l 

r e t u r n to the question of determining & ( t ) from the experiment­

a l data i n chapter two. The phase • r e s t r i c t i o n predict?? that 

the p o l a r i z a t i o n should be zero I n the process shown i n the 

t a b l e above,if we allow only Regge pole exchange. T h i s simply i s . 

because p o l a r i z a t i o n s depend on the r e l a t i v e phases of h e l i c i t y 

amplitudes through formulae such as (A1.12). 

( 1 . 1 4 ) . There i s now overwhelming evidence to support the 

conjecture that Regge poles al one are not the only s i n g u l a r i t i e s 

which contribute to high energy s c a t t e r i n g amplitudes,and that 

Regge cuts a r i s i n g from the second term i n (1.13), are al.so 

important. V7e l i s t below some of the p r e d i c t i o n s of pure Regge 

Returning to (1.14), both the phase and energy depend-

The experimental data provides many severe te s t s of 
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pole exchange which are i n d i r e c t c o n f l i c t with the d a t a ^ . 

( i ) The non zero p o l a r i z a t i o n o.berseved i n irN C E X ^ 

i s a.- d i r e c t i n d i c a t i o n of some other c o n t r i b u t i o n besides the 

rho pole. T h i s could ; be a secondary t r a j e c t o r y or i t could be 

a cut. 

( i i ) The f a i l u r e of the omega "crossover zero" (see 

chapter two) i n pp and pp to propagate, v i a f a c t o r i s a t i o n , , i n t o 

other processes such as rr/v/-*/*^ or which are 

a l s o dominated by omega exchange. Since cuts do not need to f a c t -

o r i s e , the ad d i t i o n of a d e s t r u c t i v e cut which generates the zero 

by pole-cut i n t e r f e r e n c e obviates t h i s . A l t e r n a t i v e l y we could 

invoke a lower l y i n g iS t r a j e c t o r y and form the zero by i n t e r ­

f erence between i t and the cu 0 I n t h i s case we would expect 

the zero to move to l a r g e r v a lues of l t | as the energy i n c r e a s e d , 

( i i i ) The.high energy ( P - , 20 Gev/c) t o t a l c r o s s 
xaO' 

s e c t i o n data^"*"^ d i s a g r e e s with the e x t r a p o l a t i o n of low energy 

energy f i t s done with simple pole models. l a p a r t i c u l a r , these 

f i t s p r e d i c t a constant t o t a l cross s e c t i o n a t high energy 

coming from Pomeron (P) exchange, w h i l s t the data e x h i b i t s a 

broad minimum ( O^Q-^PP) ) over the Serpukhov energy range, 

followed by a d i s t i n c t r i s e through the. NAL and ISR ranges. One 

explanation i s the presence of d e s t r u c t i v e cuts which die away 

l o g a r i t h m i c a l l y to i s o l a t e the Pomeron pole c o n t r i b u t i o n . How­

ever <ypW>>l i s a l s o a p o s s i b l e , i f s l i g h t l y more c o n t r o v e r s i a l 
(11) explanation v 

( i v ) The f a i l u r e of NWSZ to appear i n r e a c t i o n s r e l a t e d 

by f a c t o r i s a t i o n , i s a l s o evidence to support the i n c l u s i o n of 

important (non f a c t o r i s i n g ) cut c o n t r i b u t i o n s . For example the 

NWSZ of the rho t r a j e c t o r y , which i n pole models accounts f o r 
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o 

the clip at t^O.G (Gev/c)'" i n Tr"j-W« does not appear i n 

^•^-rfyj^ which i s a l s o dominated by rho exchange. The presense 

of a lower l y i n g 3 c o n t r i b u t i o n i n the l a t t e r r e a c t i o n lias a l s o 
( 1 ? ) 

been invoked to ex p l a i n the absense of a dip 

(v) The data on T T V and np-*»pn shows a prominent 

peair i n the forward d i r e c t i o n of width ~m n Both processes 

are dominated by tt exchange which,because of i t s p a r i t y must 

decouple at t=0. The pole model therefore p r e d i c t s a forward 

dip. A pion conspirator seems to v i o l a t e f a c t o r i s a t i o n , but a 

d e s t r u c t i v e -r*®P cut again provides an answer. 

( v i ) As we have mentioned, strong EXD p r e d i c t s e q u a l i t y 

of the d i f f e r e n t i a l c r o s s s e c t i o n s f o r p a i r s of processes 

connected by l i n e r e v e r s a l . Experimentally the r o t a t i n g phase 
(C3) 

r e a c t i o n l i e s above the r e a l r e a c t i o n i n most cases by an 

amount which r e q u i r e s a s u b s t a n t i a l breaking of EXD i n pole 

models. Furthermore, to ex p l a i n the p o l a r i s a t i o n r e q u i r e s 

secondary t r a j e c t o r i e s . V/e might hope t h a t cuts would v i o l a t e 

EXD i n such a way us to r e c o n c i l e theory and experiment, 

1.6 HEGGE CUTS 

As we have seen, Regge cuts are very d e s i r a b l e o b j e c t s 

phenomenologically, providing at f i r s t s i g h t a simple and 

appealing way out of s e v e r a l problems inherent i n the pure pole 

models. Most of the t h e o r e t i c a l understanding of Regge cuts has 
(13) 

r e l i e d upon the Feynman diagram approach . The most common 

method i s to use the "weak coupling l i m i t 1 ' to examine the 

a n a l y t i c s t r u c t u r e of the diagrams i n perturbation theory and 

to hope t h a t the r e s u l t s may hold true i n the strong i n t e r a c t i o n 

context. 

I n a d d i t i o n to the obvious argument that there i s no 

reason why Regge cuts should not be present an3 furthermore give 
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important c o n t r i b u t i o n s to the f u l l s c a t t e r i n g amplitude, 
(14) 

Mandelstarn demonstrated that cuts are instrumental i n removin 

many of the d i f f i c u l t i e s caused by f i x e d J-plane s i n g u l a r i t i e s 

a t nonsense points of the amplitude^'^. These a r i s e from any 

diagram which has a t h i r d double s p e c t r a l f u n c t i o n ( d . . s . f . ) . 

A t h i r d d.s.f„ i s also e s s e n t i a l i f we are to generate a true 

Regge c u t . The simp l e s t Feynman diagram which does t h i s i s the 

"double c r o s s " graph shown below, where the "bubbles" are 

complex s c a t t e r i n g amplitudes. 

I f the asymptotic co n t r i b u t i o n to the bubbles i s taken 

to be Regge pole exchange, then the f u l l diagram g i v e s a two-

R.eggeon cut. . 

I t has been demonstrated that the t - i t e r a t i o n s of 

t h i s diagram are important i n "softening" the nature of the cut 

( i . e . f o r c i n g the d i s c o n t i n u i t y to va n i s h a t the t i p of the cut) 

and i n removing the d i f f i c u l t i e s presented by the s i n g u l a r i t i e s 

mentioned above - i n p a r t i c u l a r the Gribov-Porneranchuk f i x e d pol 

at J = - l . The i n s e r t i o n of such a s i n g u l a r i t y i n t o the t-channel 

u n i t a r i t y equation f o r the p a r t i a l wave amplitudes, 

A , t t > - A * 5 . U ) . A 3 U > ft*. fcjj ( 1 . 1 9 ) 

means that i t i t e r a t e s u t i l i t eventually becomes incompatible 
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(8) with Maximal A n a l i t i c i t y i n J . Apart from g i v i n g a Itegge cut 
diagrams such as the one above have branch points which l i e 
along the u n i t a r i t y cut i n such a way that A T and A** must be. 
evaluated on opposite s i d e s of the cut. Since the f i x e d pole 
i s present only i n Aj- , i t remains a pole and i s eventually 
c a n c e l l e d i n the physical, amplitude by the. signature f a c t o r * 

Amati, Fubini'and S t a n g h e l l i n i ^ 1 6 ^ (APS) looked at 

Feynmsn diagrams of the type shown below, the e s s e n t i a l f e a t u r e 

of which i s t h e i r planar topology* 

n 

i m 

That t h i s diagram does not generate a Regge cut on. trie 
*• -"' 4. ̂  

p h y s i c a l sheet was demonstrated e x p l i c i t l y by MandelstanT J""/. 

I n f a c t i+- g i v e s a c o n t r i b u t i o n which,asymptotically,. goarj like; l o g ( s ) (17) . The AFS mistake was i n t a k i n g j u s t the t\vc-~ 

p a r t i c l e d i s c o n t i n u i t y term {^GCZI&C. ) i n "the u n i t a r i t y 

equation, which i n f a c t behaves l i k e ( l o g ( s ) ) 8°*°^ ^ 

(moving c u t ) . I n c l u d i n g the f u l l spectrum of intermediate 

s t a t e s ^ ̂ ^ f ^ ^ C ) sees a c a n c e l l a t i o n of t h i s term and the 

diagram has the f i x e d cut behaviour given above. 

There are therefore,general arguments i n favour of 

Regge cuts i n any theory which has a non zero t h i r d d.s.f.. 

Mandelstam's a n a l y s i s d e t a i l s the f o l l o w i n g s p e c i f i c p r o p e r t i e s 

of•Regge c u t s : -

( i ) I f the i n d i v i d u a l exchanges i n the two Reggeon cut 

are represented by Regge poles with t r a j e c t o r i e s ( x ^ t ) and (X..>C 



then the branch point t r a j e c t o r y i s given by 

(1.20) 

where 

(1.21) 

I f the input t r a j e c t o r i e s are l i n e a r f u n c t i o n s of t 

(1.22) 

then i t can e a s i l y be shown that the c o n s t r a i n t (1.20) leads 

to the cut t r a j e c t o r y 

the Pomeron which has oip(O) = 1, then the p o s i t i o n of pole 

and cut coincide at t = 0. Equation (1.23) can readiDy be 

g e n e r a l i s e d to the case where more than twc Reggeons are 

exchanged. Again, the Regge pole (R) and i t s n-Pomeron cut 

(R 0 P n ) coincide at t = 0 . 

we obtain the r e l a t i v e energy dependences (up to possible, 

f a c t o r s of l o g ( s ) ) shown belcw f o r the two-Pomeron, Reggeon-

Pomeron and two-Reggeon c u t s . 

) t 0/ to) * biA*>) - \ + (1o 20) 

Thus i f one (or both) of the exchanged Reggeons i s 

Taking the t y p i c a l Reggeon and Pomeron t r a j e c t o r i e s 
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w i t ; 

•o 

<*s©P 

0-5 8'0 to 

C i i ) The signature of the two-boson cut i s simply the 

product of the signature f a c t o r s f o r the i n d i v i d u a l exchanger-.. 

"&c * 5, &a, (1,21) 

(For the two-baryori cut "&e,-"'S,&i) 

( i i i ) Although Regge poles have d e f i n i t e p a r i t y , 

c uts may contribute to both p a r i t i e s because of the o r b i t a l 

angular momentum (-1) . 

( i v ) Cuts do not f a c t o r i s e . 

1.7 ABSORPTIVE CORRECTIONS TO RSGGB POLES 

A conceptually appealing way of thin k i n g about Regge 

c u t s , i s i n terms of m u l t i p l e r e s c a t t e r i n g or absorptive 

c o r r e c t i o n s . The b a s i c Regge pole exchange i s modified bv 

e l a s t i c s c a t t e r i n g - u s u a l l y represented by the Pi.>meron - in-

e i t h e r the i n i t i a l or f i n a l s t a t e . For example, we consider 

diagrams such as 

2 
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Experimentally, most of tire i n e l a s t i c two-body cro s s 

s e c t i o n i s p e r i p h e r a l i . e . the dominant co n t r i b u t i o n i s from 

impact parameters corresponding to the surface of the t a r g e t 

hadron ( b ^ l fm.). Conversely, high m u l t i p l i c i t y c o l l i s i o n s 

r e s u l t from the p r o j e c t i l e s t r i k i n g the centre of the t a r g e t . 

Nov:, the impact parameter decomposition of a Regge pole amplitude 

such as (1.14) with net h e l l c i t y f l i p N i s 

A^IO - j bai> s ^ O ^ T ) ( i . 2 5 ) 
© 

T h i s formula w i l l be derived i n d e t a i l i n chapter t h r e e . 

However, f o r a simple exponential r e s i d u e , a Regge pole has an 

impact parameter p r o f i l e A^ T(b), which i s peaked at small b. 

The a d d i t i o n of absorptive c o r r e c t i o n s , which allow f o r the 

p o s s i b i l i t y of c r e a t i n g high m u l t i p l i c i t y f i n a l s t a t e s at s.uc.11 

b, tends to damp out the low p a r t i a l waves to give an impact 

parameter p r o f i l e which i s more p e r i p h e r a l (coming frc:a a r i n g 

of r a d i u s R, with R ~ l fm). 

The r e s u l t i n g t dependence i s c h a r a c t e r i s t i c of the 

B e s s e l f u n c t i o n , producing a t y p i c a l d i f f r a c t i o n s t r u c t u r e with 

the p o s i t i o n s of the dips c o n t r o l l e d by the index c f the B e s s e l 

f u n c t i o n and the parameter R. I n f a c t f o r R ~ i fm.y the f i r s t 

zero of the S e s s e l f u n c t i o n with N=C occurs at t ~ - 0.2 (Gev/c)", 

w h i l s t f o r N=l i t i s at t ~- 0.6 ( G e v / c ) 2 . These axe i n 

remarkable agreement with the p o s i t i o n of the crossover zero 

and the dip i n the pion-nucleon CSX d i f f e r e n t i a l c r o s s s e c t i o u . 

There I s a l s o evidence to support a f u r t h e r isero i n the imaginary 

part of the non f l i p amplitude at t ~ - 1.2 ( G e v / c ) 2 ( 1 S ) which 

again c o r r e l a t e s n i c e l y with the second zero of J n . 
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Also, the strongest low energy resonances appear to 

occur i n the p e r i p h e r a l band of p a r t i a l waves, by which we mean 

those f o r which A «- P R , with R ~ l fm. D u a l i t y then l e a d s us 
cm ' 17 

to expect strong c o r r e c t i o n s to Regge poles, v/hich alone, are 

non-peripheral. 

The e a r l y attempts to c a l c u l a t e absorptive c o r r e c t i o n s 

were based on the Sopkovich p r e s c r i p t i o n ^ ^ , i n which the quantum 

numbers are c a r r i e d by the Regge pole and absorption i s included 

by m u l t i p l y i n g each p a r t i a l wave by the square root of the 

e l a s t i c S-matrix to account f o r e l a s t i c s c a t t e r i n g i n the i n i t i a l 

and f i n a l s t a t e s . T y p i c a l l y , t h i s i s assumed to be adequately 

described by the Pomeron and we end up with ( s c h e m a t i c a l l y ) 
(t.fc) e Aft + t A ? U . O ® A^U.O ( 1 ,20) 

I n t h i s equation, the symbol *&' repr e s e n t s a convolution 

such as 

where 

x = -tx - - k.\ 4 a t b , • a t t ^ * afc,fe*. (1.28) 

The r e s u l t of convoluting two exponentials, such as appear 

i n a t y p i c a l Regge r e s i d u e , i s 

C * * l » . 0 ® **\{^^) -v ^ k ) (1.29) 

A f i n a l point concerns the s t r u c t u r e of the rosidue 

tfu ( t ) i n the b a s i c Regge pole terra M..14). There are tv;o 
s 

p o s s i b i l i t i e s , which give r i s e to two d i f f e r e n t cut models. 
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( i ) The strong cut modelt 

The Michigan group argue that the t s t r u c t u r e 

observed i n two-body s c a t t e r i n g i s mainly a geometric e f f e c t , 

c h a r a c t e r i s t i c of d i f f r a c t i o n from the surface of the t a r g e t 

hadron. The pole r e s i d u e s are then simple, exponentially 

decreasing f u n c t i o n s of t and a l l s t r u c t u r e i s a product of 

pole-cut i n t e r f e r e n c e . To f i t the data i t i s then necessary to 

mu l t i p l y the cuts (the second term i n (1.26) f o r example) by a 

constant, "X , which i s i n t e r p r e t e d as allowing f o r the p o s s i b ­

i l i t y of d i f f r a c t i v e l y produced intermediate s t a t e s . T y p i c a l l y , 

"X ~ 1.5-3.0 to f i t the data, hence the name " Strong Gut 
(19 y 

Reggeised Absorption Model " or SCRAM, 

( i i ) The we ale cut model: 
(en) 

An a l t e r n a t i v e approach la to a s s e r t that 

the Regge pole i s the main co n t r i b u t i o n to the s c a t t e r i n g 

amplitude and as such d i c t a t e s the t dependence, which i n only 

s l i g h t l y modified by the (weaker) c u t s . K'H's i n the poles are 

f i l l e d i n by the cuts to y i e l d dips i n the d i f f e r e n t i a l c r o s s 

s e c t i o n ; 3T.XD adds p r e d i c t i v e power to t h i s approach* The nonsense 

f a c t o r s mean that the pole changes s i g n w i t h i n the region of 

i n t e g r a t i o n i n (1.26) g i v i n g r i s e to c a n c e l l a t i o n s w i t h i n the 

i n t e g r a l , and cuts that are weaker than I n SGRAM. 

I t i s now c l e a r from (1.26) how ..cuts i n t e r f e r e with 

the pole terms i n a d e s t r u c t i v e f a s h i o n . Since the Pomeron. i s 

mainly imaginary ( a t l e a s t near to t - 0),tue r e s c d t t e r i n g 

c o r r e c t i o n s w i l l be approximately 180° out of phase with the 

pole. Also (1.29) suggests that the cuts w i l l d i e away l e s s 

r a p i d l y than the pole as we go to l a r g e r values of | t j c '̂e 

therefore have a model i n which the pole dominates near t = 0, 
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with the cuts becomuiing r e l a t i v e l y more important and p o s s i b j y 
c a n c e l l i n g the pole at l a r g e | t l . 

However, there are severe! t e c h n i c a l d i f f i c u l t i e s 

inherent, i n the absorption model approach. Mandela tarn 1 s work 

has emphasised the importance of the non planar nature of the 

r e s c a t t e r i n g diagrams i n obtaining a true moving cut i n the J -

plane i n s t e a d of a f i x e d (AFS) cut. The diagrams which we oVew 

to motivate.the absorption model are nonetheless d e f i n i t e l y 

p l a n a r . 

The absorption model also generates "hard c u t s " , Thir. 

means that the d i s c o n t i n u i t y A ( J , t ) i n (1,13) i s f i n i t e &r. the 

t i p of the cut J=«,(t). Bronsan and Jones have shown tha-o 

such a behaviour i s incompatible wit.'n t- fih? jnael u n i t y r i t y which 

i n f a c t f o r c e s the d i s c o n t i n u i t y to va n i s h at t h i s point. 

T i n a l l y , there i s a l s o the problem of whether the . 

input Regge pole already i n c l u d e s ( i n p r i n c i p l e ) some absorptive 

c o r r e c t i o n s , s i n c e t h i s already r e c e i v e s c o n t r i b u t i o n s from 

m u l t i p a r t i c i e intermediate s t a t e s i n the unitari'vy integral.. I n 

the O p t i c a l P o t e n t i a l Model developed by Arnold' , the eikonal 

phase s h i f t , X, ('to be defined i n chapter t h r e e ) i s l i n e a r l y 

r e l a t e d to the o p t i c a l p o t e n t i a l . A Regge pole g i v e s a c o n t r i b ­

u t i o n to Im X , which therefore corresponds to absorption o f 

f l u x from the input beam i n t o various other competing channels 

besides the ona under c o n s i d e r a t i o n . Thus i n c l u d i n g both ths 

Regge pole and absorptive c o r r e c t i o n s may lead to double counting, 

i n the eikonal model, the non planar s t r u c t u r e oiT the diagrams 

avoids t h i s problem-

To conclude t h i s chapter we mention two p r e d i c t i o n s of 

the absorption model. The f a i l u r e of these to be sub s t a n t i a t e d by 



experiment (as we s h a l l see i n the next c h a p t e r ) , .indicates Lhe 

kind of phase mo d i f i c a t i o n s required by the model. 

( i ) The naive absorption model p r e d i c t s approximately 

equal absorption at small I t I i n both the r e a l and imaginary 

part of the input pole amplitude. Consequently, i f we use the 

Ji E P cut to produce the crossover zero (Im A J H. - 0 at 

t ~ -0,2 (Gev/c) ) i n pion-nucleon CEX, we are forced to accept 

a s i m i l a r zero i n the r e a l part of the non f l i p amplitude. One 

consequence of t h i s i s a l a r g e negative spilce i n the predicted 

p o l a r i z a t i o n i n the region 0.2 4 lt|£0.6 ( G e v / c ^ 1 < 3 t ^ \ 

( i i ) I n s e c t i o n 4 we l i s t e d p a i r s of r e a c t i o n s i'nvolvin 

v e c t o r and tensor meson exchanges which are connected by l i n y 

reversal„ From- equation ( 1 . 2 6 ) , i t i s c l e a r that i n the " r e a l " 

process, pole and cut w a l l be e x a c t l y 180° out of phase (th?. 

Pomeron i s assumed' to be pure imaginary). T h i s w i l l c l e a r l y not 

be so i n the r o t a t i n g case. I n addition, c a n c e l l a t i o n s may occur-

w i t h i n the i n t e g r a l s ( (1.27) ) i n the l a t t e r case which w i l l 

f u r t h e r reduce- the e f f e c t i v e n e s s of the pole-cut cancellation-,. 

We therefore expect the f u l l amplitude (pole plus d e s t r u c t i v e 

cut) to be l a r g e r i n the r o t a t i n g case. The data shows 

(6) 

f o r the hypercharge exchange cases , i n d i r e c t c o n t r a d i c t i o n 

to the predicted behaviov.r. The p a i r 

K'p s> V<° A r o t a t i n g 

~ * * ° ? r e a l 
achieve e q u a l i t y at about 5.0 Gev/c c o n s i s t e n t with strong EXD, 

but below t i i i s energy the disagreement i s i n th.: same'direction 
as ( 1 . 3 0 ) , 



CHAPTER TWO 



2.1 INTRODUCTION 
I n the major pa r t of t h i s work we s h a l l seek to 

use the abundance of good data which now e x i s t s over a wide 

range of s and t on the two r e a c t i o n s 

(A) n'n ( irrt CSX) 

(8) <p --̂> •w6' p» 

to c r i t i c a l l y examine v a r i o u s Regge cut m o d e l s P o l a r i s a t i o n 

measurements and F i n i t e Energy Sum Hula a n a l y s i s , bath' 

u s e f u l in. f i x i n g the d e t a i l e d phase s t r u c t u r e of the amplitudes 

e x i s t f o r both r e a c t i o n s . K i n e m a t i c a l l y the two r e a c t i o n s are 

very s i m i l a r - the dominant amplitude being s p i n f l i p (N--1) i n 

both c a s e s . However, i n (B) the f l i p occurs a t the tf* vertex 

ensuring that a d i f f e r e n t r e l a t i o n s h i p between pole-: and cut i s 

req u i r e d to obtain the c o r r e c t phases. The photooreduction 

r e a c t i o n can have 'J=0, 1 or 2, and t h i s r i c h amplitude struo'-ur 

i s a severe t e s t of any cut model. 

We s h a l l apply our models mainly to (A) and C3), but 

w i l l i n f e r from other g l o b a l f i t s ^ 2 ~ ? A ^ th a t , given SU(3) and 

approximate exchange degeneracy, any model wnich s u c c e s s f u l l y 

d e s c r i b e s these two processes a l s o g i v e s a reasonable f i t to th 
_. J.. + 

wider c l a s s of 0 + -£ — * 0 + -H: r e a c t i o n s and those r e l a t e d 

to (3) by SU(3) and vector dorninancec However, to support 

arguments which we s h a l l present concerning the energy depend.en 

of Regge cu t s , i t w i l l be u s e f u l to consider data from a much 

wider s e t of processes. 
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2.2 THE JGACTION n'p-* 

The d i f f e r e n t i a l c ross s e c t i o n fo-r t M s process i s 

remarkably w e l l f i t t e d i n both i t s s and t dependence, by a 
(9 5) 

simple pole model i n which the rho chooses sense v"' 1 . Then the 

presence of cx^Ct) i n the. dominant s p i n f l i p amplitude accounts 

f o r the observed dip at t^-O.G (Gev/c)'", and the f l i p to non-

f l i p r a t i o provides the marked turnover i n the forward d i r e c t i o n . 

The new data f o r the Serpukhov a c c e l e r a t o r range ( P-j.ab^ 50 

Gev/c, l t l ^ ' 1 . 5 ('Gev/c) ) i s s t i l l i n good agreement with t h i s 
2 

p i c t u r e . I n p a r t i c u l a r the dip remains f i x e d at t ~ -0.6- (Gev/c) , 

strongly suggesting that i t i s not due to a pole-cut c a n c e l l a t i o n 

mechanism i n the s p i n f l i p amplitude (SCRAM). I n t h i s case we 

would expect the dip to move to smaller values o f I t I as the 

r e l a t i v e importance of the cut inc r e a s e d with energy. 

Phis i s supported by the energy dependence of the d i f f ­

e r e n t i a l cross s e c t i o n as represented by the quantity (* e£f( +'} 

defined i n appendix two. A p l o t of t h i s " e f f e c t i v e " t r a j e c t o r y 

f o r the Serpukhov and other low energy data i s shown i n f i g . 

(2.1) ^ 2 6 ^ . Whithin the e r r o r s i t i s i n complete agreement w i t h 

a l i n e a r rho t r a j e c t o r y . Two i n t e r e s t i n g conclusions can be 

drawn from f i g . (2.1) 

( i ) I n a l l the " c o n v e n t i a l " eikonal/absorptive 

models of Regge cu t s , the dominant J)R P cut has the approximate 

t r a j e c t o r y 
or ( t ) « 0.5 + 0.2 t (2.1) 

i f , as i n chapter one, we take &j>(t) - 0.5 + t and 

OfpfO " 1.0 + 0»3 t . The data i s i n c o n s i s t e n t with e i t h e r 

a weak or strong cut model i n which the cuts have the branch 
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i j o i n t t r a j e c t o r y ( 2 . 1 ) , I n p a r t i c u l a r the (strong cut) model of 
(? 7 ) 

C o l l i n s and Swetman v" , discussed' i n more d e t a i l i n chapter three, 

g i v e s the 0 / o f f shown i n f i g . ( 2 , 2 ) . For I t ! > 0.6 ( G e v / c ) 2 the 

shrinkage observed i n the data i s much stronger than i s a n t i c i p ­

ated on the b a s i s of t h i s model. 

( i i ) The s t r u c t u r e i n f i g . (2,.2) i n the dip 
region t ~ -0.6 (Gev/c)" i s a general f e a t u r e of a l l convential 

(?&) 

cut models , w h i l s t the data e x h i b i t s no such d e v i a t i o n from 

l i n e a r i t y . 
Using the l a r g e | t | data a v a i l a b l e at S-.-67 and 4.33 

Gev/c, Barger and P h i l l i p s have obtained, an o< f o r ir'^-^-r-"^ 
eft 1 

p (pq \ 
out to t ~ - 5 . 0 (Gev/c) v . T h e i r t r a j e c t o r y i s reproduced 
i n f i g . ( 2 . 3 ) . Again the slope i s ' i n remarkable agreement with 

—2 

Up'* 1 (Ge-»"/c) „ However, one must be c a r e f u l when seeking to 

apply Regge theory at such l a r g e v a l u e s of i t | t f o r such low 

val u e s of s . For example, at P-^^ 5 Gev/c, 6^- 60° c o r r e s p o n d 

to t ^ - 2 . 3 ( G e v / c ) 2 , w h i l s t t ~ - 5 . 0 ( G e v / c ) 2 i s w e l l i n t o thss 

backward d i r e c t i o n . 

Thus, i n pion nucleoli CSX there i s good evidence to 

suggest t h a t the J 5 t r a j e c t o r y continues to "shrink" out to very 

l a r g e v alues of I t I , i n apparent c o n t r a d i c t i o n to t r a d i t i o n a l 

cut models. V/e s h a l l see l a t e r i n t h i s chapter,that t h i s appears 

to be a u n i v e r s a l f e a t u r e of a l l 0" + i + — * 0 ~ % + data. 

As we mentioned i n chapter one, the measurement of" a 

non zero p o l a r i z a t i o n i n TTW C E X ^ 0 ^ was instrumental i n f o r c i n g 

phenomenologists to think s e r i o u s l y about Regge outs. Furthermore, 

the f a c t t h a t the p o l a r i z a t i o n i s p o s i t i v e f o r 0 & | t | f 0.5 

(Gev/'o)f'J, means that the amplitude phases predicted on. the b a s i s of 

the absorption model using weak or strong cuts^ - 9> 2°) B r e a i s o 
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i n c o r r e c t . S u f f i c i e n t data now e x i s t s at 6.0 Gev/c f o r the 

e l a s t i c and charge exchange r e a c t i o n s to allow a complete. 

decomposition of the i s o s p i n amplitudes (defined i n appendix one) 
(31) 

up to an o v e r a l l phase v '. We s h a l l attempt to o u t l i n e b r i e f l y , 

how the data f i x e s the s t r u c t u r e of the I.^= 1 amplitude. 

In TT/V/ s c a t t e r i n g , the 1^= 0 amplitude i s w e l l d e s c r i b e d 

by a sum of P and P' exchanges. As expected | A ^ . , J » | A ° _ _ | , 

and a l s o J R e A ° + 1 « |lvnA°+1 ; ImA° + i s strongly peaked i n the 

forward d i r e c t i o n and has no zeros at l e a s t out to t'^--0.8 (Osv/c) 

With t h i s behaviour of the 0 amplitude, the data f o r c e s 

the 1^=1 exchange amplitude to e x h i b i t the f o l l o w i n g q u a l i t a t i v e 

f e a t u r e s o -

( i ) The crossover zero. 
The TT~̂ > e l a s t i c , d i f f e r e n t i a l cross s e c t i o n s 

2 
are equal at t ~ -0.2 (Gev/c) . I f the .1^ = 0 component ha,-» the 

gross f e a t u r e s i n d i c a t e d above, then 

£ - * ~ a : , x m a ; . 

where a l l the r e l e v a n t amplitudes are defined i n appendix one. 

The l a c k of s t r u c t u r e i n A° f o r c e s a zero i n ImA?". i n order 
++ ++ 

to e x p l a i n t h i s e f f e c t . T h i s i s the crossover zero which i s 
o 

a l s o observed at. G . l ^ | t | ^ 0 . 2 (Gev/c) i n FESR a n a l y s i s . 

( i i ) Using s i m i l a r reasoning, the e l a s t i c p o l a r i z a t i o n s 

are given approximately by 

P ( * * p ) 1<v, A ^ & a . A^„ ( 2 o 3 ) 

(39 ) 

The data has two s t r i k i n g f o a t u r e s . F i r s t l y , there i s almost 

p e r f e c t mirror symmetry between the i r + p and the -,T"~p which, 

i m p l i e s that the second term i n (2.3) dominates. Secondly, there 
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i s an approximate double :<,ero i n the data near t-^-0.5 (Gev/o) 

i n d i c a t i n g a s i m i l a r behaviour f o r Re A;^. 

( i i i ) The CEX p o l a r i s a t i o n i s given " e x a c t l y " by 

(2.4) 

Now s i n c e the crossover zero f o r c e s the f i r s t term to v a n i s h 
p 

at t ^ - 0 . 2 ( C e v / c ) ^ , the s i g n of the p o l a r i s a t i o n g i v e s us 

d i r e c t l y the s i g n of the second term. A l l Regge models have a 

s i n g l e zero i n ImA to e x p l a i n the dip i n the d i f f e r e n t i a l 
o 

cro s s s e c t i o n at t«v -0.6 (Gev/c)'"", but no zero f o r | t | $ 0 . 5 

(Gev/c) e Therefore, the l a r g e p o s i t i v e p o l a r i s a t i o n observed i 

TV N CEX f o r |t | « 0.5 ( G e v / c ) 2 means that KeA^ + must not 

change s i g n i n t h i s r e g i o n . We s h a l l comment on the consequr.nc-.u 

t h i s has f o r cut models l a t e r i n t h i s chapter. 

Hence, the 1^ - 1 amplitudes which we s h a l l take to be 

given by the rho pole plus i t s c u t s , must have the f o l l o w i n g 

s t r u c t u r e a t 6.0 Gev/c. Im A. 

Re A 

1 
++ 
1 

Im A 

Re A 1 +-

A zero at t«v-0.2 (Gev/c) 2 

No zero f o r | t | S 0 . 5 (Gev/c)" 

A zero at t ̂ -O.e (Gev/c)" 

An approximate double zero near 

t~-0„5 ( G e v / c ) 2 

I t . i s immediately apparent t h a t the f l i p amplitude 

has e x a c t l y the phase s t r u c t u r e expected of a nonsense choosing 

pole, w i t h r e l a t i v e l y minor modifications coming from the cu 

The ncn f l i p amplitude has no such i n t e r p r e t a t i o n and so 

presumably r e c e i v e s appreciable cut c o r r e c t i o n s . T h i s supportz 

the view t h a t absorption i s more important i n non f l i p 

a m p l i t u d e s ^ 3 3 \ 
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The FESR a n a l y s i s of E l v a k a j e e r , I n ami and Ring!and v ; 

suggests that the rho pole continues to dominate the non f l i p 
o 

amplitude out to t ~ - 2 . 5 (Gev/c) . I n f a c t they observe zeros 

i n Im A ; J . _ at t ~ ~ 0 . 5 , -1.4 and -2.5 ( G e v / c ) 2 , with double 
zeros at t ~ -0.5 and -2.5 (Gev/c) J. Again,this i s p r e c i s e l y 

the behaviour we expect fror. a nonsense choosing rho pole with 

n e g l i g i b l e cut c o r r e c t i o n s . 
p 

Beyond t ~ - 0 . 6 (Gev/c) ' there does not e x i s t a 

complete s e t of experimental observables with which to perform 

a model independent a n a l y s i s of the amplitudes. However, i n view 

of the pole dominance of the f l i p amplitude., i t i s p o s s i b l e to 
('V) 

use a model dependent approach. Elvaka.jeer et a l assumed that 

the phase c f the s p i n f l i p .amplitude i s w e l l represented by the 

rho signature f a c t o r w ith o t j ^ t ) = 0.5 -i- t . They were then 

able to e x t r a c t the non f l i p amplitude f o r 0.8 £ |t | £ 1*4 

(Gev/c)° 0 Two of t h e i r conclusions are r e l e v a n t to t h i s 

d i s c u s s i o n . 

( i ; There i s evidence of a second zero i n Im A,' at 

t *v -1.2 ( G e v / c ) 2 . 

( i i ) With some e x t r a assumptions i t i s p o s s i b l e to 

estimate ^eff^^ ~£°r j ^ s t the non f l i p amplitude A + + *• .Within 

understandably l a r g e e r r o r s t h i s i s again c o n s i s t e n t with the 

normal rho t r a j e c t o r y and shows strong shrinkage i n t h i s r e g i o n , 

i . e . 
£x0-P.pU) ~ ( X B ( t ) ( C . 8 £ | t U l . 4 (Gev/c.) 2) (2.5) 

e x i non f l i p r 

F u r t h e r i n s i g h t i n t o the s t r u s t u r e of Im A + + i n other 

r e a c t i o n s may be extracted from a more d e t a i l e d examination of 

the data on e l a s t i c TVN, KN and M d i f f e r e n t i a l cross s e c t i o n s . 

Equation (2.2) shows how we can i s o l a t e I'm A J + i n TTM CSX, 
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which r e c e i v e s c o n t r i b u t i o n s from j u s t rho exchange. 

Unfortunately the rTp d i f f e r e n c e i s so small (approximately 

4 mb at. t - 0 and P l a b = 5.0 Gev/c), because of the l a r g e f l i p 

to non f l i p r a t i o of the rho coupling to NN, that f u r t h e r a n a l y s i s 

i s very d i f f i c u l t . However, t h i s i s not the case i n KN and NN 

scattering,, For example, i f we represent the co n t r i b u t i o n of a 

p a r t i c u l a r exchange to the f u l l amplitude by i t s t r a j e c t o r y 

l a b e l , then 

A(K +p) = P + P* + A g t CO ± f 

Since the omega coupling to NN i s mainly non f l i c , the d i f f e r e n c e 

i n t h i s case i s appreciable (15 mb at t ~ 0 and P j a b
= 5.0 Gev/c). 

Furthermore, i f v/e assume that 

( i ) the K*p forward d i f f e r e n t i a l cross s e c t i o n s ar-s 

dominated by the non f l i p amplitude, 

( i i ) the P,P r and to have mainly non f l i p couplings, 

( i i i ) the and A 0 couple mainly to f l i p amplitudes, 

( i v ) the co n t r i b u t i o n (P+P r) i s predominantly imaginary 

at small t , t h en 

^ ( K ^ p ) * * |P + P'| 2 + M 2 * 2 Im(P+P s )Im6J + + (2.6) 

and the. c o n t r i b u t i o n may be i s o l a t e d using the combination 

* ^ - (2.7) 

KM 

A s i m i l a r r e s u l t f ollows f o r A! \ , the omega c o n t r i b -
(3"^) 

u t i o n i n pp and pp s c a t t e r i n g . Barger et a l °' have examined 

the data i n t h i s way and they i s o l a t e the crossover zero i n AuV+ 

at t ~ -0.2 (Gev/c)^ i n both KN and KN, with a second zero a t 
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l a r g e r | t | c o n s i s t e n t with the a n a l y s i s of E v a k a j e e r et a l 
f o r the rho i n TTN. However, the magnitude of /\u allows one 
to go f u r t h e r and e x t r a c t the energy dependence of Im <^ ".. The 
r e s u l t s of r e f . ( 3 5 ) are reproduced i n f i g . ( 2 . 4 ) and again show 
strong shrinkage c o n s i s t e n t with of a ~ 1 (Gev/c) . So both the 
rho and the omega non. f l i p amplitudes e x h i b i t Regge shrinkage, 
which i s an important conclusion s i n c e we know that the cuts are 
l a r g e i n these amplitudes. 

There i s one point, where the non f l i p amplitude may be 

extracted unambiguously from the data - namely at t = 0 from 

t o t a l crocM s e c t i o n measurements v i a the o p t i c a l theorem. The 

behaviour of 

should give an accurate estimate of (Xp(0). The. data i s shown i n 

f i g . ( 2 o 5 ) . I n a Regge model we expect 

~ ( ? ) ' (2.9) 
^ VO>AB ' 

I f we take the data f o r P-j ^ 70 Gev/c (Serpukhov 

range), the value obtained f o r the rho i n t e r c e p t i s 

Oij> (0) = 0.69 - 0.05, which i s i n r a t h e r s e r i o u s disagreement 

w i t h the value 0*^(0) = 0.56 * 0.02 obtained from the d i f f e r e n -
(36) 

t i a l c r oss s e c t i o n at t = 0. However, the recent data from N A L 

c a s t s doubt on the o v e r a l l normalisation of the Serpukhov data. 

A good f i t to j u s t the low energy ( P ? p b ^ 20 Gev/c) plus N A L 

(50,100,150,200 Gev/c) data can be obtained with 0 ^ ( 0 ) = 0.56. 

F i n a l l y , i t should be noted that Ac- i s an important 

i n g r e d i e n t i n any f i t s i n c e i t f i x e s both the magnitude and 

energy dependence of Im A ) + ( t =0). 
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2.3 NEUTRAL PIOK PHOTOPRODUCTION AND RELATED PROCESSES 

Having seen how the data on vr N and other r e a c t i o n s 

f i x e s the behaviour of the vector mesons and cc , i t i s u s e f u l 

to look at these exchanges i n a completely d i f f e r e n t context. 

The r e a c t i o n TT"^ i s expected to be dominated by to exchange, 

w h i l s t the SU(3) r e l a t e d process r e c e i v e s the main 

c o n t r i b u t i o n from j> exchange, 

The t dependence of the d i f f e r e n t i a l cross s e c t i o n s 

f o r tz° photoproduction and irN CEX are remarkably s i m i l a r , with 

the former a l s o showing the dip at t ~ -0.6 (Gev/c}^ and the 

turnover i n the extreme forward d i r e c t i o n . Vector Dominance JVDii) 

provides the l i n k between photoproduction and purely hadronic 

r e a c t i o n s . VDM represents the photon as an . incoherent sum of the 

vector mesons , to and <f>, v/ith the <fi being completely 
(37) 

n e g l i g i b l e . ( I t i s estimated^ ' t h a t the 4> c o n t r i b u t i o n i o l e s s 

than 2% of the w> i n ^-rr°^> ) . The omega couples mainly to 

s p i n ncn f l i p , and s i n c e we automatically pick up one u n i t of 

h e l i c i t y f l i p a t the "b'-rt vertex, the most important amplitude 

i n n e u t r a l pion photoproduction i s t h a t due to s i n g l e f l i p oyruhga 

exchangee 

The W0ff ^ photoproduction i s shown i n f i g . (2..5a) 

and should be compared v/ith the purely hadronic CSX r e a c t i o n 
f i g . ( 2 . 1 ) . The d i f f e r e n c e between the two i s s t o r i n g . Y/hilot toe 

2 
l a t t e r i s approximate!v l i n e a r out to t — 1 . 5 (Gev/c) , the 

o 
former shows l i n e a r i t y f o r 0 $ |t|£0.3 (Oev/o)" but has a 

2 

marked dip followed by a secondary nuoiimum around t~-0»6 (Gev/c )V 

T h i s behavior i s c h a r a c t e r i s t i c c f a l l cut models i n which the 

branch point t r a j e c t o r y takes •'••.he form obtained by Land<;lstarn 

(equation (1.23)) - ses f o r example f i g . ( 2 . 2 ) . Good data at higher 
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energies and p a r t i c u l a r l y at l a r g e r v a lues of J t | would be useful 
i n f i x i n g the shrinkage of (X R f . p ( t ) i n the region past the dip. 
As i t stands, f i g . ( 2 . G'a) appears to support a SCRAM type model 
with the dip produced by pole-cut i n t e r f e r e n c e and the t r a j e c t o r y 
past the dip showing about h a l f the shrinkage observed f o r 
|t|£0.3 (Gev/c)^, where presumably the pole dominates, V/e s h t l l 
see i n chapter t h r e e . t h a t a strong cut model f i t s t h i s data very 
w e l l . Nevertheless, i t i s p o s s i b l e that the presence of cuts i n 
the weaker non f l i p and double f l i p amplitudes could postpone 
the r e a l l y strong Regge shrinkage to l a r g e r v a lues of J t j . 

I n appendix one, we show the r e l e v a n t formalism f o r 

the photoinduced r e a c t i o n s i n terms of the four h e l i c i t y amplitude 

A_ + , A + + , A , A +_ c I f only the rho and omega poles contribute 

to these 'amplitudes, then 

K+ = A — .' C2,1G) 

A +_ ^ »A_.. (2c 1.1) 

and the p o l a r i s e d photon asymmetry V J } i s i d e n t i c a l l y ^qual t o 

one f o r a l l s and t« Unnatural p a r i t y exchanges such as B and K 

contribute to A +_ and A_^ with the' same, s i g n , w h i l s t cuts 

contribute to both p a r i t i e s . So the departure of 2, from u n i t y 

measures 

( i ) the strength of the cuts i n A +_ and A ^ 

or ( i i ) the strength of the unnatural p a r i t y exchanges. 

I t i s d i f f i c u l t to decide which of-the two i s the most important* 

3?"nce unnatural p a r i t y exchanges do not couple to 

the s i n g l e f l a p amplitudes, i ^ s parhaos not s u r p r i s i n g tbat ^ 

i s s i g n i f i c a n t l y d i f f e r e n t from one only i n the region c f the dip 

i'u the d i f f e r e n t i a l c r o s s s e c t i o n , where A...... and A are small.. 
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As we s h a l l see i n chapter three, cuts Preserve (2,10) nlao, but 
v i o l a t e ( 2 . 1 1 ) , so any reasonable cut model should reproduce, at 
l e a s t q u a l i t a t i v e l y , the data on the p o l a r i s e d photon asymmetry-

A much more r i g o r o u s t e s t of the amplitude phases i s 

provided by the p o l a r i s e d t a r g e t asymmetry data, s i n c e t h i s depends 

on the r e l a t i v e phases of the amplitudes. I f we assume t h a t (2.10) 

holds i n a l l models, then near to t~--0.6 (Gev/c)'" we expect 

the p o l a r i s e d t a r g e t asymmetry to be given (approximately) by 

A ~ R e A. ' Im CA - A . ) (2.12) 

I t i s t h e r e f o r e c r u c i a l i n f i x i n g the phases of the non and 

double f l i p amplitudes. • 

I f we allow only p, to, B and K exchanges, then the 

p o l a r i s e d t a r g e t asymmetry and the r e c o i l nucleon p o l a r i s a t i o n 

are p r e d i c t e d to be equal. T h i s f o l l o w s from equation ( 2 . 1 0 ) . I t 
(37) ---has been noted v t h a t exchanges i n the 2 octet, would 

c o n t r i b u t e to A,.+ and A with opposite s i g n , thus breaking 

t h i s e q u a l i t y . No measurement of the r e c o i l nucleon p o l a r i s a t i o n 

e x i s t s a t the present time so the p r e d i c t i o n i y u n t e s t e d . 

The other experimental observables f o r which data 

e x i s t s are the r a t i o R of ir" photoproduction from neutrons and 

protons, and the ^ photop.voduct.ion d i f f e r e n t i a l c r o s s s e c t i o n 

R f i x e s the r a t i o of the i s o s c a l a r ( to and H ) to i s o v e c t o r 

(o and B ) exchanges. SU(3) r e l a t e s it and. photoproduction 

and the Clcbsch-Gordon c o e f f i c i e n t s are such thai: the i s o v e c t o r 

amplitude i s the important one i n Yp fy ^ ,. Trie -rho couplings to 

NN wean t h a t i t c o n t r i b u t e s mainly to A. and A . i n 

photoproductionc The absence of a dip i n photoproduction. 

means t h a t models -vith T-7.7GS have g r e a t d i f f i c u l t y i n f i t t i n g 

http://photop.voduct.ion
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(12) the data . They r e q u i r e e i t h e r very .strong cuts or a l a r g e '6 

c o n t r i b u t i o n (or both) to f i l l i n the dip. 

I n f i g . ( 2 . 6 b ) we p l o t (X e f f(-b) f o r the #jj r e a c t i o n . 

The e r r o r s are r a t h e r l a r g e f o r any fi r m conclusion to be drawn. 

However, &Q£f does show considerably more s t r u c t u r e than i s 

observed i n hadronic r e a c t i o n s (compare f i g . ( 2 . 1 ) ) . Furthermore.^ 

i t i s tempting to say that the s t r u c t u r e , which we would want to 

blame on pole-cut i n t e r f e r e n c e , occurs before t^'-0^6 (Gev/c)"". 

T h i s would then c o r r e l a t e n i c e l y with the dominance of the rho 

non/double f l i p amplitudes ( i . e . f l i p at the nucleoli v e r t e x ) and 
p 

the absence of a dip at t **-0.6 (Gev/c)" in. the d i f f e r e n t i a l 

c r o s s s e c t i o n . 
2 ' 4 T K E AMPLITUDE PHASES AMP THEIR ,7-FLANB STRUCTURE 

I n s e c t i o n two of t h i s chapter we saw hov; the p o o i t i ' v o 

p o l a r i z a t i o n i n TT^-*-V.~*I l e a d s to the conclusion that Re /;|"+ 

p 

does not change s i g n f o r |t|^0.5 (Gev/c)''. ?Jow the absorption 

model i n which the e l a s t i c amplitude i s mainly imaginary at 

t - 0, p r e d i c t s that both r e a l and imaginary p a r t s of the input 

pole amplitude are absorbed approximately equally a t small j t i . 
1 

Thus, i f we have the crossover zero i n Im A + + , we are forced to 1 2 accept a zero i n Re A + + near to t ~ - 0 . 2 (Gev/c) ' with d i s a s t -
erous consequences f o r the p o l a r i z a t i o n . T h i s i s true whether the 

crossover- zero i s obtained by d i r e c t pole-cut i n t e r f e r e n c e (SCRAM) 

or., by- attei?ip?tlng to use the eiEEs to " p a l l i n " the NWSZ from 
p p 

t ~ - 0 c 5 (Gev/c)" to t'v-G.2 (Gev/c) '. We can conclude t h a t oven 
though the magnitude of Re A + + i s poorly determined by the data, 

i t s s i g n i s f i x e d and i s i n d i r e c t c o n f l i c t w ith the absorption 

model. . . 

The reason f o r the f a i l u r e i s c l e a r l y the wrong phase 
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i n the absorbing amplitude. With a Pomeron having &p(0) - 1, 

the p o s i t i o n o f the rho pole and tltte p Gf P cut coincide at 

t = 0, producing equal absorption i n r e a l and imaginary p a r t s . 

Y/orden- ' has shov/n t h a t the s o l u t i o n i s to add an e x t r a comp­

onent besides the p H P. cut, which contr i b u t e s with opposite 

s i g n i n r e a l and imaginary p a r t s at small j 1.1. T h i s means that v;e 

r e q u i r e something whose Regge phase g i v e s Re/Im < 0 f o r |t 1=60.5 

(Gev/c)". I n the J-plane t h e r e f o r e s we r e q u i r e a s i n g u l a r i t y i n 

the region 0< J < - l . I t i s now c l e a r why the I3&rger-Phillips 

" f i v e pole f i t " ^ 3 9 \ i n which the I t = 1 amplitude was paramet-

e r i s e d as a sum of' p and p r exchanges, predicted' the nrN CEX 

p o l a r i z a t i o n c o r r e c t l y . The jz? t r a j e c t o r y l y i n g h a l f a u n i t 

below the rho, i s i n p r e c i s e l y the c o r r e c t region of the J~pl.cuie 

to give agreement with the data. 

S e v e r a l modifications of the simple absorption model 

have been proposed. One of these i s , as we s h a l l d i s c u s s i n the 

next chapter, to add Reggc-Regge c u t s . The e s s e n t i a l i n g r e d i e n t 

i n a l l the models i s th a t the non f l i p amplitude r e c e i v e s s i g n i f ­

i c a n t c o n t r i b u t i o n s from the broad J-plane spectrum 0*5'< J < - 1 . 
r£he i n c l u s i o n of lower l y i n g s i n g u l a r i t i e s s p e c i f i c a l l y 

designed to reproduce the 6.0 Gev/c phases, means that the 

ex t r a p o l a t i o n to low energy give s problems because the d i f f e r e n t 
(.SQ) 

terms get "out of step" as we go down i n energy. " ' T h i s i s 

r e f l e c t e d i n the poor agreement of a l l the new absorption models 

wi t h the FESR. rs f t As may be a n t i c i p a t e d , p a r t i c u l a r l y severe 

disagreement i s observed i n the non f l i p FSSR, where the low 

l y i n g c o n t r i b u t i o n s completely overwhelm the rho pole at low 

energy bringing the crossover zero i n towards t = 0 o 

A f i n a l point which we have mentioned before i s t h a t 
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a l l absorption models i n which the p o s i t i o n of the cut i s given 
by the Uandelstam formula (1.23) cannot reproduce the strong 
shrinkage observed i n n f f r e a c t i o n s . V-re s h a l l study t h i s problem 
i n greater d e t a i l i n the next section» 
2.5 A GENERA!.. SURVEY OF EFFECTIVE TRAJECTORIES 

Fig«,(2ftj.) and f i g . ( 2 * 4 ) together w i t h the. r e s u l t s o f 
r e f . ( 3 3 ) , provide strong evidence f o r Regge shrinkage consistent 
w i t h j x j > ( t ) ~ 0 . 5 + t i n both the f l i p and non f l i p amplitudes 
i n -JCN CSX. Therefore, i t i s i n t e r e s t i n g t o look at a much, wider 
set of r e a c t i o n s i n v o l v i n g d i f f e r e n t amplitudes and exchanges,, 
i n an attempt t o determine whether Vais i s a u n i v e r s a l f e a t u r e 
of a l l strong i n t e r a c t i o n s . A review of" t ^ o ^ ' s was presented 

(OQ) 

i n 1969 by G.C. Fox , who came t o the conclusion t h a t only 
TTN CEX e x h i b i t s strong shrinkage, since then however,, more 
d e t a i l e d and accurate data over a wider range of s and t has 
become a v a i l a b l e which does not support t h i s statement. V/e t h e r e ­
f o r e , present a compilation of D u f f ' s , some of which wo have 
calc u l a t e d from the data as described i n appendix two and others 
which have been reproduced as they appear i n the literature« 
Table (2.1) shows the processes considered together w i t h the 
possible exchanges and the range of s and t over which the data 
extends» 

For the claso o f processes 0~ + £ + — > 0 ~ + -|-+ which 
have only s i n g l e f l i p and noa f l i p h e l i c i t v amplitudes as i n the. 
prototype r e a c t i o n N CBX, there i t ; no evidence to-suggest t h a t 
shrinkage does not par c i s t out t o and bey end t ~ - l * 0 (G-ev/c) '« 
I n the cleanest reactions and those f o r which data e x i s t s over 
the widest range of s and t ? t h i s conjecture i s most s t r o n g l y 
supported. 
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Such re a c t i o n s include 

K a P (2*13) 

U n t i l the data from NAL became a v a i l a b l e r e c e n t l y , t l i e 
only d i s t u r b i n g r e a c t i o n was 

1X~\» -*> *y ^ (2 014) 
Calculated fv-oai the low energy data 'P-j^b^ 1 8 Gev/c),. e f f 

apnsars t o f l a t t e n out around t~--0 o5 (Gev/c) , which could be 
i n t e r p r e t e d as beJng duo t o an A^ !£ P c u t e Several authors v'vV ' 
have commented on the d i f f i c u l t y o f analysing (experimentally) 
t h i s r e a c t i o n , since there i s the problem o f separating the "<y 

from the much l a r g e r TC° signal» A l l the data below 6.0 Gev/c 
comes e s s e n t i a l l y from one e x p e r i m e n t a n d i s r a t h e r DOor f o r 
.|t|>0 oi3 (Gev/c)''"» Furthermore, an analysis of and Ag exchange 
i n the r e a c t i o n s 

T t * ^ **** (2.15) 
-» ^° A** (2.15) 

supports the view t h a t both the _p and Ag e x h i b i t strong R«?g£e 
shrinkageo I n (2 a16) the Ag t r a j e c t o r y i s consistent w i t h 
(X . Ct)-v o.r> + t . 

A l l o f t h i s casts doubt on the r e l i a b i l i t y o f the low 
energy ~rx~$> ^ data. Re cents r e s u l t s from Serpukhov and 
NAL support t h i s view and are i n good agreement w i t h the Ag 
as obtained from ether sources such as (2„16). 

F i n a l l y we summarise the main features of the experimental 



data which aiee p a r t i c u l a r l y r e l e v a n t t o Regge cut phenomenology. 
( i > The 6.0 Gev/c amplitude analysis i n jv N s c a t t c r i n , 

suggest t h a t we need absorptive c o r r e c t i o n s which are strong i n 
imaginary parts but weak i n r e a l p a r t s . 

( i i ) Apart from the sp e c i a l case of photoproduction 7 

Regge shrinkage appears t o be a u n i v e r s a l f e a t u r e o f strong 
i n t e r a c t i o n amplitudes. A cut model i s needed v/hich does not 
produce ( y c . ( t ) given by (1.23),. but instead gives a branch p o i n t 
t r a j e c t o r y which approximates t o s y ^ ( t ) over the present l i m i t e d 
energy range. We attempt, t o formulate such a model i n chapters 
f o u r and f i v e . 
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REACTION FIGURE 
NO. EXCHANGE(S) Max P l a b 

Gev/c 
Max t j 
(Gev/c) 2 

2.1 J* 43 1.5 
2.3 4.83 5.0 
2.4a I s o l a t e s 7.2 1.0 

N M —*• A/A/ 
2.4b I s o l a t e s 

Im &) + + 

16 1.4 

2.6a 15 1.4 
2.6b 6.5 1.0 
2.7 Aa. 50 1.2 

2.8 J* . AA 12 c 3 1.5 
2.9 12.0 0.8 

2.10 10 1.5 
r r +

P — -it*zr 2.11a 8 0.8 

• 2.11b A* 8 0.8 

2.12,2.13a 14. 1.4 

2.13b > 16 0.9 

TT"p-^ C A 2.14a 15.7 0.9 

2.14b K* , ^ 14.3 0.9 

2.15a I s o l a t e s B 7.1 0.9 

Tv~̂ >->-_p> V> 2 c 15b I s o l a t e s IT 17.2 0.9 

2.16 J> i A j 15.7 0o8 

TABLE 2.1 
Reactions f o r which the e f f e c t i v e t r a j e c t o r y i V e f f ( t ) 

has been c a l c u l a t e d together w i t h the r e l e v a n t exchanges and the. 
range o f energy and t over which the data extends. 



44 

FIGURE CAPTIONS - CHAPTER TV/P 
2.1 E f f e c t i v e t r a j e c t o r y f o r the r e a c t i o n -IT p-W(\^ 2 6^, 

2.2 E f f e c t i v e t r a j e c t o r y f o r the strong cut model o f ref«(27) 
f o r the r e a c t i o n T C T C ° V \ . 

2.3 E f f e c t i v e t r a j e c t o r y at larg e | t | f o r the r e a c t i o n ~i\~\>-*'T?*-\ 
2.4 E f f e c t i v e t r a j e c t o r y - fox- the non f l i p omega exchange amplitude 

»m re: 
(26) 

" i n a) and b) Nti~+tfr( from ref„(35) 

2.5 The q u a n t i t y Aer(-TCN) = ^ ( - K p) - v ( TZ p) 
2 U6 E f f e c t i v e t r a j e c t o r y f o r the r e a c t i o n 

a) Y\p-fe>Tr0 »̂ from the data of r e f , ( 4 2 ) . 
and b) ^"*"'^ t> from the data of ref.(43)„ 

2.7 E f f e c t i v e t r a j e c t o r y f o r the r e a c t i o n -TC'-^.^ W . The po i n t s 
marked o were c a l c u l a t e d from the data c f r e f . ( 4 1 ) , w h i l s t 
those marked • are ca l c u l a t e d from the Serpukhov and \\k.L> 

d a ^ ( 3 S ) 

2.8'Effective t r a j e c t o r y f o r the r e a c t i o n VOj»--»Wr\ from the data 
of r e f . ( 4 4 ) . 

2.9 E f f e c t i v e t r a j e c t o r y f o r the r e a c t i o n K +ft-»^ from the data 
of r e f . ( 4 5 ) . . 

2.10 E f f e c t i v e t r a j e c t o r y f o r the r e a c t i o n K° p -*K° p ^46-'. 
2.11 E f f e c t i v e t r a j e c t o r i e s f o r the re a c t i o n s 

*) -n^-rr £ T U 7 ) 

and b ) / T ( 4 7 } . 
2.12 E f f e c t i v e t r a j e c t o r y f o r the r e a c t i o n i r * ^ - * * * ^ from the data 

of r e f . ( 4 8 ) . 
2.13 E f f e c t i v e t r a j e c t o r i e s f o r the rea c t i o n s 

a) T T +
? - * K + 2 + ( 6 ) 

and b) vT^-^ rr £ + ^6K 

2.14 E f f e c t i v e t r a j e c t o r i e s f o r the rea c t i o n s 

a) T T " v C A 
(6) and b) VCp-*.-r\°/\ 



45 

2.15 a) E f f e c t i v e t r a j e c t o r y f o r the 3 exchange c o n t r i b u t i o n 
i n co&" + ( 4 S ) . 

b) E f f e c t i v e t r a j e c t o r y f o r the TC exchange c o n t r i b u t i o n 
i n ( 5 0 ) . 

2.16" E f f e c t i v e t r a j e c t o r y f o r the r e a c t i o n K.*̂  ~*>K°A++ from 
.J» P« Do Brion and C. Lewin (Nuovo Gimento 19A 225 (1974)), 
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3.1 THS EIKDWAL MODSL 
I n chapter one we introduced the absorption model, i n 

which the. r e s c a t t e r i n g c o r r e c t i o n s t o s i n g l e Regge pole exchange 
are c a l c u l a t e d by m u l t i p l y i n g each term o f the p a r t i a l wave 
expansion by a f a c t o r which accounts f o r e l a s t i c s c a t t e r i n g . One 
of the fundamental problems with, t h i s approach was t h a t the diagrarn 
had a planar topology. Consequently we could not be sure t h a t 
we were c a l c u l a t i n g a t r u e Regge cu t , even though the r e s c a t t e r i n g 
term had the corre c t s c ( l c g ( s ) ) behaviour. 

An a t t r a c t i v e approach which u t i l i s e s the close analogy 
between f-hsorption i n nuclear and high energy elementary p a r t i c l e 
physics, i s the eikonal model f i r s t proposed by Glauber . 
Of c r u c i a l importance i s the composite nature of the s c a t t e r i n g 
p a r t i c l e s , which allows them to break: up i n t o t h e i r consti-tu^nts, 
s c a t t e r and then subsequently recombine. I f we consider deuteron-
deuteron s c a t t e r i n g , then we can draw the f o l l o w i n g diagrams. 

Ca) (b) ( c ) 

Diagram Ca) represents s i n g l e s c a t t e r i n g which i n the high 
energy context i s o f course the basic Regge pole exchange, 
w h i l s t (b) and (c) are r e s c a t t e r i n g terms. At h i g h energy, ( c ) . 
where each of the co n s t i t u e n t s o f the f i r s t p a r t i c l e s c a t t e r s 
once o f f each c o n s t i t u e n t o f the other p a r t i c l e , i s much more 
probable than ( b ) r v/hero the i n t e r a c t i o n occurs twice between 
the same p a i r of p a r t i c l e s . This p i c t u r e i s f i n e f o r the deuteron 
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whose bind i n g energy i s small ( B.S./m-p'lO but i s d i f f i c u l t 

t o r e c o n c i l e w i t h the h i g h l y bound systems which v/e encounter 
i n strong- i n t e r a c t i o n s t 

I n recent years many papers have appeared i n the l i t e r a t u r e , 
which seek t o j u s t i f y the eikonal model i n high energy s c a t t e r i n g 
v The c r u c i a l non-planar s t r u c t u r e i s obtained as f o l l o w s . 

3 
V/e work w i t h i n the framework o f <p theory and ascribe to each 
Reggeon a two p a r t i c l e form f a c t o r v e r t e x . Thus v/e are lead t o 
consider the sum o f diagrams 

(a) i s the usual Regge pole..exchange which i n the eikonal model 
plays the r o l e o f the "born term", w h i l s t (b) gives the AFS cut 
w i t h the c o r r e c t s~""log(s) behaviour. The graph ( d ) , i n which 
the couplings are nested maximally agrees both i n form and 
(approximate) magnitude w i t h the second term o f the eikonal 
s e r i e s which we s h a l l develop l a t e r . Furthermore, i t has the 
c o r r e c t t o p o l o g i c a l (double crcr?s) s t r u c t u r e t o s a t i s f y the 
Id and e l s tarn c r i t e r i o n f o r a t r u e Regge cut. The c o n t r i b u t i o n from 
( c ) whore the couplings are nested, but not maximally, i s one 
power of l o g ( s ) down on ( d ) . F i n a l l y , ( d ) , ( f ) and the higher • 
order diagrams give expressions which correspond t o those obtained 

V 

Ca) (b) (c d) 

( f ) 
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by exponentiation of the basis Regge pole- exchange, as i n the 
eikonal s e r i e s . 

Thus i n c a l c u l a t i n g the eikonal series we are summing the 
c o n t r i b u t i o n s from the set of graphs shown above. The s t r u c t u r e 
o f these graphs obviates those problems- of the absorption 
model stemming from the non planar nature of the p r e s c r i p t i o n . 
The a d d i t i o n of a two body form f a c t o r v e r t e x ensures a c u t - o f f 
i n momentum t r a n s f e r , so t h a t most of the i n c i d e n t p a r t i c l e s ' 
momenta passes up the sides of the diagram. (The eikonal model 
i n nuclear physics i s often- c a l l e d the " s t r a i g h t - l i n e approxim­
a t i o n " . ) This i s also- a f e a t u r e o f Gribov rs- Reggeon- calculus 
and of course corresponds- very c l o s e l y t o the. p h y s i c a l s i t u a t i o n 
a t high energy. 

(54'Y 
A point: emphasised by Cardy ' i s t h a t a complete theory 

should include both s and t-channel u n i t a v i t y . Therefore we should 
also consider the t ~ i t e r a t i o n s o f the simple pole and cut diagrams 
as shown below. 

>cx - y-o-< + xxx* 
The t - i t e r a t i o n s ofRegge pole exchange play a v i t a ] 

r o l e i n " s o f t e n i n g " the nature of the cut d i s c o n t i n u i t y and 
also i n removing the Gribov-Pomeranchuk f i x e d pole at J = - 1 . 
I n chapter f o u r we s h a l l i n v e s t i g a t e f u r t h e r the e f f e c t s of t -
channel u n i t a r i t y on the phenomenology of Regge cuts. 
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3.2 TK3 SECONAL SSHIES^ 

I n the eikonal model we have an approximation t o the 
f u l l s-channel p a r t i a l wave s e r i e s . 

This equation should be compared w i t h (1„2) which was w r i t t e n 
f o r the case of p a r t i c l e s without s p i n . H , represents the set 
of s-channel h e l i c i t y l a b e l s and df, ( Z ) are the usual 

/T 3 

r o t a t i o n , f u n c t i o n s . 
I n the high energy l i m i t t$-»»oo, |t|/s-^0 the f o l l o w i n g 

replacement i s v a l i d 

The index of the .Bessel f u n c t i o n i s equal to the net s-channel 
h e l i c i t y f l i p (1.15) and & i s the s--channel s c a t t e r i n g ar:gle, 

s 
We now introduce the impact parameter b, defined by 

j = q b „. |. (3.3) 
s 

Xn the la r g e s, small | t | l i m i t , Cos & g t/(2q^) so t h a t 
( - t / q 2 ) ^ , and i n equation (3.2) 

CJ + *) £• -*b. /=t" (3.4:) 
S 

Thus we can now replace the summation over J i n (3»1) 
by an i n t e g r a l over impact parameters 

o 

The eikonal phase s h i f t X R (s,b) i s defined by 



analogy w i t h the normal phase s h i f t £j(s). 

fl'W 5 ~ V - — ~ ^ (3.6) 

where we have nov/ made the approximation discussed i n the l a s t 
s e c t i o n ; t h a t the only e f f e c t of the i n t e r a c t i o n i s t o a l t e r t h e 
phase of the i n c i d e n t p a r t i c l e s wave f r o n t s . w i t h no e f f e c t on 
i t s d i r e c t i o n . 

Now remembering t h a t pis) ~ 2q V/iT and from Appendix 

one 

\<3 S -*oo *• y r / 2 (3.7)-

we f i n a l l y end up w i t h 

b A k x ^ * - * . 4 )3\(W=I\) (3.8) 

* * LAW f x - ii£L> - Udli - l3T(w-?) (3.9). 
ttS» 

• *«»|MW[* + 2L\ ] ^ ( ^ ) 

where, f o r convenience, we have dropped the h e l i c i t y l a b e l s on 
"X-n . The c r u c i a l step i s t o i d e n t i f y the f i r s t term o f t h i s 

s e r i e s w i t h the Four,ier-3essel transform of the Regge pole 
amplitude v i a the equation 

o 

"XnU.VO * TMU^OAM(».0 (3.10) 
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The Regge pole t h e r e f o r e , acts as the born term I n the series 

and plays the r o l e o f the p o t e n t i a l i n nuclear physics. The 
second term i n (8.9) is- the two Reggeon cut and so on. 

This formalism allows f o r an obvious extension t o 
i n e l a s t i c processes i n v o l v i n g quantum number exchange, i n which 
the basic i n t e r a c t i o n i s t r e a t e d to- lowest order but f u l l account 
i s taken of e l a s t i c s c a t t e r i n g i n the i n i t i a l and f i n a l s t a t e s . 
Continuing the analogy w i t h nuclear physics t o include the 

(^5) 
D i s t o r t e d Wave Born Approximation , we make the replacement 

(3.11) 

\ , * H& " \ J ^ r ± K • (3,12) 

where i s now the Fourier-Sessel transform of the itegge 
H s 

pole which c a r r i e s the quantum numbers, and the second f a c t o r 
i n (3.11) i s the e l a s t i c S-matrix. I f we include the X introduced 
by the Michigan group t o allow f o r the p o s s i b i l i t y of d i f f r a c t i v e l 
produced intermediate states ( f o r the "weak cut model" set A.'- 1 ) , 
the f u l l replacement (3.11) becomes 

X « s (3.13) 

and (3.8) i s now (dropping h e l i c i t y l a b e l s again) 

© 

As a simple i l l u s t r a t i o n o f the use o f these formulae 
which w i l l prove u s e f u l l a t e r , we consider the e f f e c t of e l a s t i c 

r e s c a t t e r i n g - given by Porneron exchange - on the s i n g l e Regge 
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pole amplitude. For a h e l i c i t y amplitude having net h e l i c i t y 
f l i p N (= 0,. 1, 2, et c . ) we parameter!se the R.egge pole as 

(3.15) 

('3.16) 

where we have obtained (3.15) from the general expression (1.14) 
by making the f o l l o w i n g replacements. 

s «to) * b . 

3t * © . 

For the signature f a c t o r , which provides the Regge phase, we have 
considered an odd signature Regge pole (e.g. the rho) and made 
the approximation 

S-U n « (3.18) 

and we have absorbed the f a c t o r e ^ i n t o the residue f u n c t i o n . 
Equation (3.15) w i t h S q - 1 (Gev/c) 2 repisents a t y p i c a l Regge 
parameter! sat ion v/liich we s h a l l use repeatedly throughout t h i s 
work. 

For s i m p l i c i t y , we take e l a s t i c s c a t t e r i n g t o be given 
by s p i n non f l i p Pomeron exchange. 

S « ° > * (3.20) 

\ + < t (3.21) 
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The corresponding eikonal phases X K and X 0 1 are 
e a s i l y obtained by s u b s t i t u t i n g (3.15) and (3.19) i n t o (3.10) 

( l vfi 1 
and performing the i n t e g r a t i o n w i t h the a i d o f the r e l a t i o n s h i p 

- 69 c f j * i (3.22) 

The r e s u l t i s 

^ ' ~ s-^s ^ w - — ^ r r ~ ~ (3.23) 

V/e now have t o evaluate the- series (3.14). To do t h i s 
l e t us consider j u s t the S'e.eqndterni, which i s the Reggeon-Pomeron 
cut. (The f i r s t term gives us back the Regge pole (3 a15).) 

o c S o ) 

* ^K(V^ ,1 
t C N 

To perform the i n t e g r a t i o n we use the inverse o f (3.22). 

Then i f wa define % = c p / ( c-p + c^ ) , not t o be 
confused w i t h the eikonal phase s h i f t s , we f i n d 

i w > . . « . ,• \«*> ^ „ / A Cw) •* & ^ V ' » ) . (8.87) 

1 
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To generalise the n o t a t i o n t o include the higher order 

terms i n the eikonal s e r i e s , we replace "X b.y 

^ = _ (3.23) 
(n. - 1) c p + c N 

The f u l l series o f cuts R S P31"1 i s then simply 

(3.29) 

As expected, the f i r s t term gives us back the Regge pole and 
the whole sum represents the set o f Reggeon-Fomeron cuts . 

R + R E P + R B P a P -+ ....... (3,30) 

Thus by t a k i n g a Pomeron which i s p u r e l y imaginary at 
t = 0 ( 3 0 1 9 ) , wo have ended up w i t h a two p a r t i c l e cut which 
has the opposite sign t o , and t h e r e f o r e i n t e r f e r e s d e s t r u c t i v e l y 
w i t h , the i n p u t Regge pole* I n f a c t by t r u n c a t i n g (3*29) at 
n. = 2 we. reproduce the absorption model r e s u l t . The eikonal 
method however, allows us t o c a l c u l a t e multi-Porneron and m u l t i -
Reggeon cuts. 

For t y p i c a l values of the Regge parameters the s e r i e s 
converges r a p i d l y , ( f o r example 5% accuracy r e q u i r e s only the 
f i r s t f o u r or f i v e terms t o be computed) and the main c o n t r i b u t i o n 
i s from the f i r s t two terms. Closer examination o f the second 
term revoals t h a t as s—»-°o i t s energy dependence i s s a°(log(3))~ 
and the cut t r a j e c t o r y O i _ ( t ) i s 

w •a—poo ~«« i 
W + Of »i 

r as i n the Handelstam r e s u l t . Also,the exponential t dependanc 

o f the cut i s l e s s than t h a t o f the pole, a l l o w i n g the pole-cut 
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interference mechanism to occur. 
3.3 THIS N'EV/ ABSORPTION, MODELS 

A l l of the old absorption modelsv ' ; f a i l to reproduce 
the phases of the rho amplitudes i n TTN CSX as revealed by the 
6.0 Gev/c amplitude analysis. We have seen- that one contributing 
factor i s an inadequate description of the e l a s t i c amplitude 

(31) 
used to generate the absorptive effects.Experimentally 

^ 20 £ at 6.0 Gev/c-
t - 0 

Therefore the representation of e l a s t i c scattering by a Pomeron 
wi t h intercept one i s c l e a r l y i n s u f f i c i e n t , at least at 6„.0 Gev/c. 

Several ways of changing the phase of the absorptive 
(2? 23) 

corrections have been proposed J' and Worden has shown that 
a l l owe t h e i r success to the introduction of lower l y i n g J-pl&ne 
contributions. To avoid u&ing ad hoc prescriptions to introduce 
the required phase modifications and' to r e t a i n contact with 
Regge phenomenology, we prefer to describe the I^= 0 exchange 
amplitude as a sum of Pomeron (P) and Pr. Then, i n addition to 
the 55 P cuts with the usual intercept (X ( 0 ) ~ 0.5, there w i l l 
also be j>E P* cuts. These w i l l considerably a l t e r the phase of 
the t o t a l cut contribution since t h e i r intercept w i l l be 

<Xj> p P(0) = OpCO) + <H p r(0) - 1 « 0 
( 27) 

Collins and Swetman have demonstrated that the 
r e s u l t of using such a prescription i s a d i s t i n c t improvement 
i n the phase of the 1^= 1 amplitudes. I n p a r t i c u l a r t h e i r f i t 

o 

gives a positive polarization i n the region 0^ |t|^0.5 CGev/a*'" 
consistent with the data. I n the next section we shall b r i e f l y 
describe t h i s model i n order- to be able to generalise the eikonal 
formalism to include R S P* cuts, and to extend the model to 

Re A 
Im ,o 
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include neutral pion photoproduction and related processes* 
However we should f i r s t mention a recent paper by Y/orden 

(57) 
i n which he uses the Gritaov Reggeon calculus to establish 

symmetry relationships between the d i f f e r e n t Regge-Regge cuts 
which in ay- contribute to a given process. I n the Reggeon calculus 
(discussed i n greater d e t a i l i n the next chapter) the two Reggeon-
cut i s produced by a diagram of the type shown below 

i 

The N's are Gribov vertices, which, are the residues of the 
fi x e d poles i n the appropriate Reggeon-particle scattering. 
amplitudes. The Gribov vertices- vanish i f these amplitudes do 
not-have a t h i r d d.s.fi'"'. This i s an analogous statement to the-

(S'P } 
Finkelstein selection r u l e ' which says that Regge-Regge. cuts 
can only be present i f there exists a planar s-u duality 
diagram ( i . e . both the a and u channel non e x o t i c ) . I f v;e make 
the following assumptions: 

( i ) SU(3) symmetry i s exact for the Regge residues, 
( i i ) Strong EXD holds f o r j> - k? and P' - u>, 

then i t i s possible to derive symmetry relationships between the 
Gribov vertices. 

e.g. N p ^ p ^ ( q . q 1 ) = - N ^ Cq, q' ) 

Those i n tarn imply corresponding relationships between the 
Reggo-Regge cuts, and predict a cancellation between the P!" 2 p 
cut i n Tt N CSX and the co> H A c cut. 
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A useful way of representing the i n t e r n a l symmetry 
properties of Regge-Regge cuts^ r" ; i s to use an extension of 
the technique proposer), by Harari and Rosner^ 6 0^ f o r Regge poles. 
I f we have a pair of EXD Regge poles such as p ~ A 9 or ? r - lC> 
fcH&se add to give an amplitude with a r o t a t i n g phase and subtract 
to give one which i s purely reolc The. dua l i t y da agr;-ims corresp­
onding to these two p o s s i b i l i t i e s f o r the relevant case of ineson-
baryon scattering are shown below. 

<9-

A . 
(a) (b) 

(a) represents the r o t a t i n g case wh i l s t (b) i s the r e a l 
combination* To obtain a Regge-Regge cut we combine (.a) and (b) 
with the addition of an extra t w i s t of a pair of i n t e r n a l l i n e s 
on both the upper and lower halves of the diagram. The r e s u l t i s 
shown below where wo take the e x p l i c i t example of TCN C2X» 

i t 

P «' n 

CP' + Mi) H (A 

I f wo label the qu^rk lines and remember that 

- (' pp - nn) 

we see that the diagram corresponds to the case i n which we 

have the nn component, of the TC°. From t h i s we must subtract 
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the diagram below 

It 

? 

C P' 

CP' -co) H (A 2 + p ) 

Therefore we have 
*o) a ( A 2 + ja ) - ( ? • + « ) a C A 2 - .p > 

C3.30) 
= 2 C Pe EJ> - co E A 2 ) 

and i f we assume exact EXD of the residues and t r a j e c t o r i e s we • 
arrive at Worden's conclusion - that the odd signature Regge--
Regge cuth i n tx N CSX cancel. Girardi et a l v 'u take t h i s approach 
one stage further by adopting an e x p l i c i t model f o r the Pome:"on 
( i n a dua l i t y diagram sense) and using t h i s to examine the 
properties of R P E R cutso I f we accept that the cancellation 
i n ( 3 . 3 0 ) i s exact, then these cuts are expected to provide r.he 
main correction to the simple $> + p R P cut model of TCN CUX. 
However, the cancellation ( 3 . 3 0 ) only occurs i f "EXB holds. vVe 
shall indicate l a t e r why t h i s may not be such a good approxim­
ation and why the UE Ar> cut moy be small. 
3.4 RSGGE--iaGG13 CUTS IN TTN SCATTERING 

Collins and Swetman take f o r the 1^= 0 amplitudes of 
appendix one the following sum of P and P'o 

( 3 . 3 1 ) 

( 3 . 3 2 ) 
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Where 
c p = a p + CXp" ( In(s/s ) - in/2 ) (3„33) 
Cpi 3 ap, + cXp,( l n ( s / s Q ) - i i t / 2 ) 

w i t h similar d e f i n i t i o n s f o r d p and dp,. 
Now-," Bar.eer and P h i l l i p s ^ 3 9 ^ (BP) have proposed a model 

of TV N scattering i n which the I . t ~ 0 amplitudes involve the. 
suiri of P + P1 + P r l exchanges, and are. i n good agreement wi t h 
both the I'ESR constraints and the 6*0 Gev/c amplitude analysis. 
To f a c i l i t a t e the f i t t i n g procedure, Collins and Swetman treated 
the BP amplitudes as "data" to which they f i t t e d the parameter-
isations (3.31) and (3.32).. This can be done i n two possible 
ways: 

( i ) We can tre a t the equations above as simply providing 
a functional representation of the 1^ '- 0 amplitude which 
allows the integrals involved i n the eilconaL prescription to be 
done a n a l y t i c a l l y . We c a l l t h i s the "effe c t i v e pole representation". 

( i i ) A l t e rnatively we can consider (3*31) and (3.32) as 
the input Regge pole terms to the eikonal series (3.9) which 
generates the f u l l set of multipart!cle cuts 

p + P HP + P H P H P + ...*+ P* + Pb" EP + P' 3 P B P + ... 

Both methods were t r i e d by Collins and Swetman and found 
to give approximately the same results.. However, we are interested 
i n using the 1^ = 0 amplitude to calculate absorptive corrections 
to the pole i n the 1 ^ = 1 amplitude. For t h i s purpose, ( i ) 
i s d e f i n i t e l y superior since with t h i s method we d;o not need to 
evaluate the f u l l eikonal series, ju s t the f i r s t two terms, with 
a corresponding saving i n computer time. We. shall describe the 
"ef f e c t i v e pole method" and use i t when we extend the model to 
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photoproduction. 
We proceed tay substituting (3.31) and (3.32) i n t o (3.-10) 

to calculate the eikonal phase s h i f t s . I n an obvious notation 
these are. 

?C°+(s»b) = X j + ( s , b ) + X^Cs.b) (.3.34) 

For the rho pole amplitudes, the bast parameterisation 
was found to be i n terms of the invarient amplitudes A' and 3 
corresponding to t-channel h e l i c i t y non f l i p and h e l i c i t y f l i p 
respectively. At high energy they are related to the usual s-
channel h r f l i c i t y amplitudes of Appendix one by 

A+ +Cs s.t) = 2mA'(s,t) - — 2 B(s,t) (.3.36) 

A^_(s,t) = J~ ( 2rcA'(s,t) - sB(s,t) ) (3.37) 

For the amplitudes A1 and B Collins and Swetman take the 
t y p i c a l Regge form 

(3,38) 

(3.39) 

(3.40) 

Equations (3.36) and (3.37) have eikonal phases 
and defined as usual through (3.10). To calculate the cuts 
we now take 

(3 o 4.1) 
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In practice the l a s t term i n each of these equations i s 
small and can safely be ignored. The f i r s t term i s of course the 
pole, whilst the second term corresponds to the pii P and & Ps 

cuts, or i n the eff e c t i v e pole representation to the sum of cuts 

p H P + j> 8 P H P + + p B P ' :+ J> E P B P* + (3*4.3) 

We shall describe the model presented by Collins and 
Swetman i n which the rho adopts the "fixed pole mechanism". I n t h i s 
case there are no nonsense wrong signature zeros i n the rho residue 
and the input pole amplitudes are exactly those given i n (3 C3S) 
and (3.39)o This model i s undoubtably the most successful i u 
f i t t i n g the data. Also tested was 3 "sense choosing" model i n which 
a fac t o r OL ( t ) was introduced i n t o (3.39), and a "nonsense 
choosing" model which also incorporates one od(t) i n (3.38). 

To calculate cuts we proceed as outlined i n equations 
(3.15) to (3.29) f o r the simple case of jus t 0 P, except th a t 
i n the eff e c t i v e pole representation of the e l a s t i c amplitude 
we need only consider the f i r s t two terms i n the eikonal series. 
The eikonal phase s h i f t s are ^^ 

8 <* C
P (3.44) 

which are then incorporated into (3.34) 

> V - ^ . (3.45) 



78 

We. do not need (3.35) f o r the reasons already mentioned. 
The extra d i f f e r e n t a t i o n i n the P» eikonal i s a r e s u l t 
of the (Vp,(t) i n the pole (no compensation mechanism) and arises 
through equation (3*22) 

Where the individual terms are obtained by talcing the Fourier-
Bessel inverse of (3*41) and (3.42) using (3.26). We consider the. 
J^> 0 P and the j a 0 P' cuts separately. 

( i ) p 13 P cuts 
These are calculated i n exactly the same way ae* i n 

section two except that we now have two terms corresponding to 
the A* and B p&rts o-f each h e l i c i t y amplitude,, I n the. f l i p 
amplitude, both enter on the same footing so that the cut i s merely 
the sum of two similar terms. However, i n the non f l i p case the 
3 part contains the'extra t factor which requires a d i f f e r e n t i a t i o n 

i n the cut (from (3.22) ). Thus by d i r e c t analogy to 
(3.29) we can write 

We now w r i t e f o r the f u l l amplitude 

A + + ( s , t ) = A+ +(s,t> '+ A^'(s f ct) + AJ 46) 

A. +_(s,t) = A + ^ ( s , t ) + A ^ ( s , t ) + A^(.s,t.) ;(.3c47) 

P 
* P a « - (3.48) 

) 
c.7(n.! 1 a £o X e " p i Pa P 

(3.49) 

YV /hare we have defined 



X p i = ? ( I = 1,2) (3.50) 

Note the extra d i f f e r e n t i a t i o n i n (3.4.S) and the f a c t that we 
have used only the second term of (3,29), not the f u l l series. 

( i i ) p E P' cuts 
We define, as i n the P case 

"X-P'-i = c C* „ ( i = 1,2) (3.51) 

Then examination of the eikonal phases (3.44) and (3.45) reveals 
that to go from P to P' , we must 

(a) make the replacement 

8nS 
(b) introduce the d i f f e r e n t i a t i o n cuased by the 

no compensation factor (Xp,(t). That i s we make.vthe replacement 

~ — <Xft,l©H » + — C ) fo VV. 

(3.52) 

where N = 1,0. The following formulae are useful 

Since, i n (3.53). we need »i •* "II ' £. \ , i t i s convenient to 
define 
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Using t h i s notation, the j> Bf P* cuts are 

U.O = * \ ) [ — J V * > * 

\ . ft y p"» _ 6. * e K r 1 * ' 1 (3.56) 

* L A°~V n >s ~~v~* *">•] 

F i n a l l y the f u l l amplitude i s obtained by combining 
al 1 the rclevant amplitude s i n (3.46) and (3„47). 

"if the rho chooses sense or nonsense the formulae are 
fur t h e r complicated by the <*p(t) factors which require extra 
d i f f e r e n t i a t i o n s similar to (3.54). However, since Collins and 
Swetman concluded that the fixed pole coupling mechanism wa.=s the 
the most successful i n describing the data, we shall proceed no 
fu r t h e r along these l i n e s . Much of t h i s formalism w i l l carry over 
i n t o the photoproduction case to be disscussed i n the next section. 

.A useful preliminary step to- a f u l l data f i t t i n g programme, 
i s to actually f i t the BP . 1^= 1 amplitudes with the parameteris-
ation above. The reasoning behind t h i s i s that the BP amplitudes 
s a t i s f y the FSSR constraint and also the detailed phase information 
available at 6.0 Gev/c from the amplitude analysis:- Since the 
experimental phase sensitive data ( polarizations ) i s very scarce 
and has such large e r r o r s ; i t carries vary l i t t l e weight i n the 
f i t . I t i s very easy therefore, to get reasonable agreement with 
the d i f f e r e n t i a l cross section data from a completely spurious 
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phase structure. F i t t i n g the BP amplitudes avoids such false 
2 

minima i n "X. by ensuring that the parameters are i n approx­
imately the correct region before going on to f i t the actual 
data. Rapid convergence i s usually obtained i n t h i s way. 

B r i e f l y , the results of the f i t are: 
( i ) A l l the CEX data are well represented i n t h i s 

model including the po l a r i z a t i o n , crossover zero and the dip i n 
the d i f f e r e n t i a l cross section. 

( i i ) Problems occur i n the e l a s t i c polarizations 1 ? because of the poor description of Re A +_ at t-v-0.,'5 (Gev/c) ". 
I n chapter two we described how the data forces a double zei^o i n 

1 
u e

 a t t h i s point,whilst the f i t has only a single zero. More 
seriously | | Is too small at Large j t | so that the mirror 
symmetry i s badly broken. 

Thus the conclusion i s tht i t the DP description of the 
el a s t i c amplitudes f a i l s to give a completely satisfactory f i t to 
a l l the T N data. The analysis of K e l l y v < — u } indicates a s l i g h t l y 
d i f f e r e n t structure f o r the 1.,.= 0 amplitudes -- i n particular 
a zero i n Re A4.+ at t ~~0.35 (Gev/c)'". i\ f i t to these instead 
of the. BP amplitudes f a i l e d to improve the e l a s t i c polarizations, 
even though i t . generated (through the cuts) a d i f f e r e n t phase 
phase structure i n the 1̂ .= 1 contribution. This i s an ind i c a t i o n 
of the s e n s i t i v i t y of the cuts to the shape of the absorbing •< ;•;> 
amplitude. However, the model i s s t i l l a d i s t i n c t improvement over 
the old absorption model without the Regge-Regge cuts. 
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3*5 RBGGB--RBGGE GUTS IN PHOTOPRODUCTION 
Encouraged by the successes obtained i n n N scattering 

by including Regge-Regge cuts to correct the deficiencies of the 
old absorption model, we decided to extend the approach to describe 
r r 0 photoproduetion and the other SU(3) related processes. The 

r i c h amplitude structure i n photo-induced reactions makes t h i s 
a severe te s t of the cut phases. 

(62) 
A recent analysis by Chadwick et a l has shown that 

both the strength and shape of the d i f f r a c t i v e amplitude i n 
lfp->-'tff> and tfp-^j^p. , are very much the same as i n TT iv/—*-n-N" 
when scaled by Vector Dominance. So. replacing n by at the meson 
vertex appears to have l i t t l e e ffect on the 0 exchange. 
We therefore take f o r the el a s t i c amplitude the form given i n 
equation (3.31), with the parameters fixed by the f i t of Collins 
and Swetman to TTN scattering (Table (3.1;). Using t h i s amplitude 
to calculate the cuts makes the model highly, constrained i n that 
the r e l a t i v e phase of pole and cut i s completely f i x e d , and the 
only freedom i s i n the Regge pole parameters and the overall 
strength of absorption through the usual 7* factors. 

I n the previous section v/e indicated that i t was useful 
to f i t the BP amplitudes d i r e c t l y before going on to f i t the 

(63 v 

actual data. Worden ' has produced a model of TT and photo-
production which describes most of the data and i s also consistent 
w i t h the FESR's. However, the absorptive, corrections are f r e e l y 
parameterised and Lhe model also includes the lower l y i n g B and 
H t r a j e c t o r i e s , so i t i s d i f f i c u l t to decide j u s t how good the 
model r e a l l y i s . Nevertheless; the phases of the amplitudes 
should be reasonably accurate. V/e therefore used Worden's amplitudes 
i n a similar way to the BP amplitudes i n -rrN to obtain approx­
imately the correct phase structure, before f i t t i n g the experimental 
data. 
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Our m o d e l i s then one i n which we include the two 
highest l y i n g exchanges J> and to » I n the notation of Appendix 
one we pararneterise the poles as 

where R. = £j>,to|, and as usual 

- *£y * *i [ V v , C ^ 0 > - ^ ] (3.59) 

The t r a j e c t o r i e s are li n e a r functions of t> with the 
intercepts constrained so that they extrapolate through the 
physical p a r t i c l e s . I n Table (3.2) we define the Regge couplings 
along with the values of N and x f o r the d i f f e r e n t h e l i c i t y 

2 
states. Srt i s again taken to be 1 (Gev/c) » 

The cut formalism i s mut̂ h simpler than i n the l a s t 
section because we have only one term i n ('3.58) instead of the 
two i n TT N because of the A' and 3 pararneterisation. I f we 
again write f o r the f u l l amplitude 

= £ wvtv* +v C s , t J (3,60) 

then the cuts are calculated i n exactly the same way as before. 

( i ) x = 0 amplitudes (N = 0 , 1, 2) 
Ca) . R. a P cuts 

*\ — \ N4I _ « 

For convenience we have dropped the h e l i c i t y labels on , 
and defined 
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(b) R. BP' cuts 
I f we make the replacements outlined i n (3.5?.) 

and (3.53), then 

i ^ i — J **** * — K 1 

where i s defined i n (3.55) and 

( i i ) x = 2 amplitudes (N 0) 
Comparing (3.22) and (3.58) we sea that the N = 0, 

x = 2 cuts can be obtained by substituting N = 0 i n (3.60) 
and (3.63) and d i f f e r e n t i a t i n g with respect to c^. (We actually 
take to bring down the factor (-t^ i n (3.58) „) I n f a c t 

GCi> 

v/hich gives 
(a) R H P cuts 

' " • ^ r . CU.66) 

(Note: I n reference (63), equation (11), which de t a i l s the 
replacement needed to- obtain (3.66) from (3.60), a minus sign 
has been omitted.) 
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(b) RHP' cuts 
Here the d i f f e r e n t i a t i o n - | ie more 

complicated. Using a r e s u l t similar to (3.65) f o r the P' case, 
we f i n d 

L 8-n S i r l o i * (3.67> 

Where 

(3.68) 

Thus equations (3.51),(3.63),(3.66) s(3.67) form our 
prescription f o r the Regge cuts and the f u l l amplitude i s given 
by (3.60).. I f we place the same in t e r p r e t a t i o n on the el a s t i c 
amplitude as before ( e f f e c t i v e pole representation), these 
equations correspond to the series of exchanges ( f i g . ( 3 * 1 ) ) 

R + R B P + R BPH'P + 
(3.69) 

+ R El Pr+ R BE P'BF P + 
We again checked that i f we use the parameters f o r the 

el a s t i c amplitude obtained from the second method of f i t t i n g 
the I^= 0 amplitudes (see section (3.4)) and evaluate the f u l l 
eikonal series to give (3.69), very similar results are obtained 
but they take very much longer to compute. Therefore, we adopt 
the effective pole method f o r p r a c t i c a l purposes, and by f i r s t 
f i t t i n g Worden's amplitudes rapid convergence was achieved when 
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the experimental data was inserted. 
3.6 RESULTS AND DISCUSSION 

V.'e display the results of the f i t to" the available TC" 
and 4^ photoproduction data^ 6 b^ i n figs.(3.2) - (3.6) and table. 
(3.3). The agreement with the data i s excellent. P a r t i c u l a r l y 
encouraging i s the good description of the polarised target 
asymmetry, as t h i s provides the most severe t e s t of the non f l i p 
and double f l i p amplitude phases. As we discussed i n chapter two, 
i f A + + = A and A+_ = - A_̂ ., then £ = 1 i d e n t i c a l l y . Looking 
at table (3.2), we see that the poles certa i n l y s a t i s f y t h i s , 
w h i lst (3.61) and (3.66) show foow the cuts do not. The v i o l a t i o n 
occurs i n the non f l i p and double f l i p amplitudes and the . 
deviation of 2 from u n i t y measures the strength of t h i s v i o l a t i o n . 

p 
I t i s of course important at t = 0 and t -0.5 (Gev/c) " and 
i s less s i g n i f i c a n t at large t g j.''ig.(3.3) r e f l e c t s t h i s general 
trend- I n our model, the unnatural p a r i t y components i n the cuts 
replace the B and H exchanges used by Worden. 

The r a t i o s o f vector to tensor couplings at the nucleon 
vertex which we obtain are 

G v ^ 0.2 G v a 0.9 
"Jfp >-TrjT 

The rho i s therefore i n good agreement with t y p i c a l values 
obtained i n f i t s to IT N scattering. The large value of the omega 
f l i p coupling i s essential i n our model to obtain good agreement 
with the neutron/proton r a t i o of fig.('3.5). Worden includes, i n 
addition to the B, the H meson (which i s the isoscalar member- of 
the 1 H " octet) with a large f l i p coupling with respect to the B. 
He i s therefore able to preserve the small non f l i p omega coupling 
predicted by Vector Dominancev' '. To compare the Regge predj a t -
J.on with VIM however, we must f i r s t extrapolate from the photon 
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2 to the vector meson mass rau and then down the Regge t r a j e c t o r y 

to' the scattering region t $ 0 , so our value of 0,9 i s by no 
means incompatible with VDM. 

In f i g . ( 3 . 7 ) we compare our amplitudes with those 
obtained by Worden, and also show the ef f e c t of including the 
R. H PV cuts. I t i s clear that t h i s is 1 mostly i n the real parts 
as expected, and i n f a c t i s crucial i n order to obtain a good 
description of the polarised target asymmetry ( f i g . (3*4) ). 

I n f i g . ( 3 . 3 ) we give the predictions f o r the polarised 
target and polarised photon asymmetries i n ^j. photoproduction s 

o 
and f o r the r a t i o of photoproduction from neutrons and 
protons. 

We also attempted to f i t the data using a model with 
nonsense wrong signature zeros. The basic problem with such a 
model i s that, i t predicts a dip'at t~-0.5 (Gev/c) i n the 
d i f f e r e n t i a l cross section (dominated by rho exchange), contrary 
to the data. Even allowing "X> 1 and a substantial B co n t r i b ­
u t i o n we are s t i l l unable to> f i l l i n .the dip'completely. Of •: > 
course, as the B exchange dies away with energy, the dip i s 
expected to deepen. 

(57) 
F i n a l l y , we return to Wordenfs argument that, provided 

the IT and & are exchange degenerate, our pH P' and (*S P1 

cuts could be cancelled by Ag S to and P' 0 «~ respectively„ 
As fig.(3.9) shows, our neglect of the l a t t e r pair of cuts i s 
equivalent to assuming a small coupling f o r the B - thus 
breaking exchange degeneracy„ A similar argument explains why we' 
might expect the 13 P1 cut to be much larger than the LO K Ag 
i n TTN CEX. 

I t appears that the inclusion of the P' i n order to 



88 

obtain a better description of the e l a s t i c amplitude can solve 
many of the problems of the old absorption models. The only 
worrying feature of t h i s and i n f a c t a l l the current absorption 
mode's,, concerns the energy dependence of the cuts. This i s 
revealed i n two ways: 

AS we extrapolate to low energies the cut begins to 
dominate the pole ( t h e i r relative, strength at 6.0 Gev/c i s 
fixed by the amplitude analysis) causing severe disagreement with 
the FESR' s (see chapter; .two). 

( i i ) At high energies the cuts calculated i n the 
absorptlon/eikonal model predict too l i t t l e shrinkage at large 
| t | i n hadronic reactions* This i s apparent from figs.(2,1) and 
(2.2) f o r the p a r t i c u l a r case of TT N CSX. I n fig.(3.10) we p l o t 
0L(,.£f(t) f o r the model of Tr* photoproduction which \vs have just 
described and compare i t with the "data" of f i g . ( 2 . 5 a ) . The model 
reproduces a l l the features of the data and we are lead to conclude 
tha t a strong cu+ model i n which the cut t r a j e c t o r y takes the 
Mand'elstain form (1.23) together with Regge-Regge cuts to produce 
the correct phase structure, i s completely consistent with a l l 
aspects of the. photoproduction data. 

I t i s t h i s puzzling, f a c t that photoproduction i s similar 
to purely hadronic reactions i n a l l respects except i t s energy 
dependence and that the absorption model produces cuts which have 
the correct energy dependence i n photoprcduction but not i n 
hadronic reactions, that we shall attempt to investigate further-
i n the f i n a l two chapters. 
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Pomeron P' 

°*T 19.92(mb)/0.3893 S 
o 

-43.31(mb)/0.3893 
aP 2.02 0.23 

0.49 1.10 
#p(0) 1.0 (fixed) «<pr(0) 0.55 

TABLE. 3..1 
Parameters f o r the 0 non f l i p N amplitude 

from reference (27) 

S4 X 

1 o 

— — 1 o 

- 3L a • 

-

TABLE 3.2 
The couplings f o r Reggeon R exchanged i n 1)'̂ . -n0^* 

from reference (12). 
The decay width »a-*-*V gives - 0,038 and 

the meson couplings were then fixed by the Vector Dominance 
relations % m -- ^ and ^ , 3 ̂  ̂  , e- o(,. 

M i s the nucleon mass. 
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Parameter • J> u3 

«• 0.80 1.00 
G v 2,19 15.56 
C,p 10.07 20.02 
a + + 4.42 1.07 
a+- 0.02 • 1.61 
X„+ 2.88 1,51 

\++ 2.93 2„39 
2.70 1.65 

TABLE' 3.3 
The f i n a l values of the parameters obtained i n the 

f i t to- the data of reference (65>. The tra j e c t o r y intercepts 
were constrained so that the t r a j e c t o r i e s extrapolated through 
the physical p a r t i c l e s . 

Also we set a_̂ _ = a +_ and X ^ -- \ + n f o r both the 
rho and the omega. 

. A f i n a l % / data point of l o 0 7 was achieved f o r 
111 data points. 
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FIGURE CAPTIONS - CHAPTER THREE 

3.1 The sura of poles and cuts represented by equation (3.60). 
3.2 F i t to the d i f f e r e n t i a l cross section, f o r tf^-^-n;0^. 
3.3 F i t to- the polarised photon asymmetry f o r "tf^—*-tc°^» ( s o l i d 

l i n e ) . The dashed curve i s the model of r e f . ( 6 3 ) . 
3.4 F i t to the polarised target asymmetry f o r ^-^7c 0p ( s o l i d 

l i n e ) . The dashed curve i s the model of r e f . ( 6 3 ) . 
3.5 F i t to the neutron/proton r a t i o (?.)• f o r -K° photoproduction. 

( s o l i d l i n e ) . The dashed curve i s the model of r e f . ( 6 3 ) . 
3.6 F i t to the d i f f e r e n t i a l cross section f o r ny ̂  , 

3.7 The T*° photoproduction amplitudes at 6.0 Gev/c 
(a) Non f l i D amplitude. 
(b) Single f l i p amplitude. 
(c) Double f l i p amplitude. 

I n each case the s o l i d and dotted curves show the r e s u l t of 
our f i t with and without the R H P' cuts respectively, The 
dashed curve i s the model of r e f . ( 6 3 ) . 

3.8 Predictions f o r various quantities i n —*» oy ̂  . 
(a) The r a t i o (, * <?f a ) / C •-»• ̂  ^ ) 
(.b) Polarised target asymmetry, 
(c) Polarised photon asymmetry. 

3.9 Pairs of Regge-Regge cuts which may cancel each other i f 
T T - 6>. exchange degeneracy holds, according to the arguments 
of r e f , ( 5 7 ) . 

3.10 Effective t r a j e c t o r y calculated from the model of TT" photo­
production presented i n section (3.5) compared with the 
"data" of fi g . ( 2 . 6 a ) . 
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4.1 INTRODUCTION 

In chapter three we applied the eikonal formalism to the 
good, phase sensitive data which e x i s t s i n -rr N CEX and neutral 
pi on photoproduction. The model was able to describe the phases 
of the amplitudes very successfully (the one doubt being R.e A+__ 
i n the C3X reaction) over a limited energy range. However, as 
higher energy data has become available a serious inconsistency 
has emerged between the shrinkage predicted by the model at large 
| t | and that which i s present i n the data (see figs.(2.1) and 
( 2 . 2 ) ) . Y/9 c l e a r l y need a modification of the eikonal model i n 
which the. cut trajectory approximates to that of the pole over 
a f i n i t e range of s and' t.. 

I t i s of course well known that the eikonal model 
s a t i s f i e c f u l l s-channel u n i t a r i t y , and i n section (3.1) we 
indicated how the usual Regge pole exchange, when suitably i t e r a t e d , 
gives us the eikonal s e r i e s e Thus the r e s u l t s of chapter three 
are consistent with u n i t a r i t y i n tne direct channel. However, the 
complete theory must also s a t i s f y u n i t a r i t y i n the crossed ( t or 
u) channel. The importance of t-channel un i t a r i t y for Regge cuts 
i s emphasised by the role they play i n removing the d i f f i c u l t i e s 
presented by the Gribov-Pomeranchuk fixed pole at "J = -1. 
Furthermore, Gribov et a l ^ 7 ^ have shown how u n i t a r i t y helps to 
f i x the discontinuities across the Regge cuts i n the t-channel 
p a r t i a l wave amplitudes. 

Several authors have discussed the effect of t-channel 
uni fcarity on the simple absorption model and one way of doing 
t h i s i s to use the K-niatrix formalism. Typically the absorption 
model has 
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A ( * , t > ~ £tfc> * - p c ^ O - ^ 6 (4.D 

For.simplicity we neglect the signature factor and assume that 
are r e a l functions of t» The f i r s t term of (4„1) is. 

the Regge pole and the second term i s the (destructive) two 
p a r t i c l e cut with (X.(t) t y p i c a l l y given by ( l e 2 3 ) r To exhibit 
the J-plane structure of (4.1) we take the Mellin transform 
( p a r t i a l wave projection) of t h i s equation. 

(4.2) 

The inverse i s 

flUiO « 7Z{ j A (.3,0 (4.3) 

In (4.2), s Q i s the threshold for the amplitude A(s,t) and i n 
(4.3), Y i s to the right of a l l the s i n g u l a r i t i e s i n the J-plane. 

The absorption model therefore gives 

AUO = * <0 (4.4) 

Mukherji and D e s a i ^ ^ impose t-channel u n i t a r i t y by 
demanding that the f u l l amplitude A(J,t) s a t i s f y 

At*,0 = ftU'° (4.5, 

where 

By making suitable assumptions about the nature of tho cut 

trajectory (they take a fixed cut corresponding to = 0 i n 
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(1.23)) and the r e l a t i v e strength of pole and cat, they find 
that un i t e r i s a t i o n through the K-matrix formalism (4.5) has the 
following effectse 

( i ) I t produces a pair of complex conjugate poles 
ck+l<0 « o£R ±i<xs which l i e . on the physical sheet for t < 0 . 

( i i ) The discontinuity across the cut i s sharply peaked 
around J = tt^, and furthermore vanishes at the j i p of the cut 
J = (X . c 

Disc A(J,t) -w TC $c ( J ~ MN)2 

( J - « R>. 2 

Compare t h i s with the hard cut equation (4.4). (Note that for a 
fixed cut <*c = (tf (0) for. a l l t.) 

This simple analysis indicates that t-ehsnnel u n i t a r i t y 
could provide important modifications to the usual Regge cut 
par a l t e r a t i o n s such as (4.1). I n par t i c u l a r , the peaking of the 
cut discontinuity at the position of the pole, may change the 
energy dependence of the cuts i n precisely the way v.re require i n 
order to describe the strong shrinkage observed in the data. 

One model which s a t i s f i e d f u l l multiparticle t-channel 
u n i t a r i t y i s the Reggeon calculus developed by Gribov and others. 
In recent years t h i s has been examined i n great d e t a i l , particular 
attention being paid to the nature of the Pomeron and i t s 
couplings to. i t s e l f , other Reggeons and the external p a r t i c l e s . 
The calculus evolved from an e a r l i e r technique proposed by 
Gribov for calculating diagrams involving Reggeons i n a similar 
way to Feynman graphs containing elementary p a r t i c l e s . 
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4.2 GRIBOV'S REGGEON DIAGRAM TECHNIQUE^ 6 9 y 7 0* 
To i l l u s t r a t e the methods which can be used to calculate 

a r b i t r a r i l y complicated Reggeon digrams, we consider the case of 
the two Reggeon cut given by the diagram shown below. 

i 
"9 

3 

ft 

The Feynman rules give 

• (4.6) 
7C * 
m - \ 

where the d rs are propagators corresponding to the (eight) 
internal l i n e s . 

d"̂  = - + i 6 etc. 
I f R^ and Rg are taken to be the usual Regge pole amplitudes, 
then the complete diagram gives the two Reggeon cut. To evaluate 
the diagranijGribov c t a l use the Sudakov technique of writing the 
internal momenta i n terms of thei r components i n the plane of 
p^ and pp and those perpendicular to t h i s plane. They then assume 
that the R.egge amplitudes give important contributions when 

( i ) the energy variables s^ = (k^. + kg)"1 and 
o 

s 2 = ^ P l *" p 2 ~ l c l a r e l a r £ e > a n d 

o 
( i i ) the momentum transfers such as (q — q') are 

small ( i . e . « s ) . 
After making the Sommerfeld-Watson transform, they 

obtain 
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(4.7) 

where 
A* = t 

and q^ i s perpendicular to p^ and pg» 
We can represent equation (4.7) by the diagram below. 

N i s then the residue of the fixed pole at J = (X ( q 2 ) + 0 ( ( q ' 2 ) 
i n the Reggeon-piarticle scattering amplitude. I t i s essential 
that, the Reggeon-particle couplings have the non planar structure 
i n order that NT has both l e f t and right hand s i n g u l a r i t i e s . 
I f there i s no cross ( i . e . only s or u s i n g u l a r i t i e s ) then N—>0 
and the diagram does net give a cut. 

The trajectory of the branch point obtained from t h i s 
diagram ( and also the n-Reggeon exchange diagram ) agrees with 
the M and e l s tarn r e s u l t (1.23). One consequence of t h i s for multi-
Pomeron exchanges i s that provided W p(0) = 0, the Pomeron pole 
and i t s cuts accumulate at t = 0T J — 1. The same i s true of 
a normal Regga pole and the cuts formed by the exchange of the 
Reggeon with n Pomaronsv except that, i n t h i s case the c r i t i c a l 
point i s t = 0, J = 0 ( ^ ( 0 ) . I t i s therefore important to con-
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sid'er, at l e a s t at small | t | , what effect, the pole has on the 
branch points, and indeed what effect the branch points have on 
each othero Gribcv et a l (69,. 71) argue that because of t h i s 
coincidence of pole and cut3 at t = 0 , the main contribution 
to a n-Rsggeon production process comes from the "pole-enhanced 
graphs". For example 

i s dominated by 

X 
i s dominated by 

(a) (b) 

I n t h i s chapter we s h a l l represent external p a r t i c l e s by s o l i d 
l i n e s and Reggeons by wavy l i n e s . 

This means that to a l l graphs of the type ( a ) , we expect 
that there e x i s t s one. of the type (b) i n which the bubble i s 
replaced by the pole. We can therefore draw a pole-enhanced 
diagram f o r the two-R.eggeon cut considered e a r l i e r . 

— * y — o ~ ~ ~ < ^ 
The approximation i n which we consider only pole-enhanced graphc 
i s then one i n which we are neglecting cuts i n the Reggeon-particle 
production amplitudes. 
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4.3 THE REGGEON CALCULUS 
Most of the work on the Reggeon calculus has been 

motivated by an investigation into the nature of the Pomeron, 
and i n pa r t i c u l a r into the structure of i t s couplings to i t s e l f 
and other p a r t i c l e s . In recent years there have been several 
problems connected with the self-consistency of a moving Pomeron 
pole with intercept (Xp(0) - 1. S-channel u n i t a r i t y has been used 
extensively to derive the so called "decoupling theorems" which 
require, various Pomeron couplings to vanish (72). The most imp~ 
ortant of these i s the vanishing of the t r i p l e pomeron coupling 
I ( t , t ^ s tg) when the Pomeron legs are at zero momentum t r a ­
nsfer. 

f r o , 0, 0) = 0 
One way of obtaining t h i s r e s u l t i s to consider the 

inclusive process 
a + b > c + ^X^ 

2 2 
i n the. t r i p l e Regge region s — s / m —><V/, m—*<X>A I f we use the 
generalised' optical theorem, the leading contribution to the to t a l 
cross section i s provided by the diagram 

<*, i t , ; 

a — * s •—* a 
I f bchas vacuum quantum numbers the graph i s controlled by the 
triple- pomerott vertex [""(0, t>, , t,-,). When integrated over the 



I l l 
appropriate region of phase space,, the r e s u l t v iolates the F r o i -
ssart bound unless either (X (0)< 1 or I (0, 0, 0) = 0. Thus i f 

P 
we wish to preserve the Pomeron intercept at unity, the t r i p l e 
Poineron coupling must vanish* We s h a l l see that th i s zero also 
has a t-channel origin i n the Reggeon calculus-,, 

(73) 
The Reggeon calculus s t a r t s with the assumption which 

i s open to question, that the Pomeron i s a pole with intercept 
one» I t i s treated as a n o n - r e l a t i v i s t i c p a r t i c l e having momentum 
k and1 energy w = j-1. The bare propagator i s then 

D
0 ( w » K) = (w + k 2 ) " 4 (4 f ;S) 

so that 
k 2 = - t (4o9) 

2 
Here, we assume for simp l i c i t y that k i s scaled so that the 
Pomeron tr-agectory i s 

# p ( t ) = 1 -t- t 

The bare t r i p l e Pomeron vertex i s " i r " and a l l vrep-tleew' 
are assumed to be analytic i n w. The general interaction can then 
be written as a perturbation series expansion i n terms of a 
Reggeon f i e l d operator 1|/ . 

The renorrealised propagator i s 

DCw, k) =• (w + k 2 - y (w, k 2 ) ) " 1 (4.10) 

whero ^(w, & = 2,(w» - } ~ S ( 0 » 0 ) (4.11) 

Equation (4*11) ensures that (4.10), which i s the Dyson equation for 

D, gives the Pomerori pole at w = 0, k - 0. 
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Gribov and Migdal discuss the "weak coupling solution" 
to the calculus, i n which D d i f f e r s only s l i g h t l y from i t s 
bare value 1">0« That i s 

I ( v ! , k ) « w + k 2 for w~k 2-5»0 (4.12) 

I n t h i s l i m i t they show that the u n i t a r i t y r e l a t i o n which defines 
2 , reduces to a series expansion i n the vertex function 
for the tra n s i t i o n of one Reggeon into n Reggeons. 

ft 

This s e r i e s only converges provided the t r i p l e Pomeron vertex 
coupling |"T, s a t i s f i e s 

( P 2 ) 2 « w \v~k 2 0 

and Gribov and Migdal argue that t h i s constraint on ("7, i s a 
r e s u l t of the i n s t a b i l i t y of the Pomeron - that at t = 0 i t 
can decay into an arbitrary number of Pomerons. They propose the 
general form 

|~^(w, k; c { Q) - a w + b k 2 + c ^ 2 + (4.13) 

2 
So the Pomeron i s said to be quasistable at w = k = 0. 

Equation (4.13) describes the general t r i p l e Pomeron. 
vertex shown below. 

V/e s h a l l c a l l t h i s the "Gribov vertex" at which the energy.w,is 
i conserved. The inclusive vertex has the extra constraints \v = k 
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and & - k,g^ (which ensures that a l l the Reggeons l i e on the 
appropriate spin s h e l l ) . Thus 

I t follows that the inclusive and Gribov vertices coincide at 
lc = £ - 0, where i n f a c t they both vanish. 

I n the Reggeon calculus the t r i p l e Pomeron vertex (and 
a l l the other relevant amplitudes) s a t i s f i e s an integral equation 
which we show i n diagrammatic form below. The e x p l i c i t form of 
t h i s equation i s given i n refs.(70) and (74). 

(4*15) 

.C74) have examined the structure of t h i s Cardy and White 

equation i n which the Kernal fJX^X^u contains terms such as 

(4.16) 

The presence of the f u l l t r i p l e Pomeron vertex i n (4.16) 
means that a l l the potentially singular contributions to K are 
softened and so cannot individually be responsible for the 
vanishing of (7, (4.15). One point of view ( f i r s t proposed by 
Gribov et a l ) i s that the zero appears i n the f u l l equation (4.15) 
as a r e s u l t of cancellations amongst the various terms i n the 
i t e r a t i o n of K . This i s only f e a s i b l e i f the terms alternate 
i n sign and i s therefore related to the sign of the two Pomeron 
cut. 

The two Pomeron production amplitude and also the 
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Pbmeron-Pomeron scattering amplitude, s a t i s f y similar equations 
involving K .. This suggests that they too have zeros of the same 
form as r"r> . For example 

(4.17) 

Now, by the pro-cess of enhancement discussed e a r l i e r , 
we might expect that the f u l l two Poraeron production amplitude 
near t =0, J =1, w i l l be dominated by the Pomeron pole. 

(4.18) 

So that 

A p o l e ( w , ~ *cr>£) G»^W»K. >• <3"iSL> 2y 

(w + k2)-
BOc 2) (4.19) 

Where ^ Q j Q i s the pole enhanced part of the f u l l amplitude and 
' 2 

B(k ) i s the usual residue function. Consequently, we expect the 
leading contribution to the two Pomeron cut (near t = 0) to be 
given by the completely enhanced graph. 

yO <X^X>^—C( (4.20) 

The crosses on the internal l i n e s indicate that these Reggcons 
s a t i s f y the moss s h e l l constraint. 

Gribov et a l have written down the general form of the 
p a r t i a l wave amplitude. They find' 
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F ( J , t ) = A(J,t)_ 
B(J,t) - l n ( J ~ « f t ) ) 

A(J,t) 
(4.21) 

D(J,t) 

where A and B are r e a l functions close to 3 - OC^Ct), and 0 ( c ( t ) 
i s the usual two Pomeron branch point with OCp(O)- - 1. Now since 
the pole and cut co l l i d e at t = 0,. J = 1, we expect that the 
Pomeron pole w i l l appear i n the p a r t i a l wave amplitude. Xt can 
also be shown that the two Pbmeron production amplitude and the 
Pomeron-Pomeron scattering amplitude, take the form 

A* 
'-V^ -A- (4.22) 

(4.23) D 

I f the Pomeron pole i n (4.21) were to appear as a pole 
i n A then (4.22) would have a square root branch point,, thus 
vi o l a t i n g the Mandelstam representation. I t i s therefore usually 
assumed that the pole i s generated by a zero i n D. 

D( <* (t)„ t ) = 0 (4.24) 

Bronsan ' • has shown that i n order that the two Pomeron 
cut contribute to the t o t a l cross section with opposite sign to 
the pole ( i n agreement with the Mandelstam r e s u l t and experiment) s 

then B(J,t) must be singular at t - 0, J = 1. The simplest 
solution to (4.24i which also s a t i s f i e s t h i s constraint i s that 
both A and B share a double pole JC. which passes through J - 1 
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at t = 0, From (4 a22), the contribution from the pole enhanced 
graph w i l l be 

(4.25) 
( 5 - « ) 

where g i s the coupling of the Pomeron to the external p a r t i c l e s , 
F i n a l l y , the residue of the Pomeron pole i n (4.23) has a double 
aero, which i s consistent with the t r i p l e Pomeron coupling 
posessing a f i r s t order zero 

Cardy^ 7 6^ has gener 
t r i p l e Pciuieron inclusive vertex. 

C ardy^ 7^ has generalised t h i s formalism to include the 

The relationship between i t and the energy conserving Gribov 
vertex ( IT,) i s 

f& ~ Hi w . c r ^ ) 

The inclusive vertex P j n c , may have w £ w1 ( i . e . the cx 's not 

a l l the came), but i s evaluated at w = 0, k = 0, I n both cases 

the f i n a l state Pomerons must s a t i s f y the mass s h e l l condition. 

where we have now included the Pomeron trajectory slope e x p l i c i t l y . 
For the l i n a l state Pomerons t h i s becomes 

i 

* (w* ± or) + | (k/J + if ± 2 ]C0CL) = 0 (4.26) 

Therefore 

w' + f'()S: 2 + a 2 ) = 0 (4*27) 
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By studying the behaviour of the kernal K i n (4.15), 

Cardy concludes that the t r i p l e Pomeron vertex must vanish for 
o 

small Q l i k e 

r («>•!* ;*»>\e>4) ~ - 3 ^ + b C ^ - " ' ) >0(6-* C^)*) (4.2B) 

Thus, setting w = wr and using (4,27), the energy conserving 
Gribov vertex has the behaviour 

IT ~ a (w + k 2 ) (4.29) 

Which means that 

f~t ~ a ( J — OC.(t)) (4,30) 

where 0C ,(t) i s the trajectory of the two Pcmercn cut. The function 
2 1 0 which produces the zero i n the t r i p l e Pomeron vertex i s . 

therefore a moving zero, having the same trajectory as the two 
Pomeron cut. 

20 ~ * \ ( J - « c(t)) (4.31) 
So when we include enhancement, the leading contribution 

to the two Pomeron cut has the behaviour 

(4.32) 

~ ( J - fcc(t))2 ( J - <X(t))~ 2 l n ( J - <X c(t)) 

Note that i f we exhibit the structure which i s present i n the 
Gribov v e r t i c e s i n the diagram of (4.32), we obtian the diagram 

below 

3 S 
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We can extend the a n a l y s i s o u t l i n e d above-, to i n c l u d e the 
case where we have non vacuum quantum numbers exchanged i n the 
t.-channel. I f we consider the diagram 

a 

(4.33) 

(where R r e p r e s e n t s a Reggeon having C x R ( t ) = N R ( 0 ) + OLf^ t ), 

then (4.32) again g i v e s the leading c o n t r i b u t i o n to the R H P 

cut even when the t r a j e c t o r i e s have d i f f e r e n t s l o p e s * 7 6 \ . I n t h i s 

case the mass s h e l l condition i s 

w + CX R k 2 = tfR(0) - 1 

The Reggeon c a l c u l u s t h e r e f o r e , provides us with a 

r e p r e s e n t a t i o n (4.32) of the Reggeon-Pomeron cut d i s c o n t i n u i t y 

which vanishes a t the t i p of the cut and i s str o n g l y peaked about 

the Regge pole p o s i t i o n . The d e r i v a t i o n of (4.32) r e l i e s h e a v i l y 

on the v a n i s h i n g of the t r i p l e Pomeron coupling (which i n t u r n i s 

a consequence o f demanding 0<p(0) - 1) and indeed on the v a n i s h i n g 

of the Regge-Regge-Pcmeron coupling, a t zero momentum t r a n s f e r . I t 

i s p o s s i b l e to estimate the s i z e of these couplings d i r e c t l y from 
(77) 

the i n c l u s i v e data and unfortunately f o r the Reggeon c a l c u l u s 

they do not appear to va n i s h i n the required l i m i t . However, 

n e i t h e r does the Pomeron i n t e r c e p t seem to be e x a c t l y at one but 

s l i g h t l y above* 1 1*. 

Nevertheless» given t h a t enhancement occurs we would 

s t i l l n a i v e l y expect (4.33) to have the form 

F ( J , t > ~ f ( J , t ) ( J - & R ( t ) r 2 I n C J - « c(t)) (4.34) 

(15) 
The Bronzan and Jones a n a l y s i s i n t o the e f f e c t of t-channel 
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u n i t a r i t y f u r t h e r suggests that 

f ( O C c C t ) , t ) = 0 

i . e . We have a s o f t c u t . Hence (4.32) may s t i l l be a reasonable 

parameterisation even though i t s exact d e r i v a t i o n i s s u s p e c t . 

I n the next chapter we s h a l l i n v e s t i g a t e the consequenc 

of t h i s type of pararaeterisation f o r Re.gge cut phenomenology. I n 

p a r t i c u l a r , we s h a l l use (4.32) as the b a s i s f o r an e x p l i c i t , 

model of the Regge-Pomeron cut which we s h a l l apply to n N. CEX 

and n e u t r a l pion photoproduction. 



CHAPTER. FIVE 
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5.1 FAUAlfSTSniZATIOH 0? THE HBGGS-TOiEROK CUTS 

I n Chapter two, we assembled a great d e a l of evidence to 

support the view t h a t a l l hadronic two-body s c a t t e r i n g amplitude 

show strong Regge pole l i k e shrinkage out to l a r g e v a l u e s of | t ! 

a t l e a s t |tj < 2*0 (Gev/c> . (We s h a l l r e t u r n to the problem of 

photo-induced processes which appear not to shrink> l a t e r in. t h i 

chapter.-,) Furthermore, we have shown how the absorptive/cdkonal 

model can. be made c o n s i s t e n t with the amplitude a n a l y s i s by the 

i n c l u s i o n of lower l y i n g c o n t r i b u t i o n s — namely R E 3?' c u t s * 

However, the one c h a r a c t e r i s t i c f e a t u r e of the eikonal model ~ 

the. energy dependence of the cuts which i t generates - i s in. 

severe c o n f l i c t w i t h t h e ' r e s u l t s of Chapter two. The problem 

therefore., i s how to modify the energy dependence of the cuts to 

produce strong shrinkage a t l a r g e 11 | «, 

We have i n d i c a t e d i n the previous chapter how t-chsunel 

u n i t a r i t y , by s o f t e n i n g the nature of the cut d i s c o n t i n u i t y Grid 

causing i t to peak around the p o s i t i o n of the pole, car. produce 

p r e c i s e l y t h i s e f f e c t . Equation ( 4 0 3 2 ) i s a parameterization of 

the cut d i s c o n t i n u i t y which i s zero a t the t i p of the branch cut 

J = # c ( " k ) , a Rc! a l s o i n c l u d e s a double pole ( J - CXR(t))'""'« 

When t h i s i s i n s e r t e d i n t o the Sommerf .eld-Watson transform, the 

peaking of the integrand near J = W ^ ( t ) should ensure t h a t the 

cut behaves l i i c e S over a f i n i t e range of s arid t«. Of 

course as s—>oo we s h a l l begin to see the contribution, f r o n 

J «x Ov ( t ) . We t h e r e f o r e expect t h a t the e f f e c t i v e t r a j e c t o r i e s 

o f Chapter two should begin to show some d e v i a t i o n from l i n e a r i t y 

as t h i s term becomes important. We s h a l l i n d i c a t e j u s t when t h i s 

e f f e c t should become observable, ou the b a s i s of our f i t to 

- v > ._..„>. ̂  ° ( s e c t i o n 5 . 2 ) . 

To e v a l u a t e the c o n t r i b u t i o n of a Reg^e-Pom^ron cut to the 
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s c a t t e r i n g amplitude, we i n s e r t the form of the d i s c o n t i n u i t y 
(4.32) i n t o the Sommerfeld-watson transform.. For the p a r t i c u l a r 
case of an odd signature Regge pole, t h i s g i v e s 

s i &U) FU.O (5.2) 

where 0(,,(t) i s the branch point as given by the usual Mandelstain 

formula, ( X R ( t ) i s the Regge pole t r a j e c t o r y and G ( t ) i s an 

a r b i t r a r y r e s i d u e function.. We have a l s o included i n (5.1) an 

exponential c u t - o f f i n the d i s c o n t i n u i t y f u n c t i o n ( e. 0 ) . By 

analogy '<.o. chapter three we now define 

c = a + l n ( s ) - i i r / 2 (5.3) 

we can then w r i t e 

FC**> - & J ̂ ( f ^ ^ » « C ' - « 0 * 3 (6.4, 

C5.5) 

I n (5.5) we have divided the i n t e g r a l i n t o two p a r t s — the c o n t r i ­

bution from-- the dipole at J = (X ̂  and the p r i n c i p a l v a l u e 

i n t e g r a l . The i n t e g r a t i o n contour i s shown below. 
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( a ) P i p o l e 

ft 

T 6 TA x f 1 

= C**-*Op W-vi^c^-^ti+OJ (5.6) 
(b) P r i n c i p a l value i n t e g r a l 

(5.7) 

- GO 
I f v/e make the change of v a r i a b l e 

x = ( <X c - J ) i n ( s ) (5.8) 

then (5e7) becomes 

(5.9) 

Now 
'US 

Therefore, we can w r i t e (5.9) as 

U S j 
fcX/w* 

(5.1C) 

1 

( 

A 
(5.11) 

U\ $ J h*. + (.«fi>- * e ) Us« I 
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where we have i n t e g r a t e d by p a r t s the second term of ( 5 . 1 0 ) . 

The i n t e g r a l s i n (5.11) may be evaluated i n terms of the expon-
(78) 

e n t i a l i n t e g r a l f u n c t i o n E i ( x ) v ' to give 

« c 4 i (5.12) 

where 

= C (X R - i X c ) l n ( s ) (5.13) 

( 78 ) 
I f we use the expansion 

0 8 *.* 

( i f - 0.5772 i s E u l e r ' s c o n s t a n t ) , we can s i m p l i f y (5.12) 

* (̂"Z * ) 
F i n a l l y , by combining (5.6) and (5.15) we obtain 

(.5.15) 

(5.16) 
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5o2 A REGGS CUT MODSL FOR i t " p t v ^ . 

For the odd signature rho pole c o n t r i b u t i o n to the two 

independent s-channel h e l i c i t y amplitudes, we w r i t e 

< M - < ( % . * > j r C- <=//a «/o & N ^ ( s. 1 7 ) 

Where, as us u a l 

c N = a N + ( l n ( s / s ) - i TT/2) (5,18) 

(y ( t ) = 0,^(0) + 0̂ ' t 

and we l a b e l the amplitudes by N" (= 0,1), the net s-channel 

h e l i c i t y f l i p . 

The presence of oij»(t) i n both the f l i p and non f l i p 

amplitudes means that the rho chooses nonsense. We did i n f a c t 

t r y a model i n which (X^Ct) appeared i n only the f l i p amplitude 

(sense choosing)-. However, i n order to obtain a good d e s c r i p t i o n 

of the l a r g e | t j d i f f e r e n t i a l cross s e c t i o n we had to add e x t r a 

exponentials to the pole r e s i d u e s . A b e t t e r d e s c r i p t i o n of the data 

i s obtained w i t h ( 5 . 1 7 ) , which has j u s t a s i n g l e exponential plus 

the nonsense f a c t o r s (and fewer v a r i a b l e parameters). 

Before we w r i t e down the cut amplitudes we r e c a l l from 

chapter two that the. amplitude a n a l y s i s s trongly suggest that, the 

f l i p amplitude i n -n N CEX i s w e l l described by a simple 

(nonsensfi choosing) rho pole, i . e a the cuts are .small i n t h i s 

amplitude* We therefore i n c l u d e cuts only i n the non f l i p amplitude 

and i n the notation of chapter three we w r i t e f o r the J>H P cut 

U < 0 * H ' * o * \ > - & e * (5.19) 



Where F„ ( s , t ) i s the f u n c t i o n defined i n (5.16) with 
C P 

* <^0 "4- <Xp <9 

ap i s r e l a t e d to the slope of the Pomeron contr:Lbui:ion to the 

forward TT N cross s e c t i o n and a Q i s the exponent which appea: 

i n the r e s i d u e of the non f l i p pole (N = 0 ) through (5„18). We 

adopt (5.20) so that the exponential | t | dependence of the cut i s 

r e l a t e d to t h a t of the pole i n a similar- way to the eikonal model 

Si n c e our model i s b a s i c a l l y concerned with the energy dependence 

of the cut and says l i t t l e about the j t j dependence, we have a l s o 

included the f a c t o r (1 + b t ) i n ( 5 S 1 9 ) to< allow f o r the presence 

of Oi At) i n thp pole. 

We r e q u i r e that the model des c r i b e the f o l l o w i n g f e a t u r e 

of the -rrN CEX d a t a : . - ( 7 9 5 

( i ) The 6,0 Gev/c amplitude a n a l y s i s . 

( i i ) The d i f f e r e n t i a l c r o s s s e c t i o n data f o r the 

energy range 5 .<. P l a b ^ 50 Gev/c« 

( i i i ) The a v a i l a b l e p o l a r i s a t i o n data. 

( i v ) Thb. data on A c - o - U " ) w h i c h has r e c e n t l y 

become a v a i l a b l e up to ^i->b = 2 ^ G e v / C ^ r o i n NAL. 

(v) The f i n a l piece of "data" i s the « e f. f.(t) of 

f i g . ( 2 . 1 ) which we do not f i t , but n e v e r t h e l e s s we regard i t as 

extremely important t h a t our model reproduce t h i s data. 

As our f i r s t attempt to f i t the data we therefore had 

a simple p poi.e plub ? cut model given by equations ( 5 e l 

and (5.19)* However we encountered p r e c i s e l y the same problem an 

i n the naive absorption model, namely the s i m i l a r i t y i n phase of 

pole and cut a t small | t | . Thus demanding Im A + + -• 0 a t t~-0„ 
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( G e v / c ) J (the crossover zero) v:e a l s o have an unwanted zero in. 
Re A + + a t approximately the same value of t . With our f r e e l y . 
pararneterised cut there are two p o s s i b l e courses of action,. 

( i ) We could take the view t h a t the phase of the 

p 0 P cut at 6.0 Gev/c i s not the asymptotic phase. Looking 

a t ( 5 . 1 6 ) , the dominant c o n t r i b u t i o n at small |t j comes from the 

term V & , where c I s given by ( 5 . 2 0 ) . I f we allow a p to. 

s e a r c h over negative v a l u e s we f i n d t h a t we can obtain an e x c e l l e n 

f i t to the 6.0 Gev/c amplitudes. However the parameters are 

such t h a t 

C s : — * \w % - v*5 ^ ~ xjx 

and we are e s s e n t i a l l y m u l t i p l y i n g the small j t j p a r t of the 

cut by a f a c t o r " i " . The energy dependence of the f i t i s now 

completely incompatible w i t h the Serpukhov data. I n f a c t the model 

&„ff i s opproximately l i n e a r f o r | t | >*0.4 (Gev/c)''', but curves 

over at ^mall |t | u n t i l b( CO) / v ,0.25. For t h i s reason we r e j e c t 

t h i s p o s s i b i l i t y . 

( i i ) The most s e n s i b l e s o l u t i o n to the problem, 

remembering the arguments presented i n chanters two and t h r e e , 

i s to again add Regge-Regge cuts - i n p a r t i c u l a r the J 3 S P r cut. 

I f we do t h i s we should f i r s t remember t h a t the cut t r a j e c t o r y 

w i l l be given by 

(5.22 

So t h a t i n t h i s case the pole and cut do not c o i n c i d e a t t =• 
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Hence there i s no reason to suppose t h a t the pole "enhancement" 
of chapter four w i l l occur, ( A l t e r n a t i v e l y , the i n t e g r a t i o n •j.'rom 
~ «? to (X ( t ) which appears i n the Sommerfeld-Watson transform 
does not include the pole a t J = # R ( t ) „ ) We th e r e f o r e expect 
t h a t the d i s c o n t i n u i t y a c r o s s the j 1 E: P' cut w i l l take the form 

Which g i v e s a c o n t r i b u t i o n to the amplitude 

[\f\ %) 

For s i m p l i c i t y we take n = 0, and we therefore ha.ve a uorniol 

absorption/eikonal model parameterisation f o r the J>& P 5 cut. 

r . • <• ts..--)"'-' £.„ 

{ V J 

c , = n_ -v W«S - i j ? f c 

The f u l l h e l i c i t y amplitudes are 

A + + ( s , t . ) = A ^ + ( s , t ) + A ^ ( s , t ) * A ^ ( s , t ) (5.25) 

A + _ ( s , t ) = A ^ J s . t ) (5.26) 

where the v a r i o u s terms are defined i n equations ( 5 * 1 7 ) , (5.19) arid 

( 5 . 2 3 ) . As we have already mentioned, the best d e s c r i p t i o n of the 
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secondary maximum i n the CEX d i f f e r e n t i a l c r o s s s e c t i o n near 

t ~> -OoO (Gev/c) " i s obtained using a nonsense choosing rho pole 
(27) 

coupling- C o l l i n s and Swetman " •' found that the use of the A' 

and B i n v a r i a n t amplitudes improved the q u a l i t y of t h e i r f i t i n 

t h i s r e g i o n . However, i n our case such a d e s c r i p t i o n i s of l i t t l e 

p r a c t i c a l value because of the e x t r a parameters we would hav.% to 

generate the c u t s . 

The f i n a l v a l u e s of the parameters are shown i n t a b l e 

( 5 , 1 ) B e c a u s e of the r a t h e r a r b i t r a r y t dependence of the c u t s , 

we. are unable to compare most of these parameters with those of 

the e i k o n a l model f i t described i n Chapter three,, However, the 

.flip/non f l i p , r a t i o of the rho couplings i s i n general agreement 

wi t h a l l other estimates, as a l s o are the t r a j e c t o r y - p a r a m e t e r s f o r 

the v a r i o u s exchanges. I n p a r t i c u l a r (Xp ^ 0 , 2 8 i s c o n s i s t e n t with 

the value obtaln-jd from the small t shrinkage of the pp 

d i f f e r e n t i a l c r o s s s e c t i o n over the XSR range, 

I n f i g , ( 5 , 1 ) we p l o t the h e l i c i t y amplitude:-; at CJ.O G e v / c 

These are obviously i n e x c e l l e n t agreement with the amplitude 

a n a l y s i s •- the cuts having modified the non f l i p amplitude to 

produce both the crossover zero and the approximate double zero in. 

Re A.,, The f i t to the d i f f e r e n t i a l c r o s s s e c t i o n data i s shown i n 
-M-

fig.(5,2)where we have shown a s e l e c t i o n of the a v a i l a b l e low 

energy data (?-j_,^ 4 ^ Gev/c) along with the data from Serpukhov 

(21^. P ^ ^ 50 Gev/c), The shrinkage present i n the data i s 

c l e a r l y reproduced by the f i t . The i n t e r c e p t C*.' (0) i s f i x e d by the 

f i t to Ac- ( f i g . ( 5 , 4 ) ) , w ith the f u l l model 0( f f i n f i g . ( 5 . 3 ) . 

The r e c e n t NAL data at 50, iOO, 150 and 200 Gev/o has c a s t doubt 

on the o v e r a l l normalisation of the Serpukhov data and i n the f i t to 

A c r we have used only the low energy plus NAL data. F i n a l l y we 
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show our f i t to the a v a i l a b l e p o l a r i z a t i o n data i n f i g . ( 5 . 5 ) . 
"It i s c l e a r l y c o n s i s t e n t with the more r e c e n t data of H i l l e t a l , 
g i v i n g a p o l a r i z a t i o n ~ 20% f o r | t 1^0.5 (Gev/c) , i n c o n t r a s t 
to the CERN measurement of 60& i n t h i s region* An i n t e r e s t i n g 
p r e d i c t i o n (which can j u s t be observed i n f i g . ( 5 . 5 d ) ) , i s the 
appearance of a s u b s t a n t i a l negative p o l a r i z a t i o n i n the range 
1.0 ^ | t | <- 2.0 (Gev/c) as we go to higher e n e r g i e s . 

The. only data which we have not included i n our f i t . i s 

the wide angle CEX data from which Barger and P h i l l i n s e x t r a c t e d 

0( e f f ( t ) f o r 111 5.0 ( G e v / c ) 2 . However, i n f i g . (5 .6) we p l o t 

0( e f f ( ' l ' ) a t l a r g e |t| c a l c u l a t e d from the model f o r ibhrea'diff­

erent energy ranges. Below 5.0 Gey/c (which i s the range ana?.ysed 

by Barger and P h i l l i p s ) , the shrinkage i n our model i s c o n s i s t e n t 

w ith the "data" ( f i g . ( 2 . 3 ) ) f o r |t|sJ3.0 ( G e v / c ) 2 , which i * wall 

beyond t^e range over which we might reasonably expect Regge theov 

to apply a t such low energies, as we explained i n chapter two* '• 

F i g . ( 5 . 5 ) a l s o p r e d i c t s t h a t we s h a l l observe some d e v i a t i o n of 

(X eff ^ r o m (approximate) l i n e a r i t y as l a r g e |t j data becomes 

a v a i l a b l e at Serpukhov or NAL. 

A f u r t h e r appealing property of the model i s the way i n 

which i t e x t r a p o l a t e s down to low energy. I n chapter two we 

discussed how the "lower l y i n g c o n t r i b u t i o n s present in. the new 

absorption models to give the c o r r e c t phase s t r u c t u r e at 6.0 Gev/c 

are so strong that, they overwhelm the pole a t low energy, moving 

the crossover z e r c i n towards t = 0. I f we look at the non x l i p 

amplitude i n our f i t a t 2.0 Gev/c, v:e f i n d t h a t the crossover zero 

has moved i n , but only to t~~DA4 (Gev/c) compeared with i t s 

o o s i t i o n of t ~ (Gev/c) at P., r, = 6.0 G'jv/c. W». should 
J- 80 

c o n t r a s t t h i s with the eiiconal model f i t of C o l l i n s and Swctman 
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i n which the crossover zero has moved to t ~ -0*7 ( G e v / c ) 2 £.••; 
2.0 Gev/c, 

Thus we have demonstrated t h a t a simple model which 

incorporates a p H P cut d i s c o n t i n u i t y peaked at the p o s i t i o n of 

the pole, can d e s c r i b e a l l the f e a t u r e s of the TC N GEX data 

above P l a b ~ 5.0 Gev/e, provided we a l s o i n c l u d e the. P' cuts 

i n order t h a t our amplitudes have the c o r r e c t phases« There are 

two p r e d i c t i o n s which can be made on the b a s i s of t h i s model:-

( i ) W.e expect the strong shrinkage apparent i n the 

c u r r e n t l y a v a i l a b l e data to be modified according to f i g , ( 5 - 6 ) 
o 

when we look beyond t ~ -2.0 (Gev/c)" at Serpukhov and NAL, 
( i i ) A weaker p r e d i c t i o n i s the appearance of a s u b s t ­

a n t i a l negative p o l a r i z a t i o n at higher energy i n the region 

1*0 £ |t I « 2.0 (Gev/c) 2„ 

5.3 THE R B P CUT DISCONTINUITY IN PK0T0PR0DUCTI0N 

As we i n d i c a t e d i n chapter two, the only r e a c t i o n s .:UJ 

which we do not observe Regge shrinkage are the photo-induced 

pr o c e s s e s . These, r e a c t i o n s have a much r i c h e r amplitude s t r u c t u r e 

w i t h non f l i p , s i n g l e f l i p and double f l i p amplitudes a l l c o n t r i b ­

u t i n g to the cross s e c t i o n . One p o s s i b i l i t y i s that the cux. .Isi's*-

c o n t i n u i t y i s s t i l l peaked at the pole, as i n T I N . with the 

observed s t r u c t u r e i n the photoproduction ^ e-fv> near t r~ -0«.5 
p 

(Gev/c) ' and the l a c k of shrinkage a t l a r g e | t | , being clue t c 

pole-cut i n t e r f e r e n c e which postpones the strong shrinkage ueyend 

the l i m i t of the a v a i l a b l e data. 

To i n v e s t i g a t e t h i s problem we have attempted to reproduce 

the photoproduction amplitudes obtained from the e i k o n a l model f i t 

of s e c t i o n 3»5 - which we know have the c o r r e c t phases to s a t i s f y 
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both the FESR's and the high energy asymmetry data - usin//; d i f f ­

erent parameterisations of the d i s c o n t i n u i t y f u n c t i o n A d J / c ) . 

We r e l y h e a v i l y on the formalism of s e c t i o n 5.2 and because the 

c u t s are f r e e l y parameter!sed, we r e q u i r e a new s e t of cut param­

e t e r s (ap, ap», Gp, G p r ) f o r each h e l i c i t y amplitude. However, to 

economise we s e t them equal i n the non/double f l i p amplitudes, so 

t h a t there are i n f a c t e i g h t f r e e parameters (four f o r the non/ 

double f l i p and four f o r the. two s i n g l e f l i p amplitudes) in. a l l 

to d e s c r i b e the absorption. 

As i n 7TN CEX we w r i t e ( R E P c u t s ) 

(5c27> 

where. 

And f o r the R E P ' cuts 

(.5.29) 

w i t h 

The R H P ' t r a j e c t o r y i s defined i n a s i m i l a r way to (5.22) and 

we have dropped the h e l i c i t y l a b e l s on <.-.p and Cp, as w e l l as on 

a l l the absorption parameters. 

For the N = 0, x - 2 amplitudes we allow some extra 
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freedom (compare equation (3,66)) by m u l t i p l y i n g both (5.27) and 

(5.29) by a f u n c t i o n of t , ( b 1 + b g t ) . The f u l l amplitude i s then, 

as u s u a l , the sum of terms R + R S P + R O ' . 

As i n s e c t i o n 5.1, the f u n c t i o n F ( s , t ) depends on the 
CP 

form of the Reggeon Pomeron cut d i s c o n t i n u i t y , by analogy to ( 5 . 4 ) . 

V/e now look at some d i f f e r e n t p o s s i b i l i t i e s f o r A ( J j " t ) . (Note 

t h a t the f u l l cut d i s c o n t i n u i t y always has an exponential e a ^ 

dependence which i s included i n the term e c ^ of (5.31).) 

T h i s i s simply the paremeterisatiun used i n s e c t i o n C5'»2) to f i t 

TT N CSX and therefore F ( s , t ) i s given by (5 . 1 6 ) . V/ith t h i s 

choice of d i s c o n t i n u i t y i t i s c e r t a i n l y p o s s i b l e to obtain the 
2 

requ i r e d aero i n Tm A.h+ at t ^ - 0 . 5 (Gev/c) . However, when we 

t r y to f i t the non f l i p and double f l i p amplitudes (see f i g . ( 3 . ? ) ) 

the r e s u l t s are : r a t h e r poor, the model being unable to reproduce 

any of the s t r u c t u r e present i n these amplitudes, p a r t i c u l a r l y 

Tm A .• I n f a c t the " f i t " tends to make the cuts very weak i n A . 

and A +_. S i n c e , with j u s t rho and omega poles, the p o l a r i s e d photon 

asymmetry measures the strength of the non and double f l i p c uts 

i t i s p a r t i c u l a r l y badly described i n t h i s model (being e s s e n t i a l l y 

one f o r a l l t ) . I n f i g . ( 5 b 7 ) we shotf the p o l a r i s e d t a r g e t asymmetry 

r e s u l t i n g from our best f i t . The descrtpancy betwetn the- model and 

the data 5s obvious. Our f i n a l check i s to compare- ( X ^ - t t ) c a l c ­

u l a t e d from the model,with f i g . ( 2 . 6 a ) . Because the cuts are small 

\ 

1 t o * » 

Our f i r s t c o n sideration i s 
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i n the non and double f l i p amplitudes, there i s no structure 
induced int o &eff by pole-cut cancellations i n these amplitude 
and the model shows t y p i c a l Regge shrinkage, contrary to the data 
However, i f we look at j u s t the single f l i p amplitude we obtain 
the & e f f of fig.(5»8). Here there i s a zero i n the imaginary 
part of the amplitude at t~-0.5 (Gev/c r , which i s reflected 
i n the s l i g h t deviation of & eff from l i n e a r i t y i n t h i s region,. 
I t i 3 clear that the reason why we do riot see the eff e c t charact­
e r i s t i c of the absorption model (figa(2,2)) i s that at t h i s value 
of t our new type of cut has approximately the same phase and 
energy dependence as the pole - namely that corresponding to 
the t r a j e c t o r y ( X R ( t ) , Thus the cancellation i s simply between 
two d i f f e r e n t functions of t (coming from two d i f f e r e n t exponent! 
slopes), which does not nroduce arv w i l d fluctuations of (v ,.-.,,„ 

- " Qxl 
This could have important consequences f o r Regge ^u.t 

phenomenology. I n p a r t i c u l a r i t could make the need f o r NW3Z 
redundanto I n section 5«>2 we used a nonsense choosing rho pole 
with no cuts i n the f l i p amplitude to f i t the >TM CEX datp.. Since 
the f l i p amplitude i n - TTN has the same form &3 the single f l i p 
photoproduction amplitude, i t should be possible to obtain a zero 

o 
i n Im A + _ ( T T N ) at tr* -0.5 (Gev/c) by pole-cut interference 
w h i l s t s t i l l maintaining the approximate l i n e a r i t y of ^ e f f 

However, i t i s apparent that (5 032) i s not the correct 
form of cut discontinuity with which to f i t the photoproduetion 
amplitudesc 'A'e next t r i e d two parameterssations i n which we incre 
the contribution from the t i p of the branch out J = Oi . F i r s t l y 

3 - Gt 

which give3 
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, v . t 0 , a / v n f c f t l 6 ( 5 . 3 4 ) 

And secondly 

(5.35) 

from which we obtain 

/ i.: » • « \. \.<J s 0\J ) 

Again WG f i n d i t impossible to reproduce tlae. amplitude a 
of chapter three using either of these parameterisatior-s f o r the 
R 0 F cut. Equation (5.33) undoubtablv gives a better description 
of the single f l i p amplitudes thai! (5.36) or (5,32), but the non 
and double f l i p amplitudes are once again, very poor. The model 
0( i s very similar f o r both these parameterisations and i n 

f a c t shows considerably more structure than the previous attempt 
using (5,32). Xn fig. ( 5 . 9 ) we show Ot f f from the best f i t 
to the amplitudes using (5.33). However, because of the bad 
description of A.f._ and A_̂ . the f i t to the polarised target and 
polarised photon asymmetries ( f i g . (5.10)) i s clearly inadequate.. 

Our f i n a l choice for the discontinuity i s 

iA ( J , t ) ~ constant (5«3?) 

which i s of course, similar to the usual absorptive/eikon?»l rnode.l 
cut discontinuity and gives 
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Using t h i s simple parameterisation of the R H P cut we f i n d 
that our f i t to the non and double f l i p amplitudes i s much better 
than with any of our other choices of A ( J , t ) c We can also obtain 
a good description of the single f l i p amplitudes. 

We know from our previous work: ("chapter three), that (ft.3 
i s l i k e l y to be able to f i t the photoproduction data*,. (This i s 
not certain because the discontinuity may be more complex i n 
the eikonal model.) However, the systematic approach which we have 
adopted makes i t clear that t h i s form f o r the discontinuity i s 
c r u c i a l , p a r t i c u l a r l y i n obtaining a good description of the non 
and double f l i p amplitudes and hence the asymmetry data* Toe only 
point which i s unclear from t h i s aualysis i s the choice of A(J,t ) 
f a r the single f l i p amplitudes. I t i s impossible to choose between 
(5„33) and (5.37) on the basis of a f i t to the amplitudes of 
chapter three at a single energy. We therefore confronted two 
simple, model dir-pctly w i t h the photoproduei-' on dats over a rangii 
of energies (3.0 £ P-j ̂  ^ 15.0 Gev/c). 

(A.) A(J,t) ~ constant i n a l l amplitudes. 
(B) A ( J , t ) ~ constant i n A + _ and A - 4. , with A ( J , t ) ~ ("f :;r~ 

i n A + + and A » 
By f i r s t f i t t i n g the amplitudes at 6 e0 Gev/c, we limned--

i a t e l y obtain good agreement with the phase sensitive asymmetry 
data which only exists at low energies. When we t r y to describe 
the d i f f e r e n t i a l cross section over the f u l l energy range we f i n d 
that model (A) i s udoubtably the better cf the two. I n pa r t i c u l a r 
the dip at t ̂  -0.5 ((rev/c) "appears to deepen with energy when 
we f i t with (B), contrary to the data ( f i g . ( 5 . 1 1 ) ) . For t h i s reaso 
we can cle a r l y state that the best description of the Reggae P.-
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Pomeron cut discontinuity i n photoproduction i s provided by the 
usual eikonal/absorptive type modal,, (A). We emphasise that i n 
comparing the d i f f e r e n t parameterisations of A ( J , t ) , a l l of the 
p o s s i b i l i t i e s were treated <bn exactly the same basis as outlined 
above. 

Having established that A ( J , t ) ~ constant gives the 
best r e s u l t s , we then changed the pararaeterisation s l i g h t l y to 
enable us to compare the resu l t s of the f i t with that of chapter 
three. We have no more free parameters, but we now w r i t e the 
R H P cut as 

where V<.fc}'« ^ * V°> " 1 * l ^ ^ ) l r ' 
And i n the case cf the N. = 0, x = 2 amplitude, we. mult i p l y (5.32) 
by (b^ + ^ g t ) . ^ n e ^ ^ cu':'s a r e pa ra m e'terised i n a similar 
fashion t 

The results of t h i s f i t ^ 8 0 ^ are shown i n fi.gOc(5.11) to 
(5.16~) and i n table f5„?.)«. We should emphasise that the parejiiet-
e r i s a t i o n i s rather crude, p a r t i c u l a r l y i n the non f l i p (N 0, 
x = 2) amplitude. A much better description i s the f u l l eikonpl 
approach described i n section 3.5. 

In conclusion, the eikonal model i s successful i n photo 
production because i t has the correct behaviour of A(<J.t). Any 
model which seeks to s h i f t the dominant contribution to the disc­
o n t i n u i t y away from the t i p of the cut towards the position of t h 
pole J = 0< R > w i l l necessarily be inadequate i n photoproduction. 



1 3 7 

POL'E PARAMETERS CUT PARAMETERS 
ao 4 . 6 0 

J. 
0 . 0 2 

a l 1 . 4 6 3 . 4 0 

G o 2 8 . 5 1 g p 0 . 0 5 

G l 1 3 1 . 5 3 G-D 1 
JL. 

- 1 . 1 5 

CO) 0 . 5 5 b - 0 . 0 9 

oC 0 . 9 3 0 . 2 8 

OcP.(0) 0 . 4 5 

1 . 0 8 

TABLE 5 . 1 

The values of the parameters obtained i n the f i t to 
the n N CSX data using the model of section 5 . 2 . The Pomer<->n 
intercept was fixed at {X „ ( 0 ) = 1 » 
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^\EXCHANGE 

PMUftTETER^V^^ 
RHO OMEGA POIviSRON P' 

ao 3 • 3S 9.48 4.94 9.90 
a l 0ol5 1.03 5.10 6.35 

G Q (G T) 44.13 19.58 0„40 —3 c CI 
G l < V 1.15 13.61 2.13 -1 . 89 

b l -0o53 
b2 5.96' 

TABLE 5.2 
The values of the parameters obtained i n the f i t to the 

photoproduetion data using the mod^l of section 5.3. Farsmeters f o r 
the double f l i p amplitude (K. = 2} are i d e n t i c a l to those shown f o r 
the non f l i p amplitude (N =0)- and b^, bg are the same f o r both, 
rho and omega exchanges. 

The rho and omega t r a j e c t o r i e s are those of section 3-5 ̂  
wh i l s t the P and P { t r a j e c t o r i e s were fi x e d (from table 5,1) 
to be 

(y p ( t ) - 1.0 *,0*25 t 
# p i ( t ) - 0.45 + 1.08 t 
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CONCLUSIONS 

There are. two important points which we must bear 
i n mind i n order to obtain, the correct behaviour of ft egg e 
cut amplitudes. 

( i ) I t i s cr u c i a l i n f i x i n g the phase of the f u l l 
cut amplitude to include contributions from the region 
•-1 < J < o. We have chosen to do t h i s by using Regge-Regge 

( Ql ) 

ciijts, although several other methods have been proposed "'«, 
This phase problem, inherent i n the old absorption models but 
only made transparent by the amplitude analysis, lias obscured 
the. other- basic flaw i n the. absorption model approach - namely 
the form of the cut discontinuity. 

( i i ) I t now seems clear that the strong shrinkage 
observed i n had'rondc pro-cesses i s due to some kind of pole 
enhancement mechanism, which peaks the. R S ? cut discontinuity 
at the position of the pole. I n t h i s respect, the absorption 
model which gives A(J,t.)~' constant (by t h i s we mean that the 
discontinuity has no s i n g u l a r i t i e s or zeros), i s clearly int.iequat 
However, i t appears that i n photoinduced processes, t h i s mechanism 
does not operate and the absorption model (provided we have: the 
correct phase structure) i s s u f f i c i e n t to; describe the data. 

F i n a l l y we note that pole enhancement of the CUT 
discontinuity i n hadronic reactions, may make NV/SS unnecessary 

p 
i n order to ".•explain" the dips observed at. t ~ - 0 . 5 ( G e v / c ) i n 
ir'p-^Wx and "&V — t * -rr">. The. structure i n the photoproduction 

0< Qff at t h i s point supports the. pole--cut interference lnechenisia 
However, i f t h i s i s the case, there i s then the puzzling 
inconsistency of the absence of structure i n the TTN CEX 0? ~., » 

eix 
Why should tha Argonne model work best i n hadroniu reactions and 
the Michigan, model: be most successful i n photoproduction? 
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Also-, f a c t o r i s a t i o n of the p residue would suggest that i f 
we have a NV/SZ, we should observe a dip i n ( which 
i s dominated by J5 exchange.) • In general, f a c t o r i s a t i o n tests 
of t h i s nature, support the Michigan approach. 

I f we make the. hypothesis that, there are no NVSZ and 
that a l l dips are produced by pole-cut. interference } we arrive 
at a consistent picture provided we assume that pole enhancement 
of the cut discontinuity occurs i n hadronii* processes ( and not. 
i n photoproduction ). Then, as we have seen i n section ( f j r 3 ) s 

2 
pole-cut cancellation can s t i l l take place, at t ~ -0* 5 ( Gev/ c ) 
( i n TTA/ CEX f o r exairiple ) without destroying the l i n e a r beh.r.rioMr 
of ^eff i n t h i s region, whereas i n , pole-cut interference 
produces the. observed structure i n ®-ef£ • 

I t would be i n t e r e s t i n g to extend, t h i s type of analysis 
to other processes i n an attempt to confirm t h i s p e c u l i a r i t y of 
the photon. There are two areas where good, accurate data 
could: provide a stringent test of our hypothesise 

( i ) Vector meson production, which i s related to photopro­
duction by Vector Dominance may show that the polo enhancement 
effe c t i s not a property of p a r t i c u l a r h e l i c i t y amplitudes (e.g. 
those with one u n i t of h e l i c i t y f l i p at. the "meson" vertex 
(•m-itf ,Tcnj> , e t c . ) ) . Fig.(2.15) shows that, the unnatural p a r i t y 
exchanges i n j> and u) production ( TV and B respectively) appear 
to; shrink at large | t | , i n dicating that A(J.t) <̂  constant i s 
a property of the photon. 

( i i ) A second set of reactions i s backward TTN and backward 
photoproduction. Examples of these along with the allowed (baryon) 
exchanges are shown below^ . 

(a) T T +

? - « » t /Vy J A § 

(b) -rc"r> \" -n" 
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(c) ^ - * ^ 9 . , ̂ t f , A § 
(d) tf? — , n T i * , , 

A l l of the arguments presented above f o r the forward reaction 
also apply here v . F i r s t l y , f a c t o r i s a t i o n i s again a problem. 
Reaction (a) has a dip at u ~ -0.15 (Gev/c) which may be 
associated with a zero i n the N M amplitude at W.T - - -K 
However, we then; have to assume that the coupling i s small to. 
avoid f i l l i n g i n the dip ( i n the EXD l i m i t ) . Factorisation would 
now suggest a dip i n ( c ) , which i s not observed experimentally. 
Also, the photoproduction reactions show very l i t t l e shrinkage 

(PS) 

w h i l s t the hadronic processes do appear to shrink y although 
the data only extends to u ~ -0.5 (Gev/c) " (reaction ( a ) ) . So 
here again, experiment seems to support the hypothesis of a disc­
o n t i n u i t y dominated by the pole i n hadronic processes and by the 
t i p of the branch cut i n photoproduction. 

A systematic analysis of Regge cuts i n these and other > 
processes obviously provides a useful extension to- UiJs l i n e of 
research. 
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FIGURE CAPTIONS - CHAPTER FIVE 
5*1 i ^ . 1 h e l i c i t y amplitudes f o r the -reaction T C " ^ - V - -?«'•"'•. , . 

5,2 F i t to the d i f f e r e n t i a l cross section f o r 'Tr"*p_*.-n°v>. 
5 03 The effe c t i v e t r a j e c t o r y calculated from the model of section 

(5o2) compared with the •'•data" of fig 0(2ol)o-
5»4 F i t to the data f o r A e ( TT Nf) „ 
5 05 F i t to the polarization data f o r TC ""\:> — - T C °a .. 
5„6 The eff e c t i v e t r a j e c t o r y calculated from the model, of section 

(5»2) out to i t I £ 4*0- (Gev/c) 2 f o r different, incident ba&ift 
momenta o. 

5o.7 F i t to the polarised target asymmetry data f o r X^> --^y<l\> 

w i t h ^ ( —V" i n a l l h e l i c i t y amplitudes.. 

5*8 The eff e c t i v e t r a j e c t o r y of the single f l i p smplitude i n 
i n t h i s amplitude * 

5*9 The. eff e c t i v e t r a j e c t o r y f o r •n'̂  w i t h A f o f c ) ̂  
^ CS - > V c / 

i n a l l h e l i c i t y amplitudes* ' . 
5<>10 F i t to the polarized target and polarized pv,«v-»<\ *.%.y<n*\\'~r-\ 

f o r \^-S-TT up with M-*.fc) ~ ) • i n a l l helfoiH.y 

amplitudes c. 
5*11 F i t to the d i f f e r e n t i a l cross section f o r . Tha soli3 

curve i s the f i n a l f i t with L{'S,k)~ conftt;?nt i n a l l 
h e l i c i t y amplitudesu The dashed curve shows the f i t with 

constant i n A + m and A^* 
5o.l2 F i t to the d i f f e r e n t i a l cross section f o r ^->^°^> with 

A'v.^,t)^ constant i n a l l h e l i c i t y amplitudes* 
5*13 F i t to the polarized target asymmetry data f o r ^( \> v^c-

wi t h A(^.L:)^constant i n a l l h e l i c i t y amplitudes u 
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•5.14 F i t to the Doiarized photon asymmetry data f o r tfp—*• •-:C1^ 

with ACo^b)^ constant i n a l l ftelicity amplitudes. 
5.15 F i t to the neutron/proton r a t i o (R) f o r -re" photoproduction 

w i t h A(3'>b)'v< constant i n a l l h e l i c i t y amplitudes• 
5.16 The eff e c t i v e t r a j e c t o r y f o r V̂ >-»-.":0p calculated with 

A(7,b)~ constant i n a l l h e l i c i t y amplitudes. 
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A l . i J?WE&MIC^. 

We sha l l use the f o l l o w i n g nota t ion f o r the general 

s ca t to r ing pro ce sa 

1 + 2 3-1-4 

V ( E 2< - % 2 > 

The. invar ian t quant i t ies s $ t and u arc defined by 

s = ( 1 ^ + P 2 ) 2 = ( F 3 + P 4 ) 2 

t = (P^ - P 3 ) 2 = (P 2 - P 4 ) 2 ( A l , l ) 

u * r P l - P 4 ) 2 = (P 2 - P 3 ) 2 

w i t h the constraint 

s + t - i - u = Z m 2 l- Z (A1.2) 

i = i 

The s ( t or u) channel process i s that f o r which s ( t or u) 

corresponds to the square of the t o t a l centre of mass energy- Thus 

8 channel 1 + 2 >• 3 + 4 

t channel 1 + 3 *• 2 + 4 

u channel 1 + 4 > 3 + 2 

The laboratory frame i s taken to be the res t frame of 

p a r t i c l e V. o I n terms o f laboratory quant i t ies 

, , (v'1.3) 
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The incoming centre of mass thr-ee-momentum f o r the s-chann:.:! 
, process i s 

- (s - (n^ + m 2) 2)Cs - 0^ «• m 2 ) 2 ) / 4 s (A.1,4) 

v/ i th a s imi la r expression f o r q J e 
l i12 

.i.f the s-channel centre of mass scat ter ing angle i s i'?s , 

then 

t - in? + n& - 2c, , q o Cos £ s + C'Al-5) 
J °12 &34 ' -1" J 

and 

where t i s the value of t corresponding to & = 0* At high o s 
energy, a use fu l approximation i s 

b ° ^ " i [ cm
 * - * * ) K - ) + 

Therefore, i f e i ther - m^ or n\g = r "1/ and 

becomes neg l ig ib l e extremely quickly* (Of coarse i f a l l mosses 

are. equal t ~ 0 ) . I n the reactions whiuh we are p r i n c i p a l l y 

concerned w i t h t can safe ly be ignoredo 

Equations (Al«4) to ('A1.7) may be redefined f o r 'Live t or 

u channel process. I n ' p a r t i c u l a r Cos = 'l+ can be obtained 

from (Al -o ) by the subs t i tu t ion 
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A1.2 H S L I C I T Y A M P L I T U D E S AMD N OJII.. A L IS AT ION 

I n the n o t a t i o n o f reference 4, the centre o f mass 
h e l i c i t y amplitudes f o r the s-channel process are 

and f o r the t~channel process 

An. - < W l AKO i A,V> 
where ^ represent the s-channel h e l i o i t i e s and 7^ the •' 
t-channel ones. 

The amplitudes are normalised so that, the o p t i c a l 
theorem becomes 

<X,M- ° ~ % T.m < / * 1 ^ | A t s J o ) | h a K > 

And the d i f f e r e n t i a l cross s e c t i o n i s 

457*0* • \ .- o - s m _ i _ « I - ,A 

where 0"6 i s the spin o f p a r t i c l e one e t c 
With t h i s n o r m a l i s a t i o n the amplitudes are dimension-

l e s s . (Note t h a t 1 mb - 0*3893 (Gov/c)" 2.) 
A1 o3 P I O N KUCISQN AKraiTUPBS AND OaSSRVABIjEiS 

I n a l l 0" + — > 0 ~ + -g-' reactions,, there are f o u r 
h e l i c i t y amplitudes reduced to two by p a r i t y conservation- I f 
v;?: l a b e l each amplitude by the baryon h e l i c i t y s t a t e , then the 
experimental observable.? are 



™. el X*v\ A.>.v A*. 
p a. . - (A1.12) 

To describe the p a r t i c u l a r case of ix N s c a t t e r i n g we use 
the t--channel i s o s p i n amplitudes A~^' ̂  and A^^"^ i n terms-
of which 

( A l o l S ) 
A »̂ n ° v\ } - /V' A 

A 1 • 4 PHOTOPRODITCTION AJ.IHjITUDliiS AND OffSTEWADLSS 
I n t h i s case v;e hove ei g h t amplitudes reduced t o f o u r 

by n a r i t v conservation, V7e l a b e l them - f\\ f o r the general 
process 

^ + o " fy» 

V/e only need t o consider X = 1 because o f p a r i t y 
conservation so we now drop t h i s s u p e r s c r i p t * The f o u r indep­
endent amplitudes are 

A ^ N = 0 

A + + N = 1 
A__ N - 1 
A +_ N • = 2 

where n i s the net s-charmel h e l i c i t y f l i p . I n terms o f the^e 
amplitudes the experimental observe.bles are:-

( i ) D i f f e r e n t i a l cross section.. 

(m i s the nucloor; mass) 
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Pol ariose! photon asymmetry 

& d<ilA,,A'!.-ft^ftt] 

( i l l ) P olarised t a r g e t asymmetry 

(Ai.15) 

A 
( i v ) R e coil nucleon p o l a r i s a t i o n 

1* 

( v ) -nP photoproductxon from neutrons 

(Li. ..17) 

( ( 
2. t<V\ + (^V'r)v 

Where the subscripts s and v r e f e r to the i s o s c a l a r and 
i s o v e c t o r p a r t s o f the amplitude r e s p e c t i v e l y * 

F i n a l l y the amplitudes f o r of photoproduction are r e l a t e d 
t' 

t o the above amplitudes by SU(3). 

7\ 

Where a = 1.23 from the ^."^ mixing as given by ths quadratic 
mass formula. 



APPENDIX: TWO 



167 

A2.1 TKD ST-^CTIVa TRAJECTORY # ( t ) _ 
For the s i n g l e Regge pole exchange (y f t ) , the forward 

d i f f e r e n t i a l cross section takes the form 

dfc f i t J ^ / 4 « J (A2..1) 

I f Oi ( t ) i s a l i n e a r f u n c t i o n o f t , 

( X f t ) = CUO) -fc- & f I-

we can wri"ue 
<*(t) _ e O i ( t ) l n ( s ) = SC*(0) eCX" l n ( s ) t 

Then (A2.1) becomes 

d!: u a 

So v;e expect t h a t the width o f the forward peak i n the 
d i f f e r e n t i a l cross s e c t i o n w i l l " s h r i n k " l o g a r i t h m i c a l l y w i t h 
energy c 

The behaviour of i s u s u a l l y ".ore complicated became 
of a d d i t i o n a l pol^s and other s i n g u l a r i t i e s such ac Regge cuts 
which may c o n t r i b u t e i n a given process e However, i n t h i s case 
i t i s possible t o define an " e f f e c t i v e t r a j e c t o r y " ^ e f f ' " ^ ' a n d 

a computer programme has been w r i t t e n t o c a l c u l a t e i t from the 
experimental data- To do t h i s we change (A2.1) s l i g h t l y and w r i t e 

\ \ Si " 1 ^ V'O CA2.2) 

Where Pj i s the l a b o r a t o r y beam momentum and 

v> = (s - u) 
r "2 

K. i s a t independent norm a l i s a t i o n parameter- associated w i t h a 
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p a r t i c u l a r momentum (cay P.. ) © This parameter may also bo; as so cj a be-.?, 
w i t h data a t more than one nio.tnen.tum t o allow a complete renormal-
i s a t i o n o f a l l the data from (say) a p a r t i c u l a r experimental 
group which may be auspeet,. 

To determine (X̂ .̂ .. at t = t. ; , the available, data i s i n t e r ­
polated t o o b t a i n values ot t ~ vt. using a l i n e a r i n t e r p o l a t i o n 

do-' 
i n I n ( / d t ) from data a t adjacent values o f t * 0/R.p.p i s then 
c a l c u l a t e d by a l e a s t squares f i t o f I n ( d ^ / d t ) against I n v , 
and the e r r o r estimated u s i n g the variance covariance m a t r i x * 
N a t u r a l l y the e r r o r s r e f l e c t the i n t e r p o l a t i o n which has t o be 
performed t o o b t a i n data a t the same t value but d i f f e r e n t ensrgie-.s 
From t h i s p o i n t oT view i t i s very u s e f u l t o have a v a i l a b l e data 
on d>/dt over a wide range o f energy measured at the same t valoos 
at each energy* 

The kinematic c o r r e c t i o n s t o (A2 C2) have been examined by 
Spi.ro and Deram e For equal mass s c a t t e r i n g (such as — "̂ •-•̂ "'V'̂  

they are completely n e g l i g i b l e , even a t lew energies ( P T 3 OovA:) , 
For uneqwal masses theii? i n c l u s i o n produces an upward o h i f t o f 
(X e££ 9 which may be important i f we t r y t o c a l c u l a t e ^ . ^ . . a t 

l a r g e | t | using only low energy data i n , f o r example,, processes 
such, as Tv'4'̂ --v.'VO''̂ t However,, t o o b t a i n the e f f e c t i v e t r a j e c t o r i e s 
o f chapter two, such corrections; have been ig n o r e d 4 although we 
have included t c o r r e c t l y as i n d i c a t e d i n Appendix !«. 

http://nio.tnen.tum
http://Spi.ro
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