W Durham
University

AR

Durham E-Theses

An examination of regge cut models in high enerqgy
scattering processes

Fitton, Alec

How to cite:

Fitton, Alec (1974) An examination of regge cut models in high energy scattering processes, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8272/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses

e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/8272/
 http://etheses.dur.ac.uk/8272/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

EXAMINATION

HIGH ENERGY

WA

OF REGGE CUT

IN

SCATTERING PRC

M UNIVERS]
BOIENGE I

6 DEC 1974

gearion
LIBRARY

MODELS

U OTI
VJLQS.EIL)



AN EXAMINATION OF REGGE CUT MODELS
IN
HIGH ENERGY SCATTERINCG IROCESSES

THESIS SUBMITTED TO THE
UNIVERSITY OF DURHAM
BY
ATEC FITTON B. Sc. (DUNELM)
FOR THE DEGRGE OF DOCTOR OT PHILOSOPrHY

DEPARTMSNT OF PHYSICS . - 0CT

UNIVERSITY OF DUREAM

UHIVER
“‘N::tzuoe 8ir

6 DEC1974 |

|emot
LIBRARY

CBER

1974



ABSTRACT

A phenomenolgical analysis of twn body scattering data
with particular emphasis on the phase and energy dependence of
Regge cut corrections is presented.

After a brief summary of the Regge philosophy and approach,
we survey the evperimental data in chapter two. We note that eall
hadronic processes, as distinct from photoproduction appear to
exhibit strong Regge shrinkage at lsrge |tl.

In chapter three, we motivate the eikonal model approach
and show how it is used to calculate cuts in w N charge exchange
and in photoproduction. Most of th: phase problems encountered in
the naive absorption models can be overcome; providzd we use the
true elastic amplitude (which we represent as a sum of P + P!
poles) to generate the absorptive corrections. We conclude this
chapter by discussing how the shrinkage of the eikonal wodel cuts
is inconsistent with the oceff‘s of chapter two for hadronic
processes, |

We digress a little in chapter four to examine the important
role played by t-channel unitarity and show how it can solve sone
of the problems outlined in the previous chapter by peaking the
cut discontinuity at the position of the pole.

Finally, we propose a new scheme for calculating Regge cuts
and in the last chapter construct a specific model tor =N (EX
and w° photoproduction. A detailed examination of the cut discont-
inuity provides a possible explanation for the different energy
dependence of these ostensibly similar processes.

In conclusion, we discuss the implications of our model for
the traditional (Michigan and Argonne) approaches ﬁo'Regge cut
phenomenology and suggest some areas whiéh may provide interesting

tests of the model.
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INTRODUCTION

The strong interaction is characterised, as its
name suggests, by the strength of the force as compared
with the other fundasmental forces which exist in nature -
Electromagnetic, Weak and Gravitational. In nuclear physics
it provides the binding force which holds the nucicuc
togaether agaiﬁst the repulsive effect of the coulomb
interaction. The short range nature of thz nucleasr force
prompted Yukawa to postulate the existance of the meson.
Low cnergy (~ 1 kev/c ) nuclear reactions sinow a rapid
variation in the cross section plotted as a function of centre
of mass energy, which is well described by a sum of resonances
given by the simple Breit-Wigner formula. As the energy
increases (~ 10 - 20 kiev/c ) the resonances merge to form a
continuum which can, nevertheless, still bc interpreted as é
sumn 0f overlapping Breit-Wigner resonances.

In elementary particle physics tiie strong interaction

also accounts for the forces between a group of particles
krrown collectively as hadrons. A striking feazture is the
richness of the hadronic spectrum compared to the liimited
number of partickes which do not experience stircng interactions
(Leptons). As in nuclear physics, the cross section up to a
few Gev/c shows prominant resonance bumps which at higher
energies begin to overlap into a continuwn. Hadronic resonances
can be grouped into SU(3) singlets, octets and decuplets for
baryons and singlets and octets for mesons, whese quantum
numnbers may be generated by the quark model. There are as yet.

no firmly establiched exotic resonances ( i.e. those which




cannot be constructed in the quark model from qq for mesons
and qqa for baryons).

The successes of field fheories i describing
Llectromagnetic interactions canmot be carried over with any
confidence into the strong interaction situation. One reascn
is simply the strength of the interaction which pronibits the
utilisatiornr of the normal perturbétion expansion techniques.
A further problem is the complexity of the hedronic spectrun,
which makes it extremely difficult to formulate a theory in
which each particle necessitates the introduction of a new
field operator. If we try to construct e theory in terms of
a limited set of operators, we violate the democrzcy whicn
appears to exist smongst the hadrons by imuosing the view
that some particles are more elementary than others,

A more appealing approach to strong interectionsg
is in terms.of the S-matrix, where the aim is to formulate o
theory from a few general postulates such as crossing, Loirentz
invarience, conservaition of probability eic.. Here the main
interest is in the scattering amplitude and by including some
additional assumptions about the analytic properties of the
S-matrix we arrive st the Regge approach which has been so
successful in describing experimental data.

High energy two-body or quasi two-bod¥
processes are known to be peripheral, witn the angular
distributions cften showing prominent peaks in the forward
( or backward ) direction. Their piresence or abscnca &5

strongly correlated with the presence or absence of particles
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(or resonances) in the crossed t ( or u ) channel. The
integrated cross section also eﬁhibits a power law dependence

as 2 function oI centre of mass energy. Both of these
experimental facts cen be understood within the Regge iTramework ,
which places the known hadronic states on trajectories which

are approximately linear functions of the square of the particle.
masses. The prediction that the éifferential cross section
should "shrink" ( become increasingly concentrated in the forward
direction) with increasing energy, is also well verified
experimentally.

As accurate data has become available for a wide range
of experimental observables (polarisaticns, spin rotation
parameters, asymmetries, decay correlations, etcg)'the
emphasis-in Regge phenomenology has shifted towards a direct
study of the amplitudes themselves. In one particular procass
it has become possible to extract the amplitudes in a model

independent way. However, many featurecs of the data cannot be

)

'adequately described in terms of the leading set of Regge poles

o

alone. We here adopt the most logical solution to the problems
of simple pole models -~ namely that Regge cuts are also
important in the full scattering amplitude.

The most fundamental difficulty with Regge cuts is
. the lacx of knowledge of the discontinuity function.
Most phencmenologists worl in the absorptive/eikonal model
where the analogy to nuclear physics is cnce again strong.
There ie 2lso consideravle debate about the structurec of the

input Regge pole residue and the mechanism which produces the
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observed dips in differential cross sections.
Phenomenologists are continually appealing for
higher energy data against which to test their medels. In
recerrt years this cry has been answered by the shundance of
data at sufficientlyv high energies to &allow thea symbol >
to take on its full meaning. The Serpukhov machine provides
for the collision of up te 70 Cev/c proton beams with a
stationary target, whilst NAL extends the range up toc 400
Gev/c. The CERN Intersecting Storage Ring (ISR) facility

provides a centre of mass energy equivalent to a 3000 Gev/c
proton beam striking a stationary target. At such ultra--high

energies, the number of final atate particles is so large as to

£

prohibit.a detailed analysis of the energy and momenium of euch.
This has ied to the study of "inclusive reactions" in which
one observes only a limited number { usually one) of the
final state particles.

Much of the data, which has airsady come out of tie
new accelerators, such as the rising total crous sections
and appearance of structure in the pp differential cross
section, provides a fascinating challenge to the ingenuity of
Regge phenomenologists. In this thesis we concentrate on the
quasi two-body data over the whole of the currently available
energy range and look at its interprectation in the light of

various Regge cut models.
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1.1 INTRODJCTION

e approvach the problems of high energy
scattering through the framework of S-matrix theory (1),
where the G-matrix is defined to be the operator which
transforms the incoming system of particles into the out--
going system. The probability for thc transition to occur is
then given by the square modulus of S, and conservation of
probability then demands that S be unitary. 3y explicitly
removing that part of S which represents the physically
uninteresting situation in which the particles do rot inter-
act, we arrive at a defihition of the reaction or scattering
amplitude {A). Maximal analiticity of the First Xind (1) now
states that the only singularities cf A are thos=2 poles

corresponding to vhysical particles and the cuts genzaratesd

from them through the unitarity equation
A-AT < aan” (1.1)

In aprendix one we define the s,t and u channels
for a general two particle scattering process. In thie simple
case of equal masses, A(s,t,u) is the physical amplitude for

the g-channel reaction when
2 _
S > 4m s ts0 3 uxgoO

where s,t and u are all real.

It is possible to define an analytic continuation

(2)of the amplitude intc the t-channel physical region.
-2 .
t>4m” + 350 5 ugO



The postulate of crossing symmetry asseris that the
amplitude thus obtained is the physical amplitude for the t-
channel process. Therefore the s,t and u channel reactions
may esch be described by the same analvtic function A(s,t,u)

evaluated in the aporopriate region of vhase space.

1.2 Td8 CONTINUATION TO COWPLEX ANGULAR MOLENTUM

The angular momentum strﬁcture of scattering
amplitudes has long formed a hasis for experimental and
theoretical investigation. Following the w1k of Regge in
potential scattering, it was recognised that the continuation
to complex values of angular momentwn providzd, via the cross-
ing postulate , a link betwéen the asymptotic behsvicur of the
amplitude and its anguler momentum structurs:. It is thz
extension 2nd developmrent of this idea that forms the basic
content of Regge thoery, where the ﬁigh energy beheviour in
the direct channel is interpreted in terms of the exchange
of on2 or more composite particles, or Regg= polzs, in the
crossed (f or u) channel,

The problem theraefore, is to extend the rznge of

validity of the t-channel partial wave series, which for spin-

less particles may be written in the form

Als.t)= \e,n?. (221} A, (c) % (2e)

where A{t) is the partial wave amplitude of angular siomentum
2, and P(Zt) is the Legendre function of the First Kind.

The inverse of (1.2} is
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A = 33a ) Al®) Q) de,  as

This revresentation breaks dovwnr as soon as we
encounter the first s (or u) chennel singularity - that ic
outside the enlarged Martin-Lehmarn ellipse (3). To obtain
information abolit the analytic properties cof A(s,t) outside
this , region, we replace the suﬁmation in (1.2) by a contour

gi)o The

integreal in the complex angular momentum yplane
partiel wave amplitudes are now (complex) analytic functions
of £ close to the real axis, which are subjzct to the

constraint
At = A(L,E) {=0,1 Q... 104

In order that the new representation be unigue
(equation (1.4) does not gaurantee this) the continuad partial
\
/

wave amplitudes must satisfy Carlscu's Theoren o T2 shall,

Y

for the moment, assume that a suitable defianition of A({,t)
exists,

The step of replacing (1.2) by a contour integral
in the complex A-plane is known as the Sommerfeld-iiatson

(1)

itransforn

o—

. ctowe [ (ager) Alre) Pl )
- Alsk) - - ™~ qu = AR (1.5)

A(%,*t) is assumed to be analytic in the region close

2

to the real axis enclosed by the contour Cy {shown below) s8¢



only singularities of the integrand come from the vanisiiing of
the denominator at integer values of X . The argument of the
Legendre Function is taken to be -_—Zt to compensate for the
factor (—1)2 apnearing in the residue of the poles at integer
L.

The crucial step in the Regge analysis is to deform
[

the contour C,-—»C, to expose the singulerities of INCICHN

such as poies and cuts, for Re(f)»-%.

o

s L
“ L—a; I ? —“_> -~y L—
/L‘/:/" “Gu;) ™~
" \
l \
A a0 a(e) \
! = i
I S l
T - = !
et ' - 1 - & ) .
A Y __¢_a_§..._~; " a 3 “ f
C\ I /
;
| 4
B
|
|

_.__co—q".

Provided the behaviour of the partial wave amplitudes
is such that the contribution from the large semicircle
( [f]-+% ,Re(R)> -~ %) can be neglected, then
_ (agwy B € 2e) _abw | (@eey) Alrg) K2

Sun ot Qi Sua v d
Cuk (1.6)

AkY) =

+:fixed poles + background.

In (1.6) we have erhibited the contribution from a
single Regge pole at «l¢) with residue &) and a single branch

cut running from KL=ose) to £2-e0 with discontinuity A(L,) -
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The bacsground integral is the contribution from the line

L 1
t0 + io0o = % which vanishes as 2 ¢ for Z—bao-( )e

{
f=r
&
nlrd

Liand2lstam has shovm how it is posszible to push the baquround
to the left (Re(l)< - %) so that the Regge terms alwavs dominate
the background asymptotically. This procedure is well known
(1,3) and alters non of the conclusions which we shall draw
Trom (1.6).

The interesting situation is one in which s-w (the

s-chamel physical region). In this Limit
[ .
PQ(—E*-) $—v 0D (_ z':'.) (1.7)

and using the kinematics of Appendix one, equation (1.6)

becomes (neglecting the non Regge terns)

Blant) (8ss, ™)™

H(_Sct:)f

oo Swa ‘ﬂ“)f(b)
et ' <)R (
s vt 1.38)
. A(‘Q;e)( ISQQ' dg
Sea ™
- 60

where 8, is a scale factor, and we have absorbel all
extraneous factors into the residus ond discontinuity functions

@ and A . Thus the trajectory () comyletely determines the

X

)

energy dependence of the first term in (1.8), the Reagge poise
term.

We now raturn to the problem of obtaining a suitable
definiticn of the partizsl wave amplitudes in which to -make the
continuation provided by the Sommerfeld-Watson transform. (A

n

full account of ihis procedure for the general case of particles
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with spin can be found in reference (4) ). Froissart and

Gribov have shown that a sufficient condition for the required
continuation to exist is that the Kandelstam reprezentation (3)
holds for the amplitud=z A(s,t). We proceed therefors by writing

a digpersion relation in s at fixed t, involving both the s and

u singularities of A.

b (1 €'5) t ) ‘D‘, KE.' ,t) V'
Alsk) = ‘ J 2ok dZ + —— e ot (1.9)
) zb (2 - ) K -2 (ze‘ - -a.‘) >

Ds and Du are the discontinuities -across the right and left
hand cuts respectively. (1.9) is only valid up to the number of
subtractions required to make the integrals converge. Svbstit-
uting (1,9) in (1.3) and interchanging the order of integration
gives

o

AW s T | [0« eut p ] )

dadldy

Y

where Q{(Z) is the Legendre function ¢f the second kind and

Z, v M { 2, Ra,

As we have glready discussed, for the contiaudtion
(1.5) to be unique the arge £ behaviour of the amplitude
must satisefy Carlson's theorem. Thsz exchange forces represanted
by the u-singularitiee in (1.10) invclve the usual factor (-lﬁ
whichi also appeers in potential scatiering (lajorana forcas).
This wviolates Carlson's theorem. The wzy out of the difficalty

(4)

is to define amplitudes of definite signeture &(= % 1)



Aé ()= 7o j [bsLe‘, £ =D (-2, e)] Q') aw' (1.11)
2,

Thus the signatured partial wave awnlitudes Ai('h) coincide
\_-{i't'lu the physical amplitudes for even/odd values of { respect—
_ i\.revly.

Looking at the pole term in (1.6), we need to replace

the factor [M ] by [ 3Culae) &@JJ which,in the

S TTOL Stw vy

high energy limit, becomes

-inotlt)
S+ e (1.12)
Sia 7t 02(t)

( (1.12) is often called the "signature factor")

So the effect of introducing signature is Lo replacea

S ¢

-1RX :
[ 2 ] by (1.1i2) in equation (1.8) with a similur ceplace-

ment in the cut term, giving

IPURLLL U e(t)
A - -gleo (A8 ) (%)
o/, (%) ) \ (1.13)
- g+ s, \
J AR ( S vl / (/5*'/ M

All of the Regge formalism cutlined abeve may be
generalised to the case of particles wiih spin. Problems such

as the need fcor amplitndes of definite parity, kinematic eing-

UWlarities and constroints and the analytic croperties of the
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trajectory and residue functions are dealt with in detail
reference (4).

1.3 REGGE POLEGS IN S-CHANNETL HELICTTY ALFLITUDES

The first term ir (1.13) is the contribution of a simzle
Regze vole to & t—channel helicity awmplitude. For many purposes
(particularly vhen considering abs OPpthb corrections) it isg

convenient to work in terms of s-channel helicity WLL1JC 8,

In principlie the connection between the two sels of amplitude

(2)

is provided by the helicity crossing matrix o Cohen-Tannoud,ji

l(0)

et write the contribution of a t-channei Jegge nole tc an

s—~channel helicity emplitude as

i " ﬁ’ N —\h&() m{t}
Au(st)-\\-é;) \ 3 6 kt)r\& k wotm/\(\‘ﬁ) (1.34)
where N is the net s-channel helicity flip.
LU #a) = (ram ) (Le15)

= \pepial v lpa-pgl - N (1.3€)

The quantity t  is the value of t when {5=0 and is
defined in Appendix one. So is usually taken to be 1 Gev/c &ad
the function FHs&x(t)) depends on whether the pole chcoses
sense, nonsense, etc..

1e4 EXCHANGE DUGENERACY AND NONSENGSE WRONG SIGNATURZ 43R

Phenomenologically, Regze poles of opposite signetuce

appear to occur in (exchunge degenerate) pairs such that
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afle) = ao"(e) = otie) (1.17)

where the superscripts relate to even or odd signature.
Equation (1.17) is a statement of weak exchange

degeneracy (EXD). Strong EXD also demands equality of the residues.

IHORR MO RS L) (1-18)

Strong EXD therefore imposes a severe restriction on
the pole terms in reactions where a pair of EXD Regge poles wmay
be exchanged. For example consider

| (4) K’P—b'\:{°n where the full amplitude is Ad“'[’

(B) n=> Wp where the full amplitude is Aa"f’

(The sign change in the rho contribution reflects the property
that the rho is odd under charge conjugation.) If strong LXD
holds, then (see(1.14))

()Q.r,‘e) < §Lk) (_-\ ¥ e_'.'"“ ) s odd signature

A sk) e ¥ te) (v + e,"“”) g% even signature
(Ve reprezent the contribution of a Regge pole to the full
amplitude by its trajectory label.)

Now assuming that «(¢) and ¥() are real for t< ty, ve
see that the amplitude for (B) is purely real, whilst that for
(A) is the same apart from a rotating phase factor,

Y

Alwp=>®a) ~ avyly) &' 8™

A(Kaowp) ~ 27LE) 5™

Sitrong BXD therefore predicts equality for tha cross
sections and zero for the polarization in both recctions.
Similar results are obtained for pairs of processes comnnected

by "line reversal" (4,6).
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f'or example :-

- L]
Wep-»w 2° K - Real
np » K K+ W Rotating
- e
Kep - n°A K - K " Real
e~ KA A Rotating
v “
ke -» WA™ K™= K Real
- - oty &
Ka=>A K + X Rotating

Finally consider the signature factor (1.12). At
b right signature points ( ® even for 8§ even etc.), the denomin-
) ator gives a pole which i& no® removed by the numerator and
must therefore be cancelled by a zero in the residue ¥ (t).
Strong EXD means that we must use the same residue Tor both
signatures, so ¥ (t) must have a zero at the wrong signature
points also (since this is a right signature point for the
other ZXD trajectory). But the cancellation of numerator and
denominator in (1.12) occurs automatically at wrong signature
points leaving an cverall amplitude zero, kncwn as a wrong
signature nonsense zero.

1.5 PRUDICTIONS OF PURE REGGE POLE KODZILS

In (1.14) we have a simple formula which can be
directly confronted with the experimental data. It is most
easily tested in the few reactions where the t-channel quantum
numbers are sufficiently restrictive %o allow the exchange of

only a single Regge pole. In one such process, pion riucleon

the zvailable energy range.

charge exchange (CEX), enough data exists to allow a complete
separation of the amplitudes (see chapter two). We 1iist below

other processes of this nature together with the upper limit of

G T TSI T T

Bk

)

R,

114

k3

n

TR

et gy owmt oy T A



Reaction
'ﬂ'P—b'n°ﬁ

w'v-qanf n

‘-I
[}

Exchange(s)

J
R

Mex: Ppgn (Ge

48 (200

50 (200)

Q&
o ° (3)
Ko p=>Kgp w (p) 10
KPﬂ“q?ﬂ v (&) 4,25
Kp—=on W (%) 4.25

ev/¢c)

We have indicated in brackete after the first two react-

ions the cnergy range which will soon be available from thie NAL
machine,

Returning to (1.14), both the phase and ensrgy depend-

ence of the Regge pole contribution are conmnletely fixed once

we have specified the trajectory ot(t), provided &&(%) and

¥ (t) are both real. Furthermore, they are indepsadlent o all

helicity labels, =0 that in a given reaction, all helicity

anplitudes corresponding to the exchange of a particuler

Regee
pole have identical phase and energy dependence. ¥We shall

return to the question of determining L(t) Ffrom ths expariznent.

al data in chapter two. The phase ' resiriction predicte that

the polar'zatlon should be zero in the process shovwn in tha

table above,if we allow only Regge pole exchange. This simply is

because polerizations depend on the relative phases of helicity

amplitudes througn formulae such as (41.12).

The experimental. data provides many severe tests cf

(1.14). There is now overwhelming evidence to support the
conjecture that Reggze noles alone gre rat the only singularities
which contribute to high energy scattering amplitudes,and that

Negge cuts arising from the second term in (1.13), are alwo

impocrtant. We Iist below some of the predictions of pure

Regze
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(8)
£ (9)

pole exchange which are in direct conflict with the data

(i) The non zero polarization oberseved in N CE
is & direct indication of some other contribution besides the
rho pcle. This could be a secondary trajectory or it could be
a cut.

(ii) The failure of the omega “crossover zero" (see
chapter two) in pp and Pp to propagate, via factorisaticn, into
other processes such as wN-=pN or Yp--w"p which are
also dominated by omega exchaenge. Since cuts do not need to fact-
orise, the addition of a destructive cut which generates the zero
by pole~cut interference obviates this. Alternatively we could
invoke a lower lying ' trajectory and form the zero by inter-
ference between it and the w . In this case we would expzct
the zero to move to larger values of [t] as the energy increszsed.

(iii) The high energy (Plabjp 20 Gev/c) total cross
section data(io) disagrees with the extrapolation of low energy
energy fits done with simple pole models, I particwmlar, these
fits predict a constant total cross section at high energy
coming from Pomeron (P) exchange, whilst the data exhibits a

broad minimum ( o, , (pp)) over the Serpukhov energy rsnge,

tot

followed by a distinct rise through the NAL znd ISR ranges. One
explanation is the presence of destrucltive cuts which die away
logarithmically to isolate the Pomeron pole contribution. How-
ever uP@»i is also a possible, if slightly more controversial
explanation(ll)‘

(iv) The failure of NWSZ to appesr in reactions related
by factorisation is also evidence to support the inclusion of

important (nonlfactorising) cut contributions. For examnle the

NWSZ of the rho trajectory, which in pole models accounts for
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the dip at t~ 0.6 (Gev/c)g in =P+ does not appear in
'{p-vqf? which is also dominated by rho exchange. The presense
of a lower lying B contribution in the latter reaction has also
been invoked to explain the abéense of a dip(lz).

(v) The data on ¥p*n'a and np-»pn shows a prcminant
peak in the forward direction of width «:m“?'0 Both processes
are dominated by T exchange which,because of its parity must
decouple at t=0. The pole model therefore predicts a forward
dip. A pion conspirator seems to violate factorisation, but a
destructive w® P cut again provides an answer.

(vi) As we have mentioned, strong EXD predicts equality
of the differential cross sections for pairs of processes
connected by line reversal. Experimentally the rotating vnhase
reaction lies above the real reaction in most cases(ﬁ) oy an
amount which requires a substantial breaking of 1¥XD in pole
models. Furthermore, to explain the polarization requires
secondary trajectories. Ve might hope that cuts woulid violate

EXD in such a way as to reconcile theory and experiment.,

1.6 RBEGGE CUTS

As we have seen, Regge cuts are very desirable objects
phenomenologically, providing at first sight a simple and
appealing way out of seversal problems inherent in the pure pole
models. Most of the theoretical understending of Regge cuts has
relied upon the Feynman diagram approach(ls). The most common
method is to use the "weak coupling limit" to examine the
analytic structure of the diegrams in perturbation theory and
to hope that the results may hold true in the strong intceraction
confcxt.

In addition to the obvious argument that there is ne

reascn why Regge cuts should not be present and furthermore give
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important contributions to the full scattering amplitude,

. 14 o . R .
Mandelstam( )dcmonstrateu that cuts are instrumental in removing
many of the difficulties caused by fixed J-plane sinzularities

(4)

at nonsense points of the amplitude - These arise from any
diagrem which has a third double spectrél function (des.fe).

A third d.s.f. is also essential if we are to generate a true
Regze cut. The simplest Feynmsn diagram which does this is the

"double cross" graph shown below, where the "bubbles” are

complex scattering amplitudes.

—

If the asymplotic contribiticn to the bubbles is taxen
to be Regge pole exchange, then the Tull diagrem gives a two-
Rezgeon cut.

It has been demonstrated(is) that the t-iterations cf
this diagram are important in "softeaing" the nature of the cut
(i.e. forcing the discontinuity to vanish at the tip of the cut)
and in removing the difficulties presented by the singularities
mentioiied above -~ in particular the Gribov-Pomeranchuk fixed ncle
at J=-1. The insertion of such a singularity into the t-channel

uniterity equation for the partial wave amplitudes,

Agle) = ASele) = Pte) Ate) AT, (1) (1.19)

means that it iterates util it eventually becomes incompatible
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(8)

with Keximel Analiticity in J o Apart Tron giving a Reges cut,

&

~Y

iggrams such as the one gbove have branch points which 11

along the unitarity cut in such a way that AJ and AJ* mast be

evaluated on opposite sides of the cut. Since the fixed pole

is present dnly in AJ', it remains a pole and is eventually

cancelled in the physical amplitude Ly the signaiure factor
Amati, Tubini and Staﬁbhﬁ]llnl(l ) (ATS) looked at

Feynman clagrams of the type shown below, tne essential feature

of which is their planar topology.

HEN AR N

I T

[s

e voread

That this diagram does not generate a Regge . on tac
"l/ \
physical shcet was demonstrated explicitly by Mendelstam*™ "',

In fact it gives a contribution which,asymptoticslly, gocs Lile

(17) -y ™met L] 1, - : ] 1-3 o 3. .'.".- [ R
s 100(") o« rhe ATS mistake was in talking Jjust the twe-

\

particle discontinuity term (:II::JI:‘) in the unitarity
. R . ; ‘s =1 a (t)
equation, which in fact behaves like (log(s))
(moving cut). Including the full spectrum of intermediate

N
states ()@() sees a cancellation cf this term snd the
diagram has the fixed cut behaviour given above.

There are therefore,general srgusents in favour of

Regge cuts in any theory vhich has a non zero third d.s.f
llandelstamn's anaiysis details the following specific properties
of -Regge cuts:-

(1) If the individual exchanges in the two Reggeon cut

are represented by Rezgge poles with trajectories o, () and OL,Lt)



then the branch point trajectory is given by
ol () = Max (o, (k) + ofyle ) -1 ) (1.20)

where

VR

(1.21)
If the input trajectories are linear functions of t
'
o (e) = ol (o) + ot b (1.22)

then it can easily be shown that the constraint (1.20) leads

to the cut trajectory

of (&) = Of to) ¢ 04 (o) = | « °'°”‘ )4:;

DN
“ + M (10&&))

Thus if one (or both) of the exchanged Reggeons is
the Pomeron which has -of (O) = 1, then the position of pcle
and cut coincide at t = 0. Zquation {1.23) can readily bhe
generalised to the case where more than twe Reggeons are
exchanged. Again, the Regge pole (R) end its n-Pomeron cnt
(R @ P?) coincide at t = O,

Taking the typical Reggeon and Pomeron trajectories
N“{t) t 0§ «+ ¢t
Holt) = Lo « 03¢
we obtain the relative energy dependences (up to possible

Tactors of log{s)) shown belcw for the two-Pomeron, Reggeon-

Pomeron aud two-Reggeon cuts.
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(ii) The signature of the two-~bosgon cut is simply 1

product of the sign

(For the two-baryon cut ‘3)°= -‘S‘S;)

(1ii) Although Regge poles have definite parity,
cuts may contribute to both parities because of the crbitsl
angular momentumn (—1) |

(iv) Cuts do not factorise.

1.7 ABSORPTIVE CORRECTIONS TO REGGE POLES

A conceptually appealing way of thinking about Regge

cuts, is in terms of multiple rescatiering or absorptive
corrections. The basic Regge pole cxchanze is modified by

2lastic scattering - usually represented by the Pumeron - i
either the initial or final state. For example, we consider

diagrame such as

,_é__g/
s, &

o
je

\

ature factors for the individusl exchanges

A, = 3§, 8§, (1,243

&5'\
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axperimentally, most of the inelastic two -body cross
section is peripheral i.e. the dominant contribution is from
impact parameters corresponding to the surface of the target

hadron (b~1 fm.). Conversely, high multiplicity collisions

w

result from the projezetile striking thie centre of the target.
Novr, the impact parameter decomposition of a Regge pole amplitude

such as (1.14) vith net helicity flip N is

0N
(94
S~~~

A, le) ~ J bab A, () T, (b FT) (1.2

This formula will be derived in detail in chapter three.
However, for a simple exponéntial residue, a Regge pole has an
impact parameter profile AN(b), which is peaked at small b.
The addition of absorptive correctiouns, which aliow for the
poséibility of creating high mialtiplicity final states at swall
b, tends to damp out the low partial weves tc give an impact
parameter profile which is more peripheral {coming frca a riag
of radius R, with R~1 fm).

The resulting t dependence is charactecristic of the
Bessel function, producing a typical diffraction stiucture with
the positions of the dips controlled by the index cf the Bessel
Tunction and the parameter R. In fact for R~1 fm, the firsti
zero of the Bessel function viith N=C occurs at tv - 0.2 (Gev/c)Q,
whilst for W=l it is at t~- 0.6 (Gev/c)z. These are in
remarkable agreement with the position of thec crosscver zero
ond tiwe dip in the pion-nucleon CEX differential cross sectiou.
There is also evidence to supporti & further sero iun the imaginary

part of the non flin amplitude at t~ - 1.2 (Gev/c)2 (18) which

again correlates nicely with the second zero of JO.
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Also, the strongcst low energy resonances sppear to
occur in the peripheral band of pertial waves, by which we mean
those for which A~ PcmR , with R~1 fm. Duality then leads us
to expect strong corrections te Regge poles, which alone are
nonmpefipheral.

The early attempts to calcutate cbsorptive corrections

(4)

were based on the Sopkovich prescription ,

in which the quantun
numbers are carried by the Regge pole and abscrption is inecluvded
by multiplying each partial wave by the square root of the
elastic S-matrix to account for elastic scattering in the initial

and final states. Typically,this is assumed to be adeguatiely
(

described by the Pomeron and we end up with (aschematically) 19)
Ales) = Ag v v A I ® Aglae) (1,29)
In this equation, the symbol '@' represents a convolution
such as
e A
. o W\E
R@& ~ .8_';{-;5 J db| dt’-a R(kl)&(ﬁ"&) 't!'a (_3.527)
where
2+

The result of convoluting two exponentials, such as appear

in a typical liegge residue, is
ok) @ exp(a,k) ~ ex S g
ol (S P\ = w\,, (1.29)

A final point concerns the structure of the rcaiduc

'KH (t) 1in the basic Regge pole term (1.14). There are tuwo
s

possibilities, which give rise to two different cut mcdels.



(1) The strong cut model:

The liichigan group argue that the T structure
observed in two-body scattering is mainly a geomatric effeci,
characteristic of diffraction from the surface c¢f the target
hadron. The pole residues are then simple, exponeatially
decreasing functions of t and all strﬁcture is a product of

a

pole-cut interference. To fil the date it is then necessary 1o

Ry

multiply the cuts (the second term in (1.26) for example) by s

cr

W
0]
'U
( 'J
|,_J

(=2
i

constant, A, which is interpreted as allowing for
ility of diffractively produced intermediate states. Typically,
AN~ 1.5-3.0 to fit the data, hence the name " Strong Cut
H D
. . . R o - s aya kL9 )
Reggeised Absorption kodel or SCRAM: .
(ii) The weak cut model:
. (20) ... AR
An slternative approach is tc assert that
the Regge pole is the main contribution to the scattering
SO p -
amplitude and as such dictates the t devendence, vhich Is only
slightly mndified by the (wesker) cuts. NV%'s in the poles are
filled in by the cuts to yield dips in the differential cross
section; ZXD adds predictive power to this approach. The
factors mean that the pole changes sign within the region of
integration in (1.26) giving rise to cancellations within the
integral, and cuts that are weaker than in SCRLIlL
It is now clear from (1.26) how.cuts interfere with
the pole terms in a destructive fashion. Since the Pomeron is
mainly imaginary (at least near to t ='0),tue rescattering
corrections will be approximectely 180° out of phasa with the
paole. Also (1.29) suggests that the cuts will die swey Toss

rapidly than the pcle as we go to lerger values of |ti. We

therefore have a model in which the nole domminates near t = O,



with the culs becomuing relatively imore important znd possihi

cancelling the pole at large |tl.

However, there are seversl technical difficadties

inherent in the absorption modéel approach. Mandelatam's worlk

has emphasised the importance of the non nlanar reture of the

rescatiering diagrams in obtaining a tirue moving cut in the J-

plane instead of a fixed (ATS) cut. The diagrams which we droew

to motivate the absorontion model are nonetheless dafinitely

planar.

The absorpticn model also generates “hard cuts", This

means thaht the discontinuity A (J,t) in (1.i3) is finite av the

tip of the cut J=« (t). Bronzan snd Jones(' nove showm thav
w

15
W j oy \

such a behaviour is incompatible with f-chonnel unitarity whizh

in fact forces the Adisconti

input Regge pole already

nuity te vanish at this point.

inally, there is also the problem of whether the

includes (in principlie) some absorpiive

corrections, sincec this already receivos contrilwiicns fron

nmultiparticle intermediate states in the unitarity integral. In
AN

. . - o . :

the Optical Potential kodel developad by Axnold ’, the sikonal

phase shift, X,(to be defined in chepter three) id lineerly

related to the optical potential. A Regge pole givas a contirib-

vtion to Im X ; which therefore correspends to absorpiicn of

fTux from the iunput beam into various other competing chanaecls

besides the ong under cons

Regge pole and absorptive
In the eikonal model, the
avoids this problema

Tec econctude this

RN . - 2 e LA %
the aghsorption model. The

ideration. Thus including both thc
corrections may tead to double counting.
non planar structure o the Alagrams
chapter we mention Lwo predictlions of

fsilure of thegse 1o be subotantisied hy



experiment (as we shall see in the next chepter), indicates ihe
kind of phase modifications required by the model.

(i) The naive absorption modsl predicts approximately
equal absorption at small |t | in both the real and Imaginary
part of the input pole amplitude. Consecuently, if we use the
P EP cut to produce the crossover zero {Im A,, =90 a%
t~v 0,2 (Gev/b)z) in pion-nucleon CEX, we are forced to accept
a similar zero in the real part of the non flip amplitude. One
consequence of this is a large negative spike in the predicted
polarization in the region 0.2 £ |t]g 0.6 (Gev/e)® (19,20)

(ii) In section 4 we Iisted pairs of reactions invoiving
vector and tensor meson exchanges which are connected by line
reversal. From equation (1.26), it is clear thst in the "real"
process, nole and cut will be exactly 180° out of phase (the

iR
.-l

Pomeron i3 assumed to be pure imaginary). This will clearly no
be so in the rotating case. In addition, cencellations niay occur
within the integr=ts ( (1.27) ) in the Iatter case which will
further reduce the effectiveness or the pole-cut canceilatiorn.
We therefore expect the full amplitude (pole plus destructive

cut) to be Iarger in the rotsting case. The data shovis

Ao do
IE f@.&.\) Xz 0) ‘d_ﬂ. (rotatw\%) {(1.502)
(6)

for the hypercharge exchange cases , in direct contradicticn

to the predicted behaviour. The pair

Ka? — K A rotating
K'm=> ®° v real

o TV

achieve equality at about 5.0 Gev/c consistcnt with strong L¥D,
but below this snersy the disagreenent is in the same directicn

as (1.30).



CHAPTER TWO



2.1 INTRODUCTION

In the major part of this wori we ahall scex to

"use the sbundance of good data which now exists over az wide

range of s and t on the two reacticns

(A) ®7p - 7°n ( wid CEX)

(8) ’GP —p R P

to criticelly examine various Regge cut medels. Polarisation
measurcnents and Finite Energy Sum Rule (FIs?) analysis, both
useful in fixing the detailed phase structure of the amplitudes,
exist for both reactions. Kinematically the two reactions are
very similar - the dominant amplitude being spin flip {(N=1) in
both cases. However, in (B) the flip occurs at the ¥n vertex
ensuring thet o different relationship between pole and cut is
required to obtain the correct phases° The photonreduction
reaction cen have =0, 1 cr 2, and this rich amplitude struchure
is a severe test of any cut model.

We shall apply our models mainly to {(A) smd (R7), but
a2=24)

(AR

will infer Ffrom other global fits that, given SU(3) zond
approximate exchange degeneracy, any model wnich successfully
describes these two processes also gives a reasonable fit to the
wider class of 0~ + 3 —07" + 1" reactions and those related

to (B) by SU(3) and vector dominance. However, to support
argunents which we shall present concerning the energy dependence
of Regge cuts, it will be useful to consider data from 2 much

Oin~

wider set uf processes.
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2e2 THE RTACTION TMp-o7on

The differential cross section for this process is
remarkably well fitted in both its s and t deperndence, by a

23)

simple pole model in which the rho chnoses sense . Then the

presence of (xﬁ(t) in the dominant spin flip amplitude accounts
2

for the observed dip at t~-0.5 (Gev/c)“,and the flip to non-

flip ratio nrovides tha marked turnover in the forward direction.

h) hY 26‘
‘'he new data Tfor the Serpukhov accelerator range( ) ( Pl

ab s 50
Gev/c, Itl£1.5 (Gev/c)z) is skill in good agreement with this
picture. In particular the dip remains fixed at tﬂ'—O.S-(Gev/c)2,
strongly suggesting that it is not due to a pole~cut cencellation
mechanism in the spin flip amplitude (S5CRAK). In this case we
would expect the dip to move to smallar values of |%]| as the
relative importance of the cut increased with energy.

I'is is supported by the energy dnapendence of the diff~
erential cross section as represented by the gquantity (Xeff(t)
defined in sppendix two. A 'plot of this “effective" trajectory
for the Serpuithov and other low energy data is shown in fig.
(2.1) (26), Whithin the errors it is in complete agreement with
a linear rho trajectory. Two interesting conclusions can be
drawn from fig. (2.1) :=-

(i) Tn all the "canvential" eilkonal/absorptive

models of Regge cuts, the dominant AR P cut has the approximate

trajectory
(Xc(t) ™ 0,5 + 0.2 t (2.1)
if, as in chapter one, we tszke m&(t) = 0,5+ t and

(XP(t3 = 1.0 * 0.3 t . The X pe dats is inconsistent with eithenr

a wealk or strong cut model in which the cuts have the branch
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point trajectory (2.1)., In particular the (strong cui) model of

(27)

Collins and Swetman s discussed in meore detail in chapter three,

r

gives the 0 o, shown in fig.(2.2). For [t!> 0.6 (Gev/c)? the
shrinkagze observed in the data is much stronger than is anticip-
ated on the basis of this model.

(i1) The structure in fig.(2.2) in the dip
region t~-0.6 (Gev/c)z is a general feature of 211 convential
cut models(za), whilst the data exhibits ro such deviation from
linesrity.

Using the large |t| data available at 3.67 and 4.83

Gev/c, Barger and Phillips have obtained an & for wp—=+7"n

(29)

elf

-
out to t~-5.0 (Gev/c)® Their trajectory is reproduaced
in fig.(2.3). Again the slope is in remarkable agreemeni with

00§v1.(GG“/C)—2. However, one muslt bz careful when seeliing to
apply Regge theory at such large vaiues of {t |, for such low
values of s . For'example, at Plaﬁy 5 Gev/c, 95= 60° corrasponds
to t~-2.2 (Gev/c)?, whilst t~-5.0 (Gev/c)? is well inte th

S

backward direction.
Thus, in pion nucleon CEX there is good evidence to

K

suggest that the P trajectory continues to "shrink" out to very

)]

Targe velues of |t| , in apparent contrasdiction to traditional

cut moaels. We shall see Jater in this chapter,that this appeszrs

1 - + - + k) 1
to be a universal festure of €11 Q0 + ¥ —(0 + % datsa.

As we mentioned in chapler one, the measursment of a

3 . N .
X( 0) was instirumentsl in forecing

non zero polarization in wN CE
pheromenologists to think seriously about Regge cuts. Furthermore,
the fact that the polarization is positive for O £ |t|ls 0.5
(Gev/c)g, neans that the amplitude phases predicted on the basis of

(19,20)

the absorption iodel using wesk or strong cuts are also
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incorrect. Sufficient datc now cexists at 8.0 Gev/z for the
elastic and charge exchang= reactions to allow a complete

decomposition of the isospin ampiitudes (defined in appendix one)

(31)

up to an overall phase . We snall attempt to outline briefly,

how the data Fixes the structure of the It= 1 amplitude.

-
L

In wN scattering, the I,= 0 amnlitude is well demcribed

A - 0
by a sum of P and P' exchanges. As expected 'A;L|§>|A£_|,

0

end also IRcA |< l*nA y ImA_,  1s strongly peaked in the

forward direction and has no zeros at least out to t~-0.8 (""v/c‘2
With this behaviour of the It O amplitude, the data forces
the It=1 exchange amplitude to exhibit the following qualitaiive

featuress~-

(1) The crossover zero.

o]

The ﬂtv elastic differentiel cross secticn
arc equal at t~ 0.2 (Gev/b)z. If the I, = O component hLas the
gross features indicated above, then

dﬁ' t. - A % ~ t
d.t, ﬂ(:.) A.t\“ p) T A,N, lm A-H (2.2)

vhere all the relevant amplitudes are defined in apwnendix one.
The lack of structure in A2+ forces a zero in ImAi+ in order
to explain this effect. This is the crossover zero widch is
also observed at 0.15 |t|<0.2 (Gev/c)2 in FB5R analysis.

(ii’ Using similar reasoning, the elastic pclarizations

are given approximately by
P(ﬂ" Y ~ -&-Nl AQQ, R“ 4... % &Q A,‘,_ IM AQQ (203)

1 ) s ‘(9 . -

The data has two striking features (32 )o Firstly, there is almcst
. + 2 - .

perfect mirror syimetry between the T p and the -t p which

implies that the second term in (2.3) dcminates. Secondly, there
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L
A

is an approximate double wzero in thc data near t ~v-0.5 (Gev/c?
. e . o . i
indicating a similar behaviour for Re A] .

(iii) The C3ZX nolarisation is given "exactiy" by
\ ' ' '
PL“'?—&“G\\ ) ~ IM ‘\Qq KQ- A¢_ - &Q: é\q; I'V\A ;1 & (244)

Now since the crossover zero forces the Tirst term to vanish
at t~-0.2 (Cev/c)z, the sign of the polarisation gives us
directly the sign of the second term. All Rggge models have a
single zero in ImAi__ to explain the dip in the differential
cross section at t~ -0,6 (Gev/c)g, but no zero for [t]30.5

.
2 . . .
(Gev/c)”s Therefore, the large positive polarisation observed in

) 1
N CEX for |t[£0.5 (Gev/c)” means that ReaAl, must not

change sign in this region. We shall comusent on the consecsuenaes
this has for cut models later in this chaptér,.

Hence, the Ie = 1 amplitudes which we shall take to be
given by the rho pole plus its cuts, must have the following

structure at 6.0 Gev/c.

Tm A}+ : A zero at te-0.,2 (Gev/c)2
1
2
Re AL, : No zero for |t|s 0.5 (Gev/c)”
Tm Aiw : A zero at 0.6 (Gev/c)?
Re Ai_ 4 An approximate double zero near

o
t~ 0.5 (Gev/c)”

It is immediately apparent that the flip amplitude
has exactly the phase structure expected of a nonsense choosing
P pole, with relatively minor modifications coming from the cuts.
The nen flip snplitude has no such interpretation and so
presumably receives appreciable cul correctinns. This supportc
the view that absorntion is more important in non flip

amplitudes(ss).
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The FiSR analysis of Elvakajeer, Inami and Ringlen
suggests thalt the rlio pole continues to dominate the non flip

anplitude out to t~=0R.5 (Gev/c) In fact they observe zeros

R G . . - . , ) . .

in Ima;_  at te~-0.5, -1.4 and -2,5 (Gev/c)Q, with double
o

zeros at t~ -0.5 and -2.5 (Gev/c)”. Again,this is precisely

the behaviour we expect from a ncnsense choosing rho pole with
negligibtle cut corrections.
Bevond L ~-0,6 (Cev/c; there does not existha

complete set of experimental observables with vhich tc perform
a model independent analysis of the amplitudes. towever, in view
of the pole dominance of the flip amplitude, it is possible to
use a model dependent approach. Llvakajeer et d7(Q&) agsumed that
the phase of the spin flip.amplitude is well represcnted by the
rho signature factor with cxp(f) = 0.0 + t » They were then
able to extract the non flip amplitude for 0.8.s|t|=5104
(Gev/c)z° Two of their conclusions uare relevant to this
discussion.

(i) There is evidence of a second zero in Im Ai+ at

t ~ -1.2 (Gev/c)2.

(i) With some extra assunptions it is poseible to

L] m 1 Ty -
estimate aeff(t) for Jjust the non flip amplitud A++ « Within
widerstandably lerge errors this is again consistent with the

normal rho trajectory and shows strong shrinkagc in this regiorne.
ie.2o

O gpp(t) LN N (B g [tls i (Gev/2)P)  (2.5)
non flip
FTurther insight into the strusture of Im A3+ in other
reactions may ba extracted from s more detailed examination of
the data on slastic =N, XN =znd NN differential cross sectiocns.

EBquation (2.2) shows how we can isolate Im Ai+ in wi CZX,
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which receives contributicns from Jjust rho excharnge.

Unfortunately the -ntp difference is so small (approximately

4 mb at t = 0 and Plab= 5.0 Gev/c), because of the large flip

to non flip ratio of the rho cdupling to NN, that further analysis
is very difficult. However, this is not the case in KN and NN
scattering. For example, if we represent the contribution of =&
particular exchange to the full amplitude by its trajectory

label, then

AKP) =P+ P+ A, k£

Since the omega coupling to NN is mainly non fliw, the difference
in this case is apurecisble (15 mb at 1+ =0 and Pyap= S0 Gev/c).
Turthermore, if we assume that
(i) the K#p Torvard differential cross sections ars
dominated by the non flip amplitude,
(ii) the P,P' and @ have mainly non flip couplings,
(iii) the p and A, couple mainly to flip amplitudes,
{iv) the contribution (P+P') is predominsntly imaginary

at small t; th en

dU‘(I\'p)“' P + P*|2 +lw|? F 2 Im(P+p: ) Ima,_ (2.6
and the @, contribution may be isolated using the combination

ég - do . o 5\
W | ¥ 7 > 2.7) .
[8[E e F o)

LY

A similar result follows for Ay, the omega contrib-

utien in pp and ppd scattering. Barger et al(sa) have examiried

(8

the data in this way aud they isolate the crossover zero in Awsy

2 . ;
at t ~ -0.2 (Gev/c)® in both ¥ and NN, with a second zero at
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larger itl consistent with the anslysis of Evakajeer et al
Tor the rho in wN. However, the magnitude of Aw allows one
to go further and extract the energy dependence of Imca++; The
results of ref.(35) arec reprodﬁced in fig.(2.4) and again show
strong surinkage consistent with tx; ~ (Gev/c)"z. So both the
rho and the omega non flip amplitudes exhibit Regge shrinkage.
which is an important conclusion since we know that the culs are
large in these amplitudes.

There is one point. where the non flip amplitude may be
extracted unambiguously from the data - namely &t t =0 from
total croes section measurements via the optical theorem. The

Lehaviour of

A (ne) = (vp) -~ &(r¥p) (2.3)

should give an accurate estimate of uy(O). The data is showm in
fig.(2.5). In a Regge model we cxpect

(o) =\
y (2.9)

ol
Ao (rp) ~ LP%)

If we take the data for P,,,,570 Gev/c (Serpukhov
range), the value obtained for the rho intercept is
¥ o (0) = 0.69 % 0.05, which is in rather serious disagreement
with the value qp(o) = 0.56 ¥ 0.02 obtained from the differen-
(36)

tizl cross section at 1 = O. However, the recent data from NAL

casts doubt on the overall normalisation of the Serpulthov data.

4 zood Fit to Just the low energy (P, S 20 Gev,’c) plus NAL

ab™>
(50,100,150,200 Gev/c) Jdota cam be obtained with q&((}): 0.55.

Finally, it should be noted that Aec is an important
ingredient in any fit since it fixes both the magnitude and

energy dependence of Im A;+ (t =0).
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2.3 NIUTRAL PION PHOTOPRODUCTION AND RELATED PROCESHHG

Having seen how the data on «R and other reactions
fixes the behaviour of the vector mesons p and w, it is useful
to look at these cexchanges in & completely difierent coatext.
The reacticn Yp-—»n"¢ Is expected to be dominated by « exchange,
whilst the SU(3) relalted process ‘hr~wn§'? recei@es the mzain
contribution from p exchange.,

The t dependeonce off the differential crose sections

for -° photonroduction and =N CEX are remariably siniler, wit

N .

the former slso showing the dip at t ~ -0.6 (Zev/e}” and the
turnover in the extreme forward direction. Vector Dowminai:ce VD)
provides the link between photoproduction and nurely hadaronic
reactions. VDM represents the photon as an . Incghopant swn off Ghe
vector mesons p, o> and $, with *the ¢ bheing completely
negligible. (It is estimated(37) that the ¢ contribution i: loss
than 2% of the w in Yp->7w°p ). The omcga couples mainly to
spin nen flip, and sincé wa gutomaticzlly pick up one unit of
helicity flip at the ¥x vertex, the most important amplitude

in neutral pilon photoproduction is that due to single Ilip omepa
exchange.

The {Xeff for w photoproduction is stowa in fig.(2.8a)
and should be compared with the purely hadronic CEX reactien
fig.(2.1). The difference between the two is stuoiking. Whnilst Lhe
latter is approximafclv linear out to t:v=1.5 (Gev/c)z, the
forme:r shows linearity for O g |JU]£0.2 (f}ev/c)2 but has a
marized dip sFollowed hy a seccndary reczimum ercund t~-0.6 (Gev/c)?

This behavior is charachteristic c¢f all cul models in which the

tranch point trajectory taikes +he form obltained by handelstam

(eanation (1.23)) - sez Tor example fig.{2.2). Good data at hizghser
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energies and particularlv at larger values of [t] would be usesfw
in fixing the shirinkage of o(eff(t) in the region nast the din.
As it stands, fig.(2.6a) appears to support a SCRAM type inodel
with the dip produced by pole-éut interference and the trajectory
past the dip showing abecut half the shrinkage obaerved for
t]€0.3 (Gev/c)z, where presumably the pole dominates. Ve shell
see in chapter threc,that a strong cut model fits this data very
well. Nevertheless, it is possible that the presence of cuts in
the weaker non flip and double flip ampiitudes could -postpone
the really slrong Regge shrinkage to larger vaiues of }t,.

In appendix one, we show the relevant formalism for

the photoinduced reactions in terms of the lfour helicity ampiitudes

Q
l_.l

A A, s A__ s A _ . If only the rho and cisgga poles contrivuts

-t ?

to these =nplitudes, then

Ap, = A )
A,_ = =h_, 22l
- -

~
et
o
fed
I
(™

and the polavlaed photon asymmetry 3,,i¢ Identically =¢
one for all s and t. Unnatural parityv exchanges such ss B end
contribute to A__ and A_, with the sdme sign, whilst cuts
contribute to both pariiies. So the departure of 3 from unity
measures
(i) the strength of the cuts in A, _ and A_,
or (i1) the strength of the unnatural parity exchanges.
Tt is difficult to decide which of the two is thwe most important,
ince unnaturai narity exohanges do nct coupie to
the single flinp amplitudes, 5;49 parhans rnot surprising that >
is gignific entlv different from one only in the region ¢ the dip

in the diffzrential cross section, where A., and A are sinall.
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hs vie shall sce in chapter three, cute nreserve (2,10) rlsg, bus

violate (2.11), so any reasonable cut model sheuld reproduce, ot

Jeast qualitatively, the data on the polarised phioton asymmctry.

A much more rigorous test of the amplitudc phases is

rovided by the nolarised target asymmetlry data, since this depeads

~

on the relative phases of tle amplitudes. I we assume that (2,10)

&

n
holds in 21 models, then near to t~-0.6 (Gev/c)” we expect

the polarised targel asymmetry to be given (appreximately) by

-

Ar~vRe b, Tm (A, ~A_) ' ' C (2.12)

It is therefore crucial in fixing the phases of the non amd

double flip amplitudes.

If we allow only "p, (v, B and H cxchanges, then the

polarised target asymmctry and the recoil nucleon pelarisation

are predicted to be equal. This follows from equation (2.1C). It

has been noted(37) that exchanges in the 2

confribute to A, and. A__

et 2an

octel woulid

with oppeosite sign, thus brearing

this equality. Mo measurenent of the recoil nucleon polarisation

exists at the present time so the prediction iqﬁntested;

‘The other cxperimental observables for which data

exists arce the ratio R of

photoproduction from neutrons and

-

protons, and the f) puotoproduction differential cross sectione.

R fixes the ratic of the iso

(p and B ) exchanges. SU(3)

scalar (w wnd H ) to isovector

relates w and !} photeproduction

and the ClcbLsch-Gordon cocfTicients are euch thap the isovector

amplitude is the Tamporiant one in Yb~4»@F‘> - The-rho coupiings to

NN mean that it contributes
photoproduction. The absance

i alyd

nicans thabt nodels wiith WiS%Z

pmainly to A, end A in
S S - ¢ \ - ~A i
of a @ip in 9 photopraduciion

hove proat dilmicoliy in fitting
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12 R . ..
( ). They require either very strong cuts or a large o

tiie data
contribution (or both) to £ill in the dip.

In fig.(2.6k) we plot X pp(t) for the 0) eaction.
The errors are rather large for amny firm conclusion to ba drawn.
However, O opp does show considerably more structure than is
observed in hadronic reactions (comparc fig.(2.1) ). Furthermore,
it is tempting to say that the structure, which we would want Lo
blame on pole-cul interference, occurs vefore t~-0.6 (Gev/c):.
This would then correlate nicely with the domiuance of the rhe
non/double flip amplitudes (i.e. fIip at the nucleon vertex) and
the absence of a dip at t ~-0.6 (Gev/c)2 in the differential
cross section.

2.4 THE AMPLITUDE PHASES AND THEIR J-FLAND STRUCTURD

In section two of this chapter we saw hoiw ph& positivag
polarization in Te—+T°w ITeads to the conclusion that Re )i+
does not change sign for [tI£0.5 (Gev/c)zo Wow the absorption
.model in which thc elastic amplitude is meinly imzzinery at
t = 0, oredicts thalt both real and imsginary poris of the input
pole amplitude are absorbed approximately equally at small jti.
-Thus, if we have the crossover zero in Im Ai+ , we are forced teo
accept a zero in Re A1+ near to t~-0.2 (Gev/c)2 with disast-
erous consequences for the polarization. This is true whether the
crossover zeirro is obtained by direct pole-cut interfereﬁce (SCLiaM)

ty attempting to use the ¢iifs {6 "pull in" the NWSZ from
t~-0.5 (G-ev/c)2 to tw~-G.2 (Gev/c)z. We can conclude that cven

though the magnituds of Re A1+ is roorly determined by the data,

v

its sign is fixed and iz in direct conflict with the absorption
model.

The reason for the failure iz clearly thie vrrong phase
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o

in the absorbing amplitude. With a Pomeron having O(P(O = 1,
the position of the rho pole and the P B P cut coincide at
t = 0, producing equal abscrption in resl and imaginary parts.

WOrden(38

) has shown that the solution is to add an extra comp-
onerit besides the pU P cut, which contributes with opposite
sign in real and imaginary parts at smell |[t|. This means that we
require something whose Regge phase gives Re/Im < O for ltl%O.S
(Gev/c)g. In the J-plane therefore; we require a singularity in
the region 0<J<-l. It is now clear why the Berger-Phillips

rin (39)

"five pole in which the It= 1 anplitude was paramet--

H
erised as a sum off p and p' exchanges, predicied the wN CEX
polarization correctly. The o' trajectory lying half a unit
below the rho, is in precisely the correct region of the J-plane
to give agreement with the data.

Several modifications of the simple absorphtion model
have been proposed. One of these is, as we shall discuss in the
next chapter, to add Reggc-ilegge cuts. The casential ingredient

in all the models is that the non flip ampiitude receives sipgnif-

designed to reprcduce the 6.0 Gev/c phases, meens thut the

extrapolation to low energy gives probiems because the different

.

. . 39 . o
terms get "out of step" as we go down in energyo( ) This 1is

[&]

reflected in the pcor agreement of all the new abserption models
wi'th the FESK's. As may be enticipated, particularly severe
dissgreemeut is observed in the non flip FESR, wiiere the lTow
lying contributicns completely overwhelm the rho pole at low

energy bringing the crossover zero in towards t = 0.

A Tingl point which we have mcatioued before is that
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£ll ahsorption models in which the positicn of the eut is given
by the liandelstam formula (1.23) cannot reproduce the strong
shrinkaze observed in wN reactions. ¥We shall study this problem
in greater detail in the next section.

205 A GENERAL. SURVEY OF EFFECTIVE TRAJECIORIES

Fig.(2.3) and Tig.(2.4) together with the results of
ref.(33), provide strong evidence for Rcgge shrinkage consistent
with ay(t)~'0.5 + v in both the flip and non Flip amplitudes
In =wN CE8¥. Therefore, it is interesting to look at a much wider
set of reactions involving different amplitudes and exchanges,
in an attempt to determine whether wuis is a universal feature
of all strong interactions. A review of & _..%s was mresented

eff
(28)

in 1962 by G.C. Fox , who came to the copelusien that only

N CEX exhibils strong shrinkage. Since then however, more
detalled and accurate data over a wider range of s and t 188
become available which does not sﬁpport this statement. We there-
fore present a compilation of “effrs’ some of which we have
calculated from the data as deseribed in appendix twe and others
which have been renroduced as they appear in the Iiteraturca
Table (2.1) shows the proccsgses considered together with the

possible exchenges and the range of s and t over which the data

extends.
- E 3 < 1_+ - R N
For the class of processes O + 3 —0 + % which
have only singlc flip and non LYip helicity amplitudes as in the

prototype reaction wN CEZ, there is no evidence to -suggest that
shrinkage does not percist oul to and beyend t~-1.0 (Gev/c)zg
In the cleaneat reactions and those for which data exists over
the widest range of s and L , this conjecture is most gstrongly

sunporLad,



Such reactions include

W ~» TN

e ~—»k n

o . (-]

Kep =Xy P (2.13)

e =»wA

nwe @ RE
Until the data from NAL became available recently, the

only disturbing reaction was

T =2 A N (

[\e]
°

Y
o
g

Caleculated from the low energy dats (Pl. ab S 18 Gev/e), o e

appzars to flatien out around t~-0.5 (Gev/c)z, vhich could be
.. o : . \ 40)
Iinteropretied as Lbeing due to an A? P cut. Several autnors( e

have commented on the difficulty of analysing (exparimentslly)

P

this resclion, sinec

L

there is the problem of separating the ﬁf
from ihe much larger T signal. All the data below 6.0 Gev/c

. kS o Ty P 3 (41)) o . o ~
comes essentlally from one experinment and is rather ncor for

i - e . . .
] » 0.5 (Gov/e)®. Furthermore, an unalysis of A and A, exchnange

o AV
e > w4 - (2.15)
o AYY®
we = o A (2.15)
supports the view that both the _ and A2 exhibit strong Hegie

shrinkege. In (2.16) the A, trajectory is consistent with

2
u A (’t)'v 065 -l- .b L]
11.2
ATl of this casts doubt on the reliagbility of the low

energy wp-eA n dcta. Recaits recults from Sorpukhov and

36 , N . . .
NAL(3 ) support this view and are in good sgreement with the A?
as obtained from cther sources such ss (2,16).

Finelly we swanarise the main features of the expzrimantal
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data which are particulariy relevant to Regge cut vhanomenologv.

(i) The 6.0 Gev/c amplitude analysis in ' N scattering
suggest that we need absorptive corrections which are strong in
Imaginary parts but weak in resal parts.

(i) Apart from the special case of phntoproduction,
Regge shrinkege appears to be a universal feature of strong
interaction amplitudes. A cut model i1s needed which does not
produce O(C(t) given by (1.23), bul instead gives & branch point
trajectory which approximates to ulz(t) over the present Linmited
energy range. We attempt to formulate such a model in chapters

four and five.
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reacTIoN | FIOURE | ppopangr(s) [MeX Pran [Mex t

B ) Gevze [ (Gev/or?

Tp— A 2.1 P 48 1.5
T e o 2.3 » 4,83 5.0
Ko \'\':P 2.4a Isolates 72 1.0

Im @,
NN — AN ‘ 2.4b I:so]ﬁ.ates 16 1.4
Imw, .,
"{\>—|»-rr.'°‘> 2.0a w (p) 15 1.4
Yo% p 246D P (W) | 6.5 1.0
T+ n 247 A, 50 1.2
K'p— & n 2.8 SR, 12.3 1.5
Kha—e K" p 2.9 PR, 12.0 0.8
KLp—=W.p 2,10 e 10 1.5
T —e A 2.112 » 8 0.8
A A7 - 2.1 A, 8 0.8
wo - W 5'2.12,2.13a | W, K 14 1.4
Kp =S 2.13b N A 16 0.9
e A 2.14a o, w* o las5.7 0.9
p—s T A 2.14b K* , W }14.3 0.9
whe e w AT 2.15a | Isolates B 7.1 0.9
e M 2.15b | Isolates v |17.2 0,9
Kp = A 2.16 £, A, 1547 0.8
TABLE 2.1

Reactions for which the effective trajectory O(eff(t)
has been celculated togetner with the relevant exchanges and the

range of energy and t over which the data extends,
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2.8

2.9

2.10

2.11

2.12

2,13

~and D) WKp-—enT L

44

FIGURE CAPTIONS - CHAPTER TWO

Effective trajectory for the reaction W™ -dorv"n‘%)..

Effective trajectory for the strong cut model of ref.(27

for the reaction Tt p—* mT’n.

€

)

IXe
L2

Effective trajectory at large [t| for the resction -v p—wrwa

- Bffective trajectory for the ron flip omezga exchenge anplitude

"in  a) V\t\"" Ke and b) NN-—=AN from ref.(35

The quantitly A&(wxN) = O(wx'p) - & { 'rc'i'p) (26)
Effective trajectory for the reaction

a) Yo+ w°  from the data of ref.(42).
and b) ¥ep=4'p from the data of ref.(43j.
Effective trajectory for the reaction -w e+ d"n . The peints
marked o were calculated from the data cf ref.(41), whilst
those marked e are calculated from the Serputhov and kal
data(sg)u
Effective trajectory for the reaction \"\'\>--»T\:\'—"‘r\ from the dats
of ref.(44).
Eff'ective trajectory for the feact:‘[on K'a-e R’ from the data )
of ref.(45).
Effective trajectory for the reaction l{g P —»Kg D (4‘6).

Effective trajectories for the reactions
o "'"(47)

A++ (47)4:

g) T =Tt
and b) ‘Ii""P -—a-r,}:'
. N . - & .) .

Effective trajectory for ilhe reaction we+X % from the data
of ref.(48),
Zffective trajectories for the reactions
&
2) e~ W 2 (6)
+ (6)

L]
Bffective trajectoriss Tor the reactions
(6)
(6)

a) e~ A

and b)) Kp—r"A



™
C?

a) Offective trajectory for the B exchange contribution

in e wAt (49,

b) Effective trajectory for the T exchange contribution

irl o .—? - j)u . ( JO) o

- . . oAty
Effective trsjectory Tor the reection Y‘+P A from

Je. P. Do Brion and C. TLewin (Rucvo Cimento 19A 225 (1974)).
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3.1 TH= EIKONAL LIODBL

In cheptar one we introduced the sbsorptiorn model, in
which the rescattering corrections to single Regge pole exchange
are calculated by multiplying each term of the partial wave
expansion by e factor which accounts for elastic scatieriung. One
of the fundamental problems with this appiroach was that the Jdiagrems
had a planar topology. Conseguently we could not he sure that
we were calculating a true Regge cut, even though the rescattcring
term had the correct su°(1og(s))_1 behaviour.

Any attractive approach which utilises the close analogy
belween susorption in nuclear and high energy elementary particle
nhysics, Is the eikonal model first proposed by Gla bﬁ“(ﬁl).

Of crucial importance is the composite nalture of the sceattering
particler; which allows them to break up into their constitoents,
scatter and then subsequently recombine. If we consider deudveron-

deuteron scattering, then we can draw the following diagrams.

(b). (e)

Liegram (a) represents single scattering which in the high
energy context is of course the basic Regge pole exchange,
vitilst (b) and (c¢) are rescattering terms. At high energy, (c).
wherc each of the constitucnts of the first particle scatters
once off each conctituent of the other particle, is much more
probeable than (b), whera the interaction occurs “wice bLetween

the same pair of particles. This picture is fine for the deuteron

Fy
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wliose binding energy is small (.B.,-"'J./md""‘!.O"'O 3, but is difficult

to reconcile with the highly bound systems which we encounte
in strong interactions.

In recent years many papers have appeared in the literature,
which seek to justify the eikonal model in high energy scattering
(52)¢ The crucial non-planar structuye is obtained as fcllows.

We worlk within the framework of ¢? theory and.ascribe to each
Reggeon a two particle form facter vertex. Thus we are lead %o

consider *the swn of diagrams

(a) (b) (c)

Dommsmanid
SN B
s

(e) {(r)

(a) i=z the usual Regme pole.exchange which in the eikonal model
plays the role of the "born term", whilst (b) gives the AFS cut
with the correct s~310g(s) behaviour. The graph (d), in which
the couplings are nested maximally agrees both in Torm and
(approximate) mcvnitude(SS) with the second term of the eikonal
series which we shall develop later. Furthermore, it has the
correct topological (double creas) struciure to satisfy the
dandelstam criterion for a true Regge cut. The contribution from
(c) where the couplings are nested, but not maximally, is one
power 5f log(s) down on (d). Finally, (d), (f) and the higher -

order diagrams give expressions which correspond to those obtained
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by exponentiation of the basis Regge pole exchange, as in the
eikonal series.

Thus in calculating the eikonal series we are surming the
contributions from the set of graphs shown abova. The structure
of' thesz graphs obviates those problems of the absorption
model stemming from the non planar nature of the prescription.
The addition of a two body form factor-vértex ensures a cut-off
in momeutum transffer, so that most of the incident particlies'
momenta passes up the sides of the diagram. (The eikonal model
in nuclear physics is often called the "straight-line approxim-
ation",) This is also a feature of Gribov's Reggeon calculus
and of course corresponds very closely to the physical situation
at high energy.

(54)

A point emphasised by Carly 1s that a conplete theory
should include both s and t-channrel unita.ity. Therefore we should
also consider the t-~iterations of the simple pole and cut disgranms

as shown below.
v d

The tmiterations ofRegge pole cxchange play a vital
role in "softening" the nature of the cut discontinuity and
also in removing the Gribov-Pomeranchuk fixed pole at J = =1,
In chapter four we shall investigatz further the effects of t-

channel unitarity on the phenomenology of Reggze cuts,
y : £ &
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3.2 THE SINONAL s:«:nms( il

In the eikonal model we have an avproximation to the

full s-chammel partial wave series.

o - )
AHs(‘s‘%)g tom 2 (as+) A*GG?) GK;:',,\(ES) (2.1)

Jom

This equation should he compared with (i.2) which was written
for the case of particles without spin. HS represents the set
\.
/

of s-channel helicity labels and d{ (Z are the usual

P 8
rotation functions.
in the high energy limit s-wo, |¥1/s+0 the following

replacement is valid
ds l ¢ = f\ 4 Lot
Y’ (‘25) —— Smk\aﬁ*’f;)ws.) (3.7

The indey of the Beasel function is equal to the net s-—channel
helicity flip (1.15) and 95 is the s-chamnel scattering angle.

We now intronduce the impact parameter b, defined by

J=qb =% | (3.3)

'In the large s, small |t] limit, Cos & ~t/(2q%) so that

X
88%‘(—t/q§)2 , and in equation (3.2)
(0 + %) 98——» o /=t (3.4)

Thus we can now replace the summation over J in (G.1)

by an integral over impact parameters
e
»> 3 d A~ c
.Q_Hsts.!:) R |bﬂj 9, 4% f\aq'sh) QH&@)EN(E\F?) (3.5)
: [~

The eikonal phase shift X (s,b) is defined by
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analogy with the normal phase shift gJ(s).

i 5ts) 1 Ay Lo.0) i
s &b e (o
&ifbﬂ | azﬂhﬁ

wirere we have now made the approximation discussed in the last
section;y that the only effect of the interaction is to alter the
phase of the incident particles wave front,; with no effect on
its direction.

Now remembering that p(s) = 2q_/v8 and from Appendix

one

[y 8 = o0
we finally end up with

3 | l \‘4 (9%)
HJﬁk) SBA& 2 (\- s

L]

)T ) (a.s)

Cpoapnd
e 4oms [oan]x - ‘("‘-’ . LL*S.&------"ESN(M‘-? (3.9)

LY

: 3
= WS M\!@['x " .3__‘ - ?_‘5 . ] 3, (bFF)

0 by

where, for convenience, w2 have dropped the helicity Xabels an
7(“s. The crucial step is to identify the first term of this
series with the Fourier-Bessel transform of the Regge pole

amplitude via the equation

X (s !o) » — Ic\ﬁ- SN(hFQ)A“S(s.e) (3.10)
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The Regge nole therefore, acts as the horn term in the series
and plays the role of the potential in nuclear nhysics. The
second term in (3.9) is the two Reggeon cut and so on.

This formalism allows for an obvious extension to
inelastic processes involving quantum number exchange, in which
the basic interaction is treated to lowest order but full account
is taken of elastic scattering in the initial and final states.

Continuing the analogy with nuclear vohysics to incltude the

Distorted Wave Born Approximation(ao), we make the replacement
al
: Wy lsb) 31Xy, (5:6)
o™ — we (3.11)
R . &L R 'x % ,x
"'7(“&,"""X«sxues (‘ ) s & (3,12)

™
where 7(§ is now the Fourier-3essel trarsform of the Regsze
s

pole which carries the quantum numbers, and the second factor

in (3.11) ia the elastic S-matrix. If we include the N introduced
by the Michigan group to allow for the possibility of diffractively
piroduced interme:diate states (for the "weak cut model" set A= 1),

the full replacement (3.11) becomes
Q el
K, o Li X 'l S
Ry s A W (3.,1.3)

and (3.8) is now (dropping helicity labels again)

Alsk) = fe--nssua[x X - ""“*'1-3;,'\54’-'?) (3.14)
-]

(ol

Ls a simple illustration ol the use of une 2 formulae

which will prove useful later, we consider the efrfect of elastic

rescattering - given by Pomeron exchenge -~ cn the single Regge

LY
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pole amplitude. For a helicity amplitude having net helicity

flip N (=0, 1, 2, etc.) we parameterise the Regge pole as

R 8 -t“’ Ntb) - P"Ia CN&-
A ey =i *) Y T 6,0 (315)
Cu® Gy + o [\n(f”:\‘,) - ‘%‘ '1 (3.16)

where we have obtained (3.15) from the general expression (21.14)

by making the following replacements.

(k) & otto) » o' &

. G\,,.q{:,
‘6“&(&) 2 Wile) s G . (3.17)

E\g('&tt)) * 1 ’ RO,
For the signature factor, which provides the Repge phase, we have

conaidered an odd signature Regge pole (2.g. the rho) and made
(=] L]

the approxination

. V™ .
V- T A A
= z 1 e, @ ‘
Sia T le %?‘ (3.18)
and ve have absorbed the factor ebt into the residue funcitione.

Bquation (3.15) with s,= 1 (Gev/v::)2 reprents a typical Regse
paraneterisation vwhich we sheall use repeatedly throughout this
WOI'K,e

For sirnp].i;:i'ty, we take 2lastic scatteiring to be given

by epin non flip Pomeron exchange.

.ol . . GQ:E'
A (st) s L E.SQ (3.19)
]
Ce = Op « ™ Y‘m@’s )’*'%7 (2.20)

Uple): | « et'? L (3.21)
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The corresponding eikonal phases 'XZR and 'xPl are

easily obtained by substituting (3.15) and (3.19) into (3.10)

and performing the integration with the aid of the relationﬁhip(SG)
[ <] ot N!‘\"M h N - " h"/@e
{efen ™" sl ar < (3) (-2) & N
\J Ve A (3.22)
-6
The result is
: >
gy NI o -/,
Q ) = 1.Q$e, ) (}1) e
Y e, - G \Z —__c""" (5.23)
v/ !
. -2 /nc
el g
Klap)e 2ox & (3.24)
8w Co

) rd

e now have to evaluate the seriez (3..4). Te do this
let us consider just the seeondterm, which is the Regzeon~Pomeron

cut. (The first term gives us back the Regge pole (3.15).)

e )™ o (-2

é\t:) (=)

S ﬁ‘i"-m,
. (3.95)
N
* e (8) ser) pl} S:? =)
-] N

To perform the integration we use the inverse of (3.22).

LY

B "
‘kd\a e ()7 J ) = (8} 7 (¢ ;;e)@c)“ & (2.26)

'Y

Then if we define X = Cp / ( Gp * Cy ) , ot to be

confused with the eikonal phase shifts, we find

YR 0“‘3) &
Ak = i (5™ g 00" (_?‘_E'r.\ (3.27)
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To generalise the notation to ind ude ithe higher order

terms in the eikonal series, we remlace X Dby

o]
Xy= - £ (3,28)
(n - 1) cp * Cy

The full series of cute R B Pn'"1 is then simplwv

e
) 0{to) ) g & N ¢ % & _
a . 3 f8 “;h . Q - nx "
A tse): i(5€7™) 6 k) Z (e oo 5.20)

=
o)
[0}
3
(]
@
0
pi

ted, the first term gives us back the Regge pole and

the whole sum represents the set of Reggeon--Pomeron cuts.
I -+ R@P + REPHP s cooeocoo (3:.3(‘)

Thus by teking a Pomeron which is purely inmeginerv at
t =0 (3.19), we have ended un with a two particle cut which
has the opposite sign to, and therefore interferes destructively
with, the input FHezge pole. In fact by truncating (3.29) at
n = 2 vie reoroduce the absorption model result. The eikonsl

ethod however, allows us to calculate multi-Pomercon snd muelti-

Reggeon cuts.

For typical values of the Regge parameters the series
converges rapidly, (for example &% accuracy reguires cnly the
first four or five terms to be computed) and the main contribution

is from the first two terms. Closer exemination of the second

‘s . Xe v=1
term reveals that as s—»w its energy dependerce is s ~(log(s))

and the cut trajectory c('l:) is
o' o '
e &
L} ]
ol % o'y

B k) o= ottle) +

as in the Mandelstam result. Also,the exponenticl 1t dependence

of the cul is less than that of the pole, sllowing the peie-cut
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interference mechanism to occur.

o3 THE NEW ABSORPTION LODBLS

(19,20)

All of the old absorption models fail to reproduce

r~

the phases of the rho amplitudes in TN CB{ as revealed by the

G.0 Gev/c amplitude analysis. We have seen that one contributing

factor 1s an inadequate descrintion of the elastic amplitude

used to generate the absorptive effects.Experimentally(ol)
. .0
Re A, A 20% ot 6,0 Gev/ec
s O ’
Tm AL, £ =0 N

Therefore the representation of elas t1c scattering by & Pomeron
with irtercept one is clearly insufficient, at least at 6.0 Gev/c.

Several ways of changing the phase of the absorptive
corrections have heen proposed(zz’zs) and Worden has shevm that
all owe their success to the intreduction of lower ilying J=plane
contributions. To avold using ad hoc prescriptions to introuduce
the required phase modifications and to retain contact with
Regge phenomenology, we preffler to deseribe the It= 0 exchang
amplitude as a sum of Pomeron (P) and P'. Then, in addition to
the PH P cuts with the usual intercept <xc(0)~=005, there will
also be B P' cuts. These will considerably alter the phase of
the total cut contribution since their intercept will bs

P"
2 N & . (27) < - - B 4
Colline and Swetinan have demonstrated that the
esult of using such a prescription is a distinet improvement
in the phase of the It= 1. enmplitudes. In particular their fit
gives a positive pclorizaticn in the region O % [t|€0.5 (Cev Jere
consistent with the data. In thc next section we shali briefly
describe this model in order o be able to generalise tiie eikonal

formalism to inciude R T P' cuts, and to extend the model to
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include neutral pion photeproduction and related processes.
However we should first mention a recent paper by Worden
(57)in which he uses the Gribov Reggeon calculus to establish
symmetry relationships between the different Regze-Regge cuts
which may contribute to a given process. In the Reggeson calculus
(discussed in greoter detail in the next chapter) the two Reggeon

(81}

cut Is produced by a diagram of the type shown below

g
' B,

iy
=
D
e}
C
h
ot
Iy
@

The N's eare Gribov vertices, which are the resi
fixed poles in the appropriate Regzeon-particle scattering

amplitudes. The Gribev vertices vanish if thess amplitudee 4o

. N (4)  esa 4
not have a third dosofg o This is san analogous statement to tho

T'inkelstein selection rule which says that Regge-Regge cuts

(58)
can only be present if there exists a planar s-u duality
diagram (i.e. both the s and u charnel non exotic). If wa make
the following assumptions:
(i) SuU{3) symmetry is exact Tor the Regge residues,
(ii) Streng EXD holds for P~Ay and P' - w,
then it is possible to derive symmetry relationships between the
Gribov veriices.
CoBe NJ’*F."'P'*N (g,q") = - Nﬂ_‘n-a-u:,-rr (q,a")
These in turn imply corresponding relationships between the

Reggc-Regie cuts, and predict a cancellation betwzen the P' 3 p

et i WN CE{ and the @@ A2 cutlt.
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A useful way of representing the internal symmetry

) ~ 3= l‘.— 9 .- " .
properties of Regge-Regge cuts() ) is to use an extension of

the technique proposed hy Harari and Rosner(GO) for Regge noles

e

If we have a pair of EXD Regge poles such as p -~ LAy or Vo= W,

these add to give an amplitude with a rotating phase and subtract
to give one which is purely real. The duslity diagrems corresp-

onding to these two possibilities for the relevant case of meson-

baryon scattering are shovm below.

o Ca
— & S —
- e

=

iy

&

&> »

> &

~—~
ay
~r

(b)

(a) repiresents the rotating case whilst (b) iz the real
combination. To ohtein a Regge-Regse cut we combine (s) and (i)
with the additior: of an extra iwist of a pair of internal lines

on both the upper and leower halves of the diagrsm. The result is

P4

shovn beiosw where we take the explicit example of TN CIX,.

i

p—p— —iiw

< 2

Sp—— — R 0
P <n » Dol mant I S G 3
P il ?

(P" + ) [ (A? -P)
If we label ihie quork lives and remember that

-

= “2 ( Pp - fin)

we see that the diapram corresponds te the zase in which we

have the nn  component of the 1{0. From % ve must subtract
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the diagrem below.

R —— =

<i-v

JL Y

P » ®
P{P - Dl > n}“
n o s N

(P' =w) B (A, + )
Therefore we have

(P = w)@(hy+p) = (P +W) hin? D! o
(_3.-')0/"
- . [4 3

and if we assume exact EXD of the residues and trajectories we

arrive at Worden's conclusion =~ that the odd mature Repge--

ED

15
A

vn"q

(G

C)

Regge cute, in w N CEX cancel. Girardi et sl talte tlils approach
cne stage further by adopting an expiicit model for the Pomeron
(in a duality diagram sense) and using this to examine the

properties of R ¥ P B R cuts. If we accept that the cancellzilon

Cin (3..30‘) is exact, then these cuts are expected to provide the

main correction Lo the simple 'P + pH P cut model of N CuX.
However, the cancellztion (3.30) only occurs if EXD holds. Ve
shall indicate later why this may not be such a good approxim-
ation and why the & Lo cut may be smell.

3.4 REGGE--IEGGEH CUTS IN N SCATTERING

Collins and Swelman take for the I’r= 0 emplitudes cf
appendix one the following sum of P and P'a

. Cot .
g:q(%lk) ® 'EUTSQ ¥ % EO e,‘? ® N?.U\'-) I3

u(&, ”‘R,a)qvllo) (3031/
~ 1. dot Aot
° st) . f__ 't.CoS(g,? % FOQB v NQ'LG
! am (3032)

* (o0 ™ ) el
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Where

cp =ap + of ( In(a/s)) - imw/2) (3.33)

Cp1= 8py *+ Opi( In(s/s ) -~ iw2 )
with similar definitions for dP and dP"

Now; Berger and Phillips(sg) (3P) have proposed a model.
of TN scattering in which the It: 0 amplitudes involve the
sum of P + ' + P'' exchanges, and are in good agreement with
both the IESR constraints and the 6.0 Gev/c amplitude analysis.
To facilitate the fitting procedure, Collins and Swetman treated
the BP amplitudes as "data" te which they fitted the parameter-
isations (3.31) and (3.32). This cen be done ir iwo possible
ways:

(i) We can treat the equatiocns above sg simply providing
a functional representation of the It = 0 amplitude which
allows the integrals involved in the eikonsl prescription to be
done snalytically. We call this the "effective pole representation®.

(ii) Alternatively we can consider {3.31) and (3.32) as
the input Regge pole terms to the eikonal series (3.9) which

generates the full set of multiparticle cuts
P+ PRPAPRPRP +e0et* P' + PPEP+P'HPHEP +oooa

Both methods were tried by Colliins and Swetman and found
to give approrzimately the same results. However, we are interested
in using the It = 0 amplitude to calculate absorptive corrections
to the pole in the I, =1 amplitude. For this purpose, (i)
y definitely superior since with this method we do not need to

Vﬂ

i
evaluate the full eikonal series, just the first two terms, with
a corresvonding saving in computer time. We shall Jdescribe the

"elffective pnle method" and use it wihen we extend the model to
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photoproduction.
We proceed by substituting (3.31) and (3.32) into (&.10)

to calculate the eikonsl phase shifts. In an obvious notation

these are

X3 (sb) = XE (s,0) + X E (s,b) : (3.34)
X5-(es0) = X (o,0) + X {l(s,0) (3.35)

For the rho pole amplitudes, the best perameterisation
was found to be in terms of the invarient amplitudés A' and B
corresponding to t-channel helicity non flip and helicity flip
respectively. At high energy they afe related to the usual s-

channel helicity amplitudes of Appendix one by

AL, (s,t) = 2m B'(s,t) - $io B(s,t) (3.36)
> -t
A, (s,t) = "= ( 2mA"(s,t) - sB(s,t) ) (3.37)

For the emplitudes A' and B Collins and Swetman take the

typical Regge form

: i ';“'a at{o) g"t,
am A' (58 = 2 (¥, e A, e - (3.38)
e Camy, \MW) e b '
s Blak) = 3 (%C )  &e (3.39)

;= a; + o L‘m('*"sv) - :"“/al (3.40)

Equetions (3.36) and (3.37) have eikonal phases 7(£+
and 3({» defined as usual through (3.10). To calculate the cuts

we now take

' .~ » . °
oo (30 = YT (s0) + PALNLGR) Ko (51)

(3.41)
v AL XD () XD (sib)



77

Ko sl = Kiak) « 1N XE (WU (s )
P ')\,.,,'Xf,, GLY X[ (s.b) (3.42)

'In practice the last term in each of these equations is
small and can safely be ignored, The first term is of course the
pole, whilst the second term corresponds to the pUH P and HE PY

cuts, or in the effective pole representation to the sum of cutls
PEP+ PBEPRP+ .coo+ PRP'+ PEPEP' + .o.. (3.43)

We shall describe the model presented bf Collins and
Swetman in which the rho adopts the "fixed pole mechenism". in this
case thers are no nonsense wrong signature zeros in the rho residue
and the input pole amplitudes are cxactly those given in (3.38)
and (3.39). This model is undoubtsably the most successful in

fitting the data. Also tested was 3 "sense choosing" model in which

& Tactor ™ (t) was introduced into (3.39), and a “nonsense -

choosing” model which also incorporates onrcz c(ft in (3.38).

To calculate cuts we proceed as outlined in equaticns
(3.15) to (3.29) for the simple case of just fR® P, eicept that
in the effective pole representation of the elastic amplituce
we need only conzider the first two terms in the eikonal series.

The eikonal phase shifts are

. “lucy
P 10
® ey = 2= |
#Q( ) em c’P o - (304-4)
-\ NES)
' e (% A Y e
% (ab) = L ) otyle) =
FVANY %wta ¢

\:/u_ (345)
N ) - \'C?i
] !l-r MQL 0 ] jé;————-
L Otgile) VCp:

C?.

which are then incoeporated into (S5.34}.
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We do not need (3.35) for the reasons already mentioned.,
The extra differentation %o,,\ in the P' eikonal is a result
of the O(P.(t) in the pole (no compensation mechanism) and arises
through equation (3.22)

We now write forr the full amplitude

A, (s,t) = &2, (s,t) + a5F(s, 1) + & F(s,1) - (3446)
A _(8,8) = A2 (5,%) + a0P(s, 1) + AFLs,t) (8.47)

Where the individual terms are obtained by taking the Fourier-
Bessel inverse of (3.41) and (3.42) using (3.26). We consider the

S B P and the p# P' cuts separately.

(i) P B P cuts
These are calculated in exactly the same way a« in
section two except_that we now have two terms corresponding to
the A' and B peris of each helicity amplitude. In the flip
amplitude, both enter on the same footing so that the cut is merely
the sum of two similar terms. However, in the -non flip case the
B part-contains the extra t factor which requires a differentiation
?/aca in the cut (from (3.22) ). Thus by direct analogy to

(3.29) we can write

-1, \H o) -
qt‘: (e.€) = iU}’s,Q.‘ 1 i Nes O ‘) "

|
¢ ¥p ik CaXeat -
% iﬂ Yol T E_’_;:, 2 Xeal ] (3.48)
-] C-P “h\“h ‘D‘na “P

ATe) = i (S, &™) (~2me

81‘: 4()
e %o, ko e Xey b (3.4¢)
. U1 2
x JA Ky 22— - g, XD
e ey <o ° XPa c.‘,-'

whore we have defined



7\?‘; = —C;T—c.:— (i=1,2) o (3650)

Note the extra differentiation in (3.48) and the fact that we

have used only the seécond term 6f (3.29), not the full series.

(ii) p B P' cuts
We define, as in the D case
c‘-;‘

Then examination of the eikonal phases (3.44) and (3.45) reveals

Kos (i=1,2) (3.51)

that to go from P to P' , we must
(a) make the replacement

T
—
. 8w : 3“5

(3.52)

(b) introduce the differcntiation cussed by the

no compensation factor o(P.(t). That is we make the replacement

N+ % ' ‘ Nn M-l )
'XN ‘ Pt (o)( + o pr 2 ) "P; e T
o) Be : (3.53)
Ce | alo) dip Cpn

where N = 1,0. The following formulae are useful

> [T} _ (M‘t‘)c\.. Nf&ﬂ
> (x?'i ) - _—Z\:T"-" . XQ-,‘, ' (3.54)
? c'l'xP";k _ c,tt X:l C"xpc
e ‘( ) = = e &
p o
2 (’){N“ '-;'Xp-,&) Q“'-.Xe-;k Nt c:."b ,x'l‘ (N-t\)(.;x 4
_‘k?‘ o' .—Z;. 1 T R C;u ) Cpr
Since, in (3.53), we nead (l S ) , 1t is convenient to
. Nv‘\u)}(?k
define
W) o pr ek (W) e
g e‘i,v\ ° - qu t “?
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Using this notation, the p® P' cuts are

-3 o o)
PP -t'ﬂ/ ®te) 1 Eo )\oo (5’-3@ e “/a) v
AL ey s i (™)™ | [ e %

A Tx s
Ao )
S @ _8 3 e . o s
A — 'x?-“ F| - 2, o= _""‘_"—.XPI g My
@ Cpr L ot ey Cpt 2 ¢a

-y 0¢ .(0)
i @e) T T A, (3,0 o Y
BT ) = i (e )Y [ e ptsd ¥
€ A 3 c "k - - .
¥ A ‘1‘ .E'.:_f_.. F(‘) -B -xa anﬁ’a FU) (3.87)
L ')( ?" CP\ ‘?‘ \ o ?'a C-Pt ?‘ a

Finally the full amplitude is obvtained by combining
‘all the rclevant amplitudes in (3.46) and (3.47).

Lf the rho chooses sense or nonsers2 Lhe formulae are
further complicated by the °%Kt) factors which require extra
differentiations similar to (3.54). Howevaer, since Collins and
Swefman concluded that the fixed pole ccupling mechanism wa= the
the most successful in describing the data, we shall proceed no
further along these lines. Much of this formalism will caryy over
into the photoproduction case to be disscussed in the next section.

A useful preliminary step to a fuil data fitting progremme,

js tc actually fit the BP. I,= 1 amplitudes with the parametaris-

t
ation above. The reasoning hehind this is that the BP amplitudes
satisfy the IFESR constraint and also the detailed phase information
availuble at 6.0 Gev/c from the amplitude analysis. Since ihe
experiimental phase sensitive data ( polarizations ) is very scaree
.and has such large errors, it carries very little weight in the

fit. It is very easy therefore, tc get reascnable agreement with

the differential cross sectiovn data from z completely spurious
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phase structure. Fitting the BP semplitudes avoids such false
minima in ’Xz by ensuring that the parameters are in aporox-
imately the correct region before going on to fit the actual
data. Rapid convergence is usually obtained in this way.
Briefly, the results of the fit are:

(i) A1l the CEX data are weil represented in this
model. including the polarization, crossover zero and the dip in
the differential cross section.

(ii) Problems occur in the elastic polarizations

1

c_at ta-0.5 (Gev/e)?.

because of the poor description of Re A

In chepter two we described how the data forces a double zero in

1
+= at this point,whilst the it has only a single zero. Horc

rne A
serioucly IAi_ | ie too small at Large jt| so that the mirror
symretry is badly broken,

Thus the conclusion is that the BP description of the
elastic amplitddes Tails to give a completely satisfactory 7it to
all the - N data. The anslysis of Kelly(®1) indicates a slightly
different structure for tne It; 0 amplitudes - in particulsr
a zerc in .Re A$+ at  t~-0.85 (Gev/c)z. A fit to these iustead
of the RP emplitudes failed to improve the elastic polarizations,
even though it generated (through the cuts) a diflerent phase
phase structure in the It= 1 contribution. This is an indication
of the ée sitivity of tne cuts to the shape of the absorbing -
amplitude., However, the model is still a distinct improvement over

the old absorption model without the Regge-Regge cuts.
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3.5 REGGE-REGGE CUTS IN PHOTOPRODUCTION

Lncouraged by the successes obtained in N scattering
by including Regge-Regge cuts to correct the deficiencies of the
0ld sbsorption model, we decided to extend the approach to describe
+° photoproduction and the other SU(3) related processes. The
rich emplitude structure in photo-induced reactions makes this
a severe test of the cult phases.

(62)

A fecept analysis by Chadwick et al has shown that .
‘both the strength and shape of the diffractive amplitude in

¥e— T and Yp—~p°p , are very much the same as in WN-—>mN
when scaled by Vector Dominance. So, replacing =t by ¥ at the meson
vertex appears to have little effect on the It= 0 exchange.

We therefore take for the elastic amplitude the form given in
equation {(3,31), with the parameters fixed by the fit of Collins
and Swetman to wN scattering (Tavle (3.1,). Using this amplitude
to calculate the cuts makeé the model highly constrained in that
the relative phase of pole and cut is compictely fixed, and the
cnly freedom is in the Regge pole parameters and the oversll
strength of absorption through the usual A factors.

In the previous section we indicated that it was useful
to £fit the BP amplitudes directly before going on to fit the |
actual. data. Worden(ﬁs) has produced a model of = and f} photo-
production whichh describes most of the data and is also consistent
with the FESR's. However, the asbsorptive corrections are freely
parameterised and the model also includes the lower lying B and
H +trajectories, so it is difficult to decide just how good the
model really is. Nevertheless,; the phases of the amplitudes
shouid be reasonably accurate. We therefore used Worden's amplitudes
in a similar way to the BP amplitudes in =N to obtain approx-
imately the correct phase structure. before fitting the experimental

data.
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Cur model is then one in which we include the two
highest 1lying exchanges p and w . In the notation of Appendix

one we parameterise the poles as

R
N'n"') ) ) b
a 73 -1“/ [N p\ p_;.a
= & 54 a
ﬁp‘eﬁ“’k) : ( ) ( e (3.58)
‘ where R = {f”go}, and as usual
\ ‘ a & [] .
i CP'P T QP‘P &+ M& i\h ksIS‘;;) - "'“'Ia 1 _ (3,59)
| .

The trajectories are linear funcitions of t, with the
intercepts constrained so that they extrapolate through the
physical particles. In Table (3.2) we define the Regge couplings
along with the values of N and x for thie different helicitly
states. S, is again taken to be 1 -(Gev/c)2

The cut formalism is much simpler than in the last
section because we have only one term in (3.58) instead of the

two in wN because of the A' and B parameterisation. If we

again srite for the full amplitude

Ay (s.8) = 2 (s ) « ﬁ («, t) ¢ ﬂ (s £)  (3.60)
F.eé:,w

then the cuts are calculated in exactly the same way as before.

(i) x=0_ amplitudes (N =0, 1, 2)

(a) R ¥ P cuts

e| -7y @alo.g T
RP‘&“ () = 1 (% e ) @ o -t)
,)\R. o Ny Ca'x?&!:. (3961)
X (' R i, "'\ X,, —Z
s / ee Co

. e
For convenience we have dropped the helicity labels cn CT%*’

anc¢ def'ined
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c .
\( a ? (r‘ r_‘
Noa Ce 4, . (3.62)

(b) R & P' cuts
If we make the replacements outlined in (3.52)

and (3.53), then

- 6l to) G N"E
Ls e) = < (™%, m") ® p (-¢t) %

Bte) 7 N
. Eo - ) ) (3.63)

« \. ( o @ ) M?(D)x F Q P~

w9 _P

where (".’I{ is defined in (3.55) and

C'! ] -
X?‘R )l Ca ¥ C?t (3.64)

(ii) x = 2 amplitudes (N = Q)

Comparing (3.22) and (3.58) we se2 that the N =0,
= 2 cuts can be obtained by substituting N =0 in (3.60)
Cre (We actually
Y
take -"_g-’-c to bring down the factor (-t, in (3.58).) In fact

1)
XN

and (3.63) and diffcrentisting with respect to

(X e )O-Q [ %o t et (a5
) - 366D
‘bcv‘ ve Ce e e Ce
/
which gives
(a) R &P cuts
R
e . SV VH(P) R « . o'_)
= $ 3 . + O
A o) = i ) " T, 2T )
et o = (2.66)
Ce - <o 148 1

(Note: In reference {63), equation (11), which details the
replacement needed to obtain (3.65) from (3.60), a minus sign

has been omitted.)
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(b) REP' cuts
Here the differentiation '%E. is more
LY
complicated. Using a result similar to (3.65) for the P' case,

we find

e'a . o Mg to) Q
Ap (58) = 1 (7)™ &2, =

.4 R -1 o, (0) )
] 1 >\-+ Eﬂ (slsoQ ﬂh.) ¢ o \lo) %
8ws ? (3.67)
CaXpa
Q. { ’(9' o) — (o)
% _ - ) -
CP. [' Tt x? E ] F?‘ R x 'a ?el a
Where |
—D) (o)
= ¢ .
F?'R = b cQ [
o [ acat _3 7 (3.68)
€ L' Ca . X ot
S (2t . Xpe)
u?lto) \ ‘?‘ ﬂ v!

Thus equations (3.51),(3.63),(3.66),(3.,67) form our
prescription for the Regge cuts and the fuil amplitude is given
by (3.60). If we place the same interpretation on the elastic
amplitude as before (effective pole representation), these

equations correspond to the series of exchanges {(fig.(3.1))

R+REP+REPEP+ eeenne
(3.69)
+Rﬂp'+ 1LGP'QP+ eo0cseco
We again checked that if we use the parameters for the
‘elastic amplitude obtained from the second method of fitting
the 1= 0 amplitudes (sec section (3.4)) and evaluate the full
eikonal series to give (3.69), very similar results are obtained
but they take very much longer to compute. Therefore, we adopt

the effeclive npole method for practicel purposes, and by first

fitting Verden's amplitudes rapid convergence was sachieved when
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the experimental data was inserted.

3.6 RESULTS AND DISCUSSION

V/e display the results of the fit to the available ¢
and 65' photoproduction data(ss) in figs.(3.2) - (3.6) and table
(3.3). The agreement with the data is excellent. Particularly
encouraging js the good description of the polarised target
asymmetry, as this provides the most severe test of the non flip
and double flip amplitude phases. As we discussed in chapter tiwo,

if A, =A__and A, _ = -A then 3} =1 identically. Looking

-t 9
at table (3.2), we see that the poles certainly satisfy this,

whilst (3.61) and (3.66) show how the cuts do not. The violstion
occurs in the nor flip and double flip amplitudes and the .
deviation of X from unity measures the strength of this violation.
It is of course important at t =0 and t -0.5 (Gev/c)z and

is less significent at large t 8 *ig.(8.3) reflects this general
trend. In our model, the ﬁnnatural perity components in the cuts
renlace the B and H exchanges used by Worden, |

The ratiogsof vector to tensor couplings at the nuclecn

vertex which we obtain are

£ N
Sy & 0.2 67 . 0.9
G2 Gn

T T

The rho is therefore in good agreement with typical values
obtained in fits to 7 N scattering. The large value of the omega
fIip coupling is essential in our model to obtain gdod agreemrent
with the neutron/proton ratio of fig.(3.5). Worden incluaes, in
addition tv the B, the H mecon (which is the isoscalar member of
the 17~ octet) with a large flip coupling with respect to the B.
He is therefore able to preserve the small non flip omega coupling

(66)

predicted by Vector Deminance o« In compare the Regge predict-

Jdeon with VIM however, we must first extrapolate from the photon
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to the vector meson mass mi and then down the Regge trajectory
to the scattering region t$0, so our value of 0.2 is by no
means incompatible with VDM,

In fig.(3.7) we compar= our amplitudes with those
obtained by Werden, and alsc show the effect of including the
R B P' cuts. It is clear that this is'mostly in the real parts
as expected, and in fact is cruciél in order to obtain a good
~ description of the polarised target asymmetry (fig.(3.4)).
| In fig.(3.8) we give the predictions for the polarised
target and polarised photon asymmnetries in 65 photoproduction,
and for the ratio of fi photoproduction from neutrons and
protons.

We also attempted to fit the data using a model with
nonsense wrong signature zeros. The basic problem with such a
model is that it predicts a dip at t~-0.5 (Gev/c)2 in the
differential cross section (dorinated by rho exchange), contrary
to the datz. Even allowing A» 1 and a substaniial B éontribn
ution we are still unable to £ill in .the dip completely. Of:»
course, as the B exchange_dies away with enefgy, the dip is
expected to deepen. |

(57)

Finally, we return to Worden's argument that, provided
the ™ and ® are exchange degenerate, our p@& P' and & P
cuts could be cencelled by Az Buw and P' B w respectively.

As fig.(3.9) shows, our neglect of the latter pair of cuts is
equivalent to assuming a sinall coupling Tor the B - thus
breaking exchange degeneracy. A similar argﬁment explains why we’
night expect the pPH P' cut to be inuch larger than the wl Azl
in TN CEY.

It appears that tliie inclusion of the P' in order to
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obtain a better description of the elastic amplitude can solve
nmany of the problems of the old absorption models. The only
werrying feature of this and in fact all the current abﬁorption
inodei s, concerns the energj depenaence of the cuts. This is
revealed in two ways:

(i) As we extrapolate to low energies the cut begins'to
dominate the pole (their relative.strength et 6.0 Gev/c 1is
fixed by the amplitude analysis) causing severe disagreement with
the FESR's (see- chapteritwo).

(ii) At high energies the cuts calculated in the
absorption/eikonal model predict teoc little shrinkage at large-
lt[ in hadronic reactions. This is apparent from figs.(2.1) and
(2.2) for the particular case of = N CEX. In fig.(3.20) we plot
O(fo(t) for the model of ﬁf photoproduction which we have just
described and compare it witﬁ the "dats" of fig.(2.5a). The model
reproduces all the feafures of the data and we arec leasd to conclude
that a strong cut model in which the cut trajectory takes ihe
Mandelstan form (1.23) together with ﬁeggenRégge cuts to preduce
the correct.phase'structure,'is completely consistent with all
aspects of the photoproduction data.

It is this puzzling. fact that vhotoproduction is similar
to purely hadronic reactions in all respccts excepti its energy
dependence and that the absorption model preduces cuts which have
the correct energy dependence in photopreduction but not in
Lhadronic reactions,; that we shall attempt to investigate further

in the final two chapters.
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Pomeron : P
O‘T 19.92(rab)/0.3893 | B, -43.31(mb)/0.3893
ap. 2.02 8p 0.23
S Kp 0.49 Kp 1.10
8,(0) 1.0 (fixed) [0, (0) 055
TABLE. '3..1
Parameters for the L= 0 non flip - N anplitude

from reference (27)

' LW ' P
Fim N = (ww & pn
- N
r]x11]e %J*“"‘" (}WS‘ Gey Bpom Y &v
1 Q v ¢ &
I Ypon Bgp v Yoo By Gy
. “ D

- *1e & - %P“"" %\’.F Gc'" /\)w\ - "& Jur (sz’uo GET [ dun
- : v P

+ Q|0 %\()ub‘ﬁ (%'6",9 ey / dun %‘Pu)'ﬂ Dew & /am

TABLE 3.2

The couplings for Reggeon R exchanged in “o’p—»n"P
from reference (12). '
o *
The decay width wW—=¥r gives Y uxy/yn = 0.038 and
the meson couplings were then fixed by the Vector Dominance
relations Quaxy=Ypsd 9y, and A¢p = 3%6«: = O b,

M is the nucleon mass.
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Paremeter P ' w
(x' 0080 1300
Gv 2,19 15,56
GT 10,07 20.02
., 4,42 1.07
a+— 0002 . 1061
'x_+ 2.88 1.51
N ++ 2.93 2.89
N+ 2.70 1.65

TABLE 3.5
The final values of -th-e parameters obtained in the
it to the data of reference (65). The trajectory intercepts
were constrained so that the trajectories extrapolated through
the physical particles.

Also we set a_, = a

+ - -t

and A_, = N, for both the
rho and the omega. |
. A final ')(d/' data point of 1.07 was achieved for

111 data points.
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FIGURE CAPTIONS ~ CHAPTER THREE

The sum of poles and cuts represented by equation (3.60).
Fit to the differential cross section for TYp—s w°p.

Fit to the polarised photon asymmetry for Yp—»w°¢ (solid

‘" Iine). The dashed curve is the model of ref.(63).

3.4

3.5

3.6
3.7

3.8

3.9

Fit to the polarised target asymmetry for ¥e¢—» =% (solid
line). The dashed curve is the model of ref.(63).
Fit to the neutron/proton ratio (R) for - photoproduction.
(solid line). The dashed curve is the model of ref.(63).
Fit to the differential cross section for ¥p —vrj’? .
The =° photoproduction emplitudes at 6.0 Gev/c

(a) Non flip amplitude.

{b) Single flip amplitude.

{c) Double flip amplitude.
In each case the solid and dotted curves show the result of

our fit with and without the R ® P' cutls respectively. The

‘dashed curve is the model of ref.(63).

Predig‘l:ions for various quantities in ‘(F-——»/}; P -
(a) The ratio  (¥n—w2s ) (o 2y )
(b) Polarised target asymmetry.
(c¢) Polarised photon asymmetry.
Pairs of Regge-Regge cuts which may cancel each other if
1t - &. exchange degeneracy holds, 'c:\cco_rdin;f> to the arguments

of ref.(57).

3.10 Effective trajectory calculated from the model of w° ploto-

production vresented in section (3.5) compared with the

"data" of figo (2.63) °
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4.1 INTRODUCTION

In chepter three we applied the eikonal formalism to the
good, phase sensitive data which exists in 7N CEX and neutral
pion photoproduction. The model was able to describe the phases
of the amplitudes very successfully (the one doubt being Re A,
in the CEX reasction) over a limited energy range. However, as
higher energy data has become available a serious inconsistency
has emerged between the shrinksge predicted by the model at large
[t| and that which is present in the data (see figs.(2.1) and
(2.2)). Ve clearly need a modification of the eikonal model in
which the cut trajectory approximates to that of the pole over
a finite range of s and t.

It is of course well known that the eikonal model
satisfiec full s-channel unitarity, and in section (3.1) we
indicated how the usual Regge pole exchange, when suitably iterated,
gives ug the eikonal series. Thus the results of chanter three
are consistent with unitarity in the direct channel. However, the
complete theory must also satisfy unitarity in the crossed (t or
u) channel. The importance of t-channel unitarity for Regge cuts
is emphasised by the role they play in removing the difficulties
presented by the Gribov-Pomeranchuk fixed pole at d = ~l,
Turthermore,; Gribov et a1(67) have shown how unitarity helps to
fix the discontinuities ucross the Regge cuts in the t-channel
portial wave amplitudes. | ‘

Several authors have discusscd the effect of t-charnel
unitarity on the simple absorption model and one way of doing
thia is tec use the K-matrix formalism. Typicsily the absorption

model has
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0t
e te) e L&)

Alse) ~ B s - @Je) s (4.1)

For. simplicity we neglect the signature factor and assume that
®,p. ,¥,a, are real functions of t. The first term of (4.1) is
the Regze pole and the second term is the (destructive) two
particle cut with (xc(t) typically given by (1.23). To exhibit
the J-plane structure of (4.1) we také the Mellin transformn

(partial wave projection) of this equation.

oD
-J -\ )

Aﬁﬁk) = X ds % A(s.t) (4.2)

So
The inverse is
_ ety _

\

Alst) = 37; J dy ° A{s,¢) (4.3)

“100+%¥

In (4.2), s, is the threshold for the amplitude A(s,t) and in
(4.3), ¥ is to the right of all the singularities in the J-plane.
The absorption model therefore gives

Atsit) = (36_—{'-:‘)) * &ctk) \n LS- e ) (4.4)

Mukher ji and Desai

(68)

impose t-channel unitarity by
demending that the full amplitude A(J,t) satisfy
A(T.€)

?’:(3"%) = (4.5)
\-ip Als,t)

where

e - @.*‘- Vs
P 5)

By making suitable assumptions about the nature of the cut

trrajectory (they tzke a 1'ixed@ cut corresponding to Olﬁ =0 in
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(1.23)) and the relative strength of pole and cut, they find
that uniterisation through the K-matrix formalism (4.5) has the
following effects.

(i) It produces a pair of complex conjugate poles
o, (€)= olg xix, which lie cn the physical sheet for t<0.

(1ii) The discontinuity across the cut is sharply peaked
around J = Ny, and furthermore vanishes at the jip of the cut

J =K.

c

~ ' 2
Disc A(J,t) ~ « 8‘3 (J - )7
(J - O(R)z

Compare this with the hard cut equation (4.4). (Note that fcr a
fixed cut 0<c = & (0) for all t.)

This simple analysis indicates that t-chennel wnitariiy
could prcvide important modifications to the usual. Regge cut
parameterations such as (4.1). In particular, the peaiting of the
cut discontinuity at the position of the pole, may change the
enefgy dependence of the cuts in precisely the way we require in
order to describe the strong shrinkage ob;erved in the data.

One model which satisfied full multiparticle t-channsl
unitarity is the Reggeon calculus developed by Gribov and others,
In recent yecars this has been examined in great detail, particuiar
attention being paid to the nature of the Pomeron and its
couplings to itself, other Reggeons and the external particles.
The calculus evclved frcm an earlizr technique proposed by
Gribov for calculating diagrams involving Reggeons in a simiiar

way to Feynman graphs containing elementary particles.
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4.2 GRIBOV'S REGGEON DIAGRAM TECHNTGUES9:70)

To illustrate the methods which can be used to calculate
arbitrarily complicated Reggeon digrams, we consider the case cof

the two Reggeon cut given by the diagram shown below.

The Feynman rules give

AKS‘&) - ?: }"l ‘[d\t$ A"'k‘ A“ka &‘(ﬁ: )"'Mk%.g) Q-,, (% )?\"\1.\,?1"‘;“) |
'7'( & (40-6)

where the d's are propagators.corresponding to the (eight)
internal lines. .
cIl = k% -2+ ie etc,

If R1 and Rz are takxen to be the usual Regge pole amplitudes,
then the complete diagram gives the two Reggeon cut. To evaluate
the diagram,Gribov ct al use the Sudakov technique of writing the
internal monenta in terms of their components in the plane of
Py and Po and those perpendicular to this plane. They theﬁ assuue
that the Regge amplitudes give important contributions when

(1) the energy variables 8y = (kl + kz)2 and
8y = (p1 t Py =k - kz)z are large, and

(ii) the momentum transfers such as (q - q')2 are
small (i.ec. << 8),

After making the Sommerfeld-Watson transfcrm, they

obtain
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| 2 SN 2 '
o | 2% YN (v, 9)
_“ (@w) (S+r - u(q>) - 2 (g ))

where

(4.7)

A=29 -9 A=t

X(?z ?.1)_ | Cb%[_% (otCa®) + M(?'?’))]
S3ued] 213 sty ]

and ql_is'perpendicular to Pq and Poe

We can represent equation (4.7) by the diagram below.

Ve

N is then the residue of the fixed pole at J = & (qz) + C((q'z) -1
in the Reggeon-particle scattering amplitude. It iz essential

that. the Reggeon-particle couplings have the non planar structure

in order that N has both léft and right hand singularitiese.

If there is no cross (i.e. only s or u singularities) then N-—0
and the diagram does nct give a cut,.

The trajectory of the branch point obtained from this
diagram ( and also the n-Reggeon exchange diagram ) agrees with
the Mandelstam result (1.23). One consequence of this for mulii-
Pomeron exchanges is that provided K,(0) =0, the Pomeron pole
and its cuts accumulate at t =0, J = 1. The same is true of
a normal Regge pole and the cuts formed by the exchange of the
Reggeon with n Pomerong, except that in this case the criticsl

point is 1 =0, J = O(R(O). It is therefore importunt to con-
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sider, at least at small |t]|, what effect the pole has on the
branch: points, and indeed what effect the branch points have on
each other. Gribev et al (69, 71) argue that because of this
coincidence of pole and cuts st t = 0 , the main contribution
10 a n-Reggeon production process comes from the "pole-enhanced

graphs". For example

is dominated by ﬁyﬁm~m~vqgjﬂ
-~ "

/
is dominated by M

(a) ' (b)

o ‘

In this chapter we shall represent external particles by solid
lines and Reggeons by wavy lines..

This means that to all graphs of the type (a), we expect
that there existc one of the type (b) in which tihe bubble is
replaced by the pole. We can therefore draw a pole-enhanced

disgram for the two-Reggeon cut considered earlier.

——enl]s .v“‘l

)
\\\ / %uuwﬂ
The approximation in which we consider only pole-enhanced graphc
is then one in which we are neglecting cuts in the Reggeon~-particle

production amnplitudes.



4,3 THS RUGGEON CALCULUS

Most of the work on the Reggeon calculus has been
motivated b& an investigation into the nature of the Pomeron,
and in particular into the structure of its couplings to itself
and other particles. In recent years there have been several
problems connected with the self-ccnsistency of a moving Pomeron
pole vith intercept (xp(o) = 1. S~chiannel unitarity has been used
extensively tc derive the so called "decoupling theorems"” which
require varioug Pomeron couplings to vanish (72). The most imp-
ortant of these is the vanishing of the triple pomeron coupling
I—ﬁ(t, tl’ tz) when the Pomeron legs are at zero momentum fra-
nsfer. .

[, 0,0 =0

One way of obtaining this result is to consider the

inclusive process

a+'b

e+ X

in the triple Regge region s-»oo, s/mz——z-no, m

%—yOO. I we use the

generalised optical theorem, the leading contribution to the total

cross section is provided by the diagram

I bchas vacuum quantum numuvers the graph is controlled by the

triple pomeron vertex r_}O, tl, t2). When integrated over the
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appropriate region of pﬁase space, the result violates the Froi-
ssart bound unless either {xp(0)< 1or r?O, 0, 0) = 0. Thus if
we wish to preserve the Pomeron intercept at unity, the triple
Pomeron: coupling must vanish. We shall see that this zero also
has a t-channel origin in the Reggeon calculus.,

(73) starts with the assumption which

The Reggeon calculus
is open to question, that the Pomeron is a pole with intercept
one., It is treated as a non-relativistic particle having momentum

k and energy w = j-1. The bare propagator is then

D (w, K) = (w+ k27T (4.8)

so that

K2 = -t | o (4.9)

Here: we assume for simplicity that 1_c_2 is ecaled so that the

Pomeron trajectory is

ap(t) =1+t

The bare triple Pomeron vertex is "ir" and all \'tezr.xt.i'r;reé'
are assumed to be analytic in w. The general interaction can then
be written as a perturbation series expansion in terms of a
Reggeon field operator Y. |
I R A% 2 2k A 2R R 2 R A 3 2 A4 A

- . rl""" 73 6.-ﬁ- ,f’,' [ > ;.,{._1.@ .....
Lr"a&ma&% + ‘:“5,:.\.,..3,1 * Aﬁ#‘“«p + A, "*’“&""E M ”%’“ |
The renormalised propagator is

D(w, k) 12 ;, k%))t (4.10)

]
~~
<
+
Iy
]
M
o/'\
g
b

whera 20w, k) = Diw, k) -~ »,(0,0) (4.11)
[~}

Equation (4.11) ensures that (4.10), which is the Dyson equation for

D, gives the Pomeron pole at w =0, k = 0.
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Gribov and Migdal discuss the "weak coupling solution”
to the calculus, in which D differs only slightly from its

bare value DO. That is

2

Zc(w, k)<< w + k' for w~}_g2—=>0 (4.12)

In this limit they show that the unitarity relation which defines

. 1
20, reduces to a series expansion in the vertex function rn

for the transition of one Reggeon inte n Reggeons.

This series only converges provided the triple Pomeron vertex

coupling r; satisfies

( ré)z‘é< w w-vg?-—» 0

.and Gribov and Migdal argue that this constraint on F; is a
result of the instability of the Pomeron -~ that at t =0 it
can decay into ar. arbitrary number of Pomerons. They propose the

general form

2

l_'z(w, kio; g) = aw + bk + cgz * esene (4.13)

So the Pomeron is said to be quasistable at w = 52'= O.
Equation (4.13) describes the general triple Pomeron

vertex shown below.

Cor) 7o), 5 e-g)

We shall call this the "Gribov vertex" at which the energy.w,is

conserved. The inclusive vertex has the extra constraints w = gz
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and O = k.q (which ensures that all the Reggeons lie on the
appropriate spin shell). Thus
. a
r;\ (031 ‘.-t ) &, %) ] «)8};‘ = %pp ( (é(\ka%))ﬂ’(i(k_‘)))?(4.14)

\Nan?
d":\‘y% 2
It follows that the inclusive and Gribov vertices coincide at

k = g = 0, where in fact they both vanish.

In the Reggeon calculus the triple Pomeron vertex (and
all the other relevant amplitudes) satisfies an integral equation
which we show in diagrammatic form below. The explicit form of

this equation is given in refs.(70) and (74).

Cardy and White(74) have examiped the structure of this

Yy
equation in which the Kermal M;(E)H¢‘ contains terms such as

"f Annnll Yrrrare Caa
= :‘: ¥ (4.18)
o o

The presence of the full triple Pomeron vertex in (4.16)
means that all the potentially singular contributions to X are
softened and so cannot individually be responsible for the
vanishing of r; (4.,15). One point of view (first proposed by
Gribov et al) is that the zero appears in the full equation (4.15)
as a result of cancellations amongst the various terms in the
iteration of K . This is only feasible if the terms alternate
in sign and is therefore related to the sign of the two Pomeron
cﬁt. -

The two Pomeron piroduction amplitude and also the
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Pomeron-Pomeron scattering amplitude, satisfy similar equations

>~

involving K . This suggests that they too have zeros of the same

form as F‘. For example

= D ;” + > D‘:: +>@,&:@:: (4.27)

Now, by the process of enhancement discussed earlier,

we might expect that the full two Pomeron production amplitude

near t =0, J =1, will be dominated by the Pomeron pole.

~ —

(4.18)
11ﬁqq
S0 that
A (wk 1o, & [Llwk ;o,q) : _ B%) (4,19}
Anple'Wel ¥9,4) & |olW,X 70O,9 (v + x2) £ o-Le)
Where A is the pole enhanced part of the full amplitude and

pole
B(E?) is the usual residue function. Consesquently, we expect the

leading contribution to the two Pomeron cut (near t = 0) to be

given by the completely enhanced graph.

>>wwmw-~@< (4.20)

The crosses on the internal lines indicate that these Reggcons
satisfy the moss shell constraint,.
Gribov et al have written down the general form of the

14
partial wave amplitude. They find‘67)



Y
=
[97]

= F(J,t) = ALJ,1) '
B(J,t) - 1n(J - & ()

A(J,t)
D(J,t)

where A and B are real functions close to J = o (t), and & _(t)
is the ususl two Pomeron branch point with MIAO) = 1. Now since
ihre pole and cut collide at t =0, J = 1, we expect that the
Pomeron pole will appear in the partial wave amplitude. Tt can
also be shown that the two Pomeron production amplitude and the

Pomeron~Pomeron scattering amplitude take the form

' ~
W A
1 s D' (4022)
////&_Amhh
o,
Ty —_~ %- (4.23)
o~

If the Pomeron pole in (4.21) were to appear as a pole
in A then (4.22) would have a square root branch point; thus
violating the Mandelstam representation. It is therefore usually

assumed that the pole is generated by a zero in D.

D( X (), t) =0 (4.24)

(75) has shown that in order that the two Pomercn

Bronzan
cut contribute to the total cross section with opposite sign to
the pole (in agreement with the Mandelstam result and experiment),
then B(J,t) must be singular at t =0, J = 1. The simplest
solution to (4.24) whicii also satisfies this constraint is that

-a
both A and B share a double pole 210 which passes through J = 1



116

at t =0, From (4.22), the contribution from the pole enhanced
graph will be
9 £
~ (4025)

(s-wu)

”~

where g 1is the coupling of the Pomeron to the externsai pariicles,
Finally, the residue of the Pomeron pole in (4.23) has a double
zero, vhichh is consistent with the triple Pomeron coupling
posessing a first order zero.

has generalised this formalism to include tne
triple PomnrOL inclusive vertex.

Floiae), S nwy)

(‘*“ j e U"f;)“ ""’\’(}f )

The relstionship between it and the energy conserving Gribov
vertex ( rg) is

,:; = ri; (\uL,\53 W, g )

The inclusive vertex r%nc’ may have w + w' (i.e. the & 's not

(m-—ﬁ'), (\4 '}’

211 the game), but is evaluated at w = 0, k = 0, In both cases

the final state Pomerons must satisfy the mass shell conditione.

whare we have now included the Pomeron trajectory slope explicitly.

Tor the 1final state Pomerons this becomes

Pt ro) v S0+ %t 2eg) =0 (4.26)
Thervefore
w' o+ %—e(_}S2+ 92) = 0 (4.27}
e +* o'keq=0
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By studying the tehaviour of the kernal K in (4.15),
Cerdy concludes that the triple Pomeron vertex must vanish for

small g% 1like
r(w,\é;m',s'.%) ~ ";‘;&9; * b(m-u‘)-»O(&z’(%‘-)‘) (4.28)

Thus, setting w = w' and using (4.27), the energy conserving

Gribov vertex has the behaviour

l ~ %' .2 .
& a (w+ 5 k ) (4.29)
Which meens that
~y - - ,-3
[0~ & (5 = ot () (4,30)

where Cxc(t) is the trajectory of the two Pcmercn cut. The functicn
;Zo which produces the zero in the triple Pomeron vertex is
therefore a moving zero, having the same trajectory as the two

Pomeron cut.

Lo~ NI = k() (4.51)
So when we include enhancement, the leading contribution

to the two Pomeron cut has the behaviour
N ; Yo, .//
}-‘)\M W"‘MO\ (4.32)
2 —2 .. \
~ (J - Ofc(t)) (J - «(t)) In(J —-clc(t;

Note that if we exhibit the structure which is present in the

Gribov vertices in the diagram of (4.32), we obtian the diagram

P ' A
— X
P v ' . Py
v

belowe
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We can extend the analysis outlined above to include the
case where we have non vacuum quantum numbers exchanged in the

t-channel. If we consider the diagram

R
R

vagw (4.33)

Insn?
P

(where R represents a Reggeon having X p(t) = Kg(0) + Af t ),
then (4.32) again gives the leading contribution to the R & P

(76)

cut even when the trajectories have different slopes « In this

case the mass shell condition is

2

The Reggeon éalculus therefore, provides us with a
representation (4.32) of the Reggeon-Pomeron cut discontinuity
which vanishes at the tip of the cut and is strongly peaked about
the Regge pole position. The derivation of (4.32) relies heavily
on the vanishing of the triple Pomeron coupling (which in turn is
a consequence of démanding CXP(O) = 1) end indeed on the vanishing
of the Regge-Regge-Pcmeron coupling, at zero momentum transfer. It

is possible to estimate the size of these couplings directly fiom

the inclusive data(77)

and unfortunately for the Reggeon calculus
they do not appear to vanish in the required limit. However,
neither does the Pomeron intercept scem to be exactly at one bhut
slightly above +1),

mevertheless, given that enhaﬁcement occurs we would

still n~ively exvect (4.23) to have the form

F(J,8) ~ £(J,t) (J =~ X (872 In(T - €, () (4.34)

(15)

The Bronzan and Jones analysis into the effect ¢ t-channel
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unitarity further suggests that
£( O (t), t) =0

i.e. We have a soft cut. Hence (4.32) may still be a reasonable
parameterisation even tﬁough its exact derivation is suspect.

In the next chapter we shail investigate the consequences
of this type of parameterisation for Regge cut phenomenology. In
particular, we shall use (4.32) as the basis for an explicit
model of the Regge~Pomeron cut which we shall apply to =t N CEX

and neuiral pion photoproduction.



CHAPTER FIVE
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501 PARAISTERIZATION OF THE REGOE-PORMERCON CUTS

In Chapter two, we assembled a zreal deal of evidence to
support the view that gll hadronic two~body scattering amplitudes
show strong Regze pole like shrinkage out to large vwalues of lfl
at least [t]< 2.0 (ucv/c) . (We shall return to the problem of
photo-induced processes which appear not to shrink, later in this
chapter.) uurth ermore, we have shown how the absorptive/ecikonal
model can be mede consistent with the amplitude analysis by the
inclusion of lower 1lying contributions — namely R B P' cuts.
fowever, the one character*stic feature of the eikonal model -~
the energy dependence ol the cuts which it generates - is in
severe conflict with the results of Chapter two. The problem
therefore, is how to modify the erergy dependence of ithe cuts to
produce strong shrinkage at large [t ]

Wwe have indicated in the previous chapter how t-chsunel
unitarity, by softening the nature of the cut discontiruity and
causing it to peak around the pesition of the pole,; car produce

recisely this effect. Equation (4.32) is a parameterizstion of
the cut discontinuity which is zerc 2t the tip of the branct cuw
J = p/,(t), and also includes a double pole (J - 0<R(t))m2u
When this is inserted into the Sommerf eld-Watson trensform, the
peaking of tiue integrand near J = O’Rﬂt) should ensurs that the
cut behaves like S il over a finite range of s and t. OFf
course as 8 -—»c0 we shiall begin to see the contribution from
J a:cxc(t), We thercfore expect that the effective trajcctories
of’ Chapter two should begin to show some deviation from linearity
ag this lerm becomes impoviant. We shall indicate just when iiiis

effect should become oLaervabie on the basis of our fit to

e e w®

N (section 5.2).

To evaluate the contribution of a Regwe~Pomeron cut to ithe
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scattering amplitude, we insert the form of the discontinuitiy
(4.32) into the Sommerfeld-watson transform. For the particular

case of an odd signature Regge pole, this gives

1e04%
Qe _ Sy O T/ T -Me \*
A () = g j ey i) TS (R ) o5~ (5.1
-360 %
= 1 Gle) F(sk) | (502)

where O(C(t) is the branch point as given by the usual Mandelstam
formula, o(R(t) is the Regge pole trajectory and G(t) is an
arbitrary residue function. Wé have slso included in (5.1) an
exponential cut-off in the discontinuity function ( eaJ ). By

analogy ‘.o chapter three we now define

c=a+1n(s) —in/ 2 (5.3)

we can then write

1004 )
\ (- 3 T - Ol '
Fems g | €T(3) Wlwdes e
20 +Y

Dist) - P(s.k)

i

(5.5)

In (5.5) we have divided the integral into iwo parts - the contri-
bution from the dipoie at J = N:R and the principal value
integral. The integration contour is shown below.

A =
-——-;--———’-;————o)

NS
+ tlalt) A
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(a) Dipcle

Dis.e) ?—5_ [Q.c-s (‘S—uc)z ln(:’-ua)]

3'=°(R

e (uo\- “lc,) ! + \a \m@.-u,,\(c (_u‘,;- a&)-a-:)] (5.6)

(b) Principal value integral

Se
-
Pla) = S S (5o, ) (3-2.)" av (5.7)

If we make the change of variable

=(O(c-J) in(s)

(5.8)
then (5.7) becomes
o en
e =" g "
Plak) = J . Ox (5.9)
\n (s) l?:. - (Rg- ®e, Yin Lﬁ)]
©
NOW c.'u/ " -t_s',/‘_ %
\nd c a [ e
= - TR
(7&*(%) Wws (e f) (e &)
Therefore, we can write (5.9) as
e, ¢ -2 \ne
Plee) = - : j e dx
" Qas)? [ « (g )tms ] (5.16)
ot o -ex /“"
_ Q‘. P S x} & Q W3 -
w3 dx [31. * Lﬂ@‘-ug)\ml j
)
L
e, 'c'u/\h$
= -C j 2 € d
2 *
ws ) Lo+ (gt dws]
&
(S.11)
e ~ - f\ag
- & aAx € A
\"bs Lx L LN(L- Di‘\\h311
o
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where we have integrated by parts the second term of (5,10).

The integrals in (5.11) may be evaluated in terms of the expon-

ential integral function Ei(x){"®) to give
oot 8/ .
= - “Plws . p &8 ne \2
Pl Q s)"" Y -Be il w2 )~ (%)
a\ ctic 8 (5.12)
- __:?_s &Q. < ’h"a . c WS
< 1+ W [‘QQ‘ E“(. Tgs)* %]
where
B =(xy = &, 1n(s) | (5.15)
If we use the expansion(78)
[ =) 3{.“
Eile) = ¥ + Wizl « z gy (5014)

A=t

( ¥=0.5772 is Euler's constant), we can simplify (5.12)

PLS.&) =
* Q,‘bu-& (et- “s)(\&* Lug-te) ") [. 2 b M‘)( 3 ] (5.15)

“Wey " “
(] \
+ Q ® (—c-: * LN&-M(_))

GNR Lu&- 6! ) (a %+ {&« Mg)ﬂ-}[K‘P‘V\Q < .‘.V\ ‘e - R C'a_l_]

Finally, by conbining (5.6) and (5.15) we obtain

Flsk) = @ (atgette)

Y |
= Q ¢ (stg- ‘*c)'@‘* W&'“s)"‘) ‘.7‘“‘ \n ¢ 1 (5.16)

_ e-c-ﬂa (-t ) (2 Loeg- Ns)")[ Py [&i\%] ]

Ney

&
- e:— g(.lé- + Lua-u&))
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Se2 A RWBGGE CUT KODEL FOR 7 p —» n®a.

For the odd signature rho pole contribution to the two

independent g-channel helicity amplitudes, we write

p : - (o) Ny Cy
A sy = 1 (%, &™) (&) ? e G e (5417)

Where, ‘as usual

—~
e
?
[
(0e]
~

ey = eyt O(:,, (ln(s/so) - i w/2)
Y = - .
O(P(L) O‘.P(O) O(J; t

ané we label the amplitudes by N (= 0,1), the net s-channel
helicity flip.

The presence of (XP(t) in both the flip and non Tiip
amplitudes weans that the rho choozes nonscnse. We did in fact
try a model in which (Xp(t) appeared in only the flip ainpiitude
(sense choosing). However, in order to obtain a good description
of" the lerge |t] differential cross section we had to add extra
exponentials to the pole residues. A better description of the data
is obtaired with (5.17), which has just a single exponential plus
the nonsense factors {and fewer variable parameters).

Bafore we write dovnn the cut amplitudes we recall from
chepter two that the amplitude analysis strongly suggest that the
flip amplitude in 7tN CEX is well described by a simple
(nonsens«: choosing) rho pole, i.e. the cuts are smell in this
anplitude. We therefoure include cuts only in the non flip amplitude
snd in the rnotaticn of chapter three we write for the PR P cut

. PP . ":h ";“-’3 N".\(o.) -
By = ™ 6 .19

X {Q-G:\,) FG?(a.,L-) i+ bt) }
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Where T, (s,t) is the function defined in (5,16) with
P

0, O K
C——» C = —=T . 4\ng = T (5.20)
Qo-e-o.‘—;.. Q

ap is related to the slope of ‘the Pomeron contribution to the

forward Tt N cross section and a, is the zxponent wlilch appears
in the residue of the non flip pole (N = 0) through (5.18). Ve
adopt (5.20) so that the exponentisl |t| dependence of the cub is
rclated to that of the pole in a similar way to the eikonal model.
Since our model is basically concerned with the energy dependence
of the cut and ssys little about the it[ dependence, we have also
included the factor (1 + bt) in (5.19) Lo allow for the presence
of O{P(t) in the pole.

We require that the model describe the following features
of the =N CEX datar~''>)

(1) The 6.0 Gev/c amplitude analysis,

I3
o
T
D)

(ii) The differential cross section dats for

energy range S < P 50 Gev/c.

<
lab ©
(iii) The available nolarization data.
(iv) The data on Ac=e¢(x)-el=) which has recently

(]

become aveilable up to Py, = 200 Gev/c from NAL.

-

(v) The final piece of "data" is the .aeff(t) ¢t
fig.(2.,1) which we do not fit, but nevertheless we regard i1t as
extremnely imporiant that our model reproduce this datsa.

As our first attempt to fit the data we therefore had

g

a simple p pole plus PE P cut model given by eauations (5.1.7
and {(5.19)., Howevcr we encountored precisely the same prcblem eg
in the naive absorption model, namely the similarity in phase of

pole and cut at small |t[. Thus demending Tm A, =0 at t~-0.7
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(Gev/c)2 (the cressover zerc) we slso have an unwonted zero in
Re A, at approximately the same value of t. With our frecly
parameterised cut there are two possible courses of action.
(i) We could take the view that the phase of the

PEBP cut at 8.0 Gev/c is not the asymptotic phase. Looking

at (5.16), the dominant contribution at smell [t| comes from the
term QSSL y Where ¢ is given by (5.20). If we allow ap to
search over negative values we find ihat we can cobtain an excellent
fit to the 6,0 Gev/c amplitudes. However the parameters ave

such that

O A :
c\ o < Q‘P C.‘ a

arid we are essentislly multiplying the small it; part of the
cut by a factor "i". The energy denendence of the fit is now
completely incompstible with the Serpukhov data. In fact the medel

(2
W,pp 18 spproximately lirear for |t{>0.4 (Gev/c)™, but curves

o

over at small Jt| until 0 (0)~0.25, For this reason we e s

’D

o
this possibility.

(ii) The most sensible solution to the praoblem,
remanbering the arguments presented in chanters two and threc,
is to again add Regge-~Regge cuts - in particular the S P' cut.
If we do this we should first remember that the cut trajectory

will. be given by

) } o
M L&) = Rpled » gl2) =4 _"T:_ . (5.21)
= N, &
= Bppled * Yo
(0022)

So that in this case the pole and cut d» not coincide at t = 0,
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Hence thnere is no reason to suppose that the pole "enhancement"
of chapter four will occur. (Alternativelv, the integratiocn i#ron
- o (X c(‘r.) which appears in the Sommerfeld-Wailson transform
does not include the pole at J = O(R(t).) We therefore expect

that the discontinuity across the PEP' cut will take the form

Appr(3.8) ~ (3~ X ())

Which gives a ceontribution to the amplitude
ot £6)

(‘f\ s )—d-V\

AJ»P‘ (s.) ~

For simplicity we take n = 0, and we therefore have a normsl

abaorption/eikonal model parameterisation for the »& P*' cut.

pet . citryy \Kplod
A &t

Co M., & u 15 o)
Siige Hpeis) o F PF o} Ve

{ &P‘ (.Slsbe- YR/ ) P i N {.‘_{,;‘3&) %

Cp )

QG
Cp = —_— Wg - W (5,543
Q. « O btk )
The full helicity amplitudes are
DT ]

A, (s,%) = A5 (5,8) + B0(s,1) + £2%(s,1) (5.25)
= . op
A+_(S,t) - A+_(S,t) (\)02u)

whera the various terms are defined in equations (5.17),(5.19) and

(5.23), As we have already menticned, the teasi description of the
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secondary maximum in the CEX differential cross section nesy
t ~ =0.8 (Gev/c)® is obtained using a nonsense chocsing rho pole
coupling. Ccllins and Swetman(zj) found that the use of Lhe A
and B invariant amplitudes improved the quality of their it in
this region. However, in our case such a deascription is of littic
practical. valve because of the extra parameters we would have, Uo
generate the cuts.

The final values of the parameters are shown in table
(5.1)« Because of the rather arbitrary t dependence of the cuts,

we are unable to compare most of these parameters with those of

the eikotnal model fit described in Chapter thiee. However, the
flip/non flip ratio of the rho couplings is in genersl agrecnant
with all other estimates, as also are the trajectory parametcrs
the varicus exchanges. In particular a; 20,28 is consiabant with
the value obtain=d from the small + shrinkage of the pp
differential cross section over the ISR -renge. (13)

In fig.{5.1) we plot the helicity amplitudes at 5.0 Cev/e.
These are obviously in excellent agrcemznt with thoe amplitode
analysis - the cuts having modified the non flip amplitude to
produce both the crossover zero and the approximafe double zerce in
Re &4, ;. The fit to the differential cross secticn data is shovm in
fig.(5.2)where we have shown a selection of the availeble low
energy date (Plab.g.la Gev/c) along with the date from Serpukhbov
(21 & Piop o0 Gev/c). The shrinkoge present in the dats is
clearly ceproduced by the fit. The intercept « (0} is fixed by *he
fit to A (£ig.(5.4)), with the full model Wpp In fig.(5.3).
The recent NAL data at 50, 100, 150 and 20U Gev/c hes cast doubt

an the overall normallilsatvion of the Serpukhov data and in the fit te

[e we have used anly the Iow energy plus NAL daia. Finally we



show our fit to the available polarization data iri fig.(5.5).

It is clearly consistent with the more recent data of Hill et ai,
[p]

giving a polarization «~ 20% for Itlﬂ-O.S (Gev/ce)?, in contrast

to the CERN measurement cf ~ 60% in this region. An interestin

J3

prediction (which can just be observed in fig.(5.5d)), is the
appearance of a substantial negative poisarization in the ranse
1.0 $;|t| & 2.0 (Gev/c)? as we go to higher energies.

The. only deta which we have not iacluded in our fil is
the wide angle CEX desta from which Barger and Phillins extracted
K opp(t) Tor [t]<5.0 (Gev/c)?. However, in £ig.(5.6) we plot
e eff(t) at large |t| calculsted from the model for three’ diff--

erent energy ranges. Betow 5.0 Gevfc (whicii is the range analysed

3
o

by Barger and Phillips), the shrinkage in our modcl is conciste
()

with the “"data" (£igz.(2.3)) for [t[<£83.0 (Gev/c¢)™, which is wall

beyond the range over which we might reasonably expect Regge thoovy
toc apply at such low energies; as we explained in chapter two. =
Fig.(5.0) 2lso predicts that ve shall observe some deviation of

X ofp from (approximate) 1ineari£y as large |t| data becomwes
available at Serpukhov or RNAL.

A further eppealing property of the model is the way in
which it extrapclates down to low energy. In chapter two we
discussed how the lcwer lying contributions present in tihe new
ebsorption models tc give the correct phase structure et 6.0 Cev/c,
are so stroing that they overwhelm the pole st 1low energy, moving
the crosvover zerc in towards t© = 0. If we locolz al the noa rlip
eplitude in our fit st 2.0 Gev/c, ve ©ind that the crossover zerc
las moved in, but only to 1~-DM (Gev/c)? compared with its

nogiticn of t ~ -B.Q (Gev/c)a at P = 6.0 CGev/r, We ghould

lah”

contrast thies with the eikonszl model fit of Colline and Swuotman
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in which the crossover zero has moved ¢ t~ 0.7 (Gev/c)2 ai
2.0 Gev/c,

Thus we have demonstrated that a simple model which
incorporates a pR P cut discontinuity peaked at the position of
the pole, can describe all the feakures of the =% N CEX deta
above Py, o~ 5.0 Gev/c, provided ws also include the p& P' cuts

in order that our amplitudes have the correct phases. There are

[0}

two predictions which can be made on the basis of this model:-
(i) We expect the strong shrinkage apparent in the
currently available data to be modified according to fig.(5.8)
when we look beyond t ~ =2,0 (Gev/c)2 at Serpukhov and NAL.
(ii) A weaker prediction is the appesrance of a subst-
antial negative polarization at higher energy in the rcginn

1.0 € [t] £ 2.0 (Gev/c)®.

5.3 THE R B P CUT DISCONTINUITY IN PHOTOPRODUCTION

As we indicated in chapter two, the only rescticns.in
which we do not observe Regge shrinkage &re the phoete-~induced
processes. Tnese reactions have a much richer anmplitude structwre
with non flip, single flip and double flip amplitudes all contrib-
uting to the croses section., One possihbility is that the cul diz-
continuity is still peaked at the pole, as in =mtN, with the
observed structure in the photoproduction C(eff near t© ~ =0.0
(Gev/c)z end the lack of shrinkage at lavge |t]|, being diae to
pole-cut interference which postpones the strong shrinkage wveycond
the limit of the available data.

To investigate this problem we have attempted to reproduce
the photoproducticn amplitudes obtained from the eikonal model 1l

of section 3.5 - which we know have the correct phases to soiisfty
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both the FESR's and the high energy asymmetry data - using 4ifT-
erent parameterisations of the discontinuity fTunction él(J,t),
We rely heavily on the formalism of section 5.2 and because the
cuts are freely parameterised, we require a new set of cut param-
cters (aP, 8oy GP’ GP,) flor each helicity amplitude. quever, to
economise we set them equal in the non/double flip amplitudes, so
that there are in fact eight free parameters (four for the non/
double flip and four for the two single flip amplitudes) in oil

to describe the absorptione.

As in TN CEX we write (R B F ruts)

Y
02@'(0

. AR 3 w
A oo = 10 PG S e Fea ] G

where

_E\.ﬁ.&_. < \;\ $ = i“

., X » f{'nzg\
? QN < QP [ o !
And Tor the R 8 P' cuts
e . cimy, \Mated @ N
K. (sk) = 1(¥,.e a G, €) a
ol lh od )

. G . &
. N oo ® e
%. S (s, € /a) ) : e }

with

a
Cop = —H 2B o \as -

= (5.0}

X
Q
The R B P' trajectory is defined in a similar way to (5.22) and
we have dropped the helicity labels on Cp and Cpr &8 well as on
all the absorption parsmeters.

For the N = 0, x = 2 amplitudes we allow some extira
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freedom (compare equation (3.66)) by multiplying both (5.27) and
(5 .2») by a function of t, (b1 + bzt)° The full amplitude ia then,
as usual, the sum of terms R+ REP+REBP',
As in section 5.1, the function F, (s,t) depends on the
P
form of the Reggeon Pomeron cut discontinuity, by aralozy to (5.4).
] 100+ Y
\ CPT
E (k) = oo e AT, e) Wals-u)ds (5491)

)w#"

We now look at some different possibilities for A(J,t). (Note
that the full cut discontinuity always has ar exponential eaJ
dependence which is included in the term e®  of (5.31).)

Qur first consideration is

. 2 '
S -
A (3¢ =< = ) (5.52)
(. [} ) T - MP

This is simply the paremeterisatiun used in section (3.2} to fit

v N CEX and therefore Iﬂ:(s,t) is given by (8.16). wWith this
P

choice of discontiinuity i% is certeinly possible to ¢bisin ths

]

required zero in Im 4, at t~-0.5 (Gev/c)”. However, when we
try to fit the non flip and double flip amplitudes (see Fig.{(3.7);
the results are rather poor, the model being uvnable to repreduce
any of the structure present in these amplitudes, particularly
Im A_, o In Tact the "fii" tends to make the culs very weak in &
and A__. Since, with just rho ard omega poles, the polarised photain
asymnetry measures the sirength of the non =znd double flip cuis

it is particulerly badly described in this model (being essentially
one for all t)e. In fig.(5.7) we show the polarised target asymmetry

resulting from our best Sit. The descrepency between the model sy

the data js obvious. Cur final check is to compara- PfT(t) cal.c~

vlated from the model,with fig.(2.6a). Becanse the cuts are small
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in the non and double flip amplitudes, there is no structure

induced into <xeff by pole-cut cancellations in these amplitudes

and the model shows typical Regge shrinkage, contrary to the date.

However, if we look at just the single flip amplitude we obtain

the (xeff of fig.(5.3). Here there is a zero in the imeginary

part of the amplitude at t~-0.5 (Gev/c)?, which is reflected

in the slight deviation of o‘eff from linearity in this region.

It is clear that the reason why we do not zee the effect charect-

eristic of the absorption model (fig.{2.2)) is that gt this value

of t our new type of cut has approximately the sapme phase and

energy dependence as the pole - namely that corresponding to

the trajectory O(Rﬁt). Thus the camncellation is simply between

two different functions of t (coming from two differsnt expenential

aslopas), which does not produce any wild fluctuations of (¥ g
This could have important consequences for Reggze Lutl

pheromenology. In particular it could make the need for NWSZ

redundant. In section 5.2 w2 used a nonsense chooaing rho pole

with no cuts in the flip amplitude to fit the wN CEX dale. Since

the fIip amplitude in-wN has the same form as the single flip

photoproduction amplitude, it should be possible to obtain a zeru

in ImA,__(®N) at t~ -0.5 (Gev/c)2 by pole~cut interference

whilst still maintaining the approximafe linearity of X oppe

However, it is apparent that (5.32) is not the corrzch
form of cut discontinuity with which to fit the photoproduction
amplitudes. e next tried two parametérisations in vhich we increzss

the contribuition from the tip of the branch cut J = O(C. Firstiy

J - o, .
L\ ——— o
A(s, k) ~ S (5.32)

which gives
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L A L P A
F LS,\:) T - (.01.9\- ML.)Q iz mT\:! ]

N

LT el (5.34)
-(NR—NG)Q (Xq‘“g) - &
[ o

And secondly

\ )
Aks.t) o . e oo
(K - ga)z (5.38)

from which we obtain

(N} (.3
Qa [ 9

c - @

c.u&
- ¢ Trime
(“&'Nf-) ( )

Fc“(."*lk) =

- ce ® [i Lo 3e 3

Tant

5
"y L4 1 LY

| Again ws find it impossible to reproduce the asaplitudes
‘ of chapter three using either of these parameterisetions for the
' R B P cut. Equanion (5.,33) undoubtably gives a better Jdegnrivtion
of the single flip amplitudes than (5.36) or (5.32), but the non
end doubie flip emplitudes are once again, very poor. Thz model
X ofp 18 very similar for both these parameterisations ard in
fact shows considerably more structure than the previous atlempt
using (5.32). ™ fig.(5.9) we show O(éff from the best fit

to the amplitudes using (5.33). However, because of the bad
description of A, and A_, the fit tc the polarised target and
polarise’ photon asymmetries (fig.(S.iO)) is cleariy inadequate.

Our finzal chcice ror the discontinuity is
I‘ - : mry
2\ (J,t) ~ constant (5.37)

which is of course similar to the usual absorptive/eikons) model

cut discontinuity and gives




on
fe)

th't) ~ T e (5.58)

Using this simple parameterisation of the R ® P cut we find
that cur fit to the non and dcuble flip amplitudes is much better
than with any of our other choices of A(J,t). We can also obtain
a good description of the single flip amplitudes.

We know from our previous work (chapter three),; that (5.37)
is likely to be able to fit the photoproduction data., (This is
not certain because the discontinuity may be more complex in
the eikonal model.) However, the systematic approach which we have
adopted makes it clear that this form for the discontinuity is
crucial, particularly in obtalining a good description of the non
and double flip amplitudes and hence the ssymmstry data. The only
point which is unclear from this awalysis is the choice of A{J,t)
for the single flip amplitudes. It is impossible to choose between
(5.33) and (5.37) on the basis of a fit to the amplitudes of
chapter three at a single energy. We thercfere confreonted twe
simple model directly with the photeoproduciion date over s range
of energies (3.0 % Pigp € 15.0 Gev/e).

(L) OH(d,t) ~ constant in sll amplitudes,
e Mo

_end A, , with AW~ (I35

ST
SIRYI

(B) A(J,t) ~ constant in A,
in A, and A__ .

By first #ittirg the amplitudas et 6.0 Jev/c, we immad-
iately obtain good agreement with the phase sengitive asymmetiry
data which only =xistc at low energies. When we try to dascribe
the 3differential cross section over the full energy range we find
that model (A) is udoudtably the better cf the two, In particulzr
the dip at t ~ -0.5 (Gev/c)gappears to decpen with energy when

we fit with (B), contrary 1o the data ('ige(5.11) ). For this reason

we can clearly stete that the best description cof *he Reggecri-



136

Poneron cut discontinuity in photoproduction is provided hy ithe
usual eikonal/absorptive type modal, (A). We emphasise that in
comparing the different peremeterisations of A(J,t), ail of the
possibilities were treated on exactly the same basis as outlined
above.

Having established that 'ZX(J,t)fv canstant gives the
best results, we then chenged the parameterisation slightly to
enable us to compare the rcesults of the fit with that of chapter
three. We have no more free parameters, but we now write the

R QP cut as
: J/
er B Sy \%t®d R \MA
A o) = 7 (Fsoe™2 ) G (5

™~

‘*% C-*CP> (s \ﬂ.'a) Re & %\’(_f‘:_";‘;_?_}h ;f (5

h N O‘R NF ) k
where Q(RPU-_) € 0(&(0) * O (o) -\ v A
And in the case cf the N = 0, x = 2 ampiitude we multiply (5.32)
by (b, + b,t)s The R @ P' cuts are parameterised in a gimilar

AP T Pa
fashione.

The results of this fiﬁ(so) are shown in £igs.(S.11) to

he paremet~

(5.16) and in table (5.2). We should emphasise that t
erisation is rather crude, particularly in the non flip (N = O,

= 2) amplitude. A much betier description is the full eikonal
approach described in section 3.5.

In conclusica, the eikonal model is successful in nhola-
production because it has the correct behaviour of A(J.t). Any
iwodel which seeks to shiit the dominant contribuiion te the disc-
entinuity away from the tip of the cut towards the position of thwe

pole J = OQR, will necessarily be inadequate in photoproduction.
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POLE PARAMETZRS CUT PARAKZTERS
a, 4,60 8y 0.02
a, 1.46 8p 3.40
G, 28,51 Gp 0.05
Gy 131..53 Gp s -1.15
(0) 0.55 b -0.09
, ol 0,93 o 0.28
®{0) 0e45
Npi 1.08
TABLE 5.1

The values of the parameters obtained in the fit %o
the 7t N CEX data using the model of section 5.2. The Pomernn

intercept was fixed at O(P(O) =1
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BXCHANGE
RHO OMEGA POLERON Pt '
PARAMETER
a, 3.386 Q.48 4.94 9.90
8y 0,15 1.03 9610 6a.39
G, (Grp) 44,13 19.58 0.40 -3,61
bl =053
b2 5,96

TABLE 5.2

The values of the parameters obtained in ths fit te the
phetoproduction _data using the mod~l ot =ection S.3. Parameterz for
the double flip amplitude (N = 2) aire identical. to those shuwn for
the non flip smplitude (N = 0) and by, by are the same for both
rho and omega exchanges,

The rho and omega trajectories are those of section 3.5,
whilst the P and P¥ trajectories were fixed (frowm tabie 5,1
to be |
v P('t) = 1,0 +¥.025 t
O{P.('t) = 0,45 + 1.08 ©
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CONCLUSIONS

There are two important pointe which we must bear
in mind in order to cbtain the correct Lehaviour of Regge
cut amplitudes.

(i) It is crucial in fixing the phase of the full
cut amplitude to include contributions from the region
-1 <J <o, We have chosen to do this by using Regge-Regge
cyts, althougn sasveral other methods have been nroposed (Sl)v
Thie phase problem, inherent in the old absorption models but
only made transpsrent by the amplitude analysis, has obscured
the other basic flaw in the absorption model appioach -~ namely
the form of the cut discontinuity.
(ii) It now seems clear that the gtrong shrinkage
observed imr hadronic processes is due to some kind uf pole
enhancemenit mechanism, which peaks the R @ P cut discontinuity
at the position of the pole. In this respect, the abscrption
model which gives A(J,t)~ constant (by this we wmean that thes
discontinuity has no singularities or zeroas), is cleariy incleguate.
However, it apvears that in photoinduced processes; this mechanisn
does not operate and the absorption model (provided wé have: the
correct phacse structure) is sufficient to describe the data.
rinally we noteé that pole enhancement of the cut

discontinuity in hadrcnic reactions, may make NWSZ unnecessary
in ordern to "explain" the dips observed at t ~ -0.5 (Gav/e)” in
wp=rw'n and Yp - wp. The structure in the nhoioproduction

X ofy at this point supports tho pole--cut interference mechenisa.
However, il this is the case, there 1s then the puzzling
inconsistency of the absence of structuwre in the wN CEX aeff >
¥Why should tha Argonne model work best in hadronic reactions and

the kichigen model be most srccessful in phetoproduction?
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Also, factorisation oi' the p residue would suggest that il
we have a NWSZ, we should observe a dip in Xv-»ffp ( which
is dominated by P exchange). In general, factorisation tests
of this nature support the Michigan approache.

If we make the hypothesis that there are no NWSZ and
that all dips are produced by pole-cut interference, we arrive
at a consistent picture provided we assuﬁe that pole ernhancement
of the cut discontinuity occurs in hadronic processes ( and not
in photoproduction ). Then, as we have seen in section ( 6.3 J |
pole-cut cancellation can still take place at t~ 0. 5 { Gev/ ¢ )
( in wN CEX for example ) without destroying the lineav™ beh.xriowr
of (xeff in this region, whereas in Kb—bvﬁ? s pole~cut interference

produces *the obsezrved structure in (xeff
It would be interesting tn extend this Llype of sneiysis

to other processce in an attempt tc confirm this peculiarity of

the photon. There are two areas where good, accurate date

could provide a stringent test of ocur hypothesis.

(i) vector meson production, which is related to paztopro-
duction by Vector Dcminance may show that the pole eqhancemunt
effect is not a property of particular helicity amplitudes (e.z.
those with one unit of helicity flip at the "mesen" vertex
Cﬂﬁg';ﬂny, etce))e Fig.(2.15) shows that the unnatural parity
exchanges in p and W production ( w and B rcspectively) appear
to shrink ot lerge |t|, indicating that A(J.t) ~ constant is

a property of the photon.

(ii) A second set of reactions is backward wN and backword
nhotoproduction. Examples of these along with the ellowed (baryon)
cxchanges are shown belcw(Q)o

(a) wYp—» pw* Ne , Ny, 83
(b) wo -» pm” As



41
(c) Cp—>pw° Ny, Ny, As
(@) j{? A % No’. 3 Nb' ) A§,
A1l of the arguments presented above for the forward reacticns
also apply here(82). Firstly, factorisation is again a problem.

Reaction (a) has =z dip at u ~ -0,15 (Gev/c)? which may be

i
nj

tuide at ™

[
w

associated with a zero in the N, ampl

. , Nucleon
However, we then have to assume that the Ny coupling is small to

avoid filling in the dip (in the EXD limit). Factorisation would
now suggest a dip in (c), which is not cbserved experimentally.
Also, the photoproducticn reactions show very little shrinkage
whilst the hadronic processes do appear to shrink(za), although
the data only extends to u~ =0.d (Gev/c:)2 (reaction (a)). So

sC~-

1~

here again, experiment seems to suppori the hypothessis of a d
ovtiruity dominated by the pole in hadronic procegsses and by itne
tip of the branch cut in photoproduction.

A systematic analysis of Regge cuts in these and other -
processes obviously provides a useful extension to this Lline of

research,
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FIGURE CAPTIONS -~ CHAPTER TIVE

5.1
5.2
5.3

5.8

5,10

5.11

513

I, = 1 helicity amplitudes for the reaction TR AN

Fit to the 4if fcrnana] cross section for T e 1%

The effective traauctor calculated from the model of section
(5.2) compared with the "data" of fig.(2.1).

Fit to the data for Ac(=wn),

it to the polavization dats for W p—w w<®n .

'The effective trajectory calculated from the wodel of gectlon
' Iy

(5.2) out to (tl & 4.0 (Gev/c)® fer different incident besn

momentao.
Fit to the polarised target asymmeiry data for 7Y P -t

~ N ks o . . PR
with A(‘s k) v( S —> in all helicity emplitudes.

The effective trajectory of the single fiip amplitude in

. -S-
\6?_.?7\.0\5 with A(s.t)~(17*

) S )
N‘ ) in this smplitude.

The effective trajectory for ¥e--n% with AR ' -":' '1‘-('- -
: T - Np .
fn all helicity amplitudes.

I}

Fit to the polarized target and nolarized phetoen .\:'-._

For 1\/"3""""0\“ with /—\b’.\‘-) ~ | yf—-— ) in all halred (o
) - K .

amp].i‘tudes c
Fit to the differential cross section for Xp-»w% . Th2 s0lil
curve is the final i‘Lt with A(b’})-v constant in &)t
helicity amplitudesa The dashed curve shows tue it with

T N

Alse) ~ -:?_.;--) inh,, end A_, and A(s t) ~

constent in A, 8and A_, .

Fit to the differentisl cross section For KF—MD"E- with
5,k)~ constant in 211 helicity amplitudes.

it to the wnola szed target asymmetiry data for' X P RO

wvith  A\(s,t)~constont in all helicity amplitudes.
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Fit to the polarized photon asymmetry data for Yp-+ ¢
with Als,€)~ constant in &ll helicity emplitudes.
Fit to the neutron/proton ratio {R) for =" photoproduction
with A(s,t)~ constant in all helicity amplitudes.
The effective trajectory for Yp-»wp , calculated with

A (3, t) ~ constant in ell helicity amplitudes.
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APPENDIX ONE
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Al.l1  KINGRATICS

We shall use the following notation Ffor the general
cattering process
1 4 2 o=~ 3 + 4

Py (El’ . ) ' Py,= (Ez, = )

12 - ///

) Py (Byy -qg_ )

Pa= (Ba,. Q.
3 et 34

Uf)4

The invoariant quantities s; L and u arc defined by

8 = (Pl ¥ )2 i (P3 " PQ)
t = (Pi 3)2 = (PZ m-P4)2 (£1:0)
w = (2 ~Pp% = (P, - 2y”
with the constraint
: -
5+t ru = m? - (A1.2)
1=l

The s (t or u) channel process is that for which s (L or v)

correasponds to the square of the total centre of mass encrgy. Thus

s channel . i+ 2 —3+ 4
t channel L4+ 3 —» 2 + 4
11 channel L4 4 —> 3+ 2

The laboratory frame is taken to be the resy frame of
pavticle ¥ s In terms of laboratory gquantities

- 2 . L K -
S = My « My v awm, LC\‘,_\Q)‘

,.
\I‘J.OS)

e - ‘. . kg - 2 M > )

L . “\L - M\Q— 34 a (c\d-k.\)"f-

“ ; PN - AW, (Emh)



The incemivig centre of mass thres-momentum For the s-channol

process is

Q

(3

(DN

2 (s = (g + )N (s = (my = m )88 (BLcd)
12 - )

N

ral

vith a similar exnression for 9. .
"12
If the s-chamnel cenire of mass scattering angle iz &

1%

s s
then
2 o - 1008 04 ) 3
t =mf +nf ~2q, q, Cos@ + BB (42.45)
and

g o _sle) e bt e Y ot

N. (?'Srz.. Cz"-" KYTA

\ILJ-OL")
=\ & - L,I'..‘.’_.-
. (s
'S (?..!
vhere to is the velue of © corres sponding to Gq = 0o AT high

cnergy, & useful approximation is

.L \ 3 . kS
bo ~N~ = ‘$ \-L\'\‘\‘-‘L “\"\3 )(U-“‘.""\'Jsst ) e
’ \ y o (1‘1.,1172'
e g , TV TN
Therefore, if either m, = m, or m, =m, , L ~ 1/ s =and
1 3 2 4
becomes negligible extremely quickly. (Of course if &il masses
are. equal to = 0). In the reactions which we are principally
concerned with to can sefely be ignored,
Equationg {Al.4) to (Al.7) may bLe redefined for the t ox
1z channel proccss. In particular Cos &1;5 4, can be obtained

]

frem {A1l.6) by the subztitution

(8,t,my,mg) ~—> (t,5,mq,1,)
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Al .2 HeLICTITY ALPLITUD:ES AND NOTUATISAT 7ON

In the notation of reference 4, the centre of mass

helicity amplitudes for the s-chamel process are

Auglait) = SRy LAGE |, z':>
and Lor the t-channel process

Aa (k) = AN ake) 2,5
vnere M represent the s-chsnnel helicities and A th
t-channel ones.

The amplitudes are normalised so that the optical

theoorem becomes

O-&'Z‘\% "T ]

W) = - — ¥ i, LA 0) | g ey
G:r(\ L) da A n E\!A" 7“‘ W )}‘ afte 2 (hl.2)
““lg m\S

And the differential cross sectiou is
X \ - el
mb - .L\ = K hY |(Z\ “ '
e = - . I:
( S ekwgl s Qo dkr" ads >:' (£1.9)
. TN

where O, is the spin of particle one etc.

With this normalisation the amplitudes are dimensicn-

less. (Note that 1 mb .= 0.3893 (Goy/c)"z.)
Ale.S PICON KUCTLON AVPLITUDNLS AND ORSERVABLES

- - 4 - + .
In ol O + % -~—»0" 4+ %+ reactions, there are four

helicity amplitudes reduced to two by parity conscrvation. If

we label each ampiitude by the bawyon helicity state, then the

experimental observables are

5, 582 X -
()\J PR \' - i s-c\_, ‘ (\'H- |\7 w | "\‘____.\’ \ WAL:10
y \/(ch_\l/\,) J/ Ghowg® g v A

-
&

e 1’5.
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O LG

é_;z___._é:'.:___{. Tea A ot f\!; = o) (A220)
LYY

P
':4
["4

L

it

(:‘:\ ?‘.: 114 "I\.->-'r 'q-é"
\PL-\..;‘ \’“ Al \ (\‘V" \';.

7
jo

(Ad1.12)

To deeseribe the particuler

]

cese of wN scattering we use

=0 ZTe=1

the t-~chamel isospin ahplitudea L and » terms

of vihich

d
=
3
+i
D

Alwp -t p)
(AL.13

1]
’}
=

(qk“mv“¢“°n)

Al.4  PHOTOPRODUCTION ARVLITUDES AND OBCC?JAGLTS

In this case we have eight smplitudes re Ovced to four

. . q S p .

by pearity conservation. Ve label them -4ﬁr‘i for the general
pirocess

K_)\ + Nll'\ T O" * F!H"

Ye only need to consider A= 1 because of parity
conservetion so we now drop this superscript. The four indep=-

endent amplitudes ere

A_, N =0
e N =1
A__ 1

wvhere n is the net s-channel helicity flip. In terms of thece

anmplitudes the experimental cbservebles are:-

(i) Differentisl cross section.

\ P v I 2

O\U'fn‘\ - . Qe 2UNS a

ke \ Aweney™, \ T8 {sewr) “’"“ \ Ao (N \ (£1.24)
h e 5 38

(m is the nucleon mass)
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(ii) Polarissd photon ssymmetry

;“ - o ()\G. \:j‘-ﬁ- (‘\.M-‘-- - Q. % (\‘tl- I

s - (1"; i - IL:-J )
- _-"N -\‘l\ 1
Z-z i Q IAEIN \
R

(1ii) Polarised taorget asymnetry

i ' mh\ | ‘\ r\... ‘\:‘- &
A= “ - "] (h1.16)
2:...! \ é\‘l\‘ ‘-I\ \ -

’-\[-k
(iv) Receil nucleon polerisation

"_:1‘ A 1\\'\‘ (\"h,\-h . (:“w(:‘\-'-*n:\

) 5 N {L4.17)
[
(v) T photeproduction from neutrons
Y
") (A. ). - (¢

(‘? fi }.ﬁ.\.:.;::. N \ r:‘dy.:‘ l e & M \F'I " dvl ¢ oy
\ T E T s o i s A1 .18
N\ Yp et (41.38)

Z I (.‘I'}\‘,-.-[.QS * (({p“a)v ")

Vhere the subscripts s and v refer tc the ic o<c~'-' & e';\.m
isovector parts of the amplitude respzctively.
Finally the amplitudes for .f photoproduction are related
¢
to the above amplitudes by 3U(3),

o o Vep R
7)) = ] 2 AT« T A%(r0) (
) ) /3 - (éi‘c’w ‘66’ f ""\

\

‘-

40
PR

~,
-

Vhere -a = 1,23 from the 4);«"2)" mixing as given by thes quadraiic

mass formala.
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A2.L TED TEYECTIVE TRAJECTORY (Xc’

For the single Regge pole cxchange ¢ (L), the Torviard

ion takes the form

[

differential cross sec

de < Acie) - @
e BLe) ( /s ) (A2.1)

If o (t) is a linear function of t,
o (t)y = ¢(0) + 't

we can vrite
gor(t) o Jolt) In(s) o &(0) &' In(s) t

Then (A2.1) becomes
A o) Q

de g (%,

G’)’«‘\}S ot bl )k ‘&
&ls ) "

So ve expect that the width of the forward pesk in the
differenticl cross section will “shrink" logerithmicslly with
energye.

The behaviour of dﬂﬁk is usually wore complicated Lecanse
of additional poless and other singularities such ae Regge cuts
whiich may contribute in a given process. However, in this case
it ig possible to define an "effective trajectory" cxeff(t), and
a computer proagramme has been written to calculate it ffum the
experimental. data. To do this we change (A2.1) slightly and wfite

a do , A & Oleg, LE)
o v Nk ()

(h2.2)
¥here PI is the laboratory beam momentwn and
4

)> = .(._‘f%__.':.._}l).

N, is a t independznt normalisation parameter associated with a
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pacticuler momentum (say P.)e. This paroreter may also be associaied

with data at more than one momentum to allow a complete renormsl.
isation of all the data from (say) a particulsr experimental
group winich mzsy be suspecta

To determine Ky o T « the availablce dats is intewr-.

6]

priated to obtain values ot t = 1, using e linesy intecpolaticn
Lo

. d [ xS Y Fal 3, s - . ° . .
in In (T7/dt) from data at adjacent values of t. 0/ pp 15 then
J

sleniated by a least squares £it of In (d+/dt) against Inyw,
and the error estimeted using the veriance coveriance matrix.
Naturally the errors reflect the interpolation which has to be
performed to obrlain data at the same t valuL but different cnarglas.
I'rom this point ol view it is very useful to hsve ¢ fa11uble data
on de/dt over-a wide range of encrgy messured at the same © valuos
=2t each energya.
he kinematic corrections to {(A2.2) have been exeniansd by

(40)

Spiro and Dersme For equal mess scettering (such as Wp—»7%n )
they are completely negligible, even ot low cuojg en (P23 Gov/ul.
For unequul masses théir inclusion produces en uvwpward ohifi ¢
X gppe Which may be 1mpﬁ'unt if we try to calculate (ﬁeff“ac
large |t| using omly low energy data in; for example, procezses

such as W' p-v AR However, to obtain the effective trajectories
of chapter tvio; such corrections have been ignored; although we

have included t_ correcily as indicated in Appendix 1.
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