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ABSTRACT 

Many theoretical treatments of quantum-mechanical scattering 

processes require the numerical solution of a set of second order 

ordinary differential equations of special form (with first derivative 

absent). The methods used to solve such sets of equations are gener-

ally based on step-by-step methods for solving a single second order 

differential equation over a fixed mesh. For example Chandra (1973) 

has published a computer program which uses de Vogelaer~'s method to 

solve the differential equations arising in a close-coupling formul-

ation of quantum mechanical scattering problems. Chandra's program 

makes no attempt to monitor the local truncation error and leaves 

the choice of steplength stra~gy entirely to the user. 

Our aim is to improve on existing implementations of de Vogelaere's 

method for a single second order equation by incorporating a method 

of truncation error estimation and an automatic mesh-selection facility. 

Estimates of the truncation error in de Vogelaere's method are estab

lished together with an upper bound for the local truncation error; 

the interval of absolute stability is found to be [-2,0] and it is 

shown that the global truncation error is of order h4 where h is the 

step length. 

In addition the characteristics of a method due to Raptis and 

Allison are investigated. A numerical comparison of computer 

programs· which incorporate the methods of de Vogelaere, Numerov, Raptis 

and Allison and Adams-Bashforth Adams-Moulton, with an automatic error 

control is performed to determine which program gives the most reliable 

and efficient solution of the single channel radial SchrOdinger 

equation. 

A modification of Chandra's program is provided which performs 

the numerical integration of a set of coupled second order homogeneous 



differential equations using de Vogelaere's method with an automatic 

error control. 
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1. 

INTRODUCTION 

Recent years have seen an upward trend in the number of comparative 

studies of methods and their associated automatic implementations for 

solving systems of first order ordinary differential equations of the 

type 

= '. i = 1, 2, n. (1) 

Equations of order higher than one,e.g. 

(r) 
y = 

I II 

f(x, y, y , y (2) 

can be readily reduced to a system of first order equations by use of 

the following set of simple substitutions, 

y = yl 

y = yl = y2 

II 

y = y2 = y3 

y (r-1)= I 

¥r-l = 

= (3) 

and the methods for solving equation (1) are then immediately applicable 

to solving (3). 

Special differential equations of the form 
II 

y = f(x, y) (4) 

and systems of such equations arise in a variety of physical contexts, 

In atomic and nuclear scattering problems we are interested in solving 

sets of coupled integrodifferential equations of the general form 

{ 

2 2 } N ~ +ki- £i<fp-l) y. = £ V .. (x)y.(x)· + 
d~ x2 1 j=l 1J J 

~ r I I 

·L. JK .. (x ,x)y.(x )dx, 
j=l 0 

1
] J 

i = 1, 2,---,N. (5) 

In the close coupling approximation equation (5) reduces to a system 

of coupled second order differential equations in the case of no exchange, 
,-.- . .. 

(

,:..-\11 Un:vt,lj.p, is when K .. = 0 for i, j = 1, 2,---, N and our study relates to the 
SCIENCE lj. ~ 1] 

7 uu.~~~~tJe cal solution of such a system, in particular to the 'single channel' 
SECTIOIIf 

LibrarY 
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equation when i, j=l. Even in the presence of exchange the integro-

differential equations can be replaced by a larger set of coupled 

second order ordinary differential equations. 

Despite the frequent occurrence of such systems of equations there 

appears to be a total lack of comparative studies of automatic methods 

for their solution. Indeed, the use of automatic methods for the 

solution of such equations seems to be an area which has been entirely 

neglected; programs which are currently available for solving (5) make 

no attempt at controlling the local truncation error which arises from 

the method used in the integration, and changes in steplength are made 

entirely at the discretion of the user. 

In Chapter 1 we give a discussion of the radial Schr~dlnger equation, 

Some comparisons at fixed steplength have appeared using the methods 

of de Vogelaere (1955), Numerov and Runge Kutta in the main, and these 

are discussed in this Chapter. An argument in favour of the need for 

automatic techniques is also put forward. 

A number of direct methods exist for solving (4); the use of such 

methods is more intuitively appealing than those methods in which (4) 

is reduced to a system of first order equations thereby introducing 

first derivatives into the equations and perhaps giving rise to a less 

efficient method of solution. In atomic collision processes, the 

step by step integration of (5) consumes a large proportion of the 

total computing time and it seems appropriate to make use of methods 

designed specifically to cope with second order differential equations 

with first derivative missing. A study by Ash (1969) of the asymptotic 

errors produced by the use of linear multistep methods as applied to 

solving the equivalent first order system and direct methods for 

solving (4) leads him to recommend the use of direct methods for such 

problems. we note here that if a linear multistep method designed 

I p+l 
to solve y = f(x, y) has truncation error proportional to h where 
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h is the steplength then the global error is proportional to hp; by 

II 

contrast a linear multistep method for the solution of y f(x, y) 

with truncation error proportional to hP+2 has global error proportional 

to hP. Both methods are said to have order p. 

A major aim of this work is to improve on existing implementations 

of de Vogelaere's method which is a fourth order step by step method 

for solving (4) and in Chapter 2 we give a detailed study of the method. 

De Vogelaere's method has a truncation error which is proportional to 

h5 and we shall see that the global error is proportional to h4 We 

also develop truncation error estimates which lead to an efficient 

automatic error control in computations based on de Vogelaere's method. 

The implementation of de Vogelaere's method with automatic error control 

is discussed in Chapter 3 and we give a description of the test program 

along with the test runs performed, 

We have also studied Numerov's method together with the method 

of Raptis and Allison (1977) for solving the single channel radial 

Schr5dinger equation, and these methods together with their automatic 

implementations are described in Chapters 4 and 5 respectively. 

Chapter 6 describes .the N.A.G. routine D02AHF which uses a variable

step variable-order Adams method to solve a system of first order diff

erential equations and in Chapter 7 we present a numerical comparison 

of the methods of Chapters 2-6 for solving the single channel radial 

Schrodinger equation. 

In Chapter 8 we provide a modification of Chandra's (1973) pro

gram; the modified version is designed to solve a system of coupled 

homogeneous second order differential equations. Chandra's program 

uses de Vogelaere's method to solve the differential equations over 

a fixed mesh; by inserting into Chandra's program our own routine for 

de Vogelaere's method which has an inbuilt automatic control on the 

local truncation error per unit step we hope to improve on the efficiency 
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(with respect to- the number of function evaluations performed in the 

numerical integration stage) of the calculation. 



4. 

CHAPTER 1 

The radial Schrodinger equation 

§ 1.1 The form of the equation 

Scattering experiments provide valuable information concerning 

properties of quantum mechanical systems and such experiments study 

the effect of directing a monochromatic or monoenergetic beam of 

particles at a target. In practice the incident beam is collimated 

by a series of slits and the products of the collision which result 

from the interaction of the incident beam with the atoms of the tar-

get are measured by some form of detector. 

The time independent Schr6dinger equation for the total system 

of incident particles of type 1 colliding with particles of type 2 

is 

= 0 ( 1. 1) 

for structureless particles where E is the energy of the system and 

H is the Hamiltonian given by 

H = 

where m
1 

and m
2 

are the masses. 

+ 

t\. = h 
zrr 

( 1. 2) 

where h is Planck's 

constant and v
12 

is the real potential energy of interaction which 

is a function of the relative position of the interacting bodies. 

~ is the wave function which describes the motion of the scattered 

particles and predictions about the position of the particles can 

be made by calculating ~~~ 2 ; \It itself cannot be measured directly 

in the scattering experiment. 

If we define the relative co-ordinate ~ by 

~ = ~1 ~2 

and the centre of mass co-ordinateX by 

X = ml ~1 + m2 ~2 

(ml + m2) 
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then we can write equation (1.1) using (1.2) as 

[
- t 2 \) 2 - ~ \1 2 + 

2M X 2m x = 0 ( 1. 3) 

where we have assumed that the interaction potential is spherically 

symmetric. M = m1 + m2 is the total mass and m = m1 m2 is the 

ml+m2 

reduced mass of the system. 

to write ~ (~ 1 , ~2 ) as 

If now we use separation of variables 

= 

we obtain the pair of equations 

- t2 \}x2 
2M 

{
- t2 \} 2 

2m x + 

( 1. 4) 

= ( 1. 5) 

(1.4) and (1.5) represent the Schrodinger 

equations for the centre of mass motion and the relative motion 

respectively and it is the solution of (1.5) in which we are inter-

es ted. 

Equation (1.5) must be solved subject to two boundary conditions 

the first of which specifies the solutions to be regular at the origin; 

the second specifies an asymptotic condition which represents the 

solution as an incoming plane wave and an outgoing scattered radial 

wave. The boundary condit~ons are thus given by 

= 0 

__.--- ik.x e -
x~oo 

ikx e +-
X 

f( e , ~ > 

( 1. 6) 

(1.7) 

where f is the scattering amplitude which is a function of e and ~ J 

the polar angles of ~- The method. of partial waves can be used 

toronvert the partial differential equation given by (1.5) into a 

set of ordinary differential equations. Since we have assumed that 



6. 

the interaction potential is spherically symmetric the wave equation 

(1.5) can be separated in spherical co-ordinates (~,8.~). In spher-

ical co-ordinates the Laplacian operator\] 2 may be written as 

= 

where 

= +2 [ 1 .b 
-"'- sinS ·~e 

2 The operator L represents the square of the orbital angular momentum 

and the spherical harmonics Y_e:irl (e,cp> are defined to be the eigen

functions of 1
2 and L~ which is the r component of L given by 

we have 

and 

= ·+ d -tn.-acp 

Lz y.tm (e,4> = mh. y£~ (e,4) 

where l) m a·re quantum numbers with C~ I m 1. The function 

is then a solution of (1.5) provided that y(x) is a solution of the 

following radial equation 

2 
E._ y(x) 

dx
2 = [~(L+l) - k2 + V(x)] y (x) 

. x2 
( 1. 8) 

k
2 2m where - -- E is the energy of the projectile in rydbergs and 

- h2 r 

V(x) 2m 
= h2" 

we introduce now the notion of channels. Thus far we have 

considered processes in which two structureless particles undergo 

an elastic collision. We now consider the process in which an elec-

tron is fired at a hydrogen atom. The outcome of such a process 

may be any one of the following: 



e + H 

{ 

(i) 

(ii) 

(iii) 

e 

e 

e 

+ 

+ 

+ 

H 

* H 

e + 
+ p 

7. 

where (i) represents elastic scattering in which the projectile and 

the target remain in their original states, (ii) represents inelastic 

scattering in which the target remains in an excited state after 

* collision where H denotes an excited state of the hydrogm atom, and 

(iii) represents the ionisation of the hydrogen atom. Each of the 

possible outcomes is referred to as a channel and a process of the 

type above is referred to as a many channel collision. In processes 

such as the low-energy scattering of electrons off protons the only 

possible outcome is elastic scattering, 

e + + p --~) e + + p 

and such processes are referred to as single channel processes. 

Equation (1.8) is an example of a single channel equation and 

it must be solved subject to two boundary conditions the first of 

which requires that the solution be regular at the origin, that is 

y(O) = 0 . ( 1. 9) 

If the potential V(x) is negligible for values of x· greater than some 

r (in the so called asymptotic region) then (1.8) effectively re
o 

duces to 

= y(x) ( 1. 10) 

for which the solutions are kxje(kx) and kxyt(kx) where j~(kx) and 

yt (kx) are the spherical Bessel functions of the first and second 

kind. For large values of x >r0 , y must be a linear combination 

of the two independent solutions of (1.10). Thus 

where A and B are dependent on k and we have 



kxj.t (kx) 

and 

kxy.t ( kx) 

Therefore 

y(x) 

or 

._/"

x->oo 
sin( kx-_!ln) 

2 

-cos ( kx-_! lrr). 
2 

A sin(kx-_!etr) 
2 

+ Bcos(kx-_!t1f) 
2 

8. 

y(x) C sin(kx-_!£rr+S~> 
2 

(1.11) 

where tan ~t =B. The second boundary condition is given by (1.11), 
A 

The angle ~·t is the (real elastic) scattering phase shift of the Lth 

partial wave introduced by the potential V(x), and the calculation 

of this quantity leads to the determination for example of the 

scattering amplitude and scattering cross section. We write 

= tan ~r. 
{., 

where we think uf RL a~; a one-by-one macrix; in the study of inelastic 

scattering by a target system there will be many channels describing 

the excitation of internal states of the system, in which case the 

so called reactance matrix R will be a higher dimensional square 

matrix. The constant C in (1.11) is a normalisation constant which 

specifies the asymptotic amplitude and which together w~~h st_com: --

pletely determines the solution y(x). Thus the phase shift is 

evaluated by numerically integrating the differential equation for 

the radial function and examining its behaviour in the asymptotic 

region. Since equation (1.8) is homogeneous in y(x), a solution 

which is multiplied by an arbitrary factor will also be a solution 

of (1.8); thus the constant C is arbitrary and we can fix it by 

setting·~~ =constant, where x
0 

is the starting point of the 
dx x0 

numerical integration. 
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In a many channel problem where there are N possible final 

states resulting from a given initial state of the system, we are 

required to solve a set of coupled second order differential equat-

ions of the form 

-k; £,... + \('.~ (x)] ~ • [x)' 

/'t.= I, J.J- --) N ( 1. 12) 

where~ ll" is the kronecker delta and the solution y (x) is the radial 
ll 

wave function of the projectile in the !J.th scattering channel. For 

an incident beam of a given energy it is possible that this energy 

will be sufficient to excite some of the states allowed in the eigen-

function expansion but insufficient to excite higher states and de

pending on whether ~ is positive or negative we refer to the !J.th 

channel as being open or closed respectively. For physically mean-

ingful collision processes k2 must be positive; for solutions which 
ll 

2 arise from negative values of k the general solution of the approp-
ll 

riate Schr~dinger equation in the asymptotic region will involve a 

linear combination of increasing and decreasing exponentials. How-

ever as the radial distance increases the exponentially increasing 

solution dominates the contribution to the solution from the decreas-

-lng -exponential- and -such a- solution would be physically meaningless. 

Thus any physically significant solution of the radial equation for 

2 k ~ 0 must have the form of a decreasing exponential in the asymptotic 
ll 

region. Suppose that there are n open channels corresponding to a 

k
2 > 0 JJ = 
ll ' )"" 1 ---' ' na and nb closed channels corresponding to k~~O, 

ll = n
8 

+ 1, ---, na + nb where na + nb = N. Then N solutions must 

be found to satisfy the appropriate boundary conditions; in particular 

each solution must be matched to the correct asymptotic form, accord

ing as k2 is positive or negative. 
ll 
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In this work we are interested in solving (1,10) for all channels 

open, that is, subject to the boundary conditions 

Y (0) = 0 
IJ.V 

( 1. 13) 

sin (k X - .! e Tt ) + R cos(k,.x--
2
1 e,.iL) 

IJ. 2 ll IJ.V ~ ~ ( 1. i4) 

where we have added another subscript to the solution; for an incident 

wave in channel v the wave function for a wave scattered in channel 

ll has the asymptotic form given by (1.14). R is the (E;ymmetric) 

reactance matrix from which valuable information (e.g. scattering 

amplitudes and cross sections) regarding the nature of the scatter-

ing process can be extracted, and the calculation of R is the 0 bject 

of most calculations for atomic collision processes, From R we can 

readily evaluate the (unitary) scattering and transition matrices, 

the so called S and T matrices, using the following formulae 

s = (I iR)-l (I + iR) 

T = (I - iR)-l R 

The S and T matrix asymptotic forms are given respectively by 

Y <x>---'""'- r e-iCkllx- illl1t>_s eHkll.x- ~ lllTt) 
IJ.V )(--:>oO K IJ.V IJ.V 

and 

In our numerical calculations we wor.k with real rather than complex 

numbers so that we shall use the asymptotic boundary condition given 

by equation (1.14). 

§ 1. 2 Numerical solution of the single channel eguation 

The calculation of scattering phase shifts by integrating a single 

channel Schr~dinger equation generally involves three stages: 

(i) unless the differential equation is self-starting suitable 
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values must be generated) 

(ii) the differential equation is solved in a step by step 

fashion as far as some ~o, which may perhaps be determined 

by the program, and finally 

(iii) a phase shift is extracted. 

Each stage of the calculation may be effected by a wide variety 

of different methods. For example, starting values may be provided 

by Taylor expansion or by the initial use of a self-starting numerical 

technique such as a Runge-Kutta method, and p~ shifts may be ex-

tracted by fitting the numerical solution to asymptotic forms of 

various degrees of complexity. 

we consider the (real) potential function V(x) to have the foll-

owing expansion in the vicinity of the origin 

V(x) = + + 

The potential function is such that 

2 x V(x.)-~~ 0 
X.--'>0 

and at small values of x the solution can be expanded in the following 

power series 
eX) 

/ 
y(x) = 2 

r=o 

Thus if we substitute the above into (1.8) we arrive at the following 

set of equations 

s -

V 
r+s+l 

- 18 rX = 0 . 

If we equate coefficients of the powers of xr+s and set r to be zero 

we obtain the indicia! equation 

[ s(s - 1) - i<~ + 1)] a 0 = o. 



For a =/=- 0 we have 
0 

= 

12. 

-tor .e + 1 

and we reject the choice of s = -L since we want physically signifi-

cant solutions and we require the solution to be regular at the origin. 

Thus the regular solution of the radial Schr6dinger equation given 

by {1,8) may be 

y(x) = 

expressed as 

x.ttl [a 
0 

for sufficiently small x, and the coefficients are given by the 

equations 

2(f.. + l)al 

2(21. + 3)a
2 

i( 2.f. + i + l)a. 
~ 

= vlao 

= Vlal + (V2 - k2)ao 

·. . 2 
vlai-1 +(V2 - k ) ai-2 + 

i . 
C1 V .a .. ,i;;>- 2 6 J ~-J 

j=3 

(1.15) 

From the series for y(x) an expansion for y'(x) is readily obtained; 

thus if x , the starting point of the integration, is provided it 
0 

is possible to calculate y(x ) and y'.(x ) sufficiently accurately 
0 0 

in order to start the integration stage of the calculation. 

The second stage of the calculation may now be entered. This 

is the stage of the calculation with which we are mainly concerned, 

in which some numerical method is employed for the ~~ep ~y s~~p-~n-

tegration of the radial Schrbainger equation from the starting point 

into the asymptotic region where the effect of the potential becomes 

negligible. We shall carry out in later chapters a detailed compar-

ison of a number of methods for solving (1.8) all of which incorpor-

ate an automatic steplength selection thus giving an error control 

based on an estimate at each step of the integration of the truncation 

error per unit step. 

The final stage of the calculation involves evaluating the phase 

shift. If y(x) is represented sufficiently accurately by the asymp-
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totic form (1.11) when x exceeds some distance R then, for any x 
1 

and x2 greater than R, we have 

tan~! = y(x2) t kxlj.e'kxl) 1 - y(xl) { kx2jl(kx2)1 

y(x1 ) ~ kx2 y.t,Ckx2 )~ -y(x2 ) ) kxl!f(kx1)} 

( 1. 16) 

The·re are a variety of techniques some more elaborate than others 

for calculating the phase shift, but as we are concerned primarily 

with the second stage of the calculation, that is, the numerical in-

tegration of the radial SchrOdinger equation, we choose to make use 

of the straight forward method given by (1.16) above for calculating 

the phase shift. The phase shift thus obtained is determined to 

within integer multiples of 11 . Consideration should be given to 

how a specified accuracy of ~he phase shift can be achieved in this 

part of the calculation and we shall compare the relative efficiencies 

of the various numerical methods which we test in calculating the 

phase shift of a given problem to a required accuracy. 

§ 1. 3 Numerical solution of a system of coupled differential equations 

In solving (1,12)-(1.14) we are concerned with the provision 

of suitable starting values, the integration of the system of differ-

ential equations and the calculation of the reactance matrix R. 

Since we are solving N second order differential equations and 

each solution has two integration constants it is necessary to satisfy 

2N boundary conditions before the second stage of the calculation 

may be entered, namely the numerical integration of the system of 

differential equations. N boundary conditions may be satisfied 

by requiring that equation (1.13) holds, that is, by requiring that 

the solutions be regular at the origin, and the remaining N boundary 

conditions may be taken to be the values of the first derivatives at 

the origin. Alternatively if the integration is started at x
0

, in 
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the vicinity of the origin, then use can be made of the known start-

ing series for the solution and its first derivative to provide the 

necessary 2N boundary conditions. However, the specification of 

these 2N conditions will give rise to one solution only and since 

the general solution of {1.12) involves N arbitrary constants it is 

necessary to specify N different choices of the initial boundary con-

ditions. It is also important to note that these starting conditions 

which satisfy {1.13) will not in general lead to solutions which sat-

isfy the asymptotic boundary condition given by (1.14). Thus we 

need .to generate N linearly independent solutions of (1.12). The 

N different sets of starting conditions can be represented by a (2N x N) 

matrixcX.., the columns of which are linearly independent. The general 

assumption is that if the columns ofo< are linearly independent then 

the respective asymptotic forms will also be linearly independent. 

However, due to the finite word length of computers it may be the 

case that this linear independence is not maintained during the course 

of the integration. We shall discuss this point further in Chapter 

8. The ith column of oL. contains 2N elements of \'<lhich (2N-2) elem-

ents are zeros and the (2i-l)th and (2i)th elements correspond to 

the values of the ith component of the solution and its derivative 

respectively at the origin (or alternatively at x ). 
0 

The system of equations can then be integrated step by step N 

different times for each vector of starting conditions, out into the 

asymptotic region where the solution is then matched to the correct 

asymptotic form, and the R matrix is calculated. 

§ 1. 4 Some recent comparative studies at fixed steplength 

Some comparisons of algorithms for the solution of coupled sec-

and order differential equations of the form (1. 12) have appeared 
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in which numerical methods of integration are used over a fixed mesh. 

Some use of stepchanging facilities has been made with regard to 

problems where the integration mesh is divided into n predetermined 

regions where the ith region uses a steplength of 2(i-l~h; thus changes 

in steplength occur only when stepping from one region to another 

at which point the steplength is doubled. No regard is paid to the 

estimation of the local truncation error of the method and to its 

subsequent control. 

It is important to establish the criteria which are to be con

sidered before any comparison between the methods is made and it is 

equally important to appreciate that any conclusions drawn as to the 

relative performance of the _various algorithms must necessarily reflect 

the performance of the computer code as a whole and not just the method 

of solution. Different implementations of the same method might 

lead us to reformulate our views on the performance of that particular 

method. 

In comparing different algorithms for the solution of (1. 12) 

one is generally interested in the reliability and efficiency of such 

algorithms. The reliability of an algorithm is reflected by how 

well the numerical solution approximates the true solution; the eff-

iciency of an algorithm is measured by such things as the number of 

function evaluations required to achieve specified accuracies in the 

solution, the storage required by the computer in solving the system 

of differential equations and the overhead which is a measure of the 

computer time required to solve the problem independent of the time 

required for performing the necessary function evaluations. 

One of the earliest comparisons of numerical methods for the 

solution of the radial SchrOdinger equation, undertaken by Froese 

(1963), considered four different methods given below. 



(a) 4th order Runge-Kutta method 

Y
1

n+l = yl + h (kl + 2k2 + 2k3 + k4) n 
6 

I 

+ h2 
yn+l = yn + hy (kl + k2 + k3) n 

6 

kl = f(x ,y ) n n 
I 

k2 = f(x + ..!:!. Yn + h y ) n 2 2 n 

k3 = f(x + ..!:!. yn + h y I + .!?kl) n 2 2 n 4 

k4 = f(x + h, y + hy I + h2 k2) n n n 
2 

(b) Nystrom method 

(c) 

(d) 

= 

= 

= 

= 

= 

Kutta - ~2 

Yn+i -

kl = 

k2 = 

k3 = 

yn
1 + ~ (k~ + 4k 2 + k3 ) 

yn + hynl + ~2 (kl + 2k2) 

f(x , n yn) 

f(x + ..!:!. yn + h y I + h2 kl) n 
2 2 n 8 

f(x + h, y + hy I + ..!:!2k2) n n n 
2 

method 

2y - yn-1 
+ h2 (kl + 10k2 + k3) n 

12 

f( X 
1

-, 
n- yn-1) 

f(x , n yn) 

f(x n + h, 2y - y + n n-1 h
2

k ) 
2 

Numerov 1 s method 

= 2 II II - h2f ) (2yn- y + h (lOy + y ))/(1 
n-1 12 n n-1 12 n+l 

For a detailed discussion of Numerov 1 s method see Chapter 4. 
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Froese studied the relative accuracy and efficiency of these 

methods in solving the single channel radial SchrOdinger equation 

for atomic hydrogen using a fixed steplength throughout and concluded 

that the relative accuracies of the methods are in agreement to within 
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a factor of ten and that the Numerov method is 'best' in the sense 

that it requires only 1 function evaluation per step compared to 4, 

3 and 2 function evaluations respectively for methods (a), (b) and 

(c). Methods (b), (c) and (d) all take account of the special form 

of the differential equation and we would expect these methods to 

lead to a more efficient solution of the differential equation. 

Reference to method (b) is made in a discussion by Scraton (1964) 

concerning numerical methods of solution for the differential equation 

y " = f(x, y). 

Blatt (1967) asserted that the Numerov method is clearly superior 

to the fourth order Runge Kutta method because of the higher order 

local truncation error in t~e Numerov method which is proportional 

to h6 where h is the steplength; the local truncation error in the 

fourth order Runge Kutta method is proportional to h5 Sloan (1968) 

subsequently pointed out that Blatt's conclusion is unjustified and 

showed that the cumulative errors in both methods are proportional 

4 t9 h , using an approach suggested earlier by Kopal (1955). A com-

parison of the actual errors obtained using the methods of Numerov 

and Nystrom in solving 

y I ,I (X) = -y(x) 

with the initial conditions 

y(O) = 0, y' (0) = 1 

for a fixed steplength was made; the errors are easily found by com-

paring the numerical solution with the analytic solution y(x) = sin x. 

The comparison showed that the Numerov method is only slightly superior 

if the same steplength is used in both methods, but that it is clearly 

superior when the comparison between Numerov with steplength h and 

Nystrom with steplength 2h is made. This is a more reasonable com-

parison since the Nystrom method requires function values at the half-



18. 

way points. 

Lester (1968) and Lester and Bernstein (1968) have solved a 

system of coupled second order differential equations of the form 

(1. 12) using the method of de Vogelaere (1955), which is a fourth 

order step by step method (with local truncation error proportional 

5 II 
to h ) for solving y = f(x, y). For the system of equations 

i y.(x) 
dx2 1 

= 

the algorithm performs the integration from x to x 
1 

by cyclic 
n n+ 

use of the equations 

h 
I 

h
2 

(4f. fi. 1)' Yi. 1 = yi 0 + yi 0 + -
2 24 1,0 -,_ ' ' l 

2 2 
I 

h
2

( f. 2f. 1)' y. 1 = yi 0 + hy ·. + + 
1, 

' 
1,0 6 1,0 1,_ 

2 

y ~ 1 
1' 

= y~ + h (f. + 4f. 1 +f. 1), 
1,0 6 1,0 1,_ 1, 

2 

in the notation of Lester (1971) where 

yi s - y. (x + sh), 
l 1 

Yi_ s - dyi(x + sh), 
' dx 

f. 
1,S 

f.(x + sh, y1 , y2 ,---,y ) 
1 ,s ,s N,s 

and h = x 
1 

- x 
n+ n 

4 5 _The neglected terms are of order h , h and 

h5 respectively. Lester chooses to neglect a comparison with the 

well used Numerqv method on the basis that the Numerov method requires 

separate procedures for both starting the integration and changing 

the s teplength. The integration using de Vogelaere's method how-

ever presents no such problems and this method is compared for a 

fixed steplength with the fourth order Runge-Kutta-Gill (Hildebrand, 

1956) procedure, referred to henceforth as the RKG procedure, for 

the problem of two coupled harmonic oscillators for which the analytical 

solutions are available. The method of de Vogelaere is found to 
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be faster than the RKG process by a factor of approximately two and 

it is noted that the de Vogelaere algorithm performs two function 

evaluations per step compared to four in the RKG process. It is 

not clear however whether any stepchanging was in fact performed dur

ing the execution of de Vogelaere's method and this comment is equally 

applicable to a comparative study by Allison (1970) of de Vogelaere's 

method with the matrix and iterative Numerov methods for the cal-

culation of cross sections for the rotational excitation of molecular 

hydrogen by heavy particle impact. 

Allison's study concludes that the relative speeds of the methods 

to calculate the square of the modulus of the S matrix for sets of 4, 

9 and 16 coupled equations are in the order: 

matrix Numerov <. de Vogelaere <.. iterative Numerov, 

and that the accuracy of the methods for this calculation is best 

for the matrix Numerov method followed by the de Vogelaere and iter-

ative Numerov methods. The range of integration for the comparison 

of the methods consists of two regions, the second of which uses a 

steplength which is twice the value of that used in the first region, 

corresponding to the usual practice of using a predetermined mesh. 

Raptis and Allison (1977) have examined a method which is essen

tially the Numerov method in the nonclassical region, that is-for 

k2 - V L 0, but which solves the radial Schrodinger equation more 

efficiently in the classical region, that is for k
2 

- V > 0 by 

exploiting the a priori knowledge of theasymptotic form of the sol-

ution. This method is compared with the Numerov method in solving 

the single channel radial Schrodinger equation for a Lennard-Jones 

potential for a range of values of k and t and phase shifts accurate 

to three decimal places are computed. The number of integration 

steps required over the range of integration using the Raptis and 
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Allison method is reported to be often less than half the correspond-

ing number required using the method of Numerov. Raptis and Allison 

state that the truncation error of their method can be used to control 

the interval size but it appears to be the case that no such control 

* was used in their study. They also report a rapid increase over 

the Numerov method in the optimal interval size allowed from trunca-

tion error considerations. For a detailed discussion of the Raptis 

and Allison method and its automatic implementation see Chapter 5. 

A recent study by O'Shea (1978) examines numerical methods for 

the solution of a system arising in the close-coupling formulation 

of the Schrodinger equation with exchange terms. The methods in-

eluded in the comparison are the Numerov and de Vogelaere methods 

and some fourth order Runge Kutta type methods; the Runge Kutta 

methods consist of methods (a) and (b) studied by Froese and the 

classical fourth order method, as applied to a system of first order 

differential equations, both with and without a Richardson-type 

truncation estimate correction. The relative efficiency of the 

methods is measured by the computer time and storage requirements 

of the methodSand on this basis the conclusion of the study is that 

de Vogelaere's algorithm is the most efficient. With reference to 

the problem of an electron colliding with an oxygen ion, O'Shea shows 

that the computer time taken to solve this problem using de Vogelaere's 

method with a steplength of 2h is less than half that taken using 

Numerov's method with a steplength h, with the times for the various 

Runge Kutta methods lying between those for de Vogelaere and Numerov. 

It is also shown that de Vogelaere has the minimum storage require-

ments, the number of arrays required being precisely half that re-

quired in the Numerov method. O'Shea states that the de Vogelaere 

method is very much superior to all of the other methods tested in 
* The published (1978) version of their paper indicates that the step
length is automatically doubled if the truncation error estimate falls 
below some value. 



the efficient use of computer time; we feel however that too much 

emphasis is placed on the ability of de Vogelaere's method to use 

a larger steplength of 2h compared with a steplength h in Numerov 
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in achieving the same accuracy in calculating the phase shift. The 

point at which the contribution of the exchange terms can be consid

ered insignificant is the same for all of the algorithms and it is 

important to note that a single step of 2h performed by de Vogelaere's 

method requires 2 function evaluations, the same number being required 

for two steps of length h in Numerov's method. Since the number 

of function evaluations directly affects the computer time required 

for the solution of the system of equations this suggests that the 

superiority of de Vogelaere over Numerov is a consequence of the 

relative computing efficiency of the two methods. It is also import-

ant to note that the matrix Numerov method (see Smith, Henry and Burke, 

1966; Allison, 1970) considered by O'Shea warrants a matrix inversion 

at each step of the calculation; this is a penalty of the implicit 

nature of the method. By contrast the method of de Vogelaere is 

an explicit method and it may be the case that some inefficiency 

arises in the implementation of Numerov's method thus leading perhaps 

to considerably higher overheads than those encountered in the part

icular impl_emen_t_ation of de Vogelaere' s method. 

A more detailed discussion of O'Shea's work may be found in his 

Ph.D. thesis (1971) where the superiority of de Vogelaere's method 

in the above respects is again emphasized. O'Shea states that to 

his knowledge 'no worthwhile investigation of the stability of de 

Vogelaere's method has yet been undertaken' and he suggests a part

icular quantity (which is readily calculated from previously calcul

ated values of the solution and its first and second derivatives) 

be used 'as an ad hoc criterion for stability'. He also states, 
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following de Vogelaere (1955), that the same quantity may be used 

to give an indication of the accuracy of the calculations, but beyond 

recognition of this fact no further consideration is given to the 

matter. 

Some other comparisons of methods have appeared such as the use 

of perturbation and Numerov methods for the solution of systems of 

coupled second order differential equations (see e.g. Riehl, Diestler 

and Wagner, 1974) in addition to some comparisons of differential 

and integral equation techniques for the numerical solution of the 

radial SchrOdinger equation. In particular Stern (1977) compares 

the phase shifts computed for the static electron-hydrogen potential 

using the standard fourth order Runge Kutta method and Numerov's 

method with the corresponding phase shifts obtained from quadrature 

solutions of the (Fredholm) integral formulation of the radial Schro

dinger equation; the quadrat~re formulae which are considered are 

the composite trapezoidal and Simpson rules and an n-point Gauss-

Legendre formula. Stern concludes that of the three quadrature 

methods the composite trapezoidal rule is the most reliable particu

larly when computing phase shifts at ve~y low energies and that all 

the methods yield phase shifts of similar accuracy provided that a 

sufficient number of pivotal points are used in the quadrature methods 

and the steple~gth in the Runge Kutta and Numerov methods is 'small 

enough'. He reports that at low energies using the methods of Runge 

Kutta and Numerov discrepancies arise in the computed phase shifts 

for different values of the steplength h (Stern considers h = (0.1, 

0.05, 0.01)). He unfortunately refers to these discrepancies as 

'instabilities' but we suspect that this failure of the phase shifts 

to agree for a particular energy and angular momentum value at diff

erent values of h is a consequence of the method used for the phase 

shift calculation, Stern comments that the steplength in the methods 
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of Runge Kutta and Numerov can be adjusted automatically until a 

specified accuracy is achieved but no consideration is actually 

given to such automatic methods on the grounds that the necessary 

computer time is not easy to predict. However if a particular 

accuracy is requested then we should reasonably expect to use more 

computer time particularly at the more stringent error requirements. 

In summary, we have looked at a number of comparative studies 

involving methods applicable to solving systems of equations of the 

form (1.12). Although these studies are by no means comprehensive 

they do give some guidance as to the relative performance of various 

methods for a fixed steplength. Our interest lies primarily in dir-

ect numerical integration techniques; it is probably fair to say that 

the most widely used method for solving (1.12) is that of Numerov. 

The method of de Vogelaere has also been used fairly extensively (e.g. 

Verlet, 1967; Lester, 1968, 1971; Chandra, 1973; Basavaiah and Broom, 

1975; Launay, 1976); however despite the frequent use of de Vogelaere's 

method we are unaware of any previous error analysis, or any study 

of the stability of the method. 

§1.5 The need for automatic integration techniques 

To our knowledge no consideration has been given to the use of 

fully automatic methods for solving the radial SchrOdinger aquation, 

Such methods provide an estimate of the local truncation error per 

step or per unit step at each step of the integration and according 

as this estimate is less or greater than some specified tolerance 

an increase or decrease in the steplength is performed, 

There appears to be a general belief that in scattering problems 

it is valid to multiply the steplength successively by some integral 

factor as x increases, as for example, Chandra (1973) invites the 
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user of his program to do. Allison (1970) argues that in many pro-

blems the function V(x) is a rapidly varying function for small x, 

gradually becoming smoother and finally tending to zero for large x 

and that to integrate such a problem efficiently requires a steady 

increase in steplength. This suggests that satisfactory error 

control could be achieved by calculating some measure of the trunca

tion error, and doubling the steplength whenever this quantity is 

less than some specified tolerance. However for scattering problems 

this approach is not entirely reliable. Ultimately both the calcul-

ated solution and its attendant error are oscillatory functions, and 

therefore it is possible to find a small local error at some point 

and a substantially larger error a few steps later. we contend that 

whatever numerical method is used automatic steplength control re

quires not only a procedure for increasing the steplength when this 

is desirable, but also a facility for steplength decrease and the 

ability to detect when this is necessary. 

Indeed the manner in which the steplength changes during the 

course of the integration may provide valuable information to the 

user concerning the nature of the solution. When solving an initial 

value problem for an ordinary differential equation we are normally 

interested in the actual or global error, the difference between the 

numerical solution and the exact solution of the problem. While 

estimates of the global error can sometimes be obtained, for example, 

by twoparallel integrations and some form of global extrapolation 

(Shampine and Watts, 1976) it is not possible in general to simultan-

eously estimate and control the global error. we therefore adopt 

the more modest goal of controlling the local error; the extent to 

which our control of the local error per unit step controls the global 

error then depends on the stability of the differential equation. 
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we choose to follow Hull et al (1972) and control the estimated error 

per unit step instead of the estimated error per step; when a differ

ential equation i/S integrated over a fixed interval, a decrease in h 

results in an increased number of steps, and the error criterion 

adopted should take some account of this. 

With regard to integration over a fixed range, the simplest 

strategy which can be used for changing the steplength is that of 

halving and doubling, since if h is restricted to undergo changes 

by factors of two, we ensure that the endpoint of the range of 

integration is reached without any need for interpolation. This 

strategy is frequently used in variable step-variable order Adams 

codes, and in particular in the N.A.G. routine D02AHF which solves 

a system of first order ordinary differential equations. 

The use of a varying steplength is important in reducing the 

computational work with respect to the number of steps and hence the 

number of function evaluations which in turn leads to increased 

efficiency in solving the differential equation. A variety of 

methods for changing the steplength using linear multistep methods 

are discussed by Krogh (1973). 
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CHAPTER 2 

De Vogelaere's method 

~ 2.1 Derivation of Method 

The method of de Vogelaere (1955) is a fourth order step by 

step process for solving 

= f(x, y) 

subject to the initial conditions 

y(x ) 
0 

= y , z(x ) 
0 0 

= z 
0 

where y and z are specified numbers and 
0 0 

z(x) = ~ 
dx 

( 2. 1) 

The method is equally applicable to solving systems of such equations. 

The general step of de Vogelaere's method, leading fro~ x
2

n to 

x2n+2 = x2n + 2h, for a fixed steplength h, may be described as 

follows: 

Given y2n' z2n' f 
2n 

and f2n-l' 

(i) y2n+l = Y2n + hz2n + h2 (4f - f2n-l) 
6 

2n (2.2) 

(ii) f2n+l = f(x2n+l' Y2n+l) ( 2. 3) 

(iii) 2hz2n 
2 

2f2n) y2n+2 = Y2n + + .!! ( 4f2n+l + 
3 

(2.4) 

( iv) f = f(x2n+2' Y2n+2) 2n+2 
( 2. 5) 

(v) z2n+2 = z2n +.!! (f2n + 4f2n+l + f2n+2) 
3 

(2.6) 

where y and z are approximations to the exact solution y(x ) and its 
n n n 

first derivative y'(x) at the mesh point 
n 

errors in y2n+2 and z2n+2 are of order h
5 

x . The local truncation 
n 

and that in y2n+l is of order h
4

. 

De Vogelaere's method makes use of an intermediate point at the mid-

point of the interval [x2n, x2n+2]; the solution is predicted at this 
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point to third order in equation (2.2) and the predicted value is 

then used in the corrector equation (2.4) to obtain the solution cor-

rect to fourth order at the end of the interval. 

we follow de Vogelaere and give a derivation of the method in 

terms of finite difference expansions. For a derivation based on 

Taylor expansions the interested reader is referred to Coleman and 

Mohamed ( 19 78). we set up the machinery by introducing the notation 

·c > n f = Jxo(n-1) fdx, (o) f = f, n = 1, 2 

and we see that 

fxo Jxo 2 j f(x)dx Jx fCl) (1) 1 
= 

0 
l f(x)- f(O)_Jdx 

= (2)f(x) - ( 2)f(O)- (l)f(O)x. 

(2.1) may be written as 

y = 

and we also have 

5.!l 
dx 

= = ·z • 

We can express f(x), using Newton's forward difference formula, as 

f(x) = + ~ 6 £ + x(x-h) 6 2f + x(x-h)(x-2h)~3f + __ _ 
fo h o 2 !h2 o 3 ! h3 o 

and substituting x = uh leads to the formula 

f(uh) = 

Thus 

= 

= 

f + u6f + ~u-1)~2f + u(u-l)(u-2) 6 3f + __ _ 
0 0 2! 0 3! 0 

2 
f(uh)du 

h2 f .!:!..__ + 6£ ~ 1 
2 3 

0 2 0 6 

4 3 5 4 3 
(u -2u ) 3f (3u -15u +20u )+ 

24 + 6 
0 . 360 

This may be written in the form 

s: J: f(x)dx
2 

00. 

h2~(-l)p 
p=o 

P
2 

( -u)6p f 
,P o 

(2. 7) = 

. 2 3 
where x = uh, P (u)= ~ 

2,o 2 ; p2 l(u) , = ~ ; P2,2(u) 

3 4 
P2 ,

3
(u) = (20u + 15u 

360 

5 + 3u ) ; ---

---}. 
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Similarly, Newton's backward difference formula, expressed as 

f(x) = f + -x Af x(x+h) A2 x(x+h)(x+2h) A3 
L.> + -- L.> f + -- L.> f + ---

0 h -1 2~h2 -2 3!h3 .-3 

leads to 

2 f(x)dx = Q2 (u) e,.P f ,p -p 
(2.8) 

where x = uh, Q (u) = p (u) for p3-0. 
2,p 2,P 

By including terms up 

to fourth order in the forward difference form for ( 2)f, and then 

differentiating with respect to u and substituting the appropriate 

value for u we obtain 

(1) f 
2 

(2.9) 

It is now possible to derive de Vogelaere•s method by integrating 

Newton's difference formulae and considering various truncations of 

the expansions (2. 7), (2.8). 

When x = h, corresponding to u = 1, and 6f_ 1 is neglected in 

(2.8) we have 

or 

= y + hz 
0 0 

(2.10) 

approximation to y(x
1

) of second order. where i
1 

signifies an 

Similarly when x = h and t::.2 f is neglected in (2. 7) we have 
0 

(2)f (2)f (1) f h h2[.!f 1 = +..;. e,.f J 
1 0 0 2 0 6 0 

or 

~ h2 ( 2 f + f ) (2.11) 
yl = y + hz +- 0 1 

0 0 6 

~ 

where y
1 

represents an approximation to y(x
1

) of third order. 

Another third order approximation to y(x
1

) may be obtained by 

neglecting t::.2 f _2 when x = h in (2.8). Then 

(2) f 
1 

(1) f h 
0 

= h
2 

[.!.f + .! 6 f_l] 2 0 6 



or 

= + 
h2 

+ 6 (- f -1 + 4 f ) . 
0 

The above formula corresponds to (2.2) for n = ~. 

(2~ 
2 

or 

By neglecting d f when x = 2h in (2. 7) we have 
0 

= 

( t)f 2h 
0 

+ 

= 

2hz 
0 

4 
+- .t.f 

3 

2 
+ ~ (2 f 

3 0 
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which is a fourth order approximation to y(x2 ); the formula for y2 

corresponds to (2.4) for n = 0. 

Finally by neglecting .t.4 f in (2.9) we arrive at 
-1 

z 
2 = z + ~ ( f 

0 3 0 
+ f ) 

2 

which is the well known Simpson rule; the formula corresponds to (2.6) 

for n = 0. 

The starting value of the independent variable is taken to be 

zero and we regard each step to be comprised of two intervals of 

length h. We assume that f2n-l is known to third order and that 

Y2n• ~n• f 2n are known to fourth order, The general step lead-

ing from x2n to x2n+2 = x2n+2h is then given by (2.2) - (2.6), in 

which y2n+l• f 2n+l are calculated to third order and y2n+2 , z2n+2 , 

f 2n+2 are calculated to fourth order. These values then serve as 

initial values for the next step and cyclic use of (2.2) - (2.6) en-

ables the solution to be obtained over the range of integration. 

It only remains to start the method. The values of y
0 

and z 
. 0 

alone are insufficient to start the calculation and de Vogelaere has 

suggested two separate methods for providing the additional starting 

value; f is computed from (2.1), 
0 

Method (a) A second order approximation y 1 is calculated using 
I 

(2. 10) and the corresponding function value £
1 

= f(x 1,y1) is calculated 
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(also to second order) by use of equation (2.1). Equation (2.11) 

may then be used with f 1 replacing fl to give a third order approx

~ 
imation y1 to y(x1 ) which can now be used in (2.3) - (2.6) with n=o. 

Hethod (b) A second order approximation for y(x_
1

) can be calcul

ated using the backwards form of (2.9): 

= hz + 
0 

(2.12) 

and the corresponding function value f _
1 

= f(x -h, y 1) is calcul-
o -

ated to the same order using (2.1). It is now possible to use (2.2) 

(2.6) with n = 0 to provide the solution over the first step since 

(2.2) only requires f_
1 

to be accurate to first order. 

To our knowledge method (b) has been used exclusively until 

Coleman and Mohamed (1979) in all applications of de Vogel-

aere's method to solve the radial Schr~dinger equation; perhaps a 

reason for the continual neglect of method (a) as a means of starting 

is that once y_
1 

has been calculated in method (b) it is possible 

to enter the general step immediately. In terms of asymptotic error 

estimates the methods are equivalent, both giving approximations for 

y(x 1) with errors of order h4• We shall see later however that in 

practice the accuracies of the two estimates may be very different. 

The de Vogelaere algorithm has some similarity with Runge-Kutta 

methods but it involves only 2 function evaluations per step whereas 

a Runge-Kutta method of the same order requires 3 (see e.g. Scraton, 

1964). Unlike Runge-Kutta methods, the de Vogelaere algorithm is 

not self-starting but this difficulty is easily overcome by use of 

either method (a) or (b). 

Estimation of the local truncation error for a fixed steplength 

The leading terms in the local truncation errors in y1, y2 , z
2 

correspond to the first neglected terms in the finite difference ex-
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pansions (2. 7) and (2.8) from which the formulae for y
1

, y
2

, z
2 

were 

derived. Thus we see that the leading term in the truncation error 

in the step from x
0 

to x2 is 

f 
111 or (2.13) 

0 

where we have used ~3 f ~ h3 f 1 1 1 

0 - 0 • 
Since in general we do not 

have the fifth derivative of the solution readily available during 

the calculation we must find some means of estimating (2.13). 

It is possible by setting x = h in (2. 7) and neglecting the ~3 f 
0 

term to generate a further approximation for y(x1) which is of fourth 

order. we shall denote this fourth order approximation to y(x1) by 

* yl where 

* yl = 

that is 

* h2 
f2) yl = Yo + hz + 24 (7fo + 6fl 0 

( 2. 14a) 

hz 2 
h2 

6fl - fo) = y2 - + 24 ( 7f 2 + (2.14b) 

where (2.14b) is obtained from (2.14a) by first substituting for y
0 

using (2.2) with n = 0 and then substituting for 

with n = 0. 

z using (2.6) 
0 

* If method (a) of starting i~ used the difference (y1 
- y ) is 

1 

given by 

where we have used equations (2.11) and (2.14a). We make use of 

the follot.Jing Taylor expansions for f 1, f 2 about the point X : 
0 

hf I 
h2 h3 Ill 

fl = f + + _ f II + 6 fo + 
0 0 2 0 

f2 = f + 2hf + 2h2f II + 
4h3 I !I + ---

0 0 0 3 fo 

to obtain 
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= 4 II 5 Ill + Q ( h6 ) ' -h f ·- h f 
24 ° 24 ° 

(2.15) 

In the next step y
3 

is calculated using equation (2.2) with n = 1 

and the difference (y
3
* - y

3
) is given by 

y3* - y3 = h2(4fl - 9f2 + 6f3 - f4) 
24 

where y
3
* has been obtained from the analogue of equation (2.14a), 

we make use of the following Taylor expansions for f
1

, f
3

, f
4 

about 

X : 
0 

I 2 II 3 Ill 

fl = f - hf + !! f2 !! f2 + ---2 2 2 6 

I 2 II 

+ h3f 
Ill 

f3 = f2 + hf2 + h f + - 2 - 2 2 6 
I 

2h2f " 
3 Ill: 

f4 = f2 + 2hf2 + + ~h f2 + 2 
3 

to obtain 

* h4 !I h5 Ill 

O(h6 ). y3 y3 = f2 f2 + ( 2, 16) 
8 24 

" Ill 

Further use of Taylor expansions for f2 f2 about x permits an 
0 

estimate of (2.13) by consideration of a suitable combination of the 

we find 

Ill 

0 

45 
which is 

24 
times the allowed error. Thus the leading -term in the 

truncation error is given by 

(2.17) 

If instead, method (b) of starting is used, we consider the 

* difference (y1 - y1) in the first step~ where y1 is given by equation 

(2.2) with n=o. 

= 

We have 

4 " h f 8 0 

5 II I 
h f 
24 ° 

(2.18) 
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which follows directly from equation (2. 16). \ole can now obtain 

the following linear combination of (2.16) and (2.18): 

which is 45+ times the allowed error. 
8 

Thus the leading term in the 

truncation error is given by 

2 
45 

5 '" h f 
0 

(2.19) 

An estimation of the truncation error for a general step from 

x2n to x2n+2 is given by 

5 '" * * 2 h f2n -:e:: ~ [(y2n+3- y2n+3)-(y 2n+l- y2n+l)] 
45 45 

(2.20) 

regardless of which method of starting is used. 

n 

~ 2. 3 A bound for the local truncation error 

The error analysis described here is based on three functionals 

which are related to the truncation errors in the formulae (2.2), 

(2.4), (2.6) . For an arbitrary function y(x), having p+l continuous 

. derivatives, we define the functional 

_) I 2 II II 

,p 1[y(x),h] = y(x+h) - y(x)- hy (x)- _!![4y (x) - y (x-h)] 
6 

(2.21) 

Taylor's theor~m can be expressed in the form 

and we make use of the following Taylor expansions for use in (2.21): 

I 2 II 3 Ill 4 Il 3 lV 
y(x+h) = y(x~ + hy (x) +.!! y (x) +.!! y (x) + £ (1-s) y (~sh)ds 

2 . 6 6 0 

/ex-h)= /ex) by'" ex) +h2 :Je-1-s)/vex+sh)ds. 

Thus it can be shown that 

+This factor is incorrectly quoted as~ in de Vogelaere (1955, p.l23); 
45 

consequently the factor appearing in his error estimate is also incorrect 
and should be read as ~,as in (2. 19). 

45 
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}:
1

[y(x), h) = _!!4 [ f (l-s) 3/v(x+sh)ds + J (l+s)y
1
v(x+sh)ds] 

6 0 -1 

with 

1 

J_l 
lv G1(s)y (x + sh)ds 

= { ( 1 +s) 
(1 -s )3 

-1 ~ s ~ 0 

0~ s ~ 1 ' 

(2.22) 

Since G
1
(s) is of constant sign on the 

interval of integration equation (2.21) may be written using the Mean 

Value Theorem as 

£ 1[y(x), h) = 

with 
1 

= 1 J G1 (s) ds = 1 
6 -1 8 

We now define the functional 

P I 2 II II 

~ 2[y(x), h) = y(x + 2h) - y(x) - 2hy (x) - h [4y (x+h)+2y (x)] 
3 

and we make use of the following expansions: 

I 2 II 3 Ill 4 lV 
y(x+2h) = y(x)+2hy (x)+2h y (x)+~h y (x)+lh y (x) 

II II 

y (x+h) = y (x) + 

Then 

3 3 
2 

+hS J (2-s)4yv(x+sh)ds 
24 0 

· !II 2 lV 3 Jl 2 V hy (x) +.!! y (x)+_!! (1-s) y (x+sh)ds. 
2 2 0 

(2.23) 

(2.24) 

i 2[y(x), h) = hs 
24 

2 rl 2 J (2-s)4yv(x+sh)ds - 16 J (1-s) yv(x+sh)ds] 

where 

0 0 

={((22-s)4 

- s )4 

2 16(1- s) 

' 

(2.25) 

0 ~ s ~ 1 

1 ~ s ~ 2. 
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2 2 4 s (S - 8s + 8)~0 and for 1~sa, c
2
(s) = (2-s)?-0. 

Thus G2(s) is of constant sign on the interval of integration and we 

have 

vb2 [ y ( X) , h ) = 

with 

The third functional required is 

I 

= y(x+2h) 

OL& L 2 
2 

2 = 45 

(2.26) 

(2.27) 

and the standard expression for the truncation error in Simpson's 

rule gives 

i 
3 [ y(x), h] = h5c

3
yv1 (x + B

3
h), (2.28) 

1 
90" 

where = 

Let y(x) be the exact solution of the initial -value problem 

( 2. 1). To investigate the local truncation error in the step from 

x2n to x2n+2 we suppose that the starting values at x2n are exact, 

that is 

= = 

II 

= y (x2n) £ 2n-l = 

In view of the assumed starting values, 

Thus the truncation error at x2n+l is 

(2.29) 

(2.30) 
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If we assume a bound on the fourth derivative of y for all x in the 

appropriate interval [a, b], namely 

we obtain 

Similarly, 

lCE[a, b] 

2 II 

=y(x2n+2)-y2n- 2hz2n- 3L 4Y (x2n+l)+2f2n] 

The truncation error at x
2

n+2 is given by 

(2.31) 

(2.32) 

(2.33) 

To obtain a bound on this error we assume a Lipschitz condition 

(2.34) 

for all x in [a, b] and all finite y and~· Then if 

x€[ a, b] 

we obtain the bound 

(2.35) 

Finally, 

I 

= Y (x2n+2)-y (x2n) 

We thus· have 

I I 

Y (x2n+2)-z2n+2 = Y (x2n+2)-z2n- ~[f2n + 4 f2n+l+f2n+2] 

Now if we assume a bound on the s 1·xth derivative of y for all x in 



[a, b] : 

we obtain the bound 

§ 2.4 Stability analysis 

/ = 

3 7. 

(2.38) 

If y(x) is the exact solution of the initial -value problem (2.1), 

the global truncation errors in the function and derivative values 

at the end of the nth de Vogelaere step are 

e 
(1) = n y(x2n-l) - y 2n-l (2.39) 

(2) 
y(x2n) - Y2n (2. 40) e = n 

e ( 3) I 

= h[y (x2n) - z2n] ( 2. 41) 
n 

where the factor of h in the third definition is introduced to simplify 

the form of later equations. 

Equation (2.29) may be rearranged as 

I 2 II II _f 
y(x2n+l) = y(x2n)+hy (x2n)+~ [ 4Y (x2n)-y (x2n-l)]+~l[y(x2n),h] 

6 

and equation (2.2) is given by 

= 

Therefore subtracting we have 

Equation (2.32) may be rearranged as 

and equation (2.4) is given by 

2 
y2n+2 = Y2n + 2hz2n + 3 [4f2n+l+2f2n]. 

(2.42) 

(2.43) 
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Thus 

(2) (2) (3) 2 II 2 II f 
en+l e +2e +4h [y (x2 1)-f 2 1]+2h [y (x2 )-f2 ]+J. 2[y(x2 ),h). n n 3 n+ n+ 3 n n n 

Equation (2.36) may be rearranged as 

and equation (2.6) is given by 

= 

Hence 

z 2n + E [f2n + 4f2n+l + 
3 

(2.45) 

f2n+2] · 

(2.47) 

In accordance with normal practice (e.g. Lambert, 1973) the 

stability of the method is discussed with reference to the eq~ation 

II 

y = 

In this case the equations for the cumulative errors simplify to 

A e = B e -~-~ (2.48) 
-n+l -n n+l 

where e = [e 
(1) 

e (2) ( 3)] T ~ n+ 1 =- [ h 1' J, 2' h/,
3

] T and the 
--n n ' n , en , 

matrices A and B have the form 

A = 1 0 0 B = h 1 + 2 h 1 
6 3 

- 4 ii 1 0 0 1 + 2 ii 2 
3 3 

- 4 h. -ii 1 0 ii 1 
3 3 3 

with 

ii = >-? h2. 

Since A is non-singular equation (2.48) may be written as 

-1 ~ e = Ce + A 
-n+l --n n+l 
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where 
-

c A-l B -h 
1 2 - 1 = = +- h 6 3 

-2h 2 
1 - 8 - 2 2(l~h) - + 2h + 9 h 

9 
-- 2 h h 14- 8 - 2) - 4 --2_!'! (l+J) 3(6+--jh+g h 1 + 2h + 9 h 

9 

The characteristic polynomial of the matrix C is 

~(r, h) = 

The "Schur criterion" described in Lambert (1973, p, 78) can be used 

to show that;o(r,h) is a Schur polynomial, in other words that all 

its zeros lie inside the unitc:i.tt:le if and only if he (-2, 0). Thus 

the interval of absolute stability of de Vogelaere's method is [-2,0]. 

The moduli of the zeros of;o(r, h) are plotted in Figure 1 for a range 

of values of ii.. The three zeros, though distinct, have the same 

modulus when ii. = -1.732 (to three decimal places). 

? 2.5 The cumulative error 

For the purpose of this section we redefine the quantities e ({) 
n ' 

i = 1, 2, 3 in equations (2.39) - (2.41) to be 

e (1) 
n 

= (2.49) 

e (2) 
n 

= (2.50) 

e (3) = (2.51) 
n 

N h h 1 d
. . . (1) (2) (3) . 1 otice t at t e ea ~ng terms ~n e , e , e. are proport~ona 

5 to h . 

n n n 

A comparison of equations (2.2), (2.4), (2.6) with (2.42), 

(2.44), (2.46) respectively leads to the following set of equations: 

3 ~ 

2 

e<l) ( 2 ) 2 (3) 2 II ) II 

·n +l=he +he +2h· [y (x2 )-f2 ]-h [y (x2 1 )-f2n_ 1 J+-'l 1~x2n),hj (2.52) 
n n 3 n n 6 n-

(2) (2) .(J) 2 II 2 II ,,f ( ) 
e +l=~ +2h~ +~h [y (x )-f )+2h [y (x2 )-f2n]t62[y(x2J,hl 2. 53 
n 3 2n+l 2n+l 3 n 
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+;i3[y(x2n)' h] (2.54) 

where 

i 4 lv e -1 "- B .t.. 1 = h c
1 

y (x + 
1 

h) 
1 1 

t = h5c yv (x+B
2

h) o..:::&2 .t:. 2 
2 2 

~3 h5C' yvl (x +8 3h) o..:.e .e:_ 2 
= 3 

3 

If as in the previous section we assume a Lipschitz condition 

I f(x, y) 

for all x in the appropriate interval (a, b] and all finite y and~ 

and if 

equations (2.52)- (2.54) give the bounds 

., (l) 1'- !!2 K I O>j + h(l + ~ h2K) j e(2)1 + h2jeo>j h5 M 
en+l - 6 en 3 ·n n + c! 4 

I. (3) ~~ ~ K I ·(1) I +.!! K( l·e(2)[ + (e(2) I ) + I en(3)1+ h5c3M6 en+l 3 ~n+l 3 n n+l 

Then for I e(l)l L::.. o<.. le(
2

)l.t:.. ..( len°'1.t:.._ ~n the following set of n - n' n -I-n' 

equations is satisfied 

'[ n+l 
4 h! Cf3n = 3K ot.. n+l + 3 

where ~1 = 5 h c 1M4 , s-2 = 

(2.55)- (2.57) may be written 

A u 
--n+l = B~n + £ 

(2.55) 

(2.56) 

+ fi n+l) + (5 n + ~3 (2.57) 

5 h C2MS, £3 = h5c3M6. Equ.ations 

in matrix form as 

( 2. 58) 
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where u [o( n' 
T } [ S 1 ' ~: 2 ' } 3] T and = pn' 't n] ' = the matrices -n 

A and B have the form 

A = 1 0 0 B = h
2

K h( l+~h2 K) h2 
6 3 

-4hK 1 0 0 ( l+~h 2K) 2h 
3 3 

-~K ~hK 1 0 hK 1 
3 ·.3 3 

A is clearly non-singular. Now u 1 is obtained by multiplying -n+ 

equation (2.58) on the left by A-l 

.!:!.n+l = Cu + A-1 ~ 
-n 

where 

c = A-l B = h
2
K h(l+~h2K) 

6 3 

1_h3K2 1+2h
2

K+8h
4

K
2 

9 9 

1_h2K2(l+h2!) 
9 3 

~K(6+14h2K+~h4K2 ) 
3 3 9 

and 

= 

(2.59) 

h2 

2h+4h3K 
3 

1+2h2K+4h 4K2" 
9 

We look for a bound on the second component of u and a measure of 
-n 

this component can be obtained by considering the vector norm of .!:!.n• 

given by [l.!:!.nll· We consider the subordinate matrix norm defined by 

II c II = supflc.!:!.n II 
ll~llt 0 11~11 

and we consider in particular the infinity norm where II C IL denotes 

the maximum absolute row sum of C. Then from (2.59) it follows 

that 
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(2.60) 

The row sums of C are given by 

h [1 + h (1 + ~) + 1 h2
K] (2.61) 

(2.62) 

2 K 14 ·J 2 2 4 2 8 5 3 
1+2hK + 2h K(l+g) ~ K + 27h K (K+6)+z7h K (2.63) 

and both (2,62) and (2.63) are bounded by 1 + 2ah where a is a con-

stant which can be specified for h ~ some h . 
0 

1 + 2ah 

and 

Thus we have 

~~~~llloo ~ (1 + 2ah) II !:!n lloo 5 + h M, 

where M is a constant suitably defined for all h~h . 
0 

It follows 

that 

n _
1
_ [( i+2ah)n -1]. h5M 

II ~ II Ob ~ 0 + 2ah> II !:!o II <X> 2ah 

~ e 
2
anh II !:!o II oo + 

[e·.2anh -l]. 
2a 

+{ ea(x-xo) -1} h4M 
2a 

~ere we have used 2nh = x - x
0

• Thus for any h > 0, constants a 
0 

and M exist such that, for all hO:::::h0 , 

(2.64) 

where 

In particular if the initial conditions y = y(x
0

) and z = z.(x ) 
0 0 0 

are satisfied exactly then 

£ = 

which is of order 

hly(x· ) - y· I -I -1 
h4 if equation (2.12) is used to compute y· . 

-1 
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we have shown that the global truncation error is of order h4 

where h is the steplength; the dependence on the steplength h can also 

be seen in an alternative approach described by Kopal (1955, p,219) and 

the explicit form of the global error for the initial-value problem 

II I 

= -y, y(O) = 0, y(O) = 1 

is calculated in Coleman and Mohamed (1978). 

De Vogelaere's method with variable stepsize 

An appealing feature of de Vogelaere•s method is the ease with 

which an arbitrary change of steplength can be introduced without 

the need for interpolation or additional function evaluations. If 

a steplength h 1 is used as far as x2n, the quantity f 2n-l refers to 

If we now change the steplength to 

h2=ch 1 , f 2n-l must be replaced in equation (2.2) by 'f2n-l' an approx-

This can be achieved by defining 

f 
2n-l = (2.65) 

which has a local truncation error of order h2
2 

We have established that the leading term in the truncation error 

in the st~p from x2n to x2n+2 is 
5 . Ill 

2 h f2 
45 n 

and we shotoed in~ 2. 2 that an estimate of this quantity is given by 

the expression 

5 '" 2 h f2 ::e= 
45 n 

The truncation error per unit step, which is a more appropriate 

basis for decisions about the steplength, is approximated by 

(2.66) 
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When the steplength is changed the expression given by (2.66) has 

to be modified. There are three separate cases: 

(i) Immediately following a step change 

Let h1 be the steplength used in the step from x2n_ 2 to x 2n and 

in the preceeding step, and let h
2 

= ch
1 

be the new steplength for 

the step from x2n to x
2

n+2. we shall consider the forms of the 

* * * differences (y 2n-·L - y2n-l) and (y2n+l - y2n+l) wrere y2n+l is a 

fourth order approximation to y(x 2n+l); the form of y;n+l has been 

discussed in Section 2 and is given by 

* = f2n+2) ( 2. 6 7a) 

= ( 2. 6 7b) 

for the general step frQm x2n to ~n+2 with constant steplength h. 

* In the step from X 
2n-2 to .JS:2n we have Y2n-l given by 

* 2 
Y2n-l = Y2n-2 + hl ~2n-2 ,EJ_ (7 £2n-2 + 6 £2n-l - f2n) ( 2. 68) . 

"'!" 24 

where we have replaced n by n-1 in equation (2.67a). 

y
2
n-l is given by equation (2.2) with n replaced by n-1 and h re

placed by h1 : 

= 

and we have 

* Y2n-1 - Y 2n-l 

= 

= 

m· 
f 
2n-l + 

* In the next step from x2n to x2n+2 = x2n + 2h2' Y2n+l is given 

* h2 
f ) 

Y2n+l = Y2n + h2 z2n +...l (?f2n + Gf2n+l-
24 

2n+2 · 

(2.69) 

( 2. 70) 

by 

(2. 71) 
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Equation (2.65) combines with (2.2) to give 

Y2n+l (2. 72) 

and for c = 1 equation (2. 72) correctly reduces to (2.2). 

we have 

* Y2n+l - Y2n+l = 
4 II 

h2 ( 1 + ..?.) f 

24 c 2n+l 

5 Ill 
h 3 1 6 2 ( 2 + - + -;,1 ) f + 0( h2) . 
36 c c 2n+l 

( 2. 73) 

An estimate of the truncation error following the stepchange may 

now be constructed using a suitable linear combination of (2. 70) and 

(2. 73) to eliminate the terms in h
1
4 and h

2
4 • Thus we consider 

* 4 2 * 5 7 12 Ill 6 
(y2n+l - Y2n+l) - l d (l + ~)(y2n-l -y2n-l)= h2 (-l+c+-c~) f2n +O(h2 ) 

3 - .. 
72 

and an estimate of the truncation error per unit step is given by 

h 4 Ill 

_2 f 
45 2n 

where 

= 

o<. '= 

1 
2h . 

2 

l c 3 (2 + c). 
3 

* * ~ Bc[(y2n+l - Y2n+l) -o((y2n-l- Yzn-l)J 
5h

1
(12+7c-c.:t) 

(2. 74) 

(ii) The second step after a stepchange 

If the steplength h
2 

= ch
1

, introduced for the step from K2n 

to x is retained in the next step, the equation 
2n+2 

* Y2n+3 - Y2n+3 = 
4 

h2 f ·tr 

8 2n+3 

follows directly from (2. 70). 

5 
h2 f "' 
6 2n+3 + ( 2. 75) 

An estimate of the truncation error 

in this case is given by considering the following combination of 

(2. 73) and (2. 75): 

and an estimate of the truncation error per unit step is given by 
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* - Y2n+3) - (y2n+l ( 2. 76) 

where 

~= 
1 2 
3 (1 +c-). 

(iii) Two stepchanges in succession 

with h2 = ch
1 

and h3 = c1h2, we have by analogy with equation ( 2. 73) 

h 4( IC ·. h 5( 3 1 ) Ill = 3 1+2 ) f - 3 2 + - + -2. f 
24 "S:. 2n+3 36 c 1 c

1 
2n+3 

* y2n+3 - y2n+3 

The appropriate combination of (2. 73) and (2. 77) is 

h 5 
= ..l. 

216 
[(-1 + L + 11 ) + ..!.(-2 + _12 + 20 2) + :!/..!. + lz) l + O(h 6) 

C:: 1 ~ l c c 1 _c 1 . c \ c 1 c1 J 3 

and we have the following estimate of the truncation error per unit 

step 

( 2. 78) 

where 

;3= 1 2 
3(1+-c), 1 

1 3 = - c (2 + c ) 
3 1 1 

we have presented estimates of the truncation error per unit 

step which allow.for every conceivable sequence of stepsizes in 

computations based on de Vogelaere's method. Two steps of de 

Vogelaere's method are required before an estimate of the truncation 

error can be obtained since the error estimate involves a linear 

* combination of the differences {y
2 

- y
2 1

) for two consecutive 
n+1. n+ 

steps. With these estimates readily available it is now possible 
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to consider an implementation of de Vogelaere's method which will 

permit an efficient automatic error control which automatically 

selects steps as large as possible while satisfying some error 

criterion specified by the user. 
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CHAPTER 3 

RADISH- an implementation of de Vogelaere's method 

with automatic error control 

Introduction 

we investigate the performance of an automatic implementation 

in Fortran IV of de Vogelaere's method to solve 

.II 

y(x) = f (x, y(x) ). ( 3. 1) 

we are interested primarily in the application of de Vogelaere's 

method to solve the single channel radial SchrOdinger equation where 

f(x,.y) is given by 

f (x., y) = 

and a description of the program RADISH to solve the above problem 

will be given. The test program listed in Appendix 1 solves the 

single channel radial SchrOdinger equation for scattering of an 

electron by the static potential of atomic hydrogen. The test 

program thus solves 

.. y"(x) 
[

/J D 2 1 -2x.] t,('(..:/)-k -2(l+x)e y(x) (3. 2) 

2 for a specified energy E = k and angular momentum!, and calculate~ 

the scattering phase shift. 

As we are concerned mainly with the control of truncation errors 

in the numerical solution of the differential equation, we use only 

the most straight forward methods for providing suitable starting 

values for the integration stage and for the extraction of a phase 

shift; the program is written however so that the user may readily 

substitute his own initialisation and phase-calculation routines. 

The subroutine DEVOG which is the main routine in RADISH solves 

(3.1) using de Vogelaere's method where f is supplied as a function 
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sub-program, The choice of steplength within DEVOG is made accord-

ing to the strategy described in f 3. 2, 

§ 3.1 Programming de Voge.laere' s algorithm 

we have seen in§ 2. 1 that for a fixed steplength the general 

step of de Vogelaere's method leading from x2n to x2n+2 = x2n + 2h is: 

Given y2n' z2n, f2n and f2n-l' 

Y2n+l = Y2n + hz2n + ~2 (4 f2n - f2n-l) 

= 

Y2n+2 = 

= 

= 

f(x2n+2' Y2n+2)' 

h 
~2n + 3 (f2n + 4f2n+l + f2n+2) 

Following de Vogelaere (1955) we introduce the quantities 

h2 4 2 
h2 2n' F2n = 3 f2n' F2n+l = 3 h f2n+l = 

and equations (3,3) - (3. 7) may now be written as 

= Y2n + + 
1 

- - F 8 2n-l 

Y2n+2 = Y2n + 2Z2n + F2n+l + 2F2n 

F2n+2 = ..! h2 
f(x2n+2-' Y2n+2) 3 

z2n+2 = z2n + F2n + F2n+l + F2n+2 

If at the nth step of the calculation we let 

y = Y2n' z = FEVEN = F2n, FODD = F2n-l 

{3, 3) 

(3.4) 

(3.5) 

(3.6) 

( 3. 7) 

(3.8) 

(3. 9) 

(3.10) 

(3.11) 

(3.12) 

equations (3.8)- (3.12) can be formulated using the FORTRAN statements 

as: 
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z = z + FEVEN (3.13) 

y = y + z (3. 14) 

FOOD = y + FEVEN - 0.125 *FOOD (3.15) 

FOOD = 4.0* H2* F(X+H, FOOD) /3.0 (3. 16) 

z = z + FOOD (3.17) 

y = y + z ( 3. 18) 

FEVEN = H2 * F (X + HH, Y)/3.0 (3.19) 

z = z + FEVEN (3. 20) 

where X represents the mesh point .x2n and H, HH, H2 represent h, 2h, 

'2 
h respectively. F is a function sub-program which represents f 

and which calculates the second derivative of the solution. Thus 

we emerge from (3.13)- (3.~0) with 

y = Y2n+2' z = FEVEN = F2n+2 ' FOOD = F 2n+l" 

The general step may be implemented essentially by using (3.13)-

(3.20) and the cost per step in terms of arithmetic operations is 

9 additions and 6 multiplications; 2 function evaluations are required 

per step. 

The steplength h at each step will be chosen so as to make the 

estimated error per unit step less than some prescribed tolerance; 

thus we estimate 

TRERR = 4 

45h 
(3.21) 

from which a decision can be taken as to whether to keep the same 

steplength h for the next step or to increase or decrease h according 

as the estimate is respectively less than or greater than the prescribed 

tolerance. The precise strategy adopted is described in f 3. 2. 

If a steplength h
1 

is used as far as ~2 n, and the steplength 

is then changed to h
2 

= ch
1

, a sufficiently accurate estimate for f 

at x2n - h2 is given by 
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= 
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(3.22) 

At the end of the final step which uses the steplength h
1 

we have 

y = z = = l h 
2 

f2n' FODD = ~ h 
2 

f 3 l 3 1 2n-l 

Then if we define 

F = 

we can use the following implementation of (3.22): 

F = 4.0*C2* FEVEN + C**3*(FODD - 4.0*FEVEN) 

where C, C2 represent c,c2 Thus if the steplength is changed from 

h
1 

to h2 it is necessary to update the values of Z, FEVEN and FODD 

for the next step. This is effected by the following FORTRAN state-

ments: 

z = c * z 

FEVEN = C2 * FEVEN 

FODD = C2 * FODD 

FODD = 4.0 * (1.0 - C)* FEVEN + C*FODD 

(3. 23) 

(3.24) 

(3.25) 

(3.26) 

An estimate of the truncation error per unit step is now given 

by 

TRERR 

with 

= * BC [(y2n+l 

~ = l c3 (2 + c) 
3 

The next step from x2n+2 to x2n+4 will either 

(i) retain the steplength h21 or 

(3.27) 

(ii) require a further change in steplength to h3=c 1h2 in which 

case further updating of the values Z, FEVEN, FODD will be 

required. 

The corresponding estimates of TRERR are then given by 
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(ii) 

where 

and 

* * 4C[p(y2n+3- Y2n+3)- (y2n+l- y2n+l)J 

24 c2 c 2 
1 

/~ = 

X' = 

5h1 (1 + 5C + 3C
2
) 

* r;s (y2n+3 - y2n+3) 

1 ( 1 +~) 
3 c 

Steplength strategy 

= 1 C 3 (2 + Cl) 
3 1 
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(3. 28) 

(3.29) 

The user is required to specify as input for the subroutine 

DEVOG, a parameter EPS which is the largest allowed local error per 

' unit step. Since the magnitude of the solution may not be known 

in advance the program RADISH calculates at each step 

TOL = (3.30) 

so as to provide an absolute or relative error criterion according 

as the absolute value of the calculated solution is less or greater 

than unity. The calculated y
2

n is deemed satisfactory if 

I TRERR I ~ TOL. (3.31) 

If this inequality is not satisfied the step is rejected and it is 

necessary to restart from y2n_ 2 with a decreased steplength. Since 

4 the local error per unit step varies approximately as h we argue 

that a steplength o(h would give a truncation error of approximately 

dl4 TRERR, and we can therefore estimate a suitable~. When the 

inequality (3.31) is almost satisfied a difficulty could arise, in 

that the value found foro< is almost one, and a large number of very 

small adjustments of steplength may be required before a satisfactory 

value is found. To avoid this we arrange that when a decrease is 
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necessary a non-trivial decrease is carried out, by choosing 

o/. = ( 0. 5 TOL) ~, 
TRERR 

Successive decreases in steplength must be allowed where necessary 

and are monitored accordingly. 

When the calcu.lated y2n has been accepted as sufficiently accurate 

we consider whether or not a steplength increase is justified. One 

approach would be to choose a new steplength Ch>h, such that 

c4 I TRERR I < TOL, 

and this would result in a change of steplength at almost every step. 

Experience shows that by allowing the steplength to increase at succ-

essive steps, particularly at the beginning of the integration, the 

progress of the solution is hampered, often due to the need to de-

crease immediately after an increase in steplength. Thus to avoid 

frequent increases by small amounts, and, much worse, increases 

followed by immediate decreases, we introduce a number of restrictions. 

The steplength is allowed to increase only by a specified factor C 

(typically C = 2) and this increase is carried out only if 

c4
1 TRERR J ~ o. s TOL, (3. 32) 

for three consecutive steps. The numbers in Table 1 given below 

come from a test run at a stage when the steplength is 0.035880. 

TABLE 1 

x2n Y2n TRERR 

0. 378 0.167 -5.9 X 10-8 

0.450 o. 241 -7.5 X lo- 9 

0.521 0.331 3. 7 X 10-8 

0.593 0.435 7.5 X 10-8 

0.665 0.556 l.Ox lo- 7 

0. 73 7 0.692 1. 2 X lo- 7 
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In this calculation EPS = 10- 6 and C = 2 so the inequality is satis

fied if jTRERRI~ 3 x 10-8 , as happens on the second line of Table l. 

Because we require this inequality to be satisfied at three consecu-

tive steps the current steplength is not changed, a decision which 

is v.indicated by later lines of the table when we recall that by 

doubling the steplength we would increase the local error per unit 

step by a factor of about sixteen. 

The subroutine DEVOG also requires an initial steplength h 

which must be supplied by the user. Because of our automatic error 

control the value of h supplied is not particularly important; if 

it is unnecessarily small some time may be wasted since we have 

adopted a rather conservative approach to steplength increases. 

Given the initial steplength h the subroutine DEVOG calculates 

the initial step of the method using method (a) of starting of§ 2.1. 

We prefer to use method (a) of starting to method (b) and indeed 

advocate its use in all calculations for the solution of the radial 

Schrodinger equation. We shall devote the next section to a dis-

cussion of the merits of method (a) over method (b) and to its sub-

sequent implementation in the subroutine DEVOG. 

The ini tia 1 step 

Methods (a) and (b) of starting described in§ 2.1 both provide 

an approximation for y(x
1

) with an error which is proportional to 

h4 • we shall consider an asymptotic expansion of the error result-

ing in the computed solution at x
1 

for both methods. The normal 

practice has been to use method (b) of starting in all applications 

of de Vogelaere's method to solve the radial Schrodinger equation; 

this method of starting calculates a fourth order estimate for y(x1 ) 

using 
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hz 
h2 

(4f f -1) yl = yo + +-
0 6 0 

(3.33) 

where f -1 
is given by 

f = f(xo -h, y_l) -1 

with 
2 

y_l = y - hz0 + !L f 
0 2 0 

(3. 34) 

and it is apparent that for sufficiently accurate starting values 

y
0

, z
0

, f
0 

any error in y1 must be a combination of the error in the 

term (h2 f ) in (3.33) resulting from the error in y_ 1 and the 
6 -1 

local truncation error in (3.33). 

The differential equation which we are studying has the form 

yll(x) = g(x)y 

and we write = g ( xk ) , k = 0 , 1 , --- • Then if we define the 

error in the approximation y_
1 

to y(x_
1

) by 

~ y_l - y(x 
0 

- h) - y_l (3.35) 

we have 
h3 

I. 

~y-1 ~ + = 6 

where we have used the Taylor expansion of y(x_ 1) about x
0 

in (3.35). 

The difference between y
1 

and the true solution y(x1 ) is given by 

where 

= 

We use 

to express yl in the form 
h2 h3 

I h4 II 2 5 
y = Yo + hz6 +- f +- f 12 fo "+.!!_g_lSY ... l+ O(h) 

1 2 0 6 0 . 6 
h4 II· h2 

+ o(h5 ). = y(xl) - 8 fo_ +- g_l Sr y -1 6 

Thus 
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s yl 
h4 II h2 

s- y -1 o(h5 ) = f -- g_l + (3.36) 8 0 6 

where the second term in (3. 36) is 5 of order h . 

In order to compare the form of the error in the 

solution at x1 with that obtained using method (a) of 
~ 

investigate the errors in yl and y
1 

where 

+ hz + 
h2 

f yl = Yo 0 2 0 

~ h2 
yl = Yo + hz + 6 (2f + fl) 

0 0 

with 

= 

The error in y
1 

is given by 

+ = 

and we have 

f(x
1

,y(x1 )) f(x 1, yl) = gl ~ yl. 

Thus we can 

* yl = 

= 

and hence 

~ 

express yl as 

Yo + hz 
0 

+ 

h4 II 

y(xl) + 24 fa 

= 

= -h4 f 
24 0 

h2 } 3 I h4 
II 

f + ..! f + l2 fa 2 0 6 0 

h2 
gl ~ yl O(h5

) + 6 

II .. 

+ 

where the second term in (3.39) is of order hS 

computed 

starting we 

(3.37) 

(3. 38) 

h
2

. - 5 
- 6-glsyl~ O(h > 

(3. 39) 

The leading terms in ~yl and ~y1 are very similar in form, but, 

for the Schrodinger equation with i-=fo, l.g(x)l is generally a rapidly 

decreasing function of x near the origin. C~nsequently g_ 1 may be 

substantially greater than g
1
• The following numerical example 

demonstrates this effect. l-lith ·l= 1, E = 0.01, x = 0.04, and 
0 

the equation (3.2) used in the test program, Taylor expansion about 
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= -3 1.568756 X 10 , ~ · = 
0 

7, 767540 X 10- 2, 
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The precise method of choosing the initial values ~·, y , z , f will 
0 0 0 0 

be explained in ~3.5.1 which describes the main routine of RADISH. 

Then with h = 0.025 method (b) of starting gives 

yl = 4.099156 X 10-3 J 

by method (a) we get 

~ 10-3 
yl = 4.093352 X 

and the exact solution is 

y(xl) 4.093015 -3 = X 10 , 

In this casejS y1 j exceeds I ~'Y1I by a factor of about 18, which is 

close to the factor by which. g_ 1 ( .:::- 8 758) exceeds g
1 <~ 445). 

Our conclusion is that when solving the SchrBdinger equation 

method (a) is superior to method (b). The less accurate method is 

used for example by Chandra (1973) in a computer program to solve 

the differential equationsarising in a close-coupling formulation 

of quantum-mechanical scattering problems. The argument in favour 

of method (a) can be applied 

by replacing gk by(§~) x = 

to a more general function f(x,y) simply 

Equation (3.5) shows that the error ~~l contributes the term 

<% h
2 

g1 ~~1 ) to the error in y2• Although this term is of order 

h6 it may, when g
1 

is large, exceed the O(h5 ) truncation error in 

the formula for y
2

, and therefore it is imperative that its magni-

tude be controlled. Having obtained ~l from equation (3.38) and 

y
2 

from equation (3.5) we may use the formula 

= + 

which gives a new estimate for y(x1). 

+ • f ) 
0 

The error in this approximation 
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is of order h5 and consequently 

This allows us to monitor the contribution from ~fi to the error in 

y2 , and to adjust the steplength accordingly. With the completion 

of the first step the cumulative (actual) and truncation errors 

equate and the truncation error at the end of this step is given by 

2h times the truncation error per unit step, Thus a reasonable re-

quirement of the method is that the absolute value of the actual 

error in y2 be less than or equal to 2h T.OL w.het:e· 

TOL = 

and we ask that 

be satisfied before proceeding to the next step. 

condition more restrictive by requiring 

that is 

where 
lh ~f ·! 

lj < TOL 

we make this 

(3. 40) 

Thus given the initial steplength h the subroutine DEVOG calculates 

,.... ~ * 
y

1
, y

1
, y

2 
and y

1 
and the steplength h is considered satisfactory 

at this stage if the inequality in (3.40) holds. If this inequality 

is not satisfied a more suitable steplength is found by using the 

fact that s~l varies approximately as h
4

, and the calculation is 

repeated. When y
1 

is known to the required accuracy we calculate 

y
3

, y
4

, y
5 

and y
6 

and then use (3.21) with n = 2 to estimate the 

truncation error; if this is small enough the calculation continues, 

and if not a smaller steplength is chosen and the calculation begins 

again. It is in fact possible to estimate the truncation error per 
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unit step a step earlier after the first two steps have been com-

pleted using equation (2.17) and thereafter using equation (3.21) 

for as long as the steplength remains constant; however we choose 

to estimate this quantity after the completion of the third step 

thereby using equation (3.21) alone to estimate TRERR, until a 

change in steplength is necessitated. In this way we dispense with 

the need for additional programming in initially estimating TRERR. 

Thus we do not interfere with the natural flow of the coding for a 

constant steplength and we feel that this approach is satisfactory 

despite the loss of two function evaluations in the event of the 

estimated TRERR calculated after the first three steps being too 

large. 

t\le now give a listing of the FORTRAN statements required for 

the calculation of the first step from x
0 

to x
2 

using method (a) of 

starting. we start with 
h2 

XO = x
0

, YO = y
0

, ZO = hz
0

, FO = 3 f
0 

The method (a) of starting consists of the following statements: 

y = YO+ Z + 1.5 * FEVEN 

FODD = 4.0* H2* F(XO + H, Y)/ 3.0 

y = Y + (FODD - 4.0* FEVEN) /8.0 

FODD = 4.0* H2* F(XO + H, Y) /3.0 

Zl = Z + FEVEN 

y = YO + 2.0* Zl + FODD 

FEVEN = H2* F(XO + HH, Y) /3.0 

z = Zl + FOOD + FEVEN 

where y , ~ ,f can be obtained from a starting series so that at 
0 0 0 

0.41) 

(3.42) 

(3. 43) 

(3. 44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

the beginning of the calculation YO, ZO, FO are readily available. 

The cost in terms of arithmetic operations required for the 

first step for a given H is l1 additions and 12 multiplications; 

3 function evaluations must be performed, 
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§ 3. 4 Subroutine DEVOG 

The subroutine DEVOG is applicable to any linear or non-linear 

equation of the form (3.1) and is based on de Vogelae~s method 

which is described in the preceeding Chapter. Our imp~entation 

of the method makes use of the results of §2.6 which enable us to 

monitor and control the local error and thus relieve the user of the 

task of steplength selection. Subroutine DEVOG is written in double 

precision form to solve (3.1) where f ~supplied as a function sub-

program. For ease of identification, all statements which refer 

to the scattering problem, rather than to the numerical solution of 

the differential equation, are placed between lines of asterisks. 

f 3.4.1 

The parameters which must be supplied to DEVOG as input data 

are: 

H the initial steplength (see§ 3.2) 

xo I YO I zo, FO the starting point, and the values of the solution 

and its first and second derivatives at that point, 

the tolerance parameter and factor by which the 

steplength is increased when an increase is per

mitted (see§ 3. 2). 

EPS, C 

XF 

~ 3.4.2 

The calculation terminates somwhere between XF - H 

and XF + H unless earlier termination has occurred 

because of convergence of the pha~.shift to the 

required accuracy. 

The structure of DEVOG 

Figure 2 overleaf shows a flow diagram for this subroutine, and 

the function of the variables used is described in comment cards in 
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I = I + 1 
update storage 

Calculate 
>-~--1 new H 

Calculate 
new H 

Calculate 
phase Shift 

Increase H 

Yes 

1 
) Exit 

FIGURE 2 

Recall data 
from last step 

62. 
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the text of the program. 

If the initial steplength used were very large it would be 

possible for the calculation to proceed tQ~F without providing an 

estimate of the truncation error. To avoid this difficulty DEVOG 

takes H to be either the value supplied by the user or (XF- X0)/5, 

whichever is the smaller. Lines (180 - 208)* of DEVOG calculate 

~ * F. y1 , y1 , y2 and y1 as described inJ3.3 and, if necessary, reduce 

the steplength repeatedly: until the estimated contribution to the 

error in y2 from that in y
1 

is sufficiently small. 

Lines 218 - 294 implement the de Vogelaere algorithm to advance 

the calculation one step of length 2H, evaluate the truncation error 

estimate, and decide whether or not to alter the steplength. The 

natural flow of control corresponds to a situation where the step-

length is neither increased nor decreased. 

If at line 256 it is decided that the truncation error is too 

large, control is transferred to lines 313 - 339 for the steplength 

decrease, and thence to the restart section·(lines 361- 383), followed 

by a return to the main loop at line 218. 

The decision to calculate a phase shift is taken within the 

function subprogram F. When the calculation has progressed suffic-

iently far that a phase shift calculation is worthwhile, the parameter 

IPS is assigned · the value 1. When this condition is encountered 

at line 278 of DEVOG the subroutine PS is called to calculate the 

phase shift; the current value of ·x and the calculated phase. shift 

are then printed. 

The line numbers quoted are those appearing on the right-hand side 

of the listing, corresponding to the sequential numbering of the 

card deck. 
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If the steplength is to be increased line 287 transfers control 

to the steplength increase section (lines 344 - 356) which then leads 

to the restart section and back to the beginning of the de Vogelaere 

loop. 

Apart from that required to bring about changes of steplength, 

the only branching that occurs in DEVOG arises from the need to treat 

the truncation error differently in certain cases. At lines 240 

and 270 this just involves by-passing some statements, and when a 

non-trivial branching occurs (at lines 241 and 370) we have imposed 

an IF ••• THEN ••• ELSE structure in the interests of reada~ility. 

Exit from the de Vogelaere loop occ~rs (see line 280) if the 

subroutine PS indicates, by .setting JCONV = 1, that the phase shift 

has been calculated to the required accuracy. Otherwise termination 

occurs when it is noted (at line 293 or line 382) that the next step 

would take the calculation beyond XF. In either case the user is 

informed of the reason for termination, and information on the number 

of steps carried out and the number of increases an·d decreases .of 

steplength is also printed. 

§ 3.4.3 Modifications to solve other problems 

If the lines between rows of asterisks are deleted, DEVOG will 

solve the equation 

y" = f(x, y) 

and will terminate somewhere between XF - H and XF + H where H is 

the current steplength. values of the solution at each successful 

step may be printed by a WRITE statement placed after line 256. If 

the calculation is to end precisely at XF it is necessary only to 

adjust the final step so that XF is a mesh point; alternatively, 

to avoid a very large reduction in steplength when XF is very close 
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to a mesh point, it is possible to look two steps ahead and take action 

when X + 2H exceeds XF. 

The test program is based on the &hrOdinger equation in the precise 

form of (3.2), for positive energy E. However DEVOG is equally app-

licable to bound state problems (E<O). Also any desired changes 

of variable may be introduced, as for example in bound state problems 

where it is convenient to take the logarithm of the radial distance 

as the integration variable,, provided only that the resulting differ-

ential equation has the form (3.1). 

~ 3. 5 Description of program RADISH 

Figure 3 below shows the relationship between the six routines 

of the program RADISH which solves the radial SchrOdinger equation 

II 

y (x) = y (x) (3.49) 

FIGURE 3 

Double precision is used for all REAL variables. 

§ 3. s. 1 The main routine 

The program applies to a potential which, in the vicinity of 

the origin, has the expansion 

V(x) = 
X 

+ V X + 
3 

(3, 50) 

The first four coefficients are read as data at line 28 and are stored 
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in the array VCOEFF. The regular solution of the SchrOdinger 

equation (3.49) may be expressed as 

y(x) = (3.Sl) 

for sufficiently small x, and the coefficients are given by the 

equations 

2 <i + l) a2 = V lal 

2 (21+ 3) a3 = v 1a
2
;(v2-E)a

1 

6 ( t + 2) a4 = vla3 + (V 2-E)a2 + v3al 

4 (22 + S) as = v
1
a

4 
+ (V2-E)a

3 
+ v

3
a 2 + v4a 1 . 

Having read the coefficients v
1

, v
2

, v
3

, v
4

, the program then reads 

the parameters EPS.C and XF. , For given values of these parameters 

an arbitrary number of calculations may be carried out, for different 

values of the energy E and ~~ar momentum 1. Execution terminates 

when a negative value of 1 is read. 

The program calculates the coefficients a2 , ---,aS with a
1 

= l. 

Although the value of H supplied to the subroutine DEVOG is not part-

icularly important, we have chosen to provide a fairly realistic value 

by using the power series to estimate, ~priori, the truncation error 

For 1~4 equation (3.Sl) shows that 

and therefore we take 

H 

l 
4· 

For 1~4 some other approach must be used; it would be quite satis-

factory to supply an arbitrary numerical value, e.g. 0.1. Altern-

atively if the form of the first, second and third derivatives of 

V(X) with respect to x are known, then by successively differentiating 

equation (3. 49) we can find an exact value for yv = y v (x0 ) in terms of 
0 
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Xo• Yo• Zoo and fo· Thus we have 

Notice that for y = sin kx substitut~on of L = 0 = V in the above 

expression leads to 
v 

E
2zo Yo = 

corresponding to 
v 5 kx k4 

Yo = k cos = Zo . 
0 

From the series for y( :X) an expansion for Y • ( x) is readily 

obtained. On the assumption that the magnitude of the first neglected 

term in each of these expansions gives a measure of the error in trun-

eating that expansion, x is chosen so that y and hz0 are given 
0 0 

sufficiently accurately by the first four terms. we require 

Then y0 , z and f are computed from the truncated expansion and the 
0 0 

subroutine DEVOG is called, 

The common block EKLLl is used to transfer parameters to the 

routines F and PS. 

§ 3. 5. 2 The function F. 

This subprogram, which is called by DEVOG, calculates 

F(x, y) = [ L(L:~) + V(x) - EJ y . 

In the listing of program RADISH in Appendix 1, V(x) is given by 
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V(x) = 1 ·-2x 
-2(1 + -) e 

X 
(3. 52) 

corresponding to the static potential between an electron and a 

hydrogen atom. Here it is also decided when a phase shift should 

be calculated; when 

L(L+l) L... E 
2 

X 

and «:: EPS • I E 

the value IPS = 1 is returned to DEVOG. 

§ 3. 5. 3 The subroutine PS. 

If the potential is such that 

lim = 0 
x-::.co 

L( L+ 1) 
2 

X 

the general solution of ~quation (3.49) has the asymptotic form 

y(x) -'""""' A [S(x) + tan<£- C(x)] (3.53) 

where ~ is the scattering phase shift, A is a normalisation constant, 

and 
S(x) = 

C(x) = 

1 
kxjL (kx) __......_ sin(kx - 2L~ ) 

X->00 

1 
-kxyL(kx)J'-cos(kx- 2L~ ) 

X-?00 

(3. 54) 

{3. 55) 

If y(x) is represented sufficiently accurately by the asymptotic 

form (3. 53·) when x exceeds soine distance R then, for any x.1 and x 2 

greater than R, we have 

tan£ = (3. 56) 

The central part of the subroutine PS (lines 424 - 433) cal-

culates the phase shift from this formula, prints the current phase 

shift estimate and indicates, by setting JCONV = 1, when successive 

estimates agree to the required accuracy. To guard against spurious 

convergence x
1 

and x
2 

in the formula (3.56) are required to differ 

by at least one atomic unit. 
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On the first entry to this subroutine the phase shift is 

arbitrarily set equal to zero and values of the functions S and C 

are stored for use on the next entry. 

The COMMON block EKLLl transfers parameters from the ~~IN 

routine (see§ 3. 5. 1) and PHASE, which appears only in PS, is used 

to ensure that information required on the next entry to this sub-

routine is not lost on returning to the calling program. 

f3. 5.4 The functions REG and AIREG 

The functions S(~) and C(x) defined in equations (3.54) and 

(3.55) are calculated by using the recurrence relation 

= 
£ ( z) 

(2lrl-l) ~ 
z (3.57) 

which is satisfied by the spherical Bessel functions jL(z) and yL(z). 

Forward recurrence for y1(~) is stable for all values of Land z, and 

this is the me thad used in AIREG. The accuracy of the calculation 

is comparable to that of the built-in functions DSIN and DCOS. 

For ~>L, REG also uses forward recurrence, but this process 

is unstable for ~ ~L and it is then necessary to recur backwards. 

I 
The procedure adopted is that suggested by Corbato and Uretsky (1959), 

which involves using (3.57) with starting values f 
1 

= 0 and f 
v+ v 

arbitrary, and then normalising by using the known values of j
0

(z) and j 1(z). 

Corbat~ and Uretsky provide a prescription for choosing v such that, 

for specified Land.~. j
1

(z) is calculated with a relative error no 

greater than some specified~; we have chosen S = 10- 7• The dimen-

sian of the array PF restricts the size of L but REG prints a warning 

if there is any difficulty from this source; _the difficulty can be 

overcome simply by changing the DIMENSION statement. 

The recursive evaluation of j
1 

and y
1 

is most useful when we 

wish to evaluate spherical Bessel functions of different orders 
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simultaneously for a particular value of the argument. It may be 

that for the present application, where only a single value of L 

is relevant to a particular phase shift calculation, there are more 

efficient methods, but this is peripheral to our main concern. 

Test runs 

Program RADISH was tested for a number of different potentials 

V(x) and phase shifts calculated for each problem for a specified 

range of values of E and L to enable comparison of the computed 

phase shifts with the published results. However as the aim of 

Chapter 7 is to present a comparison of the performance of various 

test programs each of which incorporates a different numerical method 

with automatic error control for the solution of (3.49) we shall 

leave a detailed discussion of the results of de Vogelaere•s method 

to Chapter 7; Chapter. 7 investigates the reliability of each of the 

numerical methods in controlling the global error during the numerical 

integration stage of the calculation and compares the relative effie-

iency of the methods in calculating the relevant phase shifts. 

Errors in a phase shift calculation can arise from the starting 

values supplied to the differential equation solver, from the method 

of solving the differential equation, and from the asymptotic fitting 

procedure. Thus a comparison of phase shifts calculated by different 

methods gives information on the performance of the test program as 

a whole, but not specifically on the behaviour of the differential 

equation solver. To obtain a better understanding of the performance 

of DEVOG we solved the following differential equations over specified 

ranges for different values of the accuracy parameter EPS: 

II 

(i) y = 2 k y; y
0 

= sin kx
0

, z0 = k cos kx0 , x0 = 0.01 



II 

( ii) y 
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y0 = x0 j 1(kx0 ), z0 = ~x[xj 1 (kx)] k .~=0.01 
0 

(i) and (ii) were solved fork= 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 rep-

resenting a wide range of values of the energy E; for each value of 

k (i) and (ii) were solved with EPS = 10-n, n = 3, 4, 6, 8. The 

exact solutions of (i) and (ii) are y(x) =sin kx and y(x) = xj
1

(kx) 

respectively. The parameter EPS is a bound on the local error 

(absolute or relative as appropriate) per unit step, and to provide 

a meaningful comparison we have found 

Yexact - ~calc 
max t 1, P" exac tl} 

for d = 5, 10 and 20. The above quantity provides a s~aled .~aximum_ \ 
. t4 \i'"'~~ / ci.A.\1\.G.d ~ lJ- )c., J/ 

error over various stages o~ the integration andjis tabulated in 

Tables 2 and 3 in f 3. 7 for each of the problems ( i) and ( ii) through-

out the ranges of k and EPS. we also tabulate the initial value 

of the steplength H supplied by the main routine for use in DEVOG; 

this value of H however is not necessarily the initial steplength 

accepted by DEVOG as sufficiently small. In addition the tables 

display the number of function evaluations carried out on the interval 

(X 1 20], 
0 

RADISH can be used directly to solve (i) and (ii) by 

reading in L = 0, 1 for problems (i), (ii) respectively and specifying 

V(~) = 0 in the function program F; we dispense with the starting 

series in the main routine and provide instead exact starting values 

for XC• y
0

, z
0 

and f0 since the exact solutions of (i) and (ii) 

are known. The results for problems (i) and (ii) given in the next 

Section were obtained using RADISH with the initial 

length chosen to be r~5 v EPs\~ where y
0 
v = k 

4
:::

0
• 

\JYo I ) 

value of the step-

In the case 

4 v 
of problem (ii) the quantity k ·z

0 
serves as an estimate for y

0 
but 

is exact for problem (i). 
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Our main interest in DEVOG lies in its effectiveness in solving 

the radial Schrodinger equation of the form (3.49). we can draw 

up tables of the same form as Tables 2 and 3 where the "exact" result 

is obtained by writing our second-order differential equation as a 

pair of first order equations, and using a high accuracy variable-

step, variable-order subroutine, namely D02AHF, from the N_ .. A .•. G. Library. 

Subroutine D02AHF is described fully in Chapter 6. Program RADISH 

which is used in Chapter 7 to solve a number of scattering problems 

using de Vogelaere's method must be slightly modified to provide in 

particular the same starting point and initial steplength for a 

particular problem to allow a meaningful comparison with the other 

numerical methods tested for the same problem; details of the mod-

ifications required in RADISH will be described in Chapter 7. A 

discussion of the results of program RADISH which solves (3.2) and 

calculates the phase shifts for electron hydrogen elastic scattering 

in the static approximation without any of the modifications required 

in Chapter 7 is given in Coleman and Mohamed (1979). The starting 

values ~0 , Y
0 

and z
0 

are determined in the main routine of RADISH. 

Test results 

The effectiveness of the steplength strategy in controlling the 

global error for problems (i) and (ii) of§ 3.6 is evident from 

Tables 2 and 3. If we denote by a the factor by which each value 

of the scaled maximum error exceeds the corresponding EPS then a , max 

which represents the maximum such factor a, is 2.60 for problem (i) 

and 26.3 for problem (ii). As expected, as the energy increases 

for a particular EPS the initial steplength supplied to DEVOG is 

decreased and this is evident from the tables. Equally evident is 

the fact that as the accuracy parameter becomes more stringent for 

a particular value of the energy the initial steplength supplied to 
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DEVOG decreases. This decrease in initial steplength is reflected 

by the number of function evaluations carried out for the range of 

integration, 

The interested reader is referred to Coleman and Mohamed (1979) 

for a tabulation of the scaled maximum errors in solving equation 

(3.2) for the same range of values of k and EPS used in problems (i) 

and (ii). In this case a a = 3.31. 
Ir. X 

The test run which accompan-

-6 ies the test program RADISH in Appendix 1, is for EPS = 10 and 

-4 PSIG = 10 for the following values of E and L: 

L = 0, 1, 2 

E = 0,16, 0,25, 0.5, 0.8, 1.0, 4.0, 9.0, 16,0, 25.0 

The low energies (E ~ 0,8) were chosen to allow comparison with 

results quoted by Burke and Smith (1962), and some results at higher 

energies may be compared with those of McDougall (1932), Chandrasekhar 

and Breen (1946) and ofMo~eiwitsch and O'Brien (1970). In many 

cases we get exact agreement with the published values, and where 

there are small discrepancies our results are confirmed by calcula-

tions which we have carried out with more stringent accuracy re-

quirements. Table ~ of Appendix 1 compares phase shifts computed 

using (a) EPS = 10-6, PSIG = 10-4 

(b) EPS = 10-8 PSIG = 10-5 , 

(c) EPS = 10-4 PSIG = 10-3 , 

with the published result for the range of values of E and L. The 

agreement between the phase shifts obtained using the accuracy para-

meters given by (a) and (b) indicate that we can have confidence in 

our results for the phase shift. 
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TABLE 2 

EPS k d = 5 d = 10 I d = 20 INITIAL H I N 

10-3 o. 1 5.16(-5) 5.16(-5) 7.43(-5) 3.998 8 

0.2 7.36(-4) 7.36(-4) 2.07(-3) 3.444 8 

o.s 6.96(-4) 1.29(-3) 2.23(-3) 1.095 20 

1.0 1.52(-3) 1.49(-3) 1.17(-3) 0.461 54 

2.0 1.51(-3) 1.25(-3) 1.15(-3) 0.194 126 

s.o 1.16(-3) 1.12(-3) 1.13(-3) 0.062 390 

10-4 
0.1 5. 16( -5) 5.16(-5) 7.43(-5) 3.998 8 

0.2 9.13(-5) 1. 22( -4) 1.98(-4) 1.936 12 

o.s 1. 57(-4) 1.45(-4) 1.48(-4) 0.616 40 

1. 0 1. 52( -4) 1. 44( -4) 1.24(-4) 0.259 94 

2.0 1.43(-4) 1. 24( -4) 1. 14( -4) 0.109 220 

I 5.0 1.24(-4) 1. 14( -4) 1.14(-4) 0.035 686 

10-6 o. 1 8. 52(-7) 5.84(-7) 1.25(-6) 1.456 16 

0.2 5.25(-7) 1. 17( -6) 1.86(-6) 0.612 34 

o.s 1.99(-6) 1.46(-6) 1. 42( -6) 0.195 120 

1.0 - 1. 46( -6) 1. 42( -6) - 1.24(-6) 0.082 284 

2.0 1.42(-6) 1. 24( -6) 1.15(-6) 0.034 686 

5.0 1.24(-6) 1. 14( -6) 1.13(-6) 0.011 2164 

10-8 0.1 8.53(-9) 4.43(-9) 1. 44( -8) 0.461 46 

0.2 4.37(-9) 1.44(-8) 1. 77( -8) 0.194 112 

o.s 2.08(-8) 1.42(-8) 1.42(-8) 0.062 370 

1.0 1. 43( -8) 2.13(-8) 1.93(-8) 0.026 818 

2.0 2.60(-8) 2.28(-8) 2.12(-8) 0.011 1896" 

5.0 2. 11 ( -8) 1.96(-8) 1.96(-8) 0.003 5978 
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TABLE 3 

EPS k d = 5 d = 10 d = 20 INITIAL H I N 

10-3 0.1 9.41(-4) 9.41(-4) 3.40(-4) 3.998 8 

0.2 7.91(-4) 5. 18(-4) 2.54(-4) 3.998 26 

0.5 1.40(-3) 5.82(-4) 5.80(-4) 3.834 42 

1.0 1.04(-3) 7.39(-4) 6.38(-4) 1. 612 80 

2.0 1.29(-3) 1. 13( -3) 1.20(-3) o. 678 116 

5.0 7. 52 ( -4) 7.75(-4) 8.04(-4) 0.216 298 

10-4 0.1 1. 70( -4) 1.07(-4) 4.82(-5) 3.998 22 

0.2 1.99(-4) 9.50(-5) 4.34(-5) 3.998 34 

0.5 1.33(··4) 1.36(-4) 9. 70( -5) 2.156 70 

1.0 1. 50( -4) 8.28(-5) 4.84(-5) 0.906 140 

2.0 6.35(-5) 3.99(-5) 3.38(-5) o. 381 268 

5.0 3.42(-5) 3.36(-5) 3.39(-5) 0.121 632 

10-6 0.1 5.11(-6) 2.99(-6) 1. 39(-6) 3.998 50 

0.2 5.19(-6) 2.56(-6) 1.25(-6) 2.143 74 

0.5 3.03(-6) 1.48(-6) 1.17(-6) 0.682 164 

1.0 1.33(-6) 1.02(-6) 9. 58 ( -7) o. 28 7 306 

2.0 7. 98( -7) 1.16(-6) 1.34(-6) 0.121 562 

5.0 1.38(-6) 1.52(-6) 1. 59(-6) 0.038 1332 

10-8 0.1 3. 30( -8) 1.85(-8) 1.27(-8) 1. 612 92 
' 

0.2 1.29(-7) 7.20(-8) 3.64(-8) o. 6 78 170 

0.5 2.63(-7) 1.33(-7) 6.64(:-8) 0.216 414 

1.0 2.33(-7) 1.16(-7) 5.83(-8) 0.091 812 

2.0 1.01(-7) 5.04(-8) 2. 73(-8) 0.038 1714 

5.0 4.27(-8) 2.41(-8) 1. 76(-8) 0.012 4274" 
I 
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CHAPTER 4 

Numerov's Nethod 

f 4.1 Derivation of method 

Numerov's method for solving 

II 
y = f(x, y) (4. 1) 

is well known and is expressed as: 

Given 

= 2y - y + h2 
n n-1 -12 

(4.2) 

where y is an approximation to the solution at the mesh point x . n n 

we shall give a derivation of (4.2) in this Section. \-le can use 

Taylor's theorem to express the solution of (4.1) at x +has 

y(x ± h) = 
I JX+h II 

y(x) ± hy (x) + - (x ± h-t) y (t)dt. 
X 

Thus we have 

62 y(x-h) = y(x + h)-2y(x) + y(x-h) = ~+h(x+h-t)f(t)dt+ s:-~x-h-s)f(s)ds 
X X 

and substitution of +zh, -zh for x + h - t, x - h - s respectively 

leads to the equation 

6 2y(x-h) = h2 s: z{f(x+h-zh) + f(x-h+zh)}dz. 

We introduce the operator E: 

= f(x+ph) 

and we see thet the backward difference operator can be expressed as 

\] = -1 
I - E . 

Thus we have 

= 

We use the operator expansions 
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(I - V )z = I - z'iJ + z(z-1)'\7 2 

2 

3 4 z(z-l)(z-2)q +z(z-l)(z-2)(z-3)V 
6 24 

+ 

(I-~) 2 -z = I+(z-2)~+(z-2)(z-l)V2+(z-2)(z-l)z~+(z-2)(z-l)z(z+l)Q4+---

2 to express ~ y(x-h) as 

2 
~ y(x-h) = 

2 6 24 

__ 1 __ V 4 
+ ---] f(x+h). 

240 

If we trunca.te the above expansion at the term involving the fourth 

difference of f and substitute x for x we have 
n 

2 2 r7 4 
yn+l - 2yn + y 1:::: h ( f +l+lOf +f 1) - h v f +l' n- T2 n n n- 240 n 

Thus ~quation (4.2) provides a two step method to obtain the solution 

of (4.1) with the leading teim of the local truncation error per step 

given by 

(4.3) 

we shall use Numerov's method to solve the single channel radial 

Schro'dinger equation in the form 

II 

y (x) - E + V(x)] y(x) (4.4) 

and we shall be required to provide two starting values, namely y
0 

and y 1. Details of the implementation will be described in ~ 4. 4. 

J 4. 2 Characteristics of Numerov' s method 

Numerov's method has been studied at a fixed steplength by a 

number of authors (see §1.4) to solve the radial SchrOdinger equation, 

The characteristics of the method such as the local truncation error, 

the region of absolute stability and the cumulative error are well 

known and we shall discuss them briefly in this section. 
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The local truncation error 

we saw in the preceeding Section that the leading term in the 

local truncation error in the step from x to x is given by (4 3) 
n n+l · · 

A bound for the local truncation error may be obtained from a more 

explicit form for the local truncation error by considering the func-

tiona! defined by 

L [ y(x) ;h-] = y(x+h)-2y(x)+y(x-h)-~~ { y 
11 

(x+h)+l0y
1 1

(x)+y
11 

(x-h)} 

for anarbitrary function y(x) having six continuous derivatives. After 

using the appropriate Taylor expansions we arrive at the following 

form fori,[y(x);h]: 

i,[y(x);h] = 

with 

G(s) 

Jl 1 
G(s)yv (x+sh)ds 

-1 

-1 ~ s ~ 0 

0~ s "'" 1. 

(4.5) 

G(s) is negative over the range [-1, 1]; thus we may write (4.5) as 

with 

i [y(x) ;h) = h6 cyv 1(x+ 9h), -1 .<:.e.:... 1 (4. 6) 

c = 1 
720 

J 1 
G(s)ds = - _1_ 

-1 240 

If y(x) is the exact solution of (4.1) and we assume that the_ 

starting values at x 
1 

and x are exact, that is 
n- n 

then 

f n-1 

= 

= 

= 

= 

The truncation error at xn+l is given by 

y(x ) 
n 

(4. 7) 



= Lfy(x);h] + h
2 

12 
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(4.8) 

To obtain a bound on this error we assume a Lipschitz condition given 

by equation (2.34): 

lf(x, y) - f(x, '\,)I ~ 

for all x in the appropriate interval [a, b] and all finite y and fJ.. • 

we also assume a bound on the sixth derivative of y for all x in (a, b]: 

x €[ a, b] . 

Thus we obtain the bound 

'6 2 ly(x +1 )-y 1 IL h_ M6 + h K I y(xn+l) - yn+ll 
n n+ r.240 12 

whereby 

11- ~~K/ 
Then for all h E::: h

0 
-!. jff' we have 

jy(xn+l) - yn+d ~ h6 N (4.9) 

where 

N = 

§4.2.2 Absolute stability of the method 

we shall establish the interval of absolute stability for Numerov's 

method using the boundary locus method which is discussed in Lambert 

(1973, p. 82). 

The locus of the bour,dary of the region of absolute stability is 

given by 



h c e > = /'(expCiB )) 
0 (exp(i e)) 

80, 

(4. 10) 

where;o,() are the first and second characteristic polynomials of 

the stability polynomial 

lt(r, h) = j'(r) - ii o(r) = 0. 

jJ and a are given by 

_;O(r) = r 2 - 2r + 1, o ( r) = 1 
12 

2 
( r + lOr + 1). 

Thus 

= 12(-18 + 16cos e + 2 cos 29) 
( 102 + 40 case + 2cos 28') 

so that the boundary of the region is an interval of the real axis; 

the end points of the interval are given by the maximum and minimum 

values of the function h (8). Thus the interval of absolute stab-

ility is found to be [-6, 0]. 

g4.2. 3 The cumulative error 

we can find a bound on the cumulative error using Henrici's 

approach (1962, p. 312). Numerov's method expressed in general 

multistep form is 

where 

i=o 

o( ::;:_ 
0 

= 

1 = o(2 J 

= 1 = 
12 

The exact solution satisfies 

~ 
i=o 

o(l 

131 

= -2 

= 5 
6 

(4.11) 

y(x +2h)-2y(x +h)+y(x ) = h
2 r y'' ( xn+2h)+l0y"(xn+h)+y

11

(xn)1+1Jy(xn+l);h]. 
n n n 12 L J 

Then if we assume 

1-1 = o, 1 

with 
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we obtain the following bound 

ly(xn)-ynl • I "n /.;;; r*[s(xn-•*>s +(xn;•*>2Nh4J•xp[(xn-•*>2 r*KB] 

( 4. 12) 

for a~ x ~ b, where K is the Lipschitz constant defined in (2.34), 
n 

a* and r* are given by 

* a = 

r* = 

where rand ~are constants (see Hen~ici) and B is given by 

Thus the cumulative error is of order h4. 

The dependence on the steplength h can also be seen in an alternative 

approach described by Kopal (1955, p. 219). 

ation of Numerov's method to the solution of 

y" = -y, y(C:l) = c., y (0) = 1 

for which the exact solution is y(x) = sin x. 

in (4.11) leads to 

= 2 {12 5h
21 . yn+l - yn 

12 + h2 j 

\ve consider the applic-

(4.13) 

Substitution of (4. 13) 

and the solution of this difference equation is given by 

= 

where A and B are arbitrary constants and r
1

, r 2 are roots of the 

characteristic equation 

r
2 

- 2 (12 - 5h
2

) r .+ 
12 + h2 

1 = o. 

Notice that the product of the roots is unity, thus we write r 1 , r 2 

as 

r 1, 2 = cos~ + i sin cf 
and hence 



~ = 
-1 

( 12 - Sh
2

) h + h5 cos = + ---

If now we 

it follows 

yn 

12+h2 

set 

A cl iC2 B = 
2 

that 

= clcos n~ + c2 sin n~ 

~ c1cos nh+C
2
sin nh-c

1
nh5sin 
480 

480 

cl + iC2 
2 

nh+C2nh5 cos nh 
480 

82. 

For exact starting values, that is y(O) = 0 and y(h) = sin h, we 

obtain 

= 0, = sin h = sr;cp 1 - h
4 

480 
+ ---

Thus the cumulative error is given by 

= 4 (1 - c
2

)sin x- C
2
h__x cos x 
480 

= 

= h
4 

(sin x - x cos x) + 
480 

(4.14) 

The corresponding result obtained for de Vogelaere's method is given 

in Coleman and Hohamed (1978) as 

= h
4 

(9 x cos x -5 sin x) + --- . 
180 

(4.15) 

In particular when x = ~ the leading term in the estimates given by (4. 14)anc 

(4.15) is h4 and 
180 

4 2 
-~ respectively which agrees closely with numerical 

36 
f 4.3. results as can be seen from Tables 4 and 5 in 

Numerov's method with variable stepsize 

A feature of linear multistep methods for equation (4.1) which 

have a local truncation error of order hp+2 is that the global error 

is of order hP, (see Henrici, 1962) and we have shown that for Numerov's 

method the leading term of the local truncation error is proportional 

to h6 whereas the global or cumulative error is proportional to h4 

This contras~with the hybrid method of de Vogelaere where the local 
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truncation error is of order h5 and the global error is of order h4 . 

We chose to control the local error per unit step in an attempt to 

control the global error in calculations based on de Vogelaere•s 

method. In view of the difference of a factor of h2 in the locai 

truncation and global errors for Numerov•s method we suspect that a 

control of the local error per unit step per unit step will give a 

better control of the global error than will a control of the local 

error per unit step. Of course the extent to which these error 

controls are effective in controlling the global error will depend 

on the stability of the differential equation. 

An estimate of the loca~.error per unit step is given by 

h5 vl 
- y 

240 n+l 
( 4. 16) 

and an estimate of the local error per unit step per unit step is 

given by 

(4.17) 

we have used the methods of de Vogelaere and Numerov with a 

constant steplength over 

" y = -y, y(O) = 

exact solution y = sin x. 

the range ro~ ..! 1 to solve the 
1 b- 2 

0, y (0) = 1, xf; l-0, ltl which 
2J 

problem 

has the 

At each step of the calculation in de 

Vogelaere the local truncation error per unit step is estimated and 

in the calculation based on Numerov•s method estimates of the local 

truncation error per unit step and per unit step per unit step are 

provided. Table 4 shows the maximum error and the maximum truncation 

error per unit step multiplied by the length of the range of integration 

which is recorded 

a range of values 

over the range [0, 

of steplength h. 

~J using de Vogelaere•s method for 

Also tabulated is the appropriate 

value of the leading term of u
0 

in (4.15). The corresponding 

results for Numerov•s method are recorded in Table 5 along with an 
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TABLE 4 

h u- -hq Max. error in Max.trunc.error per 
n- 36 [0·~] unit step x 1! 

2 
1t -1.7(-5) -9.1(-6) 1.9(-5) 
20 
1t -1. 1(-6) -8. 1( -7) 1.3(-6) 
40 
1t -2.1(-7) -1.8(-7) 2. 7(-7) 
60 
1t -6.6(-8) -5.8 ( -8) 8.3(-8) 
80 
1t -2. 7(-8) -2.4(-8) 3. 5( -8) 
100 
..!L_ -1. 3( -8) -1. 2 ( -8) 1. 6 ( -8) 
120 
..!L_ -7. 0( -9) -:6.6(-9) 8.8(-9) 
140 
1t -4.1(-9) -3.9(-9) 5.2(-9) 
160 
1t -2.6(-9) -2.4(-9) 3.3(-9) 
180 
1t -1.7(-9) -1.6(-9) 2.2(-9) 
200 

TABLE 5 

h 4 in u ~h Max. error Max,tru~error per Max.trunc.error per 
N 480 [0 ·~] unit step x 1L unit step per unit 

2 step x 1! 
2 

1t 1,3(-6) 1.3(-6) 5.5(-7) 3.5(-6) 
20 

1L 7. 9 ( -8) 7.9(-8) 1. 9 ( -8) 2.4(-7) 
40 
1t 1.6(-8) 1.6(-8) 2.5(-9) 4.9(-8) 
60 
1t 5.0(-9) 5.0(-9) 6. 1( -10) 1.5(-8) 
80 
1t 2.0(-9) 2,0(-9) 2.0(-10) 6.3(-9) 
100 
..!L_ 9.8(-10) 9.8(-10) 8.0(-11) 3.1(-9) 
120 
1t 5.3(-10) 5.3(-10) 3.8(-11) 1.6(-9) 
140 
1t 3.1(-10) 3. 1( -10) 1.9(-11) 9. 7(-10) 
160 
..!L_ 1.9(-10) 1. 9 ( -10) 1.0(-11) 6.1(-10) 
180 
1t 1.3(-10) 1.3(-10) 6.3(-12) 3.9(-10) 
200 
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estimate of the maximum truncation error per unit step per unit 

step multiplied by the length of the range of integration. 

It is clear from Table 5 that the control based on the error per 

unit step per unit step provides a better estimate of the maximum error 

in Numerov 1 s method and we shall consider inS 4.4 automatic implement-

ations of Numerov 1 s method which control the local error per unit 

step and the local error per unit step per unit step. These implem-

entations will be referred to as NUMEROVl and NUMEROV2 respectively. 

Estimates of the errors are obtained by using the divided diff-

erence form for the sixth derivative of y, that is we approximate 

vl 
Yk+l by 6! f[xk-S'xk_ 4 ,xk-3'"xk_ 2 ,xk-l'xk,xk+l] which in the case of 

evenly spaced mesh points c~rresponds to using backward differences. 

we therefore need to calculate the solution at a minimum of seven mesh 

points before an estimate of the truncation error can be obtained, 

Suppose we have reached the mesh point xk+l with a constant 

steplength h and that at this point the estimated error per unit step 

or per unit step per unit step exceeds the tolerance parameter. Then 
I 

the solution must be recalculated at the new mesh point xk+l where 

= 

with r < 1. Thus we shall require an estimate of the solution at 
• I 

the mesh point xk-l where 

= 

in order to use equation (4.2) to advance the solution to the new 
I 

mesh point xk+l' Thus a disadvantage of a stepchanging mechanism 

in Numerov 1 s method is the requirement of an interpolation procedure 

when decreasesin steplength are performed. It is necessary to pro-

I 

vide an estimate of the solution at xk-l to the same degree of accuracy 

as that produced in estimates obtained by Numerov 1 s method. Thus 

we use the calculated solution at the mesh points xk, xk-l' xk_ 2 , 
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xk_3 , xk_4 , xk_
5 

to generate the divided difference form of the 

fifth degree interpolation polynomial interpolating the solution at 

these points. 

If the estimated error per unit step or per unit step per unit 

step at xk+l is less than the tolerance parameter we consider whether 

an increase in steplength is justified. 

be discussed inf4.4.2. 

The steplength strategy will 

It is possible to derive a generalisation of Numerov 1 s method 

which is appropriate for integration over two unequal intervals of 

length h and k. we consider the new method to have the form 

Y = Ay + By l + (Cf l + Df + Ef 1) + R n+l n n- n+ n n-
( 4. 18) 

where 

xn = xn-1 + h, xn+l = xn + k. 

When h = k the method given by (4.18) reduces to that of the familiar 

Numerov method for a constant steplength, that is 

A = 2, B = -1, c = = E, D = 

and R is the leading term in the local truncation error given by 

R = 

Substituting the fol~owing Taylor expansions 

1 2 II 

Yn = Yn+l - kyn+l + !_ yn+l 
2 

k3 11 1 4 1 v 5 v-1-k6 ·vl 
- y 1 + !_y +1 -k y 1 ~ 1+ 
~ n+ 24 n 120 n+ 720 n+ ---

2 II 3 Ill 4 1 V 

Yn-1= Yn+l-(h+k)yn+l +(h;k) Yn+l-(h~k) Yn+l+(h;~> yn+l 

f n-1 

5 v 6 vl 
- (h+k) y +(h+k) y +---

120 n+l 720 n+l 

= 11 111 2 lv 3 v 4 vl 
Yn+l - (h+k)yn+l + (h+k) y 1 -(h+k) y +l+(h+k) y +l+---

2 n+ 6 n 24 n 

in equation (4.18) and equating the coefficients of yn+l and the first 
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six derivatives of yn+l we obtain the following values for the co

efficients in (4.18): 

A = 

D = 

R = 

(h + k)' B = -k c 2 2 _, L< hl-:.+k -h > 
h h 12-

(h + k) (h2 + 3hk + k2)' E = k__(h
2 

+ hk - k
2

) 
12h 12h 

- 1 ( 4k5 + 10hk4 - 10h3k2 
4h4k) v 

Yn+l 
720 

1 (-5k
6 

• 1Shk
5 

- Sh
2

k
4
+15h3k

3
+13h

4
k

2
+3h5k)yn:i 

1440 

Notice that when a constant steplength is used over the interval 

[xn-l' xn+l], corresponding to the method in (4.2), yn+l is a fifth 

order approximation to the solution at x 
1

; when the steplength is 
n+ 

changed from h in [xn-l' xn] to kin [xn, xn+l]' yn+l is a fourth 

order approximation. we shall refer henceforth to the method of 

(4.18)- (4.19) as the generalised Numerov method and that of (4.2) 

simply as the Numerov method. The generalised method has been used 

by Burke and Seaton (1971, p. 61) in connection with solving a set 

of integra-differential equations; the equations are reduced to a 

system of linear algebraic equations by applying the generalised 

Numerov method. The method used by Burke and Seaton differs from 

that of Robertson (1956) which uses Numerov's method over a finite 

(4. 19) 

range of integration with a finite number of evenly spaced mesh points. 

The use of ~he generalised Numerov method allows Burke and Seaton to 

consider a finite range of integration comprised of a finite number 

of unevenly spaced mesh points; the mesh spacing is determined prior 

to the numerical integration of the equations and is calculated sub-

ject to an intuitive model which is set up to provide "function values 

wi~ anapproximately correct distribution of nodes". (see Burke and 

Sea ton, p. 56). 

we shall discuss in§4.4.2 the suitability of the generalised 
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Numerov method with an automatic steplength control with regard to 

solving the radial Schrvdinger equation given by (4.4). 

Implementation of Numerov's method with automatic error control 

we shall discuss the programs NUMEROV 1. and NUHEROV2' which are 
II 

~tomatic implementations of Numerov's method to solve y = f(x, y). 

N~mROVl uses a local error per unit step criterion and NUME~OV2 

a local error per unit step per unit step criterion. The steplength 

strategy used in both versions is diScussed in§ 4. 4. 2 and we shall 

see that in the case of the generalised Numerov method various quest-

ions are raised as to how best to effect the change over from the 

Numerov to the generalised Numerov formula (or vice versa) when a 

change in steplength is required. 

The test program which used Numerov's method to solve the single 

channel radial Schr~dinger equation, given by (4.4), for scattering 

of an electron by the static potential of atomic hydrogen is a special 

case of that listed in Appendix 2 which uses the method of Raptis and 

Allison (19 77). A discussion of the Raptis and Allison method is 

given in Chapter 5; it will suffice here to say that this method is 

a generalisation of Numerov's method. 

The subroutine NUMOV which solves the differential equation in 

programs NUMEROVl and NUMEROV2 differs for the two programs only 

with respect to the type of error criterion used to control the step-

length in the numerical integration of the differential equation, 

§ 4. 4.1 Programming the Numerov algorithm 

Numerov's method applied to equation (4.4) is expressed as 

2 r II II } 
yk+l = 2Yk - yk-1 + ~ 2 l y k+l+ lOyk + yk-1

11 



= 

or 

where 

= l<l+ l)- E + V (x). 
r xJ. 

r 
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(4.20) 

Since values of the solution calculated at previous mesh points will 

be required before an estimate of the local error can be made we shall 

use the arr~ys XX, F to store the values of the mesh points and the 

corresponding calculated solutions; F(K + 1) will correspond to the 

calculated solution yk+l at the mesh point xk+l which is stored in 

XX(K + 1). we shall be required to provide two starting conditions, 

namely F(l) and F(2); the problem of starting the solution will be 

considered separately in § 4. 4. 3 ~ 

we introduce the quanti_ties 

y = (1-h2 
,\ ~ F (K + 1), YK = (1- ~~}.k)F(K), TI k+l 

YPREK = (1-~: A k-1) F (K - 1), H2VF = h
2 A k F(K), 

v = A k' H2 = h2. 

If the steplength h ha~ been used as far as xk we shall have 

y - ( 1-~: ,~. kr(K). YK =( 1-~~}. k-f(K-1), YPREK =(1-~:}. k-~F(K-2) 

with 

F(K) = yk' F(K-1) = F(K-2) = yk_ 2 , H2VF 

In order to advance the integration one step to xk+l we must update 

the values of YK and YPREK for use in the next step; we do this by 
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setting 

H2VF = H2,.• V* F(K) 

YK = y 

YPREK = YK 

where V is still A k" Then we use the following FORTRAN statements 

to calculate the solution at xk+l: 

Y = 2.0*YK- YPREK + H2VF 

F(K+l) = Y/(1.0- H2•'•V/l2.0). 

Notice that if we write (4.1) as 

y" = f(x, y) = g(x)y 

(4.21) 

(4.22) 

then V is just the function g(x) so that the second derivative of 

the solution at xk is given by V*F(K). The calculation of this 

quantity is effected within the calculation of the quantity YK. We 

choose to evaluate the second derivative of the solution in this way 

in the program text rather than use a function subprogram, as was 

the case in program RADISH, since the use of equation (4.21) as a 

means of advancing the integration one step results in a decrease in 

the number of arithmetic operations required per step. 

Suppose the initial steplength which must be supplied by the 

user is h.am that we have calculated the solution at the mesh points 

XX(l) = h, XX(2) = 2h, ---, XX(K+l) = (k+l)h. The leading term in 

the truncation error per step at XX(K+l) is given by 

h6 vl 
-240 yk+l 

and we estimate this error by using the divided difference form for 

the sixth derivative of y. Subroutine DIVDIF sets up the table of 

sixth divided differences of the solution at the points XX(K+l), XX(K), 

XX(K-1), XX(K~2), XX(K-3), XX(K-4), XX(K-5). This routine will be 

described in more detail in§ 4. 4. 4. DIVDIF returns the value DD 

which is an estimate of the sixth derivative of the solution. Notice 
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however that the sixth divided difference table will tend to 

estimate the value near the midpoint of the range of mesh points 

considered rather than at x 
1 

which is the point at which the estim
k+ 

ate is required in order to consider what action if any must be taken 

in the next step, that is, whether an increase or decrease in step-

length is required. The use of any divided difference table which 

uses past values of the solution to estimate the associated derivative 

of the solution at a given mesh point will inevitably introduce a 

'lag' in that the estimated derivative curve will lag behind the 

t~ue derivative curve. However our calculations show that this 

lag does not affect the accuracy of the solution obtained. 

An estimate of the local error per unit step is given by 

TRERR = h5 DD (4.23) 
240 

and this quantity is calculated in subroutine NUMOV of NU}ffiROVl .. 

Program NU}ffiROV2 calculates 

TRERR = h4 DD . (4.24) 
240 

§ 4.4.2 Steplength strategy 

The user is required to specify a parameter EPS for use in the 

subroutine NUHOV; the value of EPS is transferred to NUHOV by the 

common block EKLLl. In the case of NUMEROVl EPS is the largest 

allowed local error per unit step and in the case of NU}ffiROV2 it 

is the largest allowed local error per unit step per unit step. 

Program NUMEROV2 calculates at each step 

TOL = (4.25) 

so as to provide an absolute or relative error criterion according 

as the absolute value of the calculated solution is less or greater 

than unity, and the calculated yk+l is accepted as satisfactory if 
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I TRERR I ~ TOL (4.26) 

where TRERR is given by equation (4.24). If this inequality is 

not satisfied the step is rejected, a new value of the steplength ~ h 

is found and we start again from the mesh point xk -~h (see §4.3) 

using an interpolated value for the solution at this point. Since 

the local error per unit step per unit step varies approximately as 

h
4

, we argue as in §3.2 that a steplength o(h would give a truncation 

error of approximately ~4 TRERR, and we choose 

o<. = (o· 5 To~t· .· 
ITRERR r) 

When the calculated yk+l has been accepted as sufficiently accurate 

we consider whether or not a steplength increase is justified. In 

order to avoid additional interpolation it is necessary to restrict 

increases in steplength to a factor of C = 2. Notice that in program 

RADISH the value of C was also taken to be 2 but C is not confined 

to this value, since for any value of C which is specified by the 

user the implementation remains valid. By considering only increases 

in the steplength by a factor of 2 in subroutine NUHOV we can use the 

stored values of YPREK and Y to obtain the solution at the next ste.p 

with a steplength of 2h. 

Suppose we have reached the mesh point XX(K+l) with a constant 

steplength h and at this point we have 

ITRERRI ~ TOL • 

The steplength will be doubled only if 

16 ITRERRI < o. 5 . TOL 

for 3 consecutive steps. Then if a steplength of 2h is to be used 

in the next step we shall require values for the solution at the mesh 

points XX(K-1) and XX(K+l) calculated with a steplength 2h so.that 

equation (4.2) may be used to advance the solution to the next mesh 

point, If we define 
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r = (1 - (2h)

2 A·) F(r) 
12 r 
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(4.27) 

we shall require the values of YK-l and YK+l for use in equation 

(4.21) where YK-l and YK+l are the new values of YPREK and YK res-

pectively. Now YPREK is given by 

YPREK = (1 - h
2 A ) F(K-1) - k-1 12 

and 

= 

Thus we have 

= 4 YPREK - 3F(K-l) , (4.28) 

Similarly 

YK+-1 = 4Y 3F(K+l) • (4.29) 

Program NUMEROVl . accepts the calculated yk+l if 

lrRERRI ~ TOL (4.30) 

where TRERR and TOL are given by equations (4.23) and (4.25) respec-

tively. If the inequality in (4.30) is not satisfied the step is 

rejected, as in NUMEROV2 ~. but now ot.. is chosen to be 

o( = (o· STOL)- ~. 
ITRERRI 

since the local error per unit step varies approximately as h5 The 

corresponding test which must be satisfied for 3 consecutive steps 

before the steplength is allowed to double is 

32ITRERRI ~ o. 5 .rot: .. 

we consider now the steplength strategy for the generalised 

Numerov method. If we consider a local error per unit step criterion 

and if the method is used to advance the solution from xk to xk+l ~here 

= = 

an estimate of the local error per unit step is 



TRERR1 = 1 (Sh3h
1 

+ 2h4 

360 
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(4.31) 

where DD is an estimate for yk~l· Suppose that we have reached the 

mesh point xn+l with a constant steplength h. 

an estimate of the local error per unit step is 

TRERR = -h5 DD 
240 

Then at this point 

where DD is an estimate for y vll Suppose that 
n+ 

ITRERR I ? TOL. 

Then a decrease in steplength is required and the calculation must 

be restarted from the mesh point xn with a new steplength h
1 

say. 

However the local error per unit step which previously varied approx

imately as h5 will now vary approximately as 

[ (2 +So() - o(\s + 2<X)] h4 (4.32) 

by virtue of equation (4.31) ~here h
1 
=~h. We now require that 

ITRERRll ~ TOL. 

However a difficulty arises if we consider using the form in (4.32) 

to provide a value for~ ; we used the argument in NID•iliROVl and 

NUMEROV2 that if the local error per unit step and per unit step 

. 5 4 
per unit step vary approximately as h and h respectively then a 

steplength o<:h will give an error of approximately o< 5 TRERR and 

o< 4 TRERR where TRERR in both cases involves an estimate of the 

sixth derivative of the solution. But notice that for the general-

ised Numerov method TRERR and TRERRl involve an estimate for the sixth 

and fifth derivative of the solution respectively so we cannot combine 

the two estimates of the local error per unit step to provide a value 

for eX One possibility would be to perform the necessary decrease 

in steplength from h to h
1 

= o(h as if the next step were taken with 

the Numerov formula. Thus hy employing the same strategy used for 



decreases in NUMEROVl we choose 

eX = (0.5TOL) ~ 
ITRERRI 
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It is now possible to use the generalised Numerov formula for the 

next step which has length o(h, followed by the Numerov formula if 

this step is accepted. Notice that no interpolation is required. 

However a steplength o(b which is acceptable for the Numerov method 

may well prove to be too large for the generalised method since the 

leading term of the local truncation error in the former method 

is a factor of h times that in the latter. This would necessitate 

a further decrease in steplength to h
2 

= ~hl =o(~h and the problem 

immediately arises as to how to calculate ~ in practice. An estimate 

of. the local error per unit step is 

TRERR2 = 1 ( 5h 3h2 + 2h 4 - 2h2 
4- 5hh/ )DD 

360 
(4.34) 

where DD is,an estimate for the fifth derivative of the solution at 

Thus the local error per unit step which previously 

varied as the quantity in (4.32) will now vary approximately as 

[(2 +so<:~) - ""3 ~ 3 <s + 2c(I3)Jh
4

. 

we require 

I TRERR21 ~ TOL. 

A suitable choice for ~ can be obtained in terms of the computed 

quantity TRERRl but involves solving a quartic equation in j3. This 

does not constitute a practical means of estimating the new steplength. 

It may be that some other strategy proves to be more satisfactory and 

we shall give no further consideration to the method. we concentrate 

instead on the familiar method of Numerov. 

f 4.4.3 The initial step 

we are required to specify two starting conditions namely y and 
0 

y
1 

which represent the solution values at the mesh points x and x = 
0 1 
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x
0 

+h. These are calculated in the main routine of NUMEROVl. and 

NmmROV2. The initial step of Numerov's method calculates y
2 

and 

may be expressed as 

y2 = 
(2 + t h2 A.l) 

y -
(1 ~~Ao) (4.35) 

(1 - ~; >\2 ) 
1 (1 - tt"A ) Yo· 

122 

With the completion of this step the cumulative and truncation errors 

equate and the truncation error at the end of this step is· h times 

the truncation error per unit step in the case of program NUMEROVl 

and h2 times the truncation error per unit step per unit step in the 

case of NUMEROV2~ · In Chapter 7 we give a numerical comparison of 

various programs including RADISH, NillmROVl. and NUMEROV2 .. to solve 

the radial SchrOdinger equation (4.4). In order to provide a reason-

able comparison the same starting point x must be used in each pro
a 

gram and thus the same criterion must be used for choosing x in 
0 

each program. In f 3. 5. 1 the criterion for choosing x was such 
0 

that the first neglected term in the expansions for y and hz was 
0 0 

less. than 0.1 EPS. In order that the contribution of the error from 

y
0 

to y
2 

in (4.35) be controlled we ask that a times the first neglected 

te·rm in the expansion for y be less than 0. lhEPS in program NUMEROVl 
0 

and less than O.lh2EPS in NUMEROV2, where 

a = (: ~ ti~·) <. 
12 2 

1. (4.36) 

Similarly we ask that b times the first neglected term in the expansion 

for y
1 

be less than O.lh EPS, O.lh2 EPS in NUMEROVl~ NmmROV2 res-

pectively where 

b (4.37) 

The criterion adopted in Chapter 7 for choosing x
0 

is 
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(4.38) 

in the notation of§ 3. 5.1. The condition given by (4.38) will ensure 

that the appropriate criterion for choosing y
0 

in each method is 

satisfied. In order that the contribution from the error in y
1 

to 

that in y2 be controlled we ask that 

(4.39) 

c L+r where ay1 =a (x +h) represents the first neglected term in the 
r o 

expansion for y
1 

with 5-<r"-9 and i = 1, 2 in NUMEROV 1, NUMEROV 2 

respectively. The first 8 coefficients of the expansion for the 

potential given by (3.50) are read as data in the main routine and 

the coefficients a
2

, --- ,a
9 

are calculated with a
1 

= 1. If the 

inequality in (4.39) is not satisfied for r = 6, ---, 9 then a more 

suitable steplength ~his found with 

eX. =( -. 0.5 hi EPS ) -t.:I 
[b a 9(x

0 
+h)L+91 

If the inequality in (4.39) is satisfied with the new value of the 

step length for r = s say (6 ~ s ""9) then the accepted value of 

such that the first neglected term in the expansion for y
1 

is 

y
1 

is 

a (x +h)L+~ 
s 0 

The accepted values of y
0 

and y
1 

are passed to the routine NU10V 

in the argument list of NUMOV. It may happen however that the first 

estimate of the local error per unit step or per unit step per unit 

step is such that 

jTRERR I ::> TOL 

in which case a new value for y
1 

must be provided by the routine NUMOV. 

f 4. 4. 4 Description of programs NUNEROVL NUNEROV2 

Figure 4 below shows the relationship between the seven routines 

of programs N~mROVl- and NUMEROV2 which solve the radial Schr~dinger 

equation given by equation (4.4). 
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FIGURE 4 

Program Nur~ROV2 differs from NUMEROVl. only with respect to six 

FORTRAN statements which we discuss in part (ii) of~ 5. 7. 3. So for 

the main part of this Section we shall describe program NUMEROVl";_ 

Appendix 2 contains a listing of the program EXPFITl which is an 

automatic implementation of the Raptis and Allison method with an err-~r 

per unit step criterion. To obtain a listing of NUMEROVl would re-

quire only a few minor modifications to EXPFITl. Thus we have chosen 

to provide a listing of EXPFITl; EXPFIT2 is the corresponding general-

ised version of NUMEROV2 which uses an error per unit step per unit 

step criterion in the Raptis and Allison method. 

Double precision is used for all real variables. \ole shall 

discuss each of the routines in Figure 4 in this Section. 

(i) The main routine 

This calculates the values of the initial conditions y
0

, y 1 

as described in f4.4.3. The first 8 coefficients in the expan-

sion of the potential in the vicinity of the origin, given by 

equation (3.50) are read as data at line 21 and are stored in the 

array VCOEFF. The 9 coefficients in the expansion of the 

regular solution of (4.4) which are given by equations (1.15) 

of §1.2 are calculated with a 1 = 1 and ai replaced by ai+l" 

Having read the coefficients V1, v2 , v8 the program then 

reads the parameters EPS, L, E, PSIG and XF. C the factor by 
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which the steplength is increased is set to 2. For given 

values of EPS and XF an arbitrary number of calculations may 

be carried out for different values of the energy E and angular 

momentum L. Execution terminates when a negative value of L 

is read. 

In the listing in Appendix 2, His taken to be 0.1. This 

value is completely arbitrary; for comparison purposes the initial 

value of H in each of the programs tested for a particular problem 

must be the same in order to provide a meaniningful comparison 

of the methods. It is possible to provide a more realistic 

value by using the power series given by equation (3. 51) to estimate, 

a priori, the truncat~on error in y2 , as was done in f 3.5.1. 

The common block EKLLl is used to transfer parameters to 

the subroutines NUMOV, PS and POT. 

(ii) Subroutine NUHOV 

The subroutine NUMOV which is written in double precision 

form solves the differential equation 

y" = f(x, y). 

NUNOV has been written so that the structure of the routine 

is similar to that of DEVOG. Indeed the NUMOV routine is 

identical to routine RAPAL described in Chapter 5 (see § 5.6) 

with the exception of a few statements. The input to NUMOV is 

as for RAPAL; Nill10V is obtained from RAPAL by deleting lines 

(240 - 254)~, 297 - 300, 331, 346 - 353, 371 and 373 - 378. 

* The line numbers quoted are those appearing on the left hand side 
of the listing of EXPF!Tl, corresponding to the ~equential numbering 
of the lines in a file containing EXPFITl. 
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In addition the labels in lines 301 - 302, 354, 379 are deleted 

and line 262 is replaced by the following FORTRAN statement: 

9 CALL DIVDIF (DD, K, J, JD) 

(see part (iii)). 

(iii) Subroutine DIVDIF 

This subroutine sets up the tables of sixth divided differences 

of the solution at the mesh points XX(K+l), XX(K), ---, XX(K-5). 

The elements of the table are stored in the array D the dimen-

sions of which are 6 by 7. The rth column, r = 1, ---, 6, of 

the table is stored in D(r,I), I=l, ---, 8-r. The array X{ 7) 

stores the values of the seven mesh points which are being 

considered: 

X(I) = XX(K +I - 6), I = 1, ---, 7. 

The estimate of the sixth derivative of the solution is given 

by 

DD = D(6, 1) - D(6, 2) 
xO> x< 7) 

The arguments of DIVDIF are DD, K, J and JD; J is 1 on initial 

entry to DIVDIF and is subsequently set to zero to dis~inguish 

between the first and later calls. JD> 0 signifies that a 

decrease in steplength has been performed, 

Subroutine DIVDIF as listed in Appendix 2 is for the method 

of Raptis and Allison which requires a more complex routine 

for estimating the derivatives in the local truncation error; 

notice that the listed version of DIVDIF involves two extra 

parameters in the argument list. However the version of DIVDIF 

which we require for use in conjunction with the routine NUMOV 

is contained within lines 415, 417-418 and 467-505 of EXPFITl 

with lines 417 and 482 replaced by 
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DIMENSION X(7) 

and 

1 CONTINUE 

respectively; we also reduce the number of arguments in the 

call to DIVDIF by two to the four discussed above, namely DD, 

K, J and JD. A COMMON statement which holds the arrays XX, 

F and D in common enables values of D to be used in the de

crease section in NUHOV. 

(iv) Subroutine PS 

The arguments K, JP and JCONV of PS are described in comment 

cards in the text of the program. The function of this routine 

is as described in §3.5.3; one less argument is required in the 

present version of PS since the mesh points and the corresponding 

solutions are stored in the arrays XX, F which are relayed to 

PS by means of a COMMON statement. This is the only difference 

from routine PS as used in program RADISH. 

(v) The function POT 

(vi) 

This subprogram is called by NUMOV and the main routine 

of the program to calculate the potential V(x). The decision 

as to when a phase shift should be calculated is taken in POT; 

when 

the value IPS = 1 is returned to the calling routine. 

The functions REG and AIREG 

REG and AIREG have been described in §3.5.4 and they are 

used in exactly the same form as in program RADISH. 
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§ 4.4. 5 Test runs 

Programs NUMEROVl and NillmROV2 have been tested for the same 

set of problems as tested by program RADISH. Details of the test 

problems and results will appear in Chapter 7. 

we consider here the solution of the following problem over a 

specified range for different values of the accuracy parameter EPS: 

y" =(~- k
2
)y; y

0 
• x

0
j 1(kx

0
), y1 = x 1j 1(kx

1
), x

0
= 0,01 

This problem is problem (ii) of §3.6 for which the exact solution is 

y = xj 1 (kx). 

5.0 with EPS 

we solve the problem fork= 0.1, 0.2, 0.5, 1.0, 2.0, 

-n = 10 , n = 3, 4, 6, 8, we provide exact starting 

values for x
0

, x
1

, y
0 

and y
1 

in the main routine along with the initial 

value of the steplength which is 
1 .. 

( 

240 EPS \ S. 
jYovlj } 

chosen to be 
1 
4 

in the case of NUMEROVl , NmmROV2 respectively where we use the 

approximation y
0
vl = k6y

0 
If the initial steplength is very 

large it is possible for the calculation to proceed to XF (the 

end point of the integration which we take to be 20) without pro-

viding an estimate of the truncation error. To avoid this difficulty 

the main routine takes H to be either the value supplied by the user 

or (XF - X0)/7, whichever is the smaller. 

Tables 6 and 7 in the next Section show the results obtained 

using NUMEROVl and NUMEROV2 in solving this problem; results for 

the same problem solved by RADISH are tabulated in Table 3 of §3. 7. 

§ 4. 4. 6 Test results 

A study of Tables 6 and 7 shows that NUMERO'(,..l'.2. is more effective 

in controlling the global error than is NUMEROV)v.1 Notice that the 

number of function evalu(ati...o!:u~i;:~~-~uired in NUMEROV)."~is generally 

;}.Q-:".;:. SCIENci:D".r;~ 
7 -.lVI~ 197.9 
SECTION 

':!.b~":_rY 
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far greater, sometimes by more than a factor or two, than the corres-

ponding number in NUMEROVl. This is a consequence of the more 

stringent error requirement in NUMEROV2 when H is less than unity; 

the relatively few cases where N in NUHEROVl exceeds N in NUNEROV2 

occur when the steplength accepted in NUMEROV2 as sufficiently small 

exceeds that accepted in NUHEROVl and both steplengths exceed unity. 

Note that the value of H listed in Tables 6 and 7 is the initial step-

length supplied by the main routine for use in NUMOV and that this 

value of H is not necessarily the initial steplength accepted by 

NUMOV as sufficiently small. 

The values of a in Tables 6 and 7 are 6.64 and 7.31 respectively 
max 

which are considerably smaller than that in Table 3 for de Vogelaere's 

method. However the value of a does not reflect the superiority 
max 

of the Numerov method with a local error per unit step per unit step 

criterion over that with a local error per unit step criterion; this 

superiority is apparent from a study of the scaled maximum errors 

in Tables 6 and 7. A more useful insight into the relative perfor-

mance of each method in terms of its reliability in solving the 

problem is provided by considering the number of cases where a, which 

is the factor by which the scaled maximum error exceeds the corres-

ponding EPS, exceeds unity as a percentage of the total number of 

cases tested. Tables 6 and 7 each provide 24 cases corresponding 

to 6 values of the parameter k and 4 values of EPS. From Table 6 

we see that a exceeds unity in 12 cases (for EPS = 10-6 , 10-8 ); 

thus the corresponding percentage is a = SO%. 
p 

From Table 7 we 

have a = 25% and the superiority of NUNEROV2 over NUMEROVl in 
p 

controlling the global error is inunediately apparent; the penalty 

incurred however is an increase in the number of function evaluations 

required in NUHEROV2. 



103. 

Note that for Table 3 a ~ 79% which far exceeds the corresponding 
p 

values of Tables 6 and 7. However notice that the factor a over the 

range of EPS and k values exceeds the value five only at the more 

stringent accuracy requirements. If we denote by apS the percentage 

of cases where a exceeds 5 times EPS then for Table 3 apS = 25%. 

The corresponding values for Tables 6 and 7 are a ~ 4% in both 
pS 

cases, We conclude that NUMEROV2 solves this problem more reliably 

than NU}ffiROVl and RADISH in terms of controlling the global error. 
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{VII J'h~ full I 

TABLE 6 

i 

EPS k 
I d = 5 d = 10 d = 20 INITIAL H N 

I 

10-3 I 
o. 1 . 3. 17(-6) 2.87(-6) 1.99(-6) 2.856 € 

0.2 4. 73(-5) 3.38(-5) 1.93(-5) 2. 856 € 

0.5 2.20(-4) 6. 51(-4) 5.02(-4) 2. 856 25 

1.0 5.59(-4) 4.85(-4) 5.21(-4) 2.856 45 

2. 0 4.30(-4) 5.40(-4) 6.39(-4) 2.239 69 

5.0 
I 

4. 79(-4) 4.88(-4) 4.85(-4) 0.621 155 

10-4 0. 1 3.17(-6) 2. 8 7( -6) 1. 99(-6) 2.856 6 

0. 2· 4. 73(-5) _3. 38(-5) 1.93(-5) 2.856 6 

0.5 5.36(-5) 2.84(-5) 5.04(-5) 2.856 34 

1.0 6.34(-5) 5.42(-5) 6.43(-5) 2. 856 55 

2.0 6.00(-5) 7.95(-5) 8.49(-5) 1. 413 98 

5.0 6.30(-5) 6. 74(-5) 6.96(-5) 0.392 242 

10-6 0.1 3.17(-6) 2.87(-6) 1.99(-6) 2. 856 6 

0.2 4.25(-6) 2. 70( -6) 2.60(-6) 2.856 28 

0.5 1.89(-6) 2.19(..-6) 1.68(-6) 2.856 . 63 

1.0 2.24(-6) 1.80(-6) 1.93(-6) 1.484 ll8 

2.0 1. 64( -6) 1. 75(-6) 2.09(-6) 0. 562 225 

5.0 2.05(-6) 2.22(-6) 2.30(-6) o. 156 548 

10-8 o. 1. 3.38(-8) 2. 61( -8) 1.49(-8) 2.856 37 

0.2 4.12(-8) 2,14(-8) 4.55(-8) 2. 856 64 

0.5 6.08(-8) 6.64(-8) 3. 73(-8) 1. 559 140 

1.0 4.67(-8) 3. 72(-8) 3.62(-8) 0.591 304 

2.0 3.68(-8) 3.62(-8) 4.19(-8) 0.224 59 I 

5.0 4.19(-8) 4.10(-8) 4. ll( -8) 0.062 1491 
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TABLE 7 

EPS k d = 5 d = 10 d = 20 INITIAL H N 

10-3 0, 1 3,17(-6) 2.87(-6) 1. 99(-6) 2.856 6 

0,2 4. 73(-5) 3,38(-5) 1.93(-5) 2.856 6 

0,5 4. 3 7( -4) 3.88(-3) 3.15(-3) 2.856 8 

1.0 2. 75(-4) 2,44(-4) 2,90(-4) 2. 856 47 

2.0 1.27(-4) 1.82(-4) 1. 94( -4) 2. 739 94 

5,0 5.43(-5) 5.83(-5) 5.92(-5) 0.551 253 

10-4 0.1 3.17(-6) 2.87(-6) 1. 99 ( -6) 2.856 6 

0. 2 4. 73(-5) 3.38(-5) 1.93(-5) 2.856 6 
·. 

0.5 4,84(-5) 5.83(-5) 4.65(-5) 2.856 35 

1.0 3.03(-5) 2.50(-5) 2.87(-5) 2.856 65 

2,0 1.46(-5) 1.62(-5) 1.95(-5) 1.540 137 

5.0 6.84(-6) 6. 77(-6) 7.46(-6) o. 310 400 

10-6 0.1 3. 17( -6) 2.87(-6) 1.99(-6) 2. 856 6 

0,2 7,31(-6) 4.50(-6) 2. 4 7( -6) 2.856 26 

0,5 5. 98( -7) 7.12(-7) 4.62(-7) 2.856 83 

1.0 3. 26( -7) 2.62(-7) 2.67(-7) 1.638 188 

2,0 1.43(-7) 1. 44( -7) 1. 69( -7) 0,487 418 

5.0 6.45(-8) 6.88(-8) 7. 16 ( -8) 0.098 1304 

10-8 0,1 2.43{-8) 2.04(-8) 1.12(-8) 2.856 38 

0,2 1. 56 ( -8) 8,27(-9) 2,38(-8) 2. 856 73 

0.5 1. 16 ( -8) 5. 77(-9) 6.27(-9) 1. 742 216 

1.0 4.03(-9) 3.27(-9) 3.63(-9) 0.518 539 

2.0 2,27(-9) 1. 91 ( -9) 2·.14(-9) 0.154 1249 

5.0 7. 79(-10) 7.98(-10) 8.01(-10) 0.031 3965 
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CHAPTER 5 

The Raptis and Allison method 

Introduction 

This method has been developed by Raptis and Allison (1977, pre-

print) specifically to solve the radial SchrOdinger equation 

/ex) = [e"?> - E + V(x) J y(x). ( 5. 1) 

The method takes into account the knol-m form of the solution of (5.1) 

in the asymptotic region. Some work has been done on methods for 

solving second order differential equations which exploit the a priori 

knowledge of the form of the solution (see, for example, Gautschi 1961; 

Gordon 1969; Lyche 1972). we shall concentrate however on the work 

of Raptis and Allison which is a development of some earlier work of 

Lyche (1972) in which it is recognised that for problems of the form 

= f ( x , y ) , / j ) ( a ) = 0 , j =0 , 1 , r - 1 (5.2) 

where the form of the solution is periodic or exponential a polynomial 

approximation to the solution is not always the best approxima~ion 

which may be applied. 

k 1: oL iyn+i 
i=o 

= 

The multistep method 

k 

~ Pif(xn+i' Yn+i) 
i=o 

(5.3) 

where rX k = 1 and ~ and p do not both vanish can be used to solve 
0 0 

(5.2) and a polynomial approximation of degree p is such that the op-

era tor 

i [y(x); h) 

k 

= £ oo( . y(x+ih) 
i=o 1 

( 5. 4) 

annihilates y(x) = 1, x, 2 p+r-1 
X 1 ---, X • If instead we require that 

~ annihilates functions of the form ewx or xmewx which would be more 

appropriate in the case of solving (5.1) the penalty introduced is 

that the coefficients in (5.3) are dependent on the steplength h. 
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Lyche considers the multistep method 

k 2. at.. i (h) Yn+i = 
(5.5) 

i=o 

with first and second characteristic polynomials given by 

= 

and 

= 

Then if the operator L is defined by 

k [ y(x) ;h) ~ ~I ( ) = ~o(i(h)y(x+ih)- hr ~~ ~.(h)y r (x+ih) 
i=o i=o 1 

( 5. 6) 

we can use the following result which appears in the form of a Lemma 

in Lyche (1972) and which is appended by Raptis and Allison (1977). 

The appended result reads: 

Suppose h is fixea and w E: ([ • Let n ~ r if w .= 0 and n ~ 1 

otherwise. Then 

L [xmewx; h) = 0, m = 0, 1, n - 1 

and 

,1; [ x n e wx; h] =f 0 

if and only if the functionp given by 

( 5. 7) 

has a zero of exact multiplicity s at f = ewh where s = n if wf 0 

and s = n - r if w = 0. 

The method of Raptis and Allison is a two step method (k = 2) 

and we derive the method in the following Section. 

f 5.1 Derivation of the Raptis and Allison method 

We consider the method 
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2 II 

~ o( i (h) y (x + ih) = 2: p. (h) y (x + ih) 
1 

(5.8) 

i=o i=o 

for solving (5.2) with r = 2. We have o{ 2(h) = 1 and we can make 

use of the following consistency conditions for the method: 
I II 

,1' (1) = ~ (1) = 0, ,P (1) = 2cr(l) . 

Thus we have 

= 1 

We can evaluate the p coefficients by using Lyche's result with r = 2. 

The coefficients are then given by the solution of 

LJ (e ± Wih) 1 2 ( + Wih ) ( +wih) . 1 2 / = og e- cr e- , 1 = , · ( 5. 9) 

In order that the reciprocal of a root of an equation also be a root, 

as is required in (5.9), we must have 

p (h) 
0 

= 

Thus the first and second characteristic polynomials in (5.9) are 

= (5.10) 

Substitution of (5.10) in (5.9) leads to 

2>. 
.e 

>. 
2-e + 1 = 13

0 
(h)[ 1 +e. 2AJ A 2 + )... 2 e>.. 13

1 
(h) 

e 21J. 2 ell + 1 = J3 o (h)[ 1 + e 21J.] ll2 + ll2e ll P 1 (h) (5.11) 

where A= w1h, 1J. = w2h and the solution of the system (5.11) is 

P <h> = o - i· > 2 ~1-l o -e ll>
2
/' = 

o A~ ll2 J32(h) 

ell I l+e2X) -e. X < l+e21l > 

p 
1 

( h ) = ( 1 - /' ) 
2 

(1 + e 21-l ) 
A_2 (5.12) 

For the application of (5.8) to the solution of the SchrOdinger equation 

(5.1) it is convenient to take w
1 

=wand w2 = 0 since the asymptotic 

form of the solution of (5.1) involves a single exponential argument, 
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Notice that the method may be applied to both the bound state problem 

(where E~ 0 in (5.1)) and the scattering problem by taking w to be 

real and imaginary respectively. We are interested in the scattering 

problem and we set w = ik'in (5.12). We thus arrive at the following 

forms for 13 (h) and J3l(h): 
0 

= 13 (h) k2h2 - 2(1 - cos kh) .132(~) 0 2k2h2 (1 = (5.13a) cos kh) 

131 (h) 
2 2 

(5.13b) = 2- ·~k h + 2)cos kh_ 
~h (1 - cos kh) 

and the corresponding operator j; annihilates the functions 

1 2 3 . k k , X, X , X , S1n X, COS X 

for kt 0. 

For small values of kh, 13
0

(h) and 13
1Ch) are seen to have the 

following power series expansions: 

= 13 (h) 
0 

= .!_ { 1 + (kh )
2 

+ (kh)
4 

+ ---} 
12 . 20 504 

(kh)
4 

- ---} • 
504 

Now if we take w = 0 we see from (5.14) that 

13 (h) 
0 

= 1 = 
12 

13 (h)' 13l(h) = .!.Q. 2 . 12 

(5.14a) 

(5.14b) 

corresponding to the use of Numerov' s method in which .i annihilates 

the functions 1, 2 
X, X , 

3 
X ' 

4 
X ' 

5 
X • Thus Numerov's method is seen 

to be a special case of (5.8). 

~ 5. 2 The local truncation error and its estimation for a fixed 
step length 

For an arbitrary function y(x) having p continuous derivatives 

we define the functional 

~[y(x);h] = y(x+2h)-2y(x+h)+y(x)-h 13
0

(h)y (x+2h)+J3 1(h)y (x+h) 2{ II II 

+130 (h)/ (x)} (5.15) 

and we make use of the following Taylor expansions: 
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y(x+2h) = y(x)+2hy
1 

(x)+---+l (2h)py(p)(x)+l hp+l J2(2-s)py(p+l)(x+sh)ds 

p! p! . 0 

II II Ill 2 ( ) 
y (x+2h) = y (x)+2hy (x)+---+ 1 (2h)p- y P (x) 

( p-2)! 

+ _1_ hp-l J2(2-sl-2/p+l)(x+Sh)ds 
( p-2)! 0 

II 

y (x+h) 
II Ill 2 ( ·) 

= y (x)+hy (x)+---+ 1 hp- y p x 

in (5.15). 

i (y(x);h) 

( p-2)! 

+ _1_ hp-l J1(1-sl- 2/p+l)(x+sh)ds 
( p-2)! 0 

Then for p = 5 we have: 

2 II 3 Ill. 

= h [l-213
0

(h)-13
1
(h)]y (x)+h [l-213

0
(h)-13

1
(h)]y Cx). 

+h4[2._-213 (h)-l13l(h)} ylv(x) 
12 ° 2 

+h5[l-~13o(h)-l131 (h) J yv (x) 
4 3 6 

+h
6[__!_ J2 

(2-s) 5yv
1
(x+sh)ds- .!..._ sl (1-s ) 5yv

1
(x+sh)ds 

120 . 0 60 0 

1
2 

3 v 1 n
1 

3 v 1 J -113 (h) (2-s) y (x+sh)ds-l13
1
(h)j (1-s) y (x+sh)ds 

6 ° 0 6 0 

Now if we make use of the identity 

= 1 

from§ 5. 1 we can express ( 5. 16) in the simplified form 

with 

+ h 5 [1-1213 (h)]yv(x) u 0 

2 
6 r vl 

+~ J G(s)y (x+sh)ds 
120 0 

( 5. 16) 

( 5. 17) 

It is possible to show that 13 (h)~ .!..._ by considering the function 
0 

12 



p (h) - 1 
0 12 

2 2 2(1-cos kh)] - (1-cos kh)k h 

111. 

( 5. 18) 

where we have substituted equation (5.13a) for p
0

(h). For all values 
5.18 

of kh the numerator in (~) is non-negative. Thus p (h).:? 1 . 
0 l2 

Now for 0 ~s 61, 

G( s) = -20p (h)[s 3 + 6(1-s)] + [s 5 + 10(1-s)] (5.19) 
0 

and for 1 ~ s ~ 2, 

G(s) = 3 2 (2-s) [(2-s) - 20p (h)] . 
0 

( 5. 20·) 

Thus by using the fact that p
0

(h) ~ ~2 w~ see from (5.19) and (5.20) 

that G(s)~ 0 for 0 ~ s ~ 2. Hence we may express (5.17) as 

L[y(x);h] 

oL.8'-2 , (5.21) 

with 
2 

c = 1 J G(s)ds 
120 

0 

= 1 [ 16-210/3 (h)] 
360 0 

Notice that when 13 (h) 1 equation (5,21) reduces =- to 
0 12 

j,[y(x);h] (5.22) 

which represents the local truncation error in Numerov's method. 

Now if we use the form for p (h) given by (5.14a) we see that 
0 

the leading term of the local truncation error is proportional to h6 

and is given by 

-h6 r k2 ylv(x) + yvl(x)} I 

240 i 
Notice that (5.23) vanishes for y =sin kx andy= cos kx. 

(5.23) 

In order 

to estimate the quantity in (5.23) we consider using the divided 

difference forms for the fourth and sixth derivatives of y, that is 

lV Vl 
we approximate yk+l by 4! f[xk_ 3 , xk_ 2 , xk-l' xk, xk+l] and yk+l by 

6! f[xk_ 5, xk_4 , xk_3 , xk_ 2 , xk-l' xk' xk+l] which in the case of 

evenly spaced mesh points corresponds to using backward · differences, 
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Thus we consider constructing a sixth divided difference table for 

the calculated solution from which we can extract both the fourth 

and sixth divided differences needed for estimating (5.23). How

ever it was observed in f4.4 that the sixth divided difference table 

will tend to output an estimate for the sixth derivative of the sol-

ution at the midpoint of the range of mesh points considered, that 

is at xk_2 ; similarly the fourth derivative will be estimated at 

the mesh point xk-l' It is important however that the estimates 

for the fourth and sixth derivatives appearing in (5.23) are made for 

the same mesh point, The difficulty can be overcome in the case of 

evenly spaced mesh points by approximating y~:l by 4! f[xk_ 4 , xk_3 , 

But in the case of unevenly spaced mesh points the 

problem must still be resolved, Notice that we can express 

as the fourth derivative of 

2 II 

k y(x) + y (x) (5.24) 

with respect to x. Hence it is possible to estimate (5.23) by con-

structing a fourth divided difference table for (5.24) over a range 

of five mesh points. When solving the radial Schrodinger equation 

given by (5.1) we use 

2 II 

k y(x) + y (x) + V(x) Jy(x). (5.25) 

we shall discuss the necessary implementation for estimating the local 

error in§ 5, 7. 

§ 5. 3 A bound for the local truncation error 

II 

If y(x) is the exact solution of y = f(x,y) and we assume that 

the starting values at x , x 
1

, are exact, that is 
n n+ 

= = 



then we have 

f 
n+l = 

II II 1 
+[1-2~ (h)] y (x +l)+~ (h)y (x ) o n o n 

113, 

= y(x +2 )-2y +l+y -h
2 

{ ~ (h)y
11 

(x 2 )+[ 1-2~ (h) l f 1 n n n o n+ o n+ 

+~0(h)fn} · (5.26) 

Thus the truncation ~rror at x 
2 

is 
n+ 

( 5. 2 7) 

To obtain a bound on this error we assume the usual Lipschitz condition 

for all x in the appropriate interval [a, b) and all finite y and~. 

we also assume a bound on the fourth, fifth and sixth de~ivatives of 

y for all x in [a, b): 

jylv(x)l~ M4,,yv(x)l~ M5, lyvl(x)l ~ M6. 

It is necessary, in addition, on inspection of equation (5.21) to 

provide a bound for each of the quantities 

1 - 12 ~ (h) 
0 

16 - 210~ (h) 
0 

(5.28a) 

(5.28b) 

It is clear from the form of the leading term in the local truncation 

error that we shall require bounds of the form 

11 - 12130 (h) I ~ Ak
2

h
2 

j16 - 21013
0

(h)l::::; B 

where A and B are constants which are suitably defined for h~ some h . 
0 

we may write (5.28a) as 

1-1213 (h) = k2h2(1-cos kh)-6k
2

h
2
+12(1-cos kh) 0 k2h2(1-cos kh) 
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= 

(5.29) 

where 

8 8 
R

8 
= u_ cosh , 

8! v 
o .L. r .rt L.. kh. 

Further simplification of equation (5.29) leads to 

l-12p (h) 
0 

= [ k
6

h
6

+k
8

h
8 

cost - k
8

h
8 

cos tt.] L 4o 120 2. 1680 

!k4h4 [ 1 - k2h2 k4h4 cos ~I 
2 12 + 360 J 

= [ k2h2 k4h4 cosf - k4h4 cos nj.., L 2o + 360 1680 ·~ 

[
1 - k2h2 + k4h4 cos ~] 

12 360 (5.30) 

Now for 0~ kh~ 1t it is possible to show that the denominator of (5.30) 

which may be written equivalently as 

d(kh) = 2 (l-eas kh) 
kZhZ 

is a monotonic decreasing function of kh; for 0~ kh:::-1t we have 

d(kh)~ ~ 
1t 

Thus for 0~ kh ~ tt 

11-12p (h.> 1 ~ (k
2

h
2 

+ k
4

h
4 

+ k
4

h
4
) 1t

2 
0 

20 360 1680 4 

= 

so that 

Similarly we write (5.28b) as 

2 
1t 

4 

16-210p (h) = 
0 

16k2h2(1-cos kh) - l0Sk
2

h
2 

+ 210(1-cos kh) 
k2h2 (l-eas kh) 

(5.31) 
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l- 22 44 ~ 44 ] = - l - l k h + ~ k h cos J - l_k h cos~ 
2 4 45 96 

[
1 - k2h2 + k4h4 cosjJ 

12 360 

Thus for 0 ~ kh ~ 1t , 

/16-210~0(h)j ~ (l + l k
2

h
2 

+I_ k
4

h
4 

+ l_ k
4

h
4

) i 
2 4 45 96 4 

L (l + l 1t2 + 79 1t 4) 4i 
2 4 1440 

36 . (5.33) 

Thus for 0 ~ kh ~ 1t we obtain the bound 

ly(xn+2)-yn+2~~ ~: /l-12j3o(h)/jylv(x)/ + ~~~l-12~o(h)l/yv(x)l 

+h
6 /16-210~ (h)l/yv1(x+8h)l+h

2 {p (h)/ K/y(x 2 )-y +2 / .. 
360 o o n+ n 

we have shown previously-that J3o(h)~ i2 and we seek an upper bound 

on~ (h) for 0 ~kh~1t. p (h) is a slowly varying function of kh 
0 0 

and ~ (h) increases for increasing kh. Thus by considering 
0 

for p (h) given by (5.13a) we have that for 
0 

1 L p0(h)~ 
2 

- 4 1t ...(_ 

12 4 7t2 

Hence 

jl - 0. lSh K I 

and for all h ~ h0 ' f20'we have 
J3K 

I 
6 2 

y(xn+2) - yn+21 ~ h [k N4 + N6] 

where 

N4 = (M4 + haMs) 
48(1-0.IShi,K) 

= 

§s.4 Absolute stability of the method 

0 ~ kh ~ 1t 

0.15 

M6 
10( 1-0. lSh~K) 

the form 

(5.34) 

(5.35) 

This is an area which has not been considered by Raptis and 

Allison. We shall consider the application of the boundary locus 
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method to determine the interval of absolute stability. The locus 

of the boundary of the region of absolute stability is given by 

h (8) = ~ ( ex2 (ie)) 
o- (exp(iB)) 

where 

2 ~ (h)r2 
~(r) = r -~r+l, cr(r) = + [1-213 (h)Jr + 13 (h). 

0 0 0 

Hence we have 

h(O)= -2[1-3~0 (h)J + 2[1-4~0 (h)]cos9 + 2~0 (h)cos 2·e (5.36) 

[ 1-413 (h)+6f3 2(h) )+413 (h)(.l-213 (h)}:os8+2~ 2(h)cos 2e 
0 0 0 0 0 

which implies that the boundary of the region is an interval of the 

real axis. If we equate to zero the first derivative of il(e) with 

respect to & we have 

sine {4~ 2
(h) cost1+4~ (h)[ 1-213 (h)Jcos e +[ 1-2~ (h)]

21= 0 
0 0 0 0 J 

from which it follows that 

or 

sin B = 0 

cos8 -r2~ (h)- 11 = 0. 
2~ (h) 

- 0 ..! 

(5.37a) 

( 5. 3 7b) 

The end points of the interval of absolute stability are determined 

by the valuesof ~which satisfy (5.37). 

hold then we have 

with 

cos e = 2~o(h) - 1 

2f3
0

(h) 

If equation (5.37b) is to 

- 213 (h) ~ 2~ (h) - 1 ~ 2~ (h) 
0 0 0 

since ~ (h) is positive. 
0 

It follows that (5.37b) will hold only if 

1 
~o(h)~4· Hence for 13 (h)~l the endpoints of the stability interval 

0 4 

are determined by the roots of the equation (5.37a), that is bye =0 

and e = 1t for which 



For ~ (h) .:;::. 
0 

as 

That is, 

1, 
4 

h(O) = 0 

h. ( lt ) = --__,4;,..___.,.--,.-
1-4~0 (h) 

ii. <e ) ~---.,.-__,.-=2 (?--=1=--...;:;.c~os:;-...;..B.~) __ _ 
2~ (h)cos e + 1-2~ (h) 

0 0 

cose ~ 2~ (h)-1 
0 

2~ (h) 
0 

ii.(6) ~ - e.D. 
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Hence for p
0
(b)<i the absolute stability regio.n isfl-~~o(h) , 0 J 

1 and for ~0(h)~4 the region is [-oa ,0]. The smallest stability 

interval occurs when ~ (h) has its smallest value, that is when ~ (h) = 
0 0 

~ 2 ; the interval of absolute stability is then given by [-6,0] which 

is the stability region for Numerov's method. The larger the value 

of ~ (h) the larger is the corresponding interval of absolute stability. 
0 

f 5.5 The cumulative error 

The exact solution satisfies 

y(x +2h)-2y(x +h)+y(x )=h ~ (h)y (x +2h)+[l-2p (h)]y (x +h)+~ (h)y (x ) 2f II II II } 

n n - n o n o n o n 

+i[y(xn+l) ;h] 

If we ignore rounding errors the numerical values y satisfy 
n 

Yn+2 - 2Yn+l + Yn = h
2 

{ ~o(h)fn+2 + [ l-2Po(h)] fn+l + f3o(h)fn} 

Now if we assume 

with 

h2
13 (h) L. 1 and 0 ~ kh "- lt 

0 -
K 

we obtain the following bound 
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(5.38) 

* * A for a~ X ~ b, where" K, a and r are defined in .r 4. 2. 3. 
n 

B is given by 

B = 

which for 0.::;:; kh:;;; 1t is just 1 since t2 ~ J30 (h)~ 0, 15. 

Thus the cumulative error is of order h4 , 

f 5.6 The method of Raptis and Allison with variable stepsize 

If Lhe solution is advanced one step from x 
1 

to x 2 by the n+ n+ 

method of Raptis and Allison estimates of the local error per unit 

step and per unit step per unit step are given by 

-h5 ( 2 lV + Vl). 

240 
k yn+l yn+l (5.39) 

and 

-h4 2 lV vl 
(k Yn+l + Yn+l) 

240 
( 5. 40) 

respectively. we shall discuss in §5. 7 automatic implementations 

of the Raptis and Allison method, namely EXPFITl and EXPFI~2 which 

use (5.39) and (5.40) respectively as a means of controlling the 

global error of the method, 

It was noted inf5.2 that 

2 lv ·1 k y (x) + yv (x) 

may be expressed as the fourth derivative of 

2 II 

k y(x) + y (x) (5.41) 

with respect to x. we therefore need to calculate the solution at 

a minimum of five mesh points before an estimate of the truncation 

error can be obtained from a fourth divided difference table of the 

quantity in (5.41). If a decrease in steplength is required we 

shall need to have available a fifth divided difference table of the 

solution y(x) so that values from this table may be used in the inter-
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polation procedure which is a necessary feature of steplength reduc-

tion in the Raptis and Allison method just as it is in Numerov's 

method (see § 4. 3). 

we shall discuss in f' 5. 7. 2 the steplength strategy which has 

been adopted in programs EXPFITl and EXPFIT2; the strategy is precisely 

the same as that adopted in NUMEROVl and NUMEROV2 respectively. the 

only difference being that the updated values of FORTRAN "ariables 

needed for the step after a change in steplength must be modified 

to take account of the h dependent coefficient p. 

i 5. 7 Implementation of the Raptis and Allison method with automatic 
error control 

we shall discuss programs EXPFITl and EXPFIT2 in this section 

and a listing of EXPFITl is provided in Appendix 2; the test program 

solves the single channel radial Schrodinger equation given by (5.1) 

for scattering of an electron by the static potential of atomic 

hydrogen. 

The method of Raptis and Allison applied to the problem in (5.1) 

is certainly a valid approach for obtaining the solution in the class-

ical region; in the non-classical region however the behaviour of the 

solution is difficult to predict. Thus in practice we shall use the 

Numerov method out to the classical turning point and thereafter use 

the method of Raptis and Allison whereupon the coefficients of the method 

will vary with the steplength h. Raptis and Allison state that the 

local truncation error can be used to control the interval size but 

there is no evidence from their study to show that this has been put 

* into practice. In particular they have studied the method for solving 

equation (5.1) with V(x) given by 

V(x) = 500 (l --ra. 
X 

(5.42) 

which is a Lennard-Janes potential; they claim that a comparison with 

* See footnote on page 20. 
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Numerov's method to solve the above problem using the same starting 

conditions indicates a rapid increase with the Raptis and Allison 

method over Numerov's method in the optimal interval size allowed 

from truncation error considerations. we shall give a comparison 

of programs NUMEROVl and EXPFITl in§ 5. 7. 5 when applied to solving 

(5.1) with V(x) given by (5.42). 

f 5. 7.1 Programming the Raptis and Allison algorithm 

The method of Raptis and Allison applied to equation (5.1) is 

expressed as 

[ l-h2J30 (h) A k+l] yk+l = 2[1-h2130 (h)A k] yk- [ l-h2130 (h )Ak-1] yk-l+h2AkYk 

(5.43) 

where 

A = L<t+l> 
r x 2 

r 
The XX and F arrays are used 

E + V( x ) . r 

just as in NUMEROVl and NUNEROV2 to store 

the values of the mesh points and the corresponding calculated solu-

tions. Since we initially use the method of Numerov up to the 

classical turning point, at which point we enter the 

cl~ssical· region, the calculation of the initial step will be pre-

cisely as described in §4.4.3; values of F(l) and F(2) are calculated 

to sufficient accuracy and passed to the routine RAPAL in the argu-

ment list. 

we introduce the quantity BO; BO represents the value of 13 (h) 
0 

and is ~ 2 up to the classical turning point and thereafter its value 

will be given by equation {5.13a). For small values of kh a better 

representation of (5.13) is 

= (5.44a) 
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~l(h) = 
(5.44b) 

and beyond the classical turning point we calculate ~ (h) using 
0 

equation (5.44a). Raptis and Allison have noted that the only 

modification required to computer codes that implement the Numerov 

algorithm is the replacement of the coefficients by subroutines which 

evaluate (5.44). The calculation of ~ (h) from (5.44a) involves 
0 

only a few lines of programming in RAPAL and it is in fact unnecessary 

to calculate ~ 1 (h) from (5.44b) since we can make use of the simple 

relation 

= 1 . 

we introduce the quantities 

y = (1- h
2

BO Ak+l) F (K+l), 

YK = (1 - h2BO~) F(K), 

YPREK = (l-h
2
Bo\_1) F (K-1), 

H2VF = h2A F(K), V = A k' H2 = h2. 
k 

If the steplength h has been used as far as xk then in order to advance 

the integration one step to xk+l we must update the values of YK and 

YPREK for use in the next step. we do this by setting 

H2VF = 

YPREK = 

YK = 

where 

BOl = 

H2* V* F(K) 

( (BO 

( (BO 

BO = 

BOl) *F(K-1) + BOl*YK)/BO 

BOl)*F(K) + BOl*Y)/BO 

1 
12 

(5.45a) 

(5.45b) 

( 5. 45c) 

in the Numerov stage of RAPAL; for the change-over step from Numerov 

to the Raptis and Allison method BO = ~ 2 and BOl is given by (5.44a). 

Thereafter BO and BOl are equal for as long as the steplength re-

mains constant. we shall discuss the case of steplength increase 

and decrease in§ 5. 7. 2 , 
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The following FORTRAN statements calculate the solution at xk+l 

y = 2.0* YK - YPREK + H2VF (5.46) 

F(K+l)= Y/(1.0 - BO* H2 * V) (5.47) 

An estimate of the local error per unit step during the Numerov stage 

of RAPAL is 

TRERR 5 = - ·h DD 
240 

Vl where DD is an estimate of yk+l" 

( 5. 48) 

During the Raptis and Allison stage 

of RAPAL the estimate of the local error per unit step is given by 

(5.48) where now DO is an estimate of the fourth derivative of 

2 II 

(k yk+l + yk+l ). 

§ 5. 7. 2 Steplength strategy 

The parameter EPS which is specified by the user is transferred 

to RAPAL by the common block EKLLl. EPS which is used in EXPFITl 

and EXPFIT2 is the largest allowed local error per unit step and per 

unit step per unit step respectively. The strategy used in EXPFITl 

and EXPFIT2 corresponds exactly to that used in NUMEROVl and NUMEROV2 

respectively. However during the Raptis and Allison stage of RAPAL 

the p coefficients are now dependent on the steplength h and we shall 

therefore need to modify the updating of the variables YPREK and YK 

to account for this. 

we consider first the change-over from Numerov's method to the 

method of Raptis and Allison. Suppose we have reached the mesh 

point XX(K+l) using Numerov's method with a constant steplength h 

and at this point the classical region is entered. Then we must 

use the Raptis and Allison method to calculate the solution at 

XX(K+2) and at all subsequent mesh points. The current values of 

YPREK, YK and Y are 
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YPREK = (l-h 2 p0 (h)~_ 1 ) F (K-1) 

YK = (l-h
2p

0
(h)Ak) F (K) 

y = (l-h2 p0(h)~+l) F (K+l) 

where p (h) 1 
If define =- we 

0 12" 

Y. = (l-h2p 
1

(h)~) F (r) r o r 
I 

where J3 (h) is given by equation (5.44a), we shall require the values 
0 

of YK and YK+l which are the new values of YPREK and YK respectively 

for use in the next step. \ole have 

YK = (l-h
2p

0
' (h)Ak) F (K) 

and thus 
I I 

yl< = ( p ( h ) - p ( h ) )F ( K ) + p (h)YK (5.49a) 
0 0 0 

p (h) 
0 

Similarly 
I I 

( p (h) ~ p (h) )F (K+l) + p (h)Y 
0 0 0 

(5.49b) = 

The FORTRAN implementation of (5.49) is given by (5.45b, c) with K 

replaced by K+l. 

If at the mesh point xk+l a decrease in the steplength h is 

required then the following FORTRAN statements update YPREK and YK: 

YPREK = FPREKl -k ( 1. 0 

YK = . . . 

F(K)*(l.O-BO*H2*V~ 

where FPREKl is the interpolated solution at x -rh where rh is the 
k 

new steplength (roC. 1). BOis i2 during Numerov's method and is 

given by equation (5.44a) when the Raptis and Allison method is 

used. 

Suppose that after reaching the mesh point xk+l with a constant 

steplength han increase in steplength is required; if the step-

length is doubled for the next step we shall require values of the 

solution at the mesh points XX(K-1) and XX(K+l) calculated. wlth a. 

s teple~gth.%. we redefine 



Now YPREK is 

and 

Thus we have 

= 

liimilarly 

= 

Yr = (l-(2h) 2 ~ (2h)A ) F (r) . o r 

given by 

YPREK = 

YK-1 = 

4~0 (2h)YPREK +(~0 (h) - 4~0 (2h))F(K-l) 
~ (h) 

0 

4~ (2h)Y + (~ (h)-4~ (2~)F(K+l) 
0 0 0 

~ (h) 
0 
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Thus we use the following implementation to update YPREK and YK: 

YPREK = (C2*BOl*YPREK + (BO - C2*BOl)~"'F(K-l))/BO 

YK = (-C2"~<BOl'>'cy· + '(BO ·- C2'l'<BOl)*F(K.f-l)-.)/BO 

where C2 = C'>'~ and C(=2) is the factor by which the steplength is 

increased. BOl and BO represent ~ (2h) and ~ (h) respectively; the 
0 0 

next step uses a steplength 2h so we write 

BO = BOl 

§5.7.3 Description of programs EXPFITl, EXPFIT2 

Figure 5 below shows the relationship between the seven routines 

of programs EXPFITl and EXPFIT2 which solve the radial Schrodinger 

equation (5.1); EXPFITl uses a local error per unit step criterion 

and EXPFIT 2 a local error per unit step per unit step criterion in 

'the automatic integration of (5.1). 

we shall concentrate on a description of EXPFITl since EXPFIT2 

is obtained simply by replacing six FORTRAN statements which appear 

in EXPFITl; we shall discuss the necessary modification in part (ii) 

of this Section. Douhle precision is used for all real variables. 
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POT PS 

FIGURE 5 

(i) The main routine 

Since the initial stage of the Raptis and Allison algorithm 

uses Numerov's method the calculation of the initial conditions y 
0 

and y1 is precisely as described inf4.4.3. The main routine in 

EXPF!Tl is thus identical to that in NUMEROVl (see §4.4.4 part (i)) 

with the exception that the conwon block EKLLl is used to transfer 

parameters to the subroutine DIVDIF as well as to RAPAL, PS and POT. 

The main routine now calls the subroutine RAPAL in place of NUMOV 

to perform the automatic integration of (5. 1). 

(ii) Subroutine RAPAL 

Subroutine RAPAL uses the method of Raptis and Allison to solve 

II = f(x,y) y 

using a local error per unit step criterion. The parameters which 

must be supplied to RAPAL as input data are: 

H the initial steplength, 

XO, X, YO, Yl the starting point along with the next mesh point 

X = XO+H and the values of the solution at these 

points. 

XF The calculation terminates somewhere between XF-H 

and XF unless earlier termination has occurred 

because of convergence of the phase shift to the 

required accuracy. 

* Lines (216-226) calculate the values of YPREK and YK for use 

* The line numbers quoted are those appearing on the left hand side of 
the listing of EXPFITl in Appendix 2. 
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in the initial step of Numerov's method and lines 233- 305 implement 

the Raptis and Allison algorithm to advance the calculation one step 

of length H, evaluate the truncation error estimate and decide whether 

or not to alter the steplength and/or the p coefficients in the num-

erical method of solution. The initial stage of the calculation 

uses Numerov's method with constant p coefficients up to the classical 

turning point beyond which the p coefficients vary with the interval 

h in the Raptis and Allison method. 

The decisions to change over from Numerov's method to the method 

of Raptis and Allison and to calculate a phase shift are taken within 

the function subprogram POT. Both these decisions are characterised 

by the parameters IPS which is assigned the value 1 in POT when 

the classical_ region is reached. When this condition is encountered 

lines 246-250 of RAPAL calculate p (h) for subsequent use in the 
0 

Raptis and Allison method and at line 281 the subroutine PS is called 

to calculate the phase shift; the current value of x and the calcul-

ated phase shift are then printed. The IF condition at line 240 

ensures that the first seven steps are taken with the Numerov method 

regard~ess of the value of IPS. 

If at line 271 it is decided that the truncation error is too 

large control is transferred to lines 324-360 for the steplength de-

crease and necessary updating of YPREK and YK and thence to the be-

ginning of the main loop at line 233; if the initial H provided by 

the main routine to RAPAL proves too large then lines 160-170 recal-

culate Yl with the new steplength. 

If the steplength is to be increased line 290 transfers control 

to lines 364-384 for the steplength increase and necessary updating 

of YPREK and YK; line 384 then transfers control to the beginning 

of the main loop. 
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Exit from the Raptis and Allison loop occurs (see line 283) if 

the subroutine PS indicates, by setting JCONV = 1, that the phase 

shift has been calculated to the required accuracy; otherwise termin

ation occurs when it is noted (at line 236) that the next step would 

take the calculation beyond XF. In either case, as in DEVOG in 

program RADISH, the user is informed of the reason for termination 

and information on the number of steps carried_ out and the number of 

increases and decreases of steplength is also printed. 

The corresponding subroutine required for use in EXPFIT2 may be 

obtained by replacing lines 169, 263, 289 and 325 of RAPAL by 

IF (DTERM. GT. O.SDO'l'rH*:H~\-EPS) GO TO 22, 

TRERR = -H**4*DD/2.4D2, 

DTRERR = DTRERR*C**4 

and 

Cl = (0.5DO*TOL/DTRERR)**0.25DO 

In addition lines 90 and 94 of the main routine must be replaced by 

IF(DTERM.LT.H*H*EPS) GO TO 17, 

and 

16 Cl = (0. 5DO'l'rH~\-H~',EPS/DTERMl)**O. 25DO , 

Similarly if the above FORTRAN statements replace the corresponding 

statements in NUHEROVl we obtain program NUMEROV2. 

The test program EXPFITl is based on the SchrOdinger equation 

in the precise form of (3.2) for positive energy E. 

(iii) Subroutine DIVDIF 

The parameters which must be supplied for calls to subroutine 

DIVDIF are DD, K, J, JD, IPS and JB. The first four parameters 

are described inf4.4.4 (part (iii)). In addition the value of DD 

serves to distinguish between calls made to DIVDIF £or the purpose 
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of calculating an estimate of the derivative in the truncation error 

estimate (see§ 5.2) and calls made to extract the values needed for 

the interpolation process in the case of a decrease in steplength 

during the Raptis and Allison method; DD is set to zero immediately 

after the values for interpolation have been found. The parameter 

IPS has been discussed in part (ii) of this Section. JB is set to 

zero during the Numerov stage of the algorithm and is set to 1 when 

the classical region is reached (when IPS = 1). On the next step 

which uses the method of Raptis and Allison the value of JB is 2 and 

this indicates to DIVDIF that the fourth divided difference table 

2 " of (k y+y ) must be set up; thereafter JB has the value 3. 

The array 01(4,4) is introduced to store relevant values in the 

case of a steplength decrease during the Raptis and Allison method, 

A detailed description of DIVDIF is provided by comment cards in the 

listing of EXPFITl (see Appendix 2). 

(iv) Subroutine PS and functions POT, REG, AIREG 

The above have been discussed in~ 4.4 (parts (iv)-(vi)) and are 

used in precisely the same form here, the only exception being that 

POT initialises the calculation of the phase shift by setting IPS = 1 

when the classical region is reached. (The calculation of the phase shift 

could be initiated, if desired, in the so called asymptotic region, 

simply by introducing another parameter, IPS2 say, in calls to the 

function POT; the calculation of the p coefficients would be characterised 

by the value assigned to IPS). POT is called by DIVDIF, RAPAL and the 

main routine of EXPFITl. 

§ 5. 7,4 Test runs 

Programs EXPFITl and EXPFIT2 have been tested for the same set of 

problems as tested by programs RADISH, NUNEROVl and Nill1EROV2 and details 

of the results for these test problems will appear in Chapter 7. 

we consider here the solutions of the following problems over 



the range [x, 20]. 
0 

(i) 
II 2 

y =( ~2.- k ) y j 

130. 

-n fork= 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 with EPS = 10 ,n=3, 4,6, 8. 

(ii) y = fl<l+l)..k +500[1 - 1 y; y =0, y1=y(x1 ), x=x +h, x =0. 7, II 2 ~ 
L 7 \.x'.z. x o 1 o o 

h=O.Ol, for l=o, 2, 4 with k=3.0 andl =0,5, 10 with k=lO.O. 

Problem (i) corresponds to problem (ii) off 3.6 for which the exact 

solution is y = xj
1
(kx); exact starting values for x

0
, x

1
, y

0 
and y

1 

are used and the initial value of the steplength is chosen to be 
1 

. [("240 EPS) S (20 ~ x0\ 1 
ml.n k6!Yol JJ 

in the case of EXPFITl and 
1 . w40EPSr r0-x0 )] 

ml.n ~~ 1 7 

in the case of EXPFIT2. The results for this problem using EXPFITl 

and EXPFIT2 are tabulated in Table 8 and Table 9 respectively of §5. 7.5. 

we have removed the restriction in both programs that the first seven 

steps be performed with the Numerov method; since the potential func-

tion V(x) is zero for this problem the Raptis and Allison ~tage is 

entered when 

is satisfied and for small values of k with a large (> 1) initial 

steplength (acceptable for the Numerov stage of the algorithm) the 

Raptis and Allison stage may be entered fairly quickly, perhaps even 

at the third step. 

Problem (ii) corresponds to the test problem considered by 

Raptis and Allison (1977 preprint) where V(x) corresponds to a 
1 

Lennard-Janes potential. They specify x = 0. 7 and an initial 
0 

steplength of 0.01 and a table of results is provided which shows 

the phase shift obtained accurate to three decimal places for the 

various values of k and l using the Numerov method and the method 
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of Raptis and Allison. They also list the 'final interval' and 

the number of steps used by each method. It is not clearly stated 

what starting conditions were used but we have chosen to provide 

y = 0 and yl = 10-8 with an initial steplength of 0.01 and initial 
0 

, 

mesh point X = 
0 

0. 7 as in Raptis and Allison. Table 10 shows the 

results obtained when NUMEROVl and EXPF!Tl are used to solve this 

problem; we show for each value of k and l which is tested the 

corres·ponding phase shift S to three decimal places along with hmax' 

the largest interval used and N, the number of steps· 

required to solve the problem using Numerov's method and the method 

of Raptis and Allison. The integration is terminated when the phase 

shift has converged to the required accuracy.; the integration is performe.d 

using EPS = 10-G and PSIG = 10-4 . 

? 5. 7.5 Test results 

The relevant statistics which may be extracted from Tables 8 and 

9 are respectively 

a = 4 7. 3 , a ~ 70%, max p 

and 

a = 47.3, a -:e= 52%, ap
5
-cl7%. max p 

we see that EXPFIT2 is more effective in controlling the global error 

than is EXPF!Tl; however the value of a far exceeds that in Tables 
max 

6 and 7 where the method of Numerov is used and a comparison of the 

corresponding values of ap and apS also seems to favour the method 

of Numerov with respect to control of the global error. Against 

this if we compare Tables 7 and 9 we see a substantial decr.ease in 

the number of function evaluations as used in EXPFIT2 compared with 

NUMEROV2 sometimes by a factor which is greater than three. Sim-

ilarly a comparison of Tables 6 and 8 favours EXPF!Tl over NUz.tEROVl 

in terms of the number of function evaluations and the factor by 
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which thi• number is reduced in EXPFITl is sometimes 

greater than two. In all but one case (when EPS = 10-8 , k = 0.1) 

the number of function evaluations used in the programs incorporating 

the Raptis and Allison method is consistently less than that in the 

programs incorporating Numerov's method. we maintain that those 

cases where Numerov's method appears to give a better control of 

the global error than the method of Raptis and Allison are a conse-

quence of NUMEROVl and NUMEROV2 accepting a smaller initial value 

of the steplength; also for small values of k and large values of 

the corresponding initial steplength accepted, the Raptis and Allison 

stage may be entered fairly quickly, as noted in§ 5. 7.4, with the 

result that the steplength increases with higher frequency than it 

would otherwise do in the Numerov stage of the algorithm. In order 

to fully appreciate the advantages to be gained in using the method 

of Raptis and Allison a more ~seful comparison might be ~o provide 

each of the methods with the same initial value of the steplength 

which is acceptable to both methods and then keep this steplength 

fixed throughout the range of integration. A comparison of the 

actual errors then incurred clearly shows that the method of Raptis 

and Allison is superior to that of Numerov; the Raptis and Allison 

method has the effect of damping out the error in the later stages 

of the calculation so that the largest error occurs in the early 

stage of the integration, typically in [x , 5]. 
0 

-3 In particular we consider the case corresponding to EPS = 10 , 

k = 2.0. we have not included in Tables 8 and 9 results for this 

case; unfortunately the initial value of the steplength accepted by 

EXPFITl and EXPFIT2 (2.239 and 2. 739 respectively) on the basis 

that the appropriate error criterion is satisfied is totally mis-

leading since a study of the actual errors.incurred using the large 
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initial steplengthsshows them to be of the same order of magnitude 

as the computed solution and in some cases the order of magnitude 

exceeds that of the computed solution. we chose to provide the 

same initial value of the steplength h to subroutines NUMOV and RAPAL 

and arranged for h to remain fixed throughout the range of integration. 

-3 Then with h = 0.25 for k = 2.0, EPS = 10 we obtained the following 

scaled maximum errors for d = 5, 10, 20 respectively in NUNOV: 

8.31(-5), 1.03(-4), 1.20(-4) 

and 

2.99(-5), 1.53(-5), 7.87(-6) 

in RAPAL. we see from these results the increased effectiveness 

of the method of Raptis and Allison over Numerov's method for solving 

the problem at hand for a fixed steplength. 

Table 10 shows the results obtained for problem (ii). It is 

immediately apparent that the method of Raptis and Allison is able 

to use larger values of the steplength thus resulting in a decrease 

in the number of function evaluations required. In addition 

th.e method of Raptis and Allison uses considerably less time (some-

times by a factor which is near a half) than Numerov to perform 

the numerical integration and extraction of a phase shift. we 

have not compared actual errors which result from each method since 

it is observed that t~e equatimt given in problem (ii) is essentially 

unstable; this is reflected by a small change in the starting 

conditions giving rise to a substantial change in the computed 

solution. 
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TABLE 8 

EPS k d = 5 d = 10 d = 20 INITIAL H N 
I 

10-3 0.1 3.17(-6) 2.87(-6) 1.99(-6) 2.856 6 

0.2 4. 73(-5) 3.59{-5) 3.82(-5) 2.856 6 

0.5 4. 3 7( -4) 2.36(-4) 2.88(-4) 2.856 6 

1.0 3.04(-4) 3.34(-4) 1.95(-4) 2.856 31 

2.0 * * * 
5.0 2.65(-3) 1. 33( -3) 6.93(-4) o. 621 58 

10-4 
0.1 3.17(-6) 2.87(-6) 1.99(-6) 2.856 6 

0.2 4. 73(-5) 3.59(-5) 2. 19(-5) 2.856 6 

0.5 5.07(-4) 5.28(-4) 3. 77(-4) 2. 856 17 

1.0 2.46(-4) 1.43(-4) 7.30(-5) 2.856 35 

2.0 1. 24(-4) 6.31(-5) 3.22(-5) 1.413 59 

5.0 4.95(-5) 2. 70( -5) 1. 48( -5) 0.392 97 

10-6 0.1 3.17(-6) 2.87(-6) 1.99(-6) 2.856 6 

0.2 4. 73(-5) 3.59(-5) 4.24(-5) 2.856 8 

0.5 2.82(-5) 1. 44( -5) 7.32(-6) 2.856 35 

1.0 2.84(-5) 1.40(-5) 7. 19( -6 1.484 63 

2.0 6. 18( -6) 3.15(-6) 1.66(-6) 0.562 112 

5.0 2. 73(-6) 1.45(-6) 7.57(-7) 0.156 204 

10-8 
0.1 2.39(-8) 2. 02 ( -8) • 1.25(-8) 2.856 43 

0.2 4.01(-8) 1. 96( -8) 1.26(-8) 2.856 58 

0.5 4.91(-8) 2.51(-8) 2.21(-8) 1. 559 96 

1.0 5.11(-8) 2.52(-8) 1. 2 7( -8) 0.591 179 

2.0 4.37(-8) 2.38(-8) 2.24(-8) 0.224 274 

5.0 1. 77(-7) 1.15(-8) 6.62(-9) 0.062 525 
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TABLE 9 

EPS k d = 5 d = 10 d = 20 INITIAL H N I 
10-3 0.1 3.17(-6) 2.87(-6) 1.99(-6) 2.856 6 

0.2 4. 73 (- 5) 3.59(-5) 3.82(-5) 2.856 6 

0.5 4.37(-4) 3.36(-4) 2.88(-4) 2.856 6 

1.0 3.43(-3) 1.72(-3) 9.37(-4) 2.856 22 

2.0 * * * 
5.0 1. 06( -4) 5.96(-5) 3.59(-5) 0.551 80 

10-4 0.1 3.17(-6) 2. 8 7( -6) 1.99(-6) 2.856 .6 

o. 2 4. 73(-5) 3.59(-5) 2.19(-5) 2.856 6 

0.5 4.37(-4) 3.36(-4) 2.88(-4) 2.856 6 

1.0 2.30(-4) 1.22(-4) 6.45(-5) 2.856 36 

2.0 6,46(-5) 3.29(-5) 1. 74(-5) 1.540 62 

5.0 1.15(-5) 6.55(-6) 3.52(-6) o. 310 136 

10-6 0.1 3.17(-6) 2. 8 7( -6) 1.99(-6) 2.856 6 

0.2 4. 73(-5) 3.59(-5) 2. 19(-5) 2.856 6 

0.5 2.46(-5) 1.18(-5) 5.97(-6) 2.856 37 

1.0 3.85(-7) 3. 48( -7) 2.01(-7) 1.638 112 

2.0 1. 56( -7) 8.23(-8) 5,04(-8) o. 48 7 177 

5.0 3.17(-8) 2.40(-7) 1.34(-7) 0.098 360 

10-8 0.1 2.01(-8) 1. 56(-8) 9.53(-9) 2. 856 45 

0,2 1. 52 ( -8) 8.60(-9) 1. 70( -7) 2. 856 67 

0.5 7.26(-9) 1.36(-7) 1.45(-7) 1. 742 141 

1.0 4.10(-9) 1.78(-8) 1.06(-8) 0.518 262 

2.0 1. 50(-8) 1.04(-8) 6.15(-9) o. 154 479 

5.0 4. 70( -9) 3.19(-9) 1.21(-8) 0.031 1024 
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TABLE 10 

,. 

NUMEROV RAPTIS AND ALLISON 
k ~ s h N ~ I h N 

max max 

3.0 0 -0.590 0.045 609 * -0.590 0.364 260 

3.0 2 -1.288 0.046 593 -1.288 0.091 276 

3.0 4 0.144 0.046 615 0.144 0.091 344 

10.0 0 -0.431 0,012 1446 * -0.431 0.122 343 

10.0 5 -0.298 0.012 1454 -0.299 0,042 444 

10.0 10 0. 378 0.012 1417 0. 378 0.023 698 

* The values of the phase shift presented by Raptis and Allison 

(1977) for (k, l) = (3.0, 0) and (10.0, 0) should be negated. 
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CHAPTER 6 

A variable-step variable-order Adams method 

Introduction 

The N.A.G. routine D02AHF (N.A.G. Library, 1974) integrates 

a system of first order ordinary differential equation~ over a 

specifte~ mnge, using a variable-step variable-order Adams'method 

(Shampine/Gordan, 1975). The routine obtains an estimate of the 

local error at each step and varies the order and steplength auto

matically to keep this estimate below a prescribed tolerance level. 

We shall discuss in§ 6. 1 the particular Adams Bashforth-Adams Moulton 

method used which lends itself to an efficient implementation in 

routine D02AHF. A detailed discussion of all the various features 

incorporated in D02AHF would prove rather lengthy and we shall 

describe only the basic features such as the initial stage of the 

integration, the error estimation and the strategies adopted for 

changing the steplength and the order. For a more detailed 

description of the algorithm employed in D02AHF the reader is 

referred to Siemieniuch (1972). 

Our reason for using D02AHF is twofold; first as a means of 

solving 
II 

y = f(x, y) (6. 1) 

where 

f(x, y) = r~(t:;)- E + V(x)] y(x) 

as a me thad in its own right in program NAQ-100, and second to 

incorporate its use in programs RADISH, NUMEROVl, NUMEROV2, EXPFITl 

and EXPFIT2 to generate high accuracy parallel solutions to those 

calculated by the methods of de Vogelaere, Numerov and Raptis and 

Allison. Program NAGMOD uses a modified version of the routine 

D02AHF to compute the solution of (6.1) where of course (6.1) is 
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treated as the pair of coupled first order differential equations 

= 

= (6.2) 

where we have substituted y
1 

= y in (6. 1). Details of the modific-

ations required to D02AHF specific to our needs appear in f 6. 2. 

In order to study the actual errors which accumulate in routines 

DEVOG, NUMCV and RAPAL during the course of integration in cases 

where the exact solution of the problem is not known we use D02AHF 

to provide solutions to high accuracy at the same points which have 

been chosen automatically in these routines; thus we may regard the 

N,A,G. solution as an 'exact' solution of the problem, 

Description of D02AHF 

The routine D02AHF uses the kth order Adams Bashforth formula 

combined with the (k+l)st order Adams Moulton formula in the PECE 

mode to calculate the solution of the first order equation 

t 
y = f(x, y), 

or systems of such equations, 

point x may be written as 
n+l 

= y(x ) + 
n 

y(x ) 
0 

= (6.3) 

The solution of (6.3) at the mesh 

X 

J
n+l 

f(x, y(x))dx, (6.4) 

X 
n 

The Adams Bashforth formula of order k uses a po~nomial Pkn(x) to 
I 

interpolate the values f , f 
1

, 
n n-

and is given by 

= = 

f k 
1 

where f. = f(x.,y.) 
1 n- + 1 1 1 

X 

Jn+l 

X 
n 

Pk (x)dx ,n 
(6.5) 

This is an explicit formula for the so called predicted value pn+l 

of the solution at x 
1

. 
n+ 

The Adams Moulton formula of order k+l 

uses the same values which are used in (6.5) along with p 1 and is 
n+ 



given by 

= + 

where 

P (x . ) 
k+l, n n+l- J 

= 

= 

X 

Jn+l 

X 
n 

Pk 1 (x)dx + ,n 

f j = 1, n+l-j' 

= 
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(6.6) 

k 

(6. 7) 

This is an implicit formula which yields a corrected value for the 

solution at x 
1

• 
n+ 

One representation of the interpolating polynomial Pk (x) is 
,n 

the divided difference form: 

+(x-x )(x-x )---(x-x )f[x x --- x J (6.8) 
n n-1 n-k+2 n' n-1' 'n-k+l 

which in the case of evenly spaced mesh points reduces to the back-

ward difference form: 

pk (x) ,n = 

where h is the steplength. The routine D02AHF is based on the 

divided difference form (6.8) of the interpolating polynomial. Most 

steps in the integration are taken in groups of constant steplength 

and constant order and these stages will use (6.8) in the reduced 

form (6.9); the form (6.8) proves convenient particularly for error 

estimation when estimates at different orders are required. 

Efficient implementation of the Adams methods 

An efficient implementation of the Adams Bashforth-Adams Moulton 

method described above has been fully discussed in Shampine/Gordan 

(1975, Chapter 5). 

h. 
l. 

= 

Introducing the quantities 



s = 

ol... (n+l) 
~ 

~ 1 (n+l) 

X - "n 
h 
n+l 

= h + h + --- + h ~ ~ 1 
n+l n n+2-i' 4 

' 

= i? 1 

= 

~i(n+l) = l\J 1(n+Otp 2(n+l) ---~ i-l(n+l), i:? 1 

l\i1(n)l}l2(n) --·-YJi-l(n) 

f[x ] 
n 

= f , 
n 
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cpi(n) = Y'1(n)~2(n) ---~i-l(n)f[xn,xn-1'---,xn-i+l],i> 1 

we see that a typical term of Pk (x) is ,n 

(6.10) 

(x-x )(x-x 
1
)---(x-x . 

2
)f[x , x 

1
,---,x "+l]=c. (s)~.*(n) 

n n- n-~+ n n- n-~ ~.n r~ 

where 

c. (s) = 
~,n 

and 

~/(n) = 

Thus 

= 

and 

= 

= 

1 

~. ( n+ 1) ,.!., • ( n). ~ '-Y~ 

~ * z_.c. (s)rh.(n) 
i=l ~.n r~ 

y + n 

X 

Jn+l 

X 
n 

( £ c. ( s) rh. * ( n )\ dx 
i=l ~. d ~~ ') 

£ rh .\n) .J\. (s)ds. f l. o ~ ,n 
i = 1 

i = 1 

i = 2 

i It 3 

(6.11) 

(6.12) 

(6. 13) 

( 6. 14) 
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Finally we obtain the following form for the predicted value pn+l: 

k 
g. lcp.*<n) pn+l = yn + hn+l £ ( 6. 15) 
~. ~ 

i=l 

where 

gi,q = 1 i = 1 
q 

1 i = 2 
q(q+l) 

g~-1, q -d.. l(n+l)g. 1·· · ' ... ~- ~- • CH-1 
i ~ 3 . (6.16) 

The corrected value is given by (6.6) and we may write 

Pk+l n(x) = P (x)+(x-x )(x-x )---(x-x )fp[x --- x ] , k,n n n-1 n-k+l n+l' ' n-k+l 

(6.17) 

where we have introduced a superscript p on the divided difference 

associated with Pk+l,n(x). Equation (6.17) may be expressed as 

= 

and integration of the above equation with respect to the variable s 

yields 

h rhp . 
Pn+l+ n+lgk+l,lrk+l(n+l) . 

= 
( 6. 18) 

If a corrector of order k is used then equation (6.18) is replaced by 

(Shampine/Gordan, 1975, p.lOl) 

= pn+l + hn+l gk,l~~+l (n+l), (6.19) 

which corresponds to taking one less term in (6.18). The Milne error 

estimate for the algorithm is then 

(6.20) 

The method uses formulae of orders one up to thirteen and considers 

only halving and doubling of the steplength in cases where the step-

length must be decreased and increased respectively. The gk 1 co-
' 

efficients are stored as fractional constants for k = 1, ---, 10 and 
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for k = 11, ---, 14 they are computed from the recurrence relation 

(6.16); notice that for a constant step length o( (n+l) = ~- The 
~ ~ 

summation in (6.15) is performed in reverse order starting with the 

highest order divided difference in order to minimise machine round-

off error and the current value of the independent variable x is 

computed by subtracting (ST-1) times the current value of the step-

length H from the value of x at the end of the integration range, 

where ST is. an integer variable and is the number of steps left to the 

end of the range for the current value of the steplength. The deriv-

atives of the predicted and corrected values p 
1 

and y 
1 

are evaluated 
n+ n+ 

using an auxilliary routine AUX (N.A.G. Library, 1974) which is supplied 

by the user. Differences associated with Pk,n(x) and Pk+l,n(x) of 

(6.5) and (6.6) must also be evaluated; several of the computed diff-

erences are retained for the next step and the computations are organ-

ised so that they· are as economical of storage as possible (see 

Shampine/Gordan, 1975, Chapter 5). 

Strategies for order and steplength selection 

The estimate given in (6.20) of the local truncation error will 

in general overestimate the quantity since the Milne error estimate 

requires the predictor and corrector formulae to be of the same order. 

Suppose we have reached the mesh point x . 
n 

The routine D02AHF accepts 

the predicted value at x 
1 

= x +h as sufficiently accurate if the 
n+ n 

absolute value of the error in each component of the predicted value 

of the solution is less than 0.1 times the error allowed in a mixed 

error test; if G(I), I=l,---,N is the real array which contains the 

error bounds specified by the user for each of the N components of 

the predicted solution vector YP(I) and the estimate of the local 

truncation error in each component is E(I) then a mixed error test 



143. 

requires 

G(I) x (1+ /YP(I)/) (6.21) 

in order that the predicted value be acceptable. This error test 

is specified by an integer variable T which is set to 1 on initial 

entry to D02AHF. The values T = 2 and T = 3 give an absolute and 

relative error test respectively, that is 

G(l) (6.22) 

and 

G(l) x jYP(I)l · (6.23) 

If the error criterion in (6.21) is not satisfied then the step-

length is halved and the integer ST is doubled; in addition the diff-

erence table associated with pk (x) must be retabulated and a~ efficient ,n 

algorithm (Krogh, 1973) is incorporated in D02AHF specifically for 

this purpose, The corresponding algorithm for doubling the steplength 

is also incorporated in D02AHF. However the use of these algorithms 

as described by Krogh (1973) can sometimes lead to a catastrophic 

growth in errors, particularly in the case of halving the steplength 

(see Hall ~nd watt, 1976, Chapter 6) and Krogh's modification of the 

halving algorithm is employed; when used on the next two steps after 

halving it has the effect of smoothing the differences. 

The decisions to change the order and double the steplength are 

performed simultaneously after the corrected value of the solution has 

been obtained. The estimates of the local truncation error are 

weighted so as to simulate a doubling of the steplength; thus to in-

crease the order from k to k+l and the steplength from h to 2h the 

error in each component of the corrected value of the solution must 

have absolute value less than (0.1)2-(k+2 ) times the error allowed in 

a mixed error test. An increase in order from k to k+l is only per-

formed if at least k+l steps at order k have been taken. The counter 

QO is used for this purpose. At the beginning of the integration 
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QO is set to -1; thus two steps must be acceptable before increasing 

the order from one to two in the initial stage of the algorithm. 

The integer variable Q denotes the current order. QO is increased 

by one after each successful step and for values of QO ?- Q we can 

consider either increasing the order by one or doubling the steplength, 

or both. After suitable modification of the steplength and/or the 

order, QO is reset to zero. 

creases in steplength. 

No such restriction .is placed on de-

Using the corrected differences estimates of the local truncation 

error for the orders k-1, k and k+l are computed where k is the current 

order of integration. The order in the next step is selected accord-

ing to the minimum value of the weighted error estimates obtained at 

these three orders, If the steplength is doubled then the integer 

variable ST must be halved; however in cases where ST is odd immediately 

before an impending increase in steplength no increase in steplength 

is performed until the criterion for steplength doubling is again sat-

isfied with ST even. The justification for this strategy is that an 

important feature of the algorithm is the automatic choice of an 

initial steplength such that any subsequent halving or dpubling of 

this steplength over the specified range of integration will cause 

the integration to terminate exactly at X + HO where· X is the initial 

mesh point supplied by the user and HO is the length of the integration 

range. 

Finally we consider an additional test which is introduced to 

guard against the order becoming too high. With the retabulation 

of the difference table it may be the case that for large values of 

the order k some of the higher order differences have become un

reliable; for a well behaved function the kth divided difference 

usually decreases in magnitude as the order k increases. Thus a 

sudden increase in the magnitude of the kth divided difference for a 
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particular value of k signals either that there is a discontinuity in 

the derivative of the solution or that round-off errors have accumul-

ated to such a level that we can no longer consider the divided diff-

erence table to be reliable. Routine D02AHF reduces the order to 

k-1 if such a condition is encountered; if the calculated differences 

are still unacceptable the order is reduced by one successively until 

the differences become acceptable. we also note that as the order 

k increases the regions of absolute stability decrease fairly rapidly 

and a further advantage of the lower order methods is that they in-

valve less computation. 

§ 6. 1. 3 The initial stage 

Routine D02AHF calculates EPS which is the smallest positive real 

number such that 

1.0 + EPS /' 1.0 

and SMAX which is the largest integer su_ch that SMAX and -SMAX can be 

represented on the comp.uter. According as the integer variable T is 

1, 2 or 3 on initial entry to D02AHF the error test given by (6.21), 

(6.22) or (6.23) is adopted for testing the error in each component 

of the predicted solution vector. 

The array GMA(I), I-1,---,14 is set up and contains the values 

gk 1' k=l,---,14. , Routine D02AHF chooses its own initial value of 

the steplength to ensure that the range of integration HO is made up 

of ST intervals of length H where ST is an integral power of two and 

H is chosen to be as near as possible to the initial value of the 

steplength supplied by the user. Before estimating the first step 

of the algorithm the value of T is negated, Q is set to 1 and QO is set 

to -1. It is now possible to proceed with the calculation of the 

predicted and corrected values for the solution at the first and 
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subsequent mesh points. 

An error indicator !FAIL is used by the routine; if the integra-

tion has been successfully comp-leted the value !FAIL = 0 will be re-

turned. The values !FAIL = 1, 2 indicate respectively that the 

number of steps required to complete the interval exceeds SMAX and 

that H=O or H~HO on a second or subsequent entry to the routine, 

A modified version of D02AHF 

For the purpose of using routine D02AHF to provide high accuracy 

parallel solutions to those calculated by the methods of de Vogelaere, 

Numerov and Raptis and Allison we use D02AHF in the form described in 

f 6.1. In Chapter 7 we shall compare the reliability and efficiency 

of the routines DEVOG, NUMOV and RAPAL in controlling the global error 

in the solution of (6.1) and in extracting a phase shift for a partic

ular value of the energy E and angular momentumt . In order to in-

clude the routine D02AHF in this comparison we shall require that it 

incorporates an error per unit step criterion and that the error test 

G(I) x Max t . 1, ~yp (I) I} 

for each component of the predicted solution vector YP is satisfied. 

Of course the same initial stepleng~h and mesh point must be supplied 

in DEVOG, NUMOV and RAPAL in order to provide a meaningful comparison. 

we shall refer henceforth to the modified version of D02AHF as DNGMOD 

and to the program which uses DNGMOD to solve (6.1) as NAGMOD. DNGMOD 

requires as starting values the solution and its first derivative at 

the initial mesh point, 

In order to compute a phase shift a decision must be taken within 

NAGMOD as to when such a calculation should begin. The decision is 

actually taken within the auxilliary routine AUX and the calculation 

of a phase shift is signalled when the integer parameter IPS is set 
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to 1 in AUX. Just as in program RADISH the phase shift is calculated 

in routine PS which is called by routine DN~10D; if the phase shift 

has converged to the required accuracy the integer parameter JCONV is 

set to 1 in DNGMOD and when this condition is encountered ST is reset 

to 1 which has the effect of automatically terminating the calculation 

in DN. GMOD. A message is printed to the effect that the phase shift 

has converged to the required accuracy along with information concern-

ing the number of function evaluations performed during the course of 

the integration. Figure 6 below shows the relationship between the 

six routines of program NAGMOD. 

~ 1----11 DNGMOD 1----------1 
L.__..J 

rAUX 

Figure 6 

Test runs 

Results for the performance of program NAGMOD in solving equation 

(6.1) in the equivalent form of two first order coupled differential 

~ 
equations for a range of values of E and e will be described in 

Chapter 7. 

we consider here the solution of problem (i) of §s. 7.4 in its 

equivalent form of two first order coupled differential equations. 

The exact solution is y = xj
1
(kx) and exact starting values for x

0
, 

is chosen to be 

h 

are used, 
xo 

The initial value of the steplength 

= min [EPS , EPS l 
Vol Vol 

where f may be easily calculated and EPS is different to that calcul
o 
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-n ated internally in routine DNGMOD and takes the valuesEPS = 10 , 

n = 3, 4, 6, 8 for a range of values of k. The above estimate of 

the initial steplength incorporates an error per unit step criterion 

and is based on the assumption that the error of a first order method 

is h times that of a zero order method. The results for this problem 

using NAQ.tOD are tabulated in Table 11 of J 6. 4. 

J 6.4 Test results 

We see from Table 11 that routine DNGMOD does an extremely good 

job of controlling the global error and we note that DNGlOD has a 

number of sophisticated features which are absent from routine DEVOG, 

NUMOV and RAPAL. The value of a is 0.572 and consequently a and max p 

apS are both zero, However the penalty introduced in gaining such 

high accuracy is reflected by the large number of function evaluations, 

most noticeably for the lower energy values; even at the high energy 

values the number of function evaluations far exceeds the corresponding 

number in Table 7 for program NUMEROV2. Since.the ~ethod start~ with 

a formula of first order the initial value of the steplength is nee-

essarily small particularly when the accuracy requirement is high. 

The value of H which is tabulated is that which is accepted by DNGMOD 

as sufficiently accurate for the first order method; the value supplied 

by the user will invariably be decreased in order that the new step-

length adhere .to the step length strategy of DNGMOD (see§ 6.1. 3). 

Notice that for EPS = 10-8 with k = 1.0, 2.0, 5.0 routine DNGMOD 

returns the error indicator !FAIL = 1; the initial value of H accept-

able in DNGMOD is so small that the computer is unable to handle the 

large number of steps required to complete the interval. The typical 

behaviour of routine DNGMOD is for the order to increase fairly rapidly 

in the initial phase of the integration once an appropriate steplength 
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at each order has been found. 

One might argue a case for using NAGMOD with an error per step 

criterion in view of the exceedingly small (relative to EPS) values 

of the scaled maximum error, a, which appear in columns 3 - 5 of 

Table 11 throughout the range of EPS. However a test run using 

NAGl-lOD incorporating an error _per step criterion to solve the problem 

of§ 6. 3 proves to be totally unsatisfactory with respect to control 

of the global error. The initial steplength is chosen to be 

h = 
min [ o~:Y . . (,~:1 ) i J 

and the initial steplength accepted by routine DNGMOD is tabulated in 

Table 12 along with the scaled maximum errors for the above problem. 

The relevant statistics are 

a 
max 

and we note that in the majority of cases a exceeds EPS by a factor 

far in excess of five throughout the range of EPS. 
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TABLE 11 

EPS k d = 5 d = 10 d = 20 INITIAL H N 

10-3 o. 1 1. 23( -4) 7. 54( -5) 3.77(-5) 0. 122(-2) 136 

0.2 1.50(-4) 7.53(-5) 3. 77(-5) o. 122(-2) 129 

0.5 2.35(-5) 1.18(-5) 1.40(-5) 0.610(-3) 169 

1.0 3.32(-6) 1. 66( -6) 2.11(-4) 0.305(-3) 272 

2.0 1. 77(-6) 1. 53( -4) 1. 28(-4) 0.305(-3) 419 

5.0 1.66(-4) 1.17(-4) 1. 10( -4) 0.152(-3) 6[J8 

10-4 
0.1 2. 71(-6) 1.66(-6) 8.32(-7) 0.305(-3) 185 

o. 2 3.32(-6) .1.66(-6) 8.32(-7) 0.305(-3) 198 

0.5 4.42(-7) 2.21(-7) 9.21(-7) 0.152(-3) 229 

1.0 5. 71(-8) 1.50(-5) 5. 72(-5) 0. 763(-4) 294 

2.0 2.23(-6) 4.41(-5) 2.21(-5) 0,381(-4) 468 

5.0 8.21(-6) 1. 00( -5) 2.07(-5) 0.191(-4) 864 

10-6 0,1 8.87(-11) 5.45(-11) 2.73(-11) 0, 953( --5) 251 

0.2 8.08(-12) 4.05(-12) 2.03(-12) 0.477(-5) 273 

0.5 1. 20( -12) 3. 16(-12) 8.12(-9) 0,238(-5) 305 

1.0 2.60(-10) 7.85(-8) 5.27(-8) 0.119(-5) 412 

2.0 2.32(-8) 6.94(-8) 5.17(-8) 0.596(-6) 644 

5,0 3.03(-8) 1.52(-8) 7.68(-9) 0,298(-6) 126 7 

: 

10-8 
0.1 5. 53( -12) 3.40(-12) 1.70(-12) 0.149(-6) 261 

0.2 8.68(-12) 4.34(-12) 2. 1 7( -12) o. 745( -7) 321 

0.5 1.16(-12) 2.24(-12) 3.12(-11) 0,186(-7) 379 

1.0 * * * 
2.0 * * * 
5.0 * * * 

* !FAIL = 1 
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TABLE 12 

EPS k d = 5 d = 10 I d = 20 INITIAL H I N 

10-3 0, 1 3.14(-2) 1.93(-2) 9.64(-3) 0,390(-1) I 58 

5~83(-3) 
I 

0,2 2,33(-2) 1.17(-2) 0.195(-1) 83 

0,5 1.05(-2) 5.25(-3) 2.63(-3) 0,976(-2) 109 

l, 0 1.05(-2) 5.79(-3) 3.05(-3) 0,976(-2) 123 

2.0 2.35(-3) 1.18(-3) 1.29(-3) 0.488(-2) 201 

5,0 1.95(-3) 9. 74(-4) 6. 57( -4) 0.488(-2) 517 

10-4 
0.1 8.55(-3) 5.25(-3) 2.63(-3) 0.976(-2) 94 

0.2 3.40(-3) 1. 70(-3) 8.52(-4) 0.488(-2) 123 

0.5 3,40(-3) 1. 70(-3) 8.52(-4) 0.488(-2) 116 

1.0 8,10(-4) 4,05(-4) 2,03(-4) 0,244(-2) 233 

2. 0 4,29(-4) 2,15(-4) 1.73(-4) 0,244(-2) 282 

5.0 4.83(-5) 4.14(-5) 4.81(-5) 0,122(-2) 55 7 

10-6 0,1 1.23(-4) 7. 54( -5) 3. 77(-5) 0.122(-2) 134 

0.2 1. 50( -4) 7.53(-5) 3. 77(-5) 0,122(-2) 128 

0.5 9.33(-7) 1,96(-6) 5.88(-6) o. 610( -3) 176 
-

1.0 2.32(-5) 1,16(-5) 5.82·(-6) 0,610(-3) 230 

2.0 1. 77(-6) 1. 01( -6) 6.45(-7) 0,305(-3) 507 

5.0 9.27(-7) 7.19(-7) 8,80(-7) 0.305(-3) 964 

10-B 0, 1 2. 71(-6) 1.66(-6) 8. 32(-7) 0.305(-3) 183 

0.2 4.41(-7) 2.21(-7) 1. 10( -7) 0,152(-3) 181 

0.5 4.42(-7) 2.21(-7) 1. 11(-7) 0.152(-3) 263 

1.0 5. 71(-8) 4.32(-8) 2. 19(-8) o. 763(-4) 383 

2.0 4.89(-8) 2.52(-8) 1. 36( -8) o. 763(-4) 617 

5.0 3.93(-9) 5.62(-9) 6.91(-9) 0, 381(-4) 1153 
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CHAPTER 7 

Numerical comparison of RADISH, NUMEROV2, EXPFIT2, NAGMOD 

Introduction 

We have developed six programs, namely RADISH, NUMEROVl, NUMEROV2, 

EXPFITl, EXPFIT2 and NAGMOD which incorporate numerical methods with 

automatic error control for the solution of 

y'(x) = 
[

L(L + 1) 
x2 

E + V(x) 1 y(x) (7. 1) 

We are now in a position to undertake a numerical comparison of the 

performance of the methods of de Vogelaere, Numerov, Raptis and Allison and 

the Adams B~hforth-Adams Moulton method of Chapter 6, when used to int-

egrate (7.1) with automatic error control. ~ole shall investigate the 

reliability of each of the numerical methods with respect to control 

of the global error and we are also interested in the relative effie-

iency of the programs in calculating the phase shift for problem (7.1) 

for a· range of values of energy E, angular momentum L and the potential 

function V(x). 

We saw in Chapters 4 and 5 that NilltEROV2 and EXPFIT2 do a consid-

erably better job of controlling the global error in the numerical 

integration stage of the calculation than do NUMEROVl and EXPFITl 

respectively and for this reason we exclude NUMEROVl and EXPFITl from 

our comparison. 

In order that the comparisons be meaningful we must provide as 

far as possible the same starting conditions for the solution. of (7.1) 

and in§7.1 we discuss the modifications which must be performed in 

order that the programs may be reasonably compared. we describe the 

test problems in§ 7.2 and the results and conclusions of our numerical 

comparison are discussed in~ 7. 3. 
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Criteria for comparison. 

The initial values which must be supplied to programs RADISH and 

NAGHOD are approximations for the solution and its first derivative, 

at the starting point x ; programs NU}mROV2 and EXPFIT2 
0 

require approximations for the solution y
0 

at x
0 

and y
1 

at the next 

point x
1 

where x
1 

= x
0
+h with h the initial steplength. The same 

values of x and y must be used by each program and we arrange that 
0 0 

the second starting condition is such that the accuracy attained in 

the computed solution at the end of the first step meets the necessary 

requirement particular to the method of solution being used. 

end the criterion for choosing x
0

, in the notation of §3.5, is 

la5lxo 
1+5 0.1 X EPS x EPS ~ -

(see§4.4.3). Yo is then computed as 

~ L+i 
Yo = a. X 

i=l 
l. 0 

To this 

(7. 2) 

(7. 3) 

The first 8 coefficients of the expansion for the potential V(x) given 

by (3.50), are read as data in the main routine of each program and 

the coefficien~s a 2 , ---, a
9 

are calculated with a 1 = 1. 

that the term hz be given sufficiently accurately w·e take 
0 

z 
0 

= 4~J~8 

In order 

where J is the first value of I (>4) for which the following condition 

holds 

h(L+I) I aJ+ll x0IA-J~ 0.1 x EPS x EPS. 

This criterion is also used for choosing z in NAGMOD. 
0 

{7. 4) 

The criterion 

for choosing y
1 

in NUMEROV2 and EXPFIT2 has already been discussed in 

§4.4.3. 

Thus the following modifications must be made to program RADISH 

in order that it be used in the numerical comparison; 8 coefficients 
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of the expansion for the potential must be supplied to the main rout-

ine and x , y , z must be chosen as described above. 
0 0 0 

In order to study the actual errorswhich accumulate in routines 

DEVOG, NUMOV, RAPAL and DNGNOD during the course of the integration 

we shall use routine D02AHF to provide high accuracy parallel solut-

ions to those calculated by the methods of de Vogelaere, Numerov, 

Raptis and Allison and Adams Bashforth-Adams Moulton respectively. Now 

routine D02AHF will require the value of z and the main routines of 
0 

RADISH, NUMEROV2, EXPFIT2 and NAGMOD must provide the value of z for 
0 

this purpose. 

we shall provide the programs with the same value of XF, the 

endpoint of the range of integration; it is not necessary however when 

solving (7.1) to insist that the integration end exactly at XF. In 

the case of Nill1EROV2 and EXPFIT2 the integration will stop somewhere 

between XF-H and XF and in the case of RADISH it will stop between 

XF-H and XF+H. The integration in NAGMOD will stop precisely at XF 

since the steplength within routine DNGMOD is in fact chosen to meet 

this requirement. 

we shall solve a set of test problems which are determined by the 

form of the potential V(x) in equation (7.1). One aim is to produce 

a set of tables of the form of Table 12 which records the scaled max-

imum error over [x , d] where d = 5, 10, 20. 
0 

The values a a max' p 

and ap
5 

which may be extracted from the tables reflect the reliability 

of a particular algorithm in solving the test problem for a range of 

values of energy and angular momentum subject to different error re-

quirements. Our second aim is to compare the phase shuts computed 

by our programs with the published values and to compare for each 

program the CPU times required by the computer to perform the numer-

ical integration and extraction of the phase shift. 

we have tried as far as possible to write programs RADISH, NUMEROV2 
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and EXPFIT2 to the same specification. The steplength strategy is 

the same for each of the numerical methods employed in these programs; 

increases are limited to a factor of two and decreases must be allowed 

wherever necessary and the appropriate decrease factor chosen. De-

creases in NAQlOD however are restricted to halving only. The step-

length criteria adopted in RADISH, NUMEROV2 and EXPFIT2 have been seen 

to work quite adequately in each program although it may well be that 

these criteria could be further improved. 

Test problems. 

We consider the numerical solution of (7. 1) over the range [x ,20] 
0 

with an initial steplength of 0.1 (this value is completely arbitrary) 

supplied by the master driver to the integration routine (DEVOG, N~lOV, 

RAPAL or DNGMOD) with the potential given by one of the following: 

(i) V(x) = -2(I+~r -2x 

(ii) V(x) -2(!+1+..!. J -x = x+~x e 
X 4 4 

(iii) V(x) -2 -x = e 
X 

for the following range of values of k(E = k2 ) 

k = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 

with L -n = 1, and EPS = 10 , n = 3, 4, 6, 8. 

For each of (i) - (iii) we have drawn up tables which for programs 

RADISH, NUMEROV2, EXPFIT2 and NAGMOD display the value of EPS, k, the 

0. 
scaled maximum error ;(over 5, 10 and 20 units, H the initial value 

of the steplength accepted as sufficiently accurate and N the number 

of function evaluations performed over [x , 20). 
0 

The values of a , max 

ap and ap
5 

in each table are also shown. Those tables for (i) - (iii) 

are listed in§7.3; the potentials of (i), (ii) and (iii) are respect-

ively the effective potential between an electron and the ground state 
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of a hydrogen atom, the effective potential between an electron and the 

2s state of a hydrogen atom and the screened coulomb potential. 

In addition we solve (7.1) for a range of values of E and L with 

V(x) given by (i) - (iii) where the values of E and L are chosen to 

allow comparison of the computed phase shifts~ 
1 

with the published 

values. The range of values of E and L are tabulated along with the 

published value of the phase shift and the computed phase shifts ob-

tained from RADISH, NUMEROV2, EXPFIT2 and NAGMOD. These calculations 

are performed for EPS = 10-6 , PSIG = 10-4. Also tabulated are the 

CPU times required by the four programs to perform the numerical 

integration of (7. 1) and to extract a phase shift. Some other test 

problems have also been considered, namely the solution of (7.1) by 

each program with V(x) given by (iv) - (vi) below: 

( iv) V(x) -x 
= -ze 

(v) V(x) = 2(1~ )e -
2

x 

-2x( 5 4 3 J. ) (vi) V(x) = 2e+~)e- 2x~<x),ol(x) = 2-le .x +2x +9x +l.Zx+27 x+ll 
X ~ 2 3 2 2 2 4 

The results have been tabulated as for (i) - (iii) but we shall not 

present the tables here. 

All calculations are performed on .the NUMAC (Northumbrian Univer-

sities Multiple Access Computer) IBM 370/168 computer and all real 

variables used in the calculations are in double precision form. 

f 7. 3 Test results. 

Tables 13 - 15 display the scaled maximum errors over the range 

of integration [x , 20] for (i) - (iii) respectively using program 
0 

RADISH. we notice that a, the factor by which the scaled maximum 

error exceeds EPS exceeds unity at each of the tolerances tested 

particularly at the more stringent ones. The maximum value of a, 

a , which exceeds 5.0 is recorded for EPS = 10-
8 

and for EPS in 
max 

the range 10-n, n = 3, 4, 6 a does not exceed 2.5. 
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Tables 16 - 18 and 19 - 21 display the scaled maximum errors 

over [x , 20] using programs NilllEROV2 and EXPFIT2 respectively for 
0 

( i) - (iii). The values of a obtained using NUNEROV2 are less max 

than 5.0 and consequently ap
5 

is zero. a exceeds unity only at the 

more stringent tolerances (EPS = 10-6 , l0-8 ) but the percentage of 

such cases which is reflected by the value of a is very small. A 
p 

comparison of the number of function evaluations performed by RADISH 

and NUMEROV2 for each of (i) - (iii) shows that NUNEROV2 is more 

efficient in this respect. NilllEROV2 and RADISH both control an error 

which is proportional to h4 where h is the steplength for NUMEROV2 and 

2h is the corresponding steplength for RADISH; the coefficient of the 

error in NUMEROV2 is smaller by a factor which exceeds five and this 

might explain why the steplength increases more rapidly in NUNEROV2. 

The values of a obtained using EXPFIT2 are higher than those of 
max 

NUMEROV2; again a exceeds unity only at the more stringent tolerances 

and a , although slightly higher than in NUMEROV2, remains small. 
p 

Note that the values of H listed for Nill!EROV2 and EXPFIT2 for a part-

icular test problem are the same; this is to be expected since EXPFIT2 

initially uses the method of Numerov until a change-over to the Raptis 

and Allison method is effected. This change-over subsequently speeds 

up the calculation by allowing a more rapid increase in the steplength. 

This is reflected by a substantial decrease in the number of function 

evaluations performed using EXPFIT2 over NUNEROV2 particularly in cases 

where the energy is large; EXPFIT2 often uses less than one third of· 

the corresponding number of function evaluations of NUNEROV2. 

Tables 22 - 24 display the scaled maximum errors over [x
0

, 20) 

using program NAGMOD. a is less than unity and consequently a 
max P 

and ap
5 

are both zero. The values of H accepted by routine DNGMOD 

as sufficiently accurate are exceedingly small and are approximately 

one order of magnitude smaller than EPS; for EPS = 10-
8 

the routine 
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consistently returns the error indicator IFAIL=l. While program 

NAGHOD does an extremely good job of controlling the global error 

the excessive number of function evaluations which must be performed 

particularly at the larger tolerances (EPS = 10-3 , 10-4 ) is clearly 

undesirable. We have rerun program NAGHOD incorporating instead 

an error per step criterion (this will relax the condition for chaos-

ing an initial value of H) for the solution of (7. 1) with the potential 

given by (i) - (vi). We still find that a large number of function 

evaluations must be performed although the number is considerably 

less than in NAQ10D with an error per unit step criterion particularly 

for EPS = 10-3 , 10-4 . At the larger energies and at the more strin-

gent tolerances the number of function evaluations performed is consid-

erably less than in RADISH and NUMEROV2. The values.of a however max 

for (i) - (vi) are large and vary from approximately seven to seventy 

five when an error per step criterion is used in NA~10D and in addition 

the ratio of ap 5 to ap is fairly large; a number of cases occur where 

a exceeds EPS by a factor which is far in excess of 5.0. Thus we 

see that NA~10D with an error per step criterion does a relatively 

poor job of controlling the global error. 

Tables 25, 27 and 29 list the published and computed values of 

the phase shift rL for test problems (i), (ii) and (iii) respectively 

for a range of values of energy E and angular momentum L. The CPU 

times (in seconds) required to perform the numerical integration and 

calculation of the phase shift for test problems (i), (ii) and (iii) 

are listed in Tables 26, 28 and 30 respectively. 

In most cases the phase shifts produced by the four programs agree 

within themselves to the number of figures quoted in the published 

values; where there are small discrepancies our results are confirmed 

by calculations which we have carried out with more stringent accuracy 
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-8 -5 requirements (e.g. EPS = 10 , PSIG = 10 ). In particular if we use 

a more stringent accuracy requirement in RADISH and EXPFIT2 for problem 

(iii) then the agreement between the phase shifts obtained using RADISH, 

EXPFIT2 and the remaining programs is much improved. Of the four pro-

grams, EXPFIT2 performs by far the least number of function evaluations 

in the numerical integration stage of the calculation particularly at 

the higher energies and we might expect EXPFIT2 to be the most efficient 

with respect to computer time considerations. NAGl-10D uses consider-

ably more function evaluations than does RADISH which in turn us~ft5 

more than NUMEROV2. 

The CPU times which are listed in Tables 26, 28 and 30 are subject 

to variations of approximately ± 5% due to a time sharing environment 

but it is possible to ascertain which of the programs is the most 

efficient in terms of the amount of CPU time required to perform the 

numerical integration and subsequent extraction of the phase shift. 

At small energies the CPU times are comparable for RADISH and NUMEROV2 

(being slightly in favour of RADISH) and we see that EXPFIT2 is less 

efficient than NUMEROV2 in this respect. At the larger energies (E> 1) 

RADISH uses less time than EXPFIT2 and considerably less (often by a 

factor which is near a half) time than NUMEROV2. In all cases EXPFIT2 

performs less function evaluations than does NUMEROV2; however the 

overheads in EXPFIT2 are higher than in NU}ffiROV2 because of the addit-

ional complexity of routine DIVDIF in EXPFIT2. For more complicated 

forms of the potential we might expect EXPFIT2 to be the most efficient 

of the programs with respect to computing time. As expected, the CPU 

times required by NAGMOD far exceed those of RADISH, Nill!EROV2 and 

EXPFIT2. 

we ask the question: which program gives the most reliable and 

efficient solution of (7.1) for the range of data considered? Pro-

gram NAGHOD with an error per unit step criterion undoubtedly gives 
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the best control of the global error. However the excessive number 

of function evaluations which must be performed disqualifies NAGMOD 

from the point of view of efficiency. Of the remaining three pro-

grams NUMEROV2 and EXPFIT2 give the best control of the global error. 

If one is interested primarily in efficiency then EXPFIT2 requires 

the least number of function evaluations but RADISH is the more eff-

icient with respect to computer time considerations. This presumably 

is due to the method of calculating the truncation error estimates 

which in EXPFIT2 is a time consuming process; subroutine DIVDIF might 

well be improved to give a more efficient process for the calculation 

of the derivative required in the truncation error estimate. Each 

of the programs give reliable values for the phase shift and we would 

recommend the use of program RADISH to the user who is interested in 

extracting a phase shift with the minimum expenditure of computing time. 

-3 RADISH also gives a good control of the global error for EPS = 10 , 

10-4 , l0-6 ; the user interested in extracting phase shifts will not 

normally request high accuracy in the solution. For the user who is 

primarily interested in the control of the global error in the numerical 

integration stage of the calculation we recommend the use of program 

N~mROV2 or EXPFIT2; at the most stringent tolerance tested, that is 

EPS = 10-8 , NUMEROV2 gives a slightly better control of the global 

error than does EXPFIT2 but for the lower (realistic) tolerances either 

of the two programs is recommended. If in addition phase shifts are 

to be extracted the choice between the two programs is more clear-cut. 

With respect to the efficient use of computing time we recommend the 

use of NUMEROV2 for low (~1, say) energy values and EXPFIT2 for the 

higher energy values. 



EPS 

10-3 

10-4 

10-6 

10-8 

TABLE 13 

RADISH for prob1em(i) 

k d = 5 

0.1 4.58(-5) 

0.2 4.66(-5) 

0.5 4.52(-5) 

1.0 6.57(-4) 

2.0 5.65(-4) 

5.0 1.19(-3) 

0.1 7.18(-5) 

0.2 7.24(-5) 

0.5 7.37(-5) 

1.0 5.06(-5) 

2.0 7. 44( -5) 

5.0 1.03(-4) 

o. 1 1.61(-6) 

0.2 1. 74(-6) 

0.5 1. 79(-6) 

1.0 2.23(-6) 

2.0 1.52(-6) 

5.0 8.94(-7) 

0.1 2.85(-8) 

0.2 3.10(-8) 

0.5 4.60(-8) 

1.0 8.86(-8) 

2.0 9. 70(-8) 

5.0 3.38(-8) 

amax = 9. 70, 

d = 10 

2.39(-5) 

2.32(-5) 

5.22(-4) 

9.21(-4) 

8. 71(-4) 

1.32(-3) 

3.48(-5) 

3.36(-5) 

3. 72(-5) 

1.05(-4) 

1. 04( -4) 

1.10(-4) 

8.66(-7) 

8.47(-7) 

8.91(-7) 

1.44(-6) 

9.90(-7) 

6.38(-7) 

1. 48( -8) 

1. 56(-8) 

2.32(-8) 

4.44(-8) 

4.84(-8) 

2.18(-8) 1 

a = 75%, 
p 

d = 20 

1.17(-5) 

5.64(-5) 

7.06(-4) 

1.65(-3) 

1. 06( -3) 

1.33(-3) 

1.81(-5) 

1.69(-5) 

1. 13(-4) 

1. 60( -4) 

1.14(-4) 

1. 18(-4) 

3. 50(- 7) 

1. 30( -6) 

8. 18( -7) 

1. 58 ( -6) 

8.51(-7) 

5.81(-7) 

6. 76( -9) 

8.90(-9) 

1. 90( -8) 

4.38(-8) 

2.69(-8) 

1. 80( -8) 

161. 

I 
H N 

0. 1000 38 

0. 1000 38 . 

o. 1000 44 

0. 1000 64 . 

o. 1000 106 

0. 1000 202 

0.0667 52 

0.0667 56 

0.0663 78 

0.0573 114 

0.0686 190 

0.0537 388 

0.0086 126 

0.0086 140 

0,0085 226 

; 
0,0083 344 

0.0082 630 

0. 0071 1432 

o. 0013 314 

0,0013 364 

0.0013 602 

o. 0013 998 

0. 0013 1702 

0.0009 3496 



162. 

TABLE 14 

RADISH for problem (ii) 

EPS k d = 5 d = 10 d = 20 H N 

10-3 0.1 1. 97( -5) 8.32(-6) 3.36(-6) 0. 1000 40 

0.2 2.33(-5) 1.29(-5) 7.37(-5) 0.1000 42 

0.5 1. 32(-4) 9. 97(-5) 7.11(-4) 0. 1000 46 

1.0 4.87(-4) 9.68(-4) 1.06(-3) o. 1000 62 

2.0 6,40(-4) 8.64(-4) 9.00(-4) o. 1000 108 

5.0 1.17(-3) 1.18(-3) 1.29(-3) 0.1000 202 

10-4 0.1 3.80(-5) 1.82(-5) 9.17(-6) 0. 0795 58 

0,2 4.09(-5) 2.07(-5) 1.11(-5) 0.0784 58 

0.5 4.92(-5) 2. 71(-5) 8.63(-5) 0.0751 76 

1.0 6.04(-5) 3.86(-5) 8.03(-5) o. 0729 122 

2,0 3.27(-5) 7.37(-5) 9.80(-5) 0.0741 198 

5.0 9.84(-5) 1. 06( -4) 1.09(-4) 0,0530 386 

10-6 o. 1 1.84(-6) 8.81(-7) 4.18(-7) 0.0123 142 

0,2 1.80(-6) 8.45(-7) 4.21(-7) 0.0121 150 

0.5 2.52(-6) 1. 55(-6) 1.35(-6) 0. 0115 196 

1.0 1.95(-6) 1.77(-6) 1. 57(-6) 0.0095 294 

2.0 1.35(-6) 1. 06( -6) 9.97(-7) 0.0090 - 596 

5.0 9.16(-7) 6. 34( -7) 5.65(-7) 0.0071 1434 

10-8 o. 1 8.32(-9) 5.42(-9) 2.58(-9) 0.0017 366 

0.2 8.49(-10) 2.47(-9) 1. 23( -8) 0.0017 398 

0.5 3.24(-8) 1.80(-8) 2.60(-8) 0.0016 580 

1. 0 4.28(-8) 2.82(-8) 2. 18(-8) 0.0015 840 

2.0 7. 74(-8) 4.11(-8) 2.42(-8) 0.0014 1676 

5.0 3.45(-8) 2.12(-8) 1.72(-8) 0.0009 3520 

a = 7. 74, a ::e=. 54%, a =::::: 4%. 
max p p5 



163. 

TABLE 15 

RADISH for problem (iii) 

EPS k d = 5 d = 10 d = 20 H N 

lo- 3 0.1 7. 24(-5) 3. 74 (- 5) 1.86(-5) 0. 1000 38 

0. 2 7.22(-5) 3.59(-5) 6.35(-5) 0. 1000 38 

0.5 6.53(-5) 4.46(-4) 6.19(-4) 0. 1000 44 

1.0 7.45(-4) 9.27(-4) 1.37(-3) 0. 1000 62 

2.0 5.95(-4) B. 51(-4) 9.34(-4) 0. 1000 106 

5.0 1.17(-3) 1.31(-3) 1.33(-3) 0. 1000 202 

10-4 
0. 1 5.18(-5) 2.86(-5) 1.45(-5) 0. 0548 . 56 

0.2 5.17(-5) 2. 71(-5) 5.16(-5) 0.0548 60 

0.5 5. 77( -5) 2.69(-5) 1.53(-4) 0.0553 76 

1.0 6. 73(-5) 1. 09 ( -4) 1.61(-4) 0.0570 llO 

2.0 7.35(-5) 1. 08( -4) 1. 1 7( -4) 0.0698 188 

5.0 1.03(-4) 1.13(-4) 1.17(-4) 0.0538 382 

10-6 0.1 2.36(-6) 1.20(-6) 5.33(-7) o. 0079 128 

o. 2 2.45(-6) 1.20(-6) 6. 46( -7) 0.0079 140 

0.5 2.37(-6) 1.17(-6) 1.27(-6) 0.0080 226 

1.0 2.48(-6) 1. 54( -6) 1.38(-6) 0.0081 348 

2.0 .1.47(-6) 1.00(-6) 8. 78( -7) 0.0084 620 

5.0 9.01(-7) 6.39(-7) 5. 77(-7) 0.0071 1434 

10-8 0.1 8.62(-8) 4.38(-8) 2. 14(-8) 0.0012 320 

0.2 8.80(-8) 4.43(-8) 2.20(-8) 0.0012 364 

0.5 8.99(-8) 4.53(-8) 2.26(-8) 0.0012 604 

1.0 1. 04( -7) 5.18(-8) 4.06(-8) 0. 0013 974 

2.0 9,23(-8) 4.61(-8) 2. 57(-8) 0.0013 1726 

5.0 3.38(-8) 2. 15(-8) 1. 77( -8) 0.0009 3514 

a = 10.4, a~ 71%, apS:::C:::-21% 
max P 



EPS k 

10-3 o. 1 

0.2 

0.5 

1.0 

2.0 

5.0 

10-4 
0. 1 

0.2 

0.5 

1.0 

2.0 

5.0 

10- 6 
0.1 

0.2 

0.5 

1.0 

2.0 

5.0 

10-B o. 1 

o. 2 

0.5 

1.0 

2.0 

5.0 

TABLE 16 

NUMEROV2 for prob1em(i) 

d = 5 d = 10 

4.90(-6) 3.19(-6) 

4. 74(-6) 3.10(-6) 

7.27(-6) 3.92(-4) 

5.07(-5) 5.15(-5) 

2. 72(-5) 4.21(-5) 

5.20(-5) 5.59(-5) 

3. 00( -7) 2. 68(- 7) 

3.17(-7) 3. 60( -7) 

1.85(-6) S.ll(-5) 

2.67(-5) 2.53(-5) 

1.46(-5) 1.96(-5) 

5. 76(-6) 6.28(-6) 

8.18(-8) 2.89(-8) 

B. 11(-8) 2. 76(-8) 

7.58(-8) 2.83(-7) 

3. 30( -7) 2. 75(-7) 

1. 56(-7) 1.87(-7) 

6. 74(-8) 7.25(-8) 

6.26(-10) 6.33(-10) 

6. 72(-10) 1.49(-9) 

4. 2 7( -10) 4.33(-9) 

3.47(-9) 3.22(-9) 

1.69(-9) 1.90(-9) 

7.56(-10) 8.00(-10) 

a = 2.61, max 

d = 20 

1.65(-6) 

3.27(-5) 

7.05(-4) 

6.82(-5) 

4.63(-5) 

5.92(-5) 

l. 48( -7) 

4. 37(-5) 

1.29(-5) 

3.58(-5) 

2.00(-5) 

6.55(-6) 

5.61(-8) 

1.69(-6) 

3.85(-7) 

3.49(-7) 

l. 55( -7) 

7.53(-8) 

3.34(-10) 

2.61(-8) 

1.86(-8) 

4. 70( -9) 

1.88(-9) 

8. 75(-10) 

a 
p 

12%, 

164. 

H N 

0. 1000 24 

0. 1000 24 

0. 1000 33 

0.1000 57 

0.1000 102 

0.1000 198 

o. 1000 31 

0. 1000 31 

0. 1000 49 

0. 1000 73 

0. 1000 12 7 

0.0688 351 

0.0548 70 

0.0550 "i6 

0.0565 122 

0.0618 2ll 

0.0667 421 

0.0189 1067 

0. 0174 175 

0. 0174 18 7 

0. 0179 336 

o. 019 7 630 

0.0160 1246 

0.0057 3222 

= 0 



EPS k 

lo- 3 o. 1 

0.2 

0.5 

1.0 

2.0 

5.0 

10-4 0.1 

0.2 

0.5 

1.0 

2.0 

s.o 

10-6 0.1 

0,2 

0.5 

1.0 

2."0 
-

5.0 

10-8 0.1 

0,2 

0.5 

1. 0 

2,0 

5.0 

TABLE 17 

NUMEROV2 for problem (ii) 

d = 5 d = 10 

2.35(-5) 2.88(-5) 

2.82(-5) 4.41(-5) 

1. 09( -4) 1.01(-4) 

2.58(-5) 4.20(-5) 

4.02(-5) 4.02(-5) 

5.23(-5) 5.60(-5) 

4.94(-6) 4.66(-6) 

5.45(-6) 6.15(-6) 

1.52(-5) 8.63(-6) 

1.71(-5) 3.17(-5) 

1. 50(-5) 1.68(-5) 

4.61(-6) 4.88(-6) 

2.16(-7) 1. 49( -7) 

2.31(-7) 2. 03( -7) 

5.06( -7) 2.68(-7) 

1.98(-7) 1.90(-7) 

1. 38 (- 7) 1. 18 ( -7) 

5. 78( -8) 6.07(-8) 

2.41(-9) 1.58(-9) 

2.55(-9) 1.88(-9) 

5.49(-9) 2.92(-9) 

3.93(-9) 3.65(-9) 

2.09(-9) 2.21(-9) 

7,60(-10) 8. 73(-10) 

a 
max = 2.61, a =::::.. 4% 

p ' 

d = 20 

1.10(-5) 

1.35(-4) 

3.89(-4) 

4.49(-5) 

3.95(-5) 

5. 73(-5) 

1.45(-6) 

.4;34( -5) 

2.29(-5) 

3.98(-5) 

1. 78( -5) 

5.01(-6) 

1.37(-7) 

1.07(-7) 

3.60(-7) 

1. 84( -7) 

1. 18( -7) 

6.23(-8) 

2.22(-9) 

2.61(-8) 

5.23(-9) 

3.83(-9) 

2.28(-9) 

9. 31 ( -10) 

165. 

H I N 
I 

0. 1000 26 

0. 1000 26 

o. 1000 28 

0. 1000 56 

o. 1000 102 

0.1000 198 

0. 1000 34 

o. 1000 34 

o. 1000 42 

o. 1000 61 

o. 1000 129 

0.0650 3 76 

0. 0782 77 

0.0790 85 

0. 1000 98 

0.1000 198 

o. 1000 413 

0.0182 1103 

0,0248 207 

0.0251 22 7 

o. 02 74 296 

0.0278 557 

0.0193 1164 

0.0055 3188 

= 0. 



166. 

TABLE 18 

NUMEROV2 for problem (iii) 

EPS k d = -5 d = 10 d = 20 H N 

10- 3 
0.1 1. 04( -5) 4.62(-6) 2.31(-6) 0.1000 24 

0. 2 1.07(-5) 4. 77(-6) 3.46(-5) 0.1000 24 

0.5 9.31(-6) 2.45(-4) 7.29(-4) 0.1000 31 

1.0 4.39(-5) 4.64(-5) 6. 12(-5) 0.1000 56 

2.0 2. 78(-5) 4.22(-5) 4.48(-5) o. 1000 102 

5.0 5.33(-5) 5.68(-5) 5.89(-5) 0.1000 198 

10-4 0.1 2. 72(-6) 1.37(-6) 6.92(-7) 0. 1000 31 

o. 2 2. 78 ( -6) 1.29(-6) 4.55(-5) 0. 1000 31 
: 

0.5 3.17(-6) 6.06(-5) 3.48(-5) 0. 1000 48 

1.0 2.20(-5) 2.26(-5) 2.97(-5) 0. 1000 71 

2.0 1.25(-5) 1.55(-5) 1. 59(-5) 0, 1000 133 

5.0 5.65(-6) 6.11(-6) 6.37(-6) 0.0684 353 

10- 6 
0.1 1. 68( -7) 8.35(-8) 4.52(-8) 0.0497 72 

0.2 1. 70( -7) 7.18(-8) 3. 74( -7) 0.0498 78 

0.5 1.72(-7) 2.01(-6) 1.20(-6) 0.0506 128 

1.0 3.36(-7) 2.62(-7) 3. 16( -7) 0.0530 209 

2.0 1.61(-7) 2.24(-7) 1. 77(-7) 0.0538 410 

5.0 6.37(-8) 6.82(-8) 7.06(-8) 0.0186 1084 

10-8 
0.1 2. 77(-9) 1.17(-9) 3.90(-10) 0.0156 189 

o. 2 2. 76(-9) 1.21(-9) 4.40(-9) 0.0157 218 

0.5 2.59(-9) 1.34(-8) 1.30(-8) 0.0159 328 

1.0 3.93(-9) 3.21(-9) 4.27(-9) 0. 016 7 617 

2. 0 1.76(-9) 2. 16(-9) 2.28(-9) 0.0169 1189 

. 
5.0 7.18(-10) 7.82(-10) 8. 37(-10) 0.0056 3303 

a = 2.01, 
max = 0 



16 7. 

TABLE 19 

EXPFIT2 for prob1em(i) 

EPS k d = 5 d = 10 d = 20 H N 

'· 

10-3 0.1 4.90(-6) 3.19(-6) 1.65(-6) 0.1000 24 

0.2 4. 74(-6) 2.98(-6) 2.94(-6) 0. 1000 25 

0.5 2.65(-6) 2.31(-5) 8.50(-5) 0,1000 27 

1.0 4. 79(-5) 2.68(-5) 7.82(-5) o. 1000 33 

2.0 2.02(-5) 3.68(-5) 2.93(-5) 0. 1000 43 

5.0 8.35(-6) 1.69(-5) 1.24(-5) 0. 1000 59 

10-4 0.1 3. 00( -7) 2. 68(:-7) 1.48(-7) 0. 1000 31 

0.2 3.17(-7) 2.73(-7) 5.62(-7) 0. 1000 31 

0.5 3.35(-7) 1. 2 7(- 5) 6.18(-6) 0. 1000 38 

1.0 3.91(-6) 9.56(-6) 1.28(-5) 0. 1000 45 

2.0 1.29(-6) 4.53(-6) 3.12(-6) 0. 1000 69 

5.0 2.06(-6) 2.22(-6) 1. 93(-6) 0.0688 107 

10-6 0.1 8.18(-8) 2.89(-8) 5. 77(-8) 0.0548 70 

0.2 8.11(-8) 3.01(-8) 1. 38( -7) 0.0550 71 

0.5 7.18(-8) 2.13(-7) 7.33(-7) 0.0565 90 

l.·o 7. 20( -8) 1.25(-7) 1.01(-7) 0.0618 125 

2.0 3.82(-7) 1.90(-7) 9.87(-8) 0.0667 171 

5.0 1. 59( -8) 1.56(-8) 8. 84( -7) 0.0189 312 

10-8 0.1 6.26(-10) 6.69(-10) 4.56(-10) 0. 0174 176 

0.2 6. 72(-10) 7.00(-10) 1.29(-7) 0. 0174 177 

0.5 4.02(-10) 2.66(-9) 3.90(-8) 0. 0179 255 

1.0 3.67(-9) 4.16(-8) 2.21(-8) 0. 019 7 329 

2.0 7. 78(-9) 6.61(-9) 1.17(-8) 0.0160 490 

5.0 1.00(-9) 4.15(-9) 3.08(-9) 0.0057 823 

'a = max 12 . 9 , a P -:6: 1 7%, a p 5 ~ 4%. 



168. 

TABLE 20 

EXPFIT2 for prob1em(ii) 

EPS k d == 5 d == 10 d == 20 H N 

10-3 0.1 2 35(-5) 2.88(-5) 1.10(-5) 0. 1000 26 

0.2 2.82(-5) 4.39(-5) 2.44(-5) 0.1000 26 

0.5 1. 09( -4) 9.36(-5) 7.43(-5) 0.1000 27 

1.0 1.86(-5) 2.38(-5) 5.80(-5) 0.1000 32 

2.0 2.60(-5) 4.15(-5) 3.68(-5) o. 1000 38 

5.0 1. 80(- 5) 7.68(-6) 1.43(-5) 0.1000 57 

10-4 0.1 4.94(-6) 4.66(-6) 1.09(-6) o. 1000 34 

0.2 5.45(-6) 5.87(-6) 3.23(-6) 0.1000 35 

0.5 1. 53 (- 5) 6.22(-6) 1.32(-5) o. 1000 36 

1.0 2.07(-6) 1. 52 ( -6) 5.09(-6) 0. 1000 49 

2. 0 1.91(-6) 2. 79(-6) 2.12(-6) 0. 1000 66 

5.0 1. 54(-6) 7.45(-7) 9. 14( -7) 0.0650 105 

10-6 0.1 2.16(-7) 1.49(-7) 1.29(-7) 0.0782 78 

0.2 2.31(-7) 2.03(-7) 1.07(-7) 0.0790 81 

0.5 5. 08( -7) 2. 71(-7) 3.30(-7) o. 1000 81 

1.0 1.62(-7) 1. 16( -7) 7.49(-7) 0.1000 107 

2.0 1.48(-7) 2. 55(-7) 1.49(-7) 0. 1000 157 

5. 0 2.55(-8) 1.27(-8) 2.07(-8) 0.0182 294 

10-8 0. 1 2.41(-9) 1. 58(-9) 2.03(-9) 0.0248 206 

0. 2 2.55(-9) 1.92(-9) 2.51(-8) 0.0251 212 

0.5 5.50(-9) 2.02(-9) 1.93(-8) 0.0274 247 

1.0 2.35(-9) 1.93(-9) 5.21(-9) 0.0278 331 

2.0 5.27(-9) 1.18(-8) 8.90(-9) 0.0193 469 

5.0 1.24(-8) ' 6.33(-9) 3.80(-9) 0.0055 788 

a == 2.51, a ~ 17%, a == 0 
max p p5 



TABLE 21 

EXPFIT2 for problem (iii) 

EPS k d = 5 d = 10 d = 20 H N 

10-3 0.1 1. 04( -5) 4.62(-6) 2.30(-6) o. 1000 24 

0.2 1.07(-5) 4.82(-6) 2,12(-6) 0. 1000 25 

0.5 1. 04( -5) 3.14(-5) 9.43(-5) 0.1000 27 

1.0 3.88(-5) 3.39(-5) 6.12(-5) 0. 1000 31 

2. 0 1. 77(-5) 2.54(-5) 3.42(-5) 0. 1000 42 

5.0 8.17(-6) 1.55(-5) 1.18(-5) o. 1000 58 

10--4 o. 1 2.72(-6) 1.37(-6) 6.92(-7) 0. 1000 31 

0.2 2. 78(-6) 1.29(-6) 8. 08( -7) o. 1000 31 

0.5 2.89(-6) 1.35(-5) 6.81(-6) 0. 1000 37 

1. 0 3.89(-6) 1. 20(- 5) 1.15(-5) 0.1000 45 

2.0 8.55(-6) 7.84(-6) 4. 76( -6) 0. 1000 63' 

5.0 1.64(-6) 2.07(-6) 1. 80( -6) 0.0684 107 

lo-6 o. 1 1.68(-7) 8.35(-8) 2. 16{-8) 0. 049 7 73 

0.2 1. 70(-7) 7.18(-8) 5.22(-7) 0.0498 74 

0.5 1. 74(-7) 2.89(-7) 3.64(-6) 0.0506 92 

1.0 3. 37(-7) 2.16(-7) 2.11(-7) 0.0530 123 

2.0 1.40(-7) 8.37(-8) 6.16(-8) 0.0538 167 

5.0 1.05(-7) 1. 15(-7) 6.63(-8) 0.0186 405 

lo-8 o. 1 2.77(-9) 1.17(-9) 5.81(-10) 0.0156 189 

0._2 2. 76(-9) 1.21(-9) 9.07(-8) 0.0157 193 

0.5 2.84(-9) 3.21(-9) 1.58(-8) 0.0159 261 

1.0 2.56(-9) 1.82(-8) 1.25(-8) o. 016 7 338 

2.0 1.67(-9) 5.16(-9) 9.00(-9) 0.0169 4 76 

5.0 5.58(-10) 3.82(-9) 3.37(-9) 0.0056 841 

a = 9.07, a ~l'"flo, apS:!:::. 4% max p 



170. 

TABLE 22 

NAGMOD for problem (i) 

EPS k d = 5 d = 10 d = 20 H N 

10-3 0.1 9.88(-9) 4.89(-9) 1.98(-9) 0.606(-3) 254 

0.2 1.05(-8) 5.16(-9) 2.55(-9) 0.606(-3) 326 

0.5 5.50(-8) 1.59(-7) 7,85(-5) 0.606(-3) 206 

1.0 1.43(-8) 7.03(-8) 9.43(-5) 0.607(-3) 302 

2.0 2.96(-8) 1.14(-4) 1.28(-4) 0,607(-3) 3 76 

5.0 8.60(-5) 4.26(-5) 3.58(-5) 0.304(-3) 708 

10-4 0.1 7. 91( -10) 6.03(-10) 4.07(-10) o. 761(-4) 285 

0,2 2.29(-10) 1.32(-10) 1.95(-9) o. 761(-4) 297 

0.5 1.05(-9) 1.80(-8) 5.07(-8) 0.380(-4) 298 

1.0 2.27(-9) 1.95(-5) 5.97(-5) 0.380(-4) 368 

2.0 7.99(-6) 3.93(-5) 1.97(-5) 0.380(-4) 464 

5.0 8.19(-7) 9. 70( -6) 1. 54(- 5) 0,381(-4) 802 
I 

10-6 0.1 1.43(-8) 9.42(-9) 3.02(-9) 0.596(-6) 318 

0,2 7.07(-10) 9.13(-10) 1. 50(-8) 0.596(-6) 392 

0.5 6.40(-10) 2.40(-8) 4.40(-8) 0.596(-6) 364 

1.0 2. 65( -10) 5.01(-8) 1.20(-7) 0,596(-6) 4 78 

2.0 2.35(-8) 3.28(-8) l. 09( -7) 0.596(-6) 624 

5.0 5. 13(-8) 2.55(-8) 1.27(-8) 0.298(-6) 1262 

10-8 o. 1 * * * 
0.2 * * * 
0.5 * * * 
1.0 * * * 
2.0 * * * 
5.0 * * * 

a = 0. 59 7, a = 0 = apS max p 

* !FAIL = 1 



EPS k 

10-3 o. 1 

o. 2 

0,5 

1.0 

2.0 

5.0 

10-4 0.1 

0.2 

0.5 

1.0 

2.0 

5.0 

·-6 10 0.1 

o. 2 

0.5 

1.0 

2.0 

5.0 

10-8 0.1 

0.2 

0.5 

1.0 

2.0 

5.0 

* !FAIL = 1 

TABLE 23 

NAGMOD for prob1em(ii) 

d = 5 

2.06(-9) 

1.13(-8) 

3.62(-9) 

2.95(-8) 

8.88(-6) 

1. SO( -4) 

6.95(;.._12) 

1.42(-7) 

3.55(-9) 

4. 68( -11) 

4.43(-6) 

6.61(-6) 

7,60(-10) 

6. 72(-13) 

3.42(-11) 

1.01(-10) 

4.13(-8) 

1.52(-8) 

* 

* 

* 

* 

* 

* 

a 
max = 

d = 10 d = 20 

1.05(-9) 1.76(-9) 

5.80(-7) 3.28(-6) 

5.85(-8) 3. 76(- 5) 

9. 78 ( -6) 2.65(-4) 

9.63(-5) 1.21(-4) 

1.30(-4) 1. 14( -4) 

5.94(-10) 9.26(-9) 

6.83(-7) 3.63(-6) 

3.99(-7) 3.45(-5) 

5. 54( -7) 7.03(-5) 

l. 20(-5) 6.00(-6) 

8.64(-6) 1.17(-5) 

1.69(-8) 5. 32(-8) 

7.24(-10) 3.55(-7) 

1.65(-9) 1.24(-7) 

3. 04( -7) 2.41(-7) 

5.45(-8) 5.37(-8) 

7.60(-9) 5.46(-9) 

* * 

* * 
"fr * 

* * 

* * 

* * 

0. 703, a = 0 = 
p 

171. 

H N 
: 
I 
I 

0.604(-3) 306 I 
0.604(-3) 226 

0.605(-3) 256 

0.606(-3) 269 

0,303(-3) 362 

0.304(-3) 687 

0.380(-4) 316 

0.380(-4) 286 

0.380(-4) 310 

0.380(-4) 421 

0.380(-4) 461 

0.381(-4) 808 

0. 595(-6) 388 

0.595(-6) 382 

0.596(-6) 374 

0.596(-6) 48 7 

0,596(-6) 625 

0.298(-6) 12 79 
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TABLE 24 

NAGMOD for problem (iii) 

EPS k d = 5 d = 10 d = 20 H N 

10-3 
0.1 1.89(-8) 1. 00( -8) 4.87(-9) 0,607(-3) 228 

0.2 1.87(-8) 1. 06( -8) 5. 78 ( -9) 0.607(-3) 222 

0. 5 l. 80( -8) 9. 11(-9) 8.59(-6) 0,607(-3) 222 

1.0 1. 71(-8) 2.12(-5) 1.84(,.,4) 0. 607( -3) 250 

2.0 1.61(-5) 2.09(-4) 2.70(-4) 0.303(-3) 323 

5.0 8. 13(-5) 4.03(-5) 2.92(-5) 0.304(-3) 673 

10-4 
0. 1 8.29(-9) 1. 04( -8) 9.66(-9) 0.380(-4) 264 

0.2 8.92(-9) 1. 59(-8) 7.16(-8) 0. 380( -4) 250 

0.5 1. 30( -10) 3."89(-8) 3.39(-6) o. 380(-4) 308 

1.0 8.35(-8) 2.12(-5) 4.92(-5) 0.380(-4) 326 

2.0 6.40(-6) 2.62(-5) 1.37(-5) 0.380(-4) 426 

5.0 6. 14(-6) 9.15(-6) 9.49(-6) 0.381(-4) 794 

10-6 o. 1 7.42(-13) 1. 78 ( -11) 3. 11( -10) 0.596(-6) 392 

0. 2 6.98(-11) 1. 10( -9) 2. 9 7( -8) 0.596(-6) 366 

0.5 1;34(-13) 5. 73(-11) 8.38(-9) 0.596(-6) 446 

1.0 1.44(-9) 1. 08 ( -7) 5.14(-8) 0.596(-6) 4 79 

2.0 8.08(-8) 6.36(-8) 1. 20( -7) 0.596(-6) 569 
-

5.0 2.65(-8) 1.32(-8) 8.99(-9) 0.596(-6) 1226 

10~8 0.1 * * * 
0.2 * * * 
0.5 * * * 
1.0 * * * 
2.0 * * * 
5.0 * * * 

a = 0.492, max 
a = 0 = 

p 

* !FAIL = 1 
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TABLE 25 

Problem (i) 

E L RADISH NUMEROV2 EXPFIT2 NAGMOD PUBLISHED * 
RESULT 

1.0 0 1. 2 74 1. 2 75 1. 2 75 1. 275 1. 2 75 

4.0 0 0.834 0.834 0.834 0.834 0.834 

9.0 0 0.645 o. 645 0. 645 0. 645 o. 645 

16.0 0 0.536 0.536 0.534 0.536 0.536 

25.0 0 0.463 0.463 0.463 0.463 0.463 

o. 16 1 0.0146 0.0146 0.0146 0.0146 0.0147 

o. 25 1 0.0260 0.0260 0.0260 0,0260 0.0260 

0.5 1 0.0584 0.0584 0.0584 0.0584 0.0584 

0.8 1 0.0924 0.0924 0.0924 0.0924 0.0924 

0.16 2 0.0005 0.0005 0.0005 0.0005 0.0005 

0.25 2 0.0014 0.0014 0.0014 0.0014 0.0014 

0.5 2 0.0055 0.0056 0.0055 0.0056 0.0056 
'• 

Values of tan ~ 0 , ~l' ~ 2 
*L = 0 Moiseiwitsch and O'Brien, 1970 (p. 194, Table 1) 

L = 1,2: Burke and Smith, 1962 (p. 472, Table 1). 

E 

1.0 

4.0 

9. 0 

16.0 

25.0 

o. 16 

0.25 

0.5 

0.8 

0. 16 

0.25 

0,5 

L RADISH 

0 0.022 

0 0.036 

0 0.042 

0 0.058 

0 0.066 

1 0.025 

1 0.026 

1 0.030 

1 0.032 

2 0.034 

2 0.031 

2 0.030 

TABLE 26 

Problem (i) 

NUMEROV2 EXPFIT2 

0.038 0.050 

0.060 0.059 

0.082 0.064 

o. 119 ·'O. 062 

o. 152 0.085 

0.029 0.046 

0.030 0.039 

0.033 0.043 

0.036 0.039 

0.042 0.051 

0.039 0.060 

0,037 0.044 

NAGMOD 

0.142 

o. 14 7 

0. 199 

0.233 

o. 285 

o. 185 

0. 139 

0. 145 

0, 14 7 

o. 145 

0.160 

0. 156 

CPU time in seconds to calculate ~ 0 , ~l' ~2 . 
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Problem (ii). 

k L RADISH Nill!EROV2 EXPFIT2 NAGMOD 

0.5 0 2. 770 2. 770 2. 770 2. 770 

0.831 0 2.224 2.224 2.224 2,224 

1. 225 0 1. 808 1.808 1.806 1,808 

1.803 0 1.432 1.432 1. 432 1.432 

2.345 0 1. 208 1. 208 1. 208 1. 208 

values of ~ 
0 

* Mott and Massey, 1965 (p. 123, Table b). 

k L 

0.5 0 

0.831 0 

1. 225 0 

1.803 0 

2.345 0 

TABLE 28 

Problem ( ii) 

RADISH NUMEROV2 EXPFIT2 NAGMOD 

0.032 0,035 0,054 

0.035 0.044 0,067 

0,045 0,070 0,060 

0,065 0.109 0.082 

0,086 0.159 o. 118 
4 

CPU time in seconds to calculate ~ 
0 

0.176 

0.187 

0. 205 

o. 201 

0.302 

174. 

PUBLISHED* 
RESULT 

2. 745 

2.219 

1.812 

1.437 

1. 208 



TABLE 29 

Problem (iii) 

k L RADISH NUMEROV2 EXPFIT2 NAQ10D 

0.5 0 8.4463 8.4485 8.4463 8.4463 

1.0 0 1. 928 5 1.9286 1. 9252 1. 9286 

2.0 0 1.0052 1. 0054 1.0054 1. 0054 

3.0 0 0. 73 780 o. 73 782 0. 73 782 0.73781 

4.0 0 0. 59~ 70 0.59881 o. 598.56 0. 59881 

5.0 0 0.51046 0.51058 0.51052 0.51058 

1.0 1 0.24792 0. 24 793 o. 24 789 o. 24 793 

2.0 1 0.33453 0.33456 0.33454 0.33455 

3.0 1 o. 32 778 0.32788 o. 32 788 0. 32 788 

4.0 1 0.30614 0.30625 0.30620 0.30625 

5.0 1" 0.28386 0.28394 o. 2838 7 0.28393 

Values of tan S 
0

, tan ~ 1 
*Holt and Santoso, 1972 (p. 505, Tables 4, 5). 

k L 

0.5 0 

1.0 0 

2.0 0 

3.0 0 

4.0 0 

5.0 0 

1.0 1 

2.0 1 

3.0 1 

4.0 1' 

5. 0 1 

RADISH 

0.024 

0.032 

0.038 

0.057 

0.080 

0.094 

0.039 

0.056 

0.068 

0.079 

0.104 

TABLE 30 

Problem (iii) 

NUNEROV2 EXPFIT2 

0.033 0.051 

0.044 0.048 

o. 078 0.065 

0.123 0.076 

0. 169 0.082 

0.214 o. 097 

0.050 0.054 

0.079 0.074 

0.121 0.105 

0. 139 0. 100 

0.180 0.119 
•. 

NAQ10D 

0.153 

0.169 

o. 191 

0.218 

0.302 

0.346 

0. 179 

o. 180 

0.219 

0.293 

0.323 

CPU time in seconds to calculate~ 
0

, ¥1. 

175. 

PUBLISHED* 
RESULT 

8. 42 76 

1. 9284 

1. 0054 

o. 73781 

o. 59880 

0.51057 

o. 24 793 

0.33455 

0. 32 788 

0.30624 

0.28393 

'• 
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CHAPTER 8 

Numerical solution of coupled homogeneous 

second-order differential equations 

Introduction 

We are interested in solving a set of coupled homogeneous second 

order differential equations of the form (1.12). The method of de 

Vogelaere (1955) has been used in program SCAT by ChanJra (1973) 

which is generally available, from C.P.C. Program Library, to users 

to integrate the coupled equations 

d
2 

U - ~ t~i(,4+1) £' .. -k~ ~ .. +2V .. -Ju .+ N~D 
~r i - ~ 2 1J 1 1J 1J J ~ 

. 1 r j= ~=1 

Ri~~·i=l,---,NP (8. 1) 

where, in the notation of Chandra, U. is the radial wave function of 
1 

the projectile in the ith scattering channel, r is the independent 

variable, NP is the number of coupled equations and NBND is the number 

of inhomogeneous terms Ri~ in each channel which arise from the in

clusion of exchange terms in the model of the scattering process; the 

Lagrange multipliers ~~ ensure that the continuum wave function of 

the scattered electron is orthogonal to all the wave functions of the 

occupied orbitals of the target system,(see Burke and Chandra, 1972). 

We describe in§ 8. 1 Chandra's program SCAT which uses the method 

of de Vogelaere to solve (8. 1) over a predetermined mesh and in §8.2 

we shall consider the solution of (8. 1) with Ri~ = 0, Vi,~ using a 

modification of SCAT which uses de Vogelaere's method with a variable 

step length. we describe in-~ 8. 3 the test runs which were performed 

using SCAT and its modification CHMOD. The test results are given 

in~ 8. 4 and finally in§ 8. 5 we consider some additional modifications 

to program SCAT which might be desirable. 

§ 8.1. Chandra's program SCAT 

SCAT solves (8.1) over the range [o, ra] by use of outward integ-
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ration over the range ( 0' r ] (Chandra's region l) and inward integ-
0 

ration over the range (ro, r ] (Chandra's region 2) where r is specified a 0 

by the user and is such that the sum of the short-range attractive 

potential terms and of k2 is comparable with the centrifugal barrier 

term in (8.1). If we assume that there are NA open channels so that 

there are NB = NP - NA closed channels, SCAT generates in region l a 

(NP x NTOTl)-dimensional solution matrix F1 of hopefully linearly 

independent solutions where NTOTl = NP+NBND by integrating outwards 

NP different times the equations 

1: l a· i, j 1, 1 ikF kj = = 
' k=l 

NP (8.2a) 

and 

N~ 1 £ 1
ik Fk,NP+~ = Ri~' i=l, 

k=l 
NP, ~=l, NBND (8.2b) 

subject respectively to the following boundary conditions at XX the 

first mesh point 

1 
F .. (ll) = 

l.J 

L+l 
~i/XX) l. ' d 

dr 

1 
F .. 

l.J I 
~. 

= ~i.(ii+l)(XX:) >,j=l,---,NP 
r=xx J 

(8.3a) 

and 

F
1 

(XX) = 0 = d F 1 . I i = l, 
i,NP+P dr i'NP+P r=XX ' 

NP, ~=1,---,NBND (8.3b) 

where 

- 2 

l:r2 
- l . ([. + 1) + k. J ~ . . - 2V. . . ]. ]. ]. l.J l.J r2 

If this outward integration were continued into region 2 the solution 

would contain components of elkilr, i = NA + l, ---, NP in the closed 

channels and for large values of the independent variable r these 

terms would dominate the physical solutions which are oscillatory in 

nature. Thus SCAT generates in region 2 a (NP x NTOT2) - dimensional 

solution matrix F2 of linearly independent solutions, where NTOT2 = 
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NP + NA + NBND, by integrating inward NP times the equations 

;t Lik F~j = 0, i = l, NP, j = l, NP + NA (8.4a) 

k = l 

and 

~ 2 
L F R i :::: l, 

ik k' NP+NA+I3 = i 13' NP, 13 = l, NBND 

k = l 

subject respectively to the following boundary conditions at r 
a 

(8.4b) 

2 
F .. (r ) 

l.J a =t'.cr >. d F.~ j = d a... I , l.J a - l.J - cr i=l,---,NP,j=l,---,NP+NA 
dr r=r dr i]' 

a r=r a 
(8.5a) 

and 

F i~ NP+NA+I3(r a )=0= ~r F i ~ NPf-NA+I31 r=r 'i= l' --- ,NP' (3=1, 111;--- ,NBND ( 8. 5b) 
a 

where ~ .. are a linearly independent set of 2NP solutions of the 
l.J 

asymptotic form of (8.1) (see Chandra, 1913) and these are generated 

by program ASYM (Norcross, 1969), the main subroutine of which is used 

in conjunction with program SCAT to solve (8. 1). 

The solutions in regions l and 2 must now be matched at the point 

r so that the solutions and their first derivatives are continuous 
0 

at r Then 
0 

u .. zn l 0 ~ r ~r 
l.J Fik akj 0 

k=l i = 1,---,NP 

J:T2 2 
j = 1,---,NA 

F.k aNTOTl+k, j r ~ r~ r 
k=l l. 0 a 

(8.6) 

gives a complete set of NA linearly independent solutions for each 
t~~ro1il + 

channel. The coefficients a .. , i = 1, ---, NT0Tl,NTOT+l,---,INTOT2.j=l 
l.J ~ ) 

.---, NA are obtained by solving a set of inhomogeneous linear simult-

aneous algebraic equations (given in the matrix form in Table 1 of 

Chandra, 1973, p. 424) and the reactance and cross section matrices 

thus obtained. 
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We shall describe the routines used by program SCAT, in particular 

routine DEVGL, which performs the numerical integration of (8. 1) using 

de Vogelaere's method over a predetermined mesh. The program in its 

published form is limited by the dimensions of the arrays to six 

coupled channels each with three inhomogeneous terms. 

~.B. 1.1 Master driver 

The numerical integration is performed over a predetermined mesh; 

regions 1 and 2 are each made up of a number of intervals and as the 

integration crosses each interval the steplength is changed by a pre-

determined factor. The input data relating to the choice of mesh 

points is read by the master driver and the full set of input data 

read by the master ·driver. for each problem is as follows: 

IBUG(I), I = 1, ---, 14 

HX 

XX 

RA 

NIXl 

NIX 

IHX(I), I=l, NIX 

This array is responsible for the printing 

of intermediate results obtained during the 

calculation; if IBUG(I)=oVr then no inter-

mediate results are printed. 

The initial steplength supplied by the user. 

The value of the first mesh point supplied 

by the user. 

The inward integration is started at r ; 
a 

program ASYM calculates the solutions at RA. 

The number of intervals in region 1. 

Total number of intervals in the whole range 

(if NIXl = NIX no inward integration is per-

formed and RA is the matching point). 

This array stores the integral multiples 

of HX; the steplength in the ith interval 

is HX * IHX(I). 



IRX(I), I = 1, NIX 

DELE 

MAXP 

INPHS 

NP 

NA 

NBND 

LP( I), I = 1, NP 

IRFN 

IPH 

NPL 

WP(I), I = 1, NP 

180. 

This array stores the cumulative number of 

mesh points for each interval. IRX(I) should 

be even. 

This parameter controls the methods of sol-

ution to be used by program ASYM. 

The maximum value of k in the asymptotic 

expansion of the potential: 

HAXP 
v .. = b c.~k) 
~J k=l ~J 

-k-1 
r (8. 7) 

A logical variable which controls the inclusion 

of a term in the asymptotic solution at RA 

(see Chandra, 1973, p. 420). 

Total number of coupled equations. 

Number of open channels. 

Number of bound-state orbitals giving rise 

to inhomogeneous terms. 

This array stores the angular momenta for 

NP equations. 

~0 signifies that the linearly independent 

solutions are not to be combined. 

;>o signifies that the solutions are to 

be combined to form the final radial scatt-

ering wave functions. 

= 1 signals that the next set of data should 

be read in 

= 2·signals the end of the input data. 

= 0 signals that the CN and VV matrices for 

the potential should be read in. 

This array stores the energy values in atomic 

units for NP equations, first for NA open 
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CN (I , J , K) , I= 1 , 

J=l J 

K=l, 

VV ( I , J ) , I= 1 , 

J=l, 

BND(I,J,K), I=l, 

J=l, 

K=l, 

181. 

channels and then for NB=NP-NA closed 

channels. 

The net. charge. 

NP This array stores the coefficients of 

Np -k-1 . h . . r 1n t e asymptot1c expansion of the 

MAXP potential given by (8. i). 

NP(NP+l) This array stores the upper triangular part 
2 
IRA2 of the symmetric coupling potential matrix 

NBND 

NP 

IRA2 

2V ... 
1J 

I is the sequence number of the 

upper triangular element of V .. starting 
1J 

from the first row, and J is the index 

number of the mesh point (including the 

half intervals) at which the potential 

is evaluated; IRA = 2*IRX(NIX). 

If NBND > 0 the array stores the value 

of the jth channel wave function of the 

ith bound-state orbital at the kth mesh 

point (including half intervals). 

The above data is transferred to the routines of program SCAT 

in the main via a number of common blocks (see listing of program SCAT) 

and also through the arguments of SCATER which is called by the master 

driver. In particular the common block BLCKl transfers the mesh point 

data, that is HX, NIXl, IHX, IRX, IRA=IRX(NIX), IRA2=2*IRA, RA, to 

various routines in SCAT. BLCK2 transfers the data specifying the 

differential equations, namely NP, NA, NBND, LP(I), WP(I) and BLCKJ 

contains VV(I,J), CN(I,J,K), ZZ along with IRT(I,J) which is a symmetric 

matrix which stores the sequence number of the upper triangular elements 

of the potential matrix (starting from the first row). Details of 

all the common blocks used may be found in SCAT. 
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§8.1.2 Subroutine SCATER 

This is the main routine whose arguments are INPHS, DELE, ~~XP, 

XX, IRFN. After printing the input data and checking for the compat-

ability of the mesh point data SCATER calls routine INTEG which in 

turn calls INTOUT to perform the outward integration in region 1 and 

routines ASY~land INTIN to calculate the asymptotic boundary conditions 

for the solutions at RA Rnd to perform the inward integration in region 

2 respectively. \olith the completion of the numerical integration 

routine SCATER then calls routines OVRLP (if NBND>O), ~TCH, XSEC 

and RADFUN (if IRFN >0). These routines will be described in later 

Sections. 

§ 8.1. 3 Subroutine INTEG 

Figure 7 

Figure 7 above shows the various routines called by routine INTEG 

and their relation to one another. The arguments in the call to 

routine INTEG are INPHS, DELE, ~~XP, XX; the latter is the only 

argument in the call to INTOUT which integrates the equations (8.1) 

from XX the first mesh point to the matching point r subject to the 
0 

initial boundary conditions given by (8.3) and assuming that the 

solution is regular at the origin. De Vogelaere's method is used 

to generate NP+NBND linearly independent solutions for each channel 

over a predetermined mesh. Consider for example test run no.2 of 
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Chandra's paper which uses the following input data: 

HX = 0,02585 =XX, RA = 7.238 

NIXl = 1 NIX_= 3 

IHX(I) = 1 2 4 

IRX(I) = 80 120 150 

NP = 2, NA = 2, NBND = 1 

LP(I) = 1 3 

WP(I) = 0.5 0.5 

Then INTOUT integrates (8.1) over region 1 which comprises 79 steps_of-

length HX over the interval [XX, XX+ 79(HX)] = [0.02585, 2.068]. 

The solutions are regular at the origin and use is made of this fact 

in subroutine SIMPSN (see 8. 1.5). INTOUT uses the method of de 

Vogelaere in routine DEVGL with constant steplength to perform the 

numerical integration using method (b) of starting (see§ 2. 1) with 

X = XX - HX. -1 -
2 

Routine DEVGL will be discussed in greater length 

in§8.1.4. For each of the NTOTl boundary conditions INTOUT integ-

rates {8.1) for each of the NP equations; once the initial step of the 

de Vogelaere algorithm has been computed in INTOUT routine DEVGL is 

called repeatedly (79 times in all) to advance the solution one step 

of length HX until the integration has reached the end point of region 

1. Notice that the values of the potential and the second derivative 

of the solution are required at equal intervals of length HX in [XX, 

r ] and also at the half intervals; the potential values are supplied 
0 

as data by the user and the second derivatives are calculated by 

routine DRV2. The mesh points are stored in an array \-l(K), K=l, 

IRX(NIXl) and the corresponding solutions are stored in the array 

FUN(I,K), I=l,---,NP,k=l,---IRX(NIXl). Both arrays are written 

on disc and are held in the common block BLCK7. The solutions at 

r and the corresponding first derivatives are stored in the FBl and 
0 
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FDRl matrices in the common block BLCK8. 

Subroutine ASYSM =alculates sets of 2NP solutions and their deriv-

atives at RA; these are stored respectively in the FX and FXl matrices 

in common block BLCKS. 

Routine INTIN whose only argument is MAXP is then called to 

integrate (8.1) over region 2 from RA to the matching point r subject 
0 

to the initial boundary conditions at RA, as calculated by ASYSM • 

INTIN uses the method of de Vogelaere with constant steplength to 

integrate (8.1) for each of the NTOT2 boundary conditions; the initial 

step uses method (b) of starting where x_
1 

in the case of test run 

no, 2 of Chandra's paper _is RA + 4HX. 
2 

Region 2 is made up of two 

intervals the first of which
1

[4.136, 7.238], uses a steplength of 

-4HX and the second, [2.068, 4.136], uses a steplength of -2HX until 

the integration has been advanced to r = 2.068 the end point of region 
0 

2. The first step is calculated in INTIN and thereafter DEVGL is 

called to generate the numerical solution at each mesh point. The 

mesh points and solutions of region 2 are again stored in the W aRd 

FUN arrays respectively and the solutions and their corresponding 

first derivatives at r are stored in the FB2 and FDR2 matrices 
0 

respectively in the common block BLCK9. Note that if NIXl=NIX 

no inward integration is performed and RA becomes the matching point. 

§ 8.1.4 Subroutines DEVGL and DRV2 

The following arguments appear in calls to routine DEVGL: 

H The current value of the ~teplength 

HS H*H 

Hl The previous value of the steplength after a change in 

step length 

LSWT = 1, signifies that the computation should proceed for 

the given H 

= 2, signifies that a change in steplength has occurred 
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K3l, K32 

185. 

and that the computation should proceed with the modif-

ications which are required to take account of this. 

The index number of the bound-state orbital which is 

to be used to generate the K2-th inhomogeneous solution. 

The index numbers of the mesh points corresponding to 

the mid and end points of the particular step; suppose 

the step is of length H starting from the point X. 

Then K31, K32 corresponds to the index numbers of the 

points X+B, X+H respectively. 
2 

The routine is written to perform the numerical integration of 

(8.1) over one step of length H using de Vogelaere's method; each 

step is effected by a separate call to DEVGL and the user emerges 

from routines INTOUT and INTIN having completed the numerical integra-

tion over regions 1 and 2 respectively. If on entry to DEVGL, LSH'T=l 

then DEVGL uses.essentially equations (3.13)- (3.20) ofS3.1 with 

H, HH, H2 replaced by B, H, HS respectively to advance the solutions 
2 4 

one step. If LSWT=2 a change in steplength has occurred and values 

for the next step must be updated; the factor by which the steplength 

has changed is given by C = H/Hl. No attempt is made to estimate 

the truncation error in the numerical calculation and the solutions 

are calculated at a set of predetermined mesh points. 

The second derivatives of the solutions are calculated using 

routine DRV2. Suppose the solution is to be advanced from the mesh 

point X to X+H. Then the second derivative of the solutions at the 

intermediate point X + B is determined by a call to routine DRV2 
2 

whose arguments are K2 and K31. Similarly for the point X + H the 

arguments used in the calling sequence of DRV2 are K2 and K32. 

§ 8. 1. 5 Subroutines OVRLP and SIMPSN 

Routine OVRLP is called by SCATER only when NBND>O to initialise the 
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para~eters· for the calculation of the so called 'overlap integrals' 

which are necessitated by satisfaction of the following orthogonality 

condition (see Chandra, 1973) 

NTOTl 

£ a -o J'=l, NTOTl+k, j- ' NA, ~=1, ---,NBND 

k=l 

where 

:[i ~ sro t k=l, = Rill ikdr, ~k i=l 0 

NTOTl, [3=1, NBND 

2 ~ Jra 2 
k 1, If3k = Rill ikdr' = NTOT2 , [3= 1, NBND. 

i=l y;o 

The values of Ril3 are stored in the BND array for each of the IRA2 

mesh points and the solution~ F;k and F~k are stored in the array FUN. 

I 1 and I 2 are the overlap integrals of the NTOTl linearly independent 

solutions of region 1 and NTOT2 solutions of region 2 with the NBND 

bound-state orbitals. Routine OVRLP calls routine SIMPSN to calculate 

11 and I 2 which are stored in the arrays OVLP1(1, J,), OVLP2(I, K), 

I= 1, ---, NBND, J = 1, ---, NTOTl, K = 1, ---, NTOT2, which together 

with the BND array are stored in the common block BLCK4. 

Subroutine SIMPSN uses Simpson's one-third rule to evaluate the 

integrals I 1 and 12 For test run no. 2 of Chandra's paper the first 

1 1 call to SIMPSN by OVRLP calculates Ill , I 12 • 
1 r
13 

for region 1 using 

the solutions at the origin together with those stored in the FUN 

array at the next 80 mesh points. Similarly the second call to 

2 2 2 2 2 
SIMPSN calculates I

11
, r 12 , I 13 , I 14 , I 15 for region 2. 

§ 8. 1. 6 Subroutines MATCH, XSEC and RADFUN 

These routines are called by SCATER in turn. HATCH sets up 

the matching equations at the point r (see Chandra, 1973, p. 424) 
0 

and calls the routine MAOlA to solve the resultant set of inhomogeneous 
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linear simultaneous .. algebraic equations; solving these equations NA 

times enables the full (NTOTl + NTOT2) x NA solution matrix for the 

unknown coefficients a to be obtained. Relations (15), (16) of 

Chandra (1973, p. 422) may be used in particular to separate and store 

the NA x NA elements of the reactance matrix K (ln the notation of 

Chandra) in the KMT matrix. 

Routine XSEC which is subsequently called by SCATER evaluates 

the S(scattering), T(transition) and CSM (cross section) matrices of 

BLCKll and XSEC makes use of routine MAOlA to invert a matrix and 

routine MLTY to multiply two square matrices. 

Subroutine RADFUN is finally called by SCATER if IRFN > 0 and the 

NTOTl linearly independent solutions of region 1 are linearly combined 

with the NTOT2 linearly independent solutions of region 2 for each 

channel to form NA radial scattering functions for NA·open channels. 

§ 8.2 Cffi10D- a modification of Chandra's program. 

Chandra's program SCAT is written in FORTRAN IV and may be run 

in its original form on an ICL 1907 computer. Only very trivial 

modifications were required in order to run SCAT on the IBM 370/168 

computer. The numerical integration stage of any quantum mechanical 

scattering problem consumes a considerable proportion of the CPU time 

required to solve the problem in full. Thus any saving in CPU time 

during the numerical integration stage would certainly be desirable 

and we consider the effect of replacing routine DEVGL in SCAT by a 

coupled channel version of routine DEVOG which uses an automatic error 

control to select steps as large as possible at each step of the num-

erical integration. The introduction of DEVOG necessitates the cal-

culation of the potential function within the program at the mesh 

points as they are generated by routine DEVOG; program SCAT by contrast 
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requires the user to specify ~ priori the mesh spacing for the numer

ical integration and in addition the values of the potential and the 

bound-state orbita~at these points must be supplied as data to the 

master driver routine of SCAT. 

A number of modifications to the routines of SCAT both trivial 

and non-trivial will be required in order that the modified version 

CHMOD solves (8.1) automatically. 

following data: 

The master driver reads the 

!BUG (!) 1 I = 1, 14, DELE, MAXP, INPHS, ZZ, NP, NA, NBND, 

LP(I), I = 1, ---, NP, IRFN, !PH, WP(I), I = 1, ---, NP 

as in program SCAT; in addition HO, XO, RO and RA which now comprise 

BLCKl must be supplied and they are respectively the initial steplength 

for the integration in region 1, the first mesh point in region 1, 

the matching point and the point at which the inward integration is 

star ted. EPS and C must also be supplied by the user and they are 

the tolerance parameter and the factor by which the steplength is 

allowed to increase; EPS and C are transferred to routine DEVOG by 

means of a common block CEPS. The elements of the CN array are also 

specified and routine SCATER is called. 

Routine SCATER is simplified since we discard the compatability 

check on the mesh point data and we also dispense with the setting 

up of the IRT matrix. The arg~~ents of SCATER are INPHS, DELE, 

IRFN, and SCATER calls INTEG, MATCH, XSEC and RADFUN in turn (we are 

considering the equations to be homogeneous so that routine OVRLP and 

hence SU1PSN are not· required). MATCH, XSEC and RADFUN are used in 

the same form as in SCAT with only minor changes to the common blocks 

and to the dimensions of the arrays. 

The major changes have been made to the numerical integration 

routines namely, INTEG, INTOUT, INTIN, DEVGL, DRV2 the first ~hree 

of which are replaced by INTEG; DEvGL has been replaced by a coupled 
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channel version of DEVOG, and DRV2 includes the calculation of the 

potential at the required mesh points. 

§ 8. 2.1 Numerical integration routines of CHMOD. 

The routines INTEG, INTOUT and INTIN of SCAT are replaced by just 

routine INTEG in CHMOD; INTEG now provides the initi.al values required 

for the outward and inward integrations and two calls are made to DEVOG 

for the integrations in regions l and 2. DEVOG has been modified 

to integrate NP second order coupled differential equations subject 

to a set of K3 initial boundary conditions over a specified range of 

integration [XO, XF]. Program SCAT performs the outward and inward 

integrations within routines INTOUT and INTIN respectively by integr

ating the NP equations over all the channels for each of K3 initial 

boundary conditions in turn (K3 = NTOTl, NTOT2 in INTOUT; INTIN res-

pectively). However in order to incorporate an automatic steplength 

selection it is necessary to perform the integration over all the 

channels for each of the boundary conditions simultaneously and a 

large n~mber of the variables of DEVOG as used in program RADISH must 

be replaced by two dimensional arrays. Routine DEVOG stores the 

mesh points in the W(K) array and the solutions are stored in FUN(I,J,K) 

where I ranges over the number of equations, J over the number of 

boundary conditions and K is the index number of the mesh point includ

ing the half interval points. The first call to DEVOG performs the 

automatic outward integration from XO to RO and the second call per

forms the automatic inward integration from RA to the matching point 

RO. DEVOG is written so that the integration ends exactly at the 

end point of the interval which is specified by the user. 

The arguments which must be supplied to routine DEVOG are the 

initial steplength H (although strictly speaking each ~tep in DEVOG 
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is of length 2H), K2 the number of inhomogeneous terms, K3 the total 

number of linearly independent solutions generated over the range of 

integration and XF the end point of the range of integration. For 

the sake of simplicity we have taken K2 to be zero; if K2 is non zero 

then the values of the inhomogeneous terms (corresponding to the values 

of the BND array in SCAT) at the mesh points generated by DEVOG must 

also be calculated. K3 is set to be NTOTl in routine INTEG before 

the first call to DEVOG is made for the outward integration and on 

exit K3 is set to be KO the number of steps carried out during the 

range of integration; the mesh points and the corresponding solutions 

are then stored in the WO(K) and FUNO(I,J,K) arrays, I = 1, ---, NP, 

J = 1, ---, K3, K = 1, ---, KO. If in order to reach r the end 
0 

point of the interval of outward integration the steplength must be 

reduced from h
1 

to h
2 

say, then the initial steplength for the inward 

integration is taken to be -h
1

. Before the second entry to DEVOG 

K3 is set to be NTOT2 in routine INTEG and on exit K3 is set to be 

KI, the number of steps carried out in the inward integration from 

RA to r ; the mesh points and the corresponding solutions are then 
0 

stored in the WI(K) and FUN!(!, J, K) arrays respectively, I = 1, 

NP, J = 1, ---, K3, K = 1, ---, KI. 

Routine DRV2 whose arguments are K2, K3 calculates the value of 

the potential at the current mesh point using the explicit analytic 

expression; the second derivative of the solution at this point may 

now be returned to routine DEVGG. 

A detailed description of routines DEVOG and DRV2 as used in 

CHMOD for test run no. 1 of Chandra's paper is provided by comment 

cards in the listing in Appendix 3. 

§ 8. 3 Te s t runs . 

(a) Programs SCAT and CHMOD were run for the single channel case 
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of electron-hydrogen elastic scattering in the sta~ approximation 

for the range of angular momentum and energy values l~ted in 

Table 13 of§ 7.3. The integration in both programs was started 

at XO = 0.01 with an initial steplength of H = 0.01. In the 

case of program SCAT the steplength was kept fixed throughout 

the range of integration [XX, RO]; program CHMOD uses the same 

initial conditions with EPS = 10-6 and the steplength is varied 

automatically sc that EPS is the largest allowed error per unit 

step. The results obtained for the phase shifts using SCAT and 

CffilOD were compared with the published results in Table 31. 

Notice that SCAT and Cffi10D return the value of the tangentof the 

phase shift. The effect of varying the matching point was 

studied for RA = RO = 8, 10, 12, 15 atomic units. 

(b) Programs SCAT and CHMOD were run for test run no. 1 in Chandra's 

paper which calculates the reactance matrix (the K matrix in the 

notation of Chandra) for electron-hydrogen scattering in the 

strong-coupling approximation when only the ls and 2s atomic 

states are included in the eigenfunction expansion, with exchange 

neglected. The input data specifying the above problem is as 

follows for program SCAT: 

IN PHS = T, DELE = 0.0, MAXP = 1 J IRFN = 1 

HX = o. 03045 72 = XX, RA= 13.70574 

NIXl = 1, NIX = 4 

IHX(I) = 1, 2' 4, 8 

IRX(I) = 50, 90, 130, 150 

NP = 2 = NA, NBND = 0 

LP(I) = o, 0 

WP(I) = 0. 5, 0. 125 

The explicit analytic expressions for the potential in ( 8. 1) are 
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2V22(x) = -2(1 + 1 + l x + l x2) e-x 
X 4 4 8 

(see Burke and McCarroll, 1962). 

Program CHMOD uses the same initial starting point and steplength but 

the steplength is varied automatically during the outward and inward 

integrations. CHMOD is run for the above problem for a range of 

10-n, n = 3, 4, 5, 6, 8 and the elements of the K values of EPS 

matrices thus obtained are compared with the K matrix obtained 

using SCAT. 

§ 8.4 Test results 

(a) The phase shif~ ~ produced by SCAT and CHMOD agree exactly with 

E 

1.0 
.4.0 
9. 0 

16.0 
25.0 
o. 16 
0.25 
0.5 
0.8 
0. 16 
0,25 
0.5 

each other up to the number of figures quoted in the published 

result and the phase shifts for SCAT and CHMOD are unchanged 

over the range of values of RO which are tested. Table 31 below 

shows the values of tan~ 
0

, ~:1' ~ 2 obtained· using SCAT, CHMOD 

along with the published results of Burke and Smith (1962) and 

Moiseiwitsch and O'Brien (1970). In addition the number of 

function evaluations performed by CHMOD over the range [XO, RO) is 

pr:cMded for RO = 8, 10. 

TABLE 31 

t SCAT,CHMOD PUBLISHED RESULT NORoOE ~N EVALSRoBX rMMOD 
0 1. 2 i3 1. 2 75 144 184 
0 0.833 0.834 222 272 
0 0.644 0.645 352 438 
0 0.535 o. 536 414 514 
0 0.462 0.463 496 616 
1 0.0146 o. 014 7 112 124 
1 0.0260 0.0260 140 142 
1 0.0584 0.0584 138 160 
1 o. 092 7 0.0924 162 170 
2 0.0005 0,0005 110 118 
2 0,0014 0.0014 124 138 
2 0.0055 0.0056 136 162 
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Program SCAT performs 1600 and 2000 function evaluations for 

each value of E, Q.. tested when RO = 8 and RO = 10 respectively. 

We thus see a drastic reduction in the number of function eval-

uations performed by CHMOD when compared with SCAT. For the 

low energy values (E <.1) CHMOD uses less than 10% of the number 

of function evaluations used by SCAT and even at the high ener-

gies this percentage is approximately 30%. Of course the user 

of SCAT might decide ~hat region 1 should contain more than one 

interval, for example he might choose to provide the following 

input data relating to the mesh points: 

HX = 0.01, XX = 0.01, RA = 8 = RO 

NIXl = 4 

IHX(I) = 1, 2, 4, 8 

IRX(I) = 100, 150, 200, 250. 

SCAT would then perform 500 function evaluations which is consid-

erably less than the corresponding number required when the initial 

steplength remains fixed throughout [XO, 8]. With this particular 

choice however of input data CHMOD will still require considerably 

less function evaluations than SCAT and this would hopefully result 

in less CPU time being required for the numerical integration 

stage of the problem. 

(b) This test run provides us with a more convincing case for using 

CHMOD over SCAT in terms of reducing the CPU time required for 

the numerical integration; this test run uses a predetermined 

mesh based on the user's intuition about the approximate behaviour 

of the solution. The K matrix produced by SCAT is 

K = [ 1. 138853 

3.854697(-1) 

3. 8 54 7 53 ( -1)] 

-3.256686(-1) 

and SCAT performs 300 function evaluations during the numerical 
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integration stage of the problem. Program CHMOD produces the 

following K matrices for the range of values of EPS: 

(i) EPS = 10- 3 
1{ =[ 1. 135174 3.848934(-1)] ' 

3.845751(-1) -3.259578(-1) 

(ii) EPS = lo-4 
K =[1,138839 3.854565(-1)] ' 

_3.854490(-1) -3.256349(-1) 

(iii) EPS = 10-s K =[1. 138 745 3.854520(-1)] ' 
_3. 954437(-1) -3. 256742(-1) 

(iv) EPS = 10- 6 
K =[1. 138980 3 . 8 54 9 7 5 ( - 1 ) l ' 

3. 854974( -1) -3. 256579(-1) 

(v) EPS = 10-8 
K =[ 1. 138996 3.855010(-1)] ' 3.855010(-1) -3. 256568(-1) 

· The following table shows the number of function evaluations per-

formed by CHMOD in producing the K matrices of (i) - {v). 

EPS NO. OF FN. EVALS. 

l0- 3 86 

10- 4 130 

10-s 144 

lo-6 258 

10-8 754 

The value EPS = 10-
8 is extremely stringent but we may regard 

the elements of the K matrix produced by this value of EPS to 

be 'exact' since CHNOD for the main part of the range of integ-

ration uses steplengths which are far smaller than the smallest 

steplength used by SCAT. -4 For EPS = 10 the elements of the 

K matrix produced by CHMOD are in good agreement with those 

produced by SCAT; moreover the number of function evaluations 

performed by CHMOD is less than half that performed by SCAT. 

-6 Even with EPS = 10 CHNOD requires 86% of the number of function 

evaluations performed by SCAT. we have emphasised previously 

that the numerical integration of the differential equations 
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(8.1) uses a considerable proportion of the CPU time which is 

required for the solution of the problem and in view of the 

tremendous saving in terms of the number of function evaluations 

to be gained using CHMOD in preference to SCAT we would advocate 

that routine DEVGL be replaced by DEVOG in program SCAT. Of 

course program Cl-IMOD in its present form is purely a research 

code and would require a certain amount of fine tuning and 

optimisation before being made generally available to users as 

a preferable alternative to SCAT. 

§ 8. 5 Discussion. 

As noted in Chandra (1973) the accuracies of de Vogelaere's 

algorithm (and in addition Simpson's rule) as used in SCAT depend 

implicitly upon the mesh point data supplied by the user. we have 

shown in the previous Section that by incorporating our own routine 

DEVOG into program SCAT in place of routine DEVGL we are able to 

produce accurate results in CHMOD while at the same time using a 

considerably reduced number of function evaluations in the numerical 

integration stage of the calculation. In addition the potential and 

bound-state orbitals which were previously supplied by the user to 

-
SCAT at a set of predetermined mesh points are now determined as 

the calculation proceeds at the mesh points which are generated auto-

matically by routine DEVOG in program CHMOD. 

we have already noted that program CHMOD is by ~o means optimised. 

CHMOD in its present form is Jimited by the dimensions of the arrays 

to five coupled channels each with two inhomogeneous terms. However 

this restriction could be easily lifted and the efficiency of program 

C~tOD improved with respect to computer storage considerations. 

If inhomogeneous terms are to be included in the scattering model 
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then program CHMOD will require an auxilliary routine which calculates 

these terms at the required mesh points. In addition a modification 

of routine SIMPSN in SCAT is necessitated; previously in program SCAT 

the use of routine SIMPSN required that an even number of steps be 

~rformed over each interval of regions 1 and 2 using the de Vogelaere 

algorithm. With the introduction of a variable stepsize in the 

algorithm Simpson's one third rule lends itself to the calculation 

of the overlap integrals; consider the evaluation of the overlap integ-

rals over one step of the range of integration [x , x 
1

] say, where 
r r+ 

xr+l = xr + h. Now the de Vogelaere algorithm produces fourth order 

approximations to the solutions at x and x 
1 

and a third order app-
r r+ 

roximation to the solution at the intermediate point xr+l' Thus 

2 
Simpson's rule, which is a fourth order quadrature method, uses the 

points x , x 1, x 
1 

to evaluate the quadrature of the bound-state 
r r+_ r+ 

orbitals with ~he solutions over the step [xr' xr+l). 

The question of maintaining the linear independence of the solutions 

generated in regions 1 and 2 is an important one and it would be nice 

to have some sort of check within C~IOD to ascertain whether this linear 

independence is violated and furthermore to take appropriate action 

if this is the case. The problem arises because of the finite word 

length of computers. A recent article by Scott and Watts (1977) con-

siders the problem of maintaining linear independence in the solutions 

of linear two-point boundary value problems and a computer code SUPORT 

(Scott and Watts, 1975) using superposition_coupled with an orthonormal-

isation procedure and a variable -step Runge-Kutta-Fehlberg integration 

scheme produces the solution of such problems. Consider now the 

numerical integration in CHMOD. The range of integration is in two 

parts; CHl>lOD provides a (2NPxNTOTl) - dimensional matrixcX of initial 

boundary conditions (at XO) the columns of which are linearly independent 
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for the outward integration in region 1 and a (2NPxNTOT2) - dimensional 

matrix ~ of initial boundary conditions (at RA) the columns of which 

are also linearly independent for the inward integration in region 2. 

The corresponding solution matrices F1 and F2 are thus generated in 

regions 1 and 2 and the final solutions are obtained by solving the 

so called matching equations thus providing NA solutions for each 

channel. We shall consider the problem of how to maintain the linear 

independence of the solutions F1 in region 1. we start the solution 

using the matrixcl of initial conditions and our aim is to ensure that 

the NTOTl columns ofo( remain linearly independent over the range [XO, 

r ] ; one way to guarantee numerical independence of the solutions is 
0 

to keep them nearly mutually orthogonal over the range of integration. 

Scott and Watts (1977) use the modified Gram-Schmidt procedure to 

orthonormalise the solutions of the homogeneous and particular equations 

for the particular linear boundary value problem. This method might 

also be used in Chandra's program to replace the old set of vectors 

oLo ld by a new orthonorma 1 set o(. · new· 

d.. 0 ld = o( p 
new 

where P is an (NTOTl x NTOTl) upper triangular matrix defined by the 

modified Gram-Schmidt formulation. Alternatively the matrix ot old 

could be orthogonalised using the Householder and singular value 

decomposition processes (see Nash, 1973). We shall require a test 

which determines when and the frequency with which this orthogonalis-

ation process must be performed. Suppose that at some point in the 

integration in region 1 the columns of ct.. start to lose. their numerical 

linear independence; then if a singular value decomposition of the 

matrix oZ were performed at this point (e.g. using the numerical 

procedure of Golub and Kahan, 1965) the condition would be indicated by 

the presence·of one .. or more zet"o (relative to some tolerance) singular 
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values of of.. . Thus proceeding in this manner throughout region 1 

we would be able to obtain NTOTl linearly independent solutions at 

r . Similarly in region 2 we would obtain NTOT2 linearly independent 
0 

solutions at r by ensuring that the columns of ~ throughout region 2 
0 

remain linearly independent. The elements of the reactance matrix 

could then be obtained in the usual way by solving the resultant set 

of inhomogeneous linear equations. Note that if NBND> 0 the overlap 

integral terms must be evaluated over the various intervals defined 

by the orthonormalisation points at which the condition of continuity 

of the solutions must be imposed. The implementation of the ortho-

normalisation procedure referred to above would of course be expensive 

in terms of computing time but the advantages and disadvantages of 

such an implementation would be worthy of investigation. Program 

CHMOD would be more s~itable than would SCAT for the introduction of 

such a procedure since CHMOD solves the set of coupled equations sim-

ultaneously over the number of channels and the number of boundary 

conditions. 
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SUGGESTIONS FOR FUTURE WORK 

We have studied the ability of programs RADISH, NUHEROV2, EXPFIT2 

and NAGMOD which incorporate the methods of de Vogelaere, Numerov, 

Raptis and Allison with a variable stepsize and a variable-step 

variable-order Adams method to solve 

where 

II 
y = f(x, y) 

f(x, y) = rL(L + l) - E + V(x)] y(x) 
[ x 2 

(1) 

It is important to note that the conclusions of§ 7. 3 relate to the 

relative reliability and efficiency of the programs (as they are written) 

and not only to the methods themselves to solve equation (1). The 

work of Chapters 1 - 8 suggests areas for further study which we shall 

discuss below. 

The following fourth order Runge Kutta method 

k 2 h f(x , y ) 
0 0 0 

kl = h
2

f (x0 + .!! • Yo + .!! Y I + ko) 
2 2 ° lr 

k2 = h
2
f(x 0 + h, y + hy

1 

+ kl) (2) 
0 0 -

2 
I 

yl = yo + hy + ..!. (k
0 

+ 2k 1 ) 
0 

6 
I I 

hyl = hy + 1 (k + 4kl + k2) 
0 

6 
0 

solves (1) directly using a total of three function evaluations per 

step. It would be interesting to inc~ude in our numerical comparison 

of Chapter 7 a program which uses the method in (2) with automatic 

error control. Unfortunately the method does not possess a natural 

error estimator. Shampine and Watts (1971) have compared a number 

of different error estimators for the local truncation error of 

Runge-Kutta methods; one such estimator is that of England (1969) 

which for the method in (2) might be formulated as 
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(3) 

with 

= 2 
h f(x

1
, y

1
) 

= h2f(xl + ~· yl + ~ y; + :3) 

= 

y;here the parameters d., n, v., ~ = 0, 1 --- 4 <'~ ~ = 0 1 -- 5 ... ~ ... , , ,;r., ... ,, -, 
~ ~ 

are to be chosen so that the error in the solution at x
1 

is given by 

= 6 
r 

1 
+ 0( h ) • 

It may transpire however that it is not possible to obtain a fourth 

order method and a fifth order error estimator with six function 

evaluations. An investigation of the feasibility of using (3) as 

an estimate of the local truncation error would be instructive albeit 

lengthy. The general feeling is that Runge-Kutta methods, certainly 

for systems of first order equations, 'particularly the 4th-order 

versions, are rather expensive for high-accuracy work, but very camp-

etitive with other methods when only a few figures are required' 

(Walsh, 1974). It would be interesting to see how the method of 

de Vogelaere compares with the Runge-Kutta method in (2) when low 

accuracies in the solution are requested. 

We have seen in Chapters 6 and 7 that program NAGMOD with an 

error per unit step criterion in routine DNGMOD does an extremely 

good job of controlling the global error in the numerical integration 

stage of the calculation but that it also uses an excessive number 

of function evaluations in the process. NAGMOD uses routine DNGMOD 

for the numerical integration and this routine is a modified version 

of the N.A.G. routine D02AHF which uses a variable order Admas method 

based on Krogh's algorithm (1973). Routine D02AHF is soon to be 

withdrawn from the N,A,G. Library and replaced by routine D02QAF which 
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is based on Hindmarsh's (1974) code GEAR REVISION 3. A comparison 

of D02AHF and the GEAR code has been made by Gladwell (1979, private 

correspondence) and it is reported that the GEAR code generally uses 

less than half the number of function evaluations of D02AHF. The 

GEAR code is particularly well suited· for the solution of stiff systems 

of first order differential equations but contains as an option an 

automatic implementation of the variable order Adams Bashforth -

Adams Moulton methods for the solution of non-stiff problems. The 

major difference however between D02AHF and· the GEAR code lies in the 

adopted steplength strategy; the former only changes step by halving 

or doubling while the latter chooses an optimum value of the steplength 

when a decrease or increase in steplength is required, and in addition 

uses interpolation to output the solution at points which are specified 

by the user. This would probably account for the decrease in the 

number of function evaluations which are performed. However it might 

be more appropriate to solve (1) by employing a variable-step variable

order routine which solves (1) directly; we would expect such a routine 

to be more efficient and we would welcome the design of a code spec

ifically for this purpose, 

We discussed in Chapter 8 Chandra's program SCAT to solve a set 

of coupled homogeneous second order differential equations and a 

modification thereof in program CH}10D. Several modifications such 

as those discussed inS 8.5 could be applied to CH}IOD with an aim to 

optimising the program with respect to computer time and storage 

considerations. 

The iterative Numerov method has been studied by Allison (1970) 

and compared with de Vogelaere's method and the matrix Numerov method. 

It would be interesting to investigate the performance of the method 

of Raptis and Allison when incorporated into a matrix and iterative 

Raptis and Allison method. 



202. 

REFERENCES 

ALLISON, A. C., 

ASH, J. H., 

"The numerical solution of coupled 

differential equations arising from the 

Schrodinger equation", J.Comput. Phys., 

.§., 1970, pp. 378-391. 

"Analysis of multistep methods for special 

second-order ordinary differential equations" 

Ph.D. thesis, University of Toronto, 1969. 

BASAVAIAH, S., and BROOH, R.F. ,"Characteristics of in-line Josephson 

tunneling gates", IEEE Trans. on Magnetics, 

BLATT, J.M., 

BURKE, P.G., and CHANDRA, N., 

MAG-ll, 1975, pp. 759-762. 

"Practical points concerning the solution 

of the Schrodinger equation", J.Comput. 

Phys., 1. 1967, pp. 382-396. 

"Electron-molecule interactions. 

A pseudo-potential method for e 

III. 

- N 2 
scattering", J.Phys. B: Atom.Molec. Phys., 

2_, 1972, pp. 1696-1711. 

BURKE, V.H., and McCARROLL, R., "Electron scattering by atomic hydrogen in 

the ls, 2s or 2p state: II", Proc. Phys. 

Soc., 80, 1962, pp. 422-431. 

BURKE, P.G., and SEATON, M.J., "Numerical solutions of the integrodiffer

ential equations of electron-atom collision 

theory", Meth. Comput. Phys., 10, 1971, 

BURKE, P.G., and SMITH, K., 

CHANDRA, N., 

pp. 1 - 80. 

"The low-energy scattering of electrons and 

positrons by hydrogen atoms", Rev.Mod.?hys., 

34, 1962, pp. 458-502. 

"A general program to study the scattering 

of particles by solving coupled inhomogeneous 

second-order differential equations", Compute 

Phys.Commun., 2_, 1973, pp. 417-429. 



203. 

CHANDRASEKHAR, S. , and BREEN, F. H. , "The motion of an e lee tron in the 

Hartree field of a hydrogen atom", Astrophys. 

J., 103, 1946, pp. 41-46. 

COLEMAN, J.P., and MOHAMED, J., "On de Vogelaere's method for y"=f(x,yY', 

Math. Comp., 32, 1978, pp. 751-762. 

COLE:t-1AN, J.P., and MOHAHED, J., "De Vogelaere's method with automatic 

error control", Computer Phys. Commun., 

19 79, to appear. 

"' CORBATO, F.J., and URETSKY, J.L., "Generation of spherical Bessel functions 

C.P.C. PROGRAM LIBRARY, 

DE VOGELAERE, R. , 

ENGlAND, R., 

FROESE, C., 

GAUTSCHI, W. , 

GOLUB, G., and KAHAN, W., 

in digital computers", J.Assoc. Comp.Mach., 

.§_, 1959' pp. 366-3 75. 

Queen's University of Belfast, N.Ireland, 

19 73. 

"A method for the numerical integration of 

differential equations of second order 

without explicit first derivatives", J.Res. 

NBS, 54, 1955, pp. 119-125. 

"Error estimates for Runge-Kutta type 

solutions to systems of ordinary differen

tial equations", Comput. J., Q, 1969, 

pp. 166-170. 

"Numerical solution of the Hartree-Fock 

equations", Can.J.~hys., 41, 1963, pp. 1895-

1910. 

"Numerical integration of ordinary diff

erential equations based on trigonometric 

polynomials", Numer.Math., ]., 1961. pp. 381-

397. 

"Calculating the singular values and pseudo

inverse of a matrix", SIAM J.Numer.Anal., 

~. 1965, pp. 205-224. 



GORDON, R. G., 

HALL, G. , and HATT, J. M., 

HENRICI, P., 

HILDEBRAND, F. B., 

HINDMARSH, A. C., 

HOLT, A.R., and SANTOSO, B., 

204. 

"New method for constructing wavefunctions 

for bound states and scattering", J.Chem. 

Phys., 2.!,, 1969, pp. 14-25. 

Modern Numerical Methods for Ordinary 

Differential Equations, Clarendon Press, 

Oxford, 1976. 

Discrete Variable Methods in Ordinary 

Differential Equations, Wiley, New York, 

1962. 

Introduction to Numerical Analysis, 

McGraw-Hill, Ne~ York, 1956. 

"GEAR: ordinary differential equation 

system solver", Lawrence Livermore Lab

oratory Report UCID-30001 Rev. 3, Livermore, 

California, 1974. 

"A Fredholm integral equation method for 

scattering phase shifts", J.Phys. B: Atom. 

Holec.Phys., 2_, 1972, pp. 497-507. 

HULL, T.E., ENRIGHT, W.H., FELLEN, B.M., and SEDGWICK, A.E., "Comparing 

numerical methods for ordinary differen

tial equations", SIJ\}1 J.Numer. Anal., .2,, 

KOPAL, Z., 

KROGH, F. T., 

LAMBERT, J.D. , 

LAMBERT, J.D., 

1972, pp. 603-637. 

Numerical Analysis, Chapman and Hall, London, 

1955. 

"Algorithms for changing the step size", 

SIAM J.Numer. Anal., 10, 1973, pp.949-965. 

Computational Methods in Ordinary Differ

ential Equations, Wiley, London, 1973. 

"The intial value problem for ordinary 

differential equations: a survey", in 



LAMBERT contd. : 

LAUNAY, J.- M., 

LESTER, W.A., 

LESTER, W. A. , 

205. 

A Survey of Numerical Analysis 1976, 

edited by D.A.H. Jacobs, Academic Press, 

London, 19 77. 

"Body-fixed fonnulation of rotational 

excitation: exact and centrifugal de

coupling results for CO- He", J.Phys. B: 

Atom.Molec.Phys., 2, 1976, pp.l823-1838. 

"De Vogelaere's method for the numerical 

integration of second-order differential 

equations without explicit first deriva

tives: application to coupled equations 

arising from the SchrOdiilger equation", 

J.Comput.Phys., 1, 1968, pp.322-326. 

"Calculation of cross sections for ro-

tational excitation of diatomic molecules 

by heavy particle impact: solution of 

the close-coupled equations", in Methods 

in Computational Physics, edited by B. 

Alder, S.Fernbach, and M.Rotenberg, 

Academic Press, New York and London, 

Volume 10, 1971, pp. 211-241. 

LESTER, W.A., and BERNSTEIN, R.B., "Computational procedure for the close-· 

coupled rotational excitation problem: 

scattering of diatomic molecules by atoms", 

J.Chem.Phys., 48, 1968, pp. 4896-4904. 

LYCHE, T. , 

McDOUGALL, J., 

"Chebyshevian multistep methods for 

ordinary differential equations", Numer. 

Math., J2, 1972, pp. 65-75. 

"The motion of electrons in the static 

fields of hydrogen and he lium11
, Proc. 

Roy. Soc. A, 136, 1932, pp. 549-558. 

MOISEHllTSCH, B. L., and 0' BRIEN, T. J., "Application of Fredholm theory to 

elastic scattering," J.Phys.B: Atom.Nolec. 
Phys., 1, 1970, pp. 191-197. 



206. 

MOTT, N.F., and MASSEY, H.S.\-1., The Theory of Atomic Collisions, 

Oxford, 1965. 

N.A.G. LIBRARY 

NASH, J.C. 

NORCROSS, D. W., 

O'SHEA, B.B. 

O'SHEA, B.B. 

D02AHF (Mark 5), 1974. 

"A one-sided transformation method for the 

singular value decomposition and algebraic 

eigenproblem", Comput. J., .!.§., 1973, pp. 74-

76. 

"Asymptotic solution of coupled equations 

for electron scattering'', Computer Phys. 

Commun., 1, 1969, pp. 88-96. 

"Algorithms for the solution of systems of 

coupled second-order ordinary differential 

equations", Ph.D. thesis, University of 

London, 1971. 

"Algorithms for the solution of systems of 

coupled second-order ordinary differential 

equations", J.Comput. Appd. Math., !!_, 1978 

pp. 11-17. 

RAPTIS, A., and ALLISON, A. C., "Exponential-fitting methods for the num-

erical solution of the Schrodinger 

equation", preprint, 1977; subsequently 

published in Computer Phys. Commun., 1!!_, 

1978, pp. 1-5. 

RIEHL, J.P., DIESTLER, D.J., and WAGNER, A. F., "Comparison of perturbation 

and direct numerical integration techniques 

for the calculation of phase shifts for 

elastic scattering", J.Comput.Phys., .!2, 

ROBERTSON, H. H. , 

19 74 ' pp. 212-2 2 5. 

"Phase calculations for nuclear scattering 

on the Pilot Ace", Proc. Camb.Phil.Soc., 

52' 1956' pp. 538-545. 



SCOTT, M.R., and WATTS, H.A., 

SCOTT, M.R., and WATTS, H.A., 

SCRATON, R.E., 

SHAMPINE, L.F./GORDON, M.K., 

20 7. 

"SUPORT - A computer code for two-point 

boundary-value problems via orthonormal

ization", Rept. SAND-75-0198, Sandia 

Laboratories, Albuquerque, New Mexico, 

1955. 

"Computational solution of linear two

point boundary value problems via ortho

normalization", SIAM J. Numer. Anal., ll, 
1977, pp. 40 - 70. 

" ~ ~~,c .... l 6-6\..At~ ci it>~cl-~r c\...N~w-A.-..l 
"EsHmatiea gf the tr1:1aeatiea eFFOF in __ 1:1... .. 
JJrqv.trr~s 1\<..<\: C4"'-l-r .. ~-~ ti:o ~ ~Vl..~ .t.«pt-.c...: J 
Ruftge-K:u·t:-E-a-and-a-l-1-~s e s 11 

, Campu-1: • 

.:J-;--;--l-,---1:964 J pp. 246 248. ~..t,:J_, ~ 1 /'/bl,-1 

pp. 3b~- 31-0. 

Computer Solution of Ordinary Differential 

Eguations, W.H.Freeman and Co., San Fran

cisco, 19 75. 

SHAI-1PINE, L.F., and WATTS, H.A. ,"Comparing error estimators for Runge

Kutta methods", Hath.Comp., 25, 1971, 

pp. 445-455. 

SHAMPINE, L.F., and WATTS, H.A. ,"Global error estimation for ordinary 

differential equations", ACH Trans. Hath. 

Softwaye, !, 1976, pp. 172-186. 

SHAHPINE, L.F., WATTS, H.A., and DAVENPORT, S.M.,"Solving non-stiff 

ordinary differential equations - the 

state of the art", Rept. SAND-75-0182, 

Sandia Laboratories, Albuquerque, New 

Mexico, 1976. 

SIEHIENIUCH, J.L., 

SLOAN, I. H., 

"A study of a method of Fred T.Krogh for 

the numerical solution of ordinary differ

ential equations", M.Sc. thesis, University 

of Manchester, 1972. 

"Errors in the Numerov and Runge-Kutta 

methods", J Comput. Phys., !, 1968, 

pp. 414-416. 



208. 

SMITH, K., HENRY, R.J.W., and BURKE, P.G., "Scattering of electrons by 

atomic systems with configurations 2pq 

and 3pq", Phys.Rev., 147, 1966, pp. 21-28. 

STERN, M.S., 

VERLET, L., 

WALSH, J., 

"Comparison of numerical solutions of 

the partial wave Schr6dinger differential 

and integral equations", J.Comput. Phys. 

25, 1977, pp. 56-70. 

"Computer 'experiments' on classical 

fluids. !.Thermodynamical properties of 

Lennard-Janes molecules", Phys. Rev., 159, 

1967, pp. 98-103. 

"Initial and boundary value routines for 

ordinary differential equations" in Soft-

ware for Numerical Mathematics, edited by 

D.J.Evans, Academic Press, London and 

New York, 1974, pp. 177-192. 



~ PROGKAM RADISH 0001 

L lNE f\UMBER TE XI PAGE 1 

-------------------------------------------------------------------------------------------------------------------
1.000 c 
2.000 c 
3.000 c 
4.000 c 
5.000 c 
6 .ooo (.. 
1.000 c 
a.ooo c 
9.000 c 

10.000 c 
11.000 c 
12.000 c 
13 .ooo 
14.000 
15.000 
16 .ooo c 
17.000 c 
18.000 c 
19.000 L. 
~0.000 c 
21.000 c 
22.000 (. 
23.000 c 
2-'t .ooo (. 
25.000 c 
26.000 c 
27.000 c 
28.000 
29 .ooo c 
30.000 c 
;1.000 c 
32.000 
33.000 c 
34.000 
35.000 c 
3b.OOO C 
37 .ooo c 
~a.coo c 
3~.000 
40.000 

PROGRAM K.AD ISH 
BY J.P.CuLEMAN AND J.MUHAMEO, 
DEPA~TM~NT ~F MATHEMATICS, UNIVERSITY OF DUkHAM, SOUTH ROAD, DURHAM. 

THIS PK~~RAM TESTS THE SUBROUTINE CEVGG BY S~LVING THE RADlAL 
SCHRODlNGER t:;JUATION Y'·'+(E-VI X}-L(L+U/X*'*2l Y-=0 FOR SPECifiED 
PROJE~TILE ENERGY E, ANGULAR MOMENTUM lr AND POTENTIAL V(XJ. 
DEVOG SULVES THt: EQUATION Y 11 =F(X,Yl ~iHERE F(X,Yl IS SUPPLIED AS A 
FUNCTION SUBPROGRAM. 
All ~tAL V~RlABLES AR~ IN DOUoLE PRECISION fGRM. 

1MPL1ClT REAL*8(A-H,K,O-ZJ 
COMMON/£Kll1/c,K,PSIG,EPS,L,L1 
DIM~NSlON VCOcFF(4),A(5) 

DATA L.AROS MUST BE AS fOLLOWS: 
THE FIRST :ARu CONTAINS 4 REAL NuMBERS, ~OEfflClENTS IN THE 
EXPANSILN Of VlXJt IN F.lELOS OF 16 COLUMNS !>TARTING AT COLUi•1N 1. 
THE SEClJNU CAk.O CONTAINS 2 REAL NUMBERS (EPS,CJ lN CGLUMNS 1 TO 12 
AND 13 Tu 24. 
EACH 5LJ6SEQUENT l.ARD CONTAINS AN lNl"E~ER (U IN COLUMNS 1 TO 3, 
AND 3 REAL NUMBERS tE,XF,PSIG) IN COLUMNS 4 TO 15, 16 TO 27, 
AND 28 TO 39. 
IN THe LAST CARD L IS NEGATIVE. 
CHANNtL l lS THE INPUT DEVICE AND CHANN~L 2 THE OUTPUT UEVltE. 

READ U, U ( VCGEFF lll , I =1 ,4.) 
VCOEff(JJ JS THE COEfflClE:NT OF X**ll-2J IN THt EXPANSION Of V(XJ 
ABOUT THE ORIGIN. 

WRITEl~ 1 5J 
A CAPTIGN IS PRINTED 

REAC(l.,2J EPS,C 
EPS AND CARE RE~UlRED BY THE SUBROUTINE DcVGG. EPS IS A TULEKANCE 
PAKAMEicR, ANU t lS THE FACTOR BY WHICH THt STEPLENGTH IS TO BE 
INCREAS~U lF THE LOCAL TRUNCATION ERRGR IS SUFflLlENTLY SMALL. 

4 READ ( 1, 3J l, E , XF , P Sl ~ 
lftL.LT.OJ STuP 

0001 
0002 
0003 
0004 
0005 
OOOb 
0001 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
C02€ 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
003-6 
0037 
OC3E 
0039 
0040 

:P 
~ 

" fl\ 
~ 
b" 
1-\ 
><: 

~ 

'iU 
0 
:-C 
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-------------------------------------------------------------------------------------------------------------------
41.000 
42.000 
43.000 
44.000 
45.000 
46.000 
47.000 
48.000 
49.000 
50.000 
51.000 
!2.000 
53 .ooo 
54.000 
55.000 
56.000 
57.000 
58.000 
59.000 
bO.OOO 
61.000 
t:.2.000 
6.3.000 
64.000 
c 5. 000 
66.000 
t:. 1 • .000 
68.000 
69.000 
1C.OQO 
71.000 
7 2.000 
73 .ooo 
74.000 
15.000 
76 .o 00 
17.000 
78 .ooo 
79.000 
so.ooo 

L 

c 

c 

c 
c 
c 
c 
c 

A NEGATIVE VALUE Uf L INDICATES THE END GF THE DATA. 
WRITc(2,~J trl 

PRINT THt VALUES UF TrlE PHYSI~AL PARAMET~RS E,L 
WRITE(2 1 7) EPS 1 C 

PR1NT THE VALUeS OF THE STEP-CONTROL PARAMETERS EPS,C 
WRlTEl2r8l PSlGrXF 

PRINT THE VALUES OF THE TERMINATION CGNDlTIONS PSlG,XF; 
THE :ALl.ULATIUN IS TERMINATED WHEN THE RELATIVE DIFFERENCE 8ET~EEN 
ThO SUC~ESSlVE ESTIMATES JF JH~ PHASE SHIFT IS LESS THA~ J~ EQUAL TO 
PSIG 1 ~R WHEN THE POINT X=XF IS KEACHEO, WHICHEVER COMES FIRST. 

C***STARTlN~ SERIES 
A( U = 1.0) 0 
Ai2l=VCOEffl1l/l2.0DO*lL+lJJ 
W=VCOEFF(2J-E 
At3l= lVl.J Eff( U*Al 2J Hll/! 4*l+ol 
Al41 =l VCDEffll l*Al3.) +1Ai*Ai2 J+IJ CUEff(3 J Jl (6-*L-+12l 
Al5l=lVCJEF~llJ*Al4J+W*A{3J+VCO£fF(3)*Al2J+VCOEFFl4JJ/(S*L+20J 
H=(3.75D-l*EP~/DABSlAt5-LJll**0.25DO 

C HIS lHt FIRST STEPLcN~TH TRIED (SEE UEVOGJ. 
C***WARN1NG: IHlS CHOiCe uF H MAKeS SENSE ONLY IF L DOES NUT EXCEED 4. 

c 
c 

c 
c 

AL4=1.0DO/(L+4) 
AL5= 1. OD 0 I{ L + 5J 
X0=(0.1DO*EPS/DA8S{A(5))J**AL5 
Xl=tO.lUO*EPS/lH*lL+5l*DABSlAl5lJll**AL4 
1f(X1.LT.XOJ XO=Xl 

THE CHOSEN VALUe Of XO ENSURES THAT THE FlRST NEGLECTED TERMS 
IN THI: TAYLO~ EXPANSIONS FOK YO AND HZO DU NOT EXCEED O.l*l:::PS. 

XL=XO**L 
lf·iL.EQ.OJ XL=l.ODO 
YO=tXO*l~O*lXO*A{4J+A(3)J+A,2JJ+Al1)J*XL*XO 
ZO=lXO*(XO*lXO*Al4l*lL+4J+Al3l*lL+3JJ+Al2J*lL+2JJ+(L+ll*A(l))*XL 
K=OSQRT t E J 
Ll=L*(L+l) 
FO=Fl.XO,YO,OJ 
wRlTEt2,1l xo,vo,zo,Fo 

PRINT THE STARTING VALUES XO,YO,ZO,fO 

CALL UEVUGlH,XO,YO,ZOrFO,EPSrCrXFJ 
GU TU 4 

0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0051 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
006.5 
0066 
0067 
0068 
0069 
007C 
0071 
0072 
0073 
0074 
00'7.5 
0076 
0077 
0078 
0079 
0080 

~ 

9 
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81.000 
€2.000 
83.000 
84.000 
€5.000 
S6.000 
87.000 
sa.ooo 
89 .ooo 
so. 000 
Sl.OOO 
<;2 .ooo 
S3.000 
94.000 
ss.ooo 

c 
1 FORMAT(4Dl6.8J 
2 fuR~ATtLD12.3J 
3 FORMAT,l3,301~.3J 

5 FORMAT·1115HlTEST RUN: SuLUTION OF THE RAD1Al SCHRODINGER EQUATION 
l Y11 +(E-VtX)-L(L+lJ/X**2lY=O ~ITH CALCULATiON OF PHASE SHifT} 

b FORNATUHO,l9HPHYSH~AL PARAMETERS,7X,6t1E =,Dl3.6,1H 11 2X 1 5HL = 
1,1 3i 

7 fORMATllH ,23HSTEP-CUNTROL PARAMETERS,3X,6HEPS = 1 Dl0.3 1 3X 1 1H 1 ,2X 1 

15HC =,Dl0.3J 
8 FUR~~Tlli ,22HTERMINATION COND1TICNS,4XrbHPSIG = 1 Dll.~ 1 2X 1 1H, 1 2X 1 5 

lHXF =1 l.Hl.4l 
9 FORMATll~ rl5HSTARTING VALUEStllXt6HXO = 1 0ll.4,2X 1 lH 11 2X 1 5HYO = 

l 1 0ll.41 2X 1 lH 11 2X 1 4HZO =,Dll.4,2X,lH,,2X,4HFO =1 011.4) 
ENO 

0081 
0082 
0083 
0084 
ooes 
0086 
0087 
oose 
0089 
coc;c 
0091 
0092 
0093 
0094 
G095 

~ 



SUBROUTINE UEvOG{H,XOrYO,ZO,fO,EPS,C,XfJ COS6 

liNE ~UMBER TEXT PAGE J. 

------------------------------------------------------------------------------------------------------------------
So.OOO 
S7.000 c 
98.000 c 
ss.ooo c 

100.000 c 
1C1.000 ~ 

102.000 c 
103 .ooo c 
104.000 

,.. 
L. 

105.000 c 
1 Q;b. 000 l. 
1G7.000 c 
108.000 c 
1(9.000 c 
.1.10 .ooo c 
111.000 c 
112.000 c 
113 .ooo c 
114.000 r ... 
115.000 c 
11&.000 l: 
117.000 
118.000 c 
119.000 c 
120.000 c 
121.000 c 
l.C2.000 c 
123.000 
124.000 c 
12.5 .ooo c 
12&.000 
1.27.000 c 
128.000 c 
129.000 
130 .ooo c 
1~1.000 

132 .ooo c 
1.33.000 c 
134.000 c 
135.000 c 

SUtikOUTINE DEVOG(H,XO,YO,ZO,FO,EPS,C,XfJ 

THIS SUBRUUll~E SOLVES THE OJFfERENTlAL EQUATiON 
V"=F (X, Y) 

BY D~ VUGELAERE 1 S MEJHUD, GIVEN THE lNITJAl VALUES YO=Y(XOJ, 
ZO=Y'(XOJ, AND fO=FtXO,YOl. 

EPS IS AN JPPER dOUND IMPOSED uN THE ESTiMATED TRUNCATION ERROR 
PER iJNl T S"fEP. THlS BOUND APPLIES TO THE: ABSOLUTE DR RELAT lVE 
EkRUK ACCUkDING AS THE ABSOLUTE VALUE OF JHE SOLUTION AT THE 
PJINT UNDeR CONSlDERATION IS LESS OR GREATER THAN 1. 

H •• 1S AN INITIAL srEPLENGTH SUPPLIED BY THE USER. 

AT EA~H STEP THE LOCAL TRUNCAf ION ERKOK IS ESTIMATED. If THiS IS 
TOO LARGE THE CUkkENT STEP lS DISCARDED AND A SMALLER SlEPLENGTH IS 
CHOSEN .• WHEN THI: ESTIMATED TRUNCATION ER~OK. IS SU.FFlCJENTLY St~All 
THE STEPLENGTH lS iNCREASED FOR THE NEXT STEP. 

C •• THE USER-SUPPLIED FACTOR (E.G. 2) ~y WHICH THE SJEPLE~GTH lS 
INCREASED WHEN THIS CAN BE DONE WITHOJT EXCEEDING THE BOUND EPS. 

THE STATEMENTS BETWEEN LINES Of ASTERISKS REFER TO THE SCATTERING 
PROBLE~ R4THE~ TH~N Iu THE INTEGRATION OF THE DlfffRENTlAL EQUATION. 

lMPLlClf REAL*8(A-H,K,O-Zl 
NINC COUNTS THE NUMBEl Of INCREASES IN SJEPLENGTH REQUIRED 
DURING THE ~OURSE OF INTEGRATIUN. 

NINC=O 
NDEC COUNTS THI: NUMBER Uf DECREASES IN STcPLENGTH REQUIRE) 
DURING THE COURSE Df INTEGRATION. 

NDEC=O 
THE INTEGER 1 COUNTS THE NUMBER Of STEPS CARRIED OUT 

1=0 

DESC~lPTID~ ANU lNIT1AllZATION OF VARIABLES REQUlRED fOR 
BOOK-KEEPING AND ERROR CONTROL. 

C096 
0097 
0098 
CC9S 
0100 
0101 
0102 
0103 
010-4 
0105 
0106 
0107 
0108 
010S 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0.117 
0118 
OllS 
0120 
0121 
0122 
012.3 
0124 
0125 
0126 
0127 
012€ 
0129 
0130 
0131 
0132 
013.! 
0134 
0135 

~ 

'ib 



SUB~UUTI~E D~V~G(H,XO,Y0 1 Z0 1 FOrEPS,C 1 XfJ 0096 

L1NE NUMBER TEXT PAGE 2 
·-------------------------------------------------------------------------------------------------------------------

136 .ooo 
.137.000 
138.000 
139.000 
140.000 
141.000 
142.000 
143.000 
144.000 
145 .ooo 
146.000 
147.000 
148.000 
149.000 
150.000 
1~1.000 
152.000 
153.000 
154.000 
155.000 
1~6.000 
157 .ooo 
158.000 
159.000 
160.000 
161.000 
162 .ooo 
lt3. 000 
164.000 
165.000 
ll::6.000 
16 7 .ooo 
168.000 
16<;;.000 
170 .ooo 
171.000 
1"72 .ooo 
173 .ooo 
174 .ooo 
175.000 

C J1 AND JS REPRESENT RESPECTIVELY THE NUMBER Of SUCCESSfUL STEPS 
C LARRlED OUT WITH THE CURRENT H AND THE PREVIOUS 
C SULCESSFUL H. 

5 J1=0 
JS=O 

C J2: THE STEPLENGTH IS INCREASED FROM H TU C*H IF FOR 3 SUCCESSIVE 
C STeP$ THE PREOICTI::U TRUNCATION ERROR ollTH A STEPLENGTH OF C*H IS 
C SUffiCIENTLY SMALL. J2 IS USED AS A CuUNTEK FOR THlS PURPOSE. 

J 2=0 
C JD: r..HcN A ST EPLENGTH DE:CREASE IS NH.E SSAR Y A 1\E~ H IS CHlJSEN. 
C CALCULATIUN$ t-1AY SHOW THAT THIS lS li'liADE~UATb SU A fURTHER 
C REU~CTILN IS REUUlRlD. JD KEEPS TRACK OF THE STEPLENGTH 
C ~DECkEASES IN SUCH A CASE. IT IS INCREASED BY 1 ~lTH EACH 
C DECRtASE ~ND lS SEJ TO ZERO ~HEN AN ACC~PTABLE H HAS BEE:N FOUND. 

JD=O 
C C 1 1 S THE RAT! (J OF THE CURRENT H TO ThE PREV lOUS SUCCESSfUL VALUE. 

Cl= l.ODO 
C£=l.1 *l.l 

C TRl! AT THE lTH STEP TR1 lS lHE DIFfERENCE BEThEEN TkO ESTIMATiS 
C OF Yl2l-1J. INITIALLY 1T IS GIVEN AN AkBllRARY LARGE VAlUE. 

TRl=l.002 
c 
c **************************************************************** 
C IPS 1~ INlTlALLY ZEkO ANU IS CHANGED TO 1 BY THE FUNCTION SUBPROGRAM 
L FlX,V,!PSJ ~'\iHEN THE ASYMPTuTIC REGION lS REAC.hED. 

I PS=O 
C THE PARAMETERS JP AND JLONV ARE EXPLAINED lN JH~ SUBROUTlN~ PS. 

JP=1 
JCONV=O 

c ***********************************~:**************************** 
c 

HMAX=(XF-XOJ/5.0DO 
C IF A STEPLENGTH GREATER THAN HMAX ~~ERE USED THE TRUNCATl0\4 ERROR 
C WOULD NOT at ESTIMATED BEFORE Xf IS REACHED. 

lF(H.GT.HMAXJ H=HMAX 
c 
C***lNlllAL STEP 
C IN THIS SkCTlON Y1 IS CAll.ULATED, THE ~~NTRI~UTIGN FRUM THE ERROR 
C IN Yl T~ THAT lN Yl IS ESTIMATED~ AN~ THE SJ~PLENGTH H IS DECREASED, 
l. IF NE~E$SARY, UNTIL THIS CONTRIBuTION IS SUf~lCIENTLY SMALL. 

0136 
0137 
013€ 
0139 
0140 
0141 
0142 
0143 
014·4 
0145 
0146 
0147 
014S 
0149 
0150 
0151 
0152 
01.53 
0154 
0155 
0156 
0157 
0158 
0.159 
0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 
0168 
016S 
0170 
0171 
017 2 
0173 
0174 
0175 

'9-:> 
~ 



SUdROUTINE DEVOGlHtXO,YO,LO,FO,tP~,L~X~J 0096 

LlNE NUMBER TEXT PA:;E 3 

~------------------------------------------------------------------------------------------------------------------

176 .ooo c 
177.000 c 
118.000 c 
uc; .ooo c 
180.000 
181.000 
182.000 
183.000 
184.000 
185.000 
1f6.000 
187.000 
188.000 
189.000 
190.000 
191.000 
lS2 .000 
193.000 
lS4.000 
195.000 c 
156.000 c 
1S7.000 
.198.000 
1S9.000 
200.000 
201.000 
~02.000 
203.000 
2 C4. 000 
2C5.000 
2C6.000 
207.000 
2(8.000 
2C9.000 
210.000 
~ u. 000 
~12.000 c 
213.000 c 
~14.000 
215.000 c 

A STEPLENGlH ACCEPTABLE FOR Yl MAY BE FOUND INADEQUATE WHEN 
THE ERROR IN Y2 IS ESTIMATt:lli IN THAT CASE TH1S SECTION WILL BE 
REPEATED. THE CuUNT ER I lS IERU n HEN T HlS SECl ION IS F H. ST USED 
AND l=l AT ANY LATER ENTRY. 

l=H*ZO 
H2=ti*ii 
FEvEN=H2*f0/3.000 
F2l=FEVEN 
Y=YO+Z+1.5DO*F~VEN 

X=XO+H 
FODD=4.0DO*H2*F(X,Y,1PSJ/].000 
Y=¥+1f0D)-4.0UO*F~VcN)/~.ODO 
FODU=4.l>DO·*H£*ftX,Y, lPSJ/3.000 
X=X+H 
Z1=Z+FEVEN 
Y=Y0+2.0DO*L1+FODD 
fEVEN~H2*f(X,Y,lPSJ/3.0DO 
Z=Zl+fODD+FEV EN 
lfll.GT.Ol GO TO 4 

THIS TtST AVDlUS UNN~~~SSARY COMPUTATION IF 1=1 I.E. WHEN H IS 
LESS THAN A VALUE ALREADY fOUND ACCEPTABLE FOR Y1. 

YODU1=Y-l+ll.4D1*F~VEN+3.0DO*FODD-2.0DO*F2ll*b•25D-2 
XOH=XO+H 
FODD1=4.0DO~H2*flXOH,YOOD1,1PSJ/3.0DO 
Y1ERR=0.75DO*lFODDl-FOOD)/H 
DYlERR=OABSlY1ERRJ 
DY=DABS(YJ 
TOL=EPS*DMAXl,l.OOO,DYJ 
If!DY1ERR.LT.TGLl GO TO 4 
Cl=l0.5DO*EPS/DY1ERRl**0.2DO 
H=Cl*H 
GO TO 5 

4 J1=Jl+1 
F2I=FEVEN 
ERRfAC=4.0DO/t4.501*Hl 
X=X+H 

~RRFAC lS ~ fACTOR ~HlCH APPEARS IN THE TRUNCATION-ERROR cSTlMATE. 

l=i 

0.17 6 
0177 
0.17 s 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
0192 
0193 
01S4 
0195 
0196 
0197 
0198 
019<; 
0200 
0201 
0202 
0203 
0204 
0205 
020f 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0.214 
0215 

')1..) 

7 



SUBROUTl~E DEVOG(H,XO,YO,ZO,FO,EPS,C,XFJ 00~6 

l.INE 1\UMBER TEXT PAGE 4 

-------------------------------------------------------------------------------------------------------------------
~16.000 

~ 17.000 
218 .ooo 
~19.000 
~-~0 .ooo 
221.000 
2~2.000 
223.000 
224.000 
225.000 
226 .ooo 
227.000 
228.000 
229.000 
~30.000 

231.000 
232.000 
2.33.000 
234_.000 
~::5.000 
2.36.000 
237.000 
238.000 
239.000 
240.000 
~41.000 
242.000 
;.43.000 
244.000 
245.000 
~46.000 
247.000 
248.000 
~49.000 

250 .ooo 
~.:1.000 

252.000 
253.000 
2~4.000 

255.000 

c 
C***GENEkAL DE VOGcLAERc LOOP 

3 Z= Z +FC:V E'11 
V=V+l 
YuUU=Y+FEVEN-O.l25DO*fODD 
fCJDD=4 .OOO-*H2*F (X, YUDD, IP SJ/3.000 
X=X+H 
l= l+FJ DO 
'I=Y+l 
FEVEN=H2*F(X,Y,IPSl/3.0DO 
Z=Z+f.EVEN 

C THlS :uHPLETES THE EVALUATION OF Yl2l+l) AND ~(21+2J 
c 
c 
~ TRUNCATI~N ERROK ESTIMATE. 
C FIRST A M~lf ACCURATE ESTJMATE lS OBTAIN~U FUR Yl2I+lj. TR2 JS THE 
~ DIFFERENC~ BEThEEN THIS AND THE EARLIER ESTIMATE Of Y{2l+lJ. TR1 lS 
C THE DIFFERENC~ BETwEEN THE TWO ESTIMATES OF Y(2I-1J FROM THE 
C PREVIOUS STEP. 

YUDDl=Y-Z+ll.4Dl*FEVEN+3.0DO*fOOD-2.0DO*f2IJ*6.250-2 
TR2=YJJJU1-YOUD 

C TR2 HAS TO BE MODlfJED ON THE 2ND STEP ~ITH A NEW H, AND ON THE 1ST 
C STEP WITH A NEW H IF ONLY ONE STEP WAS OLNE WITH THE PREVJOUS H 

TR2l=Tii.2 
I f ( 1 • L E. 2 J GO T 0 3 2 
lf(Jl.E~.l.OR.(Jl.EQ.O.AND.JS.EQ.lJJ GO TO 30 

GO TD 32 
C THEN MUOIFY TR2 

30 TK2=B~TA*TR21 
!f(Jl.E~.OJ TR2=tifTAl*TR21 

CONTINUE 
C TRERR IS THt ESllMATED TKUNCATlON ERROR P~R UNil STEP 

32 TRExR=(TR2-TKll*EkRFAC 
JTR~R~=DAdS(TRERRl 

C If- TRUNCAl I tiN E:RROR IS TLU LARGe GO TO 14. TtH S DOcS NOT APPLY TO 
L THE FiRST STEP SINCE TWU STEPS ARE REQUJRED FOR AN ERROR ESTIMATE. 
C THE PAftAMi::Tt:R TUL PROVIDES AN ABSOLUTE OH. J\ELATIVE ERRUR CRITERION 
C ACCORUlNG AS iHE ABSOLUTE VALUE Of Y IS LESS LR GREATER THAN ONE. 

DY=DABS( YJ 
TuL=cPS*UM~Xl(l.OuO,DYJ 

0216 
0217 
0218 
021S 
0220 
0221 
0222 
0223 
0224 
022.5 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
02.3 7 
023S 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 
024€ 
0249 
0250 
0251 
0252 
0253 
0254 
0255 

~ -Ll"\ 



SUBRUUTINE DEVOGtHJXO,YO,ZO,FO,EPS,C,XFJ 0096 

LINt: t\UMBER TEXT PAGE 5 

-------------------------------------------------------------------------------------------------------------------
2.56. 000 
~~7.000 

258.000 
2~9. 000 
260.000 
261.000 
~t2.000 
263.000 
264.000 
~c5.ooo 

266.000 
2t7.000 
2t8.000 
269.000 
240.000 
271.000 
212.000 
~ 73 .ooo 
214.000 
215.000 
276.000 
277.000 
~78.000 
279.000 
280.000 
281.000 
~S2.000 
283.000 
2f4.000 
285.000 
286.000 
2£7.000 
288.000 
289.000 
~so.ooo 

2171.000 
.2S2.000 
293.000 
2174.000 
~'i.5.000 

c 
(., 

lFlOTRERR.liT.TOL.ANO.l.GT .lJ GO TO 14 

C CURRENT STEP ACCEPTED. DATA ST~RED FROM PREVIOUS STEP UPDATED. 
JO=O 
Jl=Jl+l 
TRl=TR21 
F2I=FEVE:N 
ll=Z 
fE VENl=FEVEN 
FL:J ODl= FOUD 
Yl=Y 
Hl=H 

C UPDATE ERRfAC lf NECESSARY 
IF(J1.GT.2J GG TO 31 
tRR~AC=4.0UO/t4.5Dl*HJ 
lf(Jl.EW.ll ERRFAC=0.8DO*lC2/HJ/{3.0DO*C2+5.0DO*Cl+l.ODOJ 

31 l=l+l 
c 
c **************************************************************** 
C THE PHASE SHirT IS CALCULATED lf IPS=l, WHICH MEANS THAT X IS 
C SUFFICIENTLY LARGE 

IF liPS.EW.lJ CALL PSlX,Y,JP,JCGNVJ 
C THE CALCULATl~N IS TERMlNATED If THE PHASE SHlFT HAS CUNVERGED 

lF {JCDNv.EQ.lJ GO TO 1 
L **************************************************************** 
c 
c 
c 
c 

c 

PREDICT TRUNCATION ERR~R FOR THE NEXT STEP ~ITH A STEPLENGTH UF C*H• 
IF THIS IS SUrFICIENTLY SMALL GG TO 13 TU lNCKEASE THE STEPLENGTH. 

10 OJRERR=DTRfRR*C**4 
1F(DTRERk.LT.(0.5DO*TOLJJ GO JO 13 
J2=0 

C STEPLEN~TH UNCHANGED FUR NEXT STEP. UPDATt X AND RETURN TO BEGINNiNG 
C Of LOUP BUf EX1l IF X EXCEEDS XF. 

23 X=X•H 
lflX.GT.XfJ GO TO 2 
G~ TU 3 

C***END JF Of VUG~LAEkE LOOP 

0256 
02.57 
0258 
0259 
0260 
0261 
0262 
026.3 
0264 
0265 
0266 
026"7 
0268 
0269 
027C 
0271 
0212 
0273 
0274 
0215 
0276 
02"77 
0278 
027S 
0280 
0281 
0282 
0283 
0284 
0285 
0286 
02E7 
0288 
0289 
0290 
02"91 
02~2 
0293 
0.294 
0295 

~ 

o-



SUBROUTINE DEVOG(H,~O,YO,lO,fO,EPS,C,XfJ 0096 

ll N E £\U M ~ ER TEXT PAGE 6 

-------------------------------------------------------------------------------------------------------------------
296.000 
2S7.000 
298.000 
299.000 
~oo.ooo 

301.000 
3 C2. 000 
.! C3 .000 
304.000 
305 .ooo 
306.000 
.!(7.000 
308.000 
!(9.000 
!10.000 
311.000 
.!12.000 
.:13.000 
314.000 
!15.000 
316 .ooo 
~17.000 
:18 .ooo, 
319.000 
:~o.ooo 
321.000 
~22.000 
323.000 
324.000 
:!25.000 
.326 .ooo 
.327.000 
.!28.000 
329.000 
.:.:o.ooo 
331.000 
332.000 
.!33.000 
.!34.000 
335.000 

c 
c 
C PRINT THE FINAL VALU~S Of l 1 NlNL,NUEC ANU RETURN TO CALLING PROGRAM. 

c 
c 

1 WRlTEl2,&ji,NlNC,NDEC 
RETURN 

2 ~RlTE(2,1lJl,NINC,NDEC 

R~TUKN 

C THE CODING k~LEVANT TO THE CHANGE Of STEPLENGTH IS CONTAINED 
C BEThEEN LINES UF DASHES. 
c 
c ----------------------------------------------------------------------
c 
c 
C***S T EPLENGTI-l DEl.Rf: AS E 
C IF TrlE LAST S-TEP WAS UNSUCCESSfUL JUMP OVER THE UPDAT.lNG SECTION 

14 JD=JD+l 
lFlJ1.EQ.OJ GG TO 20 
J S=J l 
Jl=O 
TR3=TRl 
F2I i=F 21 
Cll=Cl 
C2l=C2 

20 C1=(0.5UO*TJL/DTRERRl**0.25DO 
C SINCE THe LAST STEP lS REJECTED X IS REDUCED HY 2H BEFORE 
C H IS GlV~N ITS NEW VALUE 

X=X-2.0D:l*H 
H=Cl*H 
NDEC=NDEC+l 

C lf 1=2 l:NTRY TLi lHlS SECTIUN t-aEANS THAT 1-1 WAS TLO LARGE !\1 JHE LAST 
C T~O STEPS Su IT IS NECESSARY TO RESTART FRCM XO WlTH THE NEW H 

1fti.cQ.2) GO TO 5 
l=ll 
F 2l=F 211 
Ft:V eN= FEll ENl 
F ODD=f ODD l 
Y=Yl 

C Cl NO~ BE~JM~S THE RATlL OF THE NEw H TO THe LAST SUCCESSFUL H. 

02S6 
C2S7 
0298 
02~9 
0300 
0301 
0302 
0303 
0304 
0305 
0306 
030"1 
0308 
03CS 
0310 
0311 
0312 
0313 
0314 
0315 
0316 
0317 
0318 
0319 
0320 
0321 
0322 
0323 
0324 
0325 
0326 
0327 
0328 
0329 
033C 
0331 
03.32 
0333 
0334 
0335 

9-.l 

~ 



SUBRUUTlNE DEVOG(H,XO,VO,ZO,fO,EPS,C,Xfl 0096 

LINE !\UMBER TEXT PAGE 7 

·-------------------------------------------------------------------------------------------------------------------
~36.000 
;~7.000 

338.000 
339.000 
~40.000 
341.000 
:!42.000 
343.000 
344.000 
~45.000 
346.000 
347.000 
~48.000 
349.000 
~.50.000 

351.000 
352.000 
3!3.000 
354 .ooo 
355.000 
~56 .ooo 
357.000 
358.000 
359.000 
360.000 
3tl.OOO 
362.000 
3t3.000 
3t4 .ooo 
365.000 
3co.OOO 
367.000 
368.000 
~69.000 

310 .o 00 
311.000 
.372.000 
313.000 
374 .ooo 
~75.000 

C1=H/H1 
C2=Cl*Cl 

C NOri ENTER ~£START SECTION 
GO TO 16 

c 
c 
C***STEPLENGTH INCREASE 
C NO ACTluN TAKeN UNLESS J2=3. 

c 
c 

13 J2=J2+l 
lflJ2.LT.3J Gl: TO 23 
J2=0 
JS=J1 
J 1=0 
TR3=T R2l 
F2ll=F21 
C ll=C l 
C2l =L.2 
NI 1'.it. =Nl N:. + l 
C1=C 
C2=Cl'~<Cl 

H=C1*H 

C***RESTART SE:.JlJN. THIS PROVIDES THE UATA NEtESSARY fOR REENTRY TO 
C THE DEV~GELAERE LOOP WITH INCREASED 0~ DECREASED H. 

16 H2=H*H 
I=Cl*Z 
f2.l=C2 *f2 l 
FEVEN=C 2*t- EVE: N 
FODD=C.2*fOJD 
FOD0=4.0)0*(l.OUO-C1l*fEVEN+Cl*fODD 
ALPHA=- ( 2. 000+ C U *C l*C 2/3. ODO 
T R1=ALPHA*TR3 

C SOME UlFFc~cNCE~ UCCUR IF THE PREVlGUS STEPLENGTH WAS UStD ONLY ONCE 
lf(JS.EQ.ll Gu TD 21 

Gu ru 22 
C THEN LALCULATc APPROPRIATE ERROR TERM WHEN JS=l 

21 ERRFAC=4.8 DO *C2*C21/ ( { C21 *( -\..2+7 • ODO*C 1+ 1. 20 lJ +2. 00 O*C 11* ( -C2+o 
1 .OUO*Cl+l.OUlJ+2.0DO*lC1+2.0UOll*Hl 

lf(JD.EQ.lJ BETAl=BETA 

0336 
0337 
0338 
033~ 
0340 
0341 
0342 
0343 
0344 
0345 
0346 
0341 
0348 
0349 
0350 
0351 
0352 
0353 
0354 
0355 
0356 
0357 
0358 
0359 
0360 
0361 
0362 
0363 
0364 
0365 
0366 
0367 
0368 
0369 
0370 
0371 
0372 
0373 
0374 
0375 

~ 

~ 



!)UoK.I.JUJ l~l: UI:VUtlllitXUrYU,LU,t-U,I:I-'~,L. ,Xt-J 0096 

LINE !\UMBER TEXT PAGt: 8 

-------------------------------------------------------------------------------------------------------------------
::;6.000 
377.000 
3 ·-.a. ooo 
379.000 
380.000 
381.000 
382.000 
3€3.000 
3€4.000 
385.000 
!€6.000 
.387 .ooo 
3€8.000 
3E9.000 
390.000 
39.1.000 
::s2.ooo 
393.000 
394.000 
395.000 
396.000 
3S7.000 

GO TO 24 
C ELSE 

c 

22 EkRFA,=l.6DO~lC2/H)/(1.201+7.0DO*Cl-C2) 

CONTINUE 
24 8ETA=ALPHA/(C2*'2J 

X=X+H 
lflX.GT.~fJ GO TO 2 

GO TO 3 

c ----------------------------------------------------------------------
c 

6 FOKMAT{lH0 1 46HPHASE SHIFT HAS CONVERGEU TO REQUIREU ACCURACY/39HNU 
lMBER Of lNTEGRATlGN STEPS CARRIED OUT,16/75HNUMBER OF INCREASES IN 
2 STEPLEN~TH REQUIRED OURING THE COURSE UF lNTEGRATION 1 13/75HNUMBER 
3 OF D~CREASES IN STEPLENGTH REQUlRtD )URlNG THe COURSE Of INTEGRAl 
4lON,I3,///J 

12 FGRMATllH0 1 52HTHE END OF THE RANGE OF INTEGRATICN HAS BE~N- REACHED 
l/39HNU~~EK )f INTEG~~TJON STEPS CARRIED LUJ,16/75HNUMBER OF INCREA 
2SES IN STEPLENGTH REQUIRED DURING THE COURSE If INTEGRAT10N,13/75H 
3NUMBER OF DeCREASES lN STEPLE~GTH REQUlRED DURING THE COURSE GF lN 
4TEGRATlUN,l3,///J 

END 

0376 
0377 
0378 
0379 
0380 
0381 
0382 
0383 
0384 
0385 
038 (: 
0387 
03SE 
038S 
0390 
039.1 
0.392 
0393 
039·4 
0395 
0396 
0397 

~ 
...Q 



~vor.uv 1 J. ru: r ~\A' r '., .... '"'"'v•·•v 4 a 3'i a 

llNE !\UMBER TEXT PAi;.E 1 

'------------------------------------------------------------------------------------------------------------------· 
JSS.OOO 
3s~.ooo c 
400.000 c 
401.000 c 
402 .ooo c 
4C3. 000 C 
404.000 c 
405 .ooo l. 
406 .ooo c 
407.000 (.. 
4C8.000 C 
409 .ooo c 
410.000 c 
411.000 c 
412 .. 000 c 
413.000 c 
414.000 c 
415.000 c 
416.000 c 
417.000 
418.000 
419.000 
420.000 c 
421.000 c 
422.000 
42.3.000 
424.000 
425.000 
42b.OOO 
4~7.000 

428.000 
42<7.000 
~ 30 .ooo 
431.000 
4.32.000 
433 .ooo 
4~4.000 ~ 
435.000 c 
436.000 
437.000 

SUdROUTlNE PSlX,Y,JP,JCONVl 

THlS SUBROUTINE CALCULATES THE PHASE SHIFT FROM THE SOLUTJON OF 
THE SCHRJDlNGcR EQUATION AT T~O POINTS XM AND X AT LEAST ONE 
ATOMIC UNIT APART. 
Y IS THE VALUE OF THE WAVE FUNCTlCN AT X 
JP=l ON f!RST ENTRY TL THIS SUBROUTINE ANU =2 ON LAT~R ENTRIES 
JCUNV IS SET E~UAL TO ZeRO IN THE CALLING PROGRAM. IT IS CHANGED 
TO UN~ ~HEN THE RELATIVE DlffEKENCE BET~EEN TWO su::ESSlVE 
ESTIMATeS OF THE PHASE SHifT IS <=PSIG 

COMMUN BLOCKS: 
EKLLl TR~NS~ERS ENERGY, WAVE NUMBER, ANGULAR MOMENTUM AND THE 

r~LERANCE PARAMETERS PSIG AND EPS FkOM THE MAIN PKGGRAM 
PHAS~ WHICH IS USED GNLY lN THIS SUBROUTINE STORES DATA FROM 

THE PREC~EDING ENTRY TO THE SUBROUTI~E. 

lMPLlLlT REAL*8(A-H,K,D-Z1 -
C 0~1MON/ EK Lll/ E , K, P S l G, EP S, L, L l/ P HA SE I XM, YM , SM 1 L M 1 P SM 
lF {JP.EQ.U ~u TO l 
THE FUNCTION OF IHE SU~ROUTIN~ ON THe FIRST ENTRY IS TO STORE DATA 
WHICH HILl tiE USED LATER IN A PHASE-SHIFT CALCULATION. 
XINC=X-XM 
lflXlN~.LT.l.OJ RETURN 
KX=K-*X 
S=REG{KX1 Ll 
C=AIREG(KX, U 
ANUM= Y* SM- YM* S 
AOcNO~=Y~*C-Y*CM 
A=ANUi'l/ AD ENuM 
PSHlFT=D~ TAN( AJ 
WRITE(2,51 X,PSHlFT 
P=DAB.St 'PSHIFT-PSMl/PSHIFTJ 
IF (P .LT ,.PSlGJ JCONV= l 

STJ~AGE JF UATA FO~ N~XT PHASE-SHIFT CALCULATION 
2 PSM=PSHIFT 

XM=X 

03SS 
0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 
0407 
0408 
0409 
041G 
0411 
0412 
0413 
0414 
0415 
0416 
0417 
0418 
04lS 
0420 
0421 
0422 
0423 
0424 
0425 
0426 
042'7 
0428 
042«; 
0430 
0431 
0432 
0433 
0434 
0435 
0436 
0437 

~ 
~ 
0 



SUtlROUTI~E PSlX,YtJP,J~UNVJ 0398 

llN f !";UMBER TEXT PAGE 2 
------------------------------------------------------------------------------------------------------------------... 

438.000 
439.000 
-440.000 
441.000 
442.000 
443.000 
444.000 
445.000 
446.000 
447.000 
448.000 
449.000 
4!0.000 
451.000 
452.000 
4~3.000 
454 .ooo 

c 

c 
c 

YM=Y 
SM=S 
CM=C 

4 fORMATUH0 1 5X 1 1HX,llX,llHPHASE SHIFT) 
5 FORMAT(li ,Ull.4,5X,Dl3.6J 

RETURN 

ThiS Sl~TlUN IS USED ONLY ON THE FIRST ENTKY 
1 KX=K::OCX 

S=REG ( K.X, lJ 
C=AlREG{KX,Ll 
PSH.lfT=O.ODO 
JP=2 
vlRUE(2,4J 
GO TU 2 
END 

0438 
0439 
0440 
0441 
0442 
0443 
0444 
0445 
0446 
0447 
044S 
0449 
045C 
0451 
0452 
0453 
0454 

9-;> 
"P 



REAL fUNCTliJN F*Hi.X,YrlP~J 0455 

LlNE NUMBER TEXl PA~E 1 
·-------------------------------------------------------------------------------------------------------------------

4!:5.000 
456.000 c 
457.000 c 
458 .ooo c 
459.000 c 
4€:0.000 c 
461.000 c 
4t2.COO 
463.000 
464.000 c 
465.000 c 
466.000 
467.000 c 
4f8.000 c 
469.000 
4"JG.OOO 
471.000 
472.000 
473.000 

REAL FUN::.TlON F*B(X,Y,lPS) 

THIS SUBPi{UGRAM RETURNS THE VALUE OF Y11 (Xj. 
IPS IS SET EUUAL TO ZERO IN THt CALLING PROGRAM, AND IS CHANGED TO 

1 ~HEN THE ASYMPTUTIC REGION HAS bEEN REALHED I.E. wHEN V(Xl 
CAN BE NEGLECTED IN COMPARISON WITH L(l+1)/X**2-E. 

IMPLICIT REAL*8(A-H,K,u-Z) 
CO~MON/cKLLl/~,K,PSl~,EPStLrll 

EPS IS TH~ TOLERAN~E PARAMETER USED IN DEVOG 
PSIG lS NOT USEU IN THIS SUBPROGRAM 
V=-2.000*l1.000+l.ODO/Xl*D~XPl-2.0DO*Xl 
HERE V IS THE POTENTIAL FOR AN ELECTRON IN T~E STATIC FJELD 
OF TH~ HYUROGEN ATOM 
A=Ll/lX*XJ-E 
IFLA.LT.O.ODO.AND.OABSlVl.lT.EPS*{-All IPS=l 
F=(A+Vl*Y 
RETURN 
END 

0455 
0456 
0457 
0458 
0459 
0460 
0461 
0462 
046.3 
0464 
0465 
0466 
0467 
0468 
046c; 
047C 
0471 
0472 
0473 

~ 
~ 
"P 



REAL fuNCTluN REG*8(X,LJ 0474 

L lNE t\UMBER TEXT PAGE 1 
-------------------------------------------------------------------------------------------------------------------

414.000 
4 75.000 
lt"J6.000 
477.000 
lt78.000 
lt79.000 
480.000 
4f1.000 
482 .ooo 
483.000 
lt84.000 
465.000 
486.000 
ltf7.000 
4€8.000 
489.000 
4SO.OOO 
491.000 
492.000 
4~3.000 
494.000 
4S5.000 
4~6.000 

497.000 
4S8.000 
49"9 .ooo 
5CO.OOO 
501.000 
502.000 
!:03. 000 
504 .ooo 
5C5.000 
:c6.ooo 
507.000 
5C8.000 
509.000 
510.000 
511.000 
512.000 
513.000 

ReAL fUN: HuN REG* 8( X, U 
C SPHERICAL BtSSEL fUNCTION OF THE FlkST KINO JlMES X. 
C RE~lX,L)=X*JL(X) IN THE NUTATION Of ABRAMOWlTZ AND 
C STEGUN HANDBOLK OF MATHEMATICAL FUNCTICNS P437. 
C IF L DOES NOT EXCEED X fORWARD RECURRENCE IS USED, OTHERWISE 
C SACKWARU RECURRENCE IS USED WITH STARTING CONDITIONS FOUND AS 
C SUGGESTED BY l..ORI3ATO AND UKETSKY J. ASSDl... C.O.MP. MAt;H. VOL 6, 
c pp 366-375 {l959J. 

c 

IMPLICIT RtAL*BlA-H,O-Z) 
DH1ENS1D\I PF(40) 
IF lL.GJ.XJ Gu TO 3 

C FOR~ARD REl..URRfN~E 
A=DSINlXJ 

c 

If (L.EQ.OJ GO TO 2 
B=DC.US(Xj 
FAC=l. ODO/X 
X2=fA(..+fA~ 

DO 1 J=l,L 
Al=A 
A=fAC*A-I:i 
il=Al 
fA(.=f~C+X2 

1 CONI lNUI:: 
2 REG=A 

Rf:TUR.N 

c *************~*********************** 
c 
C A RELATIVE cRkUR LESS THAN l.OD-7 lS DEMANDED WHEN BACKWARD 
C RECURREN:c IS US~U. IF THE DIMENSION Of THE ARRAY PF IS 
C INSUFFICIENT TO ENSURE THlS AC~URACY A wAkNlNG IS PRINTED. 

3 IF {L.GE.40j Gu TO 6 
ERLG=23.25DO 

C ERLG IS THE ABSOLUTE VALUE Of THE LGG TO THE BASE 2 Of DELTA 
C WHERE O~LTA IS THE MAXIMUM PERMlTTE) RELATIVE ERROR IN REG. 
C HERE DELTA=l.OD-7. 
C. NU1 IS uEflNtU BY E~NC311 GF CUKBATO AND JRETSKY. 

U=£.000*X/DfLGATl2*L+l) 
NUl=L+lDlhT(ERLG*{O.lDO+O.l75DO*U*l2.JDO-u*UJ/(l.ODO-J*UJJJ 

0474 
0475 
04"76 
0477 
0478 
0479 
0480 
0481 
0482 
0483 
0484 
0485 
0486 
04€7 
0488 
0489 
0490 
0491 
0492 
0493 
0494 
04<;5 
0496 
04S7 
C4SS 
0499 
0500 
0501 
0.502 
0503 
0504 
0505 
050€: 
0501 
05ce 
0509 
0510 
0511 
0512 
0513 

~ 
~ 
v.. 



REAL fUNCT!UN REG*8(X,LJ 0474 

L lNE NUMBER TEXT PAGE 2 

-------------------------------------------------------------------------------------------------------------------
~14.000 
515.000 
516.000 
511 .ooo 
518.000 
519.000 
520.000 
~21.000 
522.000 
523.000 
524.000 
525.000 
526.000 
527.000 
54:8.000 
529.000 
~30.000 
5.31 .ooo 
~32.000 

533.000 
~34.000 

!35.000 
5:36.000 
~ 37 .• 000 
:3a.GOO 
539 .ooo 
540.000 
541.000 
542.000 
:43.000 
~44.000 

545.000 
~46.000 

547 .ooo 

NP=l01NT(X-0.5DO+DSQRT(ERLG*0.35DO*Xll 
IF tNP.LT.LJ GCJJQ.4 
U=2.0DO~X/DFLOATl2*NP+ll 
NUP= NP +! DlN I ( .t:RL G* ( 0 .. 100+0 .1 750 0* U*( 2. OD D-U* Ul /( 1. ODO-U* UJ ll 

C BA~KWA~D RECURRENCE BEGINS WITH THE SMALLER OF NUl AND NUP. 
IF lNUP.LT.NUll NUl=NUP 

C REUuCtD ACCURACY WHEN NUl TOO LARGE fOK DECLARED ARRAY 
IF (NUl.~E.40l GO lU 7 

c 

t: 

4 PF(NUl+ll=l.OD-10 
FAC=DfLOAJ,NUl+NUl+ll/X 
PftNUll=FAC*PflNUl+lJ 
.X2=2. ODO/ X 
J1=NU1-l 
DO 5 J=l, Jl 

FAC=FI\C-X2 
PflNUl-Jl=fA~*PflNU1+1-JJ-PF(NU1+2-JJ 

5 CONTINUE 
CRN=tPFtlJ/X-Pf(2ll*DCDS(XJ+DSIN,Xl*Pf(lJ 
REG=Pf(L+ll/CRN 
RETURN 

6 WRlTE(C!,lOOJ L 
100 FUR~'T(l~ ,3HL= ,13t52H TOC LARGE FOR ARRAY DECLARED. REG REPLACE 

1D BY l£RUl 
REG=O.ODO 
RETuRN 

7 WRITEL2,10U L,NUl 
101 FORMAT(lH ,31Hf0~ ~ACKWARU RcCURRENC~ wlJH L=,I3,32H THE CALCULATE 

lD VALUE Of NUl lS ,13,24H SlNCE THIS lS JOO LARGE/45H FOR THE DECL 
2ARED ~RRI\Y NUl IS REPLACED BY 39) 

NUl= . .:il9 
GO TO 4 
END 

0514 
0515 
05.16 
0517 
0518 
0519 
0520 
0521 
0522 
0523 
0524 
0525 
0526 
0527 
0528 
0529 
0530 
0.531 
0532 
0533 
0534 
0535 
0536 
0537 
053E! 
0539 
0540 
0541 
0542 
054 3 
0544 
0545 
0546 
0547 

~ 
'P 
~ 



KtAL ~UN~j1UN AlKtb~~lA,LJ 0548 

lINE ~U MBf:R TEXT PAGE 1 
-------------------------------------------------------------------------------------------------------------------· 

548.000 
~4Cj. 000 c 
5 50 .ooo c 
551.000 c 
~~2.000 c 
553.000 c 
~~4.000 c 
555.000 c 
55.b .ooo 
557.000 
558.000 
559.000 
~to.ooo 
~61.000 
562.000 
5t3.000 
5.64 .ooo 
5.65.000 
566.000 
567.000 
~t a. ooo 
5{:;9.000 
570.000 

REAL fUNCTION AlREG*8(X,lJ 
SPHERICAL BESSEL fUNCTION ~f THE SECOND KJND TIMES -X. 
AlREGtX,Ll=-X*YL(XJ lN THE NOTATION OF ABRAMOkiTZ AND 
STEGUN HAND~OOK OF MATHEMATICAL fUNCTluNS P437. 
CALCULATION IS BY FORWARD RECURRENCE. 
NO OV~R~-uW PROTECTION IS INCLUDED SINCE THIS ROUTINE 
WILL NOT BE CALLED FOR VERY SMALL VALUeS OF X 

IMPLICIT REAL*8lA-H.O-ZJ 
A=DCOSlXJ 
lF (L.EQ.OJ GO TO 2 
.FAC.= 1.0DO/X 
B=-DSlN(XJ 
X2=FAC·+-F l\ C 
DOl J=1,L 

Al=A 
A=FAC*A-8 
fAC=fAC+X2 
B=Al 

1 CONTINUE 
2 AIREG=A 

RETURN 
cNU 

0548 
054S 
0550 
0551 
0552 
0553 
0554 
0555 
0556 
0.557 
ossa 
0559 
056C 
0561 
0562 
0563 
0564 
0565 
0566 
0567 
056E 
0569 
057C 

~ 
"\~-" 
~ 



TABLE 32 

L i 
0 I 1 2 

E i 

0.16 1. OS 75 I 0.0146 0.0005 
1. 05 75 0.0146 0.0005 
1. 05 77 0.0145 ·~ * * 
------ ------ ------
1. OS 75* 0. 014 7"( 0.0005* 

o. 25 1. 044 7 0.0260 0.0014 
1. 044 '7 0.0260 0.0014 
1. 0445 0.0258 0.0012 
------ ------ ------
1. 0448* 0.0260* .0. 0014''( 

0.5 0.9908 0.0584 0.0055 
0.9908 0.0584 0.0056 
0.9912 0.0583 0.0054 
------ ------ ------
0.9909* 0.0584* 0.0056* 

0.8 0.9356 0.0924 
0.9356 0.0924 
0.9351 0.0919 
------ ------
0.9356* 0.0924* 

1.0 0. 90550 0.111468 
0.90552 0. 1114 74 
0.90562 o. U1103 
------- --------
0.90567** o. 111510** 

'4.0 0,695 
0.695 
0,689 
-----
0,694+ 

CJ.O 0. 572 
o. 573 
o. 570 
-----
0.569+ 

16.0 0.492 
0.492 
0.486 
-----
0.490+ 

~5.0 0.434 
0.434 
0.429 
-----
0.432+ 



Corresponding to e~ch value of E and L there are 4 tabulated values 

of the phase shift: 

the first corresponds to using EPS = 10-6 
PS IG = 10-4 

I 

the second corresponds to using EPS = 10-B PSIG = 10-5 
I 

the third corresponds to using EPS = 10-4 PSIG = 10- 3 
I 

the fourth corresponds to the-published result. 

"I:: refers to the published result of Burke and Smith (1962). 

** refers to the published result of Chandrasekhar and Breen (1946). 

+ refers to the published result of McDougall (1932). 

*** phase shift failed to converge to required accuracy over specified 

range of integration. 



C THI.S· PROGRAM J:ESTS THt: SUtiKUUT 1Nt: KAPAL ~y 5ULVlNb THE. KA[.JIAL 

LINE NUMBER TfX'f PAGE · 1 

----------------------------------------------------- ---------------
1.000 
2.000 
3.000 
4.000 
5.000 
6.000 
7.000 
a.ooo 
9.000 

10.000-
u.ooo 
12.000 
13.000 
14.000· 
15.000 
16.000 
1-7.000 
18.000 
19.000 
20.000 
21.000 
22.000· 
23.000 
24.000 
25.000 
26.000-
27.000 
28.000 
29.000 
30.000 
31.000 
32.000 
33.000 
34.000 
35.000 
36.000 
37.000_. 
38 •. 000·': 
39.000. 
40.000 

c 
c· 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
C' 
c· 
c ,. 
c 

c 
C; 
c· 

c 

c 
c 
c 
c 

c 

c 

c 

THIS PROGRAM TfS·TS- THE SUBROUT lNE RAPAl· BY SOl VlNG. THE RADIAL 
SCHRODINGER· EQUA·TION.v.•·•+.(E~L(L+ll/X**2-V00J'Y=O FOR SPECI.FIED 
PROJECTILE ENERGY e, ANGULAR .. MOMENTUM Lt AND POTENT-IAL VIKJ·. 
ALL·REAL VARIABLES ARE IN DOUBLE PRECISION FORM. 

IMPll CIT .. RfAU0:8.&.A:-~, O""!'Z) 
C OHMON/EKlLliE.AK·,PSI G ,EPS ,C ,L,ll 
COMMON VCOEFF 4 8J ,A( 9J,F(:8000) .xx·C 8000) ,o C 6t7l':, JY 

DATA CARDS MUST BE AS FOLLOWS: 
THE FIRST T.WO CARDS CONTAIN.c.8 .. RfAL .NU~BERS, COEFFlCJENT-5. IN THE 
EXPANSION OF. VCXJi,.I~ FIELDS· Of 1-b .~OLUMN~ S~A~TING AT_: COLUMN· a.. 
T·HE.' THI.RD CARD CONTA·INS 1 ·REAL .. NLJM:BER fEP·SJ· 'IN. COL UN~ S· 1 TO ·12;;;· 
EAC-H. SUBSEQUENT. CARD CONTAINS;;AN INTEGER ·tU lN COLUMNS 1 TO 3, 
AND ~ REAL NUPG8ERS ( E, XF,P SiG~: H) lN · COLUHNS 4. TO '15~·· 16 TO 2 7, 
28 IO 39· AND ft.O TO 51.· " 
IN T~E.:LAS~'CARO lIS NEG~TIVE. 1 
CHANNEL 1 IS·JHE INPUT :DEVICE·· AND CHANNEL 2 THE- OUTPUT· DEVICE. 

READll, u . c.vcoEF-FI'I J', l=-l,aJ · _ 
VCOEFFUJ IS .TH£ COEff.IClENT· OF X**U-2J· .IN THE. EXPANSHJN Of VtXJ. 
ABOUT .THE ORIGIN~ 

WRI TE.C2 ,.5 J . 
A·:.CAP.f-.l.ON 1 S PR.I NTED 
· READU121 .EPS··- .. - -

C=2. ODO 
·EPS. AND C ARE. REQUIRED. BY· :THE SUBROUTINE RAPAL. · EPS· 1 S A TOLERANCE 
PARAMETER., AND C"IS THE· FACTOR· BY .WHICH iHE STEPLENGTH l.S TO BE·-
INCREASED IF ·THE LOCAL .. TRUNCATlON 'ERROR IS SUFi=ICIENTLY SMALL.· 

'::P 

"'""' ~ 
I'T\ 
'Z. 
l::;l 
t-\ 
~ 

~ 

9._) 

~ 
?Q 



C THIS.PROGRAM TES:TS THE SUBROUTINE RAPAL BY SOLVING THE .RADIAL 

L lNE NU.MBER TEXT 

·------------------------------------------------------------------·---...;.. ____ , 
~1.000 
42 •. 000 
43.000 
44.000 .. 
4·5.000 
46.000· 
47:.000· 
48.000 
49.000. 
50.000 
!1.000. 
52.000 
!3.000. 
54.000 
55.000. 
56.000· 
57 .ooo 

. 58:. 000· 
59.000 
60.000. 
61.0.00. 
62.000 
t3• 000 .. 
t4 •. 000 
65.000 
66.000 
67.000. 
68.·000 .. 
69.000 
70.000. 
11.000 
12.000 
73.0.00 
74.-000 
75 .• 000 
76.000 
17.000 
18.000· 
79 •. 000· 
80;~000. 

c 
c 
c 
c 
c 

PRINT. THE,VALUES Of· THE. TERMINATION CONDITIONS· PSIG.XF; 
THE: CALCUL.AT JON ···'JS tERM INAT.ED WHEN THE REL.A T.IVE Dlff.ERENC.E BE TWEEN 
TWO SUCCESSIVE fST.lMATES-·Of THE PHASE SHlF-T .. IS· LESS .THAN· OR EQUAl TO 
PSJ.G,.-.OR·kHEN TtiE·POINT X=XF JSR~ACHEO, WHJCHEVER COMES Fl.RST .... 

C.***ST·AR·TI NG .. SE R1 E S 

c 
c 

c 

c 
c 

A(lJ.-;:::1.000 
At 2) =VCOEff. l.l J/.12. 000*.( L+l,u· 
W=VCOcfF( 2J,-f · .. ·- : 
AB l ::;,( V.COEFF( 1 l*Al.2 J .+W J/ (4·*L·+6 J 
A I .4) =.l'~V' OEFF C .ll*A·C~l + W*A t2 )·+ VCOEF F ( 3 J J:/.(.6*L + 12·) 

· AI S l =.t.VCJ Efffll·*A·(·4).+W•A (·3)-.VCOEFFl3 J*AC 2J.+.VCOEFF 1.4.) J'./l 8.*l+ 20) 
JH=O 
ALS? 1. 000/(.L+ SJ 
XO::;: (G.l DO*EPS.*EPS/ DABS (A( 5 H JIO!=*ALS 

THE CHOSEN. VALUE OF<XO. ENSURES ·TI_iAT .T·HE FIRST.· NEGLECT'EO T.ERM 
IN THE. TAYLOl EXPANSION FOR YO DOES NOY EXC.EED.O.l*EPS.EPS.· 

Xl=XOIO:*l. 
If(. L .• f Q • 0 l . XL= 1. OD 0 
YO=tXO*OCO*CX·O*AI4J+:AI3J l +A( 2H+AC.U l*Xl*XO 

10 x=xo•~ · 
H· IS IHE FIRST- STEPLENGTH TRIED. 

HlZ=H*H/.1 .• 201 · · · 
XL::;:X*lii:L 

· Y 1:;.( X* (X *1-X*l X*A I 5J +A l.4J i +A(.3) J·+A 4 2J. ) ..... A tU l.'*XL*X 
X2 =X+H . · · .... _. · 
·Ll=L*(L.+lJ 
VN:;Ll/ (X*Xl-E+POT lXi :lPSJ. .. 
VD::;:L 1/-C .X2*X2J:--E+ POT( X2 ,1 PSl., 
YlN=2.0DO*ll~Q00+5~000~Hl2*VNJ 
YlD~l.OOO-Hl2*VO · ·· 
Ifl.J.H;.EQ.ll ·.Go-- TO 14 . · · · 

IF ·JH-:=.0. CALCULATE~ THE aJEFFlC'IEN·TS Af6J,~-::.,Ai:9J ;. WHE.N .. JH=l 
AVOID Ut.NE.CESSA-RY· RE-COMP.UTATICiN OF .THESE .. COEFF:IC-IENT,S·. 

"DO· 1·2 I=6, 9 · · - · 
lMl;;;:I:-1 
SUM:::;:O:.OOO 
DO 11 .. J.=l,IM'l. 
SUM=·SUM+.VCOEff C J.) *A(.l~JJ 

ll .CONT.INUE· 

PAGE 2 

------------------

~ 
~ 
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C THIS:P.ROGRAM TESrS .TH.E.- SU8ROUT1Nf RAPA,ll-·ts.Y· SULVJ·NG JH.f .. RADJAl. 

LINE- NUMBER TEXT PAGE 3 

--------------------------------- -------------- --------------------
81.000 
82 .ooo. 
'83. 000 
84.000 
85.000 
f6.000 
87.000 

'88.000 
89.000 
90.000 
91.000 
'i2.000 
93.000 
Cj4.000 
95.000 
96.000 
Sl.OOO 
98·.000 
99.000 

100.000 
101.000. 
102.000 
103.000 ' 
104.000 
1(15.000 
106.000. 
1(~7. 000 
1(.8.000' 
109.000- .. 
110.·000. 
111.0.00 
112.000 
113.000 
114.000 
115.000. 
116 .ooo. 
117.000 
118 •. 000 
119.000 

. 120.000 

c. 
c. 
c 

c. 
c. 

c 

Altl~CVCOEFflll*All-l)~W*All-2l+SUM1/CCI~lJ*(2*l+IJ·J· 
12 ·c.m1r.uwe·. ......... ..... .. · 
· Y1 IS CALCULAT EO· AND· THE CONTRIBUTION fROM, J.Hf ·ERROR ·IN Yl .TO THAT 

lN YZ lS ESTIMAlED.-· AND THE STEPLENGTH H .IS OEC~fASED, If NECES-S-ARY, 
UNT.IL THI.S: CONT RlSU-T !ON IS· SUff-ICIENTLY. SMAll;.-

14 D 0 . 15 1 =6 • 9 
TE.RM-=AU J *X**ll.+I.J· 
TERMl=TERM*YlN/YlO 
D TEIUU=DABSl .. TERM U· . 
IFC,DJ.ERM.l.L T .H*EPSJ· GO TO .. 17 · 

· Yl~Yl+.TERM 
IFLI.EQ.9J. GO TO 16 

15 .. CONT,INU.E 
16· C-1:::(,0. 500t:.H•.EP.S/OTERM1 1*•0.2·00 

JH;:l 
H=C.l*H 
GO TO 10 

17. JY;I-1· 
AK=DSQRT.(fJ -: 
WRirecz,9J .xo,vo·,.vl· 

PRINf.fHf ST-ARTING VALUES· XOaYO;Y-1 

CALL RAPAL:(.H, XO, X, YO, Y-lt XF) 
GO TO 4- .... .. ...... · .. · ... · · 

l· FORMAT.C.5016.8J· 
2 FORHATtD12.3l··· 

· 3· .. fO.:U4ATtl3;4D12;.3J. 
5 ·fORMAJ.(ll5HlTEST. .RUN:; SOL.U.TION: Of THE .RAOIAl1SCHROO:J.NGER EQ.UA'TlON- · 

1 Y1 1 .+( E-L.(.L+l·J:fX**l~\HXl J·V·=O · WITH CALCULAT-ION O'f·" PHASE-S H·~FT/4'2H A 
2RISlNG f~OM THE "SCATTER-ING PRO~lEM C.E>Ol. J 

6· .FORMAl UHO,l9HPHYS'ICAL·.PARAMET·ERS, 1X·, 6HE =• 01·3.6, lHt ., 2X, 5Hl = 
1, 13l ' 

1 .. FORMAT UH , 23HST·fP-CONTROl PARAMETERS t 3X•·6HEP·S = ,D 1·0. 3, 3X, lH, 1 2X, 
15HC =,010.;. Jj - .... ·- .. · ... · .. 

8 F'ORMAT.C..lH · , 22HTERM lN'I\ TI ON CONDI.TI ONS t 4X, 6HPSl G =.,011. Ito, 2X tl H, t2X 1 5 
lHXF.· =,Dl1.ftJ.·- ...... · .... · ~ 

9 FOR·t4ATl-lH ,1.5HSTA.RT1NG VAI:.UES,l1Xt6HXO '" =,Dll.·4,·2X,:lH-,,2X,5HV.O··. = 
lt Dll..ft.,2K,lH,.i2X;4HYl =,O-lle4J 

ENO 

·- • I" ' i 

~ 
~ p 



5UilKUU 1:! 'I 1: K.APAL I H tAUt At YUa T lt N" l 

lINE NUMBER TEXT 
' . ·-----------------------------------------------------------------

1~1.000 
122.000 c 
123-.000 c 
124.000 c 
125 •. 000 c 
126.000. r.. 
121.ooo c-
J28.ooo c 
129 .ooo. c 
130.000 c 
131.000 c 
132 .• 000 c 
133.000 c. 
134.000. c. 
135.000 c 
136.000 c. 
13.7.000 c 
138 .ooo. . c. 
139 •. 000. c 
140.000 .c 
141.000· c 
l-42.ooo- c· 
143.000 c 
144.000 c 
145.000 c 
146 .ooo c 
147.000 
148.000· .. 
149.000 
150.000: c 
151.0.00 c 
152.000 
153.000 c 
154.000- c 
155.000 
156.000 c 
157.000-
158.000- c 
159.000 c 
160.000 

SUBROUTINE RA-PAL(H ,xo ,x, YO• Yl 1 Xfl 

THIS SUBROUTINE SOLVES THE DIFFERENTIAL EQUATI~N 
-- y I I =f 'X. y J 

BY THE RAPTIS AND AlLISON METHOD WHICH- EXPLOITS THE. A PRIORI 
KNOWLEDGE OF ,JHE ASYMPTOTIC· fORM OF'THE SOLUTION--Of THE SCHRODINGER 
EQUATION. 
T-HIS- fiiETHJO IS. A VARIANT OF NUMEROV 1 S METHOD· WHERE- .·NOW .THE 
COEFFICIENTS Of THE FORMULA- DEPEND ON THE LEN-GTH--OF THE INTERVAl 
OVER WHICH INTEGRATION IS PERFORMED. 
.H •· IS AN INlT IAL STEPlEN~TH SUPPliED BY- THE USER. AT EACH STEP 

THE LOCAl TRUNCAT.I£JN ERROR IS EST IMATEO. IF -THlS IS- TOO LARGE 
THE CURRENT STEP· IS DISCARDED· AND·A·SMALLEfLSlEPLENGTH IS 
CHOSEN. WHfN THE ESTIMATED TRUNCA.T ION ERROR IS SUFFICIENTLY 
SMALL THE SlEPLENGTH IS- INCREASED- fDR THE NEXT .S.T-EP. IF THE 
FiRST ESTIMATE· Of THE TRUNCATION ERROR EXCEEDS EPS- T-HE PROGRAM 
PREDICT£ A SUITABLE STEPLENGTH AND STARTS AGAIN ~T XO AT THE 
BEGINNING- OF THE RANGE Of- INTEGRAl ION. 

C. •• 'THE·STEP.LENGTH .IS DOUBlED WHEN THIS CAN BE DONE WITHOUT 
EXCEED IN.G·: THE BOUND EPS .. 

THE ST.ATEMENTS BETWEEN- Ll NE S Of ASTERI-'SKS REFER TO TH.E SCATTERING 
PROBLEM RAfHfR·fHAN TO THE lNTEGR~TIOt-4:::0F THE DI-FFERENTIAL EQUAUDN. 

IMPlltlT RE-AL*S C A-H, D-ll 
CO~MJN/EKlll/EtAK.PSIG,EPS,C,l,Ll 
CO~MON VCOffflBl,A(9J~Ft8dOOJ,XXl8000J,Ot6,7l,JY 

NINC COUNTS THE· NUMBER OF "INCREAS-ES IN STEPLENGTH=-REQUIRED 
OURlNG THE-COURSE Of INTEGRATION•· · 

· NI NC:;O 
NDEC COUNTS THE NUMBER OF DECREASES' IN STEPLENGTH· REQUIRED 
OURl~G THE COURSE Of·INTEGRATION. 

NDEC=O 

1· GO TO 4 
I~ TaE lNLTIAL VALUE OF'H PROVES TO BE TOO LARGE V~-MUSt·BE 
RECALCULATED WITH THE-NEW H. 

- 2 X=;XO+H. 

PAGE 1 

·--------------------------------

~ 
~ 



!:, L; o i' L LJ T 1 ;~ L i<. t. tJ A L ( H , Xu , X , Y I.J , Y 1 , X F .l 

lH.JE 1\UMbE::h. TEXT PAuE: L 

------------------------------------------------------------------------------------------------------------------
1.t:1.000 
162.000 
163.000 
1c4.0CO 
1£:5.000 
166.000 
167.000 
l6o.OOU 
H:S.OOJ 
170.000 
171 .ooo L 
172. OOu L 
173.000 L 
1 74. 0 ou L 
175.000 
176 .ooo \, 

1"77.000 I.. 

178 .o 00 (. 

1 79 .o 00 
1 ao. oco c 
1 H. 000 c 
182 .o 00 c 
183.000 L 
184.000 (. 

185.000 
1o6.000 r .. 
lo7 .ooo c 
183 .OOG L 
189 .ooo c 
190.000 L 
191.000 L 
1S2.000 c 
193.000 
1 <i4. 000 ( 

195.000 L 
19o.OUO L 
1S7.000 c 
l'1o.ouu L 
1S9.UOO L 
2CO.OOO c 

XL=X**L 
'f 1 = l X* ( .ii. * ( X* ( .i\•:C A ( 5l +A { 4 J ) +A ( 3 J J +A Ld l + td 1 J ) *XL* X 
Uu 3 .t=o, JY 
T~KH=~llJ*X**lL+1J 
Y 1 = Y 1 + T I: R 1·1 

3 Luh!T li'Wl: 
TEk~=A(~Y~1J*~**(L+JY+1J 
UTLkh=uAu!:l ( T i:i-,1·1) 

lf-(JTi:.i,I4.GJ.u.5DO*h*EP~J Gv Tl.J 22 
Ll ~ T li~UL 

UESCRlPlluN A~U INlT1ALlZ~TlCN CF VAklAbLtS RL~Glki:D r~~ 
LLL~-<I:L~l~b ~Nu tR~O~ ~tNT~LL. 
J 1 S .) C ·1 l G 1 i.J I'; 11 H T 1 A L E l~ T H Y H, S U BI.LJ U T Ir~ E Li 1 V D I F • 
4 J=O 
J ~ ; T h t ::, T c: P L l:f 11 G T H 1 !:1 !:•1 t k E:: A ~ [ U 1- R U·1 H lu L >:: H lt- f- L k ::1 !) u:. .. E ::. S 1 V E 

$ T t P ::, Hi t: P H E u I C T E 0 Tr' U i ~ C. AT H;i • E Kr.l• i-.. 'Ia lT H A S T t: P Ll: l'l G l H t; 1- L "" H I S 
!:IUF~lLli:~TLY SHALL. J2 IS J~cD AS A l0U~TLk fLk THIS PJRPLS~. 

~L.=::i 
JO: ~rlt~ A ~TI:PLENGTH DECREA~E 1~ hEtfS~A~' A~~~ H l~ C.HLS~~. 

L~LLl.LAllL;·l~ 1"1AY SHLI< THAT TH1:.:. I::. l111~Dll..:lJATE, SL A FukTHEh. 
kt.LJuLTlU'I IS l{tl..ulh.EU. JL.) i<..C:t:PS lr-At..K. L;.f- Tl-il STEPLI:I\GTH 
ucLI·-.lAStS II\ SuLh A \.A~E. IT lS 11\!Lt...LA~ED bY l \·.1TH El\CH 
t.; 1: C f-.. L A S t. ~ 1\11.- l S ~ L. T T .~ ll: f... U ~~1· ! t i-. A ~. A C L c ? T A L l E H H ~iS b 1::. £:r\ f u U N 0 • 

J L.): u 
TL i.Jl!:IT!!Ju.Jl!:lt1 i:h .. T.~El:r\1 C.ALLS f'.IAUL Tl.J ::..Ub"-L-L.-lllllt ulVLill- h..iFI. lhl: 
CALC~LATlL~ L~ lhl: GIVIOI:u LlFFt:~~NLE~ kl:~Ulk~LJ IN Thl: t:STIMATt 
uF THL ~~~NLAT·ll.~ E~h.L~ PEk UNIT ST~P ~~~ FL" ~XTR~LlahG THI: VAL0ES 
NEELJED FL\ Ti-11: lrJTEf,PC.L~T1 Cl\l PRLLi..S:.), Liu IS SlT TL ZU,C. lt-'1McU1/.~TELY 
AFTc{ llli:. Vi.Lul~ 1-Lk Tht. lN1Lf.,PuLATIOI\ Hf,Vt. t.Jlli\j FGl.it.Li. 
1NIT1ALLY UL l~ SLT TL 100. (TH15 lS A"bJTR4~\; TA~E DC TJ bl ANY 
J-.!l ... I\-L.L"-L \IALUL) 

iJU= 1 .u iJL 
Ji3 1!:1 li'llllAL-LY l.b,u; J6 IS SE:T 1L 1 lr'.hEI~ THE LLAS!:.lCAL ki:G.ILN 
.IS 1\l:.:kLr:li...LJ H-NLi hf-TER THE: CALLuLA1i.G~~ Ll- Thl: fiJL<. l.L·I:FI-1Llt:I\T bOl 
vdHL.ri k.li-LALES bO If~ rhE:. I~ tXT STI:i-. Thl 1-,.,..PTl::. .:..1\C: ALL i~u\1 I",E:.lh[jl) 
lS U::.t:O 11, THI:. i,E:XT STE::Pi lr-1 Tl--iL l.JPLJAT ii~L. ::,cLlllf~, t.LFLk.t: E:f\,TL/dNG 
THlS ~fU-', Ju 1~ St..T T..; c. Mw THl~ 1i~L..lCATi:S lL Sl.JoKLl..ilillil: UiVOlF 
T H ~ T 1 h L 4 T H u 1 'v 1 U E i) i.H i- f- E ~ E r~ t E 1 ~ 13 L c L 1- I 1: >:: 'r + 'V ' ' .) 1•'1 LJ S l of.. !) f.. T UP • 
Tht.i· .... Af-·TLh .;b 1 S SE:. T TG 3. 
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~ 
~ 
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SUBROUTINE RAPALIH,XO,X,YO,Yl,Xf) 

LINE NUMBER TEXT PA;;E 4 

·-------·----------------------------------- -----------------------------------------
~41.000 
242.000 
243.000 
244.000 
245.000 
246.000 
247.000 
248.000 
249.000 
250.000 
2!l.OGO 
~52.000 
253.000 
254.000 
255.000 
256.000 
257.000 
258.000 
2~9.000 
260.000 
2t:l.OOO 
262.000 
26.3.000 
264.000 
265.000 
266.000 
267.000 
268.000 
269.000 
270.000 
211.000 
212.000 
213.000 
214.000 
275 .ooo 
276.000 
217.000 
278.000 
279.000 
280.000 

c 
C BEYOND THE CLASSICAL TURNING POINT ~E LET THE CGEffltiENTS Of THE 
C NUMERQV METHOD VARY WITH THE INTERVAl H. CSEE RAPTIS AND 'LLISON: 
C 1 EXPJNENTIAL-FITTING METHODS FOR THE NUMERICAL SOLUTION OF THE 
C SCHROOINGER EQUATION'.) 

c 
c 

AKH=AK*H 
AKH2=AKH/2.0DO 
h2E=H2*E 
801=lH2E-4.0DO*OSINIAKH2JtOSINCAKH2JJ/C4.0DO*H2E*DSJNCAKH2l*OSINCA 
l~H2JJ . 

JB=l 

25 CONTINUE 
C AN ESTIMATE Of THE TRUNCATION ERROR PER UNIT STEP IS CALCULATED 
C FOR K+l.GE.7, USING 6TH DIVIDED DIFFERENCES Or Y IN THE 
C NU~ERJV NETHOO, AND T~EREAFTER USING ~TH ulVIDEO DIFFERENCES 
C OF lE*V•Y' 1 l IN THE RAPTIS AND ALLISON METHOD. 

lflK•l.EQ.7J J=l 
lf(K+l.GE.7l GO TO 9 
GO TO 8 

9 CALL OlVDlftDUtKtJtJD,IPS,JBl 
TRERR=-H**S*DD/2.402 
DT~ERR=DA8SCTRERRJ 

C If TRUNCAtiON ERRO~ IS TOO LARGE GO TO 12. 
C THE PARAMETtR TOL PROVIDES AN ABSOLUTE ~R RELATIVE ERROR CRITERION 
C ACCO~~ING 'S TH£ ABSOLUTE VALUE OF f(K+ll JS LESS OR GREATER 
C THAN ONE. 

c 
c 

DF=DASS(f(K+liJ 
TOL=fPS*OHAXlil.ODO,OfJ 
If(DTRfRR.GT.TOLJ GO TO 12 

C CURRENT STEP ACCEPTED 
JD=O 
J=2 

c 
c ******************************************************************** 
C THE PHASE SHIFT IS CALCULATED lf IPS=l, wHI~H MEANS THAT X IS 
C SUFFICIENTLY LARGE. 

~ 
(r> 

;-l="" 



~U~KUUilNt KAYALIHwAUwX•TU•YltX~I 

LINE /'.lUMBER TEXT PA:iE 5 

------------------------------------------------- -------- --------------------
~Bl.OOO 
282.000 
2S3. 000 
284.000 
285.000 
286.000 
287 .ooo 
288.000 
289.000 
290.000 
2<il. 000 
2S2.000 
293.000 
294.000 
295.000 
296.000 
2<i1.000 
298 .ooo 
2S9.000 
3GO.OOO 
301.000 
302.000 
303.000 
304.000 
305.000 
306.000 
307.000 
3(8.000 
309.000 
310.000 
311.000 
312.000 
313.000 
~14.000 
315.000 
316.000 
317 .ooo 
318.000 
319.000 
320.000 

lfllPS.fQ.lj CALL PStK.JP,JCONVI 
C THE CALCULATION IS TtRHINATED IF THE PHASE SHIFT HAS CONVERGED. 

lFlJCONV.EQ.l) GO TU 30 
c *********************~~·········~····~****************************** 
c 
c 
C PREDICT TRUNCATION ERROR FOR THE NEXT STEP WITH A STEPLENGTH OF C*H• 
C IF T~IS IS SUFFICIENTLY SMALL, GO TO 13 TO lNLREASE TiE STEPLENGTH. 

c 
c 
c 

DTRERR=OTRERR*C**5 
lf,OTRfRR.LT.,0.5DO*TOllJ GO TO 13 
J2=0 

STEPLENGTH UNCHANGED FOR NEXT STEP. 
Ar~O ReTURN TO BEGINNING Of LOOP. 
8 K=K+ 1 

H2VF=H2*V*FCKJ 
lFlJB.NE.ll GO TO 1~ 

JB=2 
J2=0 
GO TO 20 

14 601=80 
20 YPkEK=l(B0-801J*flK-lJ+BOl*YKJ/BO 

YK=llBO-BOli•FlKJ+BOl*YJ/80 
BO=d01 
GO TO 15 

UPDATE VALUES FOK NEXT STEP 

C***END JF RAPTIS AND ALLISCN LOOP 
c 
c 
c 

c 
c 

PRINT THE FINAL VALUES OF K,NJNC.NOEC ANO RETURN TO CALLING PROGRAM. 
6 .. RIJEl2.18J K,NINC,~DEC ·· 

RETURN 
22 ~RIT Et2, 2 ~J 

RETURN 
30 WRITEC2,32J K~NINC,NDEC 

RETURN 

C THE STATEMENTS BETWEEN LINES Of DASHES REFER TO THE ~JOING RELEVANT 
C TJ THe ~HANGE Of STEPLENGTH. 
c 

~ 
~ 
~'"\ 



~U~KUUIJNt KA~ALlHtAUtAtYUtT!tX~~ 

LINE· NUMBER TEXT I ' 
I 

PAGE 6 

';...----------------------------------------------·------· ----------------------------------------------------· 
321 •. 000 
322.000. 
323.00(). 
~24.000. 
325.000 
326.000 
!~7.0·00 
328.000. 
329.000 
330.000 
331.000 
~32.000 
333.000 
334.000 
335.000 
336.000 
33'7.000 
!·38.000 
339.000 
340.000 
341.000 
342.000· 
343.000 
344.000 
345.000 
346.000 
347.000. 
348.000 
349.000 
350.000 
351.000 
352.000 
3~3.000 
3~4.000 
355.000 
356.000 
357 .ooo 
358.000 
359.000 
360.000 

c --------·-. -~~-----------------·---------------~-~----~--------------
c· 
C***STEPLENGfH. DECREASE 

12 JD=JD+l 
·Cl=(0.5DO*TOl/DTRERRl**0.2DO 
H=Cl*H · · ... · .. . 
NDEC~NOfC+l 

C IF. J.:Q. THIS HfANS·THAT H WAS TOO LARGE IN ttiE lNfT.I'AL.S.TEPS SO· I.T IS 
C NECESSARY TO JC.ESTARJ"· FROM XO · W IJ.H- THE NEW H.·-· .... 

·JFlJ~EQ.OJ GO-T0·2 
·If.C-Ja.- GT. 1).:. CALL:. O·IV Olf.C DO,K"i J ,Jo, IPS, JBJ 

C ·If T:iE TRUNCATION .. ERROR P~R UNIT. STEP AT XX(K+l) IS GREATER 
C T-HAN THE· TJLf:lANCE,- ·THE STEPL.ENGTH MUST BE REDUCED TO t•H; · 
C F(K+l.) .. IS rtECALCULAf.ED FROM F(KJ AND FPREKl WfTti THE NEW 
C STEPLENGTH. FP.REKl' IS FOUND BV CONSTRUCT lNG. THE 01 VIDEO 
C DIFFERENCE FORM OF THE 5TH D·EGRff POlY.NOl4IAl :·INTERPOLATING 
C AT T-HE POINTS :XXCKJ.,XXCK-l),XXCK-2),XXCK.-3ltXXCK-4J,XXlK:-5J. 

c 

Xl=XXlKJ-H 
FPREKl=D(·6• U. 
DO 17 . 1=1 ,5 · 
M=6-I 
FPR~Kl~Dl~tll+lXl-XX&K~IJJ*FPREKJ 

11· CONTINUE 

·H2=H*H 
IFU.P.S.EQ.Ur.GO TO 28· 
GO TO 29 · ·- ... · 

28 AKH=AK*H. 
.. AKH2=AKH/2 .• OD 0 

H2E=H2.•E · 
C · UPOAtE.YPREK AND YK 

· BQ:;.,(H2E-4 .OOO*DSHH.AKH2J *DSI NtAKti2U /C 4. OOO*H2E*DSI N C A'KH2) *DSIN(AK 
1 H2 J J . .. . . ..... ... .... . .. .. . . ... 

29 .. V=l:ll(.Xl*XU-E+POTI·Xl ,I PSl 
YPREK=FP.:l EKl*( .. l •. ODo.:-S O*H2*Vl 
X=Xl-t-rt· · 

· V=Ll/(X*XJ-E+POTCX,.IPSJ 
Y K=F.C.KJ * ( l. 000"780*H2 *V J · 
H2\IF=H2*V*-Fl KJ: .. · 
GO TO 15 

~ 
tr 
o-



~UJjK-UUI I Nt KAI'Al:U1.t~UtAt TUtT 1 ,XIt"J 

liNE NUMBER TEXT PAGE 1 

------------------------ -------.,------------------------------·------------------------------· 
~fl.000-
362.000: 
363.000 
364.000 
365.000·. 
366.000 
367.000 
368.000. 
3f:9.000 
370 .ooo-
371.ooo 
372.000 
373.000 
314.000-
375.000 
376.000 
3l1.000. 
3"78.000· 
379.000 
380.000 
381.000 .. 

.. 382.000 
.383.000 
384.000· .. 
385.000 
386.000 
387.000. 
3~8 •. 000 
389.000 
390.000 
391.000 
392.000 
3S3.000 
394.000 
395 .ooo 
396.000 
!97.000 
398.000 
399.000 
400.000 

c 
t 

- , _____ , i' 

t•**STEPL£NGfH JNCREASF 

c 

13·-: J2=:J2+ J. 
lFIJ2.LT.3J GO TO 8 
J2=0 
H=C*H 
C2=C*C. 
Nl N~~NlN~+.l 
H2=H*H 
IF UPS. EQ.-1 J- ·-GO TO 26 
801:;:;80. 
GO. TO 27 

26 AKh1;::;AK*H 
AKH2=AKH/2. 00 0 
H2f=H2*E 
801=;( H2 E-4. ODO*DSI ,N(,AKH2 J.*OS INCAKH2J-J/ l it.fJDO*HZE*DS:l.Nf AKH2J *DSlN (A 

1KH2J J · - · -- .... · --- · ........ ·- -· - ·--·-
27 :·V'PR.EK= CCZ _.80l*YPREK+.&BO-C2*BOIT*ff.K-71 H/BO 

YK=.l i;2tc80l*Y+ l SO-C2*801 J..F (.K+U J I BO-
60= BO l - · - --- .. - · 
K=K+1 
H2\/f.=H2*V*f( KJ 
GO TO 15-

c -------~-------------~---~------~---~-----------------~------------c 
18 FORMATCl.-i0,52HTHf END OF ·T·HE RANG£ .Qf. JNTEGRAT ION- HAS BEEN REACHED 

l/39HNU~BER Of-lNTEGRATION- STEPS CARRIED.OUT~I6/75HNUMBER Of· INCREA 
2SES IN ST_fPLENGTH--REQUIRfD DU~JNG THE COURSE :If.· JN-TEGitATJON,I3/75H 
3NUt4B.E.R OF DECREASES- IN STEPt.ENGTH REQUJRED DURING THE COURSE OF IN 
4TEGRAT.lON,I3,///J- .... , 

24 FDRMAi'(liiOtll3HT·HE REQUIRED ACCURACY lN 'fl HAS NOT BEEN ACHIEVED; 
.. lFURlHEI< COEfFl.CIENTS · JN THE· f'XPI\NSION CJF V(-XJ ·ABOUT THE ORIGJN/1.3H 

2 A~E REQUlRED/lH )·-- -- ,·-:· 
32 FORMAT.(ll·J0.,46HPHASE SHIFT -HAS CONVERGED T.O .REQUIRED ACCURAC.Y/39HNU 
-·IMBER OF- INTEGRAT.ION·-STEP.S· CARRIED OUT,I6/7-5HNUMBER--DF INCREASES IN .. 

2 STEPLENGTH REQUIRED- DURING; -THE. COURSE OF INTEGRATION,I3/75HNUMBER 
3 OF DECREASES IN~STEPLENGTH.REQUIRED·OURING T-HE-COURSE OF INTEGRAl 
410~,13,///J-.. . 

~ 
~ 
...l.) 
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~UD~UU 11.1 .. 1: U~ VUI.r' UU 11'1 "•"U·-~ f'~1.JDI-

LINE NUMBER TEXT PA:iE- 1 

--·-------------------------------~----- -------------------· -------------------------· 
402.000 
403.000-. 
404.000 
405.000 
406·.000. 

.. 4.-07.000 
408.000.-
409.000 
~ 10.000. 
411.000 
~12.000 

413.000 '• 
41-4.000 
415.000 
416.000· 
417.000-

.. 418 .ooo 
419.000 
420.000 
42! •. 000· 
422.000-
423 .ooo-. 
424 .• 000-
425.000 
4-26.000 
~21. ooo
~2a.ooo-
429.000. 
~·30.000 
~31.0.00 
432 •. 000 
~33.000 
~34.000 
lt35. 000 
436.000· 
437.000 
~38.000 
439 .ooo 
440.000 
441.000 

c 
c 
c. 
c 
c.· 

. c--

SUBROUJJNE· OJ.VDI·f'CDO,a<,J·,JO,,IPS':rJBJ ,. 

I 

JHI S .SUBRO.UT 1 NE SE-TS UP .THE' TABlE OF 6 Tt;l. OJ VlllEO 'OIFFERENCES 
OF ·tHE. SOL:JTION .. Y-- A-T JHE POI-NTS.X.X'(K+l),.XXCKJ.-.XXC..K-lJ·,XXI-K-2)• 
X-X(:K-3J •. XXI K-:ft·J ·,-XX t·K-5 j AS .-l:ONG- AS THE -ME'{ HOD Of NUMER0\1. IS USED; 
THE.-.. RETURNED VAlUE Of OD· -IS ·THE· ESTIMATE OF THE 6TH DERIVAT-IVE·
OF .. THE SGLJT--ION•· W.HEN , IPS.= 1- -AND JB>l THIS SIGNALS ·THE USE JF THE 
RAPT!S AND ALLISON ME.THOD· AND; ·A TABLE Of .4-TH DIVIDED DiffERENCES 

c 
c 
c 
c 
c 
c 

Of CE*Y+Y~ 1 l IS-SET.- UP At.-.THE.POINTS XX(Kt=U_,XXtKl 1 .XXCK-lJ 1 XXIK-2J• 
XX(K-;-3.); .. T.-IE RETURNED VALUE--OF DO IS THE'ESTIHATE O.F fHE 4lH· 

c 
c 

DERI~ATIVE Of·_(£*Y~Y~•J. -' 
... 

IMPLICJ.T REAl*SI.A-1-l·,o~z~ --~ 
COHHON/ f(LL 1/.E,AK• PS.IG,EPS,C ,.L,Ll 
·DIMENSION·X(7J,Ol(4•4J 
C.OMH-QN. VC OEff (·Bl 1 A( 9J .f-( 8000}· 1 XXC·800.0J-.,D 16 •. 7-J , JY 
IF lDD. EQ •. O.ODOJ- ·GO TO· 3o-· 
IflJB.GT.l.ANO.JD.GT.Ol GO ·TO 45 
GO TO 50 

C 'THiS SECTION IS USED WHEN.A DECREASE I~ STEPlENGTH· IS REQUIRED 
c· DURING THE USE Of-.T-HE--RAPT·IS AND At.LIS(JN t4ETHOO. 
c 

45 Jf(.JO.GE.2J .GO TO 51 
c 

· C ENTRlES. IN THE 4TH -oiV-IDED DlfFERENCE TABLE. FOR (E*Y.,Y 11 J._ ARE 
C -STORED IN THE- ARRAY· Dl FOR -FUTURE USE. 

c 

--oo 46 N=l,4 
I=5-N 
DO 46 M=l,N. 
011·1,14 J=IH-I •. M J 

46 CONTINUE 

c-. A 5TK DIVIDED DIFFERENCE 
- - DO 4 7 I =1,6 · .... · 

Dll,lJ=F'fK-t:J-61 
· X U.l=XX(K+I-6 )-

47 CONTINUE 

TABLE OF 'THE ~OLUJION Y ·IS CONSTRUCTED~ 

"j" ':" 

~ 
(r> 
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~U~KUUI£N~ U1VU1~lUUt~.~~~Ut£~~~~DI 

-lINE NUMBER TEXT PAGE 2 
• . . ------------------------------------------------------------- ----------· - --------

~~2.000 
~~3.000 
~44 .• 000 
445.000 
446.000 
447.000 . c 
448.000 c.-
449.ooo- c· 
450.000 c 
4-~1.000. 
452.000-
4~3.000 
454.000 
455.000 
456.000 c 

·457.000 c 
458.000- c 
4.59 •. 000. c 
460.000 
4fl.OOO 
462.00.0 
'4t3.00U 
464.000 
465.000· c 
466.000. c. . 
467.000 
468.000·. c 
469.000 c 
47o.ooo c· 
4'11.000 
4.12.000 
413.000 
414.000-
415 .ooo 
416.000 
41'1.000.-
478.00.0-. 
4lc;. 000-
480eOOO . 

. 4'81.0·00· c . 

.•: 

DO itS N;:2,6 
· IMAX=7-N 

DO .48 l=l,.l MAX 
0 C N1 -ll = l D ( N-1•· J. J -0 CN-1,.1 + lll/ i:.Xl..l J-:-.X l.l+N--1 J J 

48 CONTINUE ·- .. · · ... ' ' . 

THE 'VALUES DU,U.,0(2,l·J, ••• ;t)(6,1J ARE N.E-EDED-'fOR THE 
INTERPOLI\TION·:PROC.ES·S···IN RAPAL.-~NO· ARE STORfD·IN DC-6·,~J.,0(&,5J. ••• , 
Dtb,lJ·.RE5PECTJVELY.·oo IS SET.JO· ZERO. 

DO 4.9 1=2,6 
D&6 •. ll.=Ol 7~I-:1J 

49 CONTINUE 
00=0.000 
RETURN 

If SUCCESS! VE OECR'EASES IN STEPLENGTH ARE PeRFORMED IN THE ·RAPT IS 
AND AlliSON· MET HOD THE·: VALUES. OF DC l,lJ ,Ot2, U , •.• • •0·(.6, U 1'iEEDED · 
FOR THE 1 NTERPOt:ATI ON··PROCES'S iN iRAPAl ARE ACCESSED•--

51 DO. 52 1=-1,5 
ou .•. u.=oc 6,1-11 

52 CONTINUE 
DO=O.ODO 
RET-URN 

SO IFCJ.NE.lJ GO TO 1 

THE Fl.RST .ENTRY TO OI.VDlf SETS· UP A .6TH 'DIVIDED~ Olff.ERENCE TABlE 
Of·:fHE SOLUTION•;:AT. .-THE f·IRS1>SEVEN·.MESH. POINTS. 

DO 2. I=l• 7 
2 DC 1.., .. 1-l =fl. U 

DO 3:-·N=2, 6 
IMAX=8:-N 
DO 3·I=l,IMAX· . 
0 l.N-~ U ~(.0(~·11 I J·-DCN-1tl~l-ll/(:XX ( U.-X:XC:·I+N~ 1) J 

· 3 CONT.ltNUE. · · 
· oo=7.-.2D.2*l.Dt·6, 1 J.~oc 6., 2.u /O<xru:-xxc 7i_:J .. 
J~O 
RETURN-

'I' 

9-o> 
-T 
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~UDKUUIINt: Ul V.Uir-·,.UUtl\"1·.1 t.JU'; .. U~~·t.oUU 
.. : 

.LINE NUMBER tEXT· •: :I PAGE 3 

-------------------------------------- ~--------------------------------------------
1 lfllPS.EQ:.1.ANO.J.B.GT .lJ GO· T·O' 30 

c 
4E2. 000 
483.000 
484.000 
4f5;..000 
486.000 
487 .o.oo 
488.000 
489.000 
490·.000 
491.000 
492 .• 000 
493.000 
494.000 

c· SUBSEQUENT. .EN·fR.IfS .. ;f._O OIVOIF-!CALCULATE THE-· 6TH OI·VJ.DE!l· DIFFERENCE 
C. TABLE· OF 'THE· SOLUTIO'N AS· tONG·:AS THE HElHOO Of NUMEROII, IS USE-D ..... 

c 

c 

... 495.000 

00 5 1=1 •. 7 
D (1, U-=f( K+.I-6J 
XI U ~XX,.K+J:-6J 

5 CONTINUE· 

IFCJO.GT.OL Ge TO 8 

DO 6 N=2,6 
IMAX=7~N· 

DO 6 1=1 ,.IHAX 
DC ~,·IJ.::;:O( Ntl+:U . 

6·CONTJNUE · ····· · 
. 496.000 
497.000 
498.000 

. 4.99.000· 
C l F THE S TEPLENGTH. HAS BEEN DECREASED IT .·.ts. NECESSARY TO RECALCULA·Tf 
C SOME ENI.RlES IN· ·THE- 6TH· o·IVIDED DIFFERENCE· TABLE. · ·- ·- · ---

.. 500. ooo. 
501.000. 
502.000 
503 •. 000 
504.000 
505.000 

c 
c 

8 DO 7. N=2 i 6 · · · ·- · · 
· I =8-N 

· D IN, l.l.= C D ( N- 1 , I J-0 ( N- 1, I + U ) /. C XI U .-X ( 7J J. 
7· CONTINUE· . 

00=7.202*&-DC6,1)-0(6,2))/lXClJ-Xt7JJ 
RETURN ·- ..... 

· 5G6.000· 
507.000 
508.·000. 
509.000-
510.000 
511._000 
512.000. 
513.000 

C THIS SECJ.-ION. CALCULATES ENTRIES IN THE 4TH DlVIOED. DIFFERE~-.cE TABLE· 
c · F.OR c e.•v~ v.•. •.J •. · ... · ·-· -· ·· ··-

~14. coo c 
51-5 .ooo 
516.000 
517.000 c 
518 .ooo 
519.000 
520.000 
521.000 

3o·-Do .35 I= 1.; s· · · 
X ( U:=XX C K+.I-4 J 
01 1, I J::;:( ll/.tX(.-1 J *-XII)) +POT(X II l, I PSJ J *f ( K+I-~ J 

35 CONT lNUE· - · --

If(JB.EQ.2J-GO TO 40 
IF C J O.GT··· 0 J GO rt:J·· 55 

DO 36. N~2.4 
IHAX~s~n 

·oo 36 I=LiiMAX 
DCN,1J~DCN~J~~J 

!;= :r 

1:" i. 

~ .. -f'" 



~uanuu•~~~ U&YU&r•uutnt~I~UJ-&r~t~g' 

. I 
liNE NUMBER TEXT-- PAGE 4 

-------------------------------------------------------------------------------------------
~22.000 
523.000 
524.000 
~25• 000 
526.000 
527.000 
~-~8.000 
529.000 
~30.000 
!31.000 
532.000-
533.000 
~34.000 

535.000 
536.000-
537 .ooo 
538.000 .. 
539.000 
540.000-
!~1. 000. 
~lt2.000 
543.000- .. 
544. 0_00 
54.5.0.00 
546 •. 000 
547.0·00 
548.000-. 
!49. 000-
550.000 

c 

36 CONTINUE 
·GO TO 57 

....... . 'i-

C ·THE. PREVIOUS ENTRY TO OJVD-If OBT-A'l-NED VALUES fOR INTERPOL-AT.ION 
C I~ R~P.Al.ANQ ENTRIE-S JN·Tti-E·4TH DIVIOE'D.·DifFERENCE TA.B·LE FOR--
C CE•Y+V.~ 1.) MUSI · a-e RECAllED FROM .THE ARRAY. Dl. . 

c 

55 DO 56 N=l,4-
l=5-N 
DO 56 M:::;l,N 
DC I,~l=D'UI.,MJ 

56 CONTINUE 
57- uo· 37.N=Z,4 

I=6-N 
DCN, lJ=. l D lN-~.1·, I l-01 N;-:o li 1 + 1 i.l·/C· Xll.l-:-XC 5U. 

37 CONTINUE · 
00=2.401.1D{~,lJ-Ol4~21J/lXtl~-XC5)J 
RETURN 

C. CALCULATE 4TH DIVIDED DifFERENCE TABLE ON.FIRST ENTRY TO DIVDif 
c· WlTH RAP.T.I.S AND ---ALliS-ON· METHOD. 

40 DO 33 N=2 14· .. 
· IMAX=6-N 
' 00 33 l=l ,I MAX · ·r ; ..... 

0 l-Ntl J :::;(.[) l N-1', u--o l N·-1, I+ U) /(XI I J -xc: I +N-1 J.J 
33- CONT.INU.E· 

· · JB=3 _ . 
00=2.4Dl.l0(4,1J~DC4,2Jl/CXI·1J-X,SJJ
RETURN 
END 

~ 
--1"' 
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SUBROUTINE PS&K,~P,~~~NVJ 

LINE NUMBER TEXT PA:iE 1 

·- ---------------------------------------- -- -------------------------------
551.000 
552 .ooo c 
!:~3.000 c 
554.000 c 
555.000 c 
556.COO C 
557.000 c 
558.000 c 
559.000 c 
560.000 c 
561.000 c 
562.000 c 
!:t3. 000 c 
564.000 c 
565.000 c 
. 566.000 c 
567.000 c 
568. coo c 
569.000 c 
570.000 c 
511.000 
572.000 
513.000 
574.000 
5'15.000 
5l6.000 
577.000 c 
51a.uoo c 
579 .ooo 
580.000 
581.000 
582.000 
5f3.000 
584.000 
585.000 
586.000 
587.000 
sse. ooo 
589.000 
590.000 

SUBROUTINE PS(K,JP,~CONVI 

THIS SUBROUTINE CALCULATES THE PHASE SHIFT FRCM THE SOLUTION OF 
THE SCHRO~ING~R EQUATION AT T~O POINTS XM AND X AT LEAST ONE 
ATOMIC UNIT APART. 
Y IS THE VALUE Of THE WAVE FUNCTION AT X 
JP=l ON fiRST ENTRY TO THIS SUBROUTINE AND =2 ON LATER ENTRIES 
JCGNV .IS SET EQUAL TO ZERO IN THE CALliNG PROGRAM. ~JT IS CHANGED 
TO ONE WHEN THE RELATIVE DIFfERENCE 8Ell11EEN TWu SUCCESSIVE 
ESTIMATES OF THE PHASE SHIFT IS <=PSIG 

COMMON BLOCKS: 
EKLLl TR4NSfERS ENERGY, WAVE NUMBER, ANGULAR MOMENTUM, THE 

STEPLENGTH PARAMETER C AND THE TOLERANCE PARAMETERS 
PSJG AND EPS fROM·THE MAIN PROGRAM • 

PHASE ~HI~H IS USED ONLY IN THIS SUSROUTINE STORES DATA FROM 
THE PRECEEOING El',ITRV TO THE SUBROUTINE. 

IMPLICIT REAL*SIA-H,O-lJ 
COMMUN/EKLLl/f,AK,PSIG,EPS,C,L,Ll/PHASEJXH,YH.SM,CM,PSH 
COHMON··vCOEFFiaJ,AC9J ,FC8000J,XX(8000J,OC6,7J,JY 
X= XX CK +U 
Y=fCK+1l 
If lJP.fQ.lJ GO TO 1 
THe FUNCTION uf THE SUBROUTINE ON THE FIRST ENTRY IS TO STORE DATA 
WHICH WILL BE USED LATER- IN A PHASE-SHIFT CALCULATION. 
XINC=X-X"t 
IflXINC.LT.l.O) RETURN 
AKX=AK~X 

Sl=REG(A!<.X.LJ 
C 1 =Al REG C AKX, U 
ANJM=Y*SM-YM*Sl 
ADENOH=YH*Cl-Y*CM 
Al=ANUM/ADfNOH 
PSHIFT=DATANl AlJ 
WRITEl2,5J X,PSHIFT 
P=OA8S( l PSHIFT-PSM)/PSHIFTl 
IF lP.LT.PSlGJ JCuNV=l ·- · 

f..> 
-T 
~ 



~UI)KUU.Ilrtt: 1"'~11\e~t"I~\.UI ... VI' 

L lNE NUMBER· TEXT PAiiE 2 

:..--------------------------------------------------- ~~-------- ------------------------
591.000. c 
592.000. c 
593.000 
~~4.000· 
s.c;5.ooo 
596.000 
597.000 
598.000. c 
599.000 
600.000 
t-(a. ooo 
602.000 .. c 
603.000, c 
6G4.000. 
605 .ooo. 
606.000-
607.000 
608.000 
t·CJCJ. 000. 
610.000. 
611.000 . 

STORAGE Of 
J 

DATA FOR NEXT PHASE-SHifT·CALCUlATION 
2 PSM=PSH!FT 

XM=X 
YM=Y 
SM=S.l 

·CM=C.l 

4 FORNATilHO,SX~lHX;llX·ellHPHA·SE SHifT). 
S· FORMAI.llH. •Dll.4;-5XiD13-.6) .. · 

RETURN 

.THIS SECT,ION · IS 
1 · AKX=AK*X · 
· Sl=REGIA~X,L). 

C.l=AIREG(AKX;Ll 
PSHIFT=O. 000 · 
JP=2 
WRITE(2,4) 
GO TO 2 
END 

USEO,ONLY ON THE FIRST ENTRY 
·- .! .. 

I 

I 
I 
i 

~. 
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K 1: A L r-u 1'1 i.. .I ' l.; I~ t" U I .,. o \ 1\ 1 ;. r ~ I 

ll N E 1\U i"' o E F\ Ti::xT 
r'~vt: l 

--------------------------------------------------------------------------------------------------------------------
(;12.000 
tl3 .ooo ( 

614.000 c 
615.000 L 
(;16.0GU r 

u 

617.000 c 
t.U:I.OOO c 
619 .ooo 
620.000 
t2l.OCO c 
6~2.00\i l. 
t:23.000 
624 .ooo (. 

t:25.000 l. 
t::26.UOU 
t27.1JOO 
t.28.Li00 
c29.ooo 
630.000 

r.Ci.\L FL.I'i~ T lu1·• PL/1 *8( X, IPS) 

THIS ~l.~Hf.:..Jvk..\1-'l id::Tuf..i'~S THI: ~t..Lvl: ut- Ti-lt. Pi..Ti.I\TlAL VO..). 
IPS l~ ~t::T E"'U"'"- T u Lcr-L II'~ Tl-!1:: l. .... LL ll'.v t-'i-i.LGk;...tv, l\t,D 1 S C..llA.\a~l:.u Tu 

l Ull:t·~ 111.._ l.LASSli..lo\l Ki:GIG1-~ hnS dec!\ 1-.LALi-II:.C. 

lNPLilll kl~L*b(~-h,~-Ll 
c o i·1 M L r ... 1 c: .<. L L lt L , ... r- , I' s 1 G , 1: 1-' s _, L , L , L 1 

[P~ lS TI-.L TuLthl\i\i(.E PAti.Ao·iETt:R L;Sl.J It~ kHPAL. 
t'S IG 1 S h1...T Li~I:D Ii\o THIS Sl.li:H"f\L~k~M. 
V=-2.u~u*tl.OUG+1.U00/X)*GlXPI-2.UGO*Xl 

Ht:I..:.E V 1!:. THL 1-'LTU,jTli:•L fLf.. 1-i.i~ t.Lt.CTKLf·, d. Tlit. ~l~dll. 1--.ItUi 
GF Tht hYu~L~~~ ATLM. 

~=Ll/(A*Xl-L 

I F ( A • L 1 • U • 0 ..;(J • ;:. i .J [;. u;.,. b S ( V .I • L T • ( -A J ) I P S = 1 
fu-i=v 
'' cr u"i\ 
I:.NU 

~ 
-T 
~ ~ 



Kt:I4L ·r-UI' .. ~I-'UN KC~""'O'"ILI' 

. LINE NUMBER TEXT ____________________________________________________ ..._._ _____ ·-----'-------------· 
t: 1.000 
632 •. 000 - c 
633.000 c 
634.-0·00.. c 
635.ooo- c· 
636.000 c 
637.000 c 
6 38.0:00 c 
639 .ooo. 
640.000 
f~l.000-
642.000- c 
t-43. 000 c:-
644.000 
645-.000 
t·46.000-
647_.ooo .. 
t4-8. 000 
64.9.000 
650.000 
tfl.OOO, 
652 .ooo 

·- 653.000-
654.000 
655.000 
656 •. 000 
6~H.OOO C 
658.000 c 
t59.000 c-
660.000 c 
66.1.000 c.: 
6ti2.000. c. 
663.000 
tt4. 000 
6ll5.000 c 
666.000 c 
667.000 c 
668.000 c 
6'69.000 
610.-000 

REAL FUN,.TION REG.~D~8lX,LJ 
SPHERU~-Al-BESSEt_ .. FUNCTION-·Of THE F.J.RST -KlND-.·TJHES X. 
RE'Gl:;X;.tl.:a:X*Jl(-:XJ- IN THE .NOTAT.I.(jN·" Of- ABRAMOWITZ AND;. 

· ST£GUN:. HAN.DBOOK '· OE- .. HATHEMAT.lCAL .. FUNCTIONS· P437. 
IF L ·.DOE-S NOT-- EXCEED- X FORWARb..RECURRENCE- IS USED, OTHERWIS.E 
BACKWARD RECURRENCE- IS USED- WITH STARTING CONDl~JONS FOUND AS 
SUGGEST ED_ 8V COR.BATO AND· UREISKY. _J. ASSOC. COMP .• MA:H. VOL ·6• 

IMPLICIT RfAL-*8(A"":'H,O-ZJ.. 
DIMENSION:Pft~OJ 
IF ll.GT.x~- GO TO 3 

FOR WARD:. RECURRENC-E 
-A=DSl.NtXl 
lf-(l •. EQ.O) GO.T0·2 
B=DCOSl Xk .. -- · -- ;
FAC? 1.000./X 
X2=fACt-f.AC 

·oo 1. J=l •. L· 
Al=A _ . 
A=F·AC*A:-::-8 
B=Al 
FAC~fAC .. X2 ·_ 

1 CONTINUE 
2 REG=A· 

RETURN 

** ·····•**** ******** *-***** ~******* **'** 
.. -- .. --··---- -·-::· i' ...... .. ·--· - -- .... 

PP -366-3:7.5.· U95-9 l. 

-A RELATIVE ER.ROR-·:LESS- THAN 1.00.:..7 IS DEMANDED WHEN·SACKWARD 
RECURRENCE·Is--us·eo·.;----·Jf. T-HE DIMENSION OF .THE-ARRAY.Pf IS 
INSUf.flClENi TO-e-NSURE TH-IS·ACCVRAC'f·-A-WARNING IS PRINTED. 

3 If. ll.GE.'tO:l GD TO 6 -
ERL.G=23. 2.SDO ---- .. - · 
ERLG lS .THE AS-SOLUTE. VALUE Of' THE LOG TO THE BASE- -2 _OF DELTA 
WHERE DELT.A_ lS--r-HE MAXIMUM PE.RNlTTED RE'LAJI;VE ERROR. 1-N REG.-. 
HERE -DEl TA:=.l •. 00:-7-.-; · --- ,- ~ 

NUl IS DEFINED .BV-EQ'NC 3ll OF CORBATO '.AND URE-TSKY. · 
U=2 •. 000.X/D.FLOAT (2*l+l.J --

·NUl=L+l..Ol.NJ.l.ERLG* (.O.lOO•-O.·l7500*U* c·z~-000-U*UJ /'( 1 .00\l-U*U )'J J 

PAGE 1 
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Kt::AL I"UNl.I.~UN Kt::u•a lllotLj 

liNf NU·MBER TEXT 

-------------------------------:--------------------------._.._._______ ---
671.0.00 
tl2. 000 
61-3.0.00 
674.000 
6 75.000 
676 .ooo 
677 .ooo 
678.;000· 
679 .ooo 
680.000 
681 .• 000 
682·.ooo· 
6S3.000 
684.000' 
685.000 .. 
686.000 
68.7 .ooo 
6S8.000· 
689.000 
690.000 
t9l.OOO. 
692.0.00' 
693.000·. 
f:S4.000 
695.000. 
6c.i6.000 
6S7.000 
698.000. 
6S9. 000. 
700.000 
701.000. 
702.000 
703.000 
7(4.000 

c 

·c. 

c 

c 

NP=lDINf(X-O.SOO+DSQRTlfRLG*0.35DO*X)l 
If·. U~P.e.LT .U GO 1'0 4-- ... ;. 

,I 

U.=2. OOO*.X/OflOA Tl2•NP+ lJ, 
NUP7=NP:-t:l.DINT t ERL G* IO-.l00+0.175DO*U*( 2 .. 0oo- U*UJ /( l.ODo-U•UJ J J· 

·BA:KWARD RECURRENCE·BEGlNS-WlTH:THE SMALlER-OF NUl-AND NUP. 
IF lNUP.LT .NUlJ· ·NUl=NUP 
REOU.CEO ACCURACY WHEN NUl. TOO LARG·E FO.~· DECLARED A·RRAY 
IF ,lNUl.Gf.'tOJ GO. TO· 1 

4 PF&NUl+U.=l.00-10 
FAt=DflDATlNU1+NUl+ll/X 
PftNU.lJ.?=FAC. *Pf(·.NUl+: lJ ... -· 
X2=2.000/ X 
Jl:;:NUl-1 
DO 5 .J= 1, J 1 

FAC=f.AC-X2 
.P.f t NUJ.-JJ ~FAC*Pfl.NUl,+.l-J) ~PF'( NU1+2-JJ· 

5 CONJ·I.~UE · · .... - · · -- · ;· .. 
· · CRN=lPFU J/X-Pff-2J·l*OCOS.(XJ+DS:!N&XJ-:CrPFC .. U 

REG:;::Pf('.L+ U /.CRN - ··· - · · · .. 
RET.URN 

6 WRl·T·Et 2, lOQ.J L "'. 
100 FORMAT..UH ,3HL:;:., 1'3, 52H. TOO, LARGE· FO·R ·ARRAY· DECLARED·;.. REG REPLACE 

10 8¥ ZEROJ·. 
·REG=O.ODO 
·RETURN 

· · ·1 WRITE.I2,101~-.L,NU~ 
101 :fORMAT UJi .. ,31HFOR BACKWARD· RECURRENCE W .I.TH· L= .-13, 32H. 'THE CALCULATE 

. ... 10 IIALUE Of N'UJ:--IS ,I3.·24H .. SJNC:E ·THI·S IS TOCllARGE/4-:5H FOR···THf· .. DECl 
2AREO ARRAY NUl· IS REPLACED· BY 39) 
· NU1==:39 · 

Go- ro:·ft 
END · ... . .. 

•. l 

'•' 

: r· 
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K~A~·~UN~J.1UN A~K~~:~lAtLI 

liNE NUMBER TEXT. 
• ~ 0 • ------------------------------- -------------------·------ . - ---------------· 

l(l-5.000 
706 .• 000 
1(1·. 000 
"708 •. 000· 
709.000 
110.000 
711.000 
712.000. 
713.000 
714.000· 
115.000 
716.000 
117. 000 .. 
118.000 
719.000 
120.000 
121.000-
722.000 
123.000 
124.000 
725.000 

' 126.{)00 
727,.000 

c 
,. 
1;. 

c· , .. 
c 

. c· 
c 

REAl .fUNC·TI.ON- AJREG.8C X,lJ·· 
·SPHERICAl .. BESSEL. FUNCTION:·Of ·::TH"f. SECOND KIND Tl NES -:-X. 
Al"RE.(;C.X,LJ.:;:-X~Y.-L·(XJ·::JN THE .. NOTATiON·· Of ABRAMO~UJ,z AND 

· STE:iUN. H!\NDSOOK\. OF. MATHEMATI:CAL· FUNCT.I.ONS·' P43.7 .• · 
CALCU.LAIJ10N -lS ·BY ... FORWARD: RECURRENCE .. 
NO .OVERFLOW· PROTECTION IS\·INCLUDED SlNCE THIS ROUTINE 

·WILL. \lilT BE." CALLED FOR VE·RY SMALL- .. VALUE.S Of X 

IMP.L.IC IT .REAL.*8('A,...H, 0-ZJ 
A~OCOS CX J ... · ... · 

·IF- llo.EQ •. OJ.· G{j TO 2 
· FAC= 1 .. 000/ x· 
B::,...O.SI.NC X I. 

·X2:;:fAC+-f.~C 
DO l . J·::;:-1·, L · 

A1=A. · · 
A::;:fAC*"A"":B 
fAC::fAC.+X2 
B:::;Al 

· 1 CON.T !.NUE 
2 · AIREG=A 

RETURN· 
END 

PA:iE 1 
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~UO~UUI!NC UCVU~LMt~~~~~tArJ 

LINE 1\UMBER TEXT PAGE 1 

------------------------------------------------------------------------------------------------------------------· 
1.000 
2.000 c 
3.000 c 
4.000 c 
5.000 c 
6.000 c 
7.000 c 
a.ooo c 
9.000 c 

10.000 c 
ll.OOO C 
12.000 c 
13.000 c 
14.000 c 
15.000 c 
16.000 c 
.17.000 c 
18.000 c 
19.000 c 
20.000 c 
21.000 c 
22.000 c 
23.000 c 
24.000 c 
25.000 c 
26.000 c 
27.000 c 
28.000 c 
29.000 c 
30.000 c 
31.000 c 
32.000 c 
33.000 L. 
34.000 c 
35.000 c 
36.000 c 
37.000 c 
38.000 (. 
39.000 c 
40.000 c 

SU6KOUT1NE DEVOG(H,K2,K3,XFJ 

INTE~RAT~S NP SECOND ORDER COUPLED DIFFERENTIAL EQUATIONS 
USING OE VJ~tlA~RE'S METHOD SUBJeCT TU A SET Gf K3 INITIAL 
BCUNDARY CuNDITlONS. 

H iS THt ST~PLENGTH SUPPLIED BY THE USER. 

AT EA~H STEP THE LOCAL TRUNCATION ERROR IN EACH CCMPCNENT 
Uf THE SLLJTI~N Y(l,JJ ,J=l,---,NP,J=1,---,K3 IS ESIIMATEO. 
If T~lS ESTIMATE FUK ANY COMPONENT UF Y !S lOU LARGE THE CURRENT 
STEP lS DISCARDED AND A SMALLER STtPL~NGTH IS CHOSEN. kHEN THE 
ESTIMATED TRUN~ATION ERRUR IS SUFFl~IENTLY SMALL IN ~~LH 
CO~PJ~ENT JF Y THE STEPLENGTH IS INCREASEO FOR THE NEXT STEP. 

KJ..IS THE INDEX I\IUI>1BER O.F THE BOUND-STATE uRI:HTAL WHICH IS TO 
BE USED Tu l1ENER.ATE THE l<aTH INHOt'\GGENEOUS SOLUTION. 

K3 IS TH~ TUT4L NUMBER Uf LINEARLY INOEPENUENT SOLUTIONS 
GENERAT~U JVEk THt RANGE OF lNTEGRATl~h; JN THE NUTATION GF 
CHANDRA (1;73) K3=NTOTl=NP+NBND IN THE LUTWARU INTEGRATION ANO 
K3=NTJT2=NP+NA~NBND IN THE INWARD INTEGRATION. GN EXIT FROM DEVOG 
K3 CUNJAlNS THE NUMBER Uf STEPS LARRlED UUT DURING TH~ COURSE Of 
THE INTEGRATION. 

XF IS THE ENDPOINT OF THE RANGE GF JNTEGKATION; THE SJLUTIUNS OF 
THE JUT~ARD AN~ INhARU INTEGRATIUNS ARE MATCHED AT XF. 

CU4MON 8LO:KS: 

CE :TRANSfERS THE USER SUPPLIED FACTOR C {E.G.2J AND TH~ 
TJLERANC~ PARAMETER EPS FROM THE MAIN PRGGRAM. 
THE STtPLENGTH IS INCREASED BY THE FACTLR C ~HEN THIS 
C~N BE DuNE ~ITHOUT EXCEEDING THE BUuND EPS ~HICH 
IS AN UPPER BOUNU ON THE ESTIMATED T~U~CATJUN ER~UR PER 
U~IT SJEP IN EACH CDMP~NENT OF THE S~LUTIUN Y(l,JJ. 

BLC~ 1 ;o~ ENTRY TO DEVGG THE 1NlTIAL VALUE Gf THE STEPLENGTH 
lS H~; ON EXIT HO IS TH~ ~TEPLENGTH H ~SED lN THE FJNAL 

':::t> 
~ 
~ 

IT' 
2. 
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~UbK~UJJ~t UcVU~lHrK~,K~,A~I 

llN E NUMBER TEXT PAGt: 2 

-------------------------------------------------------------------------------------------------------------------
41.000 
42.000 
43.000 
44.000 
45.000 
46.000 
47.000 
48.000 
49.000 
50.000 
51.000 
52.000 
53 .ooo 
.54. 0 00 
55.000 
56.000 
57.000 
58.000 
59.000 
60.000 
~ l. 000 
62.000 
63.000 
64.000 
65.000 
co.OOO 
67.000 
68.000 
69.000 
10.000 
71.000 
72.000 
73.000 
74.000 
15.000 
76.000 
77.000 
78.000 
79 .ooo 
80.000 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
(. 

c 
L 
c 
c 
c 
c 
c 
r 
~ 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

STEP UF THE INT(GRATlON GR IF H HAS bEEN DECREASED HO IS 
TH~ VAL~E Gf H USED lN THE PENULTIMAlE STEP. 

BLC~ 2 :~P IS THE TUiAL NUMBER Uf COUPLED EQUATIONS 
NA IS THE NUMBE~ OF OPEN CHANNELS 
N~ND l~ THE TOTAL NUMBER OF BOUND-STATE ORBiTALS 
GlVlNG RISE TO INHOMOGENEOUS TERMS. 
wP ARRAY STORES THe ENERGY VALUeS (lN ATGMIC UNITS1 
~Jk ~p E~UATlONS; FIRST FOR NA OPeN AND THEN FOR NH=(NP-NAJ 
l.L LJS ED CHAJ'\iNE LS. 
LP ARRAY STORES THE ANGULAR MUM[NTA VALUES fOR NP EQUATIONS. 

BLCK 6 :X IS THE CURRENT VALUE LF THE MESH PLINY. 
YDllrJJ,I=l,---,NP,J=1,---,K3 IS THE lNlTIAL VALJE Of 
THe SOLUTION AT XO. 
ZJ(l,Jl,l=l,---,NP,J=l,---,K3 IS THE INITIAL VALUE 
UF THE FIRST DEklVATIVE Of THE SGLUTION AT XO. 
fJ(l,Jl,l=l,---,NP,J=l,---,K3 lS THE l~lTIAL VALUE 
UF ThE SECOND OtRIVAllVe OF TH[ SuLUTIGN A1 XO. 
Y( I , J ) , l ( I , J .t , F (1 , J J , l = l , ---, N P, J = l , --- , K 3 ARE THE 
CJRRENT VALU~S OF THE SOLUTION AND lTS FIRST ANU SECOND 
DE~lVATiVES RESPECTIVELY. 

BLCK 7 :~ ARRAY STORES THE·MESH POINTS wH1Ch ARE CHGSEN 
AJTDMATlCALLY OVER THE RANGE 0~ INTEGRATION. 
fuN(l,J,Kl,I=l~---,NP,J=l,---,K3,K=l,---,KO ~R KI, 
W~ERE ~O,Kl ARE THE NUM~ER OF INTEGRATlLN STEPS CARRIED 
DUT IN THE DUTWARD.INWARD INTEGKATlGNS RESPECTIVELY, 
SfLRES THE SOLUTION AT THE CURRENT MESH POINT ~(K}. 

BLCK 8 :Ku IS uESCRlBED ABOVE. 
NTuTl iS DESCRIBED ABuVE. 
f~l(l,Jl IS THE SOLUTlON OF THE ITH EQUATION FUR THE JTH 
BOUNUAkY CONDITION IN THE OUThARO lNT~GRATlON AT XF. 
~DR1il,Jl IS THE DERIVATiVE Of THe ITH EQUATION FOR THE 
JTH buUNDARY CONDlllON lN THE OUTWARD l~TEGRATION AT Xf. 
w)(KJ STORES THE MESH POINTS USED IN lHE OUTwARD 
INTEGRATION FOR USE IN SU~ROUTINE SIMPSN. 
f-UNt..Hl ,J,Kl 1 1=1 ,---,NP,J=l,---,K.3 1 K=l,---,KO STORES 
THe SGLUTION IN THE OUTWARD lNTcGRATIO~ AT THE 
CJRRESPONDlNG MESH POINT WO{Kl fOR USE IN SUBROUTINE SIMPSN. 

BLCK 9 :KJ iS DESCRibED ABOVE. 
NTOT2 IS DESCRIBED ABOVE. 
fd2(l,JJ 1S THe SOLUT'ION Of THe ITH I::QUATION FuR THE JTH 

9.:> 
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LlNE t\UMBER 

81.000 c 
82.000 c 
83 .ooo c 
S4.000 C 
85.000 c 
86.000 (. 
87.000 c 
sa.ooo c 
89.000 c 
90.000 c 
Sl.OOO C 
92.000 c 
93.000 
S4.000 
95.000 
S6.000 
97.000 
sa.ooo 
S9.000 

100.000 
101.000 
102.000 
103.000 
1C4.000 
1C5.000 
106.000 
1 C7 .000 C 
108.000 c 
109.000 c 
110.000 
111.000 c 
112 .ooo (. 
113.000 
114.000 (. 
115.000 
116 .ooo c 
111.000 c 
118.000 c 
119.000 L. 
120.000 c 

~ u o ~ u u a J. I'll c u c v u ~ l n , "" , "~ , A r J 

TEXT 

tiOUNUARY CLNOITION IN THE INWARD lNTEGRATJON AT XF. 
~Jk2(l,J) IS THE DERIVATIVE Of THE 1TH ~QUATION FOK THE 
JTH BGUNUARY CO~DITION lN ThE INWARD I~T~GR~TION AT XF. 
~d(Kl STORES THE MESH PUHJTS USED I~ THE IN~AfW INTE:GRATION 
FJR USE IN SUBROUTINE SIMPSN. 
FJNI(l,J,K),l=l,---,NP,J=l,---,K3,K=1, ,Kl ST~RES 

Trll SOLUTION IN THE INWARD INTE~RATION AT THE CGKRESPGNDING 
ME~H PGINT WI(KJ F~R USE IN SUOROUT!NE SIMPSN. 

INfU~M :IREAU CURRESPUNDS TU THE UNIT USED FGR CARD READING. 
lPKINI CURRESPONDS T~ THE UNlT USED fOK CARD PU~CHING. 

IMYLICIT kEAL*otA-H,O-ZJ 
DIMENSH .. -.. FEVt:N(5d2J ,FODD(5,12l ,F21·15 1 12).1 'VODDt5 1 12) 
DIMENSIUN YuDDli5,1,J,Y1(5,12J,Zl(5,12J,FEV~N1(5,12) ,FODDll5,12J 
DIMENSlUN F211(5,12) ,TR1t5,12J,JR2{5,12~,TR21(5,12J,TR3(5,12l 
UIMENSIO~ TKERR(5 1 12) 1 DTRERRl5,121,TOL(5 1 l2J 
COMMON/CEPS /C,EPS 
CG~MON/BLC.K 1/HO,XO,RO,RA 
CDMMLN/BLLK 2/WP(5J,~P,NA,NBND,LPl5l 
COMMLN/bLLK 6/X,YOl5,llj ,Z0(5,l2) ,F0(5,1.2J ,Y(5,12J,l(5 1 12J 1 f(5 1 12J 
COMMLN/BLLK 7/n{200DJ,FUN15,12,2000) 
CG~MJN/BLCK 8/KO,NTGTl,FBll5,7) ,FDR1(5,7) 1 hCl2000) 1 fUN0(5 1 l2 1 2000J 
CUMML~/HLCK 9/Kl,NTOT2,F~2,5,l2J,FDR2t5,12J,ki{2000J,FUNll5,12r200 

10) 
COMMU~/l~fORM/IKEAU,IPRINT 

NINC COUNTS THE NUMB~R OF INCREASES !N STEPLENGTH REQUlREU 
DURI~G THE LUUkSE Of INT~GRATIGN. 

NI NC =0 
NDEC COUNTS ThE NUMB~~ Uf UECRtASES IN STEPLENGTH REQUIRED 
DUIUf~G THE COURSE UF lNT EGRAT luN. 

NDEL=O 
THE INTEGER lST~P CU~NTS THE NUMBER OF ST~PS CARRIED JUT 

ISTEP=O 

DESCRIPTIUN AN~ INITlALIZATIUN OF VARlABLCS REQUIRED FLR 
BOOK-KEEPING AND ERROR CO~TRLL. 
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l1N E NUMBER 

121.000 
122.000 
123.000 
124.000 
125.000 
126.000 
127.000 
128.000 
129.000 
130.000 
1;1.000 
132.000 
133 .ooo 
134.000 
1.35.000 
136.000 
1.!7.000 
138.000 
139.000 
140.000 
141.000 
142.000 
143.000 
144.000 
145.000 
146.000 
147.000 
148.000 
149.000 
150.000 
1~1.000 
152.000 
153.000 
154.000 
155.000 
156.0 00 
157.000 
158.000 
159.000 
160.000 

~U~KUUI!NC UcVU~\Ht~~~~~tArJ 

TEXT 

C THE INTEGER KD lS INITIALLY SET TU ZERU AND IS SET TO ONE 
C WHEN THE ESTIMATED TRUNCATlUN ERROR IN ANY ONE GF THE LGMPLNENTS 
C UF TrlE SLLUTlGN !S TUU LARGE; KD lS R~SET TO ZERO UNTIL THE ABOVE 
C· CGNUlTiuN 1S kEENCOUNTEREU. 

KD=O 
C THE lNJtG~~ JHD lS lNlTlALLY SET TO ZtRO; IF THE NEXT STEP hiTH 
C THE CJRRENT VALUE OF H ~OulD TAKE THE CALCULATIGN BEYOND XF 
C A DELREAS~ JN STEPLENGTH IS F8RCED SO THAT THE NEXT STEP ENDS 
C PRECISELY AT Xf AND JHD IS SET TO 1. 

JHD=O 
C THE lNTE~EK K JS INITIALLY SET TU 1; ~lll REPRESENTS THE FIRST 
C MESH PGINT XO AND W(Kl REPRESENTS THE MESH POINT XO+(K-llH. 

5 K=1 
C Jl A~D JS KEPRESENT KESPECTIVELY THE NUMBER OF SUCCESSFUL STEPS 
C CAKR!ED OUT WITH THE CURRENT H ANU THt PREVIOUS 
C SU~CESSfUL H. 

Jl=O 
JS=O 

C J2: THE STEPLtNGTH IS INCREASED FKOM H TU C*H IF FOR 3 SUCCESSIVE 
C STEPS THE PkEDICTED TRUNCATION ERkOR WITH A STEPLENGTH Of C*H lS 
L SUF~l~lENTLY SMALL. J2 IS USED AS A CGU~TEK FOR THIS PURPOSE. 

J2=0 
C JD! WHEN A STtPLcNGTH DECREASE lS NECESSARY A NE~; H IS CHOSEN. 
C CALLULAT!uNS MAY SHuW THAT THIS IS INADE~UATE, SuA FURTHER 
C REDUCTI~N IS REWUIRED. JD KEEPS TRACK OF THE STEPLENGTH 
C D~CREASES I~ SUCH A CASE. IT IS INCREAS~U bY 1 ~lTH EACH 
L D~CREASE AND IS SET TO ZERU ~HEN A~ ACCEPTABLE H HAS BEEN f~UND. 

JU=O 
C Cl lS THt RATIL OF THE CURRENT H TO TH~ P~EVIOUS SUCCESSFUL VALUE. 

c 

c 

Cl=l.ODO 
C2=C1*C1 

DO 35 J=1,K3 
DO 35 I=!,NP 
T R l( I 1 J l = 1. 01) 2 

35 CONTINUE 

HMAX=(XF-~'1)J/5.0DO 
C IF A ST~PLEI~GTH GREATER THAN HMAX wERE USED THE TRUNC4TlUN EkROR 
C WOULU NLT B~ ESTIMATED BEFORt XF IS REACHED. 

PAGE 4 
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~UO~UUil~C U~VU~lnt~~~~~JArJ 

LINE 1\Ut~BER TEXT PAGE 5 

------------------------------------------------------------------------------------------------------------------
1bl.OOO 
162.000 
163.000 
1t4.000 
165.000 
166 .ooo 
H:7.000 
168.000 
169.000 
170.000 
171.000 
172 .ooo 
113.000 
114.000 
175.000 
116 .ooo 
177.000 
178.000 
179.000 
180.000 
181.000 
182.000 
183.000 
184 .ooo 
185.000 
186.000 
187.000 
188.000 
189.000 
190.000 
191.000 
1S2.000 
193.000 
194.000 
1 ss.o 00 
196 .ooo 
1~7.000 

1S8.000 
1S9.000 
200.000 

L 

c 

DH=UAtiSlHJ 
DHX=DABS(HMAXJ 
lf(DH~GT.~HXJ H=HM'X 

WRITEllP~lNT,l40) 
WRlTEllPRlNT 1 143) h(l),H,((FUN(I,J,lJ,I:l,NP),J=1,K3J 

C***INI TIAL STEIJ 
H2=H*H 
DO 36 J=l,K3 
DO 36 i=l,NP 
Z(l,JJ=H*lOll,JJ 
FEVEN(l 1 JJ=H2*FO(l,J)/3.000 
F2lll,JJ=FtvEN(l,JJ 
Y { 1, JJ =YJ ( l,J J-+l ( 1, J .) +1.5DO*fEVEN( I, J J 

36 CGNTINUE 
X=XU+t-l 
K=K+l 
L·dKl=X 
CALL DRV2lK2 1 K3J 
Du37J=l,K3 
DO 37 I=1,NP 
FGDD(l 1 J)=4.0DO*H2*F(l 1 JJ/3.0DO 
Y ( I , J J = Y l 1 , J J + ( F 0 D D ( I , J J -4 • 0 D 0 * F EVEN l l , J 1 J /8. 0 DO 

37 CONTINUe 
.c ALl LJ" V 2 ( K l , K3 J 
DO 38 J=l,K3 
DO 3& l=1 1 NP 
FUNtl 1 J,Kj=Yll,J) 
FODD(l,J)=4.0DO*H2*Fll 1 JJ/3.0DO 

38 CONTINUE 
X=X+H 
K=K+1 
~;(KJ=X 

DO 39 J=l,K3 
DO 39 l=l,N~ , 
Z1Ll,Jl=Z{l,JJ+FEVENti,Jj 
Y ( 1 , J J =YO ( I, J.) +2 • 0 D::J * Z H 1 , J l + FLD D l 1, J J 

39 CONTINUE 
CALL URV2LK2,K3l 

~ 

~ 



~UD~UUI!~C U~VU~\nr~~~~~tArl 

i.INE f\UMBER TEXT PA:;E b 

------------------------------------------------------------------------------------------------------------------
201.000 
2G2.000 
203.000 
2C4.000 
205.000 
20.6.000 
~07.000 
2C8.000 
209.000 
210.000 
211.000 
212.000 
213.000 
214.000 
215.000 
216.000 
217.000 
218.000 
219.000 
220.000 
221.000 
222.000 
223.000 
224.000 
225.000 
226.000 
227.000 
228.000 
229.000 
230.000 
231.000 
232.000 
233.000 
234.000 
235.000 
236.000 
237.000 
238.000 
239.000 
240.000 

DU 40 J=1 1 K3 
DO 40 1=1 ,NP 
FUNll,J,Kl=Y(l,JJ 
FEVENl 1 ,JJ=H2*Fl I ,JJ /3.000 
l ( 1 1 J J = Z 1 ( 1 , J l +f ODD ( l r J l +F t: V EN l l , J J 

40 CONTlNUE 
lfi!STEP.GT.OJ GU lO 4 
DO 41 J-= l r K3 
DlJ 't1 l =l ,NP 
YO~Dl(l,Jj=Yll,JJ-Z(l,JJ+i1.4Dl*fEVENil,JJ+3.0DO*FODDll,J)-2.0DO*f 

12Ill,Jl)*o.~5D-2 

41 CONTINUE 
X=~ ( 2J 
DO 42 J=l ,K3 
DO 42 l=l rNP 
Y(l,JJ=YUUU1l1,J) 

42 CONTINUE 
CALL UkV2(K2 1 l:...3) 
X=rJ ( KJ 
DO 43 J=l 1 K3 
DO 43 l=l 1 NI-' 
FOD0l(l,JJ=4.0DO*H2*f(l,JJ/3.0DO 
Y{i,Jl=fUN(I,J,KJ 
COLD=Cl 
Y1ERR=0.75DO*(fODDlll~J)-f00D{l,JJJ/H 
DYltR~=D~BS{YlERRJ 

DY=DA~S { V {I, .n l 
TOLtl,J)=t:PS*~MAXlll.ODOrDYJ 
IFlUYlEk~.GT.TULllJJJJ KD=l 
lf(DYlEkR.GT.TGL(l,J)j C1=(0.5DO*~PS/DY1ERRJ**0.2DO 
lFlCULD.LT.Cl} Cl=COLD 

43 CONTINUE 
lf(KO.~W.O) GL TU 4 
KD=O 
H=Cl*ti 
wRITEtl~RlNT,l42J 
GO TO 5 

4 ~iRlTE(lPRlNT,l43J W(K),H,((fUNLlrJ·rKJ,I=l,NPl,J=l,K3J 
Jl=J1+1 
DO lt4 J=J.,I\3 

~ 
~ 



liNE NUMBER 

~41.000 
242.000 
243.000 
244.000 
245.000 
246.000 
247.000 
248.000 
249.000 
250.000 
~~1.000 
252 .ooo 
2!:3.000 
2~4. 000 
255.000 
256.000 
251.000 
258 .ooo 
~:9.000 
260.000 
261.000 
262.000 
263.000 
2f4.000 
265.000 
266.000 
~t7.000 
268.000 
269.000 
270.000 
2 71.000 
212 .ooo 
273.000 
214.000 
275.000 
276.000 
~11.000 
278 .ooo 
279.000 
280 .ooo 

~UOKJull~C U~VU~lMr~~~~~rAr~ 

DG 44 I=l ,NP 
F2l{I,J1=ftVEN(l,Jl 

44 CONTI IWE 
ERRtA~=4.0uO/t4.5Dl*Hl 

TEXT 

C EKRFAC IS A FACTOR WHICH APPEARS IN THE TRUNLATI~N-EKM~R ESTIMATE. 

c 

c 
c 

X=X+H 
K=K+l 
rH KJ =X 

ISTEP=l 

C***GENfRAL D~ VUGELAERE LOOP 
3 DO 45 J=l,K3 

DO 45 l=l 1 NP 
L(I,Jl=L(l,JJ+FEVEN{l,J) 
YulJLd 1, Jl =Y( I ,JJ +Zll, JJ 
Y(I 1 Jl=YODDti,JJ+FEVEN(I,JJ-O.l25DO*FLDDtl,Jl 

45 CUNTlNUI:: 
C. ALL DR V 2 ( K 2 1 K. 3 J 
DO 46 J=l, K3 
DO 46 l=l,NP 
FU~ti,J,Kl=Y(l,J) 

FOUD(I,JJ=4.0UO*H2*f(l,JJ/3.000 
46 CONTINUE 

X=X+H 
K=K+l 
w(KJ=X 
DO 47 J=l,K3 
DC 47 1=1,1\iP 
Z(l,J)=ltl,Jl+FUDD(l,J) 
Y( I,J)=YJDD(.l ,Jl+Zil ,Jl 

47 CONTINUE 
CALL DRV2tK2,K.3J 
DO 4H J=l 1 K3 
DG 4o l=lrNP 
FU~tl,J,Kl=Y(l,J) 

FEVENt.l,Jl=H2*f(l,JJ/3.0DO 
Zl l ,JJ=l( I ,JJ +FEVENLl,J) 
YCDUl(l,J)=Yll,JJ-l(I,JJ+Ll.4Dl*FcVcNll,J)+3.0DO*FUDD(l,Jl-2.0DO*f 
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~U~KUUJ!N~ UtVU~lMt~£t~~~~rl 

LlNt "'UMBE:R TEXT PAGE H 

·-------------------------------------------------------------------------------------------------------------------
281.000 
282 .ooo 
283.000 
284.000 
285.000 
286.000 
287.000 
286.000 
289.000 
2SO.OOO 
2Sl.OOO 
292.000 
2S3.000 
294.000 
295.000 
2q6.000 
2'17.000 
2S8.000 
299.000 
300.000 
301.000 
302.000 
303.000 
304.000 
.305.000 
3Go.OOO 
307 .ooo 
308.000 
309.000 
310.000 
~u.ooo 
::12.000 
313.000 
::14.000 
::15.000 
316.000 
!17.000 
318.000 
319.000 
::20.000 

l2I(l,Jll*6.25D-2 
TR2li ,Jl=YOi.HHl I ,J)-fUN( l,J,K-ll 
TR2l(l,JJ=TR2l!,Jl 

48 CUNT !I~UE 
lf{ISTEP.LE.2l GU TO 32 
lflJl.Ew.l.~~.(J1.fQ.O.AND.JS.tQ.1ll GU TU 30 
GO T u 32 

30 DO 49 J=l,K3 
DU 49 l=l,NP 
TR2{l,Jl=BEIA*TK21(l,Jj 
IFlJl.E~.O) TK~(1,J)=BETAl*TR21(1,JJ 

49 CONTlNUE 
32 C ll=C 1 

C2l=C2 
DG 56 J=l,K3 
Du 56 I=J.. ,NP 
COLU=l.1 
TRERR(I,JJ=tTR2{l,JJ-TRlll,JJJ*ER~FAC 
DTRE~~ll,Jl=UABSlTRERR(l,JlJ 
DY =OAI:)$ ( Y ( 1, ..1 ) .) 

TOL(l ,Jl=EPS*UMAXl(l.ODO,DYJ 
lf{(UIR~~Rti,JJ.GT.TOLll 1 J)J.AND.JSTEP.GT.1l KD=1 
lf{,DIR~KKll,Jl.~T.TOL(l,J)l.A~D.!STEP.GT.lJ C1=(0.5DO*TDL(I,J)/DT 

lREiUUI,J) !**0.2500 
1f(CULD.LT.ClJ Cl=~~LD 

56 CONTINUE: 
i1 R 1 T E ( 1 PRINT, 141J lri { K l , H, ( 1 Y ( I , J) , TRE RR ( l , J l ,I= 1 , NP l , J= 1 , K3l 

C IF TRUNLATlON ERROR IS TLU LARGE GG TJ 14. THIS DOES NDT APPLY TO 
C THE FIRST STEP SINCE TWU STEPS ARE REWUikED FOK AN E~RLR ESTIMATE. 
C THE PAKAMET~R TGL PR~VIUES AN AGSQLUTt UR RELATIVE ERROR CRITERION 
C ACCORDING AS THE ABSOLUTE VALUE Of Y IS LtSS LR GREATER THA~ UNE. 

c 
c 

lf(KD.E::Q.l) GC TO 14 

C CURRENT STEP ACCEPTEU. DATA STURED f~OM PREVIOLS STEP uPDATED. 
JlJ=O 
J1=Jl+l 
DO 50 J=l,K3 
DL 50 1 = 1 I i-JP 
TRU 1 ,J)=TR2lt 1 ,J) 

~ 
U\ 
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ll f\ E f\U M B ER 

~21.000 
.!22.000 
.323.000 
324.000 
,; 2 5. 000 
~26.000 
.327.000 
328.000 
329.000 
330.000 
331.000 
332.000 
333.000 
334.000 
335.000 
336.000 
337.000 
,;~a.ooo 

339.000 
340.000 
341.000 
342.000 
343.000 
.344.000 
345.000 
346.000 
347.000 
348.000 
349.000 
350 .o 00 
351.0 00 
352.000 
353.000 
354.000 
355.000 
356.000 
357.000 
.3~6.000 
359 .ooo 
360.000 

SUbkUUTINE D~VUGtH,K2 1 K3,XFJ 

f2ltl,Jl=FEVEN(I,JJ 
ZUl,JJ=Z,l,JJ 
FEVEN1(l,JJ=FEVEN{l,JJ 
FODDl(l,JJ=fGDD(I,Jl 
YUI,J}=Y(l,JJ . 

50 CONTINUE 
lf(JHD.EW.OJ Hl=H 

TE:.XT 

C UPDATE EkRFAC If NECESSARY 
If(Jl.GT.~J GO TO 31 
ERRFAL=~.OD0/(4.5D1*HJ 

c 
c 

lf(Ji.E:.Q.ll ERRFAC=0.8DO*IC2/Hl/t3.0UO*C2+5.0DO*Cl+l.ODJ) 
31 ISTEP=lSTEP+1 

C PREDILT TkUNCATJON ERROR FOR THE NEXT STEP WITH A STEPLENGTH Of C*H. 
C If THIS IS ~U~FlCIENTLY SMALL GO TO 13 TO INLRtASE THE:. STEPLENGTH. 

10 DO 51 J=l , K3 
DG 51 l=l,NP 
UTRcRR(l,Jl=UTRERRll,Jl*C**4 
lf()JkERRllrJJ.GT.(0.5DO*TOL(I,JJjj Gu TU 25 

51 CO~TlNUI: 
GO TO 1~ 

25 J2=0 
23 lftJHU.t~.1J GO TO 2 

XXF=Xf-X 
XXF2=XXF/2. OD 0 
DXXF=LIAbS(XXFJ 
lFtUXXF.LT.l..OD-Sj GO TO 2 

C lF THE NEXT STEP ~LULC TAKE THE CALCULATION BEYLNU XF REDUCE THE 
C STEPLcNGTH; THE QUANTITY tXF-X-2HJH lS PGS1TlVE UNTIL 
C THE lNT~Gk4TlON PROCEEDS BEYONU XF. EXlT IF X EQUALS XF. 

lf((XXF-2.0UO*Hl*H.GE.O.ODOJ GO TO 60 
J2=0 
JHD=l 
C 1=XXF 2/H 
H=XXF2 
C2=i..l*Ll 
GO TO 16 

C STEPLEN~TH UNLHANGEU FUR NEXT STEP. UPDATE X AND RETURN TG BEGINNING 
C OF Lf.JUP. 

PAbt 9 
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L lNE NUMBER 

.3t1.000 
362 .• 000 
363.000 
3c4.ooo 
.3t5.000 
366.000 
367.000 
.3tB.OOO 
369.000 
370.000 
371.000 
372 .ooo 
3 73.000 
374.000 
375.000 
316.000 
377.000 
.378.000 
379.000 
380.000 
~El.OOO 
382 .ooo 
383.000 
384.000 
385.000 
356.000 
387.000 
386.000 
389.000 
390.000 
3'H .000 
3S2.000 
3S3.000 
394 .ooo 
!S5.000 
396.000 
397.000 
.!S8.000 
399 .. 000 
4 oo. 000 

SUBRLUTI~l DEVOG(H,K2,K3,XFJ 

60 K=K+ 1 
X=X+H 
Y~lKl·=x 

GO TO 3 
C***END LF Uc VGGELAERE LGUP 
c 
c 

2 K3=K. 
HO=H 
lf(Ll.LT.l.ODO) HO=H1 

TEXT 

C PRINT THE F1NAL VALUES OF ISTEP,NINC,NDEC AND RETURN TL CALLING 
C PROGKAM. 

c 
c 

WRITEl1PRl~T,l12) lSTEP,NlNC,NDEC 
RETUKN 

C TH~ CGDlN~ ~~LEVANT TU THE CHANGE OF ST~PLENGTH IS CONTAINED 
C BElNtEN LINES ur DASHES • 
c 
c ----------------------------------------------------------------------
(. 

c 
C***STEPLtN~TH LELktASE 

14 JD=JD+1 
JHD=O 
KD=O 
lf(Jl.EQ.Ol Gu TO LO 
J S=J 1 
Jl=O 
DG 52 .J=1,K:l 
DG 52 l = 1 , N P 
TR3( 1 ,JJ=Tk1 ( l ,J) 
F 211 l l , J) =f 2 I ( I , J) 

52 CONTINUE 
20 X=X-2. UDO*H 

K=<.-2 
~vlK.l=X 

H=C1*H 
NDEC.=NDi:C-t-1 
WR!TttiPRlNT,l42l 

PAGE 10 
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LINE NUMBER 

401.000 
402 .ooo 
403.000 
404.000 
4(5.000 
406 .ooo 
407.000 
408.000 
409.000 
410.000 
4ll.OOO 
412.000 
413.000 
414.000 
415.000 
416.000 
4!7.000 
418.000 
419.000 
420.000 
4.21.000 
422.000 
423. 000 
424.000 
425.000 
426.000 
427.000 
428.000 
429.000 
430.000 
431.000 
432.000 
433.000 
434.000 
-4 35.000 
436.000 
437 .ooo 
438.000 
439.000 
440.000 

SUBRuUTI~E DEVOGlH,K2~K3,Xr) 

TEXT 

C IF 1=2 ENTRY TO THlS S~CTION MEANS THAT H WAS TOO LARGE IN T~E LAST 
C ThO STEP~ SU IT iS NECESSARY TO RESTART FROM XC WITH THE NEW h 

IftlSTcP.EQ.2J ~0 TO 5 
Dll 53 J=l,K.3 
DO 53 l=l ,NP 
Zll,JJ=Zlll,Jl 
F2l(l,Jl=f2Illl,JJ 
FEVcN(l,Jl=FEVENl(l,JJ 
FOUull,JJ=FUJOl(I,Jl 
Y!lrJl=Yl (1 ,JJ 

53 CONTlNUE 
C C1 NO~ BELDMES THE RATlU OF THE NE~ H TJ TH~ LAST SU~LESSFUL H. 

Cl=H/Hl 
C2=l.l.*Cl 

C NOw ENTER RESTART SECTION 
GO TJ 16 

c 
c 
C***STEPLENGTH lNCREAS~ 
l NO ALTluN TAKEN UNLESS J2=3. 

13 J2=J2+l 
KU=:J 
IF(J2.LT.3J Gu TO 23 
J2=0 
JS=J1 
J1=0 
XXF=XF-X 
lfllXXf-2.0DO*C*Hl*H.LT.O.ODOJ GO TL 15 
DO 54 J=l,K3 
DO 54 1=1 ,NP 
TR3tl 1 J~=TR2lt1,JJ 
f211ll,JJ=F2lllrJ) 

54 CONTINUE 
NINC=NiN::.+1 
Cl=L 
C2=Cl*C.l 
H=C l~•H 
GO TO 16 

15 XXF2=XXF/2.0DO 
JHD= 1 

PAGE 11 
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llNE 1\UMBER 

441.000 
442.000 
443.000 
444.000 
445.000 
446.000 
447.000 
448.000 
449 .• 000 
450.000 
451.000 
452.000 
453 .ooo 
4.54. 000 
455.000 
456.000 
457.000 
458.000 
459.000 
460.000 
461.000 
462.000 
463.000 
464.000 
4t:5.000 
4t6.000 
467.000 
468 .. 000 
469.000 
470.000 
4 71.000 
472.000 
473.000 
414.000 
475.01)0 
4 76 .ooo 
417 .ooo 
478.000 
4 79.000 
4 80 .ooo 

c 
c 

SUBROUTINE DEVOG~H,K2,K3,XfJ 

Cl=XXF2/H 
H=XXF2 
C2=l.l*Ll 

TEXT 

C***RESTART SECTiuN. THIS PKOVIDES THE DATA NE~ESSAkY FOR REENTRY TO 
C THE DEVUGELAERE LOOP WITH INCREASED 0~ DECREASED H. 

16 H2=H*H 
ALPHA=(2.0DO+Cll*Cl*C2/3.000 
DC 55 J=lrK3 
Du 55 1=1 rNP 
l ( 1 , J J =C l * l ( l , J l 
f2Il I,JJ=C.2*f21 l l,JJ 
FE~ENllrJl=C2*fEVENti,JJ 
FODDll,Jj=C2*FODDtl,J~ 
FOUull,JJ=4.000*(l.ODO-ClJ*FEVEN(l,Jl+Ll*fuODll,J) 
TRlll 1 Jl=ALPHA*TR3(I,JJ 

55 CONTINUE 
C SOME UlfFERENLES OCCUR IF THE PREVtUUS STEPLE~GTH WAS USED ONLY ONCE 

lFlJS.EQ.U GLJ TO 21 
GO TO 22 

C THEN LALCULATE APPROPRIATE ERROR TERM WHEN JS=l 

c 

21 ERRFAC=4.8DO*C2*C21/((C21*l-C2+7.0DO*Cl+1.201)+2.0UO*Cll*(-C2+6.0D 
lO*C.1+1.0U1lr~.OUO*(C1+2.0DOJ)*Hl 

lf1JD.EW.lJ ~ETAl=BETA 
GG TL 24 

22 ERRFAL=l.oUO*(C2/HJ/(1.2Dl+7.0DO*Ll-L2J 
24 BETA=AlPHA/(L~*C2J 

X=X+H 
K=l(+l 
W!K~=X 
GO TO 3 

c ----------------------------------------------------------------------
( 
C FORMAT STATEMENTS 

112 FORM~T(lH0, 1 THE END OF THE RANGE Of 1NTEGkATlLN HAS BEEN kEALHED'/ 
1/'NUMBEk LF INTEGRATION STEPS tARRIED uUT 1 ,16/ 1 NUMbER OF lNCkEASES 
2 IN STEPLENGTH REQU1RED OURlNG THE ~UURSE uf 1NTEGR~TIG~ 1 ,l3/ 1 NUMB 

3ER JF UtCktASES IN STEPLENGTH ~E~UlkED DURING ThE COURSE UF lNTEGR 

PAbE 12 
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liNE 1\UMBER 

481.000 
-4cz.ooo 
483.000 
484.000 
485.000 
486.000 
4a7.ooo · 

SUSKOUTlN~ OEVUG(H,KZ,K3,XFJ 

TEXT 

4AT10N',I3 1 ///J 
140 FOKMAT(1rl0 1 lHX,14X,1HH,14X,lHV,l4Xr5HTRERR/!HOl 
141 fGRMATllH ,21Ul3.b,2XJ 1 3(D13.6,2X,Dl0.3,2Xl/4(Dl3.6 1 2X,Dl0.3,2XJ/4 

liD13.6,2X,Ol0.3,2X)J 
142 FORMATC8HORESTARTJ 
143 FORMAT(lri 1 2(~13.&,~XJ,3(Dl3.b,14XJ/4(Dl3.6 1 14Xl/4(013.6,14XJ~ 

END 

PAGE 13 
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~UO~UUI!NC U~V£l~£t~~J 

Lif\E to-UMBER TEXT PAGE l 

-------------------------------------------------------------------------------------------------------------------' 
4 8B .000 
itt9.000 
490.000 
491.000 
492.000 
493.000 
494.000 
455.000 
496.000 
497 .ooo 
498.000 
499.000 
sco.ooo 
501.000 
502.000 
503.000 
504.000 
505.000 
506.000 
507.000 
508.000 
509.000 
510.000 
.:u. 000 
512.000 
513.000 
514.000 
515.000 
516.000 
517.000 
5.18.000 
519.000 
520.000 
521.000 
522.000 
5~3.000 
524.000 
=~5.000 
526.000 
527.000 

c 
c 

SUBRGUTlNE URV2(K2,K3J 

C THIS ROUTINE CALCULATES THE POTENTIAL FO~ ELECTRLN-HYDRUGEN 
C SCATTERING IN THE STRONG-COUPLING APPROXIMATIGN, WHEN ONLY lS AND 25 
C ATOMIC STATES ARE INCLUUE~ IN THE ~IGENFUNCTILN EXPANSION, ~lTH 
C EXLHANGt NEGLtLTEu. THe SECOND DERIVATIVE GF 1HE SOLUTION AT THIS 
l MESH PUlNT MAY NOW BE ~AL~UlATED AND IS STORED lN THE F MATRIX. 
C BLCK 3 :CN MATKIX STURES THE COEFfiCIENTS OF X**{-K-lJ, K=1,---,MAXP 
C IN THt ASYMPTOTIC FORM GF THE POTENTIAl WHERE MAXP IS 
C THE MAXIMUM VALUE Of K. 
C ZZ IS THt NET LHARGEa 
c 
c 

c 

IMPLICIT kEAL*8lA-H,O-ZJ 
C~MM~N/BLLK 1/HO,XO,RO,RA 
CG~~ON/BLCK 2/~P(5J,NP,NA,NBND,LP(5) 

COMMQN/6LCK 3/CNi5,5,4l,ZZ 1 MAXP 
COMMUN/BLCK 6/X,Y0,5,12),Z0(5,12),F0l5,12J,Y(5,12J,Zl5,12J,F(5,12l 
COM~O~/BLCK 7/w(2000j,fUN(5,12,2000J 
COMM~N/BLCK 9/Kl,NTOl2,F62t5,12l,FDR2(5,12J,~ll2000j,FU~l(5 1 12,200 

10J 

IFlK3.~~.NTUT2.AND.X.GE.RA) GO TO 3 
DO 2 J=l,K3 
DU 2 l=l, I~P 
f{l,Jl=Yl l,J)*{UFL0AT{LPll)*LP(l)+LP(lJ)/tX*Xl+2.000*(-ZZ/X-~P(l)) 

1) 

DO 1 K=l,NP 
IF,I.Nt.(J V=4.0DO*DSQRT{2.0DOl*(2.0D0+3.0DO*X)*UEXP1-1.5DO*X)/2.7 

.l Dl 
IF11.E~.1.ANO.K.EQ.1J V=-2.0D0*(1.0D0+1.0DO/Xl*DEXP!-2.0UO*X) 
lFU.EQ.2.ANu.K.EQ.21 V=-2.000>::( l .. ODO/X+0.75DO+X/4.0DO+X*X/S.ODOl* 

1 DEXP ( -XJ 
f{l,J)=f(l,Jj+V*YlK,Jl 

1 CONTINUE 
2 CONTINUE 

RETURN 
3 DC 5 J=1,K3 

DO 5 l=l,I'IP 

~ 
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LINE NUMBER 

~28.COO 

529.000 
530.000 
~31.000 

532.000 4 
~33. 000 
534.000 5 
53.5. 000 
536.000 6 
537.000 
538.000 7 
539.000 

SUoROUTI~~ DRV2(K2rK3J 

TEXT 

F(I,Jl=2.UDO*l-ZZ/X-WP11J)*Y(l,Jj 
DO 4 K=l.,NP 
DG 4 l=l,MAXP 
Ft I,Jj=t-( l,JJ-Y(K,JJ*CN(l ,K,.LI/tX**(L+lJJ 
CONTl\JUE 
iF(K2.GJ.O) GG TO 6 
CONTINUE 
RETURN 
WRIT ttl PRINT, 7 J 
RETURN 
FLRMAT(53HOEXPKESS10NS FOR THE lNHOMOGENEUUS TERMS ARE RE,UIRED) 
END 
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(1) 

On de Vogelaere's Method for y" = j(x,y) 

By John P. Coleman and Julie Mohamed 

Abatrac:t. Easily calculated truncation-error estimates are given which permit effi

cient automatic error control in computations based on de Vogelaere's method. 

An upper bound for the local truncation error is established, the interval of abso

lute stability is found to be 1-2, 0), and it Is shown that the global truncation 

error is of order h4 where h is the steplength. 

1. Introduction. Ordinary differential equations of the special form 

y" =f(x, y), 

and systems of such equations, arise in a variety of physical contexts. Examples in· 

elude atomic and nuclear scattering problems, molecular-dynamics calculations for 

liquids and gases, and stellar mechanics. A numerical method proposed by de Voge

laere [3] has been used extensively to solve equations of this type (e.g. [I], [8), (9] 

and [12]), and Chandra [2) has published a computer program which uses de Voge

laere's method to solve the differential equations arising in a close-coupling formula

tion of quantum mechanical scattering problems. Chandra's program makes no at· 

tempt to monitor the local truncation error, and leaves the choice of steplength strat

egy entirely to the user. 

A major objective in recent work on numerical methods for nonstiff ordinary 

differential equations of first order has been the development of efficient codes which 

automatically select steps as large as possible while satisfying some error criterion 

specified by the user (see surveys by Shampine et al. [11] and by Lambert (7]). 
Adopting this philosophy, our aim has been to improve on existing implementations 

of de Vogelaere's method for the second-order equation (I) by incorporating a meth

od of truncation-error estimation, and an automatic mesh-selection facility. 

For ease of reference, and to establish notation, we present in Section 2 a der

ivation of de Vogelaere's method based on Taylor expansions. The estimation of 

the local truncation error, on which the choice of steplength depends, is discussed in 

Section 3. Despite the frequent use of de Vogelaere's method we are unaware of any 

previous error analysis, or any study of the stability of the method; later sections of 

the paper deal with these matters. A bound for the local truncation error is derived 

in Section 4, the stability region of the method is established in Section 5, and the 

global truncation error is examined in Section 6. 

2. Derivation of de Vogelaere's Method. The differential equation (1) is to be 

solved, in some real interval [a, b), subject to the initial conditions 
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y(xo) =Yo· 

where Yo and z0 are specified numbers and 

z(x) = ~. 

The mesh points, which in general are not evenly spaced, are denoted by x,. (n = 0, 1, 

... ), y,. is an approximation to the exact solution y(x,.) at the mesh point x,., and 

we shall also use the abbreviation 

Let h be the initial steplength, so that 

x 1 = x 0 + h, x 2 = x 0 + 2h. 

Then, by using the equations 

and 

in Taylor expansions about x 0 , we obtain 

(2) 

and 

(3) y(x 2 ) = y 0 + 2hz0 + h; (4[1 + 2[0 ) + ~; ~· + O(h6
). 

These expressions are valid provided that any errors in [_ 1 and [ 1 are of order h3 and 

h4 , respectively. . 

The de Vogelaere algorithm is obtained by neglecting O(h4
) terms in (2) and 

O(h 5 ) terms in (3). For a fuc:ed steplength h, its general step, leading from x 2 ,. to 

x2n+l = x 2,. + 2h, may be described as foll~ws: 

Given y 2,., z2 ,., [ 2 ,. and [ 2 ,._ 1 , 

(4) (i) 
hl 

Y2n+ 1 = Y2n + hzln + 6(4fln - fln-1), 

(5) (ii) fln+ 1 = f(xln+ 1• Yln+ 1 ), 

(6) (iii) 
. hl 

Yln+l = Y2n + 2hzln + 3 (4fln+ 1 + 2[2,.), 

(7) (iv) fln+l = f(x2n+l• Yln+l), 

(8) (v) 
h 

Zln+l = Z211 + Jlf2n + 4f2n+ I + f2n+l). 



DE VOGELAERE'S METHOD FOR y" = f(:x:, y) 753 

The local truncation errors in Yln+l and z2n-t·l are of order h 5
, and that in 

y 2n+ 1 is of order h4
• This algorithm has some similarity with Runge-Kutta methods, 

but it involves only two function evaluations per step whereas a Runge-Kutta method 

of the same order requires three {see e.g. [10]). Unlike Runge-Kutta methods, the 

de Vogelaere algorithm is not self starting, but, as de Vogelaere (3] suggested, this 
difficulty is easily overcome since by taking i 

{9) 
hl 

Y-1 =yo -hzo +2/o 

we can calculate /_ 1 with an error of order h 3 • 

An arbitrary change of steplength can be introduced without additional function 

evaluations. If a steplength h 1 is used as far as x 2n, the quantity fln-l refers to the 

mesh point x 2n-l = x 2n - h 1 • If we now change the steplength to h2 =chi' fln-l 

must be replaced in Eq. {4) by lln-l• an approximation for fat x 2n - h2 • This can 

be achieved by defining 

{10) 

which has a local truncation error of order h~. 

3. Truncation Error Estimates. Equation {3) shows that the leading.term in 

the truncation error in the step from x 2n to x 2 n + 2 is 

{11) 2hs ~'" 
45 l2n· 

De Vogelaere (3] described a method for estimating tltis quantity when the steplength 

h is constant. To allow us to monitor the truncation error immediately after changes 

of steplength, it is necessary to introduce some modifications which are described in 

this section. We consider four separate cases. 

3.1. Fixed Steplength. Since the truncation error in Yln+ 1 is of order h4
, 

and that in Yln+l is of order h 5, y(x2n + 1) may be estimated more accurately by 

Taylor expansion about x2 n. By using the equations 

h
2
/.;n+2 = fln+l- 2f2n+ 1 + f2n + O{h

3
) 

and 

to replace the low-order derivatives, we obtain the new estimate 

{12) 
h2 

Y~n + 1 = Y2n+2 - hz2n+2 + 24 (7/ln+l + 6f2n+ I - f2n), 

which has a local truncation error of order h5 . Consequent!~'. 

{13) 
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Similarly, if the same steplength is used for the next step, 

and the required truncation-error estimate is given by 

2h
5 

r" - h
4 

tr' r• ) 
45 12n- 45 V2n+2 - J2n 

8 
!::!!<' 45 [{y~n+3 -y2n+3)-(y~n+1 -y2n+1)). 

The truncation error per unit step, which is a more appropriate basis for de

cisions about the steplength, is approximated by 

(14) 

3.2. Immediately Following a Step Change. Let h 1 be the steplength used in 

the step from x 2n_2 to x 2 n, and in the preceding step. Equations (6) and (8) can 

be used to put Eq. (12), with n replaced by n - I, in the form 

(I 5) 

Then 

(16) 

If the steplength is now changed to h2 = ch 1 for the next step, Eq. (10) combines 

with (4) to give 

(17) 

Equations (6) and (8) apply with h = h 2 , and 

1 
Y~n+ 1 = Y2n + h2Z2n + 24 h~(1f2n + 6/2n+ 1 -/2n+2). 

Steps similar to those used in deriving Eq. (16) then show that 

• _ _ h; ( ~)r• _ h~ ( ~ ..!..).r" ( 6) 
(18) Y2n+1 Y2n+1- 24 I+ c 12n+1 36 2 + c + c2 :f2n+1 +Oh~' 

and 
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The resulting estimate of the truncation error per unit step is 

&[(.v~n+ 1 - Y2n+ 1)- a(ytn-1 - Yln-1)] 

5h1(12 + 1c- c2 ) 
(19) 

where 

(20) 

3. 3. The Second Step After a Step Change. If the steplength h 2 = ch l' in· 

troduced for the step from x 2,. to xln+l• is retained in the next step, the equation 

• _ _ h1 r' _ h~ r" O(h6) 
Yln+3 Yln+3 - 8 Jln+3 6 Jln+3 + l 

follows directly from (16). This combines with Eq. ( 18) to give 

(21) 

h~ ( 5 1 )t" =- 3+-+- +···. 36 c l ln+l c 

The local truncation error per unit step is estimated to be 

4c[/3(ytn+3- Yln+3)- <Ytn+l - Yln+1)] 

5h 1(1 + Sc + 3c2) 
(22) 

with 

If we now continue to use the steplength h2 the results of Subsection 3.1 

apply to later steps. 

3.4. Two Step Changes in Succession. The alternative to the situati_gn dis

cussed in Subsection 3.3 is that having completed the step from x 2 ,. to x 2 ,.+ 2 with 

steplength h2 we then adopt a new steplength h3 = c 1 h2 • The relevant mesh points 

are 

In this case, by analogy with Eq. (18), 

( ) • hj ( 2 ) r' h~ ( 3 1) r" 0( 6) 23 Y2n+3- Yln+3 = 24 1 + c 12n+3- 36 2 + c + 2 Jln+3 + h3 · 
. 1 1 c 1 

The appropriate linear combination of ( 18) and (23) is 
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with 

Our estimate for the local truncation error per unit step is then 

(24) 
24c2cHfl(y~n+3- Y:zn+3)- al(y~n+l- Y:zn+l)] 

4o A Bound for the Local Truncation Error. The error analysis described here 

is based on three functionals which are related to the truncation errors in the formulae 

(4), (6) and (8). For an arbitrary function y(x), having p + I continuous derivatives, 

we define the functional 

(2S) L1 [y(x), h) = y(x +h) - y(x)- hy'(x)- h: (4y"(x)- y''(x -h)]. 

By using Taylor's theorem in the form 

fiJ.\P hP+ lij 
y(x + jh) = y(x) + jhy'(x) + 0 0 0 + '£.!Ly<P>(x) +- (j- s)Py<P+ J)(x) ds p! p! 0 , 

it can be shown that 

(26) 

with 

- 1 .so; s .so; 0, 

Since G1(s) is of constant sign on the interval of integration, Eq. (26) may be written 

as 

(27) 

with 

The same approach applied to the functional 

(28) L2 [y(x), h) = y(x + 2h)- y(x)- 2hy'(x) - ~
2 

(4y"(x +h) + 2y"(x)] 

gives 
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where 

0 EO; s EO; I, 

I EO; s EO; 2. 

The kernel function G2(s) is of constant sign, and consequently 

(29) 

with 

The third functional required is 

(30) L3 [y(x), h] = y'(x + 2h) - y'(x)- ~ [y"(x) + 4y"(x +h) + y"(x + 2h)], 

and the standard expression for the truncation error in Simpson's rule gives 

{31) 

Let y(x) be the exact solution of our initial-value problem. To investigate the 

local truncation error in the step from x 2 n to x2n+l we suppose that the starting 
values at x 2 n are exact, i.e. 

Y2n = y(x2n), Z2n = y'(x2n), 

f2n = y"(x2n), f2n-1 = y"(x2n-l). 

Then the truncation error at x ln + 1 is 

y(x2n+l)-y2n+l = L,[y(x2,.),h] 

{32) 
- h4 iv( + 0 h) - 8 Y X2n 1 • 

Also, in view of the assumed starting values, 

and the truncation error at x 2 " + 2 is 

To obtain a bound on this error we assume a Lipschitz condition 

(34) if(x, y) - f(x, 77)1 EO; Kty - 771 

for all x in the appropriate interval [a, b] and all finite y and 71· Then, if 
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tyiv(x)l :s;; M4, 

Eq. (33) gives the bound 

IYv(x)l :s;; M5, x E [a, b], 

(35) 

(36) 

In a similar manner it can be shown that 

y'(x2n+2)-z2n+2 = L3[y(x2n),h] + ~[y"(x2n+J)-f2n+d 

+ ~ [y"(x2n+2)- /2n+2] • 

giving the bound 

, h5 Kh 5 
2 2Kh6 

(37) lY (x2n+2)- z2n+21 :s;; 90M6 + ls (3 + Kh )M4 + 135 Ms, 

where 

X E (a, b). 

S. Stability Analysis. If y(x) is the exact solution of the initial-value problem, 

the global truncation errors in the function and derivative values at the end of the 

nth de Vogelaere step are 

y(x2n-J)-y2n-1 =e~ll, 

y(x2n)- Y2n = e~2 ) • 

y'(x2n) - z2n = e~3)/h. 

The factor of h in the third definition is introduced to simplify the form of later 

equations. Equation {4), combined with the definition of the functional L l' gives 

e<l) = e(2) + e(3> + 2h2 [y"(x } -f. ] n+ 1 n 11 3 2n 2n 
{38} 

Similarly, from Eqs. (6) and (8) and the definitions of the corresponding functionals, 

(39) 

(2) - (2) 2e(3) 4h
2 

[y"( ) -f. ] en+J -en + n + 3 x2n+l 2n+l 

and 

(3)- (3) h
2

[y"( }-f. 4{ "( }-f. }+ "( }-f. ] en+1 -en + 3 X2n ln + Y X2n+1 2n+l Y X2n+2 2n+2 
(40) 
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In accordance with normal practice (e.g. Lambert [6, p. 257]) the stability of 

the method is discussed with reference to the equation 

y" = ~2y. 

In this case our equations for the cumulative errors simplify to 

(41) 

where en is a column vector with components e~l). e~2 > and e~3 >, 4»n+t has as its 

components the three functionals occurring in Eqs. (38)-(40), and the matrices A 

and Bare 

0 0 h 1 + 2h -6 3 

A= 4h 
0 B= 0 1 + 2h 

3 3 

4h h 0 
h 

3 3 3 

with h = ~2h2 . Since A is nonsingular Eq. (41) may be written as 

where 

C= 

I+ 2~ 
3 

The characteristic polynomial of the matrix C is 

2 

p(r, h) = 6r3 - (12 + 23h + 8h2)r2 + (6 - 2h- 4h2)r +h. 

The ••schur criterion" described on p. 78 of Lambert's book [6] can be used to 

show that p(r, h) is a Schur polynomial, in other words that all its zeros lie inside 

the unit circle, if and only if hE (- 2, 0). Thus, the interval of absolute stability of 

de Vogelaere's method is [- 2, O]. The moduli of the zeros of p(r, h) are plotted in 

Figure 1 for a range of values of ii. The three zeros, though distinct, have the same 

modulus when h = -1.732 (to 3 decimal places). 

6. The Cumulative Error. Bounds for the global truncation error can be obtained 

from Eqs. (38)-{40) and bounds established in Section 4. However, the dependence 

on a (fixed) steplength h is more readily obtained in an alternative approach described 

by Kopal [5, p. 219]. Let y be the exact solution of the initial-value problem 

y" = f(x, y), y(xo) =Yo· 
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6 

4 

2 

-3 -2 -I 0 

h 

fiGURE 1 
The moduli of the zeros rl' r 2 and r 3 of p(r, h). r 2 and r 3 are 

complex for h E (- l. 7 5, 0), and r 1 is always real 

and z its derivative. Another solution of the differential equation is denoted by E and 

its derivative is 1'/. Then, if the squares and higher powers of the differences IE(x) -
y(x)l and ITI(X) - z(x)l are neglected, 

(42) 
d 'iJf 
dx (11- z) = 'iJy (E- y), 

d 
dx(E - y) = 11- z. 

When this is combined with the adjoint system 

"' = - (:;)11. 11 1 

= - )., 

solved subject to the boundary conditions 

Kopal's approach (5] gives the truncation-error estimate 

(43) 
.. 

y(x2,.)- Y2n ~ L ["(x2/)R/ + 11(x2/)s,] · 
/=1 

Here R1 and s1 represent the errors in evaluating the solution and its derivative in the 

jth step of the de Vogelaere method; more precisely 

R1 = E
1
{x21) - y21• s1 = Tl1{x21)- z2,. 

where E
1
{x) and 11

1
{x) are the solutions of (42) on the interval [x21_ 2 , x 21] satisfying 
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the initial conditions 

Regarding the right-hand side of (43) as a quadrature sum we may write 

(44) 1 Jx2,. 
y(x2,.)- y 2,. ~ 2h xo [X(x)R(x) + p(x)S(x)] dx, 

and only the lowest power of h in R and S is required for our purpose. From Eq. {3), 

or by retaining only the lowest power of h in (33), we obtain 

The h 5 contribution to the local truncation error in the derivative comes from two 

sources, the first and second terms on the right-hand side of Eq. {36); thus, 

h5 h5 at 
S{x) = - 90 yY'(x) + 6 ay y'V(x). 

It follows from ( 44) that the global error is of order h4 . 

As an example we consider the initial-value problem 

" y =-y, y(O) = 0, y'(O) = 1. 

In this case 

y(x) = sinx, X(x) = cos(x2,. -x), p(x) = sin{x2,. -x), 

2hs 
R(x) = 

45 
cos X, 

7h 5 
S(x) = -

45 
sin x, 

and the global error estimate is 

h4 fx2n . . 
y(x2,.)- Y2,. ~ 

90 0 
[2 cos(x2n- x)cosx- 7sm(x2,.- x)smx] dx 

h4 - . = 
180 

[9x2,.cosx2,.- 5smx211 ]. 

In particular, when x 2,. = 1r/2 this estimate becomes -h4 /36 which agrees closely with 

numerical results. 

7. Conclusion. The truncation-error estimates presented in Section 3 provide a 

practical means of efficient error control in applications of de Vogelaere 's method. 

The error estimates are inexpensive, requiring no extra function evaluations, and only 

two function evaluations are lost if a particular step has to be discarded. We have 

used this approach in a program for quantum mechanical scattering calculations, al· 

lowing the computer to choose the steplength at each step so that the truncation er· 

ror per unit step is Jess, but not too much Jess, than a specified tolerance. 

An important conclusion from our error analysis is that the global error in de 

Vogelaere's method is of order h4 . This contrasts with linear multistep methods for 
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Eq. (I) which have a local truncation error of order JzP+ 2 but a global error of order 

hP (see Henrici (4, p. 314]). For example, Numerov's method (Lambert (6, p. 255], 

Kopal [5, p. 183]) has a local truncation error of order h6 but a global error of or

der h4 like de Vogelaere's method. 
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Added in Proof. We have now established a rigorous upper bound on the global 

truncation error, assuming the Lipschitz condition and derivative bounds introduced in 

Section 4. For any h0 > 0, constants a and M exist such that, for all h .so; h0 , 

exp[a(x2n - x 0 )] - 1 
4 [y(x2n)- y 2 n1 .so; e exp[a(x2n- x0 )] + 2a h M 

where 

In particular, if the initial conditions of Section 2 are satisfied exactly, then 

which is of order Jz 4 if Eq. (9) is used to compute y _
1

• Details will appear in Julie 
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