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l i i 

A b s t r a c t 

T h i s t h e s i s i s a p r e l i m i n a r y account of work c a r r i e d 

out to examine the c h a r a c t e r i s t i c s of the i s o s p i n 1 = 1 and 

1 = 0 channels 

K p * A V 
and K p at primary momenta between 

150 and 480 Mev/c. 

The experiment used the B r i t i s h N ational Hydrogen 

Bubble Chamber a t the Rutherford Laboratory with a Track 

S e n s i t i v e Target c o n f i g u r a t i o n , which provided gamma r a y 

d e t e c t i o n . 

Two approaches a r e adopted to separate these normally 

ambiguous channels. The f i r s t i s a s t a t i s t i c a l s e p a r a t i o n of 
•'j 

the kind used by previous workers, the second uses the 

gamma r a y d e t e c t i o n of the Track S e n s i t i v e Target to r e s o l v e 

these two channels d i r e c t l y . The r e s u l t s of the two methods 

are compared and are i n good agreement. The presence of the 

/ \ (1520) i s c l e a r l y demonstrated i n the determination of the 
— 4«0 a AO 

branching r a t i o of K p * /lir to K p * ' x + n e u t r a l s , as a 
f u n c t i o n of momentum, and i n the angular d i s t r i b u t i o n of 

.a 
the 2. i n the K p c e n t r e of mass system. There i s no evidence 

f o r the £ ( 1 4 8 0 ) resonance. 
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CHAPTER ONE 

Thi s t h e s i s d e s c r i b e s p r e l i m i n a r y data on K~" meson 

i n t e r a c t i o n s with hydrogen, using a t r a c k s e n s i t i v e t a r g e t 

i n s i d e a bubble chamber containing a hydrogen-neon mixture 

for gamma ray d e t e c t i o n . The aim of the experiment as a 

whole,was to measure c r o s s - s e c t i o n s f o r a l l channels 

produced by K~~ mesons below 500 Mev/c; the data presented 

here i s on the channels producing a A hyperon and n e u t r a l s 

fo r K~" momenta between 150 and 480 Mev/c. I n p a r t i c u l a r 

the momentum region 340 to 440 Mev/c,where most of the 

s t a t i s t i c s are a v a i l a b l e ! i s compared with the high s t a t i s t i c s 

experiments of r e f s 1.1 and 1.2, and the dominance of the 

A (1520) c l e a r l y demonstrated. The s t a t i s t i c s are low ;but 

i t seemed worthwhile to check the data i n a region t h a t had 

alrea d y been measured and to se t up an a n a l y s i s system f o r 

use with the f i n a l data when assembled. 

I n Chapter 2 the b a s i c bubble chamber and t r a c k 

s e n s i t i v e t a r g e t are described, together with a b r i e f d e s c r i p ­

t i o n of the beamline. Chapters 3 and 4 d e s c r i b e the f i l m 

a n a l y s i s c hain adopted to provide the data d i s c u s s e d i n 

l a t e r Chapters. Chapter 4 a l s o shows the s e l e c t i o n s made on 

the data to provide a c l e a n e r sample. 

I n Chapter 5 ,an a n a l y s i s i s shown using the missing 

Ao f i t and the channel branching 

r a t i o to A V 0 shown as a fu n c t i o n of momentum. I n Chapter 6 

a method of maximum l i k e l i h o o d i s used,to f i n d the production 

angular d i s t r i b u t i o n s of the Air* and ^V°channels as a 

func t i o n of momentum. -.'"J.-
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Feynman_Diagrams of the s and t channels 
for K~p i n t e r a c t i o n s 
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Chapter 7 shows these derived angular d i s t r i b u t i o n s 

compared d i r e c t l y with those obtained from ATT°and £ V a 

A0 

constrained f i t s u s ing the A + one seen gamma ray events and 

Chapter 8 presents the concl u s i o n s of these analyses i n 

a short f i n a l chapter. 

Appendices are attached with f u l l e r d e r i v a t i o n s of 

some of. the r e l a t i o n s h i p s used i n the t e x t . 

The r e s t of t h i s chapter g i v e s some of the background 

to what i s known about the low momentum K~~p i n t e r a c t i o n s . 

1.1 SURVEY OF LOW MOMENTUM K~p INTERACTIONS 

At low momentum the K~"p system can be used to form 

an intermediate Y* i n the s-channel as opposed to the 

t-channel (see f i g 1 .1) . However these low momentum K beams 

present d i f f i c u l t i e s and these are described i n the 

following chapters. 

Below Mev/c there have been two high s t a t i s t i c s 

experiments studying K~p i n t e r a c t i o n s r e f s 1.1 and 1.2 and 

a lower s t a t i s t i c s experiment a t zero momentum r e f 1.3 . 

Thi s region i s dominated by the A (1520) which decays 

predominately i n t o NIC and £TT° • Other Y* resonances have 

been claimed i n t h i s region notably the £ ( l 4 8 o ) r e f l.h, 

however the evidence f o r these i s somewhat slender. 

A Y* resonance has a p a r t i c u l a r i s o s p i n ( 0 ( A ) , 1 ( £ ) ) 

most f i n a l s t a t e channels are a s u p e r p o s i t i o n of these 

e.g. 

i V " i s { 1 7 3 [ I - 0> + JITS. [ I = 1 > + J l / 6 [ I - 2 > 

The 1 = 2 s t a t e cannot be present s i n c e the i n i t i a l s t a t e 



K~"p can only have I • 0 or 1 ( I R - I * l / 2 ) , but any 

resonance Y* s t r u c t u r e has to be unfolded from the super­

p o s i t i o n of the two i s o s p i n s t a t e s 0 and 1. The n e u t r a l 

f i n a l s t a t e s / I T 0 and £ir* are pure i s o s p i n 1 = 1 and 1 = 0 

s t a t e s r e s p e c t i v e l y and o f f e r c l e a n e r channels to explore 

the e x c i t a t i o n of Y* resonances. However kinematic overlap 

(see Chapter 5) presents a d i f f i c u l t problem of sepa r a t i n g 

these channels. Other workers have reso l v e d them s t a t i s t i c a l l y 

(as i n Chapters 5 and 6 )• 

1.2 THE TRACK SENSITIVE TARGET CONCEPT 

The concept of the t r a c k s e n s i t i v e t a r g e t i s to de t e c t 

gamma rays, so th a t a f i t can be made to these channels 

d i r e c t l y . The experimental d e t a i l s are given i n Chapter 2. 

one seen gamma ray 

/lV° • A°» ( * ) 

T h i s g i v e s a 1C f i t to the unseen gamma ray where the 

y mass i s constrained to be t h a t of a IT0 . 

£ V • A°y or*) 

1C f i t again with the combination A + gamma ray mass 

constrained to be that of the z, . 

With one gamma, the should always f i t , i f t h i s i s 

the appropiate channel, the ̂ 4* r° w i l l only f i t i f the gamma 

i s from the £ ° decay to h ° Y . 

A* + two seen gamma rays 
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A°TT% A** » 
T h i s i s now a 4C f i t the gamma + gamma combination 

forming a TT°. 

£ V * A*yy (*) 
T h i s g i v e s a 1C f i t to both : 

a) one gamma combined with the A B constrained to give a 

and the other gamma combined with an unseen gamma co n s t r a i n e d 

to give a 

b) both gammas cons t r a i n e d to give a TT° , with the missing 
Ao ^ o 

0 .._ _ to give a «- . 
At l e a s t two gammas are needed to ensure a f i t channel. 

I n t h i s t h e s i s , t h e r e were only enough s t a t i s t i c s to use the 

A ° + one gamma ray events (see Chapter 7), hence suppressing 

the s t a t i s t i c s of the £.V° channel with r e s p e c t to the A T ° 

channel. 
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CHAPTER TWO 

I n t h i s chapter,the b a s i c bubble chamber operation 

i s o u tlined, and t h i s i s followed by a d e s c r i p t i o n of the 

t r a c k s e n s i t i v e t a r g e t , i t s s p e c i f i c a t i o n f o r t h i s experiment 

and the va r i o u s m o d i f i c a t i o n s f o r low momentum beams, together 

with a b r i e f d e s c r i p t i o n of the beamline i t s e l f . 

2.1 THE CHAMBER 

Figur e 2.1 shows the plan view of the B r i t i s h National 

Hydrogen Bubble Chamber with i t s surrounding magnet. I t s 

volume i s 150 x 45 x 50 cms. The chamber i s photographed 

by three cameras p o s i t i o n e d 1.4 metres away i n the c o n f i g u r a t ­

ion of an i s o s c e l e s t r i a n g l e , which has a base (=height) of 

480 + 0 . 1 mm. The observable volume i s 300 l i t r e s . T h i s b a s i c 

chamber was modified to accept the t r a c k s e n s i t i v e t a r g e t 

which forms the b a s i s of t h i s experiment. These m o d i f i c a t i o n s 

only e f f e c t the normal operation of the bubble chamber i n a 

minor way and w i l l be described i n the next s e c t i o n . 

The operation of the bubble chamber i s complex i n d e t a i l , 

but i t s p r i n c i p l e of operation i s as fo l l o w s . 

The proton synchrotron, NIMROD, g i v e s a timing pulse 

30 ms before the beam a r r i v e s ; t h i s p u l s e i s delayed, to 

allow f o r the time of f l i g h t of the K~~ beam and used to 

t r i g g e r v a r i o u s p i e c e s of equipment. 

The expansion c y c l e i s i n i t i a t e d a t about 15 ms a f t e r 

the timing pulse. The s t a t i c p r e s s u r e Ps of the l i q u i d i n the 

chamber, which i s higher than the vapour pressure Pv, i s 

decreased r a p i d l y . (Ps i n t h i s experiment was 117-4 p s i a and 
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Pv was 76.O p s i a ) . 

Ps f a l l s below Pv and the l i q u i d i s now i n i t s s e n s i t i v e 

s t a t e , when charged p a r t i c l e s w i l l form t r a c k s of bubbles. 

These bubbles form around the ions created i n the superheated 

l i q u i d by the passage of charged p a r t i c l e s . 

Ps continues to f a l l f o r a f u r t h e r 5 ms and the bubbles 

formedj are allowed to grow f o r 1 to 2 ms before they are 

photographed using e l e c t r o n i c f l a s h tubes. The pressure Ps 

i s then reapp l i e d , which c o l l a p s e s the bubbles and the chamber 

i s ready f o r the next c y c l e . 

The f a c t o r s which are c r i t i c a l to the c o r r e c t operation 

of the system i n c l u d e : -

a) I f the expansion i s not f a s t enough, the l i q u i d w i l l b o i l 

o f f the v a r i o u s s u r f a c e s r a i s i n g the p r e s s u r e above Pv again, 

r e s u l t i n g i n the s e n s i t i v e region not being reached. 

b) I f the r e a p p l i c a t i o n of Ps i s too slow, l a r g e q u a n t i t i e s 

of the l i q u i d w i l l have been b o i l e d o f f with r e s u l t of even 

slower recompression as l a r g e amounts of vapour have to be 

l i q u i f i e d again. 

c) I f the f l a s h tubes are f i r e d too soon the r e s u l t a n t p i c t u r e 

w i l l have l o s t t r a c k s due to i n s u f f i c i e n t bubble growth and 

t r a c k s due to low momentum p a r t i c l e s w i l l l a c k enough bubbles 

per centimetre to produce r e l i a b l e i o n i s a t i o n measurements. 

A t y p i c a l pressure-time curve i s shown i n f i g 2 .2 . 

The apparent s i z e of the bubbles, determined from t h e i r 

images i s about 250 microns i n the chamber. T h i s l a r g e s i z e 

i s due to the small apertures of the cameras, t h i s produces a 

d i f f r a c t i o n p a t t e r n (the A i r y d i s k ) which i s the image on the 
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photograph. The small apertures are required to ensure 
adequate focussing over the whole depth of the chamber. 

2.2 THE TRACK SENSITIVE TARGET 
The hydrogen bubble chamber i s one of the most powerful 

tools available to the high energy p h y s i c i s t . I t s main 
weakness i s the long conversion length for gamma rays into 
electron-positron pairs(*12. 5 metres). Bubble chamber 
experiments have been performed with chambers f i l l e d with 
heavy l i q u i d s e.g. propane and freon with conversion lengths 
of 1.4 m and .14 m respectively, however the advantage of 

• 

having a pure proton target for primary interactions i s l o s t . 
To overcome t h i s problem fthe track s e n s i t i v e target 

(T.S.T.) was developed. The system i s shown schematically i n 
f i g 2.3 and i n more d e t a i l i n f i g 2.4. 

The T.S.T. i s , i n essence, two bubble chambers one inside 
the other and operating simultaneously. The operating temper­
atures and pressures of the chamber are chosen to make the 
hydrogen i n the target volume and the mixture, i n the outer 
simultaneously s e n s i t i v e . I t was because of the di f f e r e n t 
temperatures of the two regions that a change i n the normal 
operation of the bubble chamber had to be made, separate 
cooling loops had to be introduced to maintain the mixture 
and the hydrogen target at t h e i r optimum operating temperature 
(found e m p i r i c a l l y ) . No separate expansion mechanism was 
provided for the target. The necessary expansion was achieved 
by a V$> change i n the volume of the target, caused by pressure 
variations i n the mixture being transmitted by the f l e x i b l e 
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Perspex walls. The amount of wall deflection required to 
achieve the volume change, was 500 microns. 

The mixture for t h i s experiment was 78$ Neon 22$ 
Hydrogen by molecular weight. The conversion length for t h i s 
mixture was about 0.40 m. This was not as good as one would 
have liked, but experimental conditions did not allow higher 
concentrations of Neon. As outlined i n Chapter 1, t h i s i s 
es s e n t i a l l y aA/£ experiment and the target dimensions have 
to be commensurate with the decay length of the A at t h i s 
momentum i . e . of the order of 10 cms. The target was eventually 
b u i l t with internal dimensions 135 x 33 x 7.5 cms (approx). 
This allows a large section of solid angle for gamma ray 
detection and a reasonable volume for primary interactions 
and short-lived secondaries, to be v i s i b l e i n the hydrogen 
target. 

The optimum operating conditions were found by t r i a l and 
o 

error and eventually the temperatures were set at 29 .5 K for 
o 

the hydrogen target and 29 .8 K for the hydrogen-neon mixture. 
This produced fine tracks i n the hydrogen and reasonable 

but denser tracks i n the mixture. The denser tracks i n Ne/H 
mixture are due to the higher ionisation loss of p a r t i c l e s 
i n these parts of the chamber. 

2 .3 BEAM ENTRY INTO THE CHAMBER 
This experiment i s investigating the low momentum region 

from 0 - 500 Mev/c K~" interactions. At these low momenta the 
K~~ i n the beam would decay over the length of the beamline 
to the bubble chamber. To overcome t h i s problem, the beam was 
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transported at higher momenta (about 700 Mev/c) and before 
the kaons entered the hydrogen target, they were slowed by 
ionlsation loss i n a 5° cm aluminium degrader. However, even 
with 700 Mev/c kaons, there i s a problem with the bubble 
chamber main magnet. The fringe f i e l d at the beam entry port 
(see f i g 2.1), i s large enough to deflect these kaons away 

a 
from the chamber. In t h i s region,tcorrection magnet had to be 
inserted to counteract t h i s effect. I t was positioned to 
allow the incoming kaons to be deflected upwards as the main 
magnet deflected them downwards. The f i e l d of th i s magnet 
was adjusted u n t i l the p a r t i c l e s were t r a v e l l i n g through the 
degrader and into the chamber. 

The side effects of the degrader weres-
a) a spread of momentum, which was not too large (A p * 50 

Mev/c), but i t does mean that the beam momentum i s not too 
well-known; 
b) a l o t of neutral p a r t i c l e s were produced i n the degrader -
decaying or interacting i n the chamber - giving a l o t of 
background. However t h i s did not prove serious i n practice 
and i t was found that beam contamination was of the order of 
10%, mostly muons and pions. 

2.4 THE BEAMLINE 
The K19 beamline at the Rutherford laboratory, was used 

for t h i s experiment, a schematic diagram i s given i n f i g 2 .5. 

The 7 Gev/c protons from the NIMROD proton synchrotron, struck 
a copper target i n which various interactions produced kaons 
and other p a r t i c l e s ; these include pions and muons. The 
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11 
number of protons per pulse was of the order of 6 xlO , 
producing on average about 30 kaons at the front of the 
degrader i n the chamber, and about 10 entering the target. 

The secondary emission chamber (S.E.C. i n f i g 2 . 5 ) gave 
a c l e a r idea how well the proton beam was h i t t i n g the target 
by counting backward-going p a r t i c l e s . This had the advantage 
of checking targetting but did not reduce the beam intensity. 

The mixed beam of kaons, pions, muons etc., passed 
through a horizontal collimator into the f i r s t of two quad-
rupoles, the f i r s t focuses i n the horizontal plane, the next 
i n the v e r t i c a l plane. 

The beam was now comparatively narrow i n the horizontal 
direction and mildly focussed i n the v e r t i c a l plane s u f f i c i e n t 
at l e a s t to enter the aperture of the f i r s t bending magnet. 
(M119 on f i g 2 . 5 ) This i s the f i r s t stage of momentum s e l e c t - 1 
ion. Selection of momenta was achieved by the current setting 
of the f i r s t bending magnet and also the horizontal collimator 
CH2. Some momentum selection was also achieved by adjusting 
the quadrupoles, only the values around the central momenta 
were focussed on-to CH2. This momentum bite cannot be too 
small, otherwise there would be sizeable number of p a r t i c l e s 
i n the beam for further separation. 

The beam was now ready for mass separation. This was 
done with e l e c t r o s t a t i c separators (S108 and S101 on f i g 2 . 5 ) . 

E l e c t r o s t a t i c separators only work e f f e c t i v e l y below 5 Gev/c, 
as for much greater momenta, the velo c i t y difference between 
different types of p a r t i c l e s i s i n s u f f i c i e n t . The e l e c t r i c 
f i e l d was v e r t i c a l to the beam direction and the deflection 
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that the p a r t i c l e s experience, depends on th e i r velocity. As 
by t h i s time a l l p a r t i c l e s have approximately the same momenta, 
the r e s u l t of the e l e c t r o s t a t i c separator was a mass separ­
ation. A p a r t i c l e mass bite was selected by the collimator 
CV2. 

The above formed the basic units of the beamline. 
Subsequent stages involved further mass separation and j u s t 
before entering the bubble chamber magnets, a further momentum 
selection (MHO), as shown i n f i g 2 . 5 . 

2.5 THE EXPOSURE SUMMARY 
The momentum range i n the chamber covered i n the whole 

experiment was about 0 - 500 Mev/c. I n the exposure from which 
the present data i s taken,some 433,000 pictures were obtained. 
This film was distributed equally between the four collabor­
ating laboratories; Birmingham - Durham - University College, 
London. Each laboratory had film covering the whole momentum 
rang?. 

The data presented i n t h i s thesis i s the t o t a l currently 
available at Durham and represents 20$ of the t o t a l film that 
was exposed. A summary of the run i s given i n table 2.1 
TABLE 2.1 »• 
BLOCK ROLL NOS. 1000s APPROX NO. APPROX.ENTRY *APPROX.EXIT 
NO. FRAMES K/FRAME MOMENTUM MOMENTUM 

1 1-105 2 2 9 5 260 0 

2 106-126 5*+ 8 . 4 3 1 5 2 3 5 

3 1 2 7 - 1 ^ 7 ^ 5 10.1 370 320 

4 1 4 8 - 1 6 8 5<* 12.3 405 370 

5 169-188 5 1 8 . 8 445 4 1 0 
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CHAPTER THREE 
In t h i s and the following chapter, the film analysis 

chain adopted to provide the data discussed l a t e r , i s out­
lined. In a l l bubble chamber experiments, there has been 
established a well-defined structure of f i l m analysis. This 
consists of scanning, measuring, geometric reconstruction 
and kinematic f i t t i n g to physical hypotheses. The d e t a i l s of 
each process are experiment dependent, although standard 
computer programs e x i s t to handle the reconstruction and 
kinematic f i t t i n g of events. I n the present analysis,the 
RHEL programs, GEOMETRY and KINEMATICS were used. The use of 
a T.S.T. introduced special requirements i n the analysis 
chain and these are discussed i n the next chapter. Since 
Durhanfs group approach i s to extract data on a l l physical 
channels of i n t e r e s t i n t h i s experiment, the account i n these 
two chapters i s not r e s t r i c t e d to those channels considered 
i n d e t a i l l a t e r . 

3.1 SCANNING 
Scanning i s the f i r s t step of film analysis. I t involves 

looking at the f i l m for various configurations of tracks 
which are c h a r a c t e r i s t i c of different types of physical 
channels. An i n i t i a l step of t h i s process i s f i r s t deciding 
what to look for. In t h i s T.S.T. experiment gamma rays can 
be detected and therefore any channels which can produce 
gamma rays are e s p e c i a l l y important. 

At these momenta (0-500 Mev/c)jthere are s i x two body 
interactions which can be investigated, these are: 
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K p •» K p e l a s t i c scattering 
o 

•» K n charge exchange (90 Mev/c) 

• a v o 

(the number i n () i s the threshold K~~ momentum) 
In addition there are the three body f i n a l states: 

K~ p • £c/A0Tr*rr -

3.1.1 KAON DECAYS 
As well as interacting • the K"~ decays, mostly intoJ*^~*j*. 

and ir~"Tr 0but with a 5*59$ branching r a t i o into the tau decay 
— — ->-

mode, "T IT TT . This decay has the d i s t i n c t i v e signature of 
three plon tracks at the primary vertex, (ionisation of the 
pion tracks distinguish the tau decay from other three prong 
decays.) This makes i t easy to see i n scanning. 

I f one of the tracks for the tau-decay mode was l e s s 
than 1 cm long and dark, the event was noted as probably 
being an interaction with an isolated neon atom (but was 
s t i l l subsequently measured). Throughout t h i s experiment, 
there was a small seepage of neon into the target and hydrogen 
into the outer chamber. Events with four or more secondaries 
were a l l recorded as neon events. From these events i t was 
possible to estimate the neon contamination of the target. 
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The number of neon events, of the order of 1$, indicated 
that the contamination was low and that neon i n t e r a c t i o n s 
formed a very small background to the experiment. 

3.1.2 ELASTIC SCATTERING 
E l a s t i c s c a t t e r s are copiously produced i n t h i s momentum 

region and to avoid flooding the measuring system (the next 
stage of the process) with too many events to be handled i n 
a reasonable time, e l a s t i c s c a t t e r s were only scanned for i n 
a subset of the r o l l s of film, giving reasonable s t a t i s t i c s . 
(Approximately 1000 e l a s t i c s c a t t e r s were measured i n each 
momentum block.) 

3.1.3 CHARGED SIGMAS 
K~ p •> £*tr~ 

Followed by * p IT* TT% two gammas 

* n-Tr* 

£ " + n T T -

The charged sigma production can be divided into two categories ; 

those without the p o s s i b i l i t y of a gamma ray and those with. 
I n the l a t t e r , the only category i s sigma+ production, i n 
which the sigma+ subsequently decays into a proton and a p i -
zero, the pi-zero i n turn decays into two gamma rays. 

The length of the sigma before decaying i s of the order 
of 5 mm. These events are very d i s t i n c t i v e . The only s i g n i f i c a n t 
decay mode for the sigma- i s to p i - and a neutron. The pion 
track i s u s u a l l y l i g h t ( i n hydrogen) and long. I t may pass 
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into the neon-hydrogen mixture, where, as explained i n 
Chapter 2, i t w i l l form a darker track: S i m i l i a r l y with the 
sigma+ decaying into pi+ and a neutron. 

With a sigma+ decaying into a proton and a pi-zero, 
there are two possible signatures. The decay track of the 
sigmat,(the proton),is now darkish i n the hydrogen ( and i f 
i t gets into the neon-hydrogen mixture- black) and i s usually 
only a few centimetres long. The second possible signature 
i s an associated gamma ray. This gamma ray i n the form of an 
electron-positron pair, i s from the decay of the pi-zero. 

-16 
As the pi-zero decays very quickly (0.84 x 10 sees), the 
pi-zero decay vertex and the sigma+ decay vertex, are 
v i r t u a l l y i d e n t i c a l l y located i n the bubble chamber. 

3.1.4 ZERO PRONG INTERACTIONS 
o 

These are interactions with an associated V . 
o o 

K p + K n K •» TT+tt-"" 

+ A* A* •> f "tr~ IT"0* two gammas 

* £0ir° £ e •» A° + one gamma 
One of the f i r s t problems to come to li g h t with the 

zero prong interactions, was the large number of Kf~ tracks 
stopping i n the Perspex walls of the T.S.T., with or without 

o 
an associated V . In l a t e r analysis, a cut was made on the 
data to eliminate possible Perspex interactions producing 
o o 

V s i n the hydrogen. (V s i n the hydrogen-neon mixture were 
o 

ignored.) To eliminate as many unassoclated V s as possible, 
o 

the V had to l i e within a c i r c l e , r a d i u s approximately 10 cms 
of the zero prong. As explained i n Chapter 1, t h i s experiment 
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i s primarily aimed at the A / £ ambiguity above, the only 
, o 

difference being the extra gamma ray from the £ decay. A 
o 

careful scan was made for gamma rays associated with V events. 
Figs 3.2 to 3 .5 show computer displays of various 

categories of actual measured events. 

3 .1 .5 SCANNING PROCEDURE 
A f i d u c i a l area was defined for the film from camera 

2. Each hydrogen track was examined u n t i l i t :-
a) l e f t the hydrogen target (entered the Perspex walls 

and maybe subsequently the neon-hydrogen mixture) 
b) l e f t the f i d u c i a l area 
c) interacted or decayed. 

For (a) and (b) the track was ignored. For (c) the flow 
chart f i g 3.1 was followed, resulting i n interactions and 
tau decay modes being recorded. 

3.2 SCANNING EFFICIENCIES 
To evaluate scan efficiencies the fi l m was double-

scanned. (Some was triple-scanned). By comparison of the 
number of events which are common to both f i r s t and second 
scans (1/2), the number seen i n the f i r s t scan only ( l t) 
and the second scan only (/ 2), the o v e r a l l e f f i c i e n c y of 
scanning can be found: 

I f p a probability of observing an event on scan 1 
1 

p => probability of observing an event on scan 2 
2 

N • actual no. of events on the fi l m 
0 

N a no. of events seen only on scan 1 
1 
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N = 
2 

no. of events seen only on scan 2 
N no. of events seen on both scans 
12 

then 
N = N p q 
1 0 1 2 

N =» N p q 
2 0 2 1 

N = N p p 
12 0 1 2 

where q - 1 - p and the scans are taken to be Independent. 
i i 

This gives 

1 12 
N - (N + N )(N + N ) 
0 1 12 2 12 -j 

12 
The t o t a l e f f i c i e n c y of the two scans combined i s 

E a N + N + N 
0 1 2 12 

0 

Given i n table 3.1 are various p r o b a b i l i t i e s and over­
a l l scanning e f f i c i e n c i e s for various c l a s s e s of events, on 
a sample from a l l momentum blocks. I t must be emphasized that 
these efficiencies do not represent the t o t a l losses for any 
channel but j u s t give an indication of the losses due to 
scanning. 

p = 
1 

N 
12 

W + N 
2 

P = 
2 

N 
12 
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TABLE 3.1 ( r e f 5.1) 

CLASS OF EVENT NO. OF NO. OF NO. OF P P E 

1/2 
1 2 0 

1/2 i 2 1 t 
SIGMAS 642 158 153 .81 .80 .96 

O 
V 510 183 178 .74 .74 .93 

TAU DECAYS 264 58 41 .87 .82 .97 

3.3 MEASURING CONSIDERATIONS 

The programs,(described i n the next chapter), which 

process the measured events, r e c o n s t r u c t them from the f i l m 

plane of the camera and transform them i n t o chamber space. 

The standard measuring system used i n Durham,employs image 

plane d i g i t i z e r s , g i v i n g an accuracy of about 100 microns 

i n the plane of the projected image of the f i l m on the t a b l e . 

With a m a g n i f i c a t i o n f a c t o r of about 15, t h i s transforms to 

approximately 7 microns i n the f i l m plane. 

The transformation from image to f i l m plane can be 

done a n a l y t i c a l l y , and to demonstrate the number of c o n s i d e r ­

a t i o n s involved, ( t h i s i s d e t a i l e d below}, i n p r a c t i c e a poly­

nomial of order 3 was used. 

To transform the image produced by the p r o j e c t o r back 

to the f i l m plane, r e q u i r e s a v e r y g e n e r a l approach to allow 

f o r a l l kinds of r o t a t i o n s and d i s t o r t i o n s of the image due 

to l e n s a b e r r a t i o n s and the angled p o s i t i o n s of the p r o j e c t o r s . 

S t a r t i n g i n the image plane, the following transform­

a t i o n s are needed; 

a) Change of o r i g i n of the co-ordinate system i n the x,y 

plane (image plane) 
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= R ( © ) ' 

y* i 

X*= X - X 
O 

y*= y - y 
b) a r o t a t i o n through the angle & to a l i g n co-ordinate 

systems (see f i g 3.6a) 
c 

x - x 
c 

y - y 
c ) a r o t a t i o n to allow f o r the p r o j e c t o r t i l t , see f i g 5.6b, 

With the p r o j e c t i o n system used i n t h i s experiment, a l l 

t i l t s were i n the y,z plane. T h i s means i n the p r o j e c t e d 

image.plane y i s replaced by 

y**= y cos \ 

I n general, i f there i s a t i l t i n the x,z plane of L, then 

the expression becomes: 
1 0 0 \ 
0 cos\ s i n \ 

\0 -sinX c o s \ 

X - X 
o 

y - y 
z / 

R ( 0 ) / 1 0 0\ c o s ( L ) 0 s i n ( L ) \ 

0 1 0 
- s i n ( L ) 0 c o s ( L ) / \ 

The z dependence i s now included because the next transform­

a t i o n i s the m a g n i f i c a t i o n M matrix, which i s z dependent. 

The next D transformation i s to allow f o r v a r i o u s l e n s 

d i s t o r t i o n s g i v i n g : 
v o 

I x*\ = R ( 0 ).D.M(x,y,z).R(X ).R(L) X - x 1 

c 
y* y - y 
0 / \ z 

There i s now one f i n a l r o t a t i o n T and t r a n s l a t i o n , to 

get the f i l m plane transformed to the co-ordinate system of 

the f i d u c i a l marks of the chamber, recorded on the f i l m , 

g i v i n g the o v e r a l l expression a s : 

/ 
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/ x**\* R ( T ) . R(© ).D.M(x,y,z).R(X ).R(L) 

0 0 

T h i s produces i n genera l a polynomial i n each co-ord­

i n a t e of the type: 
2 2 

x**= K + Ax + By + Cx + Dy + Exy + higher order terms, 

with K, A,B, C,D, E, e t c . as constants having d i f f e r e n t v a lues 

f o r each co-ordinate. The constants were determined^ using 

a l e a s t squares f i t to measurements of the images of 20 

f i d u c i a l s on each view. 

To ensure t h a t t h i s transformation was constant, i . e . 

the o n - l i n e system was measuring the co-ordinate system 

(defined by f i d u c i a l marks on the s u r f a c e s i n the chamber) 

c o r r e c t l y , the whole p r o j e c t o r system had to be r i g i d l y 

f i x e d and t e s t s b u i l t i n t o the system to check that the 

p r o j e c t o r s had not moved. T h i s was achieved by measuring the 

d i s t a n c e s between v a r i o u s f i d u c i a l marks on each view. I f 

these d i s t a n c e s were not w i t h i n t o l e r a n c e , the system was 

stopped u n t i l the p r o j e c t o r s were back i n l i n e again. 

The measurements were stored on a d i s k of an 11J0 IBM 

computer. These were then t r a n s f e r r e d to the main pro c e s s i n g 

chain. The transformation of these measurements i n t o a form 

acceptable to the main pro c e s s i n g programs ( i . e . the f i l m 

plane co-ordinates of each point measured) i s achieved by 

programs c a l l e d REAP and TRANS. I t i s here that the t h i r d 

order polynomial transformation i s used on the data. The 

main programs of the pro c e s s i n g c h a i n are described i n the 

next chapter. 
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CHAPTER FOUR 

I n t h i s chapter the c h a i n of processing programs i s 

described b r i e f l y and the changes required by the T. S.T., 

and the gamma ray measurements d i s c u s s e d . T h i s i s followed 

by a d i s c u s s i o n of event s e l e c t i o n f o r subsequent a n a l y s i s . 

4.1 THE PROCESSING PROGRAMS 

Having measured the events,the next step was geometrical 

r e c o n s t r u c t i o n ; t h i s was achieved with a standard RHEL 

program c a l l e d GEOMETRY. For a f u l l d e s c r i p t i o n of t h i s 

program see r e f 4.1. The mo d i f i c a t i o n s due to the T.S.T. 

c o n f i g u r a t i o n had to allow f o r the three media i n the chamber 

(hydrogen, Perspex and the hydrogen-neon mixture) and the 

bremsstrahlung r a d i a t i o n of the e l e c t r o n s i n the hydrogen-

neon mixture. 

The three media i n the chamber were c o r r e c t e d f o r by 

o p t i c a l c a l i b r a t i o n programs (MONGOOSE r e f 4.2) s u i t a b l y 

modified and three separate range-momenturn t a b l e s were 

constructed to allow f o r energy l o s s (swimming) of p a r t i c l e s 

along t h e i r t r a c k s through a l l three media. To i n d i c a t e 

t h a t a t r a c k was being measured i n t o the hydrogen-neon mixture 

the l a s t point i n the hydrogen was measured twice. (Hence the 

f i g u r e 2 on the computer d i s p l a y s of events shown i n chapter 

3 ) . Apart from t h i s the two s e c t i o n s of the t r a c k were 

measured i n the normal way. 

Some mod i f i c a t i o n s were n e c e s s a r y f o r u t i l i s i n g 

measurements on e l e c t r o n - p o s i t r o n p a i r s ( i . e . gamma r a y s ) . 

These m o d i f i c a t i o n s were i n l i n e with those normally used i n 
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heavy l i q u i d bubble chambers. I n geometric r e c o n s t r u c t i o n . , 

use was made of the slowing down c o r r e c t i o n s f o r p a r t i c l e s . 

For hadrons, t h i s allowed f o r the i o n i s a t i o n l o s s . For e l e c t ­

rons, bremsstrahlung i s an important e x t r a reason fo r energy 

l o s s . 

As a p r e l i m i n a r y to more elaborate r e c o n s t r u c t i o n 

methods f o r gamma ray momentum and angles, a gamma checking 

procedure was incorporated i n t o the program. T h i s was i n i t i a l l y 

e s t a b l i s h e d to determine which vertex the gamma ray pointed 

to, but f i n a l l y included other checks. 

F i r s t the e+ e- t r a c k s were swum to^the v e r t e x ( i . e . 

reconstructed t a k i n g i n t o account energy l o s s y .and a check 

was made on the c o m p a t i b i l i t y of dip and azimuth angles of 

the two t r a c k s - here some e+ e- p a i r s f a i l e d and the gamma . 

ray was deleted from the event record. 

Secondly the e+ e- momentum v e c t o r s were v e c t o r i a l l y 

added to define a gamma d i r e c t i o n and momentum. T h i s d i r e c t ­

ion was then compared with t h a t obtained from the l i n e 

J o i n i n g the production and m a t e r i a l i s a t i o n v e r t i c e s of the 

gamma. I n the case of two p o s s i b l e production points ( the 

c o r r e c t one was taken as th a t f o r which the two d i r e c t i o n s 

agreed b e s t . The q u a n t i t y X(=sum of d i f f e r e n c e s of angles 

squared,divided by sum: of d i f f e r e n c e s of e r r o r s squared -

a pseudo-chis squared) was used as a q u a n t i t a t i v e measure 

of agreement and i t was e m p i r i c a l l y decided t h a t i f X > 20.0, 

the measured gamma ray was u n l i k e l y to be r e a l l y a s s o c i a t e d 

with the presumed o r i g i n . The f i n a l d i r e c t i o n of the gamma 

was taken as a weighted mean of the two above estimates. 
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For the kinematic f i t t i n g of hypotheses to p h y s i c a l 

c h a n n e l s j t h e RHEL program KINEMATICS was used. T h i s i s 

described i n r e f s 4.3 and k.k . T h i s program did not r e q u i r e 

extensive m o d i f i c a t i o n s due to the T.S.T. arrangement 

because GEOMETRY provided a l l momenta and angles i n the 

hydrogen t a r g e t f o r the t r a c k s . ( E x c e p t f o r e l e c t r o n - p o s i t r o n 

p a i r s , where i t provided the gamma ray t r a c k , see above). 

Therefore the t r a c k s can be considered to be those of a 

conventional hydrogen bubble chamber experiment. 

4.2 BOOKEEPING AND DATA SUMMARY TAPES 

The bookeeping f o r t h i s experiment was achieved by a 

system c a l l e d MASTERLIST. T h i s c o n s i s t s of a l a r g e s e t of 

f i l e s c o n taining an entry f o r each event found i n scanning. 

Each e n t r y c o n s i s t s of 20 p a r t s g i v i n g frame and number of 

event i n the frame, a s t a t u s word i n d i c a t i n g what stage 

of p r o c e s s i n g had been reached with t h i s event and the f i t t e d 

hypotheses* T h i s e n t r y i s a summary of the event and was used 

to c o n t r o l the w r i t i n g of the Data Summary Tape.(see below) 

Having scanned, measured, r e c o n s t r u c t e d and f i t t e d the 

events to some p h y s i c a l channels, the next stage was to look 

a t them again and r e c o n s i d e r them i n the l i g h t of the 

measurements and the p h y s i c a l channels, i f any, t h a t have 

been f i t t e d . T h i s stage i s known as Judging. Only c e r t a i n 

c l a s s e s of events were judged, others were considered accept-

able, i f they had f i t t e d only one p h y s i c a l channel and i t was 

c l e a r t h a t no f u r t h e r information would be gained. An example 

of t h i s category were the unambigious K~p-».£ rf* i n t e r a c t i o n s . 



A l l V events were however judged, i r r e s p e c t i v e o f t h e i r 
s tatus a f t e r the f i r s t measurement. 

During judging, a f u r t h e r d e t a i l e d scan was made f o r 
gamma rays i n connection w i t h those events which f i t t e d the 
possible gamma ray producing channels (see se c t i o n 3.1). 
Any events found a t t h i s stage w i t h associated gamma rays , 
were put back i n t o the remeasure chain. Likewise a l l events 
considered t o be improperly f i t t e d and a l l events which f a i l 
t o r e c o n s t r u c t , were also put i n t o t h i s chain. 

Those events considered t o be s a t i s f a c t o r y were given 
a status word on the MASTERLIST which sets the event as 
completely processed. I n order t o f a c i l i t a t e the analysis o f 
the events i n terms o f physics, i t was necessary t o form a 
Data Summary Tape (D.S.T.). The c o n t r o l o f t h i s process was 
done by MASTERLIST, which on l y allowed the accepted (by 
judging) f i t t e d hypotheses f o r each event t o be w r i t t e n on 
t o the D.S.Ti The data used i n t h i s t h e s i s was from the f i r s t 
measure. As can be seen i n Chapter 7 there are very low 
s t a t i s t i c s i n A°+ ̂  channels. This i s p a r t l y due t o the large 
f r a c t i o n of associated gamma events i n the remeasure chain. 

The v a r i a b l e l e n g t h record f o r each event on the D.S.T. 
contains: the x, y, z co-ordinates f o r a l l v e r t i c e s , u n f i t t e d 
(GEOMETRY) and f i t t e d (KINEMATICS) values o f the momentum, 
dip angle, and azimuth angle f o r each t r a c k , together w i t h 
each t r a c k l e n g t h , and a t the end o f each record a summary 
of the i n f o r m a t i o n on MASTERLIST. (see Appendix f o r sample 
D.S.T. record) The D.S.T. records were processed using a 
program which incorporated HYBRID (see r e f 4.5 f o r flow c h a r t 
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and HYBRID f a c i l i t i e s ) . 
The basic s t r u c t u r e of HYBRID was extended and in c o r p o r ­

ated features f o r easy handling o f the D.S.T. record o u t l i n e d 
above. The run cards selected up t o 6 hypotheses from 
KINEMATICS f i t t i n g and stored a summary of each i n s p e c i f i e d 
l o c a t i o n s . S i m i l i a r l y p a r t i c u l a r t r a c k s (selected by masscode) 
were s p e c i f i e d and loaded i n t o the HYBRID p-vectors, the 
d e f a u l t was f i t t e d t r a c k v a r i a b l e s , measured v a r i a b l e s were 
loaded, i f subroutine GOBACK was c a l l e d i n the user subroutines. 
I n a d d i t i o n , c e n t r e o f t r a c k or ver t e x q u a n t i t i e s were selected 
by run cards. 

Also incorporated were various subroutines which extended 
the HYBRID f a c i l i t i e s . These included a s t a t i s t i c s package, 
which gave the moments o f a d i s t r i b u t i o n o f v a r i a b l e s , a 
f a c i l i t y f o r concatenation o f D.S.T.1 s w i t h d i f f e r e n t run 
cards f o r each, and the o p t i o n t o produce GRAPHICS (see r e f 4,6) 
p l o t s i n a d d i t i o n t o the normal HYBRID p l o t s . This l a s t 
f a c i l i t y has produced most o f the p l o t s f o r t h i s thesis.-

A l l mlnialsing procedures used subsequently used 
MINUIT (see r e f 4.7). 

4.3 D.S.T. EVENT SELECTION 
A f t e r the events have been w r i t t e n on t o a D.S.T, i t i s 

important t o se l e c t a sample which w i l l be c l e a r o f the more 
obvious biases . The remarks i n t h i s s e c t i o n are confined t o 
the K p+ A + n e u t r a l s channels as these are t o be considered 
i n more d e t a i l i n the f o l l o w i n g chapters. The data discussed 
below comes from the kinematic f i t o f the A°, constrained t o 
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have i t s momentum vector p o i n t i n g t o the end o f the K~~ t r a c k 
( p o i n t f i t , normally a 3 c o n s t r a i n t f i t ) . F i g 4.1 shows the 
d i s t r i b u t i o n of momenta o f the K~~ beam t r a c k a t the i n t e r a c t i o n 
v e r t e x f o r a l l K p •» A + n e u t r a l s channels. The t o t a l number 
of events i n t h i s p l o t i s 2000. I t can be seen t h a t there i s 
a very large spike a t zero momentum and s i m i l i a r l y i n f i g 4.2 

.o 
a l a r g e spike close t o zero momentum , the A momentum 
d i s t r i b u t i o n . This i s u n l i k e l y t o occur i n p r a c t i c e because 
a very low momentum A° n as such a low mean f r e e path f o r 
decay t h a t i t w i l l look l i k e a two prong event i n the 
chamber, and t h e r e f o r e would not be i n the datasets under 
discussion. 

The ytf1" f i t p r o b a b i l i t y d i s t r i b u t i o n i s shown i n f i g 4.3 
and the z co-ordinate d i s t r i b u t i o n of the i n t e r a c t i o n v e r t i c e s 
i n f i g 4.4 I n the p r o b a b i l i t y d i s t r i b u t i o n , which should be 
f l a t , there i s a la r g e spike i n the b i n 0.0 t o 0.01, i n d i c ­
a t i n g t h a t events have been included which do not belong t o 
the/\* + n e u t r a l s channels. A p r o b a b i l i t y cut was made a t 0.01. 

The z co-ordinate d i s t r i b u t i o n has la r g e peaks a t the 
extreme ends. These are due t o i n t e r a c t i o n s i n the Perspex 
w a l l s o f the T.S.T.,which as can be seen,copiously produce 
/\ events which have t o be excluded because the t a r g e t i n t h i s 
case i s not pure hydrogen. The ends o f t h i s d i s t r i b u t i o n are 
not sharp due t o e r r o r s of measurements, which i n GEOMETRY 
re c o n s t r u c t i o n produce e r r o r s i n z. The z cut used i n t h i s 
a n a l y s i s was t o take events l y i n g between 19.8$£.z 26.8 cms. 
This e f f e c t i v e l y excludes 0.5 cms of T.S.T. a t each Perspex 
i n t e r f a c e . 
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The r e s u l t s of these cuts are shown i n f i g s 4.5 t o 4.8. 
F i g 4.5 shows t h a t the l a r g e spike a t zero K~ momentum has 
been g r e a t l y decreased and i n f i g 4.6 the very low momentum 
A° s have been removed. The p r o b a b i l i t y d i s t r i b u t i o n , f i g 4.7, 
i s now reasonably f l a t , though there i s s t i l l an excess below 
0.05. The z d i s t r i b u t i o n i s shown i n f i g 4.8. 

Fi g 4.5 s t i l l shows a spike a t zero momentum and a 
subsiduary peak a t 120 Mev/c. Events below 150 Mev/c were 
simulated by a Monte-Carlo program generating Gaussian 
d i s t r i b u t i o n s o f momenta a t the centre of t r a c k and these 
produced h i g h l y asymmetric d i s t r i b u t i o n s o f momenta a t the 
ve r t e x , events were e i t h e r a t zero momentum or i n a peak 
around 120 Mev/c. 

Such skew d i s t r i b u t i o n s a t the v e r t e x would lead t o 
non-Gaussian e r r o r s on the missing mass squared which i s 
used i n Chapter 5 and 6, and hence i n v a l i d a t e the analysis 
c a r r i e d out there. Hence the events below 150 Mev/c have 
been excluded from the a n a l y s i s . They are predominately 
due t o i n t e r a c t i o n s o f K~" mesons at r e s t . 

Of the o r i g i n a l 2000 events, I56O had a K~" momentum 
above 15° Mev/c, a f t e r the p r o b a b i l i t y and z cuts, IO57 
events were used i n the subsequent analyses. 

At t h i s low momentum K°/A° ambiguity was mainly 
resolved by judging the events and the remaining ambiguities, 
some 20 events, were l e f t i n the analyses which f o l l o w as 
f\ events. 



c 
.O 
O 

| 26(1 

fa 
a> 
P. 
a ! ieq 

o 
fa 

58 

< MT 0 . 1 5 ©.30 0.-«S 0 .60 0 . 7 5 0.9O 
Gev/c 

I f Momentum di s t r i b u t i o n 
F i g 4-1 

ae4 

e 

•H 

O 

o 
fa a 
a 
4» 

i 
o 
fa 

1 « H 

541 

.V 0 . 1 5 0 . 3 0 0 .45 0 .60 0 . 7 5 0 .90 
Gev/c F 1 S k ' 2 

A Momentum di s t r i b u t i o n 



c 
•H JO 

o 
u a. 

o 
to 
p< 
a 

| 
u o 
u 
fl> 

39 

v 
(JliJJli 

0 . 1 5 0.3C? 0.45 0.63 0.7S 0.90 
Probability 

jftit probability d i s t r i b u t i o n 
F i g 4-3 

a 

to 
a 

tea 

© 
o 
u 
4) 
P. 
aa 
•P 
s 

o 
0) 
iP 

54 

24 

'*uuiuiliuilui!iu it ;ui:liL:iiuiuuu!:!»uiuuijiitiii^iiuui^iiiiuuui 
13.5 L'1.0 22,5 £4.0 25.5 N z (cms) 

M l 2V. 0 
z-coordinate d i s t r i b u t i o n 

F i g 4-4 



u 
0) 
Pi 
CO 
•P 

o 

c 
JO 

> 60 

4? 

EC 

40 

uu 
e.o 

ll̂ lJJllllI'lllll!il[nf]lHllllUlDJJiUiuJ 
0.15 0.3i5 0.63 

MIIIUHIIUIIUUEU. 

K Momentum di s t r i b u t i o n 
with cuts 

0.75, 0.90 Gev/c 

ft 

•1 
i l M l A u i l U l j J ' U i ] ^ 

O.Cl 0. I t 8.30 O.-o 0.60 
>le Momentum di s t r i b u t i o n 
with cuts 

%ev/c Fig 4-6 



2CH 

J 

JlUilMnillMm'ilMHI'MlhtllltlllllllltllllMlllttllllttllllllllllillliiiliitpini^ LLUilU 
0.15 0.30 0.45 0.60 0.75 0.90 

41 

Probability F i g 4-7 
/ f i t probability d i s t r i b u t i o n 
with cut8 

r mm i 
9 83 

m 

1*4 IT 
1 

uuuHa!u!iJuuiiiJiJiun!uruiiiluiL<iuuuij u J uuiii »JJ I JS •. LHIUUIJJILII AW UUL 
ie.0 ai.o aa.5 24.9 .as-. 5 E V . O 

z(cms) 
z-coordinate d i s t r i b u t i o n 
with cuts 



42 

CHAPTER FIVE 
The main aim of t h i s experiment, as described i n 

Chapter l j i s t o separate the A°TT°and £0T"°channels as a f u n c t i o n 
of momentum and determine t h e i r d i f f e r e n t i a l cross-sections. 
As pointed out i n Chapter 3, the AV* and £TTC channels have an 
i d e n t i c a l appearance i n a hydrogen bubble chamber - t h a t 
of a s i n g l e V° p o i n t i n g t o a K~~ t r a c k ending i n the chamber. 
With the T.S.T. there i s the chance o f gamma rays m a t e r i a l ­
i s i n g , which adds i n f o r m a t i o n t o resolve the ambiguity, 
however i f there i s o n l y one gamma ray and i t comes from the 
pi-zero o f the ̂ V°channel a constrained kinematic f i t i s 
not pos s i b l e . This combined w i t h the low s t a t i s t i c s o f the 
/ I V and events a v a i l a b l e a t the present time y does not 

allow f u l l use o f the data from gamma d e t e c t i o n and the 
analyses which f o l l o w ; use o n l y the p o i n t V° f i t s t o ^°events. 
I n Chapter 7,the A V events a v a i l a b l e w i l l be used as a 
consistency check on the r e s u l t s obtained from the two methods 
t h a t are described i n t h i s and the next Chapter. 

One p o s s i b l e s t a r t i n g p o i n t f o r separating the two 
channels w i t h o u t using gamma i n f o r m a t i o n ; was t o accept a l l 
events which k i n e m a t i c a l l y f i t the K~"p*A T channel as 
genuinely belonging t o t h a t channel. However, there i s 
considerable overlap between the kinematic regions belonging 
t o the A0"rr* and channels, leading t o erroneous separation 
of these channels by t h i s method, (see below) As has been done 
i n r e f s 5.1 and 5.2 o n l y the i n f o r m a t i o n from the 3 c o n s t r a i n t 
f i t s o f A°s pointed t o the K~~ t r a c k endings, i s used i n the 
analyses presented i n t h i s and the next Chapter. A maximum 
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l i k e l i h o o d function i d e n t i c a l to that used i n ref 5«2 i s used 
i n Chapter 6, "but i n t h i s Chapter a simpler approach i s 
adopted based on the missing mass squared(tiMSQ) to the ^ . 

5.1 SEPARATING THE /V" AND £.°TT° CHANNELS 
The missing mass squared i s defined as follows: 

. 2 
MMSQ a ( q 1 - q A) 

where q̂ ^ i s the four-vector obtained by adding that of the 
incident K — to that of the target proton, 

A0 

and q i s the four-vector of the A . 
With no measurement errors j the components of the 

spectrum of MMSQ are shown i n f i g 5-1 where the u n i t f o r MMSQ 
i s the mass of the pi-zero squared (m^J. The r e l a t i v e heights 
of the components i n the figure are a r b i t r a r y and are not 
intended to convey any information. 

For the K~~p+A^TT"the missing mass squared i s that of 
the unseen TT° mass squared - which i n units of m̂ .e forms a 
S -function at 1.0. I n the case of the K~p*^Tr^the products 
are A0»Tr° where the combination of ar i t * gives the value of MMSQ. 

- o 

As, i n the rest system of the 1 , the gamma ray d i r e c t i o n 
r e l a t i v e to the TT0forms an isot r o p i c d i s t r i b u t i o n , t h i s 
provides a range of MMSQ i n the form of a f l a t topped d i s t r i b ­
ution, whose l i m i t s are imposed by the centre of mass energy 
which i s available . 

The AV( the radiative i n t e r a c t i o n ) and the /\°Tr*tr*dist-
ributions are included f o r the sake of completeness. As the 
mass of the gamma ray i s zero the MMSQ for the K~p*/^ forms 
a S-function at zero and the K~p-» /\irfr°channel has a lower 
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l i m i t of ̂m-ff* » the upper l i m i t again being given by the 
energy available I n the present analysis, the shape has 
been calculated from three body phase space. Tripp et. a l . 

( r e f 5.3) has shown that t h i s d i s t r i b u t i o n has some small 
deviation from phase space i n t h i s momentum region, but oh the 
present s t a t i s t i c s the eff e c t of t h i s would be neglig i b l e . 

Experimentally the missing mass squared d i s t r i b u t i o n 
i s not i n t h i s idealised form (see f i g 5-2) due to errors of 
measurement on a l l the tracks. These errors approximately 
Gaussian shaped missing mass squared d i s t r i b u t i o n s f o r K~" 
momenta above 150 Mev/c (see Chapter 4). I f the error on the 
missing mass squared (EMMSQ) i s known f o r each event, then 
i t i s possible to convolute t h i s error i n t o the t h e o r e t i c a l 
d i s t r i b u t i o n and, by f i t t i n g to minimise the X*»determine 
the fractions of a l l channels i n the t o t a l iTp* A° +neutrals. 

5.2 ERROR ON THE MISSING MASS SQUARED 
The error EMMSQ on MMSQ i s obtained from the expression 

2 2 2 MMSQ «" mjj + mp ^Ej^nip + mA 

- 2 E K E a - 2 mp EA * 2 % P a 0 0 8 6 

A 0 

where the subscripts p ,K , A denote proton, kaon and A , 

and ra,E,p, 6 are mass,total energy, momentum and angle 
between the vectors p^and p A . 

EMMSQ has to be found i n terms of the errors of measur­
ements and f i t t i n g which are available . The f u l l expressions 
are given i n Appendix A. The re s u l t i s derived from s 
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EMMSQ - ̂  MMSQ E ( lA\)p 2 + ̂MMSQ E ( / f R ) + ̂MMSQ E(tan)fr) 

E ( t /p A)p* + ̂  E ( ^ A ) + E ( t a n \ j 
^ X S s e c 2 > A 

where E ( l / p ) , E ( ^ ) and E(tan\ ) are the errors on reciprocal 
momentum, azimuth angle and tan(dip angle) respectively. 

The errors Efl/pj^) and E ( l / p A ) are at the i n t e r a c t i o n 
vertex of the K"~ and the processing programs give the errors 
at the centre of track. As the A° track i s neutral E ( l / p A ) c = 
E ( l / p A ) y but f o r the KT~ track the centre of track error 
E ( l / p ^ ) c has to be swum to the vertex. The expression used 
to do t h i s was : 

E ( l / p K ) v - [ PK c/PK v3 E ( l / p K ) c 

where n i s from the approximate power law which relates 
the range of a track to i t s momentum. 

R « const. p n 

The value of n was taken as 5 .6. 

Throughout t h i s development.correlation between the 
errors on the tracks i s assumed to be zero and to f i r s t 
order,this i s reasonable. However there i s a co r r e l a t i o n 
between the azimuth at the vertex and the centre of track 
momentum of the K~" track. This has been folded i n t o the 
E(l/Pw.) error i n the following way s 

J\. V 
EMMSQ \MMSQ E ( l / p K ) p £ *• "hMMSQ W g E ( l / p K ) p 2 + 

M̂MSQ E(0L) + 

file:///MMSQ
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I n order that the fo l d i n g i n of each error over the 
whole MMSQ d i s t r i b u t i o n should be v a l i d , EMMSQ, determined 
for each event, must bear no corr e l a t i o n to the MMSQ. 
I t can be seen i n f i g 5*3 that t h i s i s a reasonable assump­
t i o n . 

The same must hold f o r the p r o b a b i l i t y of seeing each 
event i f the observed d i s t r i b u t i o n of MMSQ i s to exhibit 
the true physical r a t i o s of channel i n t e n s i t i e s . From the 
point of view of l i f e t i m e effects,the p r o b a b i l i t y of obser­
vation i s 

Prob - exp( -lc/^{) - exp( -l^/^) 

where d^ i s the mean decay length f o r a A with momentum p A . 
The f i r s t term i n the expression i s the p r o b a b i l i t y 

that the A w i l l l i v e long enough to give a v i s i b l e gap 
between K~" and V°, and the second i s the p r o b a b i l i t y that 
i t w i l l leave the f i d u c i a l volume. The value of 1 was taken 
to be 0.2 cms because i n the length d i s t r i b u t i o n of the A S 

there i s evidence of losses below t h i s length (see f i g 5 ^ ) . 
Ao 

l p 0 t i s calculated as the length traversed by the A to the 
edge of the f i d u c i a l volume. This i s a cylinder of diameter 
22.0 cms with the end faces on the walls of the T.S.T. a 
c r i t e r i o n setup at the scanning stage to eliminate wrongly 
associated V°s ( i . e . a V° which might point to a 0-prong 
K~~ track but actually i s produced elsewhere i n the chamber, 
see section 5.1.4). Fig 5.5 shows the d i s t r i b u t i o n of prob­
a b i l i t y of observation vs MMSQ and shows no apparent corre­
l a t i o n . 

This can be understood by considering f i g 5.6. The 



£0.0. 

C i. 
•° r 

« [ o ! c 
^ ; 
<D 
& 
m •p c 
> 

o 
Q> 
JQ 

48. C — 

-£.8-0.8 1.3 3.3 5.3 7.3 9.3 11.3 13.3 15.3 17.3 
L L 1 . L L U J L l l l l ) 1 1 I j J 

MMSQ d i s t r i b u t i o n f o r unbiassed 
s u b - c l a s s of events. EMMSQ sc a l e d by 1.12 

2 

51 

F i g 5-9 

iea.r 
C 
•H 
.O 

in 
75.©— 

CO 
•P 

> 

0) 

o 0) 

so.©— 

n 

0. 

i i i i 
j i 

f P 

• l i 

I I I 
! 
I i 

1 [ 
' 1 I 

i I >. ! I -Li. 
8-0.8 1.3 3.3 S". 3 7.3 9.3 11.3 13.3 tS.3 17.3^ 

MMSQ d i s t r i b u t i o n f o r t o t a l sample 
with c o r r e c t i o n s f o r p„. Mev/c 

m 

F i g 5-10 



52 

mean decay length i s plotted as a function of MMSQ for 
various cos©* ( d* i s the centre of mass angle of the/°). 
The e f f e c t of the minimum length cuboff• of 0.2 cms i s to 
discriminate against events with values of MMSQ i n the range 
1.6 * 4.0 m̂ o f o r a very small i n t e r v a l of cos 0* from -1.0 
to -0.995. This has a negligible e f f e c t on the p r o b a b i l i t y 
of observation. At a l l other angles the mean decay length 
does not change by more than 10$ over the whole range of MMSQ 
and hence there i s no apparent c o r r e l a t i o n between p r o b a b i l i t y 
of observation and MMSQ. 

5.3 CHANNEL BRANCHING RATIOS 
Fig 5.2 shows the MMSQ d i s t r i b u t i o n f o r K~~ momenta 

from 340 * 440 Mev/c i . e . a wide momentum i n t e r v a l around 
the A(1520) resonance ex c i t a t i o n . The sol i d l i n e i s the 
re s u l t of the f i t and the dashed l i n e i s the actual data. I t 
can be seen that the TT° peak i s too large i n the f i t compared 
with the data, but that on either side the agreement i s 
reasonable. Scaling the values of EMMSQ (the error f o r each 
event m u l t i p l i e d by a constant factor ) made the f i t worse. 

A search was then made f o r a sub-class of events which 
might give an anomalous MMSQ.distribution i n the region of 
the 7T°peak. After many attempts a class of events was found 
with a s h i f t t o higher values of MMSQ, t h i s d i s t r i b u t i o n i s 
shown i n f i g 5.7. This subclass of events had the character-

Ao t decay stopped i n the Perspex 
walls of the T.S.T. In these circumstances the processing 
program GEOMETRY took the measurement of the proton momentum 
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from range and the endpoint of the track was taken to be 
the midpoint of i t s path through the Perspex walls. This 
procedure at f i r s t sight looks reasonable and would be 
adequate i f , o n average,the protons did stop ha l f way through 

.0 

the Perspex. However as the protons from n s i n general 
have low momentum the average endpoint i s much closer to the 
inside face of the T.S.T. w a l l . Therefore t h i s procedure 
introduces a bias i n the proton momentum which i n tu r n 

A 0 

effects the n momentum and hence biases the MMSQ. 
To overcome t h i s bias in. t h i s sub-class of events, the 

. 0 

A momentum was recalculated from the measured angles.** 
As can be seen i n f i g 5.8, t h i s puts their°peak i n the correct 
position, however the TT° peak i s much broader. To calculate 
the new EMMSQ for these events, the o r i g i n a l EMMSQ (outlined 
above) was retained as the r e l a t i v e error on each event and 
then each error was scaled by 1.96, the resu l t of t h i s i s 
shown i n f i g 5»8 • For t h i s p a r t i c u l a r class of events the 
o r i g i n a l biassed d i s t r i b u t i o n had a T ^ o f 26.4 f o r 14 degrees 
of freedom, and the ' X * f o r f i g 5.8 was 13.15 f o r 15 degrees 
of freedom. Therefore i t was concluded that the procedure 
adopted (re-calculating MMSQ and scaling the kinematic values 
of EMMSQ) was adequate. 

I t was found also that the rest of the events had an 
improved 'Y-*' i f the EMMSQ for each event was scaled by 1.12. 
This f i t i s shown i n f i g 5-9 

** This class of events are now being reprocessed as 2C f i t s 
i . e . the proton momentum i s set unmeasured. 
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The t o t a l sample with biases removed,is shown i n 
f i g 5.10. The % l f o r t h i s f i t i s 50.5 with 17 degrees of 
freedom which gives a confidence l e v e l of about 5$. This 
high *)0 results from two effects s 
a) values of MMSQ out to -2.75 m^0 are retained f o r the f i t . 
Their number i s i n exeess of what would be expected from 
errors of measurement. Being i n a region where the expected 
number i s small, a few events add enormously to the % " . 
b) There i s a dip i n the d i s t r i b u t i o n at 3-5 m*0 which 
contributes a large amount to the This dip occurs i n one 
b i n , and considering the width of the "iTc peak,is very u n l i k e l y 
to be a r e a l physical e f f e c t . The minimum length c u t o f f effect 
shown i n f i g 5.6 i s both too small and too wide to explain 
t h i s dip. I t i s considered, therefore, to be a low p r o b a b i l i t y 
s t a t i s t i c a l fluctuation.From the f i t shown i n f i g 5 .10,the 
channel branching r a t i o s were found to be 31.4$ A°Tr°, 
1.95* A°y ,4 .2# AVVand 62.5$ £°n-°(see below. 

The MMSQ d i s t r i b u t i o n s were then f i t t e d for d i f f e r e n t 
K~ momentum bins and the channel branching r a t i o s calculated 
f o r each. The results are shown i n f i g 5.11 and table 5*1 

f o r the K"~p + A 0 T r ° branching r a t i o . This c l e a r l y shows the 
A(1520), . discussed i n Chapter 1, which predominately decays 

to £°"Tr0at a K~" momentum of 590 Mev/c. Also shownjare the 
branching r a t i o s determined by Tripp et. a l . r e f 5.2 . The 
agreement i s good with the suggestion of the present data 
being somewhat lower by 10$, which i n view of the s t a t i s t i c s 
can hardly be considered a s i g n i f i c a n t difference. 

From table 5.1 i t can be seen that the 'JC^'valuea f o r 
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TABLE 5.1 
Momentum r No. of No. i n 

1 
Branching Ratio 

Mev/c degrees p l o t | f +error 
150-260 3.86 7 81 .471 .074 

260-310 22.5 11 131 • 513 .051 

310-340 9.27 9 119 .482 .062 

340-360 4.93 9 94 .446 .087 

36O-380 11.53 10 130 • 379 .055 

380-400 24.8 13 146 .203 .047 

400-420 11.04 13 183 .296 .046 

420-440 4.51 9 99 .343 .066 

440-480 ! 6.44 7 74 .283 .071 

most f i t s are good. For two of the nine momentum bins how­
ever the influence of the negative values of MMSQ and the 
dip at 3'5 m-̂ o can be seen to be severe. The f a l l i n the 
branching r a t i o at 440*480 Mev/c may be due to a t a i l e f f e c t 
i n the momentum d i s t r i b u t i o n of the incident kaons. This 
momentum region i s the extreme upper end of the momentum 
d i s t r i b u t i o n and events might be ,in t h i s region.due to errors 
of measurement but have true momenta at lower values, where 
the branching r a t i o i s small. 

Other channels included i n the f i t s , K~p * A't and 
K~p •» A^TrVr0^ a r e r e s t r i c t e d to an upper l i m i t of 2$ and 25$ 

respectively (refs 5.3 and 5.4) of the t o t a l K~p •» A°+neutrals 
With the s t a t i s t i c s of t h i s experiment,these channel 
branching r a t i o s are not s i g n i f i c a n t l y greater than back­
ground . 
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I t i s of int e r e s t that while the channel r a t i o s given 
here are obtained by special treatment of part of the data, 
they are very close i n value to those obtained i n the f i r s t 
attempt t o f i t the data before any selections were made. The 
confidence levels of the f i t t e d d i s t r i b u t i o n s were bad 
i n i t i a l l y , but the branching r a t i o s are somewhat insensitive 
to the selection and treatment of the data. 
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CHAPTER SIX 
In Chapter 5;the channel branching r a t i o s f o r Air* 0 

were found from the missing mass squared d i s t r i b u t i o n as 
a function of K~" momentum. From table 5-1 i t can be seen 
that the number of events per momentum bin are i n s u f f i c i e n t 
to determine the angular d i s t r i b u t i o n s as a function of 
momentum. To f i n d the angular d i s t r i b u t i o n s , therefore a 
maximum li k e l i h o o d approach was adopted and i s described 
i n t h i s chapter. I t i s possible to get an average angular 
d i s t r i b u t i o n i n a momentum bin }4o to 440 Mev/c from the 
missing mass squared d i s t r i b u t i o n f i t s and t h i s i s shown as 
a comparison with the maximum li k e l i h o o d results. The 
analysis described here i s a repeat of that given i n ref 6.1. 
I t i s somewhat elaborate for the present s t a t i s t i c s but has 
been prepared for use when the f i n a l data becomes available . 

6.1 THE LIKELIHOOD FUNCTION 
The data was divided i n t o the same momentum bins used 

i n Chapter 5 and the data was f i t t e d i n each bin independ­
ently to determine the angular d i s t r i b u t i o n s and polarisations 
of the A'TT 0 and £ V channels. 

Each event i s completely defined by the following 
three quantities which form a kinematic set. 

i ) MMSQ, the missing mass squared of the unseen 
neutrals as defined i n Chapter 5. 

i i ) cos © A* , the cosine of the angle between the A * 

and the K~" i n the K~~p centre of mass system, see f i g 6.1a 
i i i ) cos b , where 
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cos b « » p . ( IT x A ) 

[( K X A ) ] 
and i f , A are the beam and A° d i r e c t i o n s i n the centre of mass 

— A° 

and p i s a u n i t vector i n the proton d i r e c t i o n i n the A 
r e s t frame. 

The l i k e l i h o o d f o r each event i s w r i t t e n as f o l l o w s : 
fifMMSQ^ , cos ( 9 ^ , cos b^) * £Ao„o+ £ £v> + £ A ° r + £>i\'rrtrrt 

The expressions f o r each o f these l i k e l i h o o d s i s described 
below. To account f o r the f i n i t e r e s o l u t i o n o f the MMSQ a 
Gaussian f u n c t i o n was used. 

G(MMSQ, MMSQ*) » 1 e x p j - (MMSQ - MMSQ*)2' 

/27TEMMSQ ( 2(EMMSQ)2 

This can be J u s t i f i e d by the f i t s o f Chapter 5 which r e q u i r e 
Gaussian e r r o r s . For convenience.as i n Chapter 5 ,units o f 
2 
rn^e were used, 
a) £ a V » 

The l i k e l i h o o d t h a t the event belongs t o the ^ 7 r° 
channel i s defined by 
i ) the angular d i s t r i b u t i o n s for production and decay 

dN - I ( 1 + ocff Acos b ) 
d(cos fi>A*)d(cos b) 

where ff^ i s the A p o l a r i s a t i o n which i s i t s e l f a function 
o f cos S*$ and <* o 0.645 i s the A° decay asymmetry parameter. 

2 

i i ) the Gaussian p r o b a b i l i t y f u n c t i o n centred a t one m^c 
f / l V G ( 1 ,MMSQ*) 

where fA«„o i s the f r a c t i o n of AV" i n the t o t a l channel. 
The angular d i s t r i b u t i o n and p o l a r i s a t i o n d i s t r i b u t i o n 
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have been parameterised i n the form o f Legendre polynomials, 
g i v i n g : 

f^fii 1 ,MMSQ*)-£ [A-iP^cosS/) +*cos b s i n 6* B^P*(cos <5>A*] 
eqn. 6.1 

Using, s i n ©A*P^(cos&*) = P 1 j^cos©,*) f o r I E A ensures the 
p h y s i c a l requirement t h a t E = 0 f o r Q* = 0°and l8o°. 

For the K~~p •» £°7r° channel the i n d i r e c t i o n i s unknown. 
Only the A°is observed. The angle x between the £.° d i r e c t i o n 
and i t s A decay product can be c a l c u l a t e d from the value 
of MMSQ (see f i g 6.1b). The £°can s t i l l be anywhere i n a cone 
around the A d i r e c t i o n a t an angle x t o the A d i r e c t i o n 
(see f i g 6.2- ) . I n t h i s momentum region t h a angle i s small 
(max - 15°) but i t i s taken i n t o account below. 

I f the i n d i r e c t i o n was known the l i k e l i h o o d of the i ^ V 0 

events could be w r i t t e n i n a s i m i l i a r form t o eqn 6.1. 
However the terms have t o be modified t o a l low f o r the 
unseen <-

Expressing the i n t e n s i t y i n terms o f Legendre polynomials 
I dN - £ C i P. (cos 6L*) 

d(cbs<9/J 1 1 1 * 
the f o l l o w i n g i d e n t i t y i s used t o transform t o the measured 
angle o f the A s 

m=+l , 

M e o . > - T l f > y l f _ B(©/,/) 

Q> i s the unknown azimuth angle o f the A round the 2. see 
f i g 6.2. 
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I n t e g r a t i n g over y g i v e u 

P j l c O s P * ) = P 1(C0B X) P 1(C0S«9/) 

t h e r e f o r e 
dN = * C. P, (cos x) P„ (cos &*) 

dlcoa©*) 1 1 1 

A f u l l e r d e r i v a t i o n i s given i n Appendix B. 
The p o l a r i s a t i o n o f the can s t i l l o nly be measured 

through the amount t r a n s f e r r e d t o the A° , using the f u l l 
angular d i s t r i b u t i o n i n c l u d i n g cos b : 

dN = I ( 1 + <* E A cos b) eqn 6.2 
d { c o s Q * ) d { c o s b) 

I n the r e s t system of the £°(see f i g 6 .3b) , the p o l a r -
Ac 

i s a t i o n i s along the d i r e c t i o n o f the A : 

"f = E, cos &** P* 

Where E^ the p o l a r i s a t i o n o f the£°is along the normal 
t o the TC£° plane. The p o l a r i s a t i o n of the A° i s measured 
w i t h respect t o the K~~A° plane. The component of p o l a r i s a t i o n 
of the A° i n the d i r e c t i o n of t h i s normal i s given by s 

F » - E. cos s i n ( x * * - x) sin<# 
(see f i g 6.3a) 

S° A 0 

where x** i s the angle between the 2. and the ̂  i n the r e s t 
frame o f the 2- . Using the invariance o f transverse momentum 
to a Lorentz t r a n s f o r m a t i o n , 

P* s i n x = P** s i n x** 
A A A0 

where P* and P** are the A momenta i n the centre o f mass 
A A 
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4° and the r e s t system of the r e s p e c t i v e l y . Also from 
geometry (see f i g 6.5a) 

cos &** = s i n x** s i n s i n 0 
s i n Q* 

Hence the p o l a r i s a t i o n term i n eqn 6.2 above can be w r i t t e n 
i n terms o f P^ : 

IP. - IP s i n &f s i n V P* sin2x(P»cos x - P**cos x**) 
s i n Q * ~ y t P**2 

Working i n the r e s t frame o f "the £° , 

P**2 = (m2, - m2 ) 2 

4m2 

P* cos x i s the Lorentz transformed component o f P**,along 
the d i r e c t i o n of the 2. , from the L r e s t system t o the 
centre of mass system i . e . 

P* cos x = ESP** cos'x** + P* ( m£ + P**^) 
m̂  m<-

where E. and P v are the centre o f mass energy and momentum 
r e s p e c t i v e l y of the £°. Bearing i n mind t h a t i n t h i s energy 
range P£ < O.J Gev/c malting Ê /m̂  approximately u n i t y and 
P** i s 0.074 Gev/c, 

P* cos x => P** cos x** + Pj mA 

Hence 
IP^ - -4m,mAPr PA IP, s i n 9* sln2fi s i n 2 x 

(m 2 - m 2 ) 2 sin(9 c* e * n 6 ^ 
I n a s i m i l i a r manner t o t h a t f o r the channel, I P £ i s 
expanded as : 

I P £ = sln<9* £ v1 P^(cos 
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The f i n a l r e l a t i o n on s u b s t i t u t i n g i n t o eqn 6.3* 

expressing cosf3* i n terms o f cos 0* and i n t e g r a t i n g over 0 

as was done f o r I above, y i e l d s , f o r the f u l l d i s t r i b u t i o n : 

dN = £ C 1 P 1 ( C O B S / i * ) P 1 ( C O 8 X ) + 
d(cos 6\*)d(cos b) 1 1 1 1 

2 T T * M s i n d* sin 2x£ D . P ' ( C O S &*)p'(cos X ) 

1 " l 
1 ( 1 + U 

where 
M = -4m m P, P 

1 A 1 A 

I 2 2 \ 2 (m^ - mz ) 
1 A o 

The l i k e l i h o o d f o r the channel also has t o take 
i n t o account the range o f MMSQ which l i e s between MMSQ min 
and MMSQ max. This gives f o r the l i k e l i h o o d f u n c t i o n : 

/"MMSQ max 
V o 8 8 f*VS °( m S ^ > MMSQ*) dN d(MMSQ*) 

z n J cUcos g*Jdlcos b^MMSQ - MMSQ 
MMSQ min £ ( max min 

where f ^ e - i s the f r a c t i o n o f f r ' i n the t o t a l channel. I t 
* I T 

should be noted t h a t MMSQ max and MMSQ min depend on the K~ 
momentum f o r a p a r t i c u l a r , event. 
c) £ A Y 

This l i k e l i h o o d was w r i t t e n as i n r e f 6.1 as 

£ A V » f A G ( 0 , MMSQ*) (1 - 1 P,(cos£A*)) 
d) £*£> 

The l i k e l i h o o d f o r the K~~p •» AVTT" channel was w r i t t e n 
as 

where g was parameterised t o approximately reproduce the 
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MMSQ and angular d i s t r i b u t i o n s found by Tripp et a l r e f 6 .2 . 

(c) and (d) were included f o r completeness and nothing 
about these channels were determined i n the l i k e l i h o o d 
a n a l y s i s . 

The f i n a l c o n t r i b u t i o n t o the l i k e l i h o o d of the set 
f o r a given event ; was the sum o f the above terms c a l c u l a t e d 
f o r t h a t event m u l t i p l i e d by the p r o b a b i l i t y o f observing 
the A°(see Chapter 5) s 

£ i = p o b s t £/»V + + £/i°* + £ A M r * l i 

I n the angular d i s t r i b u t i o n s described above, the 
summation of the Legendre polynomials i n theory goes t o 
i n f i n i t y . Bearing i n mind the presence o f the D-wave A(1520) 

s i g n i f i c a n t c o n t r i b u t i o n s are expected up t o lmax = 4. For 
the present analysiSjlmax =3 was taken t o reduce the number 
of parameters t o be determined. An attempt t o include lmax 
merely r e s u l t e d i n random f l u c t u a t i o n s of the c o e f f i c i e n t s 
w i t h o u t much change i n those f o r lower values o f 1. Indeed 
Tripp et a l r e f 6.1 found the c o e f f i c i e n t f o r 1 = 4 close t o 
zero and Berley et a l r e f 6.3 d i d not include t h a t p a r t i a l 
wave. 

. The f i t s were i n i t i a l l y attempted a l l o w i n g the channel 
branching r a t i o s t o vary, these were found t o be approximately 
20% lower than those determined i n Chapter 5» I n view o f the 
s t a t i s t i c s ; i t was thought t h a t too many parameters were 
being determined w i t h t h i s a n a l y s i s and the f i t was repeated 
w i t h the channel branching r a t i o s f i x e d a t those determined 
p r e v i o u s l y . The l i k e l i h o o d f u n c t i o n was maximised using a 
program c a l l e d MINUIT. 
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6.2 THE AVERAGE ANGULAR DISTRIBUTION FOR 3-40 - 440 Mev/c 
To check the consistency o f the r e s u l t s obtained from 

the l i k e l i h o o d analysis^ a comparison was made w i t h the 
angular d i s t r i b u t i o n i t i s possible t o o b t a i n from the 
simpler approach of Chapter 5. 

To ensure adequate s t a t i s t i c s a momentum b i n }4o - 440 
Mev/c was used. The p r i n c i p l e was to s p l i t the events i n t o 
i n t e r v a l s o f cos ;?A* and f i n d the branching r a t i o o f K~~p+A/rr* 
channel f o r cos Q* i n t e r v a l . The sample was the same as used 
f o r the branching r a t i o determinations i n Chapter 5. I n f i g 
6.4jthe missing mass squared d i s t r i b u t i o n s are shown f o r the 
6 i n t e r v a l s o f cos Q* used. I t should be noted t h a t f o r 
cos &* > 0.8 there i s very l i t t l e channel, but events 

a t negative MMSQ gave an unreasonably large branching r a t i o 
of K —p •> A°TT° and a large The reason f o r t h i s was t a i l 
noise and low s i g n a l . Therefore f o r t h i s b i n MMSQ < 0.0 
have been excluded i n t h i s and the l i k e l i h o o d f u n c t i o n 
a n a l y s i s . Table 6.1 gives the branching r a t i o f o r K~~p •> /\*V° 
as a f u n c t i o n of cos B* i n t e r v a l f o r the momentum b i n j540 4 
440 Mev/c. 

The l i k e l i h o o d a n a l y s i s was also done on the momentum 
b i n J40 * 440 Mev/c f o r d i r e c t comparison and the Legendre 
polynomial c o e f f i c i e n t s are shown i n Table 6 .2 . The angular 
d i s t r i b u t i o n s are shown g r a p h i c a l l y i n f i g s 6.5 and 6 . 6 . ( t h e 
s o l i d l i n e s ) . Also shown are the p o i n t s (*) obtained from 
the missing..mass squared approach d e t a i l e d above. I t can be 
seen t h a t t here i s good agreement between the two approachs. 



?. 

5 • 
0) 

cos Angular d i s t r i b u t i o n 
for K""p • AV" 

F i g 6 

10.fr— 

5. 

O 
10 

Angular d i s t r i b u t i o n 
for K"p • iV° cos &* 

S a l 

http://10.fr%e2%80%94


70 

TABLE 6.1 
Branching r a t i o of K~~p-» A ^ a s a f u n c t i o n o f cos© * 

A cos 9 * No. of events f,o-terror , r No. o f 
-1.0+-0.8 

f,o-terror 
deg. f r 

-1.0+-0.8 100 0.43 + .06 8.1 7 

-0.8+-0.4 185 0.362+ .05 15.1 11 

-0 .4* 0.0 98 0.441+ .07 10.1 9 

o.o* o.4 82 0.326+ .07 7.9 9 

0.4+ o.8 102 O.096+ .05 10.6 9 

0 .8* l . o (a) 85 0.2 + .07 14.4 8 

0 .8* 1.0 (b) 74 0.0 + .07 8.4 7 

(a) See t e x t 
(b) Corrected by excluding MMSQ < 0.0 events. 

TABLE 6.2 
C o e f f i c i e n t s of the production angular d i s t r i b u t i o n s 
averaged over 340 •» 440 Mev/c 
Channel Ai/A 0

 A2^ Ao 
K~p * A V ° -1.57 + .03 0.628+ .1 -O.057+ .08 

K~p * £ £ V " 0.195+ .15 0.666+ .13 0.28 + .07 

6.3 ANGULAR AND POLARISATION LEGENDRE COEFFICIENTS AS A 
FUNCTION OF MOMENTUM 

I n t h i s section,the r e s u l t s o f the l i k e l i h o o d a n a l y s i s 
are given. I n t a b l e 6 .3.the Legendre c o e f f i c i e n t s are shown 
as a f u n c t i o n of momentum f o r the produc t i o n angular d i s t ­
r i b u t i o n o f the K~~p * A°Tic channel and are shown g r a p h i c a l l y 
i n f i g 6 .7 . For comparison the r e s u l t s o f Berley (x) and 
Tripp (0) are also shown i n the f i g u r e . 
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TABLE 6,3 

A ° T T 6 Production angular d i s t r i b u t i o n Legendre c o e f f i c i e n t s 

Momentum A l ^ A o A 2 ^ A o A 3^ Ao 
(Mev/c) 
205 -0.70 +_ 1.18 O.50 + 1.37 0.22 _+ 1.4o 
285 -O.72 +_ .11 0.22 + .12 -0.49 _+ .11 

325 -1.14 .78 O.78 + .92 -0.19 _+ 1.10 

350 -1.26 + .01 0.52 + .03 -0.24 + .05 

370 -1.39 + .12 0 .74 + .20 0.25 .13 

390 -1.16 .06 0.42 .10 -0.13 .11 
410 -1.44 .13 0.52 .84 0.11 + .18 

450 -1.45 + .12 0.80 +• .18 -0.31 + .15 

460 -2.00 1.50 1.82 + .27 -0.81 + .06 

TABLE 6.4 
Production angular d i s t r i b u t i o n Legendre c o e f f i c i e n t s 

Momentum c3 A 0 
Cr / c 

0 
C 5 / C 0 

(Mev/c) 

205 0.25 1.08 -0.20 + 1. 65 0.55 + 1.13 

285 -0.10 + .92 0.07 1. 35 0.07 1.64 
325 0.19 .80 -0.34 + • 49 0.48 + .^5 

350 0.41 + .89 -0.43 1. 17 -0.14 1.25 

370 0.51 .78 0.23 + 1. 18 0.48 + .75 

390 0.10 .68 0.88 + • 93 -0.57 1.29 
410 0.17 + .87 0.99 + • 7" 0.71 + 1.09 

." 4 30 0.02 + I . 0 5 1.44 + 1. 19 0.73 + 1.41 
460 0.62 + 1.11 1.04 + • 33 -0.02 + 1.18 
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TABLE 6.5 

h°~vr° P o l a r i s a t i o n d i s t r i b u t i o n Legendre c o e f f i c i e n t s 
Momentum 

(Mev/c) 
B l / A o B 2/A Q V A o 

205 0.23 + 1.54 -0.32 + 1.31 -O.58 + I . 3 3 

285 0.34 + 2.91 -0.02 + 1.27 -0.56 + 1.00 

325 -0.19 + 2.83 -0.21 + 1.38 -0.15 + 1.26 

350 -0.55 ± 2.72 0.02 1.49 -0.00 + .93 

370 -0.01 + .36 -0.21 + .14 0.50 + .11 

390 0.81 + .33 -0.30 + .12 -0.17 + .07 

410 0.24 +. .14 0.06 .09 -0.20 + .62 

430 • 0.00 + .41 0.13 _+ .17 0.11 + .12 

46o 1.89 + 3.04 -2.00 3.55 0.79 + 1.04 

TABLE 6.6 

C°ir° P o l a r i s a t i o n d i s t r i b u t i o n Legendre c o e f f i c i e n t s 
Momentum D i / c o D 2/ Co D-j/c 0 

(Mev/c) 
205 -0.02 .94 -O.43 .60 -0.06 + .57 

285 0.14 + .73 0.10 + .57 0.08 .50 

525 0.02 .60 0.03 +_ .32 o.oi + .21 

350 -O.07 + .78 -0.15 +_ .67 -0.15 .72 

370 0.10 + .44 0.12 .39 0.05 .39 

390 0.00 .41 0.18 + .43 -0.13 -51 

410 -0.02 + .52 o . l l + .37 0.06 + .27 

430 0.12 .64 0.12 .51 0.02 + .46 

460 o .4 l +_ .25 -0.33 .56 -0.11 + .18 
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I n view o f the low s t a t i s t i c s compared w i t h these previous 
experiments,there i s very good agreement. The monotonic 
decrease o f A^/A0 i s w e l l reproduced. 

The r e s u l t s o f the K~p •» £cir° channel angular d i s t r i b ­
u t i o n are shown i n t a b l e 6.4 and g r a p h i c a l l y i n f i g 6 .8 . 

Again w i t h i n e r r o r s t h i s experiment shows good agreement 
w i t h the previous r e s u l t s . The C ^ / C Q c o e f f i c i e n t shows a 
large r i s e i n the region 380 •> 420 Mev/c (the / \(1520) ) , 

though the r i s e i s not as large as t h a t determined by Berley 
and Tr i p p , i t c l e a r l y demonstrates the presence o f the A(1520) 

D°wave resonance. 
The p o l a r i s a t i o n Legendre c o e f f i c i e n t s f o r K~~p • A%"° 

are shown i n t a b l e 6.5 and f i g 6 .9 . The lar g e e r r o r s , the 
penalty of the low s t a t i s t i c s , make i t d i f f i c u l t t o draw 
any conclusions about these c o e f f i c i e n t s . 

For the K"~p •» £*Trv channel the r e s u l t s are shown i n 
t a b l e 6.6 and f i g 6.10. Here again i t i s d i f f i c u l t t o draw 
conclusions. However the c o e f f i c i e n t s are on average w i t h i n 
one standard d e v i a t i o n of those determined by Berley and 
Tri p p . The values of ̂ 2^Co l n t h e ^ (1520) r e g i o n are not 
as high as obtained by previous workers, but i n any case 
the e a r l i e r r e s u l t s do not agree too w e l l w i t h each other t o 
define the behaviour w i t h momentum of the p o l a r i s a t i o n 
c o e f f i c i e n t s . 
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CHAPTER SEVEN 

I n t h i s chapter^ the events c o n s i s t i n g of a " 

a s s o c i a t e d with one observed gamma ray ( i . e . e l e c t r o n -

p o s i t r o n p a i r ) are considered and i n p a r t i c u l a r the angular 

d i s t r i b u t i o n from c o n s t r a i n e d f i t s to K~~p •* A°7r° and 

K~p * £*7r° channels a r e compared with those found i n the 

l a s t chapter. With only one gamma ray seen }the problem 

a r i s e s t h a t t h i s might have come from the TT° decay i n the 

iCp * £ V ° channel. When t h i s i s the c a s e ; i t i s not kine-

m a t i c a l l y p o s s i b l e to f i t the i n t e r a c t i o n to the ^ V 0 c h a n n e l 

and t h e r e f o r e there was a l a r g e proportion of events which 

f e l l i n t o the n o - f i t category. 

R e c a l l i n g the problems i n Chapter 5> the number of 

constrained f i t s to the A v0 and channels might have 

been surpressed by the s u b - c l a s s of events with protons 

stopping i n the Perspex. However the f r a c t i o n of 

such events i n the sample of co n s t r a i n e d f i t s i s the same 

as f o r a l l A° events and hence i t has been assumed i n t h i s 

chapter t h a t the co n s t r a i n e d f i t s c o n s t i t u t e a t r u e l y 

r e p r e s e n t a t i v e sample. T h i s i s not s u r p r i s i n g . s i n c e the 

b i a s d i s c u s s e d i n Chapter 5 i s v e r y small, of the order of 

0.5 m|o. 
Since t h i s chapter c o n t a i n s the f i r s t r e s u l t s of 

measurements on gamma ray s i n t h i s experiment, the next 

s e c t i o n w i l l d e a l with the expected f e a t u r e s of gamma r a y 

conversion and a comparison with the measurements. S e c t i o n 

7.2 uses the r e s u l t s of kinematic f i t t i n g the gamma rays 

to p h y s i c a l channels, to f u r t h e r check the measurements. 
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F i n a l l y the d i r e c t comparison of angular d i s t r i b u t i o n s i s 

given i n the l a s t s e c t i o n . 

7.1 ELECTROMAGNETIC INTERACTIONS 

As the constrained f i t s considered i n t h i s chapter 

r e l y on p a i r production by gamma rays i n the hydrogen-neon 

mixture, a c l o s e r examination of t h i s phenomenon i s necessary. 

The d i s t r i b u t i o n of gamma ray energies i s shown i n f i g 7.1. 

The energies range from 20 * 450 Mev. The Compton e f f e c t 

w i l l not be d e a l t with ;because the c r o s s - s e c t i o n i s not 

s i g n i f i c a n t a t these energies and events due to t h i s process 

were not scanned f o r . The mean f r e e path f o r the Compton 

e f f e c t i s however included i n f i g s 7.2a and 7.2b. The 

formulae given below are taken from R o s s i r e f 7 .1 . The 

curves shown i n the f i g u r e s have been c a l c u l a t e d f o r t h i s 

experiment. 

P a i r production i s a.quantum process t h a t does not 

lend I t s e l f to c l a s s i c a l d e s c r i p t i o n . The theory of p a i r 

production i s c l o s e l y r e l a t e d to th a t of r a d i a t i o n processes 

and consequently the equations are ve r y s i m i l i a r . The 

phenomenon i s induced by the strong e l e c t r i c f i e l d t h a t 

surrounds the n u c l e i . The nucleus which i s n e a r e s t the 

photon m a t e r i a l i s a t i o n , a b s o r b s some of the momentum of the 

process, but because of i t s l a r g e mass i t does not acq u i r e 

any a p p r e c i a b l e energy. 

Therefore 

E* + E** + 2 m c 2 «= E e 
where E* and E** are the energies of the e l e c t r o n and p o s i t r o n 
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r e s p e c t i v e l y , E i s the energy of the photon,and m i s the 

mass of the e l e c t r o n / p o s i t r o n . 

Assuming E » m ec £ i.es g r e a t e r than 10 Mev/c , then 

P(E,E*)dE*dx (which i s the p r o b a b i l i t y f o r a photon of 

energy E t r a v e r s i n g a t h i c k n e s s of dx grms cm to produce 

a p a i r , i n which the p o s i t r o n has k i n e t i c energy between 

E* and E* + dE*) i s given by : 

P(E,E*)dE* = 4 at NZ 2 r\ dE* G(E,v) 
7T T~ 

where v i s the f r a c t i o n a l energy of the p o s i t r o n 

v = E * + m _ c 2 

E - ^ — 
and G(E,v) i s a slowly v a r y i n g f u n c t i o n , o<. =1/157, N i s 

Avogadros number, Z and A are the charge and mass numbers of 

the m a t e r i a l , and r e i s the c l a s s i c a l r a d i u s of the e l e c t r o n . 

I n t e g r a t i o n of P(E,E*) from E* = 0 t o E* = E • 2 m
e

c 2 

y i e l d s the t o t a l p r o b a b i l i t y f o r a photon of energy E to 

produce a p a i r i n a t h i c k n e s s of dx grms cm" . For the energy 

region of i n t e r e s t i n t h i s experiment , gamma energies l i e 

between 20 •» 450 Mev, t h i s i n t e g r a t i o n has to be done 

nume r i c a l l y . The r e s u l t s of the i n t e g r a t i o n f o r both hydrogen 

and hydrogen-neon mixture are shown i n f i g s 7*2a and 7.2b. 

I n t h i s i n t e g r a t i o n G(E,v) was taken to be s 

G(E,v) m [ v 2 + ( 1 - v ) 2 + 2 v ( l - v ) ] [In ( 2 E v ( l - v ) ) - 0.5I 
5
 m c

2 

( m ec ) 
(see r e f 7.1 f o r f u r t h e r d e t a i l s ) . 

For the mixture of neon and hydrogen the p a r t i a l 

c o n t r i b u t i o n s were added together, the e f f e c t i v e d e n s i t y f o r 
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the components being 0.818 and 0.0229 grms cm"^ r e s p e c t i v e l y . 

I n f i g 7.3 the f r a c t i o n a l energy of the p o s i t r o n i s p l o t t e d 

a g a i n s t the p r o b a b i l i t y of g e t t i n g t h a t energy. The d i f f e r e n t 

curves are f o r d i f f e r e n t energies of incoming photons. 

I n the extreme regions of these curves, the gamma ray 

w i l l have the appearance of a s i n g l e arm (Compton) e l e c t r o n , 

and as mentioned above these were not scanned f o r . T h i s 

s i t u a t i o n i s r e c t i f i e d somewhat, by measuring gamma rays with 

unequal p a i r s . The v e r t i c a l l i n e s on f i g 7.3 show the observed 

p o s i t i o n of the c u t o f f s , i n the measurements of e l e c t r o n / 

p o s i t r o n p a i r s , due to scanning and measuring l o s s e s f o r 

photon energies > 140 Mev and < 80 Mev. From f i g 7 .1.the 

bulk of the gamma ray energies l i e between these values and 

the v e r t i c a l l i n e s represent the upper and lower l i m i t s of the 

c u t o f f s f o r the m a j o r i t y of the gamma r a y s . Such l o s s e s w i l l 

of course simply reduce s t a t i s t i c s and do not lead to a 

b i a s i n i n v e s t i g a t i n g the K"~p i n t e r a c t i o n s . Measuring gamma 

rays i s complicated by the bremsstrahlung r a d i a t i o n l o s s e s of 

the e l e c t r o n and pos i t r o n , p r e s e n t i n g a d i f f i c u l t measuring 

problem. Checks were made to i n v e s t i g a t e p o s s i b l e b i a s e s i n 

the gamma ray measurements and f i t t i n g , these are described 

i n the next s e c t i o n . 

7.2 GAMMA RAY CONSIDERATIONS 

I n order to i n v e s t i g a t e b i a s e s i n the gamma ray 

measurements and f i t t i n g ^ a sample of events, which gave a 

kinematic f i t of some d e s c r i p t i o n with the seen gamma rays^ 

was checked. The sample was drawn from the A TT° events. 
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Since the momentum spectrum of the K mesons i s 

h e a v i l y weighted to the A(1520) region, i t i s expected 

t h a t the A 0^ 0 channel w i l l o nly make up JO •> 50$ of the 

t o t a l sample. As mentioned i n the i n t r o d u c t i o n to t h i s 

chapter most of the A° + .one gamma events should not give 

a f i t to a p h y s i c a l channel. However by i n c l u d i n g the 

hypothesis K p -» A V ( 2? ) > 80$ of the events gave a f i t 

of some kind i n c l u d i n g the gamma ray. I n f i g 7.^ ;the 

i n v a r i a n t mass i s shown , obtained from the measured gamma 

ray and the f i t t e d (unseen) gamma i n the hypothesis (*). 

The TT° peak i s c l e a r l y observed and has an i n t e n s i t y of 

about 35% of the t o t a l as expected, ( i . e . 35% ^ In the 

A (1520).) 

F i g 7.5 shows a s c a t t e r p l o t of measured gamma r a y 

energy a g a i n s t the val u e f i t t e d to the p h y s i c a l l y c o n s t r a i n e d 

f i n a l s t a t e K~p •» AV 0 , (seen) 2f( f i t t e d ) , T h i s shows 

a s a t i s f a c t o r y unbiassed spread of the measurements around 

the f i t t e d v a l u e s . 

As an a d d i t i o n a l check, the po i n t f i t was combined 

with the measured gamma ray inf o r m a t i o n and a mi s s i n g mass 
.0 

squared found to the A + ^.combination. T h e o r e t i c a l l y t h i s 
2 

m i s s i n g mass squared d i s t r i b u t i o n i n u n i t s of m^o should 

c o n s i s t of £-functions a t 0 and 1 corresponding to the A°7r° 

and £°Tr,'channel where the gamma r a y comes from the £ ° decay, 

superimposed on a continuous d i s t r i b u t i o n between zero and 

approximately 2. The continuum a r i s e s from the two gamma 

combinations formed^when the observed gamma i s from the IT'0 

i n the ^V°channel. 
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The d i s t r i b u t i o n obtained i s shown i n f i g 7 .6. The 

peak a t zero i s c l e a r l y seen. The c o n t r i b u t i o n from the £ 

a t 1 i s l e s s obvious on these s t a t i s t i c s but t h i s i s . n o t too 

s u r p r i s i n g s i n c e the s i g n a l can on l y occur f o r of th a t 

channel. 

7.5 THE A°ir° AND £°TT0 CONSTRAINED CHANNELS 

As explained i n Chapter 4 j the data f o r t h i s t h e s i s i s 

from the f i r s t measure only. T h i s and reasons given above 

account f o r the low s t a t i s t i c s a v a i l i a b l e f o r the A° + one 

gamma events. 

I n view of these s t a t i s t i c s ^ o n l y a comparison of the 

production angular d i s t r i b u t i o n s p r e d i c t e d by the r e s u l t s 

obtained i n Chapter 6 f o r the momentum b i n }40 •» 440 Mev/c 

i s made with t h a t d i r e c t l y obtained from the c o n s t r a i n e d 

f i t s to the A"TT° and CTT 0 channels. 

As a p r e l i m i n a r y to these comparisons the angular 

d i s t r i b u t i o n of the gamma was found f o r the -̂ °TT* channel i n 

the r e s t system of the £ ° ( © * * ) . T h i s d i s t r i b u t i o n i s 

shown i n f i g 7.7i i t should-be i s o t r o p i c but t h e r e i s a 

s i g n i f i c a n t excess i n the b i n -0 .6 > cos Q** > - 0 .4 . 

U n f o r t u n a t e l y there a r e not the s t a t i s t i c s to i n v e s t i g a t e 

t h i s p r o p e r l y . For t h i s d i s t r i b u t i o n the A / £ 3 ambiguous 

events were a l l taken to be 2°"n*° events. For f i g 7.8 the 

ambiguity was r e s o l v e d by a c c e p t i n g the events as the channel 

w i t h the h i g h e s t ^ p r o b a b i l i t y . T h i s d i s t r i b u t i o n s t i l l has 

an excess i n the same b l n ( b u t i t i s reduced. 

The production angular d i s t r i b u t i o n s are shown i n f i g 7.9 
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and f i g 7.10 f o r the ATT° and £ V ° channels r e s p e c t i v e l y . The 

same p r o b a b i l i t y c r i t e r i o n was used f o r ambiguous events 

as above. The d i s t r i b u t i o n s show the same shapes as those 

determined by the l i k e l i h o o d f u n c t i o n and missing mass 

squared a n a l y s e s i n Chapter 6. The p o i n t s (*) p l o t t e d on 

f i g 7.11 show these d i s t r i b u t i o n s compared d i r e c t l y w ith 

those obtained i n Chapter 6. Allowing f o r the ve r y s m a l l 

s t a t i s t i c s the agreement i s ve r y good. With the i n c r e a s e d 

number of events which w i l l be a v a i l a b l e a t a l a t e r stage 

i t w i l l be p o s s i b l e to determine the angular d i s t r i b u t i o n s 

of these channels d i r e c t l y without r e s o r t i n g to the methods 

d e t a i l e d i n Chapter 6. 



91 

0> 

0) 

I I I I I I I ) 0. I 0.6 0.3 0.2 0.6 1.0 
K~p4/\V cos 

0) H C0 O 10 
<D 

•p 
oS H 0) « 

0j • 

5.1 

l i l t 
.0 -0.6 

K"~p* £-V 

I I M 1 I I 1 I I I I I 
-< .2 0:a 0.6 1.0 

COS © * 

Constrained f i t production angular 
d i s t r i b u t i o n s compared d i r e c t l y with those 
obtained i n Chapter 6. 

Fig 7-11 



92 

CHAPTER EIGHT 
In t h i s chapter, the results i n previous chapters are 

b r i e f l y discussed and an outline of the s t a t i s t i c s that w i l l 
be available at the conclusion of the processing chain i s 
given.. 

As has been explained i n Chapters 4 and 7» the current 
s t a t i s t i c s o f - t h i s experiment are low. When the processing 
of events i s concluded these s t a t i s t i c s w i l l not be large 
compared with, say, counter experiments. This i s inherent 
i n the bubble chamber technique. However, due to the 
complexity of the f i n a l states and the complex patterns of 
tracks, of diverse bubble density i n the pictures ( due to 
observing tracks through essentially three bubble chambers -
hydrogen-neon mixture, T.S.T., hydrogen-neon m i x t u r e ) , i t i s 
very d i f f i c u l t to conceive a single experiment based on 
non-visual detectors ( i . e . counter experiments ) to measure 
a l l channels simultaneously, p a r t i c u l a r l y one which could 
cover the complete s o l i d angle. Thus a combination of low 
data c o l l e c t i n g rate, inherent i n bubble chamber experiments, 
and the preliminary stage of processing of events reached,. 
has led to severely r e s t r i c t e d s t a t i s t i c s being available 
fo r these analyses. 

I t i s proposed to normalise t h i s experiment with the 
tau decays (see section 5.1.1) of the kaons. These decays 
w i l l give a measure of the K~ path length i n t h i s experiment 
as a function of momentum. However i t i s not reasonable to 
normalise the branching r a t i o s given i n Chapter 5 to absolute 
cross-sections with the p a r t i a l s t a t i s t i c s surrently available. 
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However t h i s w i l l be possible when the f i n a l D.S.T. s of 
events are ready.(See ref 8.1 f o r d e t a i l s of normalisation 
using tau decays of kaons). 

8.1 THE A (1520) RESONANCE IN THE DATA 
Despite the preliminary nature of the data available 

the analyses detailed i n previous chapters has shown three 
— A0 

features regarding the K p •> /\ + neutrals channels. 
i ) Using a l l the A° s that with f i t t i n g i n KINEMATICS 

point to a K~~ ending i n the T. S.T, i t was found, (Chapter 5), 
that there was good agreement between the present and 
existing data f o r the f r a c t i o n of the channel going i n t o 

/ \ ° T T ° . I n pa r t i c u l a r , the presence of the A(l520) •» £ V ° 
i s c l e a r l y demonstrated, the former f i n a l state being 20.5 +_-<j% 

of the t o t a l at the resonance energy. This i s to be compared 
with 27 + 0.6$ from the high s t a t i s t i c s experiment of Tripp 
e t . a l . There are no features i n the region of the possible 
<*L (l48o) although no d e f i n i t e conclusions should be drawn 

at t h i s present stage of the experiment. 
i i ) Also using a l l the point A events } a repeat of 

Tripp's maximum li k e l i h o o d analysis yields good agreement f o r 
the c o e f f i c i e n t s of the Legendre polynomials used to describe 
the production angular d i s t r i b u t i o n s of the n and «• 
The s t a t i s t i c s are too l i m i t e d to achieve much precision 
p a r t i c u l a r l y f o r the c o e f f i c i e n t s describing the polarisations 
but there i s i n t e r n a l consistency between the analyses of 
Chapters 5 and 6 (see section 6 .2) . I n p a r t i c u l a r the 
dominance of the c o e f f i c i e n t f o r 1 = 2 i n the A(1520) region 
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f o r the 2. » channel i s c l e a r l y demonstrated. There are 
no p a r t i c u l a r features at other momenta^again presenting 
no evidence f o r the £. (1480). 

i i i ) The use of the T.S.T. i s an embarrassment f o r 
the analyses of the type outlined i n Chapters 5 and 6 , 

since i t represents a smaller hydrogen chamber than would 
be chosen f o r an experiment without gamma ray detection. 
However i n Chapter 7 i s seen a comparison of the angular • 
d i s t r i b u t i o n s obtained d i r e c t l y from the f i t s to £r° and Ayr6 

channels, using the gamma ray information, with those derived 
from the c o e f f i c i e n t s obtained e a r l i e r . Even with the 
small s t a t i s t i c s ^ t h e agreement i s very encouraging. Some 
problems evidently may arise i n the ambiguities i n these 
f i t t e d channels, but they may be w e l l enough localised to 
be handled e a s i l y (see f i g s 7.7 and 7.11)-

8.2 ESTIMATES OF FINAL STATISTICS 
Currently there are I560 events i n the momentum region 

150 to 480 Mev/c. This includes some I67 events w i t h a seen 
gamma ray. As explained i n Chapter 4 (section 4.2)ja f u r t h e r 
detailed scan was done at the judging stage and any events 
with a d d i t i o n a l associated gamma rays were put i n t o the 
remeasure chain. 

When the remeasures are ready ?the following estimated 
t o t a l s t a t i s t i c s should be a v a i l i a b l e i n the momentum region 
150 to 480 Mev/c 

Overall t o t a l A°+ neutrals = 2400 
,0 

Of t h i s t o t a l A + one gamma ray = 900 
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A + two : gamma rays =120 

A° + three gamma rays »• 6 

I t i s important to emphasise that t h i s represents the 
Durham s t a t i s t i c s only. These figures should be scaled by 
approximately j5 to 4 to f i n d the over a l l estimated number 
of A + neutrals events. 

The A + one gamma events can be broken down to give 
approximate estimates of the number of constrained f i t s . 
The approximate numbers are as follows : 

K~p •» AV° m 200 events 
K~p •» £°-rr* = 80 events 
Ambiguous A/£*. 8o events 

Again these can be scaled by 3 to 4 to f i n d the 
collaborations ov e r a l l s t a t i s t i c s f o r these constrained 
channels. 
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APPENDICES 

In view of the large number of mathematical 
symbols used i n these appendices,they are 
w r i t t e n i n s c r i p t . 
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APPENDIX A 
ERROR ON THE MISSING MASS SQUARED 

MMSa = {^i 

where these terms have been defined i n Chapter 5 (section 5.2) 

K 

( A.l) 
Taking each term i n turn s 
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Before considering ^ ^ ^ ^ " t i s useful to look at the swimming 
of errors on momentum f o r the K~~track, from the centre of 
track to the in t e r a c t i o n vertex ( there i s no swimming f o r 
the A° as i t neutral and therefore i s unaffected The 
change.in E ( ^ ) and E(tan^ ) errors i s negligible with 
swimming and therefore the centre of track values have been 
used to calculate EMMSQ. 

The range of a track i s connected to i t s momentum as 
follows : 

ft - K p K 

where K i s a constant and n--= J.6 



99 

where L i s the length of track from the centre to the 
in t e r a c t i o n vertex, and P and P are the momenta at the 

v c 
vertex and centre of track respectively. 

f . M « t - r .... ( A . 2 ) 

i g i = * K ft. 

1ft .... ( A.J) 

JT(/P) • -£££) 

Now to evaluate the <frlP_ 
The change i n azimuth angle dp caused by moving a small 
distance d l i s given by s 
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where B i s the magnetic f i e l d . 

( A t - i ) = K fl$ 

if 

ft1* , 
\ y 
% 

This gives 

tfv - fie 

Rearrange 

— ft K 

-6 Kr"f M 
M 

' / r v 

- tic 

13 

K-l 
n - i /_ {>v lPv 

Using equations <L 2 and A.5 
for 



gives 

S * l u p J 

A l l the terms i n the expression f o r EMMSQ (eqn A.l) 
can now be evaluated i n terms of known variables. Each term was 

calculated by computer program and then squared, corr e l a t i o n 
between terms was taken to be zero, the sum of these 
squares was then taken to be the variance of the MMSQ and 
used i n the analyses outlined i n Chapters 5 and 6. See 
Chapter 5 f o r further discussion. 



102 

APPENDIX B 
THE £ V CHANNEL PRODUCTION ANGULAR DISTRIBUTION 

The production angular d i s t r i b u t i o n for the 
channel i s expressed, i n Chapter 6 as follows : 

cos 8£ i s unknown ; the known angles are cos and cos x, 
the angle between the <s?°and A° . To resolve t h i s problem ;an 
addition theorem obeyed by Legendre polynomials i s used. 
! f (&ir$i) and ( Gi , define two directions i n space 
such that £, + <St < 7T , and i f ^ i s the angle between them 
then t 

and the addition theorem i s that : 

l a ! + i / 

I n terms of the angles i n f i g 6.2 and 6.5 

• U ( ? + » ) . ' j 



and 

for m = 0 

yt,o (6; ft) . faLift^e) 

Therefore i n the ?i expression the contribution 
from m m o i s : 

for m = +n or -n then the contribution i s s 

which gives : 



Integrating.over p gives : 

Sir 
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APPENDIX C 
SAMPLE D.S.T. RECORD 

The record i s shown overleaf, i t i s only part of a record 
but i t i s s u f f i c i e n t to demonstrate the structure. 
The format i s :- word number, word contents i n three formats 
f l o a t i n g point, integer, and hexidecimal. 

Notes 
word 1 = Frame no. x 10 + event no. Integer 
word 2 = No. of hypotheses i n the record Integer 
Section A (Header) 
i ) hypothesis no. x 10 + no. i n f i t sequence Integer 
i i ) no. of constraints of f i t + % p r o b a b i l i t y I n t + f l . p t . 
i i i ) Missing Mass Squared to t h i s f i t F l . p t . 
i v ) no. of vertices (NV) , no of tracks (NT) Hex (packed) 
Section B (Vertex block f o r NV vertices) 
i ) , i i ) , i i i ) x, y, z vertex co-ordinates 
i v ) , v ) , v i ) E ^ x ^ E ^ y ^ E t z ) errors 
Section C (Track block f o r NT tracks) 
i ) a= charge* , b= mass code, c « beginning label, d= end label 
i i ) , i i i ) , i v ) l/p , 0 , tan X u n f i t t e d track variables 
v) , v i ) , v i i ) e\i/p),£[0 ),EttanX ) errors 
next 6 words f o r f i t t e d variables 
next 5 words fo r magnetic f i e l d components 
xix ) h a l f length of track (+100.0 i f continues i n t o Ne-H) 

* Charge =127 -ve, 128 neutral , 129 +ve, 0 unknown 

http://fl.pt
http://Fl.pt
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i 0. 00 00 124 0CO41 * 00GD3SA9 
•? O. i QC3Q0O31 

~ T 0. Q'oeV 210131 0 0 3 3 4 1 3 
4 4. 8601 1095623:j40 4 14 B E S T S 
5 0. 00 Oil 50397952 030 10300 

0. OOSQ 1310 7." Q00203G5 
7 " 2 . 9486 109 36108SU 4~i2F2'U"8'Q 
8 -4 . 6981 -1 (-5203 2343 C 1402B39 
9 23. 9892 I 10C8C9433 4 21 716D9 

to 0. 0 ti 01 18301S2641 3D6 77EG1 
1 I 9. 0001 1827729781 3D4IE975 
1.2 0. 0009 1043884625 3E3S6ft5l 
t 3 2. 92 41 1093585132 412EC8EC 
14 -4 . S642 - I C S 1759235 C14F6D7D 
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16 0. G001 1033213074 3D9594S' 
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23 0. 0 000 162 5-; 0 20 22 3D2DA6E6 
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26 5. 8280 1C9663 018S • 4.15P3FAA 
2? - 0 . 0104 -1637729773 BF2A8FM 
20 3. 3455 1894G27096 41358758 
29 0. 0 000 1026202949 3D2A9D45 
3 0 0. 0001 10271 11712 3D387D2C 
31 0. 0081 1059131791 3F21118F 
32 0. 0 0 37 1056073586 3EF26772 
33 1 . 000?' 1091568365 411002EE 
34 e. 9971. 10904 70381 40FF419E 
35 - 8 . OOOO -1124102247 DCFF8F9S 
36 - 0 . 00 00 -1122382001 8D19CF4F 
3? 14 . 9 6 20 1 1062 0 78 48 41EF646E 
3ti * * *i *•• «: ? »i * * ij: * Hi 2131165442 7FC701GZ 
39 4 . 62 04 1095363846 414 9EH0G 
40 a. 0647 10&8249914 4eai«603F 
41 0. 0 0 OQOOOGC? 
42 0 . 0036 1055523736 3EEA0396 
43 8. 0321 1C65?.9C2S7 3F839DF1 
44 - 1 . 0 800 -1055316032 CI IOC3OS 
45 4 . 6463 1095391055 4 14A574F 
46 6. 7148 105.5733538 4 6B6FAft2 
4? 5. 4 320 J. 39 521 49 09 4 156E97I 
48 0 . 0011 1044723450 3S4536Ff 
49 G. 0 004 1C4 185 2190 3E19671E 
50 6. 0211 1062633382 3 F 5 6 8 1 F E 
51 e. 0 0 37 145CO 35 3 10 3 E F 1 6 3 F f 
52 1. 0000 1 0 5 £ 5 6 7 6 16 41 ICO 3 BE 
53 1. 0 0 00 109156 7616 4 1 1 6 0CCt 
54 0. 0 0 
55 0. 0 0 0 00 0 0 'j 0 S 
?<:. fi . 1 767 1 0 7 6 7 3 6 3 £ 3 •1 .o?orr 
5? - 0 . 9*330 - 2 l 3 y ' j 0 ? ! i 6 8 . 
50 0. 0 >'» 4 3 1 OS 82661 12 3F 1 3 i> C G t 
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