
Durham E-Theses

A numerical comparison of commonly - used algorithms

for structural optimisation

Smith, Erling Aastrup

How to cite:

Smith, Erling Aastrup (1975) A numerical comparison of commonly - used algorithms for structural

optimisation, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/8203/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/8203/
 http://etheses.dur.ac.uk/8203/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

A NUMERICAL COMPARISON OF COMMONLY - USED

ALGORITHMS FOR STRUCTURAL OPTIMISATION

by

ERLING AASTRUP SMITH

A thesis submitted to the Faculty of Science

of Durham University at Durham in partial

fulfillment of the requirements for the Degree

of

Doctor of Philosophy

DEPARTMENT OF ENGINEERING SCIENCE

DURHAM
C u . " " .

1975 (- 1 M "

ABSTRACT

SMITH, ERLING AASTRUP: A numerical comparison of commonly-

used algorithms for structural optimisation. (Under the super

vision of WILLIAM CALVIN CARPENTER)

The thesis makes, a qualitative and a quantitative comparison

of algorithms used to solve now-linear structural optimisation

problems. Algorithms are categorised into linearization, feasible

direction and transformation methods. From each category, algorithms

are selected (by considering applicability restrictions, anticipated

computational effectiveness and efficiency, supplementary program

requirements and program development effort) for a numerical compari

son of computational effort. The algorithms chosen are:- the Method

of Approximate Programming, a Method of Feasible Directions and the

Sequential Unconstrained Minimization Technique. Newton's, Fletcher-

Powell's, Stewart's and Powell's methods are chosen for use with SUMT.

The algorithms are used In the study to minimize the weight of

eight test structures:- four pin-jointed plane trusses and four plane

stress plates, all subject to two load cases, member stress limits

and design variable limits. The finite element stiffness method was

used for structural analyses, function and derivative evaluations.

Details and FORTRAN IV program listings are given for the algorithms.

Estimates are developed of the relative computational effort

required by each algorithm in terms of the Central Processor Unit

(CPU) time required when an IBM 360/67 computer is used. Measure

ments are reported for each algorithm of the CPU time used on an

IBM 370/145 computer.

A comparison is made of the computational effort used by

each algorithm. Conclusions are drawn about the relative efficiency

of the optimisation algorithms and of the derivative algorithms.

it

TABLE OF CONTENTS Page

LIST OF ABBREVIATIONS tv

NOTATION V

LIST OF SYMBOLS USED THROUGHOUT THE TEXT vi

LIST OF TABLES via

LIST OF FIGURES vi i i

CHAPTER

1. STATEMENT OF THE PROBLEM 1

2. METHODS OF SOLUTION FOR THE PROBLEM 6

2.1 CI assIfication of NLP methods 6
2.2 Linearization methods 7
2.3 Feasible Direction Methods 10
2.4 Transformation methods 13
2.5 Unconstrained Optimisation Algorithms 16
2.6 One-dimensional search methods 17

2.7 Algorithms selected for comparison 19

3. DETAILS OF THE ALGORITHMS 20

3.1 Introduction 20
3.2 Method of Approximate Programming (MAP) 21
3.3 Method of Feasible Directions (.MFD) 24
3.4 Sequential Unconstrained Minimization

Technique (SUMT) 31
3.5 Newton's method 37
3.6 Fletcher-Powell's method 39
3.7 Stewart's method 40
3.8 Powell's method 43
3.9 One-dimensional search for the minimum of 0 . . 47
3.10 One-dimensional search for the boundary of

the feasible region . 53
3.11 Primal-Dual LP algorithm 56

4. EVALUATION OF FUNCTIONS AND DERIVATIVES 59
4.1 Functions and their derivatives 59
4.2 Stresses and their derivatives 61
4.3 Solution of the stiffness and derivative

equations 70

i i i

Page

5. COMPUTATIONAL EFFORT 73

5.1 Introduction 73
5.2 Effort used by the optimisation algorithms . . . 75
5.3 Effort used in evaluating functions 80
5.4 Effort used in evaluating derivatives 85
5.5 Total computational effort 92

6. TEST PROBLEM DATA 98

6.1 Description of the tests 9§
6.2 Test structure data 99
6.3 Optimisation algorithm data 106
6.4 Optimisation algorithm arbitrary coefficients . .110

7. TEST RESULTS AND DISCUSSION 136

7.1 Introduction 136
7.2 Computer results 136
7.3 Effort used by the function and derivative

algorithms 146
7.4 Effort used by the optimisation algorithms . . .148
7.5 Other results 153

7.6 Discussion" 155

8. CONCLUSION 164

8.1 Conclusions 164
8.2 Recommendations 166
8.3 Further research 167
8.4 Summary 167

9. LIST OF REFERENCES 169

10. APPENDICES 172

10.1 Results for 21-bar bridge 173
10.2 Computer program listing 174

LIST QF ABBREVIATIONS

CPU Central Processor Untt

FD •Finite Differences

FP Fletcher-Powell*s method used with SUMT

LP Linear Programming

MAP Method of Approximate Programming

MFD Method of Feasible Directions

Nl NewtonCO's method used with SUMT

N2 Newton(2)'s method used with SUMT

NLP Non-Linear Programming

NMW Near Minimum Weight

PO Powellls method used with SUMT

ST Stewart's method used with SUMT

SUMT Sequential Unconstrained Minimization Technique

UOA Unconstrained Optimisation Algorithm

V

NOTATION

a

A

a

A

a'

A'

a*

i *

fl*

V

I 2

b
w

1

t j

scalar or integer subscript

scalar

column vector

matrix

row vector or transpose of a

transpose of A

value of a at an optimum

value of a at an optimum

value of A at an optimum

vector of f i r s t partial derivative operators

matrix of second partial derivative derivative operators

ith component of V

p
i , j th component Qf V

vt

LIST QF SYMBOLS USED THROUGHOUT THE TEXT

t_ vector of design variables

F(t} objective function

f (t) constraint function
i

P number of design variables

w vector of weight coefficients

0" stress in member s for load case q
qs

cr minimum permitted stress in s for q
min qs

cr maximum permitted stress in s for q
max qs

t minimum permitted value of design variable j
min j

t maximum permitted value of design variable j
max j

L number of load cases

M number of members

VF(t) vector of f i r s t partial derivatives of the objective
~ function

Vf (t) vector of f i r s t partial derivatives of constraint
i function t

d search direction vector

J8(..) objective function for SUMT

vit

LIST QF TABLES

5.3.2 Computational effort for basic operations 82

5.4.30 Estimated function and derivative effort ratios 92

6.2.6 Loadings on the 21 bar bridge 105

6.3.2 Maximum number of algorithms iterations allowed108

7.2.1 Computer tests made 137

7:2.10 Results measured at the NMW 147

7.3.3 Measured function and derivative effort ratios148

7.5.1 Measured effort ratios to achieve NMW .153

7.5.2 Average number of function evaluations per one-
dimensional search 154

7.5.3 Measured algorithm-MAP effort ratios to reach
the NMW 155

7.5.4 Ratio of the number iterations required to reach
the NMW to the number of design variables 156

7.5.5 Ratio of the number of iterations required by an
algorithm to reach the NMW to the number required
by MAP 156

7.6.1 Estimated algorithm-MAP effort ratios to reach
the NMW when Lund's search is used 157

7.6.2 Estimated algorithm-MAP effort ratios to reach
the NMW when Lund's search and forward FD
derivatives are used 158

7.6.3 Estimated algorithm-MAP effort ratios to reach
the NMW for different values for the derivative-
function effort ratio 160

8.1.1 The algorithms listed in increasing order of
computational effort required 165

vtti

LIST OF FIGURES

Page

5.4.28 Estimated computational effort required to evaluate
functions and derivatives - trusses 90

5.4.29 Estimated computational effort required to evaluate
functions and derivatives - plates 91

5.5.13 Estimated computational effort required by the
algorithms to complete one iteration - trusses . . 96

5.5.14 Estimated computational effort required by the

algorithms to complete one iteration - plates . . . 97

6.2.1 Test structures - pin-joined plane trusses 100

6.2.3 Test structures - plane stress plates 101

6.2.5 Test structure - 21 bar bridge 103
6.4.1 Weight - CPU time and MAP coefficient a , 3 bar

truss 112

6.4.2 Weight - CPU time and MAP coefficient (X , 7 bar
truss 113

6.4.3 Weight - number of derivative evaluations and
MFD coefficients c » 3 bar truss 114

i
6.4.4 Weight - number of derivative evaluations and

MFD coefficients c , 7 har truss 115
i

6.4.5 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Newton's method, data 3b=3c=0.005 116

6.4.6 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Newton's method, data 3b=3c=0.001 117

6.4.7 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Newton's method, data 3b=3c=0.0002 118

6.4.8 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Newton's, method, data 3b=3c=0.00Q04 119

6.4.9 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Fletcher-Powell's method, data
3b*3c-Q.0Q5 120

tx

6.4.10 Weight - CPU time and SUNT coefficient c , 3 bar
truss: Fletcher-Powell's method, data
36*3cw0.0Ql 121

6.4.11 Weight - CPU time and SUNT coefficient c , 3 bar
truss: Fletcher-Powell's method, data
3h*3c=K).0QQ2 122

6.4.12 Weight - CPU time and SUNT coefficient c , 3 bar
truss: Fletcher-Powell's, method, data
3b*3c*Q.Q0Q04 123

6.4.13 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Stewart's method, data 3b-3c-Q.Q05124

6.4.14 Weight - CPU time and SUNT coefficient c , 3 bar
truss: Stewart's method, data 3b*3c=0.Q01 125

6.4.15 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Stewart's method, data 3b=3c=0.0Q02 126

6.4.16 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Stewart's method, data 3b-3c*0.00004 . . . 127

6.4.17 Weight,- CPU time and SUMT coefficient c , 3 bar
truss: Powell's methpd, data 3b=3c=0.005 128

6.4.18 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Powell's method, data 3b=3c=0.001 129

6.4.19 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Powell's method, data 3b=3c-0.0Q02 130

6.4.20 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Powall's method, data 3b=3c-0.00004 131

6.4.21 Weight - CPU time and Sl̂ MT coefficient c , 3.bar
truss: Newton's method, data Sb^c^O.OOlx^1""1 132

6.4.22 Weight - CPU time and SUMT coefficient c , 3 bar
truss: Fletcher-Powell's method, data=3b-3c=:
0.001x0.4W 133

6.4.23 Weight - CPU time and SUMT coefficient c , 3.bar
truss z Stewart's method, data=3b=3c=0.Q01x,4134

6.4.24 Weight - CPU time and SUMT coefficient c , 3.bar
truss: PowelTs method, data^b^c-O.QOlx^ 1-' 135

X

7.2.2 Weight - CPU time and algorithms, 3 bar truss . . .138

7.2.3 Weight - CPU time and algorithms, 7 bar truss, . . . 139

7.2.4 Weight - CPU time and algorithm* 13 bar truss . . . 140

7.2.5 Weight - CPU time and algorithms, 21 bar truss . . 141

7.2.6 Weight - CPU time and algorithms, A node plate . . 142

7.2J7 Weight - CPU time and algorithms:, 9 node plate . . 143

7.2.8 Weight ^ CPU time and algorithms, 16 node plate . . 144

7.2.9 Weight - CPU time and algorithms, 25 node plate . . 145

7.3.1 Measured computational effort required to evaluate
functions and derivatives-trusses 149

7.3.2 Measured computational effort required to evaluate
functions and derivativesrplates 150

7.4.1 Measured computational effort required by the
algorithms to complete one Iteration-trusses . . .151

7.4.2 Measured computational effort required by the
algorithms to complete one iteration-plates152

1Q.1..0 Weight - CPU time and algorithms, 21 bar bridge . . 173

ACKNOWLEDGEMENTS

The author would like to express his appreciation to

Dr. W. C. Carpenter* Ooyce E. Smith, Ms. E. V. White and Marjorie

McGrath Higgtns for their help in the preparation of this thesis.

The author also acknowledges the continued assistance of

Professors G. Higginson and W. A. Hamilton, the Universities of

Durham, England and of Maine, U.S.A. and the financial support

of the Science Research Council and of his wife, Joyce.

CHAPTER 1

STATEMENT OF THE PROBLEM

The engineering design problem is to find the optimum, either the

maximum or the minimum, of a function of one or more design variables

subject to equality and inequality constraints. Examples of engineering

design variables are heights, lengths or thicknesses and examples of

the function to be optimized, called the objective or merit function,

are mass, weight, cost or efficiency. The design is subject to con

straints, for example, upper and lower bounds on stresses and deforma

tions, called behavioural constraints, and upper and lower bounds on

the design variables, called side constraints. The engineering

problem can be stated mathematically as

minimize (or maximize) F(tJ ...1.1

subject to f . (t) > 0, i - 1,. . , R,,
i

where t is a P-vector of design variables t . , j = 1,..,P;
J

F(t.) is the objective function, and f.(t_) ^ 0 are the constraints.

Mathematical Programming methods find the optimum of a function

of several variables subject to equality and inequality constraints

and can be used on the engineering design problem. Wasiutynski and

Brandt̂ in 1963 reviewed the use of classical and contemporary tech

niques of Mathematical Programming in optimum structural design.

Since the early sixties, Sheu and Prager2 in 1968 and Schmit3 in 1969

have shown how electronic computation has allowed Mathematical

2

Programming methods to be used increasingly on structural

optimisation problems.

There now exist many suitable Mathematical Programming

algorithms, but they vary in the type of problem which they can

solve, in the computational effort they require and in their

effectiveness at producing an optimal solution. I t is desirable,

therefore, to predict which methods would be the most appropriate

to a particular problem or to a class,of problems. The following

work makes a comparison of commonly-used algorithms applied to a

class of structural optimisation problems. Important considerations

in the comparison of the methods are:

1. restrictions of applicability;

Typical restrictions on the type of problem a method could solve

would be requirements for linearity and convexity of the objective

or constraint functions.

2. effectiveness:

The effectiveness required of a method depends on the accuracy

required in the solution.

3. computational efficiency:

The computational efficiency of a method can be measured by the

amount of computer time and storage space required to solve the

problem.

4. requirements for supplementary programs:

The additional facilities required by a method could be the

evaluation of f i rs t or second partial derivatives of the func

tions, the solutions of sets of linear equations, of linear

3

programming problems, and of one-dimensional search problems.

5. effort for program development;

The effort for program development depends on the complexity of

.the method and of the supplementary programs required.

6. feasibility of intermediate sojutions:

For some problems i t may be difficult to construct a feasible

solution from an infeasible one, feasible intermediate solutions

are desirable, though not essential, in case of premature termina

tion of the optimisation process.

The above criteria are used in chapter * 2« to select methods to be

quantitatively compared in later chapters.

The class of problem considered is the minimization of weight

of certain structures subject to stress and design variable limits.

The structures considered are pin-jointed plane trusses and plane

stress plates. The design variables are, for the trusses, the har

cross-sectional areas and, for the plates, the thicknesses at nodal

points of the triangular finite element idealisation. Upper and

lower bounds are placed on the design variables . and on the

stresses in the structural memhers. The stress is taken as the axial

stress in each member for the truss problems and as the effective

stress in each constant stress finite element for the plate problems.

The optimisation problem for both types of structures can be stated

mathematically as:

minimize w 1 Jt

subject to a ^ a - a , q = l , . . , L , s = l , . . , M ,
min qs qs max qs;

t t t 9 J"""l*»«sP»
min j j max j

where

L is the number of load cases,

M is the number of members,

P is the number of design variables,

w is a P-vector of weight coefficients,

;fe is a P-vector of design variables,

<r is the minimum permitted stress in member s for
min qs

load case q,

<T is the maximum permitted stress in member s for
max qs

load case q,

<T is the stress in member s for load case q,
qs

t is the minimum permitted value of design variable j
min j

t is the maximum permitted value of design variable j
max j

Problem T.2 can be rearranged into th.e form of 1.1:

minimize w 1 t.

subject to (a - a) ^ 0,(a -a ^ 0,
max qs qs qs min qs

q = l , . . , L , s - l , . . , M ,

(t - t > 0, (t - t ^ 0,
max j j j min j

5

Problem 1.3, called a Non-Ltnear Programming (NLP) problem, has a

linear objective function suhject to non-linear behavioural constraints

and linear side constraints.

Chapter 2 considers methods available for the solution of problem

1.3 and selects methods, fo r comparison in later chapters. Chapter 3

gives details of the solution methods selected for comparison.

Chapter 4 describes the methods used to evaluate the objective and

constraint functions and their derivatives. Chapter 5 estimates the

computational e f f o r t required hy the optimisation, function and

derivative algorithms. Chapter 6 presents test structures used to

compare the optimisation algorithms and chapter 7 gives the test

results. A summary, conclusions, recommendations and ideas for

further research are presented in chapter 8. The appendices give

FORTRAN IV program l is t ings of the algorithms used in this study.

6

CHAPTER 2

METHODS OF SOLUTION FOR THE PROBLEM

2.1 . Classification of NLP methods.

There are many methods for solving the general NLP problem and

most can be included in one of the following categories:

1. linearization methods,

2. feasible direction methods,

3. transformation methods.

This classification is based on those of Jacoby, Kowalik and Pizzo^

and of Zoutendijk.

Linearization methods, solve the NLP problem using a sequence of

Linear Programming problems (LP problems) formed from the NLP problem.

Thus an i terat ion consists of two stages:

i . form a linear approximation at the current point, then

i t . solve the linear approximation by LP methods to give a new

solution point.

Feasible direction methods search within the feasible region for

an optimal solution along a sequence of 'usable feasible' directions

By def in i t ion , a search along a 'usable feasible 1 direction w i l l , for

minimization problems, reduce the objective function but maintain

f ea s ib i l i t y . Thus an i teration consists of two stagesi

i . form a usable feasihle direction,

i i . search along the direction for a new solution point.

7

Transformation methods solve the NLP problem indirectly by
forming a d i f fe ren t , but related, NLP problem. The transformations
are such that the solution of the transformed problem coincides with
that of the original problem. The transformed problem may often,
but not always, be solved as a sequence of problems and may be
constrained or unconstrained, depending on the transformations used.

2.2 Linearization methods.

Linearization methods linearize the objective and constraint

functions at the i n i t i a l po>tnt. The resulting LP problem is solved

by an LP algorithm giving a new solution point. Next, the problem

is to ta l ly or par t ia l ly relinearized at the new point and the new LP

problem is solved. This procedure is continued unti l the solutions

converge to the optimal solution.

A non-linear objective function can be linearized with, a

truncated Taylor's series about the current point:

F(t) = F(t) + (l F (t)) ' (t - t) . . .2.2.1

Similarly, the constraints can be linearized with truncated Taylor's

series:

f.CD = f.GD + (i f . (I)) ' I t - I) - 0, i = l , . . , R , . . .2.2.2
1 1 i

where T is the design vector at the current point,

j f f j (t) ,is the vector of f i r s t partial derivatives of the

i t h constraint function with respect to the design

variables.

8

I f the original constraints form a convex region, the linearized

constraints completely enclose the feasible region. If,however,

some of the original constraints are non-convex, then the linearized

constraints w i l l cut o f f some of the feasible region in which the

optimal solution may l i e . 5 Algorithms must be able to prevent

non-convex constraints from slowing or stopping convergence to the

optimal solution of the original prohlem.

Cutting Plane methods (Kelley 6

 a n c | Cheney and Goldstein^) retain

most of the original linearizations of the constraints at each inter

mediate solution. Only the most active convex constraints are

relinearized and the new linearizations are added to the set of

constraints. Non-convex constraints are relinearized at each i te r

ation with the new linearizations replacing the old linearizations.

A f u l l evaluation of f i r s t partial derivatives is not required at

each i terat ion since only a subset of the constraints is relinearized.

However, as the method proceeds, the increased problem size increases

the computational e f fo r t required. Ill-conditioning can arise as

more linearizations of each constraint are added.

The Method of Approximate Programming, MAP, (G r i f f i t h and

Stewart) , discards a l l the old linearizations at each iteration and

relinearizes the entire constraint set. Full evaluation of f i r s t

partial derivatives is required at each i teration, but the problem

does not increase in size as the method proceeds. MAP does require

additional constraints which l i m i t the size of step that can be taken

from the current solution to a new solution. These additional

constraints are of the form:

where S^is a positive number preventing large changes in the

design variables.

For problems with side constraints, the move l i m i t constraints

do not add to the number of constraints since for each design vari

able one of the upper bound constraints (1 side and 1 move l i m i t

constraint) and one of the lower bound constraints (as above) w i l l

be redundant. The move l i m i t constraints and complete relinearizations

are intended to provide convergence for both convex and non-convex

problems although this has not been proved5. Possible il l-conditioning

is not as severe as on the cutting plane method since each constraint

is represented by only one linearization. Intermediate solutions may

be infeasible.

Advantages of linearization methods are that functions and f i r s t

partial derivatives are evaluated no more than once per iteration

and one-dimensional searches, which require a number of function

evaluations, are replaced by e f f i c i en t LP methods. However, con

vergence may be slow when the optimum of the NLP problem does not

l i e at a vertex of the constraint surfaces or when non-convex

constraints are present. 5

Both the cutting plane method and MAP appear to be apposite

to the problem. However the cutting plane method requires addi

tional logic to ensure that old linearizations of non-convex con

straints are replaced at each i terat ion. The computational e f fo r t

to solve the LP problems increases as optimisation proceeds although

10

some e f f o r t can be saved since f u l l derivative evaluations may not

be required. When MAP is uaed, the problem does not increase in

size but a f u l l f i r s t partial derivative evaluation is required.

The main d i f f i c u l t y with. MAP is the choice of 6,. On balance, i t
k

appears that MAP is l i ke ly to be more e f f ic ien t than the cutting

plane method and since fewer d i f f i c u l t i e s were anticipated, MAP was

selected for comparison with other NLP methods.

2.3 Feasible direction methods.

Feasible direction methods explore the feasible region by

searching along directions which reduce the objective function while

maintaining f eas ib i l i t y . From the i n i t i a l point a search direction

is found. The design is changed along this search direction unti l

either a minimum is found or unt i l a constraint is encountered. At

the new solution point a new search direction is determined and the

design is changed by moving along i t . A search direction through an

intermediate solution point must not violate any constraint for small

moves nor allow the objective function to increase. Thus, i f T is

an intermediate solution point and I are the indices of the
a

constraints active at t , then:

f , (t) = 0 , i I , . . .2.3.1

Expanding such constraints about T using a truncated Taylor's

series gives:

f t (t) - f t (t) + Clft(I))'Ct - I) . . .2.3.2

n

Let d be the search direction through I and o(be a positive scalar,

then a new design lying along d_ is given by:

t = t + oCd , ...2.3.3

Substituting equations 2.3.3 and 2.3.1 in equation 2.3.2 gives:

ftCS) = • C (I f 1 (t } } , d , . . .2.3.4

Similarly for the objective function:

F(t) * F(t) + oCCTf(t)) 'd , ...2.3.5

The new search direction w i l l be acceptable i f

f t (t) * 0 and F(t) ^ F © , ...2.3.6

or

- df t(S)'d * 0 , i * l f t , . . .2.3.7

+ (V F ©) ' d * 0 .

Conditions 2.3.7 are the conditions for a new search direction to be

'usable feasible ' . Among the algorithms which satisfy conditions

2.3.7 are Rosen's gradient projection method9, Gellatly's method10

and Zoutendijk's methods.^

In the gradient projection method, the new direction, d, is taken

as the solution of the equality constrained probiTem:

minimize (I f®) 1 ! ...2.3.8

subject to - (V f . ®) ' d « 0 , i -c I •— i — a
d'd = 1 .

This problem can be solved using Lagrangean techniques. I f the

constraints are non-linear the direction may leave the feasible region

immediately so that a correction procedure must be applied to maintain

f ea s ib i l i t y .

12

In Gellatly's method, the new direction, d, is' taken as the

solution of the equality constrained problem:

(l F (t)) ' d = 0 , ...2.3.9

- (i f , ©) ' ! = 1 , i «£. I i a

F i rs t , the design is moved into the feasible region along the new

direction. Next, the objective function is reduced by moving the

design along the direction of the gradient of the objective function.

In Zoutendijk's method, the new direction, d, is taken as the

solution of the problem:

maximize y ...2.3.10

subject to (lE(D)'d + y * 0 *

-(If © I ' d + c y 6 0 > U I , „ . a i i
and _d is normalized,

where ĉ are positive coefficients which can be taken as unity for

non-linear constraints and as zero for linear constraints. This

problem can be formulated as a LP problem by a suitable normalization

of d.

With the exception of the gradient projection method, feasible

direction methods are suitable for the general NLP problem. The

gradient projection method is designed for linearly constrained

problems, although in combination with a transformation method

(section 4) i t can be adapted to solve the NLP problem. Gellatly's

and Zoutendijk's methods are directly applicable to the NLP problem,

and hence the gradient projection method wi l l not be considered

further in this study.

13

For structural problems of the type 1.3, i t w i l l be shown that
the major computational e f f o r t in determining a search direction is

the computation of f i r s t partial derivatives. Thus a useful measure

of computational efficiency is the number of searches required for

convergence to fche optimum. In Gellatly's method, only.alternate

searches reduce the objective function, whereas in Zoutendijk's

methods every search reduces the objective function. I t seems l ikely

that Zoutendijk's method w i l l converge more quickly than Gellatly's

method. Accordingly, a method based on the method of Zoutendijk was

selected for comparison with other NLP methods.

2.4 Transformation methods.

Transformation methods reduce the degree of d i f f i c u l t y of the

constrained NLP problem by forming a simpler, but related NLP problem.

Depending on the transformation used, the transformed problem may be

solved as a sequence of constrained or unconstrained problems.

Transformation methods are of two types: interior point methods and

exterior point methods. Interior point methods generate a set of

feasible intermediate solutions which converge to the solution of the

original problem. Because exterior point methods generate a set of

infeasible intermediate solutions, they w i l l not be considered for

the solution of problem 1.3.

The Sequential Unconstrained Minimization Technique (SUMT) is

an interior point method developed by Fiacco and McCormick^. ^Fbr

the SUMT, a new objective function is formed by adding to the

original objective function a penalty function (a function of the

14

slackness of the constraints) weighted by an arbitrary scalar.

Thus i f the original problem is written as:

minimize F(t) subject to f . (t) * 0 , i=l , . .»R ; . . .2.4.1

then the SUMT formulation i s :

solve the sequence of problems:

minimize 0 (t , j) = F(t) + { k P (f . (t) , i = l , . . , R) . . .2.4.2

for k ~ l , 2 , . . .

where {) (. . .) is the objective function,

^ is an arbitrary scalar, with » and

P(. . .) is the penalty function.

There are two d i f f i c u l t i e s with SUMT: choice of a suitable value

f o r ^ - j , and choice of a suitable rate of change f o r f ^ . These can

be overcome by using the 'Q' transformation of Fiacco and McCormick12;

the formulation i s :

solve the sequence of problems:

minimize Q(t,k) = V f F ^ t } - F(t) } + P (f t (t) , i = l , . . , R) . . .2 .4.3,

where Q(t,*k) is the objective function for the kth i terat ion,

F k - 1 (t) i s the value of F(t)

at the optimum of Q(t,k-1).

This formulation was not included for comparison with other NLP methods

but in chapter 8 is recommended for further research.

The above SUMT transformations do not take advantage of useful

properties such as the possible l inear i ty of some of the constraints

or of the original objective function. Fiacco and McCormick12 suggest

that the linear constraints are not included in the penalty function.

15

The modified SUMT problem i s :

solve the sequence of problems;

minimize 0(t ,e) = F(t) + ^ p(- f . (i) , i 4 ^)

subject to f ^ t) *Q , i-Clz , . . , . .2.4.4

for k=l , 2 , ,

where are the indices of the non-linear constraints , and

I are the indices of the linear constraints.

Each "(?(.•.) in problem .2,4.4 can be minimized by a linearization or
5

a feasible direction method. Although the modified SUMT method was

not used in this study, i t is recommended for further research.

The SUMT formulation of 2,4.2 was chosen as the transformation

method to be compared with other NLP methods on problem 1.3. There

are two popular penalty functions used with formulation 2,4.2:

R P(-"-) = Y2 (1 / (f t (t))) , . ..,2,4.5

1=1

R

. 2. P C -) = J 2 (-log(f . (t))) , . . .2.4.6
i -1

Since the evaluation of ' log ' requires more computational e f fo r t

than a division, a penalty function similar to2.4.5 was selected

for use with SUMT. The choice of suitable unconstrained optimisation

algorithms for use with SUMT is made in section 5 of this chapter.

16

2.5 Unconstrained Optimisation Algorithms.

Unconstrained Optimisation Algorithms (UOA) find the values for

design variables which optimize an objective function of the var i

ables. Thus, UOAs are suitable for f inding, within the feasible

region of the original NLP problem, the minima- of the transformed

objective functions of the SUMT. Among the most e f f ic ien t UOAs

are those which search along a sequence of directions unti l an

optimum is found. Such UOAs have two stages?

i . f ind a search direction, then

i i . f ind the optimum along the search direction.

The two stages are repeated unt i l the global optimum is found. An

important cri terion for choice of one of the UOAs is the computational

efficiency of the method. In optimising the problems of the type 1.3,

the major computational e f f o r t used is that of evaluating the functions

and, i f required, their derivatives. Thus the computational e f fo r t

used in optimizing the 0 (t , () depends upon the number and type of

evaluations required to f ind the search direction (which is dependent

on the UOA) and to f ind the minimum along the search direction (which

is independent of the UOA).

UOAs can be categorized by whether they require in the determina

tion of their search directions the evaluation of:

1. functions, their f i r s t and second partial derivatives, or

2. functions and their f i r s t partial derivatives, or

3. functions only.

I t w i l l be shown in a later chapter that derivative evaluations

require much more computational e f f o r t than function evaluations.

17

Therefore, derivative methods w i l l be computationally competitive

with non-derivative methods only i f they require correspondingly

fewer one-dimensional searches to f ind the optimum than the non-

derivative methods require.

A number of numerical comparisons of UOAs13, 1 4 have shown

that among the most e f f i c i en t methods are those which generate a

sequence of conjugate directions or use second derivatives. Accord

ingly, the following UOAs to be used with SUMT were selected for

comparison with other NLP methods:

1. Newton's method with f i r s t and second derivatives; 1 5

2. Fletcher-Powell's method with f i r s t derivatives; 1 5

3. Stewart's method with f i n i t e difference f i r s t derivatives; 1 7

4. Powell's method with no derivatives. 1 8

2.6 One-dimensional search methods.

Many NLP methods solve the NLP problem by moving the design

point through design space along a sequence of search directions

unt i l the optimal solution is found. Such methods consist of two

stages:

i . determine a search direction - the direction-finding sub-problem,

then

i i . determine a move along the search direction - the searching

sub-prohlem.

The searching or one-dimensional search sub-problem finds the move

to the boundary of the feasible region and/or the move to the minimum

of the objective function. Thus the one-dimensional search problem

can be written as:

18

i f t = t + oCd, f ind the t* » t + oC*d .. .2.6.1

such that either

1. t* lies on the boundary of the feasible region, or

2. t* minimizes the objective function,

where ~t is the best design point on the previous search,

d is the search direction through T and

oCis a scalar specifying the move along d.

Interval methods or point approximation methods may be used to

perform one-dimensional searches. Interval methods f ind an interval

in which the move «c* is known to l i e . An interval is chosen. I f

«C* is not bounded, the interval is expanded. When «<* is bounded,

the interval is reduced unt i l the prescribed accuracy is achieved.

There are many interval methods but methods based on the Fibonacci

numbers or on the Golden Section converge to a prescribed accuracy

in the smallest number of i t e ra t ions .^

Point approximation methods estimate the move, oc*, by poly

nomial approximations. The new point is used in a succeeding approxi

mation for oC*« The process is repeated unti l successive estimates

converge to within the prescribed accuracy. Despite the guaranteed

rate of convergence of Fibonacci and Golden Section searches, point

approximation methods generally converge more quickly. Powell^

suggests f i t t i n g a second-order polynomial te three function values

along the search direction, while Davidon^0 f i t s a third-order

polynomial to two function values and the two corresponding directional

derivatives. Davidon's method usually requires fewer approximations

than Powell's method. I f , however, a derivative evaluation requires

much more computational e f f o r t than function evaluation, Davidon's

method w i l l not be as computationally e f f ic ien t as Powell's method.

A one-dimensional search method based on that of Powell using a

second-order polynomial was chosen for use in the solution of the

structural problem 1.3.

2.7 Algorithms selected for comparison.

The algorithms selected for comparison in later chapters are: 1

1. the Method of Approximate Programming (MAP) - a linearization

method,8

2. a method based on Zoutendijk's - a method of feasible directions,

(MFD)1 1.

3. the Sequential Unconstrained Minimization Technique (SUMT) - 1 2

a transformation method, used in conjunction with:

i . Newton's methodJ 5

i i . Fletcher-Powell's method, 1 6

17
i i i . Stewart's method, and

I P

i v . Powell's method.1

Of the above methods only Powell's and Stewart's methods do not re

quire the evaluation of expl ic i t f i r s t partial derivatives. Newton's,

method requires the evaluation of second partial derivatives. Al l

the methods except MAP require a one-dimensional search algorithm.

MAP and Zoutendijk's method of Feasible directions require a Linear

programming algorithm.

The following chapter gives further details of the algorithms

and of the modifications required to solve the structural problems
1.2 and 1.3.

20

CHAPTER 3

DETAILS OF THE ALGORITHMS

3. Introduction.

Chapter 1 introduced the structural problems to be solved and

chapter 2 selected methods for solving these problems. This chapter

gives details of and modifications to the selected algorithms to

handle the structural problems.

The general NLP problem was stated in chapter 1 as:

minimize F(t} ...3.1.1

subject to f (t) * Q , i=n».. ,r
i

and the structural problem to be solved was stated as:

minimize w'jb ...3.1.2

subject to * «** - s
min qs qs max qs

q=l»..,L , S-1....M 9

t * t * t
min j j max j

j^ls••» P »

or:

minimize w'jt ...3.1.3

subject to 0 ^ (<T <r) »
max qs qs

0 * Ccr - <r) ,
qs min qs

q=l 9 . . ,L , s - l , . . ,M »

0 * C t - t) ,
max j j

0 * (t - t) »
j min j

J"~l a . . »P .

21

3,2 Method of Approximate Programming (MAP).

As described in chapter 2, MAP'forms a sequence of linear prob

lems obtained from the NLP problem by linearizing all the non-linear

constraints at intermediate solutions. A set of 'move limit' con

straints are added to the constraints of the NLP problem to aid

stability and convergence of the algorithm. The MAP algorithm can

be stated as:

i . select an initial design point;

i i . calculate the f i r s t partial derivatives of all the non-linear

constraint functions at the current design point;

i i i . linearize the objective function and the non-linear constraints;

iv. form the 'move limit 1 constraints;

v. solve the resulting LP problem using an LP algorithm;

v i . form a new design point from the solution of the LP problem;

v i i . terminate i f the new. and old design points and objective

function values converge to within the prescribed accuracy;

otherwise go to step 11.

The general LP problem is of the form:

minimize c_ ' x. ...3.2.1

subject to A x. - k and 0_ - x. ,

where x is the vector of variables,

£ and ID are vectors of constants,

0. is the null vector, and

A is the matrix of coeffIcients.

22

The objective function of the structural problem 3.1.2 is alraa'dy
linear and does not require linearization for the LP problems. The
size of the LP problems can be reduced by combining the linear move
limit constraints with the linear side constraints:

I f = oC(t - t) , (K oiC-\ % ...3.2.2

j max j min j

is the move limit on the jth design variable,

then the move limit constraints can be written as:

t - f c * t * t + 4 * j=U..»P , ...3.2.3
0 i j j i

where TJ is the value of the jth design variable at the
j

current solution point.

The constraints 3.2.3 can be combined with the side constraints

of 3.1.2 to give:

(t̂ *) = Maximum(t , T - &) - t and ...3.2.4
min j j j j

U
t * Minimum(t , t + S) = (t) , j= l 9 . .»P
j max j j j j

or

(t) « t « (t) , d^l»..»P , .3.2.5.
j J j

The total number of constraints in the LP problem can also be

reduced by redefining the LP variables thus:

L
tt = (t - t) , , . . , P , ...3.2.6
j j j

23

Hence constraints 3.2.5 become:

U L
0 * tt * (t - t) , j= l , . . ,P ..,3.2.7

J J i

The non-linear behavioural constraints in problem 3.1.2 are

linearized by expanding in a truncated Taylor's series the constraint

functions about the current solution, T :
<T = 5" + (175-) ' (t - I) ...3.2.8

qs qs qs

Since ior / i t t =iir / i * t
qs/ j qs ' j , then

CT = <T + (7?-) 1 (tt - tt) ...3.2.9
qs qs qs

= S" - (Iff) 'tt) + (IS-) 'tt ...3.2.10
qs qs qs

or

<T * ft t (15- }'tt ...3.2.11.
qs » qs qs

Equation 3.2.11 substituted into the non-linear constraints of

problem 3.1.2 gives the linearized constraints:

or M | 3 + & r)'tt) * «"
min qs 1 qs qs max qs ...3.2.12

hence

- (Vfr }'tt * (B - (T) and
qs qs min qs

+ (VBr)'tt < (<r - 6) ...3.2.13

qs max qs r q s

which are linear functions of the LP variables, tt. Rearranging

substituting equations 3.2.6 into the objective function of problem

3.1.2 gives
L

w't = w'tt + w't ...3.2.14

24

Hence the LP approximation of problem 3.1.2 at Jt is:

minimize w'tt + (W'tL) , 3.2.15

subject to
- (I ?)'tt * (p - v } ,

qs qs mtn qs

+ ttr) 'tt « (r - f t) ,
qs max qs r q s

q=l 9 . . ,L , 1».-»M

and U L
tt ^ (t - t)
i J i

0 tt
3

S • • 9 P

where tt » j-1
j

9 • • » P are the LP variables.

Problem 3.2.15 is of the form 3.2.1 and can be solved by the LP

algorithm described later in this chapter. Suitable values for o(

in 3.2.2 are chosen in chapter 6. The FORTRAN IV program listing

of the LP algorithm used in this study is given in the appendices.

3.3 Method of Feasible Directions (MFD).

Feasible direction methods search within the feasible region for

an optimal solution along a sequence of usable feasible directions.

As.described in section 3 of chapter 2 a usable feasible direction

w i l l satisfy the following conditions:
1 o , i -e r (TP ©) ' d

4 0 + (V F ®) ' d

3.3.1

25

wherte the set I are the indices the active constraints,
a

The algorithm for Zoutendijk's^ method of feasible directions

can be stated as:

i . select an initial feasible design point;

i i . search down the negative of the gradient of the objective

function until a minimum of th.e objective function or a

constraint is found;

i i i . evaluate the f irs t partial derivatives of the functions;

iv. form the direction finding problem:

maximize y 1 ...3.3.2

subject to (IF(I))'d + y - 0 ,

- d f t ©) , i + V * 0 • * I f t .

d is normalized ;

v. solve the direction finding problem;

vi . test the direction for acceptability;

v i i . i f the direction is acceptable then search along i t until a

minimum of the objective function or a constraint is found,

then go to ix;

v i i i . i f the direction is unacceptable then reduce the number of

constraints in the set I and go to iv;
a

ix. terminate i f the new and the old design points and

objective function values converge to within the prescribed

accuracy; otherwise go to i i i .

By a suitable normalization of d, the direction finding problem can

be formed as an LP problem. In the direction finding problem, the

arbitrary coefficients can be set to unity for the non-linear

26

constraints and to zero for linear constraints. Zoutendijk tests

the acceptability of the search direction by examining the value of

y . By including in the set l & all the constraint functions such that

0 4 f j lS) - £ > ...3.3.3

and assuming that c - 1 for the non-linear constraints, then the
i

search direction is usable feasible if:

*~ y ...3.3.4

Test 3.3.4 can be obtained by considering equations 2.3.1 to 2.3.7

and the assumption that the search direction is normalized such that

«C= 1 is a meaningful move along the direction. The f irs t order

change in F(t) and f^(t) for a unit move along d_ is given by:

F(t) - F(t) = (lF(t))'d ...3.3.5

f 4 (t } - ;f.(t) = (Vf (tJJ'd ...3.3.6
1 i ~ i

But from 3.3.2:

y 1 - (lF(t))'d ...3.3.7

and

/ * + (If.Ct))'d , i f c.=l , * ...3.3.8

Thus

i f y >

then

0 I 6 * f (t) - f^(t) ...3.3.9

0 ^ F(t) - F(t) ...3.3.10

27

therefore

£ * f (t) ...3.3.11
i

and

F(t) ^ F © ...3.3.12.

Therefore the direction is usable feasible. I f the direction is not

acceptable, then £ i s reduced and the direction finding problem is

reformed.

Since the ĉ are not dimensionless, the choice of values of

unity for the non-linear constraints may not be the most computa

tionally efficient. Furthermore, the test of acceptability 3.3.4

can be incorporated into the direction finding problem. Hence the

following formulation of the direction problem was used in this
study:

the direction d̂ is taken as the solution of the problem

maximize y ...3.3.13

subject to ((i F (t)) ^ / | A £ * l + y * 0

((- I f t C S J ' i / l ^ M + <ty ^-Vl*f|l» i -e V '

and id is normalized

where

c.. are dimensionless scalars, = 0 for linear constraints, and

>0 for non-linear constraints,

A.F* is the largest possible change in F(t) for a unit move along

any normalized d through If and has units of F(t) , and

28

Af* is the largest possible change in f . (t) for a unit move,
i T

along any normalized _d through t and has units of f^(t).

I f y - £ , where ^ is a very small positive number, then LP problem

3.3.13 has no feasible region. In this case, 6-is reduced and the

direction finding problem is reformed.

The values A F * and Af* depend on the normalization of the
i

search direction, d. Zoutendijk suggests a number of possible

normalizations but some of them require that certain modifications

be made to the LP algorithm. The following normalization used in

this research does not require modifications to the LP algorithm:

d is normalized such that - D ^ d ^ + D , j=l , . . ,P ...3.3.14
j

Hence the largest possible changes in F(t) and f . (t) for a unit move

along any normalized 6 through T are:

A F * = D) | V F © | | T = | V F (S | ...3.3.15
j , - • —

A f * * D
i

P 1 I
Vf,(t) * D C Tf (t) ...3.3.16

1 I T j * l t I
21

where subscript T denotes the 'taxicab' normalization defined by

equations 3.345 and 3.3^:6.

Pooblem 3.3.13 can be rearranged and combined with normalization

3.2.14 to give:

29

maximize y ...3.3.17
subject to (IF©)'d + l&F*\y * 0 *

- (If .Wi 'd + c,fef*|y , i I ,
i ~ * r r a

d ^ D ,
j

j

Problem 3.3.17 can be solved by an LP algorithm. The total number of

constraints can be reduced by redefining the LP variables thus:

dd. = (d + D) , j=0,..,P ...3.3.18

hence

maximize y ...3.3.19

subject to (J F (i)) l i ! + \tf*\y * D £ (W(t))

- (IfiCSJ'dd + c \&f*W * D 2 Qf ©) - £ , 1 ^ 1
1 XX j=l 1 a

0 * dd. ^ 2D , j « l , . . , P
J

To prevent zig-zagging hetween a subset of the constraints, Zoutendijk

suggested that the set I should incorporate the indices of those
a

constraints encountered on some of the previous iterations. Thus in

problem 3.3.19, I is formed from the union of the two sets
a act

and I which are defined by:

I = the set of indices for which 0 < f (I) ^ £ ...3.3.20
act i *"

I = the set of indices of the constraints which have been
rem

encountered more than once ...3.3.21

hence

30

I = (I)U(I) ...3.3.22
a act rem

I f the seared direction produced in the direction finding problem is

rejected, then I is emptied and £ t s halved or reduced so that at
rem

lease one index remains, in I The set I is reformed and a new
act a

direction is determined. I is updated on succeeding iterations.
rem

To solve the structural problem 3.1.3 by the formulation 3.3.19,

the following quantities are required;

V F (t) and VT (t) , i - £ l .

i a

Since F (t) - ' w ' t 5 ...3.3.23

f (t) = (ir - cr) ,
i max qs qs

(<T - (T) ,
qs min qs

C t - t) ,
max j j

or (. t - t) ,
j min j

VFCt) = w

then
l f ' (t) . * >Icr » ...3.3.24

i qs
:+!<r

qs

-e' »
j

or +e ,
j

where, e is the j t h coordinate direction vector,
j

31

The algorithm for the.feasible direction method used to.solve.the

structural problem 3.1.3 can be summarized hy the f o i l owing:

i . form an i n i t i a l feasible design point;

i i . search, down tfie gradient of the objective function unti l a

minimum is, found .of .until a constraint is found;

i i i . evaluate f i r s t partial derivatives of the functions;

i v . form the direction finding problem 3.3.19 incorporating

equations 3.3.15, 3.3.16, 3.3.18, 3.3.20, 3.3.21, 3.3.22, .

.3,3.23 and 3,3.24;

v. solve the direction finding problem;

v i . i f y - £ , where 6 is a small positive number, then
m m

reduce r-and go to i v ;

v i i . otherwise, search along the direction for a minimum of the

objective function or for a constraint;

v i i i . terminate i f the new and old design points and objective

function values converge to within the prescribed accuracy;

i x . otherwise go to i l l .

Suitable values for the dimensionless coefficients c are selected
i

in chapter 6. A FORTRAN IV program l i s t ing of the above algorithm

as used is given in the appendices.

3.4 Sequential Unconstrained MlhimizatlonTechnique (SUNT).

As described in chapter 2, the SUMT is an interior point trans

formation method. A sequence of unconstrained objective functions

(formed from the original objective function and penalty functions)

is minimized unti l the minima converge to within the prescribed

accuracy. The SUMT algorithm can be stated as:

32

i . select an i n i t i a l feasible design point;

i i . form the transformed objective function 0(t,p }, k=l;
~ c k

l i t . minimize (8(t,p);
• k.

i v . terminate i f the new. design point is satisfactory; otherwise

go to v;
v. form the new transformed objective function)Ji(t,p) ;

c k+l
v i . estimate the minimum of J)(j:>p) by extrapolation;

^k+1
v i i . go to iu,vvitti lc*\c+l }

For the reasons given in chapter 2, the o^ective functions used

in step i i and v are similar to the. form:

r .
..3.4.1 0(t ,p) = F(t) + £ (Z l (l / (. f (t))))

\ . k. i= l i

The sequence of values for £ are determined from:

P = c a , Q < c O 3.4.2
v k+1 ^k

Equation 3.4.2 requires the v a l u e s a n d the coefficient c . The

scalar P is. often determined such that the weighted penalty term

is a predetermined proportion of the original objective function at

the i n i t i a l design point:

{ a . P ^ F © / P C f ; (D i t r 1 i . . . r r) j ...3.4.3

Typical values for p are .01 50. However the efficiency

and r e l i a b i l i t y of such an approach is dependent upon the i n i t i a l

design point. I f the i n i t i a l point is close to one or more of the

constraints, £ given by equation 3,4.3 may be too small; alternatively

33

i f the i n i t i a l point is not close to any of the constraints, g
' ' ' . 1

may be unnecessarily large. Fiacco and McCormick suggest that a

'natural 1 choice for would be given by the £ that minimizes the

magnitude of the gradient of; f at T , so that T is close to the

minimum of 0(t»^.}. Such a value o f £ could,during the f i r s t

SUMT iteration,reduce the computational e f fo r t used but also reduce

the amount by which could be decreased. Nevertheless, the

Fiacco and McCormick value for p was used in this study and can be

obtained from the following:

le t (.0 = F + P P) « (J l (t , e) = F(t) + P P (f . (t) , i = = l , . . . , r))
V 1 V l V l 1;

. . .3.4.4

where t is the current (i n i t i a l) design,

...3.4.5 then 10 = ' VF + o VP
* 1

hence £ is given by the £ such that Vj3'|j3 is a minimum.

But since

VP' W = CVP + p ' VP) ' (VF + a VP) ...3.4.6
v l ~ c l ~

then
2

W 13 = : IP ' l f 7 + 2 * (VF ' VP) + p (TP 1 VP)
c l v 1 " ~

...3.4.7
Differentiating equation 3.4.7 with respect t o g gives;

dClp'I^/dp = 2(VF'VP) + 2p (iP'lP) . . .3.4.8.
v l 1

V0'V0 has a minimum value when the l e f t hand side of equation 3.4.8

is equal to zero; hence

£ = (-IF'1P)/(1P'1P) . . .3.4.9.

34

The minimum value that Vjk'VP can have is zero; hence from equation

3.4.7:

/ 2
C-IF'IP) ± V (V T F) - (IF'IF) (IP'IP)

£ * _ _ _ ...3.4.10

1 (VP TP)

In this study, the value for was determined using equation 3.4.10.

If the quantity under the root sign is, negative, then the value for £

was determined from 3.4.9. If the value for is not positive, for

example when IF'IP - d» then £ was determined from equation 3.4.3.

An efficient choice for the coefficient, c * in equation 3.4.2,

is. dependent on the accuracy of the search and on the number of

unconstrained minimizations attempted. Suitable values for c are

determined in chapter 6.

The algorithms used for minimizing the sequence of 0(. .) are

detailed in later sections of this chapter.

Preliminary work for this research and other studies^'23 \ n (\ \^

cate that computational savings of approximately 30% can be made by

incorporating an extrapolation technique into SUMT as in step vi

of the algorithm stated above. The technique used in this study is

as follows:

i . f i t a Lagrangean polynomial through the previous minima ;

i i . predict the minimum of the new objective function using the

polynomial ;

i i i . search for a minimum along the direction connecting the current

design point to the predicted minimum design point ;

35

iv. proceed with the unconstrained minimization from the new point.

OA

Using a Lagrangean polynomial, the value of a function y(x) can

be determined at any value of x as

y(x) = X J (U x) Kx)) > ...3.4.11
n+1 k=0 k. n+1) k

where

\ I TT (x - x;
' i^l tc i

1 (x) - TT (x
k n+T- i*l n+1 i / TT (x - x)3.4.12.

i^k

Hence the design point at the minimum of the new objective function

can be estimated from the following;

let t*(p) be the estimate the jth design variable at the
j S+l

minimum of the objective function;- j3(jt,p) , and
n+1

let t*(p) be the design of the jth design variable at the
0 k

minimum of the objective functions P(t,p) , then

t*(p } = S (1 (p } t*(p)) , ...3.4.13,
j Sn+1 P i k. cn+l j c k

where

1 (p) • T T (P - p) / n
k Si+l i=l ^n+1 M / I T (P - P)

i?«k / i=l ^k M
• • o 3 • 4 • "14 <

k-1
But, since 0 = c p ...3.4.15,

^ k VI

then

n n i-1 k-1 i-1
U p) * T T ((c p - c P) / (c P - c p))...3.4.16
k Vn+1 i*l M V. -J \ 1 „ V. !

36

hence

n n+l-t • k - i
T C P 1 * T (C c - 1)/C c - 1)) ...3.4.17

k v n + l i -1

The coefficients 1 Cp) can be determined iterative"!/ by the
k. v

following recursion formulae developed from equation 3.4.17;

n
1 (P i • (c - 1) / (c- 1) ...3.4.18,

n ^n+l

U p) - C c" - 1 K c " ^ - 1) t 1 (f) } ...3.4.19.
k v n + l k S

n+l-k E n̂
(c - 1) (c - 1 }

The transformed objective functions for SUMT used to solve tfie

structural problem 3.1.3 are given by:

0(t»p) = w ' t + p (P + P) ...3.4.20

H 1 2

where

L M
P - (er -<T) 22 2 3 (V t c r - < r) + i / ((r))

1 max qs min qs q-l s~l max qs qs qs min qs
.. .3.4.21j

P = Ct - t) £ (i / (t - t } + i / (t - t))
2 max j min j j=*l max j j j min j

...3.4.22

The weighting scalars of equations 3.4.21 and 3.4.22 put the penalty

terms in non-dimensional form.

A FORTRAN'IV program l i s t ing of the SUMT algorithm used in this

study is given in th.e appendices.

37

3.5 Newton's'method10

Newton's method can be used with SUMT to minimize the sequence

of objective functions 0(t*£l« The method requires the evaluation

of functions, f i r s t and second partial derivatives. The method

used is developed in the following:

Let

70 - the vector of f i r s t partial derivatives of the objective

7 0 - the matrix of second partial derivatives of the objective

function with respect to the design variables,

__2 2

7 0 = I 0 at t ,

then expanding 0 In a truncated Taylor's series about T gives:

_ I _ _ -2

0 = 0 + 70 (t - t) + h (t - t) l 7 0 (t - t) . . .3.5.1

which has a stationary value when

70 = 0 . . .3 .5.2.

Differentiating equation 3.5.1 and ignoring higher order terms gives:

0(1,6) *
0(JL,P) where £ is the current design point

function with respect to the design variables t ,

70 at T ,

2

_2
70 * 70 + 7 0 (t - t) 3 • 5 • 3 •

Hence

2
0 - 7 0 + T 0 C 1* - t) 3.5.4.

38

Newton's method solves equation 3.5.4 for t* which is an estimate
of the design for the minimum of 0 . When used with SUMT, Newton's
method may give a t* which lies; in the infeasible region. Newton's
method is modified' 3 to prevent the design going into the infeasible
region, thus:

le t t* = I + o(*d . . .3.5.5,

where d is, a search direction,

then t* - T = ot*d . . .3 .5.6.

Substituting equations 3.5.6 into 3.5.4 gives:
_ _Z

O = 7 0 + o C * 7 0 d . . .3.5.7.

Equation 3.5.7 is solved by setting o(* - 1 to yield a search direction

d. Tben^ is determined by searching along d for a minimum of 0.

Thus, the algorithm for Newton's meth.od used with SUMT is :
- - 2

i . calculate 0 , 70 and 7 0 ; . . .3.5.8
- 2

i i . solve the set of equations, -50 - T 0 jd for d. ;

t i l . f ind the^f which minimizes 0 along d and replace ~t

with t* , where _t* - t t ©<* d. » and go to i .

The process is continued unt i l convergence is achieved to within the

prescribed accuracy. The algorithm 3.5.8 w i l l he referred to as

Newton(l), hereinafter.
A variation of algorithm 3.5.8 which attempts to reduce the

computational e f f o r t required w i l l be referred to as Newton(2).
2

Newton(2) omits evaluating 7 0 on second and subsequent iterations

but sets V. 0 to the values at the i n i t i a l point.

Newton(l) and Newton(2) as described above were used with

SUMT in the tests in chapter 6. A FORTRAN IV program l i s t ing of

Newton(2) used in this study is given in the appendices.

39

3.6 Fletcher-Powell's method:;16

Fletcher-Powell's method can he used to minimize the sequence

of objective functions 0(t ,g}. T n 1 s method requires functions and

their f i r s t partial derivatives and is similar to Newton's method

except that the inverse of the Hessian matrix of second partial

derivatives is replaced by a matrix which, by improvement after each

i terat ion, converges to the Hessian matrix. The algorithm for

Fletcher-Powell's method i s :

i . s tart with an i n i t i a l design t , and an i n i t i a l positive
D -

definite matrix H » for example, the identity matrix;
0

11. calculate Vj3 and set k= 0;
0

i i i . determine the search direction d from the equation
~k

d = - H VJ3 ;
k k k

i v . f i n d j (* which minimizes 0 along d and
k k

calculate t * t + ©t* d ;
~k+l ~k k ~k

v. calculate Jj3 and H where
k+1 k+1

H = H + M + N ,
k+1 k k k

M - (d d') / (d« £) ,
k k k k k k

N = - C I x)(H y) 7 (z ' H j r) , and
k k k k k k k k

k k+1 I

v i . go to i i i , with k = k+1.

40

The process is continued unttl convergence to within the prescribed

accuracy is, achieved, Fletcher-Powell's method as described above

was used with SUMT in the tests described in chapter 6. A FORTRAN

IV program of the method used is given in the appendices.

3.7 Stewart's method1^.

Stewart's method is an extension of Fletcher-Powell's method

enabling the use of f i n i t e difference f i r s t derivatives. In

addition to updating the matrix H , Stewart's method updates the

diagonal elements of i t s inverse A , which are used in the deter

mination of the f i n i t e difference derivatives. Stewart considers

the problem of estimating the f i r s t derivative of a non-linear

function by a linear form and indenttfies two major sources of

error; - truncation errors and cancellation errors. Truncation

errors are caused by the mathematical inadequacy of the derivative

approximation. Cancellation errors are caused by the loss of

significant figures in f i n i t e precision arithmetic. Stewart's

method chooses a f i n i t e difference step length to that the two

sources of error are approximately equal. Stewart shows that this

can be done by solving the following equation for each of the

coordinate directions:

the step length, , along the j t h coordinate direction is given

by the solution of

0 3.7.1,

where

is the j t h diagonal element of the matrix A

41

A j 3 is the change in 0 for a step $j along the j t h
J 3

coordinate direction,

0 i s the value of the objective function at the current point,
0

V is the j t h component of the last f i r s t derivative calculations*
S

is an error bound on the function evaluation.

Stewart shows that an approximate solution to equation 3.7.1 is

given by either:

- & (1 - c | < . | s.) / t
 3 K . | i . + 4 k |)) — 3 . 7 . 2

J 0

...3.7.3

where

or

S* 5 1 S (1 - t 2 | y |) / (3 k \% + 4 | y |)) ...3.7.5

...3.7.6

where

. . .3 .7.7.

Stewart suggests that the value of xj should be the larger of (i)

the estimate of the error bound on the calculation of 0; and (i t)

the error bound on the calculation of 0 by linear expansion about

42

the computer approximation of the current point.

I f the step length given by the above equations is greater

than some prescribed upper bound, Stewart suggests that a central

difference scheme is employed, where i s chosen as the positive
i

root of

*M + tol*5 -"10"Kto = 0

where
-m

10 is the prescribed upper bound.

The matrix A used to f ind the second derivatives oL is updated

m
in the following manner:

A = A + + c (JjB'y + } . . .3.7.9,
k+1 k I k k 2 k k k k

where
2

c 88 (c / < * * - c W d) ...3.7.10, and
1 2 k- 2 ~ k "Tc

c * 1 / y 'd . . .3 .7 .11.
2 \ ~k

The algorithm for Stewart's method i s :

-1
i . start with an i n i t i a l design, the matrix H and H = A %

"0 "0 "0

i i . calculate 70 and set k̂ O ;
0

i i i . determine the search direction d from d = - K Vj3 ;
k k k k

i v . f ind the o< * which minimizes 0 along d and calculate t ;
k k k+1

43

v. determine t j * max J ^ . t ^ q m / ^ 0 | 5 »
calculate ^ * from eqtns;. 3.7.2 - 3.7.7, and set & * « sign

4 * j

(*<) sign (v)& ;
ii °3 J

v i . i f %loC 1 Oo , use a forward f i r s t f i n i t e difference
1 'did j» x v

scheme to obtain *j3/cft »
j

*
otherwise calculate from equation 3.7.8 and use a central
difference scheme to obtain Ĵfyfct ;

j

v i i . hence calculate H and A ;
k+1 k+1

v i i i . go to i i i , with k = k+1.

The process i s . continued unt i l convergence to within the prescribed

accuracy is achieved.

Stewart's method as described above was used with SUMT in the

tests described in chapter 6. A Fortran IV program of the method

used is given in the appendices.

18
3.8 Powell's method

Powell's method can be used with SUMT to minimize the sequence

of objective functions 0(t*g). The method does not require the

evaluation of derivatives, but does require modification for use with

SUMT.

P o l l ' s algorithm i s :

define a set of P l inearly independent directions (e.g. the coordinate

directions) as id , d_ , . . . , id ; define the i n i t i a l point as t
1 2 P 0

44

and the objective function at jt as P(jt ,£} ; then
r r

i . fo r r = l , . . , P , f ind oi to minimize 0(t +o(d ,/>}
r r-1 r

and define jt = t + oC d ;
r r-1 r r

i i . f ind the index R and the quantity D = maximum (D ; r = l , . . , P) ,
R r

where D * (0(t , f } - 0(t , p)) s
r r-1 r

i i i . define 0 = 0(t 9p) and (3 a 0(t »£) then calculate 0 1 t p -p v

0 =0((2t - t) ,) ;
Q 1 0

i v . i f either 0 0̂ and/or
0 *
2 2

%D (0 -0) ^ C 0 -20 +0)(0/- 0 -D)
R O P O P Q O P R

then go to i with t replaced by _t and with the old set
0 P

of directions ; d , d , ... , d ;
1 2 P

v. i f the tests in iv are not met, then define d =» t - t ,
1+1 1 ~0

f ind the «c to minimize 0 ((t +oCd)9p) »
P+l P P+l *

define t =» t + o< d
P+l P P+l P+l ,

then go to i with t replaced by t and with the set of
0 P+l

directions : d , d , . . . , d , d , . . . * d ,d

n i 1-1 1+1 i i+ i .
The tests in step iv of Powell's algorithm combine the following

three tests;

1. i f (0 *f0 + 0) 0 , then take step v ; otherwise
0 P Q

45

2. i f 0̂ * 0̂ » then the stationary point of 0(t,£) lies between

t and t , and the old directions should be used ; otherwise
P 0

3. le t 0 be the stationary point of a quadratic form f i t t e d to
S

0 ,0 and 0 » then
O P Q

i f J(0 - 0) - J(0 - 0) ^ 7 D , then take step v ;
O S P S R

otherwise use the old directions.

The tests of step iv assume that 0(t»p) is continuous along the

search direction (t - t) between t = t and t = 2t - t . However*

the formulation with SUMT has 0 (t , {) approaching i n f i n i t y as t

approaches the boundary of the feasible region. Since Powell's

procedure does not guarantee that t = 2t - t is in the feasible region*
P 0

the tests in step iv may not be applicable. A satisfactory test,

based on Powell's rationale, to determine whether the new direction

should be accepted, can be developed in terms of 0,0 and 0 -0(jt ,p),
, , OP M M

where t - + t,) . Assuming that 0(t,p) is convex, then t must
M "> 0 M

be in the feasible region.

The three tests combined in step iv can be replaced by the following

tests:

1. i f (0 - 2 0 + 0) < O , then take step v ; otherwise
0 M P

2. i f (-0 + 40 -30) 4. 0 , then the stationary point of 0(t,p)
0 M P *

l ies between t and t. , hence the old directions should be used ;
P 0

46

otherwise

3. l e t 0 be the stationary point of a quadratic form f i t t e d to
S

13 ,0 and 0 , then
O P M

i f </(0 -0) - V (0 -0) * J D , then take step v ,

otherwise use the old directions.

The above three tests can be combined. Thus steps i i i and iv become:

\ \ \ . define 0 = 0(t ,P) and 0 - 0(jt ,p) , then calculate
0 0 P P v

2
0 * 0((%(t + t)) ,p) and 0 = 0 , (0 0) /(8(0 - 2 0 + 0)) } ;

M P 0 V S M O P 0 M P y

i v . i f (0 - 20 + 0) > 0 and
0 N P

either (a) C 0 - 40 + 30) > Q
0 M P

or (b) t 0 - 40 + 30) C 0 and
0 M P

J C 0 - 0) - J(0 -0) > J D
O S P S R

then go to i with, t replaced by t and with the old
0 P

set of directions : d ,d , . , , , d ;
1 2 P

With the ahove modification Powell's method was used with SUMT in the

tests described in chapter 6. A Fortran IV program of the method

used is given in the appendices.

47

3.9 One-dimensional search, for tHe minimum of 0.

The one-dimensional search algorithm to ftnd the local minimum

of the objective function was used in this study in conjunction with

the UOAs and SUMT. The algorithm (the programmed with the name ONED)

finds a sequence of feasible points, f i t s a quadratic polynomial to

the points, and locates the minimum of the polynomial. One of the

previous points is discarded and another polynomial is f i t t e d to the

remaining points and the new point. This process is continued unti l

successive estimates of the minimum converge $0 within the prescribed

accuracy. The algorithm can be stated as:

i . set tf* 0 , t - t and 0. * 0 © ;
determine the largest negative move (amin) and the largest

positive move (amax) along d that can be taken without

violating the linear constraints ; determine the resolution

(the minimum distance between two points along d that are

considered as different points); for derivative methods ,

form the directional derivative , dy = V0'd ;

i i . form , tlie move along d to the second point;
2

for derivative methods :U. * (0 -0)/dy , where 0 is
2 E 1 E

an estimate of the minimum value of 0 along d»
for non-derivative methods :o< - 5*(resolution) ;

2

i i i . i f oT âmax then e(:« toC ^ amax)/3 ;

ifoC 4amin then <* (o(+ amin)/3 ;
2 2^ 1

evaluate 0 at t * t +o< d ;
2 ~2 ~ r

48

i f any of th.e non-linear constraints are violated * then

i f o(V) , set amax - oi and go to i i i » or
2 2

i f <0 , set amin *oC and go to i i i ;

i f none of the non-linear constraints are violated, and i f the

interval of uncertainty (. amax-amin) i s less than twice the

resolution , then terminate at the point with the least value

of 0 ;
i v . form o(» the move along d to the third point; for derivative

methods f i t a quadratic to 0 using dy and two points 0 ,

oC and 0 ,<< ;
\1 2 2

i f the quadratic would predict a maximum , findo^by extra

polation; for non-derivative methods, f ind oC by extrapolation
3

so that the interval spanned by the three points is three times
the interval spanned by the f i r s t two points;

v . i f o(>amax, then <* > (p< +«< + amax)/3 »
3 3 1 2

i f oC <amin, then o(teC +*(+ amin)/3 ;
3^ 3 1 2

evaluate 0 at t, - J + d_ ;
3 3 3

i f ajiy of the non-linear constraints are violated , then

i f oC P » then set amax *ol and go to v , or
3 3

i f U < 0 » "then set amin = p< and go to v ;
3 3

reset amax and/or amin i f the function values bound the minimum

of 0 either above and/or below, and i f the interval of uncertainty

can be reduced; i f the interval of uncertainty ^.2(resolution),

terminate at the point with the least value of 0; i f the

estimate of the second derivative is negative, terminate the

49

search; i f i t is less than the test value, then discard one of

the points and go to iv ;

v i . formoC , the move along d to the fourth point, by f i t t i n g a
4

quadratic polynomial to three points using 0 , * , 0 >U ,0 and
1 1 2 2 3

o t ;
3

v i i . i f ̂ \amax, then ol {pi +«C + amax)/3 ,
4 ^ 4 2 3

i f o(4anr*n> t h e n
 eC (A +<* + amin }/3 ;

4 4 1 2

evaluate 0 at t * tf + o ld ;
4 4 4

i f any of the non-1tnear constraints are violated, then

i f *£. > 0 , then set amax * tf. and go to v i i , or
4 4

i f oL 4>Q> then set amin - oi and go to v i i ;
• 4 4

reset amax and/or amtn i f the function values bound the

minimum of 0 either above and/or below, and i f the interval

of uncertainty can be reduced; discard one of the four points;

v i i i . i f the interval of uncertainty is less than twice the

resolution, then terminate at the point with the least value

of 0;
i f the remaining three points do not bound the minimum of

0, then go to v i ;

i f the maximum permitted number of quadratic f i t s has been

exceeded then terminate at the point with the least value

of 0;
go to v i ;

file:///amax

50

A quadratic polynomial is of the form:

2
0 = c * + c r t + c . . . 3 . 9 . 1 ,

1 2 3

where c , c and c are coefficients.
1 2 3

Differentiating equation 3.9.1 gives:

d0 / dot * 2c * + c . . .3 .9.2.
1 2

0 has a stationary value, 0*, when d0/dtf = 0 , or when

0< « «C* - - c / 2c . . .3.9.3.
2 1

Equation 3.9.3 Is used in step iv to f ind ©< and in step v i to
3

f ind . In step iv , c and c are determined from the solution
4 1 2

of the following three equations:

2
p = c ot + c oc + c , . . .3 .9.4,

1 1 1 2 1 3

0 = coC * c DC + C , *».3.9.5,
2 1 2 o2 2 3

dy = 2c <X + . . .3.9.6,
1 1 2

which yield:
2

c - dy/(<* - « t) - (0 - 0) / (* - tf) .. .3.9.7
1 1 2 1 2 1 2

c * dy - 2c ol . . .3 .9.8.
2 1 1

In step vi» c Sfnd c are determined from the solution of the
1 2

equations 3.9.4, 3.9.5 and the following:
2

0 a c et + c ©C + $. . .3 .9.9,
3 1 3 2 3 3

which yield:

51

c = (0 -0)/(<* -tL)(<* -oO - (0 -0)/(*
1 1 2 1 2 1 3 2 3 2 3 1 3

...3.9.10
c = (0 -0) / (* - *) - - c . . .3 .9 .11.

2 :2 3 2 3 1 2 3

Equation 3.9.3 w i l l predict a minimum provided that the second

derivative of 0 with respect to ©< is positive, or

2 2
d 0 / d « * 2c ^ Q ...3.9.12 1 ^

or

c > . 0 ...3.9.13
1

A lower bound on ĉ can be obtained from the following:

consider three points o£ ,oC » and oC , where = + U) along
l j m m 1 j

the search direction c[;

l e t the function value at the three points be 0 ,0 and 0 ;
i j m

the coefficient c for thds case is :
1

2
c = (0 -20 +0)/&)(0C +<*) ...3.9.14.

1 i m j 1 j

When using limited precision arithmetic, 0 can not be represented

exactly; hence

0 - 9) 0 < 0 * (1+9)0 . . .3.9.15,
0 m m 0 m

where n is the error bound on 0.
0

The smallest meaningful absolute value c can have occurs when 0
1 m

i s given by:

0 « (1 + 0)(%)(0 +0) ...3.9.16.
m '0 1 j

52

Substituting equations 3.9.16 into 3.9.14 gives c , a test value
t

for c :

I 2

c = + 2 n (0 + 0) / (< / + «*) ...3.9.17.
t 1 J / i j

The positive value from equation 3.9.17 is used in step iv to test

i f a maximum would be predicted and in step v i . For step i v ,

« oC and oC - oC .
i 1 j 2

For step v i , *< - ando< * o< .
t 1 j 3

In step v i i , the point to be discarded is chosen in the following

manner:

i . i f the latest or the previous best point is an end point of

the four points, then discard the other end point and go to i v ;

i i . i f the four points do not definitely bound the minimum, then

discard the end point in the interval furthest from the minimum

and go to i v ;

i i i . i f the four points do bound the minimum, then discard the end

point which bounds the minimum and go to i v ;

i v . return to the search algorithm;

A FORTRAN IV program l i s t i ng of the above search algorithm used in

this study with the UOAs and SUMT is given in the appendices.

53

3.1Q One-dimensional search for the boundary of the feasible
region.

The one-dimensional search algorithm to f ind the boundary of

the feasible region was used in this study in conjunction with MFD.

The algorithm (programmed with the name FSMOVE) finds a sequence

of points within the upper bound move to the boundary defined by

the linear constraints. A quadratic polynomial is f i t t e d to each

of the non-linear constraints and the smallest positive root ' is

determined. One of the previous points is discarded and another'

set of polynomials is f i t t e d to the remaining points and the new

point. This process ts continued unt i l i t converges to the boundary

to within the prescribed accuracy. The algorithm can be stated as:

i . set oC =0, t - i f , f - f (t)» i - l , . . , R where R is the number
1 1 11 i 1

of non-linear constraints; determine the resolution (see

section 9 of this chapter); determine the largest negative

move (amin) and the largest positive move (amax) along c[to

reach the linear constraints; form the negative of the direc

tional derivatives of each of the constraint functions:

dy = - (Vf (t)) ' d s i = l , . . , R ;
1 i

i i . formo* , the move along ci to the second point, from
2

U - minimum ((f (I) - %€)/dy ; i = l , . . , r) ;
2 i i

i f oOamax, then $etp* = amax;
Z 2

evaluate f = f (t } at t = t + p 4 d;
12 i 2 "2 ~ 2 ~

54

i f any of the non-linear constraints have been violated,

then set amax = <K and continue:
2

form p< , the move along d to the third point, which is an
3

estimate of the move to the nearest non-linear constraint

and is found from the solutions of f (t,) - £/2 and of a
i

quadratic polynomial f i t t e d to the values ' f f , f , o(,
i i 1, i2 2

and dy , i = 1»..,R;
i

i f <*>amax, then s e t * * amax;
3 3

evaluate f = f } at t - T + d ;
13 i 3 3 3

i f any of .the non-linear constraints are violated, then set

amax =<* and continue ;
3

reset amax and/or amin i f the boundary is bounded either

above and/or below providing the interval of uncertainty

w i l l be reduced ;

form©(» the move along d to the fourth point, in a similar
4 ~

manner as in step i i i , except that polynomials are f i t t e d to
each of the constraint functions using the values
f » , f , t* , f and ;

i l 1 i2 2 i3 3

i f <*. >amax, then set - amax ;
4 4

4
evaluate f - f (t) at t « t + ©t d ;

14 1 4 4 4

i f any of the non-linear constraints are violated, then set

amax = and continue ;
4

55

v i . I f the interval In which the boundary lies is less than the

resolution, then terminate at the point in the feasible

region; i f the maximum number of quadratic f i t s has been

exceeded, then terminate at the feasible point nearest the

boundary;

v i i . discard one of the points and go to i v ;

The quadratic polynomials are of the form 3.9.1, and the coefficients

are determined from the formulae 3.9.7, 3.9.8 or 3.9.10 and 3.9.11.

To reduce the amount of computer storage and e f f o r t required, advan

tage was taken of the form of the non-linear constraints for the

structural problem 1.2;

«T 4 CT & CT , q * l , . . , L , s*1,..,M .. .3.1Q.1.
min qs qs max qs

Thus polynomials were only f i t t e d to each of the C , instead of
qs

to each of the f (t) . The polynomials are of the form:
1

2
<T * c*C + c t f j - c .. .3.10.2,

qs 1 2 3

An estimate of the move to boundary Is given by the solution of

equation 3.10.2 with the following equations:
or = (< r + J^J or = (^ - £_) ...3.10.3,

qs min qs 2 max qs 2

where £ i s given In equation 3.3.3. The four possible solutions

of equations 3.10.2 and 3.10.3 are given by:
n

= (- c + /c - 4c (c - d" + hi))/2c , ...3.10.4
2 V 2 1 3 max qs 1

or

56

= C - c + / c 2 - 4c (c - « w - h t) }/2c ,
2 V 2 1 3 mln qs 1

...3.10.5

In step via* the point to be discarded is chosen in the following

manner;

i . order the points such that oC ^ * Cvt *»
1 2 3 4

i i . i f the boundary lies between

a. o£ andoC , discard oC , unless i t is the newest point ,
1 2 4

in which case discard ©C ;
3

b. o£ and<* , discard (< , unless i t is the newest point,
2 3 1

in which case discard ;
4

c. oC and ^ , discard K , unless i t is the newest point,
3 4 1

in which case discard oc .
2

A FORTRAN IV program l i s t ing of the above one-dimensional search

algorithm used with MFD in this study is given in the appendices.

3.11 Primal-Dual LP algorithm.

The Primal-Dual LP algorithm, programmed with the name PRMDUL

and used in this study with MAP and MFD, finds the optimum of the

problem:

minimize cj x . . .3.11.1 ,

subject to A x - b » 0 - x .

where the values in c_, A and in b. may be either positive or

negative.

57

The inequalities in 3.11.1 may be converted to equations by the
addition of the variables, s. , called slack variables,

minimize c' x + cT £ . . . 3 . 11 .2 ,

subject to A x + I_ s « b 9 0 * x , 0 < s_ .

A basic solution may be obtained by setting x_ = 0 thus

x - 0 , s. - b. ...3.11.3 .

where the variables in £ are called the basic variables, and in

x are called the non-basic variables.

The LP algorithm moves from the solution 3.11.3 to the optimum

feasible solution by performing elementary row operations on the

coefficients of £ , d , A » I . and h . An optimal solution is found

when a l l the components, of the vector c1 are greater than or

equal to zero. The vector c_' gives the change in the objective

function for a unit increase in any of the non-basic variables. A

feasible solution is found when a l l the components of the vector b.

are greater than or equal to zero. The algorithm PRMDUL determines

an optimal solution then searches for a feasible optimal solution

in the following steps:

i . determine a basic (feasible or infeasible) solution ;

i i . operate on problem 3.11.2 unt i l an optimal (feasible or

Infeasible) solution is obtained, using the Primal simplex

algorithm ;

i i i . operate on the optimal solution until a feasible soilu^tion

is obtained, using the Dual simplex algorithm.

58

The Primal and Dual LP algorithm? operate on the coefficients by

selecting the pivot element to give the largest increase in

optimality or the largest decrease in infeas ib i l i ty respectively.

The Primal and the Dual algorithms are well documented11, 2 5 and

w i l l not be detailed further.

To save computer storage space, a condensed tableau which does

not store the matrix I &ut stores the variables associated with

the columns of the matrix A was used In PRMDUL.

A FORTRAN IV program l i s t ing of the algorithm Is given in the

appendices.

59

CHAPTER 4

EVALUATION OF FUNCTIONS AND DERIVATIVES

4.1 Functions and th.etr derivatives.

The algorithms described in chapter 3 require some or a l l of

the following quantities:

F(t) , f (t) , p (t ,£) . . .4.1.1 ,
i

I F (t) > If (t) » B » (i e) . . .4.1.2 ,
t

and
2 - 2 2

VF(t) , V f (t) , iPCt^) ...4.1.3 .
i

The derivatives in equations 4.1.2 and 4.1.3 may be obtained either

exp l ic i t ly by different iat ion or by a f i n i t e difference technique.

Thus, for problem 1.3 ,

F(t) = w' t . . .4.1.4 ;

hence, by di f ferent ia t ion,
2

i F (t) = w , and V F(jt) * Q ...4.1.5 .
Similarly,

f (t) = (<r *- <r) , (er - cr) , (t - t) or
i max qs qs qs min qs max j j

(t - t) . . .4.1.6 ;
j min j

hence

i f (1) " ±i<*" » or + e , respectively .,.4.1.7 ,
1 qs j

60
where e is the jth coordinate direction vector ,

J
and

2 2
I f (D = ± 1 ° " » or £ , respectively * ...4.1.8 .

i qs
For the function :

0(t,e) • F(t) + gt 23 (Vf (£})) ...4.1.9 .
t - l i

differentiation yields :
r 2

W(ttf) = F (i) + p(S 1 / f^(t)) (I f (t))) ...4.1.10,,

and
2 2 e r 3 10(t,P) * V F(t) + /> j:G((+(Vf (t)) 7f (t) J f (t)) !

v * U=l i ~ i i ~
2 2

-O/f (t)) I f (t) })
i i .P.4.1.11 .

The functions and derivatives in equations 4.1.9, 4.1.10 and 4.1.11

can be obtained from equations 4.1.4 to 4.1.8. Equations 4.1.6 to

4.1.8 require, in particular, the evaluation of

2

cr, la_ and V £ ...4.1.12 ,

for which the algorithms are described in section 2 of this

chapter.

An alternative procedure for obtaining derivatives is to use

a finite difference derivative scheme. In a forward FD scheme, the

ith component of Vy is given by:
6y/Sx = (y(x + Sx) - y ©)/<5x ...4.1.13 ,

i i i
where

61

y(x) is the value of yfe)at x ,

4x is the vector (Q,0,..0,$x . O , . . ^) 1 , and
i i

is I smai l change In the t t h variable , x .
t i

Similarly ,

2
i y/dx ix = C y(>L + | x + l x) - y (^ + 4 x) - - y (x + 6 x) + y(x))

t j t j i i
(fee }(6x]

t j
...4.1.14 •

Hence f i n i t e derivatives can be found for the functions F(t_) > f (1)
i

and 0(t,(>) using equations similar to equations 4.1.13 and 4.1.14.

4.2 Stresses and their derivatives.

The evaluation of derivatives as described in section 1 of

this chapter requires some or a l l of the following quantities :
2

<r t v<rand V <r . . .4.2.1 ,

where

<r is the M x L matrix of memher stresses ,

V<r is the matrix of the f i r s t partial derivatives of ^rwith

respect to the design variables t , and
2

V <ris the matrix of the second partial derivatives of cr with

respect to the design variables.

The member stresses, gr, for the truss problems, are taken as the

axial stress in each member and for the plate problems, as the

effective stress in each constant stress f i n i t e element. The

effective stress for the plate problems is defined as:

62
2 2 ~

+<T - (7 0 * + 3 (T ...4.2.2 ,
4 * 1 2 1 2 3

where

(T - the effective stress,
4

cr = the direct stress in the f i r s t coordinate direction ,
1

<T - the direct stress in the second coordinate direction, and
2

6" - the shear stress for the f i r s t and second coordinate
3

direction.

In this study, the stiffness matrix method was used to f ind the

quantities in 4 .2 .1 .

The matrix cr is obtained by solving the matrix equation :

P. = K u ...4.2.3 ,

for u_ and then operating on , thus :

<r = S u. . . .4.2.4 ,

where

£ is an N x L matrix of N applied nodal loads for L load

cases ,

u_ is an N x L matrix of associated deformations ,

K is the stiffness matrix , and

S is the stress-deformation transformation matrix .

The matrix, Ycr, is obtained by differentiat ing equations 4.2.3

and 4.2.4 with respect to the i t h design variable, t , to give :
i

63

• • • 4 • 2 • 5,

. . .4.2.6,

[&p / .̂3 s [L ^ ^ 3 - + 1 **3J
j V / U *] " J j ^ S / U ^ J u + s j b u / b t ^

where \J\ denotes a matrix.

Rearranging equations 4.2.5 and 4.2.6 gives:

| [&P / &t 1[* £bK / ^ t ^ u } - KJ^u /

£ (V / V t l - [} S / ? > t ^ u] = s j b u / o t *] . . .4.2.8,

which are of the same form as equations 4.2.3 and 4.2.4.
2

The matrix 7 cr is obtained by differentiat ing equations 4.2.7 and

4.2.8 with respect to the j t h design variable, t , to give:
2 J

. . .4.2.7,

^[b P / 3t 7>t 3 - ^ K / 5t bt 3 u - [) K / it^ Jbu / ot

£(bK / i t / it J + K (9 u / *t Jt 3]
1 0

. . .4 .2.9,
and

2
f f b <r / <>t ^3 - f> S / ^t bt 1 u - f^S / frt Tfbu / dt^3 =

L i j i j J ^ i c j
2

Vfbs i bt l^au / b t l + s ^ u / i t % t " \ l
j i J i j . . .4.2.10.

Rearranging equations 4.2.9 and 4.2.1Q gives:

K ^P/cU cH 3 " \)Ztyht >t ^ u - fihC/J>t Tfau/it3 -[&K/dt Tbu/&t] j
L i j t J 1 J j i " 1

l (U u/dt b t l
c i j " *

. . .4 .2 .11,

and

64

> bydt S /dOt^ u - ^ > t / j 6 u / b t ^ £ a $ / b t ^ u / ^
1 <3 "10 " I J

which are of the same form as equations 4.2.3 and 4.2.4.

Equations 4.2.3 and 4.2.4 are solved using the stiffness method. This

method can also be used to solve the equations 4.2.7 and 4.2.8 and

equations 4.2.11 and 4.2.12, providing the l e f t hand sides of the

equations can be formed. Thus the following derivatives are

required:

to solve equations 4.2.7 and 4.2.8:

SE , and VS ...4.2.13

and to solve 4.2.11 and 4.2.12:

2 2 2
I P , I K and ? S ...4.2.14.

VP is the change in applied forces caused by a change in the design
2

variables. VP and Y_P are null matrices for the structures and the

loading under consideration. In the stiffness method, the stiffness

matrix, K, for the assembled structure, can be obtained from the

element stiffness matrices, k/, for the unassembled structure by

< 2 ^
(} u/dt $t 1

using the equation:

K
j=1 j J J

4.2.15,

Where

65

A is a displacement transformation matrix which is constant
j

for the structure ;
2

hence fK and V K can be considered from an elemental level.

The stiffness matrix for element j for the truss problems is

given by ° :
t E

1

1 - 1

- 1 1

...4.2.16

where

t is the cross-sectional area of the j t h membera

j

E is Young's modulus of elast ici ty for the j t h member, and
j

1 is the length of the j t h member,
j

Hence, different iat ing equation 4.2.16 with respect to the i t h

design variable gives:

t*Y M - i l l } for i ^ j

IS: "I]" - 1

...4.2.17

...4.2.18.

Therefore

U = 0
j

. . .4.2.19.

The plane stress plate problems can be analyzed using triangular

constant stress f i n i t e elements. In this study the design variables

66

were taken as the nodal thicknesses of each element. The stiffness
26

matrix for element s , k. , can be shown to be :
s

k = h (t + t + t) C ...4.2.20 ,
s j si s2 s3

3 A
123

where

t » t , t are the three nodal thicknesses for member s ,
si s2 ts3

A is the area of the triangular element s, and
123

£ is a symmetric matrix of constant coefficients

formed from the nodal coordinates and Poisson's

ra t io .

Differentiating equation 4.2.20 with respect to the i t h nodal

design variable gives:

& i < / d t = 0 » t^sl» 1̂ s2 and i^s3 ...4.2.21 ,
s i

/ &t = E. C , i = s l , i-s2 or i=s3 ...4.2.22 ,
s i 3$

123
2

Hence I K = 0 » ...4.2.23 .

s

The matrix transforms nodal displacements into member stresses.

For the trusses, the stress transformation matrix for member j

is given by:

67

S « I]1 ...4.2.24 ;

hence

^ S / & t ^ = 0 , for a l l t and j . . . 4 .2 .25 .

Thus,
2

JS = 0 and 7 S » 0 *. .4.2.26 .
Similarly, for the plane stress plates,

S
j H

V 123 /

D ...4.2.27 ,

where

2 is a matrix with terms which are functions of the nodal

coordinates.

Thus
2

7S = 0 and 7S - 0 ...4.2.28 .

Thus fo r the two types of structure considered, equations 4.2.7 and

4.2.8 simplify to

- (dK / o t l u * Kfou / o t l ...4.2.29 ,
i J ^ i

+ [f c O (T/b t"] s i ^ u / W " } . . . 4 . 2 .30 .
i i

Equations 4.2,11 and 4.2.12 simplify to

- ^ K / H ^ 5 u / d t ^ + (l K / k t ^ d u / > t J J = K u / i t

...4.2.31

and

2 2
^ 0 / d t d t ~ J * s u / 9t cVt ~J

68

• •*4•2»32 •

The solution of equations 4.2.3, 4.2.4, 4.2.29, 4.2.30, 4.2.31
2

and 4.2.32 §ives cr, Vcrand V cr directly for the truss problems,
but only gives o;, cr , cr and their derivatives for the plate

1 2 3

problems. The derivatives of the effective stress , cr̂ , can be

obctained by differentiating equation 4.2.2. Thus, since

4

then

•A 2 2 2
+ cr - crcr + 3 cr

2 12 3 •F
4 4

...4.2.33,

...4.2.34,

hence

y(/&<r\ (frr\ /d<r\ /toA |d<r\)

i
...4.2.35.

Differentiating equation 4.2.34 with respect to the j th design

variable gives :

L<Jt
^ 4
(JTcTt

i 3 4/

...4.2.36,
It

1 J'

...4.2.37,

69

where

\ 2 2
i (<r }

4—
dt bt

i i

(
=. a

2
ftoAf^A : ^ /& <r \
m I Sit UdTdt 2

i ' x i j '

M/icr \ /oWoV1

f v 2

o cr

At 5t
x 1 j

(7/ 2
11 &t &t

1 0

—1 1+60-1 —3
dt dt J 3 [bt it

1
•••4•2•38•

Equations 4.2.36 and 4.2.38 can be simplified to give:

°l (2 Vt) (>t bt
\ r N i j

2 2

/ A ty \ / B j r

2 (it J wt 9t
T J 1 J

• •«4•2•39•
2

Equations 4.2.35 and 4.2.39 enable Vo-and 7 crto be evaluated for

the plate problems.

The : solutions of the stiffness equations, 4.2.3 and 4.2.4, and

the derivative equations, 4.2.29 to 4.2.32, are given in the

following section of this chapter.

70

i i .

i i t .

iv .

v.

jlutjon of the stiffness and derivative equations.

fie solution of the stiffness equattons9 4.2.3 and 4.2.4,

an by the following algorithm :

assemble the basic data for the idealized structure: ...4.3.1

position of nodes, location 'of members, boundary conditions,

material properties and the applied loading ;

determine the band width of the structure stiffness matrix,

K , and the compact storage Index matrices ;

calculate the element stiffness constant, stress trans

formation and weight transformation matrices ;

Insert the boundary conditions into the element stiffness

constant matrix so that the rigid body degrees of freedom

are removed. (This was done by replacing diagonal terms

of affected rows and columns with ones and the other terms

of affected rows and columns with zeros);

determine the design variable values (input data or output

data from the optimization algorithms) ; form the element

stiffness and structure stiffness matrices ;

decompose the structure stiffness matrix, thus: K * ITLU

where U. Is an upper triangular banded matrix, using the

following formulae :

A - s U U u
l i r\ r l

1-1
S (u U } K U
r*l 13 n r j

71

v t i . solve £ * J U ' J U L L » u$tng a dummy solution, £ , thus:

P. - U.1 £ » then £ R U_u , giving ju , using the following

formulae:

q. - /P. • U . q l l l VU } ...4.3.4 ,
i \ i r~l n r / n

u s (q - Z J C U u) ^ (1/U) ...4.3.5 ,
i \ 1 r-t+1 t r r / i i

where

A is the order of the stiffness matrix.

v i i t . solve CT - .S u_ s giving CT;

ix . for plate problems, determine cr from CT ,0" and cr using
4 1 2 3

equation 4.2.2 ;

The solution of the f i r s t derivative equations 4.2.29 and

4.2.30 is given by the following algorithm, assuming that steps

i to ix have been performed already:

for i * 1,..,P , ...4.3.6 ,

x. form £&K/5t ^u ;

x i . perform step v t i , but with (bK/dt Ju. replacing £, yielding ^du/fctj ;

x i i . perform step vttt» but wtth^iu/&t ^ replacing u., yielding (5o/^t]J;

x i i i . for plate problems, determine Vcr from Vcr , Vcr and vo using
4 1 2 3

equation 4.2.35 ;

Steps i i i to x i i wi l l be repeated for each f u l l partial derivative

evaluation. For step x, VK has already been formed in step i i i .

72

The solution of the second derivative equations 4.2.31 and
4.2.32 is given by the following algorithm, assuming that steps
i to x i i i have been performed:

for i = 1 , . . , P ; j - i , . . , P ; ...4.3.7,

xtv. form[^K/at ^ u / ^ t ^ + [^oK/ot^du/at^as In equation 4.2.31 ;

xv. perform step v t t , but with the^above expression replacing £

xvi . perform step v i i t , but within u/dt dt j replacing u ;
L 1 i r

xv t i . for plate problems, determine V CT using equation 4.2.39 ;
4

FORTRAN IV program listings of the algorithms used in this study

are given in the appendices.

73

CHAPTER 5

COMPUTATIONAL EFFORT

5.1 Introduction.

Computational efficiency is an important consideration in

the comparison of the NLP methods introduced in chapter 1. When

using electronic computers, computational efficiency can be

measured by the computational effort and the computer storage

space required to solve the problem. The storage space required

is becoming less important as computers increase in size. How

ever, inefficient data storage and access may increase considerably
27

the computational effor t . Recommendations regarding the storage

and access of data for the computers used in this study were

implemented wherever practical.

The computational effort expended is a function of the

efficiency of the computer program for the algorithm. As wil l

be shown later in this chapter and wil l be seen in the results

in chapter 7, the major computational effort is used in the

evaluation of functions and their derivatives and since the routines

used for these evaluations are common to all the algorithms, any

inefficiencies in their programming wil l affect al l the algorithms

similarly.

A multiplication with present day computers takes more

computer time than an addition or subtraction, and since divisions

74

are relatively few in number, computational effort is often

measured by counting th.e number of multiplications required to
>

perform the operation under consideration. Such an analysis omits

the computational effort involved in forming DO loops, array

subscript arithmetic, and logical statements, and since multi

plications may compose only a small proportion of the computational

effort expended, a more realistic measure of computational effort

is the amount of computer time required to solve the problem. In

this study, Central Processor Unit (CPU) time was used as the

measure of computational effor t . Included in the CPU time are

the times needed to load registers, to execute the instructions,

and to store the results. Estimates for CPU time for the IBM

360/67 are developed in the succeeding sections of this chapter

using the following procedure :

i . describe the algorithm ; see preceding chapters ; ...5.1.1

i i . program the algorithm in FORTRAN : see appendices ;

i i i . translate the FORTRAN program into an ASSEMBLER program ;

iv . assign to each of the ASSEMBLER instructions a published

average instruction time6 , 0 for the computer used ;

v. sum the times.

I t should be noted that step iv was only performed on the

instructions which constituted the major computational effort .

I t should also be noted the times resulting from the application

of procedure 5.1.1 are dependent on the programming of the FORTRAN,

on the FORTRAN/ASSEMBLER translator (compiler) and on the computer

75

and hence can only be, at best, approximations to the actual
effort required.

In an optimisation, the computational effort expended con

sists of three components :

1. the effort used by the optimisation algorithm ;

2. the effort used to evaluate functions ;

3. the effort used to evaluate derivatives.

Estimates of these three components are considered in the

following sections of this chapter.

5.2 Effort used by the optimisation algorithms.

By inspection of the algorithms presented in chapter 3, i t

can be seen that a large proportion of the computational effort

wi l l be expended in performing the following steps in the

algorithms:

MAP - step v. solve the LP problem ,

MFD - step v. solve the LP problem to give the search

direction, and

SUMT - step i i i . minimize J3(t,f) using the UOAs, where a large

proportion of the effort is used in determining

the search direction.

In the LP problems, the major computational effort in each LP

iteration, is used in finding a pivot element and in transforming

the LP tableau. Procedure 5.1.1 was applied to the primal-dual

algorithm described in the previous chapter and gave the

76

computational effort to select one pivot and then transform the

LP tableau as

T = 39.3 r c + 144.1 r + 101.5 c + 91.9 . . . 5 . 2 . 1 ,
5.2.1

where

T is the CPU tima estimate in microseconds on the IBM 360/67 ;

r is the numher of rows in the matrix A of the LP problem

(3.2.1), and

c is the number of columns in the matrix A of the LP problem.

11
Zoutendijk estimates that the number of iterations required by

a primal simplex LP algorithm to produce an optimal solution is

between 1 and 2.5 times the number of rows in the primal

problem. Similarly the number of iterations required by a dual

simplex LP algorithm to produce an optimal solution is between 1

and 2.5 times the number of columns in the primal problem.

Observations of preliminary trials on the structural problems

indicate that a value of 1.5 times the number of columns gives

approximately the number of iterations required by the LP algorithm

used. Thus an estimate of the computational effort to find the

solution of the LP problems is approximately given by :
2 2

T = 58.95 c r + 152.3 c + 216.2 r c + 137.9 c ...5.2.2
5.2.2

For the class of problems considered, when using MAP,

r = P + 2LM , c « P ...5.2.3,

and thus r is approximately given by :

77

r = 6 P ...5.2.4 ;

hence the computational effort to find the solution of the LP
problems associated with. MAP is given by :

3 2
T * 353.7 P + 145Q P + 137.9 P ...5.2.5.
5.2.5

When using MFD for the problems considered, the number of rows is

given by:

r p + v2LM ...5.2.6,

where v is the proportion of non-linear constraints considered as

active at the current point.

The value of v has been found to give r approximately as :

r = 1.5 P ...5.2.7 ;

hence the computational effort to find the search direction by

solving the LP problems is given by :
3 2

T « 88.43 P + 476.6 P + 137.9 P ...5.2.8.
5.2.8

When using MFD, extra computational effort is used to locate the

boundary of the feasible design space. Applying procedure 5.1.1

to the search algorithm (FSMOVE) gives the computational effort

necessary to locate one point by using a quadratic f i t and associated

'housekeeping' operations as :

T = 339.0 R , ...5.2.9 ,
5.2.9

where R is the number of non-linear constraints used.

Assume that R = 2P , then

T <= 678.0 P ...5.2.10.
5.2.10

78

Typically, only three points are required to locate the boundary,
hence

T = 2034 P ...5.2.11.
5.2.11

Thus, with MFD, the effort to generate and search along a direction,

excluding any function or derivative evaluations, is given approxi

mately by combining equations 5.2.8 with 5.2.11 to give:
3 2

T = 88.4 P + 476.5 P + 2172 P ...5.2.12
5.2.12

When comparing equations 5.2.8 with 5.2.12, i t can be seen that the

extra effort to search is not as significant as the effort required

to generate the direction.

When Newton's method is used with. SUMT to minimize 0(jt,£), the

major computational effort is used in solving equations 3.5.7, which

are both linear and symmetric. The procedure 5.1.1 when applied to

the equation-solving algorithm (GELS) gave the computational effort

to solve equation 3.5.7 as:
3 2

T = 10.68 P + 112.9 P + 102.2 P ...5.2.13
5.2.13

When Fletcher-Powell's method is used with SUMT, the major compu

tational effort is in steps i i i and v as described in chapter 3

section 6. The procedure 5.1.1 was applied to those steps in the

algorithm (FLEP). The computational effort used to perform steps

i i i and v is given by:
2

T * 129.6 P + 99.20 P + 12.61 ...5.2.14.
5.2.14

When Stewart's method is used with SUMT, the computational effort

required to perform steps i i i and v, as described in chapter 3

79

section 7 is given as :
T « 129.6 P + 4GQ.6 P + 40.80 ...5.2.15.
5.2.15

When Powell's method is used with SUNT, the computational effort

to generate a new search direction and to perform the matrix

manipulation prior to each one-dimensional search is given by the

following :

T * 16.21 P + 56.78 ...5.2.16.
5.2.16

When using a one-dimensional search to find the minimum along a

search direction in conjunction with an UOA and SUMT, the computa

tional effort necessary to perform one quadratic f i t and associated

'housekeeping' operations., but to exclude any function or derivative

evaluations was estimated by procedure 5.1.1 to be:

T » 23.59 P + 412.2 ...5.2.17.
5.2.17

A lower bound on the numher of new points along the search direction

is 3 , although typically between 4 and 9 points along the direction

are required to locate the minimum. Thus, assuming that on average,

6% points are required to locate a minimum and that T is
5.2.17

approximately equal to the computational effort required to locate

any of the points along the search direction, then the computational

effort used during a one-dimensional search is given by :

T = 153.3 P + 2679 ...5.2.18.
5.2.18

Combining equations 5.2.18 with 5.2.13 to 5.2.16 gives the

computational effort to generate and search along a directionj but

80 .

excludes the effort for any function or derivative evalnations,

for Newton's, method as :
3 2

T * 10:68 P + 112.9 P + 255.5 P + 2679
5.2.19 . . .5 .2 .19 9

for FT etcher-Powel11s method as :
2

T = 129.6 P + 252.5 P + 2692 . . .5.2.20,
5.2.20

for Stewart's method as ;
2

T = 129.6 P + 553.9 P + 2720 . . .5 .2.21,
5.2.21

and for Powell's, method as :

T = 169.5 P + 2736 . . .5 .2.22.
5.2.22

Comparing equations 5.2.13 to 5.2.16 with 5.2.19 to 5.2.22, i t can

be seen that, with the exception of Powell's method, the computa

tional effort to perform a search is not very significant compared

with the effort to generate the direction.

5.3 Effort used in evaluatjng functions.

The function evaluations required by the optimisation algorithms

are the determination of :

F(t) , r (t) and/or 0 (t 5 £) . . ,5.3.1 ,

in which the major computational effort is used in determining the

stresses, £ . The algorithm used to determine cr is given in section

3 of chapter 4. In the optimisation process, steps i to iv of

the algorithm wil l be performed only once, whereas steps v to v i i i

81

wil l be repeated many- times. Therefore the computational effort
used in steps, i to tv wi l l not be considered further.

All the major computational manipulation in steps v to v l i i can

be formed from the following operations :

1. locate an element in a vector, using subscript arithmetic,

and post i t into another vector ;

2. add the product of an element in another matrix and an

element in a vector to an element in a matrix ;

3. add the product of two elements in a matrix to a scalar ;

.4. replace an element in a matrix by the difference of the

element and a scalar ;

5. replace a diagonal element i;n a matrix by the reciprocal

of i ts square root ;

6. replace an element of a matrix by its product with an

element of a vector.

Applying procedure 5.1.1 gives the following results:

82

Table 5.3.2: Computational effort for basic operations

Operation CPU time (microseconds)

1 19.24

2 19.31

3 17.96

4 23.22

5 115.28

6 15.53

Using the values in table 5.3.2, the computational effort to

complete step v i s given approximately- by :

T = 19.24 (M)(C) + 19.31 (M)(E) . . . 5 . 3 . 3 ,
5.3.3

where M is, the number of members ,

C is the number of design variables which affect the

member st i f fness matrix, and

E i s the number of elements in the upper part of the

member stiffness matrix.

Similarly, the computational effort to complete step vi i s given

approximately by :

T = 17.96. (B)(B-l)(3A-2B+l)/6 + 23.22 (B-1) (2A-B,|/2
5.3.4

+ 115.28 A + 15.53 (B-l)(2A-B)/2 . . . 5 . 3 . 4 ,

or

T * 17.96. (B)(B-l)(3A-2B+l)/6 + 38.75 (B-l)(2A-B)/2
5.3.5

+ 11.5.28A . . .5 .3.5 9

83

where A is the order of the. system stiffness, matrix, and
B is the bandwidth of the system stiffness matrix

The computational effort to complete step v i i is given approxi
mately by:

T = (2) ((19.31 (B-l)(2A-B)(L)/2) + (38.75 (A)(L)))
5.3.6 . . .5 .3.6

where L i s the number of 1oad cases.

The computational effort to complete step v i i i is given

approximately by :

T = 19.24 (L)(M)(D) + 19.31 (L)(M)(D)(S) . . .5 .3 .7 ,
5.3.7

where D is the number, of nodal displacements associated with

each member, and

S i s the number of components of stress associated with

each, member.

Equations 5.3.3 to 5.3.7 can be simplified by substituting values

for the variables from structural problems of the type given in

chapter 6. Thus, for th.e truss problems, assume that

M = P , C = 1, E = 10, A - 2P + 2, B = P + 3, L = 2, D = 4, and

5 1 s . • • • • 5 • 3 • 8 •

Substituting equations 5.3.8 into .5.3.3 gives:

T = 19.24 P + 193.1 P - 212.3 P . . .5 .3 .9 ,
5.3.9

into 5.3.5 gives :,

T = 17.96 (P+3)(P+2)(4P+l)/6 + 38.75 (P+2)(3P+l)/2 +
5.3.10

. 115.28 (2P+2) .. .5.3.10 ,

or

T = 12.0 P + 121.0 P +453.0 P + 287.3 ...5.3.11 ,
5.3.11

into 5.3.6 gives :

T „ = (2) ((19.31 (P+2)(3P+l)/2) + (38.75(2P+2)(2))}

or
2

T * 57.9 P + 445.2 P + 348.6 ...5.3.13.
5.3.13

in to5 .3 .7 gives :

T «. 19.24 (2)(P)(4) + 19.31 (2)(P)(4)(1) ...5.3.14,
5.3.14

or

T = 308.4 P ...5.3.15.
5.3.15

Similarly, for tlie plate prob.lemSj assume that

M -;1.5P-4,.C * 3,.E * 21, A * 2P, B = .25P + 6.1 = 2, D = 6 and

S = 4 , ...5.3.16.

Substituting equations 5.3.16 Into 5.3.3 gives:

T = 19.24(1.5P-4)(3) + 19.31(1.5P-4)(21) =

694.9 P - 1853 ...5.3.17,

Into 5.3.5 gives:

T = 17.96(.25P+6)(.25P+5)(6P-.5P-ll)/6 + 38.75(.25P+5)(4P-
5.3.18

.25P-6)/2 + 115. ...5,3.18,

or
3 2

T = 1.03 P + 61.4 P + 968.1 P - 2073 ...5.3.19,
5.3.19

into 5.3.6 gives :

T = (2)C(19.31)(.25P-5)(4P-.25P-6)/2 + (38.75)(2P)(2))
5.3.205.3.20,

85

or
2

T * 18.1 P + 488.1 P - 579.3 . . .5 .3 .21,
5.3.21

into 5.3.7 gives :

T = 19.24 (.2)(1.5P~4)(6) + 19.31 (2)(1.5P-4)(6)(4)
.5.3.22 ...5.3.22,

or

T = 1737 P - 4631 ...5.3.23.
5.3.23

From equations 5.3.9, 5.3.11, 5.3.13 and 5.3.15, the computational

e f f o r t needed to evaluate the stresses in the trusses is given

approximately by :
3 2

T = 12.G P + 178.9 P + 1420 P + 635.9 ...5.3.24.
5.3.24

From equations. 5.3.17, 5.3.19, 5.3.21 and 5.3.23, the computational

e f f o r t needed to evaluate the stresses in the plates is given

approximately by :
3 2

T = 1.03 P + 79.5 P + 3888 P - 9136 ...5.3.25.
5.3.25

5.4 Effor t used in evaluating derivatives.

The derivative evaluations required by the optimisation

algorithms are the determination of :

2 2 2
W (t) , V f ; (t) , I 0 (t s (.) , I F (t) , I f;(t) and 7 0(t , ?) . . .5 .4.1,

in which the major computational e f fo r t is used to determine the

derivatives of the stresses.. The algorithms used in this study are

given in section 3 of chapter 4. Using the values in 5.3.2, the

86

computational e f f o r t to complete stepxp times is given

approximately by :

T = (19.24 (L)(D)(M)(C)/(P) + 19.31 (L) (D^)(M) (C)i(P)J (P)

The e f fo r t to complete step x i , P times 7is. given by:

T « / T) (?) ...5.4.3

5.4.3 v 5.3.6 /

and to complete step x i i f P times^is given by:

T b . / T V CP) . . .5.4.4,

5.4.4 V 5.3.7/

Thus, for the truss problems, substituting the values 5.3.8 into

equation 5,4.2 gives:
T = 19.24 (2)(4)(P)(1) + 19.31 (2)(16)(P)(l) •

5.4.5
* . 771.8 P . . .5.4.5,

into equation 5.4.3 gives:
3 2

T *. 57.9 P + 445.2 P + 348.6 P . . .5.4.6,
5.4.6 '

and into equation 5.4.4 gives:
2

T «. 308.4 P . . .5.4.7.
5.4.7

Similarly for the plate problems, substituting the values 5.3.16

into equation 5.4.2 gives:

T = 19.24 (2)(6)(1.5P-4)C3) + 19.31 (2)(36)(1.5p-4)(3) •
5.4.8

5210 P - 16,960 . . .5.4.8,

into equation 5.4.3 gives:
3 2

T = 18.1 P + 4 8 8 . 1 P - 579.3 P . . .5.4.9,
5.4.9

87
and into equation 5,4.4 gives;

T *. 1737 P - 4631 P ...5.4.10.
5.4.10 .

From equations 5,4.5 to 5,4.10, the computational e f fo r t to

evaluate the f i r s t derivatives of stress, assuming that the

stresses have already been evaluated, is given approximately by:
3 2

T = 57.9 P + 753.6 P + 1120 P . . .5 .4.11,
5.4.11

for trusses, and approximately by:
3 2

T 18,1 P + 2225 P ~ 16960 ...5.4.12,
5.4.12

for the plates.

The computational e f fo r t to evaluate the f i r s t derivatives of

stress using f i n i t e differences, is given approximately by:
4 3 2

T ^ 12.0 P + 178.9 P + 1420 P + 635.9 P
5.4.13

..,5.4.13,

for the trusses, and hy:
4 .3 2

T = 1.03 P + 79.5 P +3888 P - 9136 P ...5.4.14,
5.4.14

for the plates.

The computational e f fo r t to complete step xiv rP(P+1}/2

times | is given by:.

T = / T \ (2)(P+l)/2 ,..5.4.15,
5.4.15 V 5,4.2/

to complete step xv , P(P+1}/2 times is given by:

T - / T \ (P+D/2 ...5.4.16,
5.4.16 \ 5.4.3)

and to complete step xviP(P+1)/2 .timesys. given by:

88

T * / T) (P+l)/2 ...5.4.17.
5.4.17 I 5.4.4/

Thus* substituting the values 5.3.8 for the truss problems into

equation 5.4.15 gives:
2

T * 771.8 P + 771.8 P ...5.4.18,
5.4.18

into equation 5.4.16 gives.:
4 3 2

T = 28.95 P + 251.6 P + 396.9 P + 348.6 P
5.4.19

•..5.4.19,

and into equation 5.4.17 gives:
3 2

T « 154.2 P + 154.2 P ...5.4.20.
5.4.20

Similarly* for the plate problems, substituting the values 5.3.16

into equation 5.4.15 gives.:
2

T = 5210 P - 11,750 P - 16,960 ...5.4.21,
5.4.21

into equation 5.4.16 gives:
4 3 2

T * 9.05 P + 253.1 P - 45.6 P - 289.7 P
5.4.22

...5.4.22,

and into equation 5.4.17 gives:
3 2

T = 868.5 P - 1437 P - 2316 ...5.4.23.
5.4.23

From equations 5.4.18 to 5.4.23, the computational effort to

evaluate the second derivatives of stress, assuming that the

stresses and their f irs t derivatives have already been evaluated,

is given approximately hy:
4 3 2

T = 28.95 P" + 405.8 P + 1323 P + 1120 P
5.4.24

...5.4.24,

89

for the trusses, and approximately by; ^

T = 9.05 P + 1122 P + 3728 P - 12040 P...5.4.25,
5.4.25

for th_e plates.

The computational effort to evaluate the second derivatives of

stress using finite differences, is given approximately by:
5 4 3 2

T = 6.00 P + 95.5 P + 798.9 P + 1Q27 P + 317.9 P
5.4.26

...5.4.26,

for the trusses, and approximately by:
5 4 3 2

T * .515 P + 40.3 P + 1984 P - 2624 P - 4568 P - 4568
5,4.27

...5.4.27,

for the plates.

Figures 5.4.28 and 5.4.29 respectively plot estimated compu

tational effort required for the trusses and plates of chapter 6

using an IBM 360/67 computer to evaluate a function (as given

approximately by equations 5.3.24 and 5.3.25), a f i r s t derivative

(as given by equations 5.4.11 to 5.4.14), and a second derivative

(as given by equations 5.4.24 to 5.4.27).

10.0

p(pfl)0 V 0
P0

to
c 1.00

13

4S 0.1

rd

CO
Lul

0.01

7 13 21

Number of Design Variables, Trusses

FIGURE 5.4.28

10.0(
7 0

P0

V0 CO

1.00
CD

CO

0

0.10

4-»

CO
U J

0.01

16 25

Number of Design Variables, Plates

FIGURE 5.4.29

92

Table 5.4.30: Estimated function and derivative effort ratios*-, E

P-BAR TRUSSES , P « P-NQDE PLATES , P *
A B

P « P *

3 7 13 21 4 9 16 25

V0 0 1.81 2.75 3.56 4.05 2.55 5.34 8.07 10.8

vh 0 4.18 12.0 25.8 45.3 11.0 32.4 76.6 150.

Px0 0 3.00 7.00 13.0 21.0 4.00 9.0Q 16.0 25.0

2
(P +P)0 0 6.00 28.0 91.0 231. 1Q.0 45.0 136. 325.

Px0 0.60 0.34 0.27 0.19 0.64 0.59 0.51 0.43

2 2
V 0 (Pjp)0 0.70 0.43 0.28 0.20 0.91 0.72 0.56 0.46

Table 5.4.30 gives effort ratios obtained from the results shown

in figures 5.4.28 and 5,4.29. The effort ratios are defined by:

E - the computational effort to evaluate A / the computational
A,B

effort to evaluate B ...5.4.31.

5.5 Total computational effort.

The results obtained in the previous three sections of this

chapter are summarised in this section.

One iteration in MAP requires, a function evaluation, a f irs t

derivative evaluation, and the solution of the LP problem. Thus

an estimate of the total computational effort required by MAP to

perform one iteration on a truss problem, is given by:
3 2

T = 423.6 P + 2383 P + 2678 P + 635.9 . . .5.5.1,
5.5.1

93

and on a plate problem is, given by;
3 2

T = 372.8 P + 3755 P + 401'8 P - 26100 ...5.5.2.
5.5.2

One search in MFD requires, a function evaluation, a f irs t

derivative evaluation, the solution of a LP problem and two more

function evaluations on average, to locate the next set of con-

straints. Thus an estimate of the total computational effort

required by MFD to perform one search on a truss problem, is given

by:
3 2

T = 182.3 P + 284Q P + 7549 P + 1908 ...5.5.3,
5.5.3

and on a plate problem is given by:
3 2

T = 1Q9.6 P + 2940 P + 13840 P - 44370 ...5.5.4.
5.5.4

One search in Newton's method with SUMT requires a function

evaluation, a f i r s t and second derivative evaluation and 5.5 more

function evaluations on average, to find the minimum along the

direction. Thus an estimate of the total computational effort

required by Newton's method to perform one search on a truss

problem, is given by:
4 3 2

T = 29.0 P + 552.0 P + 3351 P + 11720 P + 6812 ...5.5.5
5.5.5

and on a plate problem* is given by;
4 3 2

T = 9.Q5 P + 1158 P + 6583 P + 13490 P - 73670 ...5.5.6,
5.5.6

If the objective function were quadratic, then Newton's method

would require only one iteration to find its minimum.

94

One search tn Fletcher-Powell*$ method with SUMT requires a

function evaluation, a f irs t derivative evaluation and 5.5

function evaluations, on average, to find the minimum along the

direction. Thus, an estimate of the total computational effort

required by the method to perform one search on a truss problem, .Is

given by:
3 2

T = 135.9 P + 2Q47 P + 10600 P + 6825 ...5.5.7,
5.5.7

and on a plate problem, Is given by:
3 2

T = 24.8 P + 2872 P + 25520 P - 73660 .. .5.5.8.
5.5.8

Similarly, when Stewart's method with finite difference derivatives

is used, the total computational effort to perform one search on

a truss problem Is given by:
4 3 2

T = 12.0 P + 156.9 P + 2712 P + 10400 P + 6853 ...5.5.9,
5.5.9

and on a plate problem, Is, given by:
4 3 2

T ^ 1.03 P + 86.2 P + 4535 P + 16690 P - 56670 ...5.5.iK).
5.5.10

I f the objective function were quadratic, then both Fletcher-Powell's

and Stewart's methods would require no more than P iterations to

find its minimum.

When Powell's method is used with SUMT, then the total com

putational effort to form and search along a direction on a truss

problem, is given b :̂ ^

T * 78.Q P + 1163 P + 9393 P + 6869 ...5.5.11,
5.5.11

•

and on a plate problem, Is given by:

95
3 2

T = 6.7Q P + 517 P + 25440 P - 56650 ...5.5.12.
5.5.12

Powell's method requires, P or P+l searches per iteration, and

requires no more than P Iterations to minimize a quadratic function.

For the truss problems and the plate problems respectively, figures

5.5.13 and 5.5.14 plot estimates of the computational effort required

by each method to complete one iteration using an IBM 360/67 computer

(as given by equations 5.5.1 to 5.5.12) against the number of design

variables.

An Iteration is defined as:

the solution of one LP problem when using MAP,

the solution of one-dimensional search when using MFD, Nl, FP

or ST, and

the solution of P one-dimensional searches when using PQ.

Measurements of the actual computational effort used by each

algorithm during one iteratlonare given in chapter 7.

96

PO

Nl
10.0 CO

ST 0)
CO

MAP

MFD
FP

CD

•—i

1.00

PO

0.10 Nl CD ST
FP

MFD to MAP LU

0.01

7 13 21

Number of Design Variables, Trusses

FIGURE 5.5.13

PO

10.0
MAP CO

CD
ST CO

MFD

FP

cu
1.00

CD

LU

PO

Nl

° 0.10 ST
FP
MAP
MFD

to

0.01 L I
4 9 16

Number of Design Variables, Plates

FIGURE 5.5.14

98

CHAPTER 6

TEST PROBLEM DATA

6.1 Description of the testa.

Chapter 5 developed estimates of the computational effort

required by each of the algorithms on the two types of structural

problem under consideration when using an IBM 360/67 computer.

This chapter gives details of test problems investigated using

an IBM 370/145 computer to ascertain the actual computational

effort used by each of the algorithms. The following results were

recorded:

1. the number of

a. one-dimensional searches,

b. function evaluations, and

c. derivative evaluations;

2. the CPU time expended in

a. evaluating functions,

b. evaluating derivatives, and

c. performing those operations required by the optimisation

algorithms*, and

3. the value of

a. the objective function and

b. the structural weight.

99

The CPU times* measured using a system subroutine, do not

include CPU effort expended performing input/output operations.

The test structures used are:

3, 7, 13 and 21 member pin-jointed plane trusses, and

4, 9, 16 and 25 node idealization plane stress plates,

al l subject to two load cases, with upper and lower bounds on

stress and design variable values. Data for the structures are

given in the following sections of this chapter.

The optimisation algorithms used are summarized in section 7 of

chapter 2 and are detailed in chapter 3. Selection is made of

arbitrary coefficients and other parameters required by the

algorithms in section 3 of this chapter.

6.2 Test structure data

The trusses used in this study are similar to one investigated
29

by Schmit . The design variables are the member cross-sectional

areas. The configurations of the test trusses are shown in figure
6.2.1 and have the following common data:

initial cross-sectional area of all members = 1.0,

load case 1, P = 15.0, P - 25.9808,
1 2

load case 2, P =-20.0, P = 0.0,
1 2

Young's modulus of elasticity = 1.0,

density =1.0,

t .«. = 20.0, ...6.2.2
max j

t = 0.01,
min j

T O O

1.0 1.0

3 BAR
1.0 TRUSS

1
6 @ 0.5 3.0

1.0 7 BAR
TRUSS

•
P.

1

12 @ 0.25 3.0

1.0 13 BAR
TRUSS

*
P

1

P 20 @ 0.15 = 3.0

21 BAR
TRUST"

1.0

1

FIGURE 6.2.1

9 NODE 4 NODE
.76 .88 ft

4.0

4 76
.64

6.0 6.0

4.0 4

ft 25 NODE 16 NODE

30000 30000

LOAD CASE 1

21000

o
o
o
«3-

1
f

21000

LOAD CASE 2

FIGURE 6.2.3

102

<r - 20.0,
max qs

CT =-15.0.
mtn qs

The plane stress plates used In tots study are rectangular and

are subject to two load cases, one of pure tension and one of

pure shear. The nodal thicknesses of the finite element idealiza

tion are the design variables. The plates have the configurations

shown in figure 6.2.3 and have the following common data:

the initial thicknesses of the nodes are determined from

linear interpolation using the initial thicknesses of the

nodes of the 4 node plate,

Young's modulus of elasticity - 10,000,000.0,

Poisson's ratio = 0.3,

density * 2.0,

t = 1.0, ...6.2.4
max j

t = 0.25,
min j

cr ~ 15,000.0 - - <T
max qs min qs

Figure 6.2.5 shows the configuration of a 21 bar bridge

which was also used to test the optimisation algorithms. The

bridge was subjected to one dead load and four live load cases.

The live loadings are of the type imposed by vehicles on a bridge

truss. Table 6.2.6 gives load data. Other pertinent data are:

4 @ 6.0 m = 24.0 m

4*

1 Y 2 J

X X X
\

N ^ r X 1 X

r v 3 1 5

Y 7
21 BAR BRIDGE

FIGURE 6.2.5

2
initial area of al l members * 95.0 cm »
initial weight « 1Q6.7 kN * lQ.86Mg,

2
Young's modulus of elasticity ~ 21 ,€00 kN/cm ,

-5 3 -5
density = 7.698 x 10 kN/cm « 0.785 x 10 Mg/cm

2
t = 100 cm ,
max j

2
t = 10 cm ,
min j

2 2
<T « 16.5 kN/cm , and <r * - 12.0 kN/cm
max qs min qs

Results for this structure are given in the appendices

105

Table.6,2.6: Loadings on the 21 bar bridge C kN')

Load Dead load load case
1

Live Load
load case load case

2 3
load case

4

X3
- - 40 - 40 -•

X
5

- - - 40 + 40 . -

X
7

- -- - + 40 + 40

X
9

- • -, •PI to. + 40

Y
2

10 • - - '

Y
3

55 + 20.0 + 200

Y
4'

15 -. -

Y
5'

55 +200 + 200 -•

Y
6'

15 • _ _,

Y
7

55 + 200 + 200

Y
8

15 - -

Y
10

10 . - -

106

6.3 Qpttmtsatton algorithm data

Operational characteristics of optimisation algorithms are

dictated by control parameters and/or arbitrary coefficients.

Values for the arbitrary coefficients. (o< in equation 3.2.2 for

MAP, c in problem formulation 3.3.19 for the MFD, and c in
i

equation 3.4.2 for the SUMT) are selected in section 4 of this

chapter. Values for the control parameters required by the

optimisation program used in this study are given below.

The control parameters are used by the optimisation pcogram

to determine when control should, be returned from a subroutine

to the calling subroutine or program and to determine when the

optimisation should be terminated. The control parameters are

set in the main program or are read as data input. The algorithm

for the main program used is:

i . read in structural data and optimisation data; ...6.3.1

i i . set values for the control parameters for the algorithms

on this iteration of the main program;

i i i . go to the optimisation algorithm and on return from the

algorithm go to iv;

iv. record results (section 1 of this chapter);

v. i f the optimisation should be terminated, report results

and terminate; i f the optimisation should not be terminated

go to i i .

In step i , the following optimisation data are input:

107

1. the val ues of the arhitrary coefficients;

2. the relative accuracy o f

a. number representation and

b. function and derivative evaluations;

3. the minimum allowable relative rates of

a. reduction in weight,

b. reduction in objective function, and

c. change in a l l the design variable values;

4. the resolution of design points; and

5. the maximum number of main program iterations allowed.

The data items, 2a and 2h are used by many of the algorithms to

generate the test values in the algorithms. The relative accuracy

of number representation depends on the absolute magnitude of the

number represented, but was, taken to be an average value of

0.0QQ 000 1 for the computers used in the tests. Preliminary

tests showed that the relative accuracy of function and derivative

evaluations was approximately 0.000 001.

Data item 3a is required i.n step v of the main program

algorithm. The program is terminated i f the actual relative

reduction in weight during the latest main program iteration is

less than the value 3a. A value of 0.000 010 per main program

iteration was used.

Data items. 3b and 3c are used in step i i i by the optimisation

algorithms to transfer control to the main program. Thus, i f the

108

re la t i ve reduction in the objective function and relative change

in a l l the design variables are less than the values 3b and 3c,

then the optimisation algorithms return control to the main program.

A value of Q.001 per optimisation algorithm iteration was used for

both. 3b and 3c'.

Data item 4 is used by- the. one-dtmenstonal search algorithms.

A value of 0.001 was used for the resolution of design points. The

maximum number of main program iterations, data item 5, was set

at .7.

The control parameters, set In step i i are: the maximum

number of quadratic f i t s allowed in each one-dimensional search

and the maximum number of optimisation algorithm iterations allowed

per main program i terat ion.

Table 6.3.2: Maximum number of algorithm iterations allowed

Algorithm Maximum number of
iterations per main
program iteration
allowed.

MAP 1 + 1/3 *

MFD 4 + 1/2

PO

ST (2 + 1/2)P

FP

Nl 2 + 1/2

N2 (1 + P(3 + i)) / 2

* where i. Is the i teration number of the main program.

109

In step i i , the maximum number of quadratic f i ts allowed per

one-dtmenstonal search was set at (6 + t/3) for all the

algorithms except MAP.

In step H i of the main program algorithm* the optimisation

algorithms return to the main program vthen the maximum number of

iterations given in table 6.3.2 is exceeded.

The results in step iv of the main program algorithm are

listed in section 1 of this chapter. When MAP is being used, the

weight of a feasihle design obtained from an infeasible solution

is also recorded. The feasible design is determined by multiplying

all the design variables of the infeasible solution, by the ratio

of the stress which violates the allowable stresses by the greatest

amount to the appropriate allowable stress. The weight obtained

from the feasible design is called the 'scaled weight' in the

following chapters.

In step v of the main program algorithm, the following tests

are made for termination:

i . terminate for all algorithms except MAP, i f the weight has

increased;

i i . terminate i f the design is feasible or acceptably infeasible,

and i f the relative rate of change in weight during the

latest main program iteration is less than the test value

data item 3a;

i i i . terminate if.the number of main program iterations exceeds

the test value, data item 5.

no
In test i t , a design ts considered acceptably infeasible providing

none of the stress constraints are violated by more than 0.000 001

cr
max qs

6.4 Optimisation algorithm arbitrary coefficients.

Preliminary computer runs were made to establish suitable values

for the arbitrary coefficients of th.e optimisation algorithms. The

three bar and seven bar trusses were used as the test structures for

these runs.

For the three and seven bar trusses respectively, figures

6.4.1 and 6.4.2 plot weight against CPU time for the values of the

MAP arbitrary coeff icients from 0.10 to 0.40. From the results

shown, o(was selected as 0.2Q for al l the computer runs reported

in chapter 7.

For the three and seven bar trusses respectively, figures

6.4.3 and 6.4.4 plot weight against the number of derivative

evaluations for the values of the MFD arbitrary coefficients c
i

(for all i) from 0.0001 to 10.0. From the results shown in these
figures, c for all i was set at 0.10 for all the computer runs

i
reported in chapter 7.

For the three bar truss only, figures 6.4.5 to 6.4.24 plot

weight against CPU time for the values of the SUMT arbitrary

coefficient c from 1/10 to 1/320. For data items 3b and 3c

of section 3 of this chapter, figures 6.4.5 to 6.4.8 have the

values of 0.005, 0.001, 0.0002 and 0.00004 respectively on

Newton(l)'s method. Similarly, figures 6.4.9 to 6.4.12, 6.4.13 to

in
6.4.16 and 6.4.17 to 6.4.20 have the above values on Fletcher-

Powell's, Stewart's and Powell's methods respectively. For

Newton(l}!$, Fletcher-Powell's, Stewart's and Powell's methods

respectively, figures 6.4.21 to 6.4.24 have, for data items 3b

and 3c, the initial value of 0.001, which is then reduced, as
22

recommended by Moe , by a constant factor of 0.4 on each

succeeding SUNT iteration. From the results shown in figures

6.4.5 to 6.4.24, an efficient and consistently effective choice

for the value of the SUMT arbitrary coefficient c is 1/160.

This value was used for the computer runs reported in chapter 7.

Figures 6.4.5 to 6.4.24 also verify that the value of 0.001 for

data items 3b and 3c of section 3 is efficient and that the scheme

suggested by Moe does not seem to offer significant computational

advantages.

Assured Cn»,

n> CPU S p

3.70

VALUES

3.60 0.40
0.35
0.30
0.25
0.20
0.75

3.50 0.70

3.40

4 J

CD

3.30

3.20

3.10

3.00

0
4

8
Measured Computatf ona7 Effort, CPU Seconds

FIGURE 6.4.2

3.04

3.02

3.00 VALUES FOR

10.0
1.00
0.10 2.98 0.01
0.001

CD

2.96

2.94

2.92

2.90
0 10 15 20

Number of Derivative Evaluations

FIGURE 6.4.3

115

c =100

VALUES
FUFTc

10.0
1.00
0 .0
0.01
0.000 •r—

2 3.30

3.20

3.10

3.00
0 10 15 20 25

Number of Derivative Evaluations

FIGURE 6.4.4

3.04

3.02

3.00

VALUES
FORc

2.98 0.100
0.050
0.0250
0.0125
0.00625
0.003125 2.96

2.94

2.92

2.90
4

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.5

3*04

3.02

3.00

2.98 VALUES
FOR c

0.10
0.05
0.025 2.96
0.0125
0.00625
0.003125

2.94

2.92

I 2.90

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.6

3.04

3.02

3.00

2.98 VALUES
FOR c

0.10
0.05
0.025
0.0125 2.96
0.00625
0.003125

2.94

2.92

2.90
4

Measured Computational E f f o r t 9 CPU Seconds

FIGURE 6.4.7

119

3.04

3.02

3.00

VALUES
FOR c

0.1
0.05
0.025
0.0125
0.00625
0.003125

2 3 4 * 5 6 7

Measured Computational E f f o r t , CPU seconds.

FIGURE 6.4.8

120

3.04r-

3.02

3.00

2.98
VALUES
FOR c

0.10
0.05 en

u 2.96 0.025
0.0125
0.00625
0.003125

2.94

2.92

I 2.90
5 1

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.9

121

3.02

3.00

2.98 VALUES
FOR c

0.10
0.05
0.025

CD 2.96 0.0125
0.00625
0.003125

2.94

2.92

2.90
3 4 5 6 7

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.10

122

3.04

3.02

3.00

VALUES 2.98 FOR c

0.10
0.05
0.025
0.0125 2.96 0.00625 CD

0.003125

2.94

2.92

2.90
4

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.11

3.04

3.02

3.00

VALUES 2.98 FOR c

0.10
0.05
0.025
0.0125 2.96 0.00625
0.003125

2.94

2.92

2.90
8 6

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.12

124

3.04

3.02

3.00

VALUES 2.98 FOR c
0.10
0.05
0.025
0.0125 a) 2.96 0.00625
0.003125

2.94

2.92

2.90
4 6 8 10 12

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.13

125

3.04

3.02

3.00

VALUES
FOR c 2.98
0.10
0.05
0.025

CO 0.0125
0.00625 2.96 0.003125

2.94

2.92

2.90
12 10 8 4

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.14

3.04

3.02

3.00

VALUES 2.98 FOR c

0.10
0.05
0.025
0v0125r. 2.96 0.00625
0.003125

2.94

2.92

2.90
4 12 10 6

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.15

3'04

3.02

3.00

VALUES
FOR c 2.98
0.
0.05
0.025
0.0125
0.00625 2.96
0.003125

2.94

2.92

2.90
14 2 10 8 4

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.16

128

3.04

3.02

3.00

2.98

VALUES
FOR c 2.96
.1
.05
025
.0125
.00625 2.94

2.92

2.90
25 20 15 10 0

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.17

3.04

3.02

3.00

VALUES 2.98 FOR c

0.1
0.05
0.025
0.0125 2.96 0.00625
0.003125

2.94

2.92

2.90
0 0 15 20 25

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.18

130

3.04

3.02

3.0Q

2.98

VALUES CD
3 FOR c 2.96

0.10
0.05
0.025
0.0125
0.00625 2.94 0.003125

2.92

i 2.90
5 10 15 20 25

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.19

3.02

3.00 -

2.98

VALUES 2.96 FOR c

0.1
0.05
0.025
0.0125 2.94 0.00625
0.003125

2.92

0 5 10 15 20

Measured Computational E f f o r t , CPU Seconds

FIGURE 6.4.20

25

3.041-

3.02

3.QC-

2.9E-

VALUES
FOR c

0.1
2.9*- 0.05

0.025
0.0125
0.00625
0.003125

2.9'

2.92-

i
2.90

6

Measured Computational Ef fo r t , CPU Seconds

FIGURE 6.4.21

3.04

3.02

3.00

VALUES 2.98 K M C

0.1
0.05
0.025
0.0125 2.96 0.00625
0.003125

2.94

2.92

2.90
7 4

Measured Computational Ef for t , CPU Seconds

FIGURE 6.4.22

134

3.04

3.02

3.00

2.98

VALUES

0.1
0.05 2.96
0.025
0.0125
0.00625
0.003125

2.9'

2.92

2.9Q
12 10 8 9

Measured Computational Ef fo r t , CPU Seconds

FIGURE 6.4.23

135

3.04

3.02

3.00

2.98
VALUES
FOR c

CD
0.10 CD

0.05
2.96 0.025

0.0125
0.00625
0.003125

2.94

2.92

2.90
25 15 20 10 0

Measured Compu tat tonal Ef for t , CPU Seconds

FIGURE 6.4.24

136

CHAPTER 7

TEST RESULTS AND DISCUSSION

7.1 Introduction

Throughout this chapter the following definitions are used:

computational e f fo r t * CPU time expended using an IBM 370/145

computer,

A-B e f f o r t ratio = E = computational e f fo r t either to perform
A, B

operation A or using method A divided by

computational e f fo r t either to perform

operation B or using method B,

minimum weight (MM) = lowest recorded weight of a l l feasible

designs encountered by any of the

algorithms.

near minimum weight (Nl#)=100.5%of the minimum weight defined

above.

Slight changes in the arbitrary coefficients can alter the

computational e f f o r t required by the algorithms. Nevertheless

i t i s assumed in chapter 6 that either the optimum choice or an

equally non-optimum choice has been made for the arbitrary

coefficients of tlie algorithms on a l l of the problems.

7.. 2 Computer results.

Table 7.2.1 shows on which problems tfie algorithms were

tested and indicates whether the near minimum was achieved.

137

Failure to achieve the near minimum weight (NMW) was usually
caused by the upper time l imi ts s.et for the computer run. How
ever, MFD fai led to achieve the near minimum on both the 21 bar
truss and the 25 node plate because the LP algorithm lacked ade
quate precautions to prevent cycling. Powell's method and
Stewart's method were not run on the large problems because
earlier runs on the smaller problems had established that these

algorithms were not as e f f i c i en t as the other algorithms.

Table 7.2.1: Computer tests made

P-BAR TRUSSES P-NODE PLATES

ALG 3 7 13 21 4 9 16 25

MAP Y X , Y Y Y Y Y Y

MFD v Y Y Y N Y Y Y N

Nl Y Y Y Y Y Y Y Y

N2 Y Y Y N Y Y Y Y

FP Y Y Y Y Y Y Y Y

ST Y N N - Y Y Y -
PO Y N - - Y Y -

Y = algorithm reaches the NMW of the problem,

N - algorithm does not f ind the NMW within the

time allowed, and

- - problem not run using this algorithm.

Figures 7.2.2 to 7.2.9 plot weight against total computational

e f f o r t used during tlie computer runs shown in table 7.2.1.

138

3.04

3.02

ALGORITHMS

3.00 MAP
MFD
Nl
N2
FP
ST

2.98 PO

2.96

2.94

2.92

0 5 10 }5 lo 25

Measured Computational Effort, CPU Seconds

FIGURE 7.2.2

139

3.60

3.50

ALGORITHMS

MAP 3.40 MFD
Nl
N2
FP
ST
PO 3.30

3.20

3.10

3.00

I • 2.90
Q 50 100 150 200 250

Measured Computational Ef fo r t , CPU Seconds

FIGURE 7.2.3

4.20

4.00

3.80

ALGORITHMS
3.60

MAP
MFD
Nl
N2
FP

3.40 ST

3.20

3.00
V

2.801

0 100 200 300 400 500

Measured Computational Effor t , CPU Seconds

FIGURE 7.2.4

4.20

4.00

3.80
ALGORITHMS

MAP
MFD
Nl
N2 3.60
FP

3.40

3.20h

3.our V

2.80
0 400 800 1200 1600 2000

Measured Computational Effor t , CPU Seconds

FIGURE 7.2.5

25.2

25.0

24.8

ALGORITHMS 24*6

MAP
MFD
Nl
N2

24.4 FP
ST
PO

24.2

24.0

23.8
10 15 20 25

Measured Computational Ef for t , CPU Seconds

FIGURE 7.2.6

25.2

25.0

24.8

ALGORITHMS

MAP
MFD
Nl 24.6
N2
FP
ST
PO

24.4

24.2

24.0

23.8
0 100 200 300 400

Measured Computational Ef fo r t , CPU Seconds

FIGURE 7.2.7

25.2

25.0

24.8

ALGORITHMS

MAP
MFD
N 24.6
N2
FP
ST

24.4

24.

23.
0 200 400 600 800 1

Measured Computational Ef for t , CPU Seconds

FIGURE 7.2.8

25.2

ALGORITHMS

MAP
MFD

25.0 Nl
N2
FP

24.8

24.6

24.4

24.2

24.0

23.8 i I
0 625 1250 1875 2500 3125

Measured Computational Ef for t , CPU Seconds

FIGURE 7.2.9

146

Table 7.2.10 shows values Gfrthe parameters measured at the NMW.
for each run. The parameters measured and the abbreviations used

are:

TF - CPU time (sees) used in evaluating functions.

TD - CPU time (sees) used in evaluating derivatives,

TO - CPU time (sees) used in the optimisation algorithms,

TT = sum> of TF, TD and TO,

NFE = total number of functions evaluations,

NDE = total number of derivative evaluations, and

NITS * total number of iterations.

The results presented in the remainder of this chapter have been

derived from the values in table 7.2.10.

7.3 Ef fo r t used by the function and derivative algorithms

For the trusses shown in figures 6.2.1 and for the plates

shown in figure 6.2.3, figures 7.3.1 and 7.3.2 respectively, plot

measured computational e f f o r t for evaluation of functions and

derivatives against the number of design variables. Table 7.3.3

gives the derivative - function e f f o r t ratios, A/B, obtained from

the results shown in figures 7.3.1 and 7.3.2.

The e f f o r t ratios for rows 1 and 2 in table 7.3.3 are for

derivatives obtained by di f ferent ia t ion, and the ratios in rows

3 and 4 are for derivatives obtained from a forward f i n i t e difference

scheme. Note that different iat ion - f i n i t e difference e f f o r t ratios

for f i r s t derivatives shown in row 5 are of a similar magnitude to

the second derivative ratios shown in row 6.

147

Table 7.2.10: Results measured at tfie NMK.

P-BAR TRUSSED, p * P-NODE PLATES , p «
ALG ; - 3 7 13 21 4 9 16 25

MAP TF 0088 0.54 4.2 14.2 .107 0.77 2.2 5.
TD .115 1.40 16.4 65.4 .234 3.80 17.0 56
TO .071 0.41 5.4 19.1 .141 1.45 9.4 40.
TT .274 2.35 26.0 98.7 .482 6.02 28.6 101.
NFE 3 5 11 12 3 5 5 5
NDE 2 4 10 11 2 4 4 4
NITS 2 4 10 11 2 4 4 4

MFD TF .352 3.55 52. _ .249 2.1 10.
TD .369 4.04 43. - .466 8.9 78. -
TO .270 1.71 15. .202 1.5 17. -
TT .991 9.30 110. .917 12.5 105. -
NFE 11 32 138 7 13 22 -
NDE 6 11 26 - 4 9 18 -
NXTS 6 11 26 4 9 18 -

Nl TF 1.57 14.3 57. 196. 2.25 11.Q 42.0 93
TD 1.87 32.2 251. 1320 3.66 84.2 776. 4300
TO 0.16 0.6 2. 15 0.34 0.9 2. 5
TT 3.60 47.1 31Q. 1530 6.25 96.1 820. 4398
NFE 51 133 157 172 63 70 93 91
NDE 9 17 19 20 7 12 15 14
NITS 9 17 19 20 7 12 15 14

FP TF 2.71 28.6 184. 801. 2.16 28.7 116. 397.
TD 0.92 16.9 144. 706. 1.48 30.6 221. 1067
TO 0.26 1.5 6. 15. 0.36 1.5 4. 10
TT 3.89 47.0 344. 1522 4.00 60.8 341. 1474
NFE 87 259 485 7Q4 60 179 256 382
NDE 14 42 84 116 12 30 49 74
NITS 13 43 85 117 11 30 49 74

ST TF 5.15 - - 5.75 137. 761. -
TD - - - - - - - -
TO 0.36 - - - 0.50 2. 6. -
TT 5.51 - - - 6.25 140. 767. -
NFE 162 - - 156 880 1690 -
NDE - - - - - - - -NITS 15 - - 12 45 57 -

PO TF 12.1 — - 16.6 417. - -
TD - - - - - - - -TO 0.8 - - 1.1 7. - -
TT 12.9 - - 17.7 424. - -
NFE 387 470 2679 -
NDE - - - - - - -
NITS 17.3 - - - 17.0 47.2 - -

148

I n the f i g u r e s 7 .3 .1 and 7 .3 .2 and i n the t a b l e 7 . 3 . 3 , i t
can be seen t h a t d e r i v a t i v e s obta ined by d i f f e r e n t i a t i o n requ i red
i n general less computat ional e f f o r t than d e r i v a t i v e s obta ined by
f i n i t e d i f f e r e n c i n g . The va lues i n tab le 7 .3 .3 compare we l l w i t h
the est imates given i n t ab le 5 .4 .30 .

Table 7 . 3 . 3 : Measured f u n c t i o n and d e r i v a t i v e e f f o r t r a t i o s , E
— A,B

P-BAR TRUSSES, p * P-NODE PLATES, P «
A B

3 7 13 21 4 9 16 25

TO 9 1.98 3.34 4.43 5.12 3.34 6.35 9.81 13.7

129 9 4.31 14.4 31.3 55.2 10.1 39.4 107. 196.

PxjZ) 9 3.00 7.00 13.0 21.0 4.00 9.00 16.0 25.0

(P 2 +P)0 0
o

6.00 28.0 1 91.0 231 . 10.0 45.0 136. 325.
L

70 Px0 0.66 0.48 0.34 0.24 0.83 0.70 0.61 0.55

V 2 0 (P+P)j3
2

0.72 0.52 0.34 0.24 1.01 0.88 0.79 0.60

7.4 E f f o r t used by tha o p t i m i s a t i o n a lgo r i t hms .

For the t russes s h o w i n f i g u r e 6.2.1 and f o r the p la tes shown

i n f i g u r e 6 . 2 . 3 , f i g u r e s 7.4.1 and 7.4.2 r e s p e c t i v e l y p l o t measured

computat ional e f f o r t used dur ing one i t e r a t i o n (as def ined i n

chapter 5) o f each o f t he a lgo r i thms aga ins t the number o f design

v a r i a b l e s . Comparison o f f i g u r e s 7.4.1 and 7.4.2 w i t h f i g u r e s

5.5.13 and 5 .5 .14 shows t h a t except when MAP i s being cons idered,

the est imated a l go r i t hm i t e r a t i o n e f f o r t r a t i o s agree w i t h the

measured r a t i o s . When cons ider ing MAP the d iscrepancies a r i s i n g

T O O . %P(P-M)0

V 0

P0

10.or

70

0

l.oa

o.io

i

3 7 13

Number o f Design Va r i ab l es , Trusses

FIGURE 7.3.1

150

y ,(w)0
7 0 100.

P0

via
CO
o 10.0
<D

CO

03

0
f0 1.00

CO
03

0 . 1 0 L

16 25

Number o f Design Va r i ab les , Plates

FIGURE 7.3.2

151

100.

to

<D

10.0

<u

L U

1.00

P0

Nl
ST

<u FP
MFD (/>

MAP
O.lOh-

13 21

Number o f Design Va r i ab les , Trusses

FIGURE 7.4.1

Nl

100.

in

CD
MAP
FP

MFD
ST

10.0
4->

L l J

<0

P0 1.00
Nl

ST

FP
MFD <u

MAP

o.id I I I L
4 9 16 v 25

Number o f Design Va r i ab les , Plates

FIGURE 7.4.2

153

are probably caused by the a r b i t r a r y assumption (made i n chapter
5) o f the numher o f i t e r a t i o n s , requ i red by the LP a lgo r i t hm to
f i n d the s o l u t i o n to th.e l i n e a r i z e d problem.

7.5 Other r e s u l t s .

Table 7 .5 .1 shows the r a t i o s o f the CPU e f f o r t used i n

eva lua t i ng f unc t i ons (F) , d e r i v a t i v e s (D) or i n per forming the

o p t i m i s a t i o n opera t ions (0) t o the t o t a l CPU e f f o r t . The

d e r i v a t i v e - t o t a l e f f o r t r a t i o f o r S tewar t ' s method was determined

Table 7 . 5 . 1 : Measured e f f o r t r a t i o s , E , to achieve the NMW
X,Tota l

P-BAR TRUSSES, P * P-NODE PLATES, P *
ALG X

3 7 13 21 4 9 16 25

MAP F 0.32 Q.23 0.16 0.14 0.22 0.13 0.08 0.05
D 0.42 0.60 0.63 0.66 0.49 0.63 0.59 0.55
Q 0.26 0.17 0.21 0.20 0.29 0.24 0.33 0.40

MFD F 0.36 0.38 0.47 Q.27 0.17 0.10 —. MFD
D 0.37 0.43 0.39 0.51 0.71 0.74 -
0 0.27 Q.18 0.14 - 0.22 0.12 0.16 -

Nl F 0.44 0.30 0.18 0.13 0.36 0.11 0.05 0.02
D 0.52 0.68 0.81 Q.86 0.59 0.88 0.94 0.97
0 0.04 Q.02 0.01 0.01 0.Q5 0.01 0.01 0.01

FP F 0.70 0.61 0.55 0.53 0.54 0.47 0.34 0.27
D 0.24 0.36 0.43 0.46 0.37 0.50 0.65 0.72
0 0.06 0.03 0.02 0.01 0.09 0.03 0.01 0.01

ST F 0.67 _ _ 0.64 0.54 0.46 _

D 0.26 - - - 0.28 0.45 0.53 -
0 0.07 - - 0.08 0.01 0.01 -

PO F Q.94 - 0.94 0.98 -
D - - - - -
0 Q.06 - - - 0.06 0.02 -

154

by I n c l u d i n g i n the d e r i v a t i v e e f f o r t on l y those func t i ons
eva lua t i ons necessary f o r a forward FD d e r i v a t i v e scheme. The
e f f o r t used by the remaining f u n c t i o n eva luat ions was used to
determine the f u n c t i o n - t o t a l e f f o r t r a t i o .

Table 7 .5 .2 shows the average number o f f u n c t i o n eva luat ions

used per one-dimensional search f o r each o f the a lgo r i t hms . The

h igh values repor ted f o r S tewar t ' s method are a r e s u l t o f the

assumption t h a t on l y the forward FD scheme was used hy the

a l g o r i t h m . As assumed i n chapter 5 , the average number o f f u n c t i o n

eva lua t ions used per one-dimensional search was approx imate ly 2.5

when MFD was used and was approx imate ly 6.5 when e i t h e r N l , FP or

PO was used.

Table 7 . 5 . 2 : Average number o f f u n c t i o n eva lua t ions per one-
dimensional search.

P-BAR TRUSSES, P = P-NODE PLATES, P =
ALG

3 7 13 21 4 9 16 25

MFD 1.8 2.9 5.3 3.Q 1.8 1.4 1.2 -
Nl 5.9 7.8 6.6 8.6 9.0 5.8 6.1 6.5

FP 6.7 6.0 5.7 6.0 5.5 6.0 5.2 5.2

ST 7.9 9.8 13. - 8.4 1 1 . 13. -
PO 7.4 6 .8 - - 6.9 6.3 - -

I t can be seen i n t a b l e 7 . 5 . 3 , showing the algorithm-MAP e f f o r t

r a t i o s to reach the NMW.* t h a t f o r the t e s t problems, SUMT i n con

j u n c t i o n w i t h N l , FP» ST o r PO requ i res much more e f f o r t t o reach

the minimum than e i t h e r MFD or MAP.

155

The e f f e c t o f Improvements to SUMT and the UOAs and o f using

f i n i t e d i f f e r e n c e d e r i v a t i v e s w i t h MFD and MAP are discussed i n

sec t i on 6 o f t h i s chapter .

Table 7 . 5 . 3 : Measured algorithm-MAP e f f o r t r a t i o s , E , to
reach the H\W ALG.MAP

P-BAR TRUSSES, P « P-NODE PLATES, P «
ALG

3 7 13 21 4 9 16 25

MAP 1.00 1.00 1.Q0 1.00 1.Q0 1.00 1.00 1.00

MFD 3.62 3.98 4.20 or 1.89 2.08 3.67

Nl 13.1 20.2 11.8 15.5 12.9 16.0 28.7 43.5

FP 14.2 19.9 13.0 15.4 8.28 10.1 11.9 14.6

ST 20.1 - >
if - 13.0 23.2 26.8 -

PO 47.1 - - 36.8 70.4 - -

Table 7 .5 .4 shows the r a t i o o f the number o f i t e r a t i o n s made by

an a l g o r i t h m to reach the near minimum we igh t , to the number o f

design parameters. Table 7 .5 .5 shows the r a t i o o f the number o f

i t e r a t i o n s requ i red by an a l g o r i t h m t o reach the NMW t o the

number o f i t e r a t i o n s requ i red by MAP to reach the NMW.

7.6 D iscuss ion .

From the r e s u l t s shown i n t a b l e 7.5.3 which summarizes the

r e l a t i v e performances o f the a lgor i thms on the s t r u c t u r a l problems,

i t would appear t h a t MAP and MFD requ i re less computat ional e f f o r t

than SUMT. This sec t i on i n v e s t i g a t e s the e f f e c t s o f :

156

Table 7 . 5 . 4 : Rat ios off t he number o f I t e r a t i o n s requ i red to reach.

ALG
P-BAR TRUSSES, P «

3 7 13 21

P-NODE PLATES, P «

4 9 16 25

MAP .667 .571 .764 .524 .500 .444 .250 .160

MFD 2.0Q .157 2.Q0 1.00 1.00 1.00

Nl 3.00 2.43 1.46 .952 1.75 1.33 .938 .560

FP 4.33 6.14 6.54 5.57 2.75 3.33 3.06 2.96

ST 5.00 - - 3.00 5.00 3.56 -
PO 5.78 - - 4.25 5.26 - -

Table 7 . 5 . 5 : Rat ios o f the number o f i t e r a t i o n s requ i red by an
a l g o r i t h m to reach the NMW to the number requTrecT
fay MAP.

P-BAR TRUSSES, P * P-NODE PLATES, P =
ALG

3 7 13 21 4 9 16 25

MAP 1.00 1.00 1.Q0 1.00 1.00 1.00 1.00 1.00

MFD 3.00 2.75 2.62 - 2.00 2.25 4.52 -

Nl 4.50 4.26 1.91 1.82 3.50 3.00 3.75 3.50

FP 6.50 10.8 8.56 10.6 5.50 7.50 12.2 18.5

ST 7.50 - - 6.00 11.3 14.2 -
PO 8.66 - - - 8.50 11.8 - -

1 . us ing a more e f f i c i e n t search technique w i t h the UOAs o f

SUMT,

l i . us ing f i n i t e d i f f e rences d e r i v a t i v e s w i t h MAP and MFD and

l i t . having d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o s d i f f e r e n t f rom

those o f t h i s s tudy .

157

The number of f u n c t i o n eva lua t ions per one-dimensional search can

be reduced by a search technique developed by Lund and recommended

by M o e 2 2 . i n the search , quadra t i c polynomial approximations o f

the o r i g i n a l o b j e c t i v e and a l l the c o n s t r a i n t func t ions are f i t t e d

to th ree p o i n t s , the i n i t i a l and two other p o i n t s , along the search

d i r e c t i o n . The po lynomia l ' approximations are combined to form a

new transformed o b j e c t i v e f u n c t i o n f o r t h i s search o f SOW. The

minimum o f the new o b j e c t i v e f u n c t i o n i s found w i t h l i t t l e compu

t a t i o n a l e f f o r t . The o r i g i n a l t ransformed o b j e c t i v e f u n c t i o n i s

eva luated a t the new p o i n t and the search i s te rm ina ted . There

f o r e , o n l y th ree f u n c t i o n eva lua t ions are requ i red per search.

The e f f e c t o f using such a search technique i s est imated i n t ab le

7 .6 .1 from the r e s u l t s i n tab les 7.5.1 to 7 . 5 . 3 . In t a b l e 7.6.1

Table 7 . 6 . 1 : Est imated a l go r i t hm - MAP e f f o r t r a t i o s , E ,
ALG,MAP

ALG
P-BAR TRUSSES,

3 7

P *

13 21

P-NODE PLATES,

4 9

P =

16 25

MAP 1.00 1.0Q 1.00 1.00 1.00 1.00 1.00 1.00

MFD 3.62 3.98 4.20 - 1.89 . 2.08 3.67 -

Nl 10.2 16.8 10.7 14.7 9.88 15.2 27.8 43.1

FP 8.66 14.1 9.47 11.2 6.22 7.78 8.69 13.0

ST 11.7 - - - 5.69 14.0 17.2 -
PO 21.2 - - - 16.9 33.8 - -

158

i t - c a n be seen t h a t the e f f o r t requ i red by the UOAs and SUMT

r e l a t i v e to the e f f o r t requ i red by MAP and MFD wou^d be reduced

by us ing Lund's techn ique. Therefore i n the f o l l o w i n g work i n t h i s

chap te r , the values i n t a b l e 7 .6.1 w i l l be used.

When f i n i t e d i f f e r e n c e s are used to ob ta in d e r i v a t i v e s , the

e f f o r t necessary per i t e r a t i o n and the number o f i t e r a t i o n s

requ i red are g rea te r than when d e r i v a t i v e s are obta ined by d i f

f e r e n t i a t i o n . The g rea te r e f f o r t per i t e r a t i o n can be est imated

from tab les 7 . 3 . 3 , 7 .5 .1 and 7 . 6 . 1 . The greater number o f i t e r a

t i o n s requ i red can be est imated from tab le 7 .5 .5 by comparing

the number o f i t e r a t i o n s used by Stewar t ' s method w i t h the number

used by F l e t c h e r - P o w e l l ' s method. With the assumption t h a t the

number o f i t e r a t i o n s requ i red i s 25% greater than when de r i va t i ves

are obta ined by d i f f e r e n t i a t i n g , t a b l e 7.6.2 gives est imates

o f the algorithm-MAP e f f o r t r a t i o s to reach the near minimum

we igh t when d e r i v a t i v e s are obta ined by f i n i t e d i f f e r e n c e s .

Table 7 . 6 . 2 : Est imated algorithm-MAP e f f o r t r a t i o s , E to
ALG,MAP

reach the NMW when Lund's search and forward FD
d e r i v a t i v e s are usecTT

P-BAR TRUSSES, P = P-NODE PLATES, P =
ALG

3 7 13 21 4 9 16 25

MAP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MFD 3.53 3.53 3.33 - 1.90 2.13 3.91

ST 7.67 - - - 4.14 8.80 10.0

PO 13.9 - - - 12.3 21.3

159

The d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o s f o r the f u n c t i o n and

d e r i v a t i v e e v a l u a t i o n a lgo r i thms used are g iven i n t ab le 7 . 3 . 3 .

However, d i f f e r e n t f u n c t i o n and d e r i v a t i v e a lgor i thms may g ive

d i f f e r e n t d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o s which would a f f e c t the

e f f o r t r a t i o s to reach the near minimum we igh t but should not

a f f e c t the path taken by the o p t i m i s a t i o n a lgo r i t hm to get to the

near minimum weight des ign . Table 7.6.3 est imates the e f f e c t on

the algorithm-MAP e f f o r t r a t i o s to'i>aach the near minimum we igh t ,

o f d i f f e r e n t d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o s . The values are

determined from the f o l l o w i n g equat ions.

Le t

T - e f f o r t to eva lua te a f u n c t i o n ,
0

T = e f f o r t t o eva lua te a f i r s t d e r i v a t i v e by d i f f e r e n t i a t i o n ,
VP

T * e f f o r t to eva luate a f i r s t d e r i v a t i v e by forward f i n i t e

d i f f e r e n c e s , and

p = number o f design v a r i a b l e s .

Then

A ; E = T /
5 / 0 ' A.0/

E = T / T ; E = T / T = P . . . 7 . 6 . 4 ,
V0,0 V0i

t h e r e f o r e

E - E P . . . 7 . 6 . 5 ,
V0.0 V0, /$

S i m i l a r l y , l e t

T 9 = e f f o r t t o eva luate a second d e r i v a t i v e by d i f f e r e n t i a t i o n ,

T o - e f f o r t to eva lua te a second d e r i v a t i v e by forward f i n i t e

d i f f e r e n c e s .

160

Table 7 . 6 . 3 : Est imated a l g o r i t h m - MAP e f f o r t r a t i o s , E ,
ALQ,MAP

to reach the NMW f o r d i f f e r e n t values f o r the
d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o * . .

ALG P-BAR TRUSSES, P *
3 7 13 21

P-NODE PLATES, P
4 9 16 25

MAP a l l 1.00 1.00 1.0Q 1.0Q 1.00 1.00 1.00 1.00

MFD 1/P 4.83 4.43 4.06 — 3.22 3.62 7.28
h 4.51 3.45 2.95 - 2.82 2.69 4.96 _

1 3.88 3.07 2.73 - 2.44 2.43 4.62 _

2 3.42 2.84 2.60 2.19 2.28 4.44 _

10 2.96 2.64 2.49 - 1.95 ' 2.15 4.29 -
Nl V P 10.3 13.0 11.0 16.9 8.70 10.3 17.9 22.8

h 10.4 14.9 10.7 15.7 8.95 12.5 25.2 35.4
1 10.4 15.5 11.2 16.2 9.13 13.1 26.2 36.4
2 10.4 15.9 11.4 16.5 9.25 13.4 26.8 37.0
10 10.4 16.2 11.7 16.7 9.36 13.7 27.2 37.5

FP V P 10.0 16.7 13.2 16.4 8.50 11.6 18.9 28.6
h 9.06 12.1 8:401 9.64 7.10 7.92 11.5 16.5
1 7.55 1Q.5 7.58 8.95 5.96 6.95 10.6 15.4
2 6.47 9.48 7.12 8.59 5.21 6.42 10.0 14.9
10 5.36 8.60 6.73 8.29 4.47 5.94 9.57 14.4

ST 1/P 17.4 _ _ _ 16.2 52.4 104.
h 13.9 - - - 10.8 19.1 23.2 -
1 8.71 - - - 6.51 10.5 12.3 -
2 4.98 - - - 3.61 5.52 6.33 -
10 1.13 - - - 0.79 1.15 1.30 -

PO V P 30.1 39.4 123.
h 24.1 - - 26.3 44.9 - -
1 15.1 - - - 15.8 24.6 - -
2 8.62 - - 8.78 13.0
10 1.95 - - 1.93 2.71 -

161

Then

E
7 * T ? / J ; E , - T « A = P (P+l } / 2 . . . 7 . 6 . 6 ;

? % 0 Y 0 / 0 tfM AT0/ 13

t he re fo re

E o = E 9 P (P+l) /2 . . . 7 . 6 . 7 ,
n M 7 2 0 ,A 2 0

Table 7 .3 .3 gives tha t

E = E

V0,$> * V 2 0,A 2 0 . . . 7 . 6 . 8 .

Therefore l e t
Ji ? E = E . . . 7 . 6 . 9 .
' V0,^0 V 2 0 , a Z 0

Thus, t f = 1/P, then a d e r i v a t i v e eva lua t ion by d i f f e r e n t i a t i o n

requ i res as much e f f o r t as a f u n c t i o n e v a l u a t i o n ; i f v = 1 , then

a d e r i v a t i v e eva lua t i on by d i f f e r e n t i a t i o n requ i res as much e f f o r t

as. one obta ined by forward f i n i t e d i f f e r e n c e s ; i f p - 2 , then a

d e r i v a t i v e eva lua t i on by d i f f e r e n t i a t i o n requi res as much e f f o r t

as one obta ined by cen t r a l f i n i t e d i f f e r e n c e s . I f ju - 4 , a

h igher order f i n i t e d i f f e r e n c e d e r i v a t i v e may use less e f f o r t

than and may be as accurate as a d i f f e r e n t i a t i o n d e r i v a t i v e .

The computat ional e f f o r t requ i red by the a lgor i thms to perform

one i t e r a t i o n i s g iven by :

T « 1.33 (T/ + T) . . . 7 . 6 . 1 0 ,
MAP 0 V0

T - 1.25 (2.5 T + T } . . . 7 . 6 . 1 1 ,
MFD 0 70

T = 1,02 (3.0 T + T + T 0) . . . 7 . 6 . 1 2 ,
Nl $ V0 V 20

T = 1.03 C 3.0 T t T)
FP |9 V0

T = 1.03 (3.Q T + T)
ST 0 &

T = 1.03 (3.0 T) P
PO 0

162

. . . 7 . 6 . 1 3 ,

. . . . 7 . 6 . 1 4 ,

and
. . . 7 . 6 * 1 5 ,

where the c o e f f i c i e n t s , 1.33, 1.25, 1 .02 , 1.03, 1.03, 1.03 account

f o r the e f f o r t us.ed by the o p t i m i s a t i o n a lgor i thms and were

obta ined from t a b l e 7 . 5 . 1 .

S u b s t i t u t i n g the equat ions 7 .6 .4 to 7.6.9 i n t o 7.6.10 to 7.6.15

g i v e s :

HytiP) T T = 1 . 3 3
MAP

T = 1 . 2 5
MFD

T = 1 . 0 2
Nl

T = 1 . 0 3
FP

1.Q3
ST

T = 1 . 0 3
PO

0

2.5 + J J P) T

3.0 + p P (P+3) / 2) T

3.0 + jil P) T

0

0

3.0 + P) T
P

3.0) P T
0

. . . 7 . 6 . 1 6 ,

. . . 7 . 6 . 1 7 ,

. • . 7 . 6 . 1 8 ,

. . . 7 . 6 . 1 9 ,

. . . 7 . 6 . 2 0 ,

and
. . . 7 . 6 . 2 1 .

The re fo re , the e f f o r t per i t e r a t i o n r a t i o s are

MAP,MAP

MFD,MAP

N1,MAP

* 1.0

1.25 (2.5 tyuP)
1.33 (1 + jiP }

1.02 (3.0 +>uP C P + 3) /2)
1.33 (1 + J J P)

. . . 7 . 6 . 2 2

. . . 7 . 6 . 2 3

. . . 7 . 6 . 2 4

163

E
FP.MAP

* 1*03 I 3.0 +
T.33 C I + juP 1

. . . 7 . 6 . 2 5

E
ST,MAP

« 1.03 (3.Q t P)
1.33 t 1 + |lP I

7.6.26

E
P0,MAP

* 1.03 C 3.Q P)
1.33 C 1 + /iP)

. . . 7 . 6 . 2 7 .

Equations 7.6.22 t o 7.6.27 and the number of i t e r a t i o n s r a t i o s

i n t a b l e 7 .5 .5 were used to determine the est imated e f f o r t

r a t i o s i n t a b l e 7 . 6 . 3 . I n t a b l e 7 .6 .3 i t can be seen t h a t when a

d i f f e r e n t i a t i o n d e r i v a t i v e eva lua t i on requ i res as mach e f f o r t as a

f u n c t i o n e v a l u a t i o n , MAP would r e q u i r e less e f f o r t than any o f the

methods cons idered . MFD would r e q q i r e more e f f o r t than MAP but

less e f f o r t than the o ther methods cons idered.

When a d i f f e r e n t i a t i o n d e r i v a t i v e eva lua t i on requ i res as much

e f f o r t as a c e n t r a l d i f f e r e n c e d e r i v a t i v e e v a l u a t i o n , MAP s t i l l

r equ i res the l e a s t e f f o r t .

Whan a d i f f e r e n t i a t i o n d e r i v a t i v e eva lua t ion requ i res much

more e f f o r t than a c e n t r a l d i f f e r e n c e d e r i v a t i v e e v a l u a t i o n , the

n o n - d e r i v a t i v e methods r e q u i r e approx imate ly as much e f f o r t as MAP

and MFD. However i t i s u n l i k e l y t h a t such d i f f e r e n t i a t i o n

d e r i v a t i v e s would be used s ince h igh order polynomial approxima

t i o n s to the d e r i v a t i v e s would r e q u i r e less e f f o r t and may be as

accura te .

164

CHAPTER 8

CONCLUSION

8.1 C o n c l u s i o n s .
The t e s t r e s u l t s o f c h a p t e r 7 v e r i f y t h e e s t i m a t e s made t n

c h a p t e r 5 o f the r e l a t i v e e f f o r t r e q u i r e d by the f u n c t i o n ,
d e r i v a t i v e and o p t i m i s a t i o n a l g o r i t h m s used i n t h i s s t u d y . From
t h e s e r e s u l t s t h e f o l l o w i n g c o n c l u s i o n s can be drawn:

1. a f i r s t d e r i v a t i v e e v a l u a t i o n r e q u i r e s much more e f f o r t
than a f u n c t i o n e v a l u a t i o n ;

2. a second d e r i v a t i v e e v a l u a t i o n r e q u i r e s much more e f f o r t
than a f i r s t d e r i v a t i v e e v a l u a t i o n ;

3. f i n i t e d i f f e r e n c e d e r i v a t i v e s r e q u i r e more computational
e f f o r t than d i f f e r e n t i a t i o n d e r i v a t i v e s ;

4. t h e e f f o r t t o s o l v e t h e LP problem f o r MAP o r MFD i s
a p p r o x i m a t e l y equal t o the e f f o r t to e v a l u a t e a f i r s t
d e r i v a t i v e ;

5. t h e e f f o r t t o g e n e r a t e a s e a r c h d i r e c t i o n f o r the UOAs,
not i n c l u d i n g t h e n e c e s s a r y f u n c t i o n and d e r i v a t i v e e v a l u a
t i o n e f f o r t , i s a p p r o x i m a t e l y equal t o t h e e f f o r t to p e r
form a f u n c t i o n e v a l u a t i o n .

T h e r e f o r e , p r o c e d u r e 5.1.1 can g i v e u s e f u l e s t i m a t e s o f t h e CPU
t i m e i n v o l v e d i n comp u t a t i o n s .

The p r e l i m i n a r y r e s u l t s i n c h a p t e r 6 show t h e e f f e c t o f
'tu n i n g ' an a l g o r i t h m by t h e a d j u s t m e n t o f t h e a r b i t r a r y

165
c o e f f i c i e n t s , and parameters t n t h e a l g o r i t h m s to red u c e t h e
c o m p u t a t i o n a l e f f o r t expended. For the r e s u l t s r e p o r t e d i n
c h a p t e r 7» i t i s assumed t h a t a comparable degree o f 1 t u n i n g '
has been a c h i e v e d .

The r e s u l t s o f c h a p t e r 7 show t h a t a l l t h e methods s e l e c t e d
c a n be used t o s o l v e t h e s t r u c t u r a l problem 1.2 o r 1.3, a l t h o u g h
t h o s e methods w h i c h d i d not us e d i f f e r e n t i a t i o n d e r i v a t i v e s were
l e s s e f f e c t i v e t h a n t h e o t h e r a l g o r i t h m s .

T a b l e 8.1.1 shows t h e a l g o r i t h m s l i s t e d i n i n c r e a s i n g o r d e r
o f c o m p u t a t i o n a l e f f o r t r e q u i r e d . The t a b l e a l s o shows t h e type
o f d e r i v a t i v e e v a l u a t i o n to be used.

T a b l e 8.1.1: The a l g o r i t h m s * l i s t e d i n i n c r e a s i n g o r d e r o f
comp u t a t i o n a l e f f o r t r e q u i r e d .

TYPE OF DERIVATIVES TO BE USED
NO ALGORITHM DIFFERENTIATION FORWARD F.D. CENTRAL F.D.
1 MAP X - -

2 MAP X -

3 MAP - X
4 MFD - -

5 MFD - X -

6 MFD - X
SUMT + FP X -

8 SUMT + Nl X - -

9 SUMT + ST X
1Q SUMT + ST - X

SUMT + Nl X o r X
12 SUMT + PO - - -

166
T a b l e 8.1.1 summarizes t h e c c m c l u s r o n s t h a t can be d r a w from
t h e r e s u l t s o f c h a p t e r 7.

8.2 Recommendations.
T a b l e 8.1.1 l i s t s t h e a l g o r i t h m s i n i n c r e a s i n g o r d e r o f

com p u t a t i o n a l e f f o r t . However, o t h e r c o n s i d e r a t i o n s , a s g i v e n i n
c h a p t e r 1, may be more i m p o r t a n t than computational e f f o r t , i n the
s e l e c t i o n o f a l g o r i t h m s . T h e r e f o r e , t h i s s e c t i o n g i v e s recommenda
t i o n s f o r t h e use o f t h e a l g o r i t h m s on problems s i m i l a r to 1.2 or 1.3.

I f MFD i s s e l e c t e d , the e x t r a p r o v i s i o n f o r i n c r e a s i n g o r
d e c r e a s i n g t h e a r b i t r a r y c o e f f i c i e n t s to s l o w o r speed t h e o p t i m i s a
t i o n , may g i v e c o m p u t a t i o n a l s a v i n g s .

I f SUMT i s s e l e c t e d and second d e r i v a t i v e s a r e a v a i l a b l e , then
a combined Newton and F l e t c h e r - P o w e l l method i s su g g e s t e d . The
proposed method would proceed a s i n Newton*s method f o r the f i r s t
i t e r a t i o n , s t o r i n g t h e i n v e r s e o f t h e second d e r i v a t i v e m a t r i x ,
and then proceed a s i n F l e t c h e r - P o w e l l ' s method on s u c c e e d i n g
i t e r a t i o n s . However, i f second d e r i v a t i v e s a r e not a v a i l a b l e ,

30 31

F l e t c h e r - P o w e l l ' s method o r a quasi-Newton method * i s recom
mended. A s e a r c h t e c h n i q u e based on t h a t o f Lund, u s i n g d i r e c t i o n a l
d e r i v a t i v e s when a v a i l a b l e , i s p r e f e r r e d .

The 1 Q 1 t r a n s f o r m a t i o n f o r SUMT i s recommended as i t
o h v i a t e s t h e d i f f i c u l t i e s a s s o c i a t e d w i t h p . I f , however, a n o t h e r
t r a n s f o r m a t i o n i s chosen and r e q u i r e s ^ , then i t i s recommended
t h a t p "is found from e q u a t i o n 3.4.3 or from the f o l l o w i n g :

167
P = c p ...8.2.1
1 3.4.9

where g i s g i v e n by e q u a t i o n 3.4.9.
v 3 . 4 . 9

8.3 F u r t h e r r e s e a r c h .
A number o f t o p i c s f o r f u r t h e r r e s e a r c h a r i s e from the

r e s u l t s o f t h i s s t u d y :
1. e s t a b l i s h t h e r e l a t i v e e f f i c i e n c y o f MAP and MFD when FD

d e r i v a t i v e s , a r e used i n s t e a d o f d i f f e r e n t i a t i o n d e r i v a t i v e s ;
2. a . e s t a b l i s h t h e r e l a t i v e e f f i c i e n c y o f t h e Q t r a n s f o r m a

t i o n and o t h e r SUMT t r a n s f o r m a t i o n s ;
b. i n v e s t i g a t e t h e e f f e c t on the e f f i c i e n c y o f a l t e r n a t i v e

schemes f o r e v a l u a t i n g p f o r SUMT;
c . i n v e s t i g a t e t h e e f f i c i e n c y of the proposed Newton-

F l e t c h e r - P o w e l l method used w i t h SUMT;
d. v e r i f y t h e e f f i c i e n c y o f t h e s e a r c h t e c h n i q u e based on

Lund's method used w i t h SUMT;
3. i n v e s t i g a t e t h e e f f i c i e n c y o f the Modified I n t e r i o r P o i n t

methods; and
4. v e r i f y t h e c o n c l u s i o n s f o r o t h e r t y p e s o f s t r u c t u r a l

problem.

8.4 Summary.
The s u b j e c t o f t h e t h e s i s i s a comparison of commonly-us&d

a l g o r i t h m s a p p l i e d to a c l a s s o f s t r u c t u r a l o p t i m i s a t i o n problems.
The t y p e s o f s t r u c t u r e under c o n s i d e r a t i o n a r e p i n - j o i n t e d , p l a n e
t r u s s e s and p l a n e s t r e s s p l a t e s . The o p t i m i s a t i o n problem i s

168
w e i g h t m i n i m i z a t i o n o f t h e s t r u c t u r e s ; s u b j e c t to s t r e s s and d e s i g n
v a r i a b l e l i m i t s . O p t i m i s a t i o n a l g o r i t h m s f a l l i n t o one o f t h r e e
c a t e g o r i e s : L i n e a r i z a t i o n , F e a s i b l e D i r e c t i o n and T r a n s f o r m a t i o n
methods. A l g o r i t h m s have been s e l e c t e d from eac h c a t e g o r y i n
o r d e r to compare t h e c o m p u t a t i o n a l e f f o r t r e q u i r e d to s o l v e t h e
s t r u c t u r a l problems.

Comparison o f t h e r e s u l t s o f t h e computer r u n s shows t h a t
MAP r e q u i r e s t h e l e a s t e f f o r t , MFD r e q u i r e s more e f f o r t than MAP
and SUMT r e q u i r e s most c o m p u t a t i o n a l e f f o r t o f t h e methods
c o n s i d e r e d .

169

L I S T OF REFERENCES

1. Wasiutynsrki Z. and B r a n d t A.* "The p r e s e n t s t a t e o f knowledge t n t h e f i e l d o f Optimum, d e s i g n o f S t r u c t u r e s ' , A p p l i e d Mechanics Reviews, v o l . 16, no. 5, May 1963, pp 341-350.
2. Sheu C.Y. and P r a g e r K., 'Recent developments i n Optimal

S t r u c t u r a l d e s i g n 1 , A p p l i e d Mechanics Reviews, v o l . 21,
no. 10, Oct. 1968, pp 985-992.

3. S c h m i t L.A., ' S t r u c t u r a l S y n t h e s i s 1959-1969: A decade o f p r o g r e s s ' , Japan - U.S. s e m i n a r on M a t r i x methods o f
S t r u c t u r a l a n a l y s i s and d e s i g n , Tokyo, Aug. 1969.

4. Jacoby S.L.S., K o w a l i k O.S. and P i z z o O.T., I t e r a t i v e
Methods f o r Non-Linear O p t i m i z a t i o n problems, P r e n t i c e - H a l l ,
Englewood C l i f f s , N.J., 1972.

5. Z o u t e n d i j k G., ' N o n - l i n e a r Programming: A numerical s u r v e y ' ,
J . SIAM C o n t r o l , v o l . 4, no. 1, 1966, pp 194-210.

6. K e l l e y J . E . , 'The C u t t i n g P l a n e Method f o r s o l v i n g convex
programs', 0. SIAM, v o l . 8, 1960, pp 703-712.

7. Cheney E.W. and G o l d s t e i n A.A., 'Newton's method f o r convex
programming and T c h e h y c h e f f a p p r o x i m a t i o n ' , Numerical
Mathematics, v o l . 1, 1959, pp 253-268.

8. G r i f f i t h R.E. and S t e w a r t R.A., 'A N o n - l i n e a r Programming
t e c h n i q u e f o r t h e O p t i m i z a t i o n o f c o n t i n u o u s p r o c e s s i n g
s y s t e m s ' , Man. S c i . , v o l . 7, 1961, pp 379-392.

9 a . Rosen J.B., "The G r a d i e n t P r o j e c t i o n method f o r N o n - l i n e a r
Programming, p a r t I , L i n e a r c o n s t r a i n t s ' , J . SIAM, v o l . 8,
1960, p 181 f f .

9b. Rosen O.B., 'The G r a d i e n t P r o j e c t i o n method f o r N o n - l i n e a r Programming, p a r t I I , N o n - l i n e a r c o n s t r a i n t s ' , 0. SIAM» v o l . 9, 1961, p 514 f f .
10. G e l l a t l y R.A. and G a l l a g h e r R.H., 'A procedure f o r automated

minimum w e i g h t S t r u c t u r a l d e s i g n ' , A e r o n a u t i c a l Q u a r t e r l y ,
Aug. 1966, pp 216-230.

11. Z o u t e n d i j k G., Methods o f F e a s i b l e D i r e c t i o n s ; A S t u d y i n
L i n e a r and N o n - l i n e a r Programming, L i s e v l e r P u b l i s h i n g l o . ,
1960.

170
12. F i a c c o A.V. and McCormick G.p.» N o n - l i n e a r Programming:

S e q u e n t i a l U n c o n s t r a i n e d M i n i m i z a t i o n T e c h n i q u e s , Jofin
W i l e y and Sons, I n c . , 1968.

13. Himmelblau D.M., 'A uniform e v a l u a t i o n o f U n c o n s t r a i n e d
O p t i m i z a t i o n t e c h n i q u e s ' , p r e s e n t e d a t t h e Dundee
O p t i m i z a t i o n C o n f e r e n c e , J u n e 1971, p r o c e e d i n g s to be
p u b l i s h e d , ed: Lootsma F.A.

14. F l e t c h e r R.» ' F u n c t i o n m i n i m i z a t i o n w i t h o u t e v a l u a t i n g d e r i v a t i v e s - a r e v i e w 1 , Computer J o u r n a l , v o l . 8, no. 1,
1965, pp 33-41.

15. Fox R.L., O p t i m i z a t i o n methods f o r E n g i n e e r i n g d e s i g n ,
Addison - Wesley P u b l i s h i n g Co. 9 1971, pp 97-101.

16. F l e t c h e r R. and Powell M.J.D., 'A r a p i d l y convergent d e s c e n t method f o r m i n i m i z a t i o n 1 , Computer O o u r n a l , v o l . 6, 1963,
pp 163-168.

17. S t e w a r t G.W., 'A m o d i f i c a t i o n o f Davidon's m i n i m i z a t i o n
method to a c c e p t d i f f e r e n c e a p p r o x i m a t i o n s o f d e r i v a t i v e s 1 ,
0. o f t h e A s s o c i a t i o n f o r Computing Machinery, v o l . 14,
no. 1, J a n . 1967, pp 72-83.

18. Powell M.O.D., l A i e f f i c i e n t method f o r f i n d i n g the minimum
o f a f u n c t i o n o f s e v e r a l v a r i a b l e s w i t h o u t c a l c u l a t i n g
d e r i v a t i v e s ' , Computer j o u r n a l , v o l . 7, 1964, pp 155-162.

19. K i e f e r , 0., 'Optimum S e q u e n t i a l s e a r c h and a p p r o x i m a t i o n methods under minimum r e g u l a r i t y assumptions , 0. SIAM, v o l . 5, 1957, pp 105-136.
20. Davidon W.C., ' V a r i a b l e m e t r i c method f o r m i n i m i z a t i o n 1 ,

A.E.C. Research, and Development r e p o r t , ANL - 55990 (r e v .) >
1959.

21. R u s s e l l D., O p t i m i z a t i o n Theory, W.A. Benjamin I n c . , 1970, p 19.
22. G a l l a g h e r R.H. and Z i e n k i e w i c z O.C., (e d s) , Optimum S t r u c t u r a l

d e s i g n , Theory and a p p l i c a t i o n s , Oohn Wiley and Sons, 1973,
pp 143-175, Moe 0., ' p e n a l t y F u n c t i o n methods'.

23. F i a c c o A.V. and McCormick. G.P.* 'Computational A l g o r i t h m f o r
t h e S e q u e n t i a l U n c o n s t r a i n e d M i n i m i z a t i o n Technique f o r Non
l i n e a r Programming 1, Man. S c i . , v o l . 10, no. 4, J u l y 1964,
pp 601-617.

24. Hi!debrand F.B., I n t r o d u c t i o n t o Numerical A n a l y s i s , McGraw-
H i l l Book Co., I n c . , 1956, pp 60-64.

171
25. B e a l e E.M.L., Mathematical Programming i n P r a c t i c e * Pitman,

London, 1971. ~~
26. P r z e m i e n i e c k i J . S . , Theory o f Matrix S t r u c t u r a l A n a l y s i s ,

McGraw-Hill Rook Co., I n c . , 1968.
27. IBM System / 36Q and System / 370 FORTRAN IV language,

form GC 28 - 6515 - 8.
28. IBM System / 36Q model 67 F u n c t i o n a l c h a r a c t e r i s t i c s , f i l e

no. S360 - 01, form A27 - 2719 - 0, pp 43-53.
29. S c h m i t , J r . L.A., ' S t r u c t u r a l d e s i g n by s y s t e m a t i c S y n t h e s i s 1 ,

2nd ASCE c o n f e r e n c e on E l e c t r o n i c Computation, P i t t s b u r g h ,
Pa., S e p t . 1960, pp 105-132.

3Q. G i l l P.E. and Murray W., 'Quasi-Newton methods f o r
u n c o n s t r a i n e d o p t i m i z a t i o n ' , J . o f the I n s t , o f Mathematics
and i t s a p p l i c a t i o n s * v o l . 9, 1972, pp 91-108.

31. F l e t c h e r R., 'A new approach t o V a r i a b l e M e t r i c a l g o r i t h m s 1 ,
Computer J o u r n a l , v o l . 13, no. 3, 1970, pp 317-322.

172

APPENDIX

173

45.04-

40.0

ALGORITHMS 35.0
MAP
MFD FP
ST
N2 30.0

25.0

20.0

5.0

i 10.0
800 400 1200 0 1600 2000

Measured Computational E f f o r t , CPU Seconds
FIGURE 10.1

174

C STRUCTURAL OPTIMISATION PROGRAM
C
C SYMBOLS USED
C
C
c X() X NODE COORDINATE
c Y<) Y NODE COORDINATE
c F() = APPLIED LOADS MATRIX
c P i) MATRIX OF DISPLACEMENTS
c EE s MODULUS OF ELASTICITY
e EENU = POISSONS RATIO
c RHO DENSITY
c AK() MATRIX SAVING ELEMENT STIFFNESS MATRICES
c XL () MATRIX WHICH MAPS NODAL THICKNESSES INTO WEIGHTS FOR
c PLATES OR MEMBER AREAS INTO WEIGHTS FOR RODS
c STRS() MATRIX WHICH MAPS NODAL DISPLACEMENTS INTO STRESSES
c SO MEMBER STRESSES
c OSDT() = FIRST DERIVATIVES OF STRESSES
c IS ITP = 1 I F PLATE PR08LEM, 2 I F ROD PROBLEM
c N = NUMBER OF NODES
c M NUMBER OF MEMBERS
c NB NUMBER OF BOUNDARY CONDITIONS
c • NODIO = FIRST NODE NUMBER OF FINITE ELEMENT
c M002() = SECOND NODE NUMBER OF FINITE ELEMENT
c N0D3O THIRD NODE NUMBER OF FINITE ELEMENT
c I B () = MATRIX OF DELETED FREEDOM INFORMATION
c NK = ' SIZE OF STIFFNESS MATRIX I F IN BLOCK
c NLC = NUMBER OF LOAD CASES
c NT = NUMBER OF TERMS IN EKO
c IBW = BAND WIDTH OF STIFFNESS MATRIX
c NT I M {) = NUMBER OF TERMS IN EACH ROW STIFFNESS MATRIX
c ISUM{) = LOCATION OF 1,1 STIFFNESS TERM I N EKO
c c ARSLTS(I = RESULTS MATRIX {REAL VALUES)
c IRSLTS() = RESULTS MATRIX (INTEGER VALUES)
c IP DIRECTS LEVEL OF PRINTING
c NONED NUMBER OF ONE DIMENSIONAL SEARCHES
c NFE NUMBER OF FUNCTION EVALUATIONS
c
r

NGE NUMBER OF GRADIENT EVALUATIONS

c VIRT VIRTUAL CPU TIME
c TOTAL = •TOTAL' CPU TIME
c OPTIM CPU TIME SPENT OPTIMISING
c FUNTIM CPU TIME SPENT EVALUATING FUNCTIONS
c DERTIM CPU TIME SPENT EVALUATING DERIVATIVES
c TOT IM - SUM OF OPTIM,FUNTIM AND DERTIM
c T O - MATRIX OF NODAL THICKNESS OR MATRIX OF MEMBER AREAS
c TM AX MAXIMUM ALLOWABLE NODE THICKNESS FOR PLATE OR AREA FOR
c ROD
c TMIN = MINIMUM ALLOWABLE NODE THICKNESS FOR PLATE OR AREA FOR
c ROD
c SIGA = ALLOWABLE STRESS IN TENSION
c SIGL = ALLOWABLE STRESS IN COMPRESSION (A NEGATIVE NUMBER)

175

c AL = ALGORITHM TERMINATION PARAMETER : LB ON DESIGN CHANGE
c FUNl = ALGORITHM TERMINATION PARAMETER : LB ON FUNCTN CHANGE
c TACTN RESOLUTION REQUIRED OF THE DESIGN VARIABLES
c WTEST = PROGRAM EXITED WHEN (WTI-WTIMl)/WTI.LT.WTEST
c EST AN ESTIMATE OF THE MIN OF THE OBJECTIVE FUNCTION
c EPS = DIST INGU ISHABILITY OF FUNCTION VALUES
c £PM = MACHINE RESOLUTION
c TOL TOLERANCE ON TIGHTNESS OF CONSTRAINTS
c FU = UPPER BOUND ON CONSTRAINT VARIABLE
c FL = LOWER BOUND ON CONSTRAINT VARIABLE
c FUN = VALUE OF WEIGHT PLUS PENALTY FUNCTION = OBJECTIVE FUN
c TREM() MATRIX WHICH HOLDS OLD DESIGN VARIABLES,WEIGHT,AND OF
c DFDT() GRADIENT OF OBJECTIVE FUNCTION
c H() WORK MATRIX USED BY UOA
c WTIM1 = WEIGHT BEFORE A NEW ITERATION
c WTI WEIGHT AFTER AN ITERATION
c DUN = AN ESTIMATE OF THE OBJECTIVE FUNCTION
c RP WEIGHTING CONSTANT FOR PENALTY FUNCTION
c PEN = PENALTY FUNCTION ADDED TO WEIGHT TO GIVE OBJECTIVE FUN
c FO,FN,FM = SAVED FUNCTION VALUES OLD,NEW,MIDDLE
c AO,AN,AM = CORRESPONDING MOVES ALONG SEARCH DIRECTION
c PO{) DESIGN FOR FO
c ALPHA MOVE L I M I T COEFFICIENT FOR MAP
c NWORK NUMBER OF DESIGN VARIABLES (M FOR RODS, N FOR PLATES)
c NRPV MAXIMUM NUMBER OF MAIN PROGRAM ITERATIONS ALLOWED
c L I M I T = MAXIMUM NUMBER OF ALGORITHM ITERATIONS ALLOWED
c NOR CODE WHICH SPECIFIES THE OPTIMIZATION ALGORITHM USED
c NOR = 1, POWELL'S METHOD (POWL)
c NOR = 2, STEWART'S METHOD (STEW)
c NOR = 3, FLETCHER-POWELL'S METHOD (FLEP)
c NOR = 4, MODIFIED INTERIOR POINT METHOD (MIP)
c NOR = 5, METHOD OF APPROXIMATE PROGRAMMING (MAP)
c NOR = 6, METHOD OF FEASIBLE DIRECTIONS (MFD)
c NOR = 7, NEWTON'S METHOD (NEWT)
c NOR = 8, QUADRATIC PROGRAMMING (QP)
c NOR = 9, NEW PROBLEM TO BE READ IN
c NOR = 10, END OF JOBS
c ISRCH MAXIMUM NUMBER OF CURVE FITS PERMITTED IN ONED
c IOPTS = NUMBER OF ITERATIONS PERFORMED BY MAIN PROGRAM
c IER 0 NO CONVERGENCE IN ALGORITHM
c sr 1 CONVERGENCE
c = 2 MAX NO OF ITERATIONS
c I HE = 1 YIELDS FIRST DERIVATIVES ONLY
c ss 2 YIELDS FIRST AND SECOND DERIVATIVES
c IGH = CODE FOR EFFLD
c KOUNT NUMBER OF ITERATIONS PERFORMED BY ALGORITHM
c NUSE NUMBER OF TIMES A SEARCH DIRECTION HAS BEEN USED
c NSRCH CODE FOR SEARCH WITH POWELL'S METHOD
c KODER() CODE FOR STEWART'S METHOD
c I C O E F l) = VARIABLE ASSOCIATED WITH COLUMN' IN A-MATRIX
c I REM() = ROW DESIGNATION OF ZERO B'S

176

C NCOL = NUMBER OF COLUMNS IN THE COEFFICIENT MATRIX FOR PRMDUL
C NROW = NUMBER OF ROWS IN THE COEFFICIENT MATRIX FOR PRMDUL
C
C 02FDT2O = HESSIAN OF OBJECTIVE FUNCTION
C EK() = STRUCTURAL STIFFNESS MATRIX
C EKL(> = ELEMENT STIFFNESS MATRIX
C Q(> = MATRIX WHICH SAVES NODAL DEFLECTIONS
C R () = MATRIX WHICH SAVES APPLIED LOADS
C U() * WORK MATRIX (MOVES DISPLACEMENTS)
C DUDTO = FIRST DERIVATIVES OF DISPLACEMENTS
C SSO = MATRIX WHICH SAVES MEMBER STRESSES
C SPACEU = DUMMY ARRAY IN COMMON BLOCK 'WORK'
C
C A O = COEFFICIENT MATRIX FOR PRMDUL
C
C PSI = CONSTRAINT WEIGHTING CONSTANT FOR MFD
C KMI O = INDICES OF CONSTRAINTS HIT ON THE PREVIOUS MFD ITERN
C KM2{) = INDICES OF CONSTRAINTS HIT ON ALL PREVIOUS MFD ITERNS
C
C NOTE
C
C 1 . LOAD DATA : SUBROUTINE DAT : I N = INDEX OF NODE • IC=1 FOR
C FORCE I N X DIRECTION , IC=2 FOR FORCE IN Y DIRECTION , AMNT
C AMOUNT OF LOAD ;
C 2 . NODH) .LT.NOD21) .LT.N0D3O ;
C 3 . BOUNDARY CONDITION DATA : X DIRECTION FREEDOMS DELETED :
C ENTER NODE NUMBER , Y DIRECTION FREEDOMS DELETED : ENTER
C 1000 + NODE NUMBER ;
C 4 . DIMENSION OF EKO = IBW*(NK-IBW/2+1/2) ;
C 5 . SUBROUTINE GELS IS AN IBM SSP SUBROUTINE ;
C 6 . AD-SPACEO REPLACES D2FDT2()-SPACE() IN COMMON WORK FOR
C SUBROUTINES MAP,MFD,PRMDUL AND SIMP ;
C

COMMENT : MAIN PROGRAM AND SUMT

REAL*8 DATE,TIME
INTEGER VIRT,TOTAL,OPTIM,FUNTIM,DERTIM,TOTIM
COMM0N/DATA/X(40) , Y (4 0) , F (8 0 , 5),P(80,5),EE,EENU*RHO,AK{1260),XL(60

*) , STRS(1 8 0 , 6) , 5 (6 0 , 4 , 5) , D S D T (6 0 , 5 , 6 0) , I SI TP,N»M,NB,NODI(60),N0D2(6
*0),N0D3(60),IB(80),NK,NLC,NT,IBW,NTIM(80),I SUM 80)
COMMON/PRINT/ARSLTS(30,30),IRSLTS(30,30),IP,NONED,NFE, NGE
COMMON/TIME/VIRT,TOTAL,OPTIM,FUNTIM,DERTIM,TOTIM
COMMON/OPT/T(60),TMAX,TMIN,SIGA,SIGL,AL,FUNL,TACTN,WTEST,EST,EPS,

*EPM,TQL,FU,FL,FUN,TREM(62),DFDT(60),H(2010),WTIMl,WTI,DUN,RP,PEN,
*FO,FN,FM,AO,AN,AM,PO(60),ALPHA,NWORK,NRPV,LI MIT,NOR,I SRCH,I OPTS, IE
*R fIHEtIGH,KOUNT,NUSE,NSRCH,KODER(60),IC0EF(380),IREM(40),NCOL,NROW
COMMON/W0RK/DEL(60),D2FDT2(60,60),D2FDA2(61),EK(3280),EKL(21),Q(80

*,5),R(80,5),U(6,5),DUDT(80,60),SS(60,4,5),SPACE(510)
COMMON/Z/PSI,KM1(280),KM2(280)
DIMENSION TT T (6 2 , 1 2) , T I N I T (6 0) , C L (1 2) , C C L (1 2)

177

C *** THIS IS THE MAIN PROGRAM WHICH DIRECTS OPTIMIZATION OF A PLANE
C *** STRESS PROBLEM

1 FORMAT {1H1)
2 FORMAT(10H WEIGHT = ,E15.4)
3 FORMAT (• I N I T I A L VALUE OF RP = ',E15.6)
4 FORMAT(10H WEIGHT = ,E15.4,7H AFTER ,13,14H OPTIMIZATIONS)
5 FORMAT(* WEIGHT NOT CHANGING MUCH SO ALGORITHM TERMINATED')
6 FORMAT(* MAXIMUM NUMBER OF UNCONSTRAINED OPTIMIZATIONS ALLOWED HAS
X BEEN REACHED. WE HAVE DONE ',13,' OPTIMIZATIONS')

7 FORMATC WE ARE BEGINNING AN UNCONSTRAINED OPTIMIZATION PROGRAM WI
CTH RP = • ,E15.4)

8 FORMAT(' WEIGHT INCREASING, ALGORITHM TERMINATED')
9 FORMAT(• MATRIX T (1) '/6X,4HN0DE,11X,4HT(I)/)

10 F0RMAT(I10,E15.4)
11 FORMAT{• ERROR CODE FROM OPTIMIZATION ROUTINE = ',13)
12 FORMAT(/'OINITIAL VALUES FOR ALGORITHM CONTROL PARAMETERS'/'ORESOL

UTION ' ,E15.6/'0REL CHANGE WT • ,E15.6/'OREL CHANGE FUN »E15.6/'
*OREL CHGE DSIGN',E15.6)

13 FORMAT COCPU TIMES ARE VIRTUAL CPU TIMES I N MICRO-SECONDS .•)
14 FORMAT { • OPTIM PERFORMED ',110,' ONE DIMENSIONAL SEARCHES')
15 FORMAT { 'OINITIAL RP COEFFICIENT = SE15.6)
16 FORMATC FUN = S E 1 5 . 4)
17. FORMAT (' OPTIM PERFORMED ',110,' FUNCTIONAL EVALUATIONS')
18 FORMAT(• OPTIM PERFORMED ',110,' GRADIENT EVALUATIONS')
19 FORMAT(' BEGINNING ITERATION ',15,' WE HAVE WEIGHT = ',E15.4,

X' FUN = •,E15.4)
20 FORMAT(• AFTER ITERATION ',15,' WITH RP = »,E15.4,' WE HAVE »/

X' WEIGHT = «,E15.4/' FUN = ',£15.4)
21 FORMAT(13)
22 FORMAT(• UNRESTRAINED OPTIMIZATION ALGORITHM NOT SPECIFIED')
23 FORMAT('ORP REDUCTION RATE COEFFICIENT = «,E15.6)
24 FORMAT(I X , I 3 , 5 E 1 5 . 7)
25 FORMAT(• DESIGN NOT CHANGING MUCH - ALGORITHM TERMINATED •)
26 FORMAT(IX,3110)
27 F0RMAT(1X,E15.8)
28 FORMAT('ORESULTS FOR',13,' PARAMETER PROBLEM USING ALGORITHM NO',

* I 3 , ' . DATE OF RUN ',A8,' TIME ',A8)
29 FORMAT('OEND ITERATION ',7115)
30 FORMAT('OTOTAL NUMBER OF •//• ONE DIM SRCHS *,71 15)
31 FORMAT('OFUNCTION EVALS',7115)
32 FORMAT(•ODERIVATIVES ',7115)
33 FORMAT(• 1 ALGORITHM CODE = NOR = ' , I 3)
34 FORMAT(•OVALUE OF•/'OFUNCTION »,7E15.6)
35 FORMAT{'OWEIGHT «,7E15.6)
36 FORMATCOCPU TIMES FOR'/ 'OFUNCTION EVALS',7115)
37 FORMAT{'ODER IVAT IVES ',7115)
38 FORMAT('OOPTIMIZING ',7115)
39 FORMAT<'OSUM OF TIMES ',7115)
40 FORMAT('OMAXIMUM NO OF'/ '01TERATIONS/RP ',7115)
41 FORMAT(•OQUAD FITS/SRCH•,7115)
42 FORMAT('OFEASIBILITY ',7115)
43 FORMAT{'OWEIGHT(SCALED)•,7E15.6)

178

44 FORMAT*•OESTIMATED FUN.'»7E15.6)
45 FORMAT(•OALPHA MOVE LI M I T COEFFICIENT = «,E15.6)
46 FORMATCOPSI CONSTRAINT WEIGHTING COEFFICIENT = »>E15.6)

C
100 CONTINUE

WRITE(6,1)
CALL I N I T
NWORK=N
IF(ISITP.EQ.2)NW0RK=M
NP=NWORK
NP1=1+NP
NP2=2+NP
NRP1=1+NRPV

C *** SAVE DATA ***
DO 125 I=1,NW0RK

125 T I N I T (I) = T (I)
SAL=AL
SFL=FUNL
STN=TACTN
£PS=l.E-05
EPM=l.E-06
CCC=l./160.
P S I = . l

C
C *** SET UP OPTIMIZATION ***

200 CONTINUE
CALL TIMER<DATE,TIME tVIRT,TOTAL)
T0L=10.*EPM*SIGA
IF(N0R.NE.6)G0T0 210
T0L=.01*SIGA
KU=2*(M*NLC+NP)
DO 205 K=1,KU
KM1(K>=0
KM2(K)=0

205 CONTINUE
210 CONTINUE

OPTIM=0
FUNTIM=0
DERT IM = 0
TOTIM=0
NFE=0
NGE=0
NONED=0
IOPTS=0
AN = 0.
F0 = 0.
NFE = 1
CALL SOLVE

C *** CALCULATE WEIGHT ***
W R I T E (6 t l)
WTIM1=0.
DO 225 I=1,NW0RK

179

225 WTIM1 = WTIM1+XLU)*T(I)
IFUP.LT.O)GOTO 1225
WRITE(6,2)WTIM1

1225 CONTINUE
IF{IOPTS.NE.O)GOTO30O
FUN=WTIMl
DUN=FUN
RP=0.
CALL TIMER(DATE,TIME,VIRT,TOTAL)
FUNTIM=FUNTIM+VIRT
DO 245 1=1,NWORK

245 T R E M (I) = T (I)
TREM(NP2)=WTIM1
IFINOR.EQ.5.OR.NOR.EQ.6)GOTO 300

C *** CALCULATE PENALTY
DUM1=0.
DUM2=0.
002501=1,NWORK

2 50 DUM1=DUM1+1./{TMAX-T(I)) + l . / (T (I) - T M I N)
DUM1=DUM1*{TMAX-TMIN)
DO 275 I = l r M
DO 275 LC=1,NLC

275 DUM2=DUM2+1./(SIGA-S(I,4,LC))+I./(S(I,4,LC)-SIGL)
PEN=(SIGA-SIGL)*DUM2+DUM1

C *** CALCULATE I N I T I A L RP ***
C *** FIACCO AND MC CORMICK ***

RR=.025*WTIMl/PEN
RP=1.
FUN=PEN
IH£ = 1
DUM1=0.
DUM2=0.
DUM3=0.
DO 276 1=1,NWORK
S P A C E (I) = X L (I)
DUM1=DUM1+XL(I)*XLU)

276 X L (I) - 0 .
WRITE(6,27)DUM1
IF(N0R.LE.2)G0T0 278
CALL DERFUN
GOTO 282

278 DO 280 1=1,NWORK
280 DEL(I) = .0001

CALL DIFFUN
282 CONTINUE

DO 284 1=1,NWORK
XL (I) = S P A C E (I >
DUM3=DUM3+DFDT<I)*DFDT(I)

284 DUM2=DUM2+XL(I)*DFDT(I)
WRITE(6,27)DUM2
RP=-DUM2/DUM3.
WRITE(6,27)RP

180

DUM5=DUM2*DUM2-DUM1*DUM3
IF(DUM5.LE.0.)GOTO 289
DUM5=SQRT(DUM5)/DUM3
IF(RP>288,288,290

288 RP=RP+DUM5
289 IF(RP.LT.O.IGOTO 294

GOTO 296
290 IF(0UM5.LT.RP)RP=RP-DUM5

GOTO 296
294 RP =RR

WRITE(6,27)RP
296 CC=RP*PEN/WTIM1

FUN=WTIM1+PEN*RP
WRITE(6,16)FUN
DUN=FUN
TREM(NPU = FUN
C l^CC
EST».9*WTTMl
DO 299 I=1,NRPV
C C L (I) = U

299 CL(
C
C *** CALL OPTIMIZATION ROUTINE ***

300 CONTINUE
IOPTS = H-IOPTS
I F (IP.LT.OGO TO 1325
WRITE(6 tlJ
WRITE(6,7)RP
WRITE< 6,19)I0PTS,WTIM1,FUN

1325 CONTINUE
GOTO(401,402,403,404,405,406,407,40 8),NOR
WRITE(6,22>
CALL EXIT

401 ISRCH=6+IOPTS/3
LIMIT=NP*(2+IOPTS/2)
CALL POWL
GOTO 425

402 ISRCH=6+I0PTS/3
LIMIT=NP*(2+I0PTS/2)
CALL STEW
GOTO 425

403 ISRCH=6+I0PTS/3
LlMIT=NP*(2+I0PTS/2)
CALL FLEP
GOTO 425

404 CALL MIP
GOTO 425

405 ISRCH=10*NP
LIMIT=l+I0PTS/3
ALPHA=.2
CALL MAP
GOTO 425

406 ISRCH=6+I0PTS/3
LIMIT=4+I0PTS/2
CALL MFD
GOTO 425

407 ISRCH=6+I0PTS/3
LIM IT=(1+NP*(3+I0PTS))/2
CALL NEWT
GOTO 425

408 CALL QP
GOTO 425

425 CONTINUE
C *** CALCULATE NEW WEIGHT ***

WTI*0.
D0450I = 1,NW0RK

450 WTI=WTI+XL(I)*T(I)
IF(IP.LT.0)G0T01465
WRITE(6,1)
WRITE(6,20)IOPTS,RP,WTI,FUN
WRITE(6,14)N0NED
WRITEt 6,17)NFE
WRITE(6,18)NGE
WRITE(6,11)IER
WRITE(6,9)
WRITE(6,10)(I,T(I),I=l,NWORK)
WRITE<6,1)

1465 CONTINUE
CALL TIMER(DATEtTIME ,VIRT,TOTAL)
OPTIM=OPTIM+VIRT
TOT IM = 0PTIM+FUNTIM+DERTIM
I=IOPTS

C *** UPDATE RESULTS MATRICES ***
IRSLTS(I,1)=NQNED
IRSLTS(I,2)=NFE
IRSLTS(I,3)=NGE
IRSLTSlI,4)=FUNTIM
IRSLTSlI,5)=DERTIM
IRSLTS(I,6)=0PTIM
IRSLTS(1,7)=TOTIM
IRSLTS(I,8)=LIMIT
IRSLTS(I,9)=ISRCH
IFEAS=0
IF(N0R.EQ.5)CALL FEASQ(IFEAS)
IRSLTS(1,10)=IFEAS
ARSLTS(I,1)=FUN
ARSLTS(1,2)=WTI
SCALE=i.
IF(IFEAS.EQ.O)GOTO 480
DUM1=1./SIGA
DUM2=1./SIGL
DO 475 L=1,NLC
DO 475 K=1,M
DUM=DUM1

IF(S(K,4,L).LT.0.)DUM=DUM2
DUM=DUM*S(K,4,L)
IF(DUM.GT.SCALE)SCALE=DUM

475 CONTINUE
480 CONTINUE

ARSLTS(I»3) = SCALE*WTI
ARSLTS(1,4) =EST
WRI TE (6,1)
WRITEl6,28)NP,NOR,DATE,TIME
WRITE(6,29)(1,1=1,1 OPT S)
WRITE(6,30)(IRSLTSd ,1) ,1=1,IOPTS)
WRITE(6,31)(IRSLTS(1,2),1=1,IOPTS)
WRITE(6,32)(IRSLTS(I,3),1=1,IOPTS)
IF(NOR.EQ.5.OR.NOR.6Q.6)GOTO 1900
WRITE(6,34)(ARSLTS(I,I),1=1,IOPTS)
WRITEl6,44)(ARSLTSiI,4),1=1,1 OPTS)

1900 CONTINUE
WRITE(6,35)(ARSLTS(I,2),1=1,IOPTS)
IF(N0R.NE.5)G0T0 1902
WRITE(6,42)(IRSLTSd, 10) ,1 = 1, IOPTS)
WRITE(6,43)(ARSLTS(I,3),1=1,IOPTS)

1902 CONTINUE
WRITE (6,36) (IRSLTSd , 4) , 1 = 1, IOPTS)
WRITE(6,37)(IR SLTS(I,5),1=1,IOPTS)
WRITE(6,38)(IRSLTS(I,6),I = 1,1 OPTS)
WRITE (6,39) (IRSLTSd ,7) , 1 = 1, IOPTS)
WRITE(6,13)
IF(N0R.EQ.5)G0TQ 1905
WRITE(6,40) (IRSLTSd , 8) , 1=1, IOPTS)
WRITE(6,41)(IRSLTS(I,9),1=1,1 OPTS)

1905 CONTINUE
WRITE(6,12)STN,WTEST,SFL,SAL
IF(NOR.EQ.5.OR.NOR.EQ.6)GOTO 1910
WRITE(6,15)CC
WRITE(6,23)CCC
GOTO 1920

1910 CONTINUE
IF(NOR.EQ.5)WRITE(6,45)ALPHA
IF(NOR .EQ.6)WRITE(6,46)PSI

1920 CONTINUE
C *** TEST FOR EXIT FROM JOB ***

500 CONTINUE
IFdOPTS.EQ.DGOTO 600
IF(N0R.EQ.5)G0T0 525
IF(WTI.GT.WTIM1)G0T0 800
IF(N0R.EQ.6)G0T0 525
IFIFUN-WTI.LE.EPM*WTI)G0T0 820

525 CONTINUE
TEST=ABS((WTIM1-WTI)/WTI)

550 IF(TEST.LT.WTEST)GOTO 820
IF(N0R.NE.5)G0T0 575
DO 560 I=1,NW0RK

183

TEST = ABS(TREMU)-TU))
IF(TEST.GT.(AL*T(I>))GOTO 575

560 CONTINUE
GOTO 840

575 IF<10PTS.GT.NRPV)GOT0860
600 CONTINUE

WTIM1=WTI
DO 610 I=1,NW0RK
TREM(I) =T(I)

610 T T T (I , I OPTS)=T(I)
TREM(NP1) = FUN
TREM(NP2)=WTIM1
TTT(NP1,I0PTS)=FUN
TTT(NP2»I0PTS)=WTIM1
RP=CCC*RP
DUN=WT1+CCC*{FUN-WTI)
FUN=DUN
EST=WTIM1
IF<NOR.GT.3.AND.N0R.NE.7)GO TO 300
IF(IOPTS.EQ.l)GOTO 300

C *** EXTRAPOLATION ***
I O P l = l + IOPTS
IU=I0PTS-1
CN=CCC**IOPTS
CL(I0PTS)=(CN-1.)/(CCC-l.)
DO 660 1=1,IU
CL< I)=CL(I»*(CN*(1.-CN))/(CCC*CN-CCC**I)

660 CONTINUE
DO 670 J=1,NP2

670 H(J) = 0 .
DO 690 1=1,IOPTS
DO 680 J=1,NP2
H { J) = H (J) + C L (I) * T T T (J , I)

680 CONTINUE
690 CONTINUE

DO 720 J=1,NW0RK
720 H<J)=H(J)-T(J)

EST=H(NP2)
NUSE=1
NSRCH=1
K0UNT=1
NN0R=N0R
N0R=1
CALL ONED
NOR=NNOR
GOTO 300

C
C *** OPTIMIZATION COMPLETE ***

800 CONTINUE
WRITE(6,8)
DO 805 I=1,NW0RK

805 T(I)=TREM(I)

FUN=TREM(NP1)
WTI=TREM(NP2)
GOTO 900

820 CONTINUE
WRITE(6,5)
GOTO 900

840 CONTINUE
WRITE(6,25)
GOTO 900

860 CONTINUE
WRITE(6,6)IOPTS
GOTO 900

900 CONTINUE
*** READ IN NEXT JOB ***

READ(5,21)N0R
WRITE(6,33)NQR
IF(N0R.EQ.10)G0T0 999
IF(N0R.EQ.9)G0T0100
DO 950 I=1,NW0RK

950 T (I) = T I N I T (I)
AL=SAL
FUNL=SFL
TACTN= STN
GOTO 200

999 CALL EXIT
END

COMMENT : OPTIMIZATION ALGORITHMS

SUBROUTINE POWL
C *** NOR=l ***
COMMON CARDS:PRINT,OPT,WORK

IER = 0
KOUNT=0
NZERO=0
DO 901=1,NWORK
DO 85J=1,NWORK

85 D2FDT2(I,J)=0.
90 D2FDT2(1,1) = - l .

100 CONTINUE
K0UNT=K0UNT+1
NUSE=1
DO 102J = 1,NWORK

102 PO(J)=T(J)
ITST=0
FO=FUN
DELT=0.

C *** SEARCH IN THE N DIRECTIONS DEFINED BY D2FDT2
001081=1,NWORK
DO104J=1,NWORK

104 H(J)=D2FDT2(J,I)
FSAV=FUN
NSRCH=I
CALL ONED
IF(AN.NE.O.)NZERO=0
IF(AN.EG.O.)NZER0=1+NZER0
IF(NZERO.GE.NWORK)GOTO 136
FTST=FSAV-FUN
IF(DELT.GE.FTST)G0T0106
DELT=FTST

C *** DELT IS LARGEST CHANGE IN OF DURING THE NWORK SEARCHES
C *** ITST IS ITERATION OF THE LARGEST CHANGE

ITST=I
106 CONTINUE
108 CONTINUE

D0110J=1,NWORK
110 PN(J)=T(J)

FN=FUN
C *** TEST TO SEE IF WE SEARCH IN SAME DIRECTION AGAIN

D0112J=1,NWORK
112 T (J) = (P 0 (J) + PN(J)) / 2 .

CALL FUNCT
FM=FUN
DUM=F0-2.*FM+FN
IF(DUM.LT.O.)GOTO 120
I F(FO-4.*FM+3.*FN.GT.O.)GOTO 116
IF(2.*DELT*DUM.GE.(FO-FN)**2)GOTO 120

C *** POWL HAS DECIDED TO KEEP OLD DIRECTIONS AS TEST1.LT.TEST2
116 CONTINUE

186

D0118J=1,NW0RK
T{J)=PN(J)

118 CONTINUE
FUN=FN
GOTO130

C *** WE WILL SEARCH IN PN - PO DIRECTION
120 CONTINUE

NUSE=0
DO 122J = l»NWORK

122 H(J)=PN(JJ-PO(J)
00124J = 1,NW0RK

124 T(J)=PN(J>
FUN=FN
AO=-1.0
NSRCH=NWORK+l
CALL ONED
IF(AN.NE.O.)NZERO=0
IF(AN.EQ.O.)NZERO=l+NZERO
IF(NZERO.GE.NWORK)G0TQ 136

C **# GET NEW DIRECTION OF SEARCH
NWMUNWORK-l
D0126I=ITST,NWM1
D2FCA2(I) = D2FDA2(1 + 1)
D0126J=1,NW0RK

126 D2FDT2(J»I)=D2FDT2(J»I+l)
D2FDA2(NW0RK)=D2FDA2(NW0RK+1)
DQ128J=1,NW0RK

128 D2FDT2(J»NW0RK)=H(J)
C *** DO WE TERMINATE

130 CALL EXTEST
IF(KOUNT.LT.NWORK) I£R = 0
IF (IER.GT.0)GOTO 136

132 D0 134J=1,NW0RK
134 PO(J)=T(J)

G0T0100
136 CONTINUE

C *** NEITHER FUNCTION NOR VARIABLES CHANGING MUCH SO WE TERMINATE
RETURN
END

SUBROUTINE STEW
C *** N0R=2 **#

CALL FLEP
RETURN
END

SUBROUTINE FLEP
C *** N0R=3 ***
COMMON CARDS:PRINT,OPT,WORK

187

C H WORKING STORAGE OF DIMENSION N*<N+7)/2.
N=NWORK
IER=0
KOUNT=0
N2=N+N
N3=N2+N
N31=N3+1

C COMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENT
IHE = 1

100 IF(N0R.EQ.3)G0T0102
DO 101 1 = 1,N
DEL(I)=0.001

101 KODER(I)=0
CALL DIFFUN
G0T0103

102 CALL DERFUN
103 CONTINUE

C RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX
1 K=N31
DO 4 J=1,N
H(K)=1.
HI NV{J)=1.
NJ=N-J
IF(NJ)5,5,2

2 DO 3 L=1,NJ
KL=K+L

3 H(KL)=0.
4 K=KL+1

C START ITERATION LOOP
5 KOUNT=KOUNT +1

C *** SAVE F ARG VECTOR GRAD VECTOR ***
FO=FUN
DO 9 J=1,N
K=N+J
H(K)=DFDT(J)
K = K+N
H(K)=T(J)
PO(J)=T(J)

C DETERMINE DIRECTION VECTOR H
K=J+N3
TT=0.
DO 8 L = 1,N
TT = TT-DFDT<L >*H(K)
IF(L-J>6,7,7

6 K=K+N-L
GO TO 8

7 K=K+1
8 CONTINUE
9 H(J)=TT

C CHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H.
DY=0.
HNRM=0.

188

GNRM=0.
C CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTION
C VECTOR H AND GRADIENT VECTOR DFDT

DO 10 J = 1,N
HNRM=HNRM+ABS(H(J))
GNRM=GNRM+ABS(DFDT(J))

10 DY=0Y + H(J)*DFDT(J)
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTIONAL
C DERIVATIVE APPEARS TO BE POSITIVE OR ZERO.

IF(DY)11,50,50 ,
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTION
C VECTOR H IS SMALL COMPARED TO GRADIENT VECTOR OFDT

11 IF(HNRM/GNRM-EPS)50,50,12
C SEARCH MINIMUM ALONG DIRECTION H

12 CONTINUE
NSRCH=1
CALL ONED
IF(FO-FUN+EPS)50,28,28

C**«* TEST FOR TERMINATION ****
28 CALL EXTEST

IF(KOUNT.LT.NWORK)IER=0
29 IF(IER.GT.OJGOTO 56
• IF(AN.LE.O.)GOTO 100

30 IF(N0R.EQ.3)G0T035
C *** CALC DEL FOR STEWART ***

PHI=FUN
ABPHI=ABS(PHI)
DO 33 1=1,N
AL PHA=H I N V (I)
ABAL=ABS(ALPHA)
GAM=DFDT(I)
A8GAM=ABS(GAM)
DELPH=DEL(I)
IFtABGAM.LT.(FUN*EPS)JG0T033
ZET=T(I>
ABZ=ABS(ZET)
ETA=EPS
DUM=ABS(GAM*ZET/PHI)*EPM
IF(ETA.LT.DUM)ETA=DUM
DUM=ABAL*ABPHI*ETA
DELPH=ABPHI*ETA/ABAL
IF((GAM**2).LT.DUM)G0T03l
DELPH=2.*SQRT(DELPH)
DELPH=DELPHM1.-(ABAL*DELPH) / (3.*ABAL*DELPH+4.*ABGAM))
G0T032

31 DELPH=2.*<(DELPH*ABGAM/ABAL)**(1./3.))
DEL PH=DELP H*(1.-(2.*ABGAM)/(3.*ABAL*DELPH+4.*ABGAM))

32 CONTINUE
IF((ALPHA*GAM).LT.O.)DELPH=-DELPH
KODER<I)=0
IF((0.5*ABAL*ABS(DELPH)).LT.(0.05*ABGAM))G0T033
K0DER(I)=1

DUM=ABGAM/ABAL
DE LPH=-DUM + SQRT(DUM*#2+200.*ABPHI#£TA/A8AL)

33 DEL(I)=DELPH
CALL DIFFUN
GOTO 36

35 CALL DERFUN
36 CONTINUE

COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRAD FROM
TWO CONSECUTIVE ITERATIONS
DO 37 J = I,N
K=N+J
H(K)=DFDT{J)-H(K)
K=N+K

37 H(K)=T(J)-H(K)
Z = 0.
DO 38 J=1,N
K=N+J
W=H(K)
K = K+N

38 Z=Z+W*H(K)
39 IER=0

IF(N0R.EQ.3)G0T043
. BETA=0.
RHO=0.
D041J=1,N
K=N+J
BETA=BETA+H(K)*H(J)
RHO=RHO+(DFDT(J)-H(K))*H(J)

41 CONTINUE
C1=1./B£TA
C2=(1./AN-RH0*C1)
D042J=1,N
K=N+J

42 HINV(J)=HINVIJ)+C1*((C2-2.)*H<K)+2.*DFDT(J))*H(K)
43 CONTINUE

PREPARE UPDATING OF MATRIX H
ALFA=0.
DO 47 J=1,N
K=J+N3
W=0.
DO 46 L=1,N
KL=N+L
W=W+H(KL)*H(K)
IF(L-J)44»45t45

44 K=K+N-L
GO TO 46

45 K=K+i
46 CONTINUE

K=N+J
ALFA=A LFA+ W*H(K >

47 H(J)=W

190

C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS
C ARE NOT SATISFACTORY

IFU*ALFA)48,1,48
48 K=N31

DO 49 L=1,N
KL=N2+L
DO 49 J=L»N
NJ=N2+J
H(K)=H(K)+H(KL)*H(NJ)/Z-H(L)*H(J)/ALFA

49 K = K+1
GO TO 5

C END OF ITERATION LOOP
C RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS

50 DO 51 J = 1,N
K=N2+J

51 T(J)=H(K)
FUN=FO
DO 52 J = 1,N
K = N+J

52 DFDT(J)=H(K)
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DERIVATIVE
C FAILS TO BE SUFFICIENTLY SMALL

IF(GNRM-EPS)55,55,53
C TEST FOR REPEATED FAILURE OF ITERATION

53 IF(IER)56,54,54
54 IER=-1

GOTO 1
55 CONTINUE
56 RETURN

END

SUBROUTINE MAP
C *** N0R=5 ***
C THIS SUBROUTINE SETS UP THE LINEAR PROGRAMMING PROBLEM
COMMON CARDS i DAT A,PRINT,OPT,WORK

IER = 0
KOUNT=0
IHE = 1
NW1=NW0RK+1
NCOL = NWORK
NN=NWORK
NNPUNN + 1
IWORK=M*NLC
IW0RK2=2*IW0RK
NROW=IW0RK2+NW0RK
NRP1=1 + NR0W

50 CONTINUE
DO 95 J=1,NW0RK

95 PO(J)=T(J>
99 CONTINUE

K0UNT=K0UNT+1

FO=FUN
CALL DERFUN
DO 100 J=1,NW0RK
DO 100 L=1,NLC
DO 100 K=1,M
I=(L-1)*M+K

100 A { I , J)=-DSDT(K,L t J)
DO 105 J=1,NW0RK
DO 105 I=1,IW0RK

105 A(I+IWORK,J}=-A(I,J)
DO 115 J=1,NW0RK
DO 110 I=1,NW0RK

110 AIIW0RK2+I,J>=0.
115 AtIW0RK2+J,J)=l.

DO 120 J=1,NW0RK
120 A{NRP1 , J) -XL (J)

A(NRPltNNPl)=0.
QNMA=AL PHA*(TMAX-TMIN)
DO 135 1 = 1,NN
TL(I)=TMIN
TU(I)=TMAX
RRR~T(I)-ONMA
IF(RRR.GT.TLtI))TL(IJ=RRR
SSS=T(I)+ONMA
IF(SSS.LT*TU(I))TU(I>=SSS

135 CONTINUE
DO 145 L=1,NLC
DO 145 J = 1,M
JJ=M*(L-1)+J
SUM=0.
DO 140 K=l,NN

140 SUM=SUM+DSDT(J,L,K)*(T(K)-TL(K))
SUM=SUM-S(J,4,L)
A(JJ,NNP1)=-SIGL-SUM

145 A(JJ+IW0RK,NNP1)=SIGA+SUM
DO 150 1=1,NN

150 A(IW0RK2+I,NNP1)=TU(I)-TL(I)
CALL PRMDUL
DO 300 I=1,NW0RK
T (I) = H (I)

300 T (I) = T (I) + T L (I)
CALL FUNCT
CALL EXTEST
IF{IER.EQ.G)GOTO 50

900 CONTINUE
RETURN
END

SUBROUTINE MFD
C *** N0R=6 *#*
COMMON CARDS:DATA,PR INT,OPT,WORK , Z

192

NFA IL = 0
IER=0
NP=NWORK
NC0L=NP+1
KOUNT=0
IHE = 1
NP2=NP+2
KU=2*(M*NLC+NP)

100 K0UNT=K0UNT+1
CALL DERFUN
IF1K0UNT.GT.DG0T0 125
IF(IOPTS.GT.l)GOTO 125
AM = 0.
DO 105 I=1,NP

105 H (I) = - X L U)
FU=SIGA-T0L/2.
FL=SIGL+T0L/2.
CALL FSMOVE
GOTO 100

125 NR0W=1
IU=2*M*NLC
DO 130 1=1,IU
A(I,NCOLI=0.

130 A<I,NP2>=0.
GNRM=0.
DO 150 1=1,NP
A(1,NP2)=A(1,NP2)+XL(I)
GNRM=GNRM+A8S(XL(I1)

150 A (l , I) = X L (I)
A(1,NC0L)=GNRM
FU=SIGA-TOL
FL=SIGL+TOL
TTCL=TOL
TEST=l.E+50
11=0
DO 275 L=L,NLC
DO 275 K=1,M
DUM=S(K,4,L)
11=1+1 I
IACT=0
IF(KM1(II)+KM2(II).GE.2)IACT=1
KM2UI) =KM2(I I) + KMl (11)
KM 1 (I I) = 0
IF(DUM.GE.FU)KM1(II)=1
IF(KM1(I I) + IACT.EQ.0)G0T0 225
DDUM=SIGA-DUM
IF(DDUM.LT.TTOL)TTOL=DDUM
TTEST=TOL-DDUM
NR0W=1+NR0W
A(NROW,NCOL)=0.
DO 200 1=1,NP
A(NROW,NCOL)=A(NROW,NCOL)+ABS(DSDT(K,L,I))

193

At NR0W,NP2)=A(NROW»NP2)+DSDT(K,L»I)
200 A(NROW, I) = DSDT(K,L,I)

A(NR0W,NP2)=A(NR0W,NP2)-T0L
A<NROW,NCQL)=A(NROW,NCOU*PSI
TTEST=TTEST/A(NROW»NCOL)
IF(TTE ST.GE.0..AND.TTEST.LT.TEST)TEST=TTEST

225 11=1+11
IACT=0
IFIKMK II>+KM2(II).GE.2) IACT=1
KM2(11)=KM2(I I)+KMK I I)
KM1(II)=0
IF(DUM.L£.FL)KM1(II) =1
IF(KM1< II)+IACT.EQ.O)GOTO 275
DDUM=DUM-SIGL
IF(DDUM.LT.TTOl)TTQL=DDUM
TTEST=TOL-D0UM
NROW=i+NROW
A(NROW,NCOL)=0.
DO 250 1=1,NP
A(NROW,NCOU =A(NROW,NC0L)+ABS(DSDT(K,1,1))
A<NROW,NP2)=A(NROW,NP2)-DSDT(K,L,1)

250 AlNR0W,1)=-DSDT(K,L,I)
A(NR0W,NP2)=A(NR0W,NP2)-TOL
A(NROW,NCOL)=A(NROW,NCOL)*PSI
TTEST=TTEST/A(NROW,NCOL)
IF(TTE ST.GE.0..AND.TTEST.LT.TEST)TEST=TTEST

275 CONTINUE
IF(NROW.EQ.1)TEST=0.
IL=1+NR0W
IU=1+3*NP+IL
DO 300 J=l,NCOt
DO 300 I = I L , I U

300 A (I , J) = 0 .
FU=TMAX*(1.-T0L/SIGA>
FL=TMIN*(1.+T0L/SIGA)
DO 375 J=1,NP
DUM=T(J)
11=1+11
IACT=0
IF(KM1(II)+KM2(II).GE.2)IACT = 1
KM2UI)=KM2(IIJ+KMK I I)
KM1{11)=0
IF (DUM.GE.FU)KMK I I) = 1
IF(KM1UI)+IACT.EQ.0)G0T0 350
NR0W=1+NR0W
AtNROW,J)=l.
A(NR0W,NP2)=1.

350 11=1+11
IACT=0
IF (K M 1 (I I) + K M 2 (I I).GE.2)IACT = l
K M 2 (I I) = K M 2 (I I) + K M 1 (I I)
K M 1 (I I) = 0

IF(DUM.LE.FL)KM1(II)=1
IF(KMK II)+IACT.EQ.OIGOTO 375
NR0W=1+NR0W
A(NR0W,J)=-1.
A(NR0W,NP2)=-l.

375 CONTINUE
DO 400 J=1,NP
NROW=l+NROW
A(NROWt J) = 1»

400 A(NR0W,NP2)=2.
NRP1=NR0W+1
A(NRP1,NC0L)»-1.
A(NRP1,NP2)=0.

*** DIRECTION PROBLEM IS SET UP ***
IISRCH=ISRCH
ISRCH=10*NP
CALL PRMDUL
ISRCH=IISRCH
IF(IER.GT.L)GOTO 462
DO 460 1=1,NP

460 H (I) = H (I) - 1.
CALL GETMA(AMAX,AMIN)
IF(AMAX.EO.O.)GOTO 462
IF{ABS(H(NCOD) .LT. 1 .E-10) GOTO 999
GOTO 475

462 CONTINUE
IER=0
NFAIL=l+NFAIL
IF(NFAIL.GE.10)GOT0 999
DO 465 K=1,KU
KM1(K>=0
KM2(K)=0

465 CONTINUE
T0L=T0L/2.
IF(NFAIL.GE.2)G0T0 125
IF(TOL.LT.TTOL)TOL=TT0L
GOTO 125

475 CONTINUE
AM=TEST/ABS(H(NCOL))
NFAIL=0
FU=SIGA-T0L/2.
FL=SIGL+T0L/2.
DO 495 I=1,NW0RK

495 P0(I) = T (I i
FO=FUN

500 CALL FSMOVE
CALL EXTEST
IF{ IER.EQ.OGOTO 100

999 CONTINUE
RETURN
END

195

SUBROUTINE NEWT
C *** N0R=7 ***
C**** SUBROUTINE PERFORMS NEWTON-RAPHSON WITH ONE DIM. SEARCHES
COMMON CARDS:PRINT,OPT,WORK

5 FORMAT(* HESS SINGULAR,RETURN")
IER=0
KOUNT=0
IHE=2

100 CONTINUE
K0UNT=K0UNT+1
FO=FUN
DO 150 I=1,NW0RK

150 P O m = T (I)
CALL DERFUN
GNRM=0 .
DO 200 I=l,NWORK
GNRM=GNRM+ABS(DFOTtI))
H(I)=~D FDT(I)
IF((GNRM-EPS).LE.0.)GOTO 999
KH=1
DO 300 J=1,NW0RK
DO 299 1=1,J
HE(KH)=D2FDT2(I ,J)

298 KH=KH+1
299 CONTINUE
300 CONTINUE
400 CALL GELS{H,HE,NW0RK,1,EPS,IER,AUX)

IF(KS.EQ.1)G0T0 500
GO TO 600

500 WRITE(6,5)
G0T0999

600 CONTINUE
HNRM=0.
00 650 I=1,NW0RK
HNRM=HNRM+ABS(H(I))

650 CONTINUE
NSRCH=KOUNT
CALL ONED

700 CONTINUE
C**** CHECK FOR TERMINATION ****

CALL EXTEST
IF(IER.EQ.O)GOTO 100

999 RETURN
END

SUBROUTINE QP
C #** N0R=8 ***

RETURN
END

SUBROUTINE EXTEST
COMMON CARDS:PRlNT,OPT

1 FORMAT(' DESIGN NOT CHANGING MUCH*)
2 FORMAT<• FUNCTION NOT CHANGING MUCH')
3 FORMAT(• NO CONVERGANCE AFTER',15,•ITERNS*

IER=0
00501=1,NWORK
QTEST = A B S (P 0 (I) - T (I))
IF{QTEST.GT.(AL*T (I)MGOT075

50 CONTINUE
WRITE(6,1)
QTEST=ABS(FO-FUN)
IF(QTEST.GT.(FUNL*FO))G0T075
WRITE(6,2)
IER=1
RETURN

75 IFiK0UNT.GE.LIMIT)G0T0100
RETURN

100 WRITE(6,3)K0UNT
IER = 2
RETURN
END

197

COMMENT : SEARCH ALGORITHMS

SUBROUTINE ONED
C *** THIS SUBROUTINE PERFORMS A ONE DIMENSIONAL SEARCH
C *** AT CONCLUSION IT YIELDS A NEW DESIGN AND NEW GRADIENTS
COMMON CARDS:PRINT,OPT,WORK

1 FORMAT(' REGION CONVEX RETURN TO ALGORITHM')
2 FORMAT (• CAN NOT FIND SECOND FEASIBLE POINT ')
3 FORMAT (• CAN NOT FIND THIRD FEASIBLE POINT »)
4- FORMAT (• CAN NOT FIND FOURTH FEASIBLE POINT «)
8 FORMAT!« INTERVAL OF UNCERTAINTY BELOW ACCEPTABLE SO WE STOPPED')
9 FORMAT(* SEARCH TERMINATED AFTER «,I3,' TRIES 1)

19 FORMAT (• ABS(H)=0. RETURN **********•)
21 FORMAT (• REGION FLAT,SEARCH TERMINATED AT BEST POINT = «,E15.8)
22 FORMAT(» LAST POINT FURTHEST FROM BEST POINT,SEARCH TERMINATED")

NONED=NONED+l
DQO=0.
D0105I=l,NWORK
DQ=ABS(H(I))
IF(DQ.LT.D0Q)G0T0105
DQG=DQ

105 CONTINUE
IF(DQQ.EQ.O.JG0T0995
AOK=TACTN/DQQ

110 CONTINUE
KVEX=0
ICNT=0
IOIR=0
IQF = 0
A1 = 0.
A2=0.
A3 = 0.
A4 = 0.
F2=0.
F3=0.
F4 = 0.
F1=FUN
FSAVE= FUN

C *** SAVE BEST
AA=A1
FF = F1
AQ=A1
FQ=F 1

C *** ********* ***
115 CALL GETMA(AMAX,AMIN)

DO 120 I = 1 ,N WORK
120 TSAVE(I)=T(I)

FSAVE=FUN
AH = 0.

198

D0125J=1,NW0RK
125 AH=AH+H(J)*H(J)

AH=SQRT(AH)
DY=0.

C *** GET SECOND POINT ***
200 CONTINUE

IF(NOR.GT.l)GOT0205
201 IF(NUS£.EQ.1)G0T02Q2

A2=A1
F2 = F1
A1=A0
F1=F0
GOTO295

202 A2=5.*ACK
G0T0220

205 Q0206J=1,NW0RK
206 DY=DY+H(J)*DFDT(J)
212 IF(IP.LT.3)G0T01012

1012 CONTINUE
IF(DY)215,216,213

213 D0214J = ltNWORK
214 H(J)=-H(J)

DY=-DY
ATEMP=-AMIN
AMIN=-AMAX
AMAX=ATEMP

215 ALFA=(E ST-F SAVE)/DY
A2=10.*ACK
I F(ALFA.GT.A2)A2 = ALFA
IF(A2.GT.l.)A2=1.
IF(A2.LT.0.)A2=-A2
G0T0220

216 A2 = l .
220 CONTINUE

AQ=A2
2 21 IF(AQ.GE.AMAX)AQ=(Al+AMAX)/3.
222 IF(AQ.LE.AMIN)AQ=(Al+AMIN)/3.

D0226I = ltNW0RK
226 T(I)=TSAVE(I)+AQ*H(I)

CALL FUNCT
FQ=FUN

C *** IS 2ND POINT FEASIBLE
CALL FEASQ(IFEAS)
I F (IFEAS.EQ.0)GOTO295
IF(AQ.GT.O.)AMAX=AQ
IF<AQ.LT.O.)AMIN=AQ
IF(ABS(A2).LT.AOK)G0T0 275
ICNT=ICNT+1
I F (ICNT.GT.10)G0T0275
GOTO 220

275 IDIR=IDIR+1
IF(IDIR.GT.l)G0T082l

199

D0280 J = WNW0RK
280 H(J)=-H(J)

ATEMP=-AMIN
AMIN=-AMAX
AMAX=ATEMP
G0T0202

295 ICNT=0
A2 = A0
F2 = FQ
IF(F2.GT.Fi)G0T0 298
IF(F1.GT.F2)AMIN=A1
AA=A2
FF = F2
GOTO 300

298 AMAX=A2
C *** A FEASIBLE 2N0 POINT IS NOW FOUND
C *** GET THIRD POINT ***

300 CONTINUE
IF iAMAX-AMIN.LE.2.*A0K)G0T0 800
FMIN=FF

301 IF (NOR.GT. DG0T0305
302 IF(F2.LT.F DG0T0303

AQ=Al+2.*(A1-A2)
FMIN=FF
GOTO 310

303 AQ=A2+2.*<A2-A1)
FMIN=FF
GOTO 310

305 C1»(DY*(.AI-A2)-(F1-F2)) /((A1-A2)*(A1-A2))
C2 = DY-2.*C1*A1

C *** IS REGION CONCAVE:WILL A MAXIMUM BE PREDICTED? ***
306 CT=EPM*(F2+Fl)/((A2-A1)**2)

IF(C1.GT.CT)GOT0307
AQ=A2+3.*(A2-A1)
FMIN=FF
GOTO 310

307 AQ=-C2/(2.*C1>
FMIN=(C1*(AQ+A1)+C2)*(AQ-A1)+Fl

310 CONTINUE
320 IF(AQ.GE.AMAX)AQ=(Al+A2+AMAX)/3.
321 IF(AQ.LE.AMIN)AQ=(Al+A2+AMIN)/3.

D0330I = 1,NW0RK
330 T(I) =TSAVE U)+AQ*H(I)

CALL FUNCT
FQ=FUN
IF(A2.GT.A1)G0T0331
ATEMP=A1
FTEMP=F1
A1=A2
F1=F2
A2=ATEMP
F2=FTEMP

200

331 IF(AQ.LT.A2.AND.AQ.GT.A1)GOTO 337
C *** CHECK FEASIBILITY ***

335 CALL FEASQ(IFEAS)
IF{ IFEAS.EQ.0)G0T0337
ICNT=ICNT+1
IF(ICNT .GT.10)G0T0993
IF(AQ.GT.A2)GOT0336
AMIN=AQ
GOTO 320

336 AMAX=AQ
GOTO 320

C *** REORDER POINTS ***
3 37 ICNT=0

A3=AQ
F3 = FQ
IFtA3.GT.A2)G0T0339
AT=A3
FT=F3
A3 = A2
F3-F2
A2 = AT
F2 = FT
IF (A2.GT.ADG0T0339
AT = A2
FT-FZ
A2 = A1
F2 = F1
A1 = AT
F 1 = FT

339 CONTINUE
C *** A FEASIBLE 3RD POINT IS FOUND
C *** GET FOURTH POINT ***

400 IF(FF.LE.FQ)GOTO 405
AA=AQ
FF =FQ

405 CONTINUE
IF(F3.G£.F2.AND.A3.LT.AMAX)AMAX=A3
IF(Fl.GE.F2.AND.Al.GT.AMIN)AMIN=A1
IF(F1.GT.F2.AND.F2.GE.F3)G0T0 410
IF(F1.LE.F2.AND.F2.LT.F3JG0T0 415
GOTO 420

410 IF(A2.GT.AMIN)AMIN=A2
GOTO 420

415 IF(A2.LT.AMAX)AMAX=A2
420 CONTINUE

IF(AMAX-AMIN.LE.2.*A0K)G0TO 800
C *** IS REGION CONVEX - WILL A MAXIMUM BE PREDICTED ? ***

A31=A3-A1
A21=A2-A1
A32=A3-A2
C1=(F1-F2>/(A21*A3i)-(F2-F3)/(A32*A31)
CT=EPM*(F3+F1)/{A3-A1)**2)

201

425 IF(Cl.GT.CT)GOTO 440
IFtCl.LE.Q.)GOTO 816
IF(AA.LT.A3)G0T0 302
A1=A2
F1 = F2
A2=A3
F2 = F3
GOTO 302

440 CONTINUE
KVEX=0
ICNT=0
IQF=IQF+1
C2=(F2-F3)/(-A32)-Cl*(A2+A3)
AQ=-C2/(2.*C1)
D2F0A2(NSRCH)=C1*2.
FMIN=(C1*<AQ+A1)+C2)*(AQ-A1)+F1

445 CONTINUE
450 CONTINUE
45 5 IF(AQ.GE.AMAX)AQ=(A2+A3+AMAX)/3.
460 I F (AQ.L£.AMIN)AQ = (Al+A2+AMINW3.

DO 465 I=1,NW0RK
465 T(I)=TSAVE<I)+AQ*H(I)

CALL FUNCT
FQ=FUN

C *** CHECK FEASIBILITY ***
470 IF(AQ.LT.A3.AND.AQ.GT.A1)G0T0 485
475 CALL FEASQ(IFEAS)

IF{ IFEAS.EQ.OJGOTO 485
ICNT = ICNT + 1
IF(ICNT.GT.1G)G0T0994
IF(AQ.GT.A3)G0T0 480
AMIN=AG
GOTO 450

480 AMAX=AQ
GOTO 450

C *** REORDER POINTS ***
485 ICNT=0

A4=AQ
F4=FQ
IF(A4.GT.A3)G0T0 490
AT = A4
FT=F4
A4 = A3
F4 = F3
A 3=AT
F3 = FT
IF(A3.GT.A2)GOTO 490
AT = A3
FT =F3
A3=A2
F3 = F2
A2-AT

i
|

F2=FT
IF(A2.GT.A1)G0T0 490
AT=A2
FT = F2
A2 = A1
F2 = F1
A1 = AT
F 1 = FT

'+90 I F (I P. IT.2) GOTO 1025
1025 CONTINUE
495 CONTINUE
*** FOURTH FEASIBLE POINT IS FOUND ***
*** DISCARD ONE POINT ***
500 CONTINUE
505 IF{F2.LT.F1.AND.Al.GT.AMIN)AMIN=Ai
515 IF(F3.LT.F4.AND.A4.LT.AMAX)AMAX=A4

IF(AQ.EQ.A1.AND.AA.EQ.A4)GOTO 815
IF (AA.EQ.ALAND.AO.EQ.A4)GOTO 815
IF(AQ.EQ.A4)G0T0525
IF(AG.EQ.Al)G0T0535
IF{AA.EQ.A4)G0T0525
IF (AA.EQ.ADGOTO 535
IF(F3.LT.F2)G0T0520
IF(F1.GT.F2)G0T0525
G0T0535

520 IF<F4.GT.F3)G0T0535
525 A1=A2

F1 = F2
A2=A3
F2 = F3
A3=A4
F3 = F4

535 A4=0.
F4 = 0.

545 CONTINUE
IF(AMAX-AMIN.LE.2.#A0K)G0T0 800

*** IS MINIMUM BOUND ? #**
IF(F2.GT.F1.0R.F2.GT.F3)GOT0 400

*** TEST FOR TERMINATION OF SEARCH ***
TOO CONTINUE
705 IFUA3-A1) .LE.(2.*A0K))GOTO 800

IF(A1.EQ.A2.0R.A2.EQ.A3)GOTO 800
IF(IQF.GE.ISRCH)GOTO 805
GOTO 400

*** AN EXIT REQUIREMENT HAS BEEN FULFILLED ***
800 IF(IP.LT.2)G0T0 820

WRITE16,8)
GOTO 820

805 IF(IP.LT.2)G0T0 820
WRITE{6 »9)IQF
GOT0820

810 1F{IP.LT.2)G0T0 820

WRITE(6,21)AA
G0T0820

815 IF(IP.LT.2)G0T0820
WRITE(6,22)
G0T0820

816 IF(IP.LT.2)GOTO 820
WRITE(6,1)

820 CONTINUE
IF(FQ.LT.FF)G0T0830

821 AQ=AA
D0825 I=1,NW0RK

825 T(I)=TSAVEU)+AQ*H(I)
CALL FUNCT
FQ=FUN
CALL FEASQ(IFEAS)

830 CONTINUE
AN=AQ
G0T0999

C *** IF WE ARRIVED HERE AN ERROR
992 WRITE(6,2)

G0T0821
993 WRITE(6,3)

G0T0821
994 WRITE(6,4>

GOT0821
995 WRITE(6,19)

AN = 0.
999 RETURN

END

SUBROUTINE FSMOVE
COMMON CARDS:DATA,PRINT,OPT,WORK

NP=NWORK
NONED=NONED+1
IQF=0
11=0
12=0
13=0
14=0
IQ = 1
IF1=0
IF2 = 0
IF3=0
IF4=0
IFQ = 0
A1 = 0.
A2=0.
A3 = 0.
A4 = 0.
AQ=0.
DQO=0.

203

IS APPARENT AND PROBLEM TERMINATED

204

DO 110 1=1,NP
DQ=ABS(H(I))

110 .IF(DQ.GT.DQQ)DQQ=DQ
IF 1DQQ.EQ.O.)GOTO 910
AOK=TACTN/DQQ
DO 120 1=1,NP

120 T T (I) = T (I)
C **# FIND MOVE TO NON-LINEAR CONSTRAINTS ***
C *** UPPER BOUND FROM LINEAR CONSTRAINTS ***
C *** THEN FORM DIRECTIONAL DERIVATIVES ***

CALL GETMA(AMAX,AMIN)
IFUM1N.LT.0.)AMIN=0.
IF<AM.LT.AMAX)AMIN=AM
DO 250 K = 1,M
DO 250 L=1,NLC
SS(K,1,L)=S(K,4,L)
DO 220 IS=2,4

220 SS(K,IS,L)=0.
DY=0.
DO 225 1=1,NP

225 DY=DY+OSDT(K,L,I)*H<I)
250 SS(K,4,L)=DY

11=1
C *** LINEAR FIT ***

300 A2=AMAX
DO 325 K=1,M
00 325 L=1,NLC
DY=SS(K,4,L)
IF(ABS(DY).LT.1.E-25JG0T0 325
F1=SS(K,1,L)
IF(DY.GT.0.)AT=(FU-F1)/DY
IF(DY.LT.O.)AT = (FL-FD/DY
IF(AT.GT.AOK.AND.AT.LT.A2)A2=AT

325 CONTINUE
IF(A2.LT.AMIN)A2=AMIN
AQ = A2
DO 350 1=1,NP

350 T U) = T T (I) + A Q * H (I)
CALL FUNCT
CALL FEASQ(IFEAS)
DO 375 K=1,M
DO 375 L=l,NLC

375 SS{K,2,L)=S(K,4,D
12 = 2
10 = 2
IF2=IFEAS
IFO=IFEAS
IF { IFEAS.EO.-DGOTO 960
IF{IFEAS.EQ.1.AND.AQ.LT.AMAX)AMAX=AQ

C *** QUADRATIC FIT TO DY,A1,A2 ***
400 AT=0.

A3=AMAX

C1 = 1./(A1-A2>
C2=0.
C3 = 0.
C4=A1+A2
DUM=2.*EPS/((A2-Al)**2)
DO 425 K = l,M
DO 425 L=1,NLC
F1=SS(K,1,L)
F2 = SS< K,2,L)
DY=SS(K,4,L)
QB=C1*(F1-F2)
QA = C1*(DY-QB)
QT = ABS(DUM*{F L+F2))
IF(ABS(QA).LE.QT)GOTO 425
QB=QB-QA*C4
QC=F1-A1*(QA*A1+QB)
AT=AMAX
CALL ROOT(QA,QB,QC,AOK,AT,AMIN)
IF(AT.LT.A3)A3=AT

425 CONTINUE
IFU3.EQ.A2) A3=(A1+A2)/2.

435 AQ=A3
DO 450 1=1,NP

450 T(I) = TT(I)+AQ*H(I)
CALL FUNCT
CALL FEASQ(IFEAS)
DO 475 K=1,M
DO 475 L=l,NLC

475 SS(K,3,L)=S(K,4,L)
13 = 3
IQ = 3
IF3=IFEAS
IFQ=IFEAS

C *** ORDER PTS Al,A2,A3 ***
IF(A3.GT.A2)G0T0 485
AT = A3
A3=A2
A2 = AT
IT = I3
13 = 12
I2=IT
IFT=IF3
IF3 = IF2
IF2=IFT

485 CONTINUE
IF(IFEAS.EQ.-l)GOTO 960
IF(IF1.EQ.0)AMIN=A1
IF{ IF2.EQ.0)AMIN = A2
I F (IF3.EQ.0)AMIN=A3
I F (IF3.EQ.1)AMAX=A3
IF UF2.EQ.1) AMAX = A2

C *** QUADRATIC FIT TO A1,A2,A3 ***

500 AT=0.
AA=A1
IF{IFI.EQ.0.AND.A1.GT.AMIN)AMIN=AI
IFUF2.EQ.1)G0T0505
AA = A2
IF(A2.GT.AMIN)AMIN=A2
IF(IF3.EQ.1)GOT0510
AA=A3
IF(A3.GT.AMIN)AMIN=A3
GOTO 515

505 IF(A2.LT.AMAX)AMAX=A2
GOTO 515

510 IF(A3.LT.AMAX)AMAX=A3
515 CONTINUE

A4=AMAX
IQF=IQF+1
Cl=l./<A1-A2)
C2=l./<A2-A3)
C3 = 1./(A3-A1)
C4=A1+A2
DUM=2.*£PS/((A3-Al)**2)
DO 525 K=1,M
DO 525 L=1,NLC
F i = S S (K , I l t l)
F2=SS(K,I2,L)
F3=SS(K, 13,L)
QB=C1*(F1-F2)
QA=C3*(C2*(F2-F3)-QB)
QT=ABS(DUM*(F1+F3>)
IF(ABS(OA).LE.QT)GOTO 525
QB=QB-C4*QA
QC = F1-(0A*AH-QB)*A1
AT=AMAX
CALL ROOTtQA,QB,QC,AOK,AT,AMIN)
IF(AT.LT.A4)A4=AT

525 CONTINUE
IF(A4.EQ.A3)A4=(A3+A2)/2.
1FIA4.EQ.A2)A4=<Al+A2)/2.

535 AQ = A4
IQ=4
DO 550 1=1,NP

550 T (I) = T T (I) + A Q * H (I)
CALL FUNCT
CALL FEAS.Q(IFEAS)
IF4=IFEAS
IFQ=IFEAS
14=4

*** ORDER PTS A l A2 A3 A4 ***
IF{A4.GT.A3)GOTO 585
AT=A4
A4 = A3
A3 = AT

207

I T = I 4
14=13
I 3 = IT
IFT=IF4
IF4=IF3
IF3=IFT
IF(A3.GT.A2)GOTO 585
AT = A3
A3=A2
A2=AT
IT = I3
13 = 12
I2=IT
IFT=IF3
IF3=IF2
IF2=IFT
I F{A2.GT.A1)GOTO 585
AT=A2
A2 = A1
Al =AT
IT = I2
12=11
I I = IT
IFT=IF2
IF2=IF1
IF1=IFT

585 CONTINUE
IFdFEAS.EQ.-DGOTO 960
IF{IFEAS.EQ.I.ANO.AQ.LT.AMAX)AMAX=AQ
IF(IFEAS.EQ.O.AND.AQ.GT.AMIN)AMIN=AQ

C *** TEST FOR TERMINATION
600 CONTINUE

IF(IQF.GE.ISRCHJGOTO 920
IF(IF1.EQ.OJGOTO 625
IF(A1.E0.0.)G0T0 625

625 IFUF2.EQ.0)G0T0 635
AT=A2-A1
GOTO 655

635 IF(IF3.EQ.0)G0TO 645
AT=A3-A2
GOTO 655

645 IF(IF4.EQ.0)GOTO 700
AT=A4-A3

655 AT=ABS{AT)
IF(AT.LE.ACK)GOTO 930

C *** NO TERMINATION CONDITION FULFILLED ***
C *** SELECT REDUNDANT POINT ***

700 IFT=0
IF<IF1.EQ.IFT)IFT=1
IDIS=I4
ADIS=A4
IF(IF2.EQ.IFT)GOTO 710

208

IDT S = 11
ADIS=A1
I F(IQ.N E.11)GOTO 720
IDI S = I 2
ADIS=A2
IF<IF3.NE.IFT)G0T0 720
IDI S = I 4
ADIS=A4
GOTO 720

710 IF<IQ.NE.I4)G0T0 720
IDIS=I3
ADIS=A3

720 CONTINUE
C *** UPDATE MATRIX + INDICES ***

DO 725 K = 1,M
DO 725 L=1,NLC

725 SS{K,IDIS,L)=S(K,4,L)
IF(AQ.EQ.AL)I1=IDIS
IF(AQ.EQ.A2)I2=IDIS
IF(AQ.EQ.A3)I3=IDIS
IF(AQ.EQ.A4)I4=IDIS
IF(AOIS.EQ.A1)GOTO 735
IF(ADIS.E0.A2)G0T0 740
IF(ADIS.EQ.A3)G0T0 745
IF(ADIS.F.Q.A4)G0T0 750

735 A1=A2
11=12
IF1=IF2

740 A2=A3
12=13
IF2=IF3

745 A3=A4
13=14
IF3=IF4

750 A4=0.
14=0
IF4=0

C *** POINT DISCARDED,FIND NEW POINT ***
GOTO 500

C *** ERROR OR TERMINATION MESSAGES ***
910 CONTINUE

WRITE(6,6)
CALL EXIT

920 IF(IP.LT.2)GOTO 940
WRITE(6,1)
GOTO 940

930 IF{ IP.LT.2)G0T0940
WRITE(6,2)
GOTO 940

940 IF(AA.EQ.A0)G0T0960
I F (IFQ.EG.O)GOT0960
AQ=AA

i
I

209

DO 950 1 = 1,NP
950 T (I I * T T < I) + A Q * H (I)

CALL FUNCT
960 IF(IP.LT.2JGOT0980
980 I F { I P.LT.1)GOTO 990
990 RETURN

1 FORMAT(• MAX = OF QUADRATIC FITS REACHED")
2 FORMATC CONSTRAINT LIES IN INTERVAL LESS THAN RESOLUTION")
6 FORMAT(' MAX COMPONENT OF H = 0.0 •)
END

SUBROUTINE PRMDUL
C *** A. PRIMAL-DUAL LINEAR PROGRAMMING ALGORITHM **•*
COMMON CARDS:PRINT,OPT,WORK

3 FORMAT(• LP SOLUTION UNBOUNDED. EXECUTATION TERMINATED")
4 FORMAT(" LP ALGORITHM ANTICIPATES LOOPING. EXECUTATION TERMINATED"
X)

8 FORMAT{* CYCLING PREVENTION ALGORITHM ERROR NO 1")
9 FORMAT (• CYCLE PRENTION ALGORITHM ERROR NO 2")
13 FORMAT(" CAN NOT FIND INITIAL FEASIBLE SOLUTION')
19 FORMAT('OA PIVOT CAN NOT BE FOUND AFTER",13,' ITERATIONS')

C . N = NUMBER OF COLUMNS IN COEF MATRIX OF INEQUALITY EQS.
C M = NUMBER OF ROWS IN COEF MATRIX OF INEQUALITY EQS
C A = MATRIX CONTAINING COEFS,COSTS,RH SIDES,AND OF
C IREMH = ROW DESIGNATION OF ZERO B• S

N=NCOL
M=NR0W
NP1=N+1
MP1=M+1
NDUM=N+M
ISAVE=0
JSAVE=0
D098J=1,NDUM

98 ICOEF(J)=J
ICOUNT=0

99 CONTINUE
ICOUNT=ICOUNT+1
ATEST=l.E+75
ICK = 0
JCK=0
CTEST=1.
D0100J=1,N
IF(A(MP1.,J) .GE.CTESTJG0TO100
JCK=J
CTEST=A(MP1, J)

100 CONTINUE
IF(CT£ST.LT.O.)GOTO 101
GOTO 161

101 IF(ICOUNT.GE.ISRCH)GOT0 952
ICTEST=0

C *** FIND A PIVOT FOR PRIMAL PROBLEM ***
DO 102 1 = 1,M
IF(A<I,JCK)*A(I,NP1).LT.O.)GOTO 103
IF(A(I,JCK).GT.O.)GOTQ 103

102 CONTINUE
C SOLUTION UNBOUNDED

G0T0951
103 CONTINUE

D0111I=1,M
111 IREM(I)=0

K=0
DO 114 1=1,M

. I F (A (I ,JCK)*A(I,NP1))114,112,113
112 IF <AU ,NP1) .NE.O.)GOTO 114

IF(A(I,JCK).EQ.O.)GOTO 114
K = K + 1

IREM(K)=I
ATEST=0.
ICK=I

GOTO 114
113 CONTINUE

ATEST1=A(I,NP1)/A(I,JCK)
IF(ATEST1.GT.ATEST)G0T0 114
ATEST=ATESTI
ICK=I

114 CONTINUE
NLOOK=N

118 CONTINUE
IF(K.LT.2)G0T0 153

C AT LEAST 2 B'S ZERO
NLOOK=NLOOK+1
NTEST=N+M+1
IF(NL00K.GE.NTEST)G0T0953
DO 123 J=1,NDUM
IF(ICOEF(J).EQ.NLOOK)GOTO 124

123 CONTINUE
G0T0954

124 CONTINUE
JLOOK=J
IF(JLOCK.LE.N)GOTO 141
IDUMY=JLOOK-N
DO 131 1=1,MP1

131 DUMMY(I)=0.
DUMMY(IDUMY)=1.
GOTO 143

141 DO 142 1=1,MP1
142 DUMMY(I) = A(I,JLOOK)
143 CONTINUE

KK=0
ATEST=l.E+75
DO 152 1=1,K
I I = I R E M (I)

211

IF (DUMMYU I) .NE.O.)GOTO 151
KK=KK+1
IREM(KK)=II
ATEST=0.
ICK = I I
GOTO 152

151 ATEST1=DUMMY(11)/A t11,JCK)
IF(ATE ST1.GT.ATE ST)GOTO 152
ATEST=ATEST1
ICK = I I

152 CONTINUE
K = KK
GOTO!18

153 CONTINUE
C *** A(ICK,JCK) = PIVOT FOR PRIMAL SIMPLEX ***

IF(ICK.EQ.ISAVE.AND.JCK.EQ.JSAVE)GOTO 952
ISAVE=ICK
JSAVE=JCK
CALL SIMP1ICK tJCK)
GOTO 99

C *** AN OPTIMAL SOLUTION HAS BEEN REACHED ***
161 CONTINUE

C *** CHECK FEASIBILITY ***
IICK=0
JJCK=0
TEST=0.
DO 162 1 = 1,M
IF(A(I,NP1).GT.TEST)GOTO 162
TEST=A(I ,NP1)
IICK=I

162 CONTINUE
IF(TEST.GE.-l.E-8)GOTO 900

C *** FIND A PIVOT FOR DUAL PROBLEM ***
IC0UNT=1+IC0UNT
IF<ICOUNT.GE.ISRCHIGOTO 952
ATEST=-l.E+70
K = 0
DO 165 J=1,N
IF(A(IICK,J)*A(MP1,J))164,163,165

163 IF(A(MP1,J).NE.O.JGOTO 165
IF(A(IICK,J).EQ.O.)GOTO 165
K=l + K
IR EM (K) =J
ATEST=0.
JJCK=J
GOTO 165

164 ATEST1=A(MP1,J)/A{IICK,J)
IF(ATEST1.LT.ATEST)GOTO 165
ATEST=ATEST1
JJCK=J

165 CONTINUE
IF (K.LT.2) GOTO 169

ATEST=0.
DO 167 J = 1,N
IF(A(MP1,J).N£.0.)GOTO 167
DUM=ABS(A(IICK,J))
IF(DUM.LT.ATEST)GOTO 167
ATEST=DUM
JJCK=J

167 CONTINUE
169 CONTINUE

C *** A(IICK,JJCK) = PIVOT FOR DUAL SIMPLEX ***
IF(IICK*JJCK.EQ.O)GOTO 170
IF(IICK.EQ.ISAVE.AND.JJCK.EQ.JSAVE)GOTO 952
ISAVE=IICK
JSAVE=JJCK
CALL SIMPUICK,JJCKI
GOTO 161

170 WRITE(6,19)ICOUNT
IER=5
GOTO 910

C *** A BASIC FEASIBLE OPTIMAL SOLUTION HAS BEEN REACHED
900 CONTINUE
910 IF{IP.LT.2JG0T0 1940
1940 CONTINUE
912 CONTINUE

DO 915 J = 1,N
915 HI J) = 0 .

DO 920 J=NP1,NDUM
I=J-N
K=ICOEF(J>
IF(K.GT.N)GOTO 920
H(K)=A(I,NP1)

920 CONTINUE
OF=-A(MP1,NP1)
G0T0999

951 WRITE(6,3)
IER=3
GOTO 910

952 WRITE{6,4>
IER = 4
GOTO 910

953 WRITE(6,8)
RETURN

954 WRITE(6,9)
RETURN

955 WRITE(6,13)
999 RETURN

END

SUBROUTINE SI MP(ICK,JCK)
C THIS SUBROUTINE CHANGES TABLEAU
COMMON CARDS:PRINT,OPT,WORK

N=NCOL
M=NROW
NP1=N+1
MP1=M+1

C ICK IS ROW DESIGNATION OF PIVOT
C THE ICK+N COLUMN WILL LEAVE BASIS

IREM1=IC0EF(JCK)
ICOEF(JCK)=ICOEF(ICK+N)
ICOEF(ICK+N)=IREMl

C CHANGE TABLEAU
A(ICK,JCK)=l./A(ICK,JCK)
00 105 J=1,NP1
IF(J.EQ.JCK)G0T0 105
A(ICK,J)=A(ICK,J)*A(ICK,JCK)

105 CONTINUE
DO 110 J=1,NP1
IF(J.EG.JCK)GOTO 110
DO 110 1=1,MP1
IF{I.EQ.ICKJGOTO 110
A (I , J) = A < I , J) - A (I , J C K) * A (I C K , J)

110 CONTINUE
DO 115 1=1,MP1
IF(I.EQ.ICK)GOTO 115
A(ItJCKl--A(I,JCK)*A(ICK,JCK)

115 CONTINUE
RETURN
END

SUBROUTINE ROOT(QA,QB,QC,AOK,AT,AM IN)
COMMON CARDS:OPT

DUM2=.5/QA
DUM1=QB*<-DUM2)
DT={A0K/DUM2)**2
QT=(.01*(-QB))*#2
IF(DT.LT.QT)DT=QT

100 DUM=QB*QB-4.*QA*(QC-FU)
IF{DUM.GT.0.)GOTO 150
IF(DUM**2.LT.DT**2)G0T0 120
GOT0400

120 IFtDUMl.GT.O.)AT=DUM1
GOTO 400

150 DUM=DUM2*SQRT(DUM)
QT=DUM1+DUM

200 IF(QT.GT.AMIN.AND.QT.LT.AT)AT=QT
QT=DUM1-DUM

3 00 IFtQT.GT.AMIN.AND.QT.LT.AT)AT=QT
400 DUM=QB*GB-4.*QA#(QC-FL)

IF(DUM.GT.O.)GOT0 450
IF(DUM**2.LT.DT**2)GOT0 420
G0T0700

420 IF(DUM1.GT.0..AND.DUM1.LT.AT)AT=DUM1

214

GOTO 7 00
450 DUM=DUM2*SQRT(DUM)

QT=DUM1+DUM
5 00 IF(QT.GT.AMIN.AND.QT.LT.AT)AT-QT

Q T=DUM1-DUM
600 IF(QT.GT.AMIN.AND.QT.LT.AT)AT=QT
700 RETURN

END

SUBROUTINE FEASQ(IFEAS)
C THIS SUBROUTINE TELLS WHETHER DESIGN IS FEASIBLE
COMMON CARDS:DATA* PRINTtOPT

1 FORMAT (* I FEAS = M'2,« - CONSTRAINT TIGHT •)
2 FORMAT(* IFEAS = ',12, • - DESIGN FEASIBLE •)
3 FORMAT<• IFEAS = ',12,• - DESIGN UNFEASIBLE •)

IFEAS=0
DO 100 L=1,NLC
DO 100 K=1,M
TEST=S(K,4,L)
TTEST=TEST-SIGL
TE ST=SIGA-TEST
IF(TTEST.LT.TEST)TEST=TTEST
IF(TEST.GT.TOL)GOTO 100
IFUEST.LT.-TODGOTO 200
IF(NOR.EQ.5)GOTO 100
IFCTEST.LT.0.)GOTO 200
IF(NOR.NE.6)GOTO 100
IFEAS=-1

100 CONTINUE
GOTO 300

200 IFEAS=1
300 I F (IP.LT.2)G0T0 400

IF(IFEAS)325,350,375
325 WRITE{6,1)IFEAS

GOTO 400
350 WRITE<6,2)IFEAS

GOTO 400
375 WRITE(6,3)IFEAS
400 CONTINUE

RETURN
END

SUBROUTINE GETMA(AMAXt AM IN)
C THIS SUBROUTINE FINDS MAXIMUM VALUE OF A ALLOWABLE SO AS NOT TO
C HAVE T .GE. TMAX OR T .LE. TMIN
COMMON CARDS:PRINTfOPT

1 FORMATl//' DIRECTION OF TRAVEL IS DETERMINED AS*//4X,1HI,6X,
S9HDIRECTION/)

2 F0RMAT(I5,E15.4)
3 FORMAT(//« MAXIMUM MOVE IN DIRECTION = 1

fE15.4 f« MINIMUM = S

XE15.4)
K=G
DO 100J = ltNWORK
IF(H(J).6T.O.)GOTO105
IF(H(J).LT.O.)G0T0110
G0T0100

105 CONTINUE
AMAXT=(TMAX-T{J J)/H(J)
AMINL=(TMIN-T(J))/H(J)
G0T090

110 CONTINUE
AMAXT=(TMIN-T(J))/H(J)
AMINL=(TMAX-T(J))/H(J)

90 CONTINUE
K = K+1
IF(K.GE.2)G0TO91
AMAX=A MAXT
AMIN=AMINl
GOT0100

91 CONTINUE
IF(AMAXT.GE.AMAX)GOTO 92
AMAX=AMAXT

92 IFIAMINL.LT.AMIN)GOTO 100
AMIN=AMINL

100 CONTINUE
IF(IP.LT.l)GOT0200
WRITE(6,1)
WRITE(6,2)(I,H(I),I=1,NW0RK)

• WRITE(6,3)AMAX,AMIN
200 CONTINUE

RETURN
END

216

COMMENT : FUNCTION AND DERIVATIVE ALGORITHMS

SUBROUTINE FUNCT
COMMON CARDS:DATA,PRINT,TIME,OPT

CALL T IMER(DATE,TIME,VIRT,TOTAL)
OPTIM=CPTIM+VIRT
NFE=NFE+1

300 CONTINUE
CALL SOLVE
IF{NOR .EQ.5.0R.NOR.EQ.6)GOT0150
FUN1=0.
FUN2=0.
FUN3=0.
001001=1,NWORK
FUN1=FUN1 + T(I >*XL(I)
FUN2=FUN2+1./(TMAX-T(I)) + l . / (T { D-TMIN)

100 CONTINUE
FUN2=(TMAX-TMIN)*FUN2*RP
FUN3=0.
D0110LC=1,NLC
D0110I = 1,M
DUM=ABS(SIGA-S<I,4,LC))
IF(DUM.LT.l.E-50)GOT0200
DUM=ABS(S(I,4,LC)-SIGL)
IF(DUM.LT.1.E-50)GOT0200

110 FUN3 = FUN3+1./<SIGA-SU ,4,LC)) + l . / (S (1,4, LC)-S IGL)
FUN3=(SIGA-SIGL)*FUN3#RP
FUN=FUN1+FUN2+FUN3

112 CONTINUE
G0T0175

150 FUN=0.
DO 155 I=1,NWORK

155 FUN=FUN+T(I)*XL(I)
175 CONTINUE
200 CONTINUE

CALL TIMER(DATE,TIME,VIRT,TOTAL)
FUNTIM=FUNTIM+VIRT
RETURN
END

SUBROUTINE DERFUN
COMMON CARDS:DATA,PR INT,TIME,OPT,WORK

CALL TIMER(DATE,TIME,VIRT,TOTAL)
OPTIM=OPTIM+VIRT
NGE-NGE+1
NN=N+N
INLC=NLC
DO 60 LC=1,NLC
DO 50 IS=1,4

217

DO 50 K = 1,M
SS(K,IS,LC)=S(K,IS,LC)

50 CONTINUE
DO 60 K = 1,NN
Q(K tLC)=P(K,LC)
R(K,LC)=F(K,LC)

60 CONTINUE
DO 100 I=1,NW0RK
DFDT(I)=0.0
00 100 J=I,NW0RK
D2FDT2(ITJ)=0.0

100 CONTINUE
105 CONTINUE

NLC =1
DO 7010 L O l f l N L C
IGH=1
DO 2000 I=1,NW0RK
DO 975 K=1,NN

975 F(K,1)=0.0
J = I
IF(ISITP.EQ.2)GOT01001
DO 1000 K = 1,M
CALL 6FFLD(I,J,K,LC)

1000 CONTINUE
GOT01003

1001 K=0
1002 CONTINUE

CALL EFFLDtI,J,K,LC)
1003 CONTINUE

CALL CHOS
CALL FIXU
DO 1050 L=1,NN
DUDT(L,I)=P(L,1)

1050 CONTINUE
1061 CALL GETS

IF{ISITP.EQ.2)G0T01201
DO 1200 K=1,M
S(K,4,1) = (SS(K,3 ,LC)*6.*S(K,3,1)+SS(K,2,LC)*(2.*S{K,2,1)-S(K,1,I))

C+SSCK,1,LC)*(2.*S(K,1,1)-S(K,2,1)))/<SS(K,4,LC)*2.)
1200 CONTINUE
1201 CONTINUE

IF(N0R.NE.5.AND.N0R.NE.6)G0T0 1225
DO 1220 K = 1,M

1220 DSDT<K,LC,I)=S(K,4,1)
GOTO 2000

1225 CONTINUE
DO 1251 K=1,M
DO 1250 IS=1,4
DSDT(K,IS,I)=S(K,IS,1)

1250 CONTINUE
1251 CONTINUE

218

1253 CONTINUE
DO 1500 K=1,M
DUM=1./(SIGA-SS{K f4,LC))**2-l./{SS(K t4,LC)-SIGL)**2
DFDT(I)=DFDT(I)+DSDT(K»4»I)*DUM

1499 CONTINUE
1500 CONTINUE
1999 CONTINUE
2000 CONTINUE
2001 CONTINUE

IF(IHE.EQ.1)GOT07007
IF(NOR.EQ.5.0R.NOR.EQ.6)GOT07007
IF (IHE.EQ.2)GOT03000
G0T08U0

3000 IGH=2
3001 CONTINUE

DO 7005 I=1,NW0RK
DO 7000 J=I,NWORK

4000 CONTINUE
DO 4025 K=11NN

40 25 F(K,1)=0.0
IF{ISITP.EQ.2)GOT05001
DO 5000 K=1»M
CALL EFFLD(I,J,K,LC)
CALL EFFLD(J,I,K,LC)

5000 CONTINUE
GOT05004

5001 K=0
5002 CONTINUE

CALL EFFLD(I,J,K,LC)
5003 CONTINUE

CALL EFFLDtJ,I,K,LC)
5004 CONTINUE
5010 CONTINUE

CALL CHOS
CALL FIXU
CALL GETS
IF(ISITP.EQ.2JGOT06001
DO 6000 K=1,M
S(K,4,l)=(SS(K tl,LC)*(2.*S{K,l,l)-S(K»2 tl))+SS(K,21LC)*(2.*S(K»21 1

C)-S(K,1,I)}+SS(K,3,LC)*6.*S(K,3,l)+DSDT(K,l,I)*<2.*DSDT(K,1,J)-DSD
CT(K,2,J))+DSDT(K,2»I) *(2.*DSDT(K,2,J)-DS0T(K,1,J))+DSDT(K,3,1)*6.*
CDSDT(K,3,J)-DSDT(K,4,I)*2,*DSDT(K,4,J))/(2.*SS(K,4,LC))

I 6000 CONTINUE
! 6001 CONTINUE

6986 CONTINUE
DO 6990 K=1,M
D2FDT2 (I , J)=D2FDT2(I t J)+S<K,4, l) * < l . / ((SIGA-SS(K,4,LC)) * * 2) - l . / ((SS

C(K,4»LC)-SIGL)**2))+2.*DSDT(K•4TI)*DSDT(K,4,J)*(1./ ((SIGA-SS(K,4,
CLC))**3)+l./((SS(K,4,LC)-SIGL)**3)>

6990 CONTINUE
7000 CONTINUE

' 7005 CONTINUE

7007 CONTINUE
7010 CONTINUE

IF(NOR.EQ.5.OR.NOR.EQ.6)GOT08000
DO 7050 I=1,NW0RK
DUM=(SIGA-SIGL)*DFDT(I)
DFDT(I)=DUM
DUM=1./(TMAX-T(I))**2-l./(T(I)-TMIN)**2
DUM =(TMAX-TMIN)*DUM
DUM=DFDT(I)+DUM
DUM=RP*DUM
DFDT(I)=DUM+XL(I)

7050 CONTINUE
7051 CONTINUE

IF (IHE.EQ.DGOT08000
7100 CONTINUE

DO 7255 I=1,NW0RK
DO 7250 J=I,NWORK
D2FDT2U, J)=(SIGA-SIGL)*D2FDT2(I,J)

7125 CONTINUE
IF{I-J)7200,7150,7200

7150 D2FDT2{I,J) = D2FDT2(I,J)+2.*(TMAX-TMIN)*((l./(TMAX-T<I))**3) +
C (l . / (T { I) - T P I N)) * * 3)

7200 CONTINUE
7210 CONTINUE

0 2FDT2(I,J)-RP*D2FDT2(I,J)
7211 CONTINUE

D2FDT2(J»I)=D2FDT2(I,J)
7250 CONTINUE
7255 CONTINUE
8000 CONTINUE

NLC=INLC
DO 8100 LC=1,NLC
DO 805 0 K=1,NN
F(K,LC)=R(K,LC)
P(K,LC)=Q(K,LC)

8050 CONTINUE
DO 8100 IS=1,4
DO 8100 K=1,M
S(K,IS,LC)=SS(K,IS,LC)

8100 CONTINUE
CALL TIMERIDATE,TIME,VIRT,TOTAL)
DERTIM=DERTIM+VIRT
RETURN

8110 CALL EXIT
END

SUBROUTINE EFFLD{I,J,K,LC)
COMMON CARDS:DATA,PR INT,OPT,WORK

4 FORMAT(• ERROR :IGH=',I2)
100 IF(IGH.NE.1)GOT0200

DO 105 L=1,NK

220

P(L,i)=Q(L,LC)
GOTO 210

200 I F (IGH.NE.2)G0T0207
201 DO 205 L=l,NK

P (L t 1) =DUDT (L ? J)
205 CONTINUE
105 CONTINUE

GOTO 210
207 WRITE<6,4)IGH
210 CONTINUE
213 CONTINUE

IF(ISITP.EQ.2)G0T0280
IFIN0D1(K).EQ.I)G0 TO 225
IF(N0D3(K)•EQ.I)GO TO 225
IF(N0D2(K).EQ.I)G0 TO 225
G0T0275

225 IF(IP.LT.4)G0T0226
226 CONTINUE

N1=N0D1(K1+N0D1(K)-1
N2=N1+1
N3=N0D2(K)+N0D2(K)-1
N4=N3+1
N5=N0D3(K)+N0D3(K)-1
N6=N5+1
M1=21*<K-1)+l
M2=M1+1
M3=M2+1
M4=M3+1
M5=M4+1
M6=M5+1
M7=M6+1
M8=M7+1
M9=M8+1
M10=M9+1
M11=M10+1
M12=M11+1
M13=M12+1
M14=M13 + 1
M15=M14+1
M16=M15+i
M17=M16+1
M18=M17+1
M19=M18+1
M20=M19+i
M21=M20+l
D1=-(AK(M1)*P(NI,l)+AK(M2)*P(N2tlI+AK(M3)*P{N3,1)

1 +AK(M4)*P(N4»1)+AK(M5)*P(N5,1)+AK(M6)*P(N 6 , l)) / 3
D2=-(AK{M2)*P(N1,1)+AK<M7)*P(N2,1)+AK(M8)*P(N3,1)

1 +AK(M9)*P(N4, D+AK (M10)*P(N5,1)+AK{Mil)*PIN6,1)) /3
D3=-(AK(M3)*P(N1, D+AK <M8)#P(N2,1)+AK(M12) *P(N3, 1)

1 +AK(M13)*P(N4,1>+AK(M14)*P(N5,l)+AK<M15)*P(N6»1))/3
D4=-(AK(M4)*P(N1,1)+AK(M9)*P(N2»1)+AK(Ml 3)*P(N3,1>

221

1 +AK(M16)*P(N4,1)+AK{M17)*P(N5, 1 HAK (M18)*P <N6,1))/3
D5=-<AK(M5)*P(N1,1)+AK{M 10)*P(N2,1)+AK(M14)*P(N3,1)

I +AK(M17)*P(N4,1)+AK(M19)*P(N5,1)+AK(M20)*P{N6,1))/3
D6=-(AK(M6)*P(N1,1)+AK(M11)*P(N2,1)+AK{M15)*P(N3,1)

1 +AK(M18)*P(N4,l)+AK(M20)*P(N5,l)4-AK(M21)*P(N6,l))/3
F<N1,1)=F(N1,1)+Dl
F(N2,1)=F(N2,1)+D2
F(N3,1)=F(N3,1)+D3
F(N4,1)=F(N4,1)+D4
FIN5,1)=F<N5,1)+D5
F{N6,1)=F(N6,l)+06
GQT0284

275 I F (I P.LT.4)GOT0276
276 CONTINUE

G0T0284
280 CONTINUE

N1=N0D1(I)+N0D1(I)-l
N2=N1+1
N3=N002(I)+N0D2(I)-l
N4=N3+1
M1=1G*(1-1)+l
M2=M1+1
M3=M2+1
M4=M3+l
M5=M4+1
M6=M5+1
M7=M6+1
M8=M7+i
M9=M8+1
M10=M9+1
D1=-(AK<M1)*P(N1,1)+AK(M2)*P(N2,1)+AK(M3)*P(N3,1)+AK(M4)*
XP(N4,D)
02=-(AK(M2)*P(N1,i)+AK(M5)#P(N2,l)+AK(M6)*P(N3,l)+AK<M7)*

XP(N4,1))
D3=-(AK(M3)*P(N1,1)+AK (M6)*P(N2,1)+AK(M8)*P<N3,1)+AK(M9)*

XP<N4,1))
D4=-(AK(M4)*P(N1,1)+AK(M7)*P(N2,1)+AK(M9)*P(N3,1)+AK(M101*
XP(N4,D)
F(N1,1)=F(N1,1)+D1
F (N 2»1) =F (N2 »1) +D2
F(N3,1)=F(N3,1)+D3
F <N4,1)=F(N4,1) + D4

284 CONTINUE
286 CONTINUE

RETURN
END

SUBROUTINE DIFFUN
COMMON CARDS:DATA,PR I NT,OPT,WORK

FO0=FUN
DO 105 I=1,NW0RK

105 TT(I)»T(I)
DO 110 I=1,NW0RK
T (I) = T T < I) + D E L (I)
CALL FUNCT
FPO(I)=FUN
DFDT(I) = (FUN-FOO) /DEL(I)
IF(KODER(I).EQ.0)G0T0110
T (I) = T T (I) - D E L (I)
CALL FUNCT
DFOTII)=IFP0(I)-FUN)/(2.*DEL(I))

110 T (I) = T T < I)
1015 CONTINUE

IF(IHE.EQ.1)GOT0140
115 DO 130 I=1,NW0RK

T (I) = T T (I) + 0 E L (I)
JU=I-1
IF(JU.EQ.0)G0T0121
DO 120 J=1,JU
T(J)=TT(J)+DEL(J)
CALL FUNCT
FPP^FUN
D 2FDT2(J»I)=CFPP-FPO(I)-FPO(J)+F00)
0UM=DEL(I >*DEL(J >
D2FDT2{J rI)=D2FDT2(J »I)/DUM

120 T(J) = T T { J)
121 T (I) = T T { I) - D E L (I)

CALL FUNCT
DUM=FPO(I)-FOO-FOO+FUN
D2FDT2(I»I)=DUM/{DEL(I)#*2)

130 T (I) = T T (I)
140 FUN=FOO

RETURN
END

223

COMMENT : STRUCTURAL ANALYSIS ALGORITHMS

SUBROUTINE SOLVE
CALL MERGE
CALL DCOP
CALL CHOS
CALL FIXU
CALL GETS
RETURN
END

SUBROUTINE INIT
CALL DAT
CALL GIBW
CALL INWK
CALL GETAK
RETURN
END

SUBROUTINE DAT
C THIS SUBROUTINE READS DATA
COMMON CARDS:DAT AtPRINT»OPT

1 FORMAT(1H1)
2 FORMAT(13)
3 FORMAT(19H NUMBER OF NODES = ,I3//5H NODE*14X,1HX,14X,1HY,14X,1HT/
C)

4 FORMAT(2F15.4)
5 FORMAT(IX,I4,3F15.4)

6 F0RMAT(21H NUMBER OF MEMBERS = ,I3//5H MEM,3X,2HN1,3X,2HN2,3X,3H
XN3,4X,11HAREA IF ROD/)

7 F0RMAT(4I3,F15.4)
8 FORMAT(IX,14,315)

9 FORMAT(33H NUMBER OF BOUNDARY CONDITIONS = ,I3//5H NODE,3X,2H3C)
10 FORMAT(IX,14,1 5)

12 F0RMAT(F15.4)
13 FORMAT(14H PRINT CODE = ,13)
16 FORMAT(19H NUMBER OF LOADS = ,I3//5H NODE,5H CODE,9X,6HAM0UNT/)

17 FORMATtIX,14,I5tF15.4)
18 FO RMAT(28H SIZE OF STIFFNESS MATRIX = ,13)
19 FORMAT(15)
21 FORMAT(12H MOD ELAS = ,E15.4/18H POISSONS RATIO = ,E15.4)
30 F0RMAT(I5,4E15.4)
31 FORMAT(21H MAXIMUM THICKNESS = ,E15.4/21H MINIMUM THICKNESS = ,

XE15.4/' ALLOWABLE STRESS IN TENSION = »,E15.4/» ALLOWABLE STRESS I
XN COMPRESSION = •,E15.4/•ONUMBER OF ITERATIONS FOR WHICH RP LOWERE
XD ,,16X, ,= ',15)

32 FORMATC UOA TERMINATES WHEN (WTI-WTIM1)/WTI LESS THAN WTEST»,6X,•
X=«,E15.4)

33 FORMAT(24H NUMBER OF LOAD CASES = ,13)
34 F0RMAT(E15.4)
35 FORMAT(11H DENSITY « ,E15.4)

224

36 FORMAT(13H LOAD CASE = t I 3)
38 FORMAT(15,F15.4)
39 FORMATS WE ARE DOING PLATE PROBLEM IF ISITP IS 1, ROD PROBLEM IF

X2, ISITP = • ,13)
40 FORMATUX, I4,2I5,5X,F15.4)
41 FORMAT (« RESOLUTION FOR DESIGN VARIABLES IS TACTN^UX,' =

XE15.4)
42 FORMAT('SUBROUTINE DAT')
44 FORMAT('OUNCONSTRAINED OPTIMIZATION ALGORITHM NUMBER',13X,* = '» 15)
45 FORMAT(' UOA TERMINATES WHEN AL DESIGN CHANGES LESS THAN AL',7X,

X'=',E15.4/21X,'AND FUN CHANGES LESS THAN FUNL',7X,,E15.4)
READ(5,2)ISITP
WRITE(6,39)ISITP
WRITE(6,1)
READ(5,2) N
WRIT£(6,3) N
00 100 1=1,N
READ(5,5) I , X (I) , Y (I) , T (I)

100 WRITE(6,5) I,X(I) , Y (I) , T (I)
WRITE(6,1)
RE AD(5,2) M
WRITE(6,6) M
DO 110 1=1,M
READ(5,7) ID,NOD 1(I),N0D2(I),N0D3{I),DUMMY
IF(ISITP.EQ.i)G0TO105
T(1)=DUMMY
WRITE{6,40)I,NODI(I),N0D2(I),T(I)
G0T0110

105 CONTINUE
WRITE(6,8) I,N0D1(I),N0D2(I),N0D3{ I)

110 CONTINUE
WRITE(6,1)
READ(5,2) NB
WRITE(6,9) NB
DO 120 1=1,NB
R£AD(5,19) I B (I)

120 WRITE(6,10) I , I B (I)
NK=2*N
WRITE(6,1)
READ(5,2)NLC
WRITE(6,33)NLC
DO 130 1=1,NK
D0130LC=1,5
Fl I,LC)=0.

130 P(I,LC)=0.
D0141LC = 1,NLC
WRITE(6,1)
WRITE(6,36)LC
READ(5,2) NL
WRITE{6,16) NL
D0140 1=1,NL
READ(5,17> IN,IC,AMNT

WRITE(6,17) INtlCtAMNT
ID1=2*(IN-D + IC

140 F(ID1,LC)=AMNT
141 CONTINUE

WRITE(6,1)
READ(5,2) IP
WRITE(6,13) IP
WRITE(6,18) NK
READ<5,4) EETEENU
WRITE(6,21> EE,EENU
READ(5,12)RH0
WRITE(6,35)RH0
READ(5,30)NRPV,TMAX,TMIN,SIGA,SIGL
WRITE(6,31)TMAX,TMIN,SIGA,SIGL,NRPV
READ(5,30)LIMIT,AL,FUNL,TACTN,WTEST
WRITEC 6,32)WTEST
WRITE(6,45)AL,FUNL
WRITE(6,41)TACTN
READ(5,2)N0R
WRITE(6,44)N0R
RETURN
END

SUBROUTINE GIBW
COMMON CARDS:DATA
1 FORMAT (14H BAND WIDTH = ,13)

I BW=0
IF(ISITP.EQ.2)G0TO200
DO 100 1=1,M
IDM=2*(N0D3(I)-NODl(I)+l)
I F (IDM.LE.IBW) GO TO 100
IBW=IDM

100 CONTINUE
G0T0300

200 CONTINUE
D0250I=1,M
IDM=2*(N0D2(I)-NODItI)+l)
IF(IDM.LE.IBW)GOT0250
IBW=IDM

250 CONTINUE
300 CONTINUE

WRITE(6,i) IBW
RETURN
END

SUBROUTINE INWK
COMMON CARDS:DATA,PRINT

NT = 0
DO 100 1=1,NK
ID1=I+IBW-1

IF(ID1.GT.NK) GO TO 60
NTIM(I)=IBW
GO TO 100

60 NTIM(I)=NK-I+1
100 NT=NT+NTIM(I)

ISUM(1>=1
DO 200 I=2,NK
IM1=I-1

200 I S UM (I) = IS UM (IM1)+NTIM(I Ml)
1000 CONTINUE

RETURN
END

SUBROUTINE GETAK
COMMON CARDS:DATA» PRINT,WORK

D090 1=1,N
90 X L (I) = 0.

IF(ISITP.EQ.2JG0T02000
IDUM=0
DO1000MEM=1,M
N1=N001(MEM)
N2=N0D 2(MEM)
N3=N0D3(MEM)
X1=X(N1)
X2=X(N2)
X3=X(N3)
Y1=Y(N1)
Y2=Y(N2)
Y3=Y(N3)
X31=X3-X1
Y31=Y3-Y1
X32=X3-X2
Y32=Y3-Y2
X21=X2-X1
Y21=Y2-Y1
A123=. 5MX32*Y21-X21*Y32)
A123=ABS(A123)
C1=EE /(4.*A123*U.-EENU*EENU))
C2=EE /(8.*A123*(1.+EENU))
V=EENU
EKL(i)=C1*Y3 2*Y32+C2*X32*X32
EKL(2)=-Cl*V#Y32*X32-C2*X32*Y32
EKL(3)=-Cl*Y32*Y31-C2*X32*X31
EKL(4)=C1*V*Y32*X31+C2*X32*Y31
EKL(5)=C1*Y3 2*Y21+C2#X32*X21
EKL(6)=-Cl*V*Y32*X21-C2*X32*Y21
EKL(7)=C1*X32*X32+C2*Y32*Y32
EKL(8)=C1*V*X32*Y31+C2*Y32*X31
EKL(9)=-Cl*X32*X31-C2*Y32*Y31
EKL(10) =-Cl*V*X32*Y21-C2*Y32*X21
EKL(11)=C1*X32*X21+C2*Y32*Y2I

EKL(12)=Cl*Y31*Y31+C2*X3i*X31
EKL(13)=-Cl*V*Y31*X31-C2*X31*Y3i
EKL(14)=-C1*Y31*Y21-C2*X31*X21
EKL(15)=C1*V*Y31*X21+C2#X31*Y21
EKL(16)=Cl*X31#X31+C2*Y31*Y3i
EKL(17)=C1*V*X31*Y21+C2*Y31*X21
£KL(18)=-C1*X31*X21-C2*Y31*Y21
EKLI19)=C1*Y21*Y21+C2*X21*X21
EKL(20)=-Cl*V*Y21*X21-C2*X21*Y21
EKL (21)=C1*X21*X21+C2*Y21*Y21
D0300J=1,21
IDUM=IDUM+1

300 AK(IDUM)=EKL(J)
A123=A123/3.
XL(N1)=XL(ND+A123
XL(N2)=XL(N2)+A123
XL(N3)=XL(N3)+A123

999 CONTINUE
CC=EE/(X32*Y21-X21*Y32)/(l.-EENU*EENU)
Z=.5*(l.-EENU)
II=3*(MEM-1)
I I P l = I I + l
I IP2 = I I + 2
I I P 3 = I I + 3
STRS(I I PI,1)=Y32
STRSd IP1,2) =-EENU*X32
STRS(IIP1,3)=-Y3l
STRSd IP1,4)=EENU*X31
STRS(I I P I * 5)=Y21
STRS(IIP1,6)=-EENU*X21
STRS(IIP2,1>=EENU*Y32
STRS<IIP2,2)=-X32
STRS(IIP2,3)=-EENU*Y31
STRSdIP2,4>=X31
STRSd IP2, 5)=EENU*Y21
STRSd IP2,6) =-X21
STRSd IP3,1) =-Z*X32
STRSd IP3,2)=Z*Y32
STRSd I P3,3) =Z*X31
STRS(I IP3,4)=Z*Y31
STRS(IIP3,5)=-Z*X21
STRS(IIP3,6)=Z*Y21
D0995K=IIP1,IIP3
D0995J=1,6

995 STRS(K fJ)=STRS(K,J)*CC 500 CONTINUE
1000 CONTINUE

0011001=1,N
1100 X L (I) = X L d >*RHO
1200 CONTINUE

GOT03000
2000 CONTINUE

IDUM = 0
0021001=1,M
N1=N0D1U)
N2=NOD 2(1)
X2MX1=X(N2)-X(N1)
Y2MY1=Y(N2)-Y{N1)
EL=SQRT(X2MX1*X2MX1+Y2MY1*Y2MY1>
CCC=X2MX1/EL
SSS=Y2MY1/EL
ECCL=EE*CCC*CCC/EL
£SSL=EE*SSS*SSS/EL
£SCL=EE*SSS*CCC/EL
EKL(1)=ECCL
EKL(2)=ESCL
£KL(3)=-ECCL
EKL(4)=-ESCL
EKL(5)=ESSL
EKL(6)=-ESCL
EKL(7)=-ESSL
EKL(8) = ECCL
EKL(9)=ESCL
EKL(10)=ESSL

602 CONTINUE
D02095J = 1,10
IDUM=IDUM+1

2095 AK(IDUM)=EKL(J)
STRS(I, 1)=-EE/EL*CCC
STRS(I,2)=-EE/EL*SSS
STRS(I,3)=-STRS(I,1)
STRS(I,4)=-STRS(1,2)

600 CONTINUE
XL(I) = EL*RHO

2100 CONTINUE
601 CONTINUE

3000 CONTINUE
CALL FIXAK
RETURN
END

SUBROUTINE FIXAK
COMMON CARDS:DAT A t PR INT

DO 100 1 = 1, NK
100 I I B d)=0

DO 110 1=1,NB
IF { IB(I).GT.IOOO) GO TO 120
IDUM=IB(I)+IB(I) - l
GO TO 110

120 CONTINUE
IDUM=2*(IB(I)-1000)

110 II8(IDUM)=1
IF(ISITP.EQ.2)G0T0<V00

229

DO 300 1=1,M
N1=N0D1(I)+N0D1(I)-l
N2=N1+1
N3=N0D2<I)+NOD2(I)-l
N4=N3+1
N5=N0D3(I)+N0D3(I)-l
N6=N5+1
I I = (I - 1) * < 21)

201 IF(IIB(N11.EQ.O) GO TO 202
A K (I I + l) = l .
A K U I + 2)=0.
A KUI+3)=0.
A K U l + 4) = 0 .
AK(11 + 5)=0•
AK{ 11+6)=0.

202 IF(IIB(N2).EQ.O) GO TO 203
A K (I I + 2) = 0 .
A K I I I + 7) = 1 .
A K (I I + 8)=0.
A K (I I + 9) = 0 .
AKU I+10)=0.
A K U I + 11)=0.

203 I F (I IB(N3).EQ.O) GO TO 204
A K (I I + 3) = 0 .
AK(II+8)=Q.
AK(I I + 1 2) = l .
A K U I + 13)=0.
A K (I I + 1 4) = 0 .
AK (I I + 15) = 0.

204 IF{IIB(N4).EQ.O) GO TO 205
A K (I I + 4) = 0 .
AK(11 + 9)=0 .
A K (I I + 1 3) = 0 .
A K (I I + 1 6) = l .
A K (I I + 1 7) = 0 .
A K (I I + 1 8) = 0 .

205 IF(IIB(N5).EQ.O) GO TO 206
A K (I I + 5) = 0 .
A K (I I + 1 0) = 0 .
A K (I I + 1 4) = 0 .
A K (I I + 1 7) = 0 .
A K (I I + 1 9) = 1 .
AK(11 + 201 = 0.

206 IF(11B(N6).EQ.O) GO TO 300
A K (I I + 6) = 0 .
A K (I I + L 1) = 0 .
A K (I I + 1 5) = 0 .
AKUI+18)=0.
A K (I I + 2 0) = 0 .
AK(11 + 2 L) = 1•

300 CONTINUE
G0T0500

230

400 CONTINUE
D0450I=1,M
N1=N0D1(I)+N0D1(I)-1
N2=N1+1
N3=N0D2(I)+N0D2(I)-l
N4=N3+1
11 = (1-1>*10

451 I F U I B (N l) .EQ.0)G0TO452
A K (I I + 1) = 1 .
AK(11 + 2)=0•
A K (I I + 3) = 0 .
A K (I I + 4) = 0 .

452 IF(IIB(N2).EQ.O)G0TQ453
A K (I I + 2) = 0 .
A K (I I + 5 > = 1 .
A K (I I + 6) = 0 .
A K (I I + 7) = 0 .

453 IF(IIB(N3).EQ.0)G0T0454
AK(11 + 3)=0•
AK{I1+6)=0.
A K (I I + 8) = 1 .
AK(I I + 9)=0.

454 IF(IIB(N4).EQ.0)GOT0450
A K (I I + 4)=0.
A K (I I + 7) = 0 .
A K (I I + 9) = 0 .
A M I I+10) = l .

450 CONTINUE
500 CONTINUE
501 CONTINUE

RETURN
END

SUBROUTINE MERGE
COMMON CARDS:DATAt PRINT*0PTf WORK

DO 100 K=1,NT
100 EK(K)=0.

IF(ISITP.EQ.2)G0T0500
IDUM=0
DO 200 I=1,M
N1=N0D 1(1)
N2=N0D2(I)
N3=N0D3(I)
TTT={T(N1) +T(N2)+T(N3)) /3.
D0400J=1,21
IDUMMDUM+1

400 EKL(J)=AK(IDUM)*TTT
DO 40 JJ=1,21
GO TO (7,l,2,l»3,l,4,2fl,3,l,5tl,3»l,4,3,l,6,l,4)tJJ

7 N D = 2 * (N l - l) + l
L=ISUM(ND)

231

GO TO 20
1 L=L+1

GO TO 20
2 L=L+2*(N2-N1)-1

GO TO 20
3 L=L+2*(N3-N2)-l

GO TO 20
4 ND=ND+1

L=ISUM(ND)
GO TO 20

5 ND=2*{N2-1)+1
L=ISUM(ND)
GO TO 20

6 ND=2*(N3-l)+l
L = I SUM{NO)

20 CONTINUE
40 EK(L)=EK(L)+EKl(JJ)
200 CONTINUE

G0T0700
500 CONTINUE

IDUM=0
D0600I=1,M
N1=N0D1(I J
N2=N0D2(I)
D0610J = U10
IDUM=IDUM+1

610 EKL(J)=AKUDUM)*T(I)
00640JJ=1,10
GOTO(6O7,6Ol,6O2»6Ol,6O4t6O2,6Gl»6G5,601,6O4),JJ

607 N D = 2 * (N l - l) + l
L=ISUM(ND)
GOT0620

601 L=L+1
GOT0620

602 L=L+2*(N2-N1)-1
G0T0620

604 ND=ND+1
LMSUM(ND)
G0TG620

605 ND=2*N2-1
L=ISUM(ND)

620 CONTINUE
640 EK(L)=EK(L)+EKL(JJ)
600 CONTINUE
700 CONTINUE

RETURN
END

SUBROUTINE DCOP
COMMON CARDS:DATArPRINT,WORK

EK(1)=SQRT(EK(1))

DUM=1./EK(1)
JJ=NTIM(1)
I F (J J . E Q . l) GO TO 100
DO 100 J=2 tJJ
EK(J)=EK(J) *DUM

100 CONTINUE
KK = J
DO 500 1=2,NK
IM1=I-1
J J = I + N T I M (I) - 1
DO 500 J = I , J J
KK=KK + 1
SUM=0.
DO 490 L=1,IM1
ITST=NTIM(L)+L-l
IF(J.GT.ITST) GO TO 490
ID1=ISUM(L)+I-L
ID2=ISUM(L)+J-L
SUM=SUM+EK(ID1)*EK<I 02)

490 CONTINUE
IFU.NE.J) GO TO 495
EK(KK)=SQRT(EKIKK)-SUM)
DUM=1./EK(KK)
GO TO 500

495 EK(KK) = (EMKK)-SUM)*DUM
500 CONTINUE

RETURN
END

SUBROUTINE CHOS
COMMON CARDS:DATA,PR I NT,WORK

D0950LC=1,NLC
200 CONTINUE

P(1,LC)=F(1,LC)/EK(1)
DO 600 J=2,NK
SUM=0.
JM1=J-1
DO 580 L=1,JM1
ITST=NTIM(l)+L-l
IF(J.GT.ITST) GO TO 580
ID1=ISUM(L)+J-l
SUM=SUM+EK{ID1)*P(L,LC)

580 CONTINUE
ID2*ISUK(J)

600 P(J,LC)=(F(J,LC)-SUM)/EK(ID2)
P<NK,LC)=P(NK,LC)/EK(NT)
NKM1=NK-1
DO 700 K=1,NKM1
J=NK-K
SUM=0.
JJ=J+1

233

ITST=NTIM(J)+J-1
DO 680 l=JJ,NK
IF(L.GT.ITST) GO TO 680
ID1=ISUM{J)+L-J
SUM=SUM+EK(ID1)*P(L,LC>

630 CONTINUE
ID2=ISUM(J)

700 P(J,LC)=(P(J,LC)-SUM)/EKUD2)
803 CONTINUE
950 CONTINUE

RETURN
END

SUBROUTINE FIXU
COMMON CARDS:DATA,PRINT

DO 500 K=1,NB
ID4=IB<K)
IF UD4.GT.1000) GO TO 65
IM*2*(ID4-D + 1
GO TO 70

65 I0A«104-1000
IM=2*ID4

70 CONTINUE
D0700LC=1,NLC

700 P(IM,LC)=0.
500 CONTINUE

RETURN
END

SUBROUTINE GETS
COMMON CARDS:DATA•PR INT tWORK

IF tISITP.EQ.2JGOT01000
600 CONTINUE

DO 500 1=1,M
N1»N0D1(I)
N2=N0D2(I)
N3=N0D3(I)
J=2*(N1-1)+1
D0101LC = 1,NLC

101 U(1,LC)=P(J,LC)
J = J + 1
D0102LC=1,NLC

102 U(2»LC)=P(J,LC)
J=2*(N2-1)+1
D0103LC=1,NLC

103 U(3,LC)=P(J,LC)
J = J+1
00104LC=1,NLC

104 U(4,LC)=P(J,LC)
J = 2*(N3-1> +1

234

00105LC = ltNLC
105 U(5,LC)=P(JtLC)

J = J + 1
DO106LC=l,NLC

106 U(6,LC)=P(J,LC>
I I = 3 * (I ~ 1)
D0107LOl,NLC
D0108IS=1,3
S (I t I S , L C) = 0 .
D0108K=1,6

108 S(I,IS,LC)=STRS(II + IS,K)*U(K,LC)+S(1,IS,LC)
107 S(I,4tLC) = SQRT(S(I t l t L C) * S (I ,1»LC)+S(I t2 , L C) * S (I t2»LO-

XSU t2tLC)*S< I,1,LC)+S(I,3,LC)*S(I,3,LC)*(3.))
301 CONTINUE
300 CONTINUE

500 CONTINUE
GOT02000

1000 CONTINUE
1600 CONTINUE

D01500I=1,M
N1=N0D1(I)
N2=N0D2(I)
J=2*N1-1
D01101LC=ltNLC

1101 U(1,LC)=P<J,IC)
J = J + 1
D01102LC=l,NLC

1102 U(2tLC)=P(J,LC)
J=2*N2-1
D01103LC=1tNLC

1103 U(3,LC)~P<J,LC)
J = J + 1
D01104LC=1,NLC

1104 U(4,LC)=P(J,LC)
D01107LC=1,NLC
S(I,1,LC)=0.
D01108K=1,4

1108 S(I,ltLC)=STRS(I,K)*U{K,LC)+S{I,l,LC)
S(I,2,LC)=0.
S(I,3tLC) = 0.

1107 S(I,4,LC) = SU,1,LC)
200 CONTINUE

1500 CONTINUE
2000 CONTINUE

RETURN
END

