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ABSTRACT 

SMITH, ERLING AASTRUP: A numerical comparison of commonly-

used algorithms for structural optimisation. (Under the super

vision of WILLIAM CALVIN CARPENTER) 

The thesis makes, a qualitative and a quantitative comparison 

of algorithms used to solve now-linear structural optimisation 

problems. Algorithms are categorised into linearization, feasible 

direction and transformation methods. From each category, algorithms 

are selected (by considering applicability restrictions, anticipated 

computational effectiveness and efficiency, supplementary program 

requirements and program development effort) for a numerical compari

son of computational effort. The algorithms chosen are:- the Method 

of Approximate Programming, a Method of Feasible Directions and the 

Sequential Unconstrained Minimization Technique. Newton's, Fletcher-

Powell's, Stewart's and Powell's methods are chosen for use with SUMT. 

The algorithms are used In the study to minimize the weight of 

eight test structures:- four pin-jointed plane trusses and four plane 

stress plates, all subject to two load cases, member stress limits 

and design variable limits. The finite element stiffness method was 

used for structural analyses, function and derivative evaluations. 

Details and FORTRAN IV program listings are given for the algorithms. 

Estimates are developed of the relative computational effort 

required by each algorithm in terms of the Central Processor Unit 

(CPU) time required when an IBM 360/67 computer is used. Measure

ments are reported for each algorithm of the CPU time used on an 

IBM 370/145 computer. 



A comparison is made of the computational effort used by 

each algorithm. Conclusions are drawn about the relative efficiency 

of the optimisation algorithms and of the derivative algorithms. 
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CHAPTER 1 

STATEMENT OF THE PROBLEM 

The engineering design problem is to find the optimum, either the 

maximum or the minimum, of a function of one or more design variables 

subject to equality and inequality constraints. Examples of engineering 

design variables are heights, lengths or thicknesses and examples of 

the function to be optimized, called the objective or merit function, 

are mass, weight, cost or efficiency. The design is subject to con

straints, for example, upper and lower bounds on stresses and deforma

tions, called behavioural constraints, and upper and lower bounds on 

the design variables, called side constraints. The engineering 

problem can be stated mathematically as 

minimize (or maximize) F(tJ ...1.1 

subject to f . ( t ) > 0, i - 1,. . , R,, 
i 

where t is a P-vector of design variables t . , j = 1,..,P; 
J 

F(t.) is the objective function, and f.(t_) ^ 0 are the constraints. 

Mathematical Programming methods find the optimum of a function 

of several variables subject to equality and inequality constraints 

and can be used on the engineering design problem. Wasiutynski and 

Brandt̂  in 1963 reviewed the use of classical and contemporary tech

niques of Mathematical Programming in optimum structural design. 

Since the early sixties, Sheu and Prager2 in 1968 and Schmit3 in 1969 

have shown how electronic computation has allowed Mathematical 
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Programming methods to be used increasingly on structural 

optimisation problems. 

There now exist many suitable Mathematical Programming 

algorithms, but they vary in the type of problem which they can 

solve, in the computational effort they require and in their 

effectiveness at producing an optimal solution. I t is desirable, 

therefore, to predict which methods would be the most appropriate 

to a particular problem or to a class,of problems. The following 

work makes a comparison of commonly-used algorithms applied to a 

class of structural optimisation problems. Important considerations 

in the comparison of the methods are: 

1. restrictions of applicability; 

Typical restrictions on the type of problem a method could solve 

would be requirements for linearity and convexity of the objective 

or constraint functions. 

2. effectiveness: 

The effectiveness required of a method depends on the accuracy 

required in the solution. 

3. computational efficiency: 

The computational efficiency of a method can be measured by the 

amount of computer time and storage space required to solve the 

problem. 

4. requirements for supplementary programs: 

The additional facilities required by a method could be the 

evaluation of f i rs t or second partial derivatives of the func

tions, the solutions of sets of linear equations, of linear 
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programming problems, and of one-dimensional search problems. 

5. effort for program development; 

The effort for program development depends on the complexity of 

.the method and of the supplementary programs required. 

6. feasibility of intermediate sojutions: 

For some problems i t may be difficult to construct a feasible 

solution from an infeasible one, feasible intermediate solutions 

are desirable, though not essential, in case of premature termina

tion of the optimisation process. 

The above criteria are used in chapter * 2« to select methods to be 

quantitatively compared in later chapters. 

The class of problem considered is the minimization of weight 

of certain structures subject to stress and design variable limits. 

The structures considered are pin-jointed plane trusses and plane 

stress plates. The design variables are, for the trusses, the har 

cross-sectional areas and, for the plates, the thicknesses at nodal 

points of the triangular finite element idealisation. Upper and 

lower bounds are placed on the design variables . and on the 

stresses in the structural memhers. The stress is taken as the axial 

stress in each member for the truss problems and as the effective 

stress in each constant stress finite element for the plate problems. 

The optimisation problem for both types of structures can be stated 

mathematically as: 



minimize w 1 Jt 

subject to a ^ a - a , q = l , . . , L , s = l , . . , M , 
min qs qs max qs; 

t t t 9 J"""l*»«sP» 
min j j max j 

where 

L is the number of load cases, 

M is the number of members, 

P is the number of design variables, 

w is a P-vector of weight coefficients, 

;fe is a P-vector of design variables, 

<r is the minimum permitted stress in member s for 
min qs 

load case q, 

<T is the maximum permitted stress in member s for 
max qs 

load case q, 

<T is the stress in member s for load case q, 
qs 

t is the minimum permitted value of design variable j 
min j 

t is the maximum permitted value of design variable j 
max j 

Problem T.2 can be rearranged into th.e form of 1.1: 

minimize w 1 t. 

subject to (a - a ) ^ 0,(a -a ^ 0, 
max qs qs qs min qs 

q = l , . . , L , s - l , . . , M , 

( t - t > 0, ( t - t ^ 0, 
max j j j min j 
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Problem 1.3, called a Non-Ltnear Programming (NLP) problem, has a 

linear objective function suhject to non-linear behavioural constraints 

and linear side constraints. 

Chapter 2 considers methods available for the solution of problem 

1.3 and selects methods, fo r comparison in later chapters. Chapter 3 

gives details of the solution methods selected for comparison. 

Chapter 4 describes the methods used to evaluate the objective and 

constraint functions and their derivatives. Chapter 5 estimates the 

computational e f f o r t required hy the optimisation, function and 

derivative algorithms. Chapter 6 presents test structures used to 

compare the optimisation algorithms and chapter 7 gives the test 

results. A summary, conclusions, recommendations and ideas for 

further research are presented in chapter 8. The appendices give 

FORTRAN IV program l is t ings of the algorithms used in this study. 
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CHAPTER 2 

METHODS OF SOLUTION FOR THE PROBLEM 

2.1 . Classification of NLP methods. 

There are many methods for solving the general NLP problem and 

most can be included in one of the following categories: 

1. linearization methods, 

2. feasible direction methods, 

3. transformation methods. 

This classification is based on those of Jacoby, Kowalik and Pizzo^ 

and of Zoutendijk. 

Linearization methods, solve the NLP problem using a sequence of 

Linear Programming problems (LP problems) formed from the NLP problem. 

Thus an i terat ion consists of two stages: 

i . form a linear approximation at the current point, then 

i t . solve the linear approximation by LP methods to give a new 

solution point. 

Feasible direction methods search within the feasible region for 

an optimal solution along a sequence of 'usable feasible' directions 

By def in i t ion , a search along a 'usable feasible 1 direction w i l l , for 

minimization problems, reduce the objective function but maintain 

f ea s ib i l i t y . Thus an i teration consists of two stagesi 

i . form a usable feasihle direction, 

i i . search along the direction for a new solution point. 
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Transformation methods solve the NLP problem indirectly by 
forming a d i f fe ren t , but related, NLP problem. The transformations 
are such that the solution of the transformed problem coincides with 
that of the original problem. The transformed problem may often, 
but not always, be solved as a sequence of problems and may be 
constrained or unconstrained, depending on the transformations used. 

2.2 Linearization methods. 

Linearization methods linearize the objective and constraint 

functions at the i n i t i a l po>tnt. The resulting LP problem is solved 

by an LP algorithm giving a new solution point. Next, the problem 

is to ta l ly or par t ia l ly relinearized at the new point and the new LP 

problem is solved. This procedure is continued unti l the solutions 

converge to the optimal solution. 

A non-linear objective function can be linearized with, a 

truncated Taylor's series about the current point: 

F(t) = F(t) + ( l F ( t ) ) ' ( t - t ) . . .2.2.1 

Similarly, the constraints can be linearized with truncated Taylor's 

series: 

f.CD = f.GD + ( i f . ( I ) ) ' I t - I) - 0, i = l , . . , R , . . .2.2.2 
1 1 i 

where T is the design vector at the current point, 

j f f j ( t ) ,is the vector of f i r s t partial derivatives of the 

i t h constraint function with respect to the design 

variables. 
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I f the original constraints form a convex region, the linearized 

constraints completely enclose the feasible region. If,however, 

some of the original constraints are non-convex, then the linearized 

constraints w i l l cut o f f some of the feasible region in which the 

optimal solution may l i e . 5 Algorithms must be able to prevent 

non-convex constraints from slowing or stopping convergence to the 

optimal solution of the original prohlem. 

Cutting Plane methods (Kelley 6

 a n c | Cheney and Goldstein^) retain 

most of the original linearizations of the constraints at each inter

mediate solution. Only the most active convex constraints are 

relinearized and the new linearizations are added to the set of 

constraints. Non-convex constraints are relinearized at each i te r 

ation with the new linearizations replacing the old linearizations. 

A f u l l evaluation of f i r s t partial derivatives is not required at 

each i terat ion since only a subset of the constraints is relinearized. 

However, as the method proceeds, the increased problem size increases 

the computational e f fo r t required. Ill-conditioning can arise as 

more linearizations of each constraint are added. 

The Method of Approximate Programming, MAP, ( G r i f f i t h and 

Stewart ) , discards a l l the old linearizations at each iteration and 

relinearizes the entire constraint set. Full evaluation of f i r s t 

partial derivatives is required at each i teration, but the problem 

does not increase in size as the method proceeds. MAP does require 

additional constraints which l i m i t the size of step that can be taken 

from the current solution to a new solution. These additional 

constraints are of the form: 



where S^is a positive number preventing large changes in the 

design variables. 

For problems with side constraints, the move l i m i t constraints 

do not add to the number of constraints since for each design vari

able one of the upper bound constraints (1 side and 1 move l i m i t 

constraint) and one of the lower bound constraints (as above) w i l l 

be redundant. The move l i m i t constraints and complete relinearizations 

are intended to provide convergence for both convex and non-convex 

problems although this has not been proved5. Possible il l-conditioning 

is not as severe as on the cutting plane method since each constraint 

is represented by only one linearization. Intermediate solutions may 

be infeasible. 

Advantages of linearization methods are that functions and f i r s t 

partial derivatives are evaluated no more than once per iteration 

and one-dimensional searches, which require a number of function 

evaluations, are replaced by e f f i c i en t LP methods. However, con

vergence may be slow when the optimum of the NLP problem does not 

l i e at a vertex of the constraint surfaces or when non-convex 

constraints are present. 5 

Both the cutting plane method and MAP appear to be apposite 

to the problem. However the cutting plane method requires addi

tional logic to ensure that old linearizations of non-convex con

straints are replaced at each i terat ion. The computational e f fo r t 

to solve the LP problems increases as optimisation proceeds although 
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some e f f o r t can be saved since f u l l derivative evaluations may not 

be required. When MAP is uaed, the problem does not increase in 

size but a f u l l f i r s t partial derivative evaluation is required. 

The main d i f f i c u l t y with. MAP is the choice of 6,. On balance, i t 
k 

appears that MAP is l i ke ly to be more e f f ic ien t than the cutting 

plane method and since fewer d i f f i c u l t i e s were anticipated, MAP was 

selected for comparison with other NLP methods. 

2.3 Feasible direction methods. 

Feasible direction methods explore the feasible region by 

searching along directions which reduce the objective function while 

maintaining f eas ib i l i t y . From the i n i t i a l point a search direction 

is found. The design is changed along this search direction unti l 

either a minimum is found or unt i l a constraint is encountered. At 

the new solution point a new search direction is determined and the 

design is changed by moving along i t . A search direction through an 

intermediate solution point must not violate any constraint for small 

moves nor allow the objective function to increase. Thus, i f T is 

an intermediate solution point and I are the indices of the 
a 

constraints active at t , then: 

f , ( t ) = 0 , i I , . . .2.3.1 

Expanding such constraints about T using a truncated Taylor's 

series gives: 

f t ( t ) - f t (t) + Clft(I))'Ct - I ) . . .2.3.2 
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Let d be the search direction through I and o( be a positive scalar, 

then a new design lying along d_ is given by: 

t = t + oCd , ...2.3.3 

Substituting equations 2.3.3 and 2.3.1 in equation 2.3.2 gives: 

ftCS) = • C ( I f 1 ( t } } , d , . . .2.3.4 

Similarly for the objective function: 

F( t ) * F(t) + oCCTf(t)) 'd , ...2.3.5 

The new search direction w i l l be acceptable i f 

f t ( t ) * 0 and F(t) ^ F © , ...2.3.6 

or 

- df t(S)'d * 0 , i * l f t , . . .2.3.7 

+ ( V F © ) ' d * 0 . 

Conditions 2.3.7 are the conditions for a new search direction to be 

'usable feasible ' . Among the algorithms which satisfy conditions 

2.3.7 are Rosen's gradient projection method9, Gellatly's method10 

and Zoutendijk's methods.^ 

In the gradient projection method, the new direction, d, is taken 

as the solution of the equality constrained probiTem: 

minimize ( I f®) 1 ! ...2.3.8 

subject to - ( V f . ® ) ' d « 0 , i -c I •— i — a 
d'd = 1 . 

This problem can be solved using Lagrangean techniques. I f the 

constraints are non-linear the direction may leave the feasible region 

immediately so that a correction procedure must be applied to maintain 

f ea s ib i l i t y . 
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In Gellatly's method, the new direction, d, is' taken as the 

solution of the equality constrained problem: 

( l F ( t ) ) ' d = 0 , ...2.3.9 

- ( i f , © ) ' ! = 1 , i «£. I i a 

F i rs t , the design is moved into the feasible region along the new 

direction. Next, the objective function is reduced by moving the 

design along the direction of the gradient of the objective function. 

In Zoutendijk's method, the new direction, d, is taken as the 

solution of the problem: 

maximize y ...2.3.10 

subject to (lE(D)'d + y * 0 * 

-(If © I ' d + c y 6 0 > U I , „ . a i i 
and _d is normalized, 

where ĉ  are positive coefficients which can be taken as unity for 

non-linear constraints and as zero for linear constraints. This 

problem can be formulated as a LP problem by a suitable normalization 

of d. 

With the exception of the gradient projection method, feasible 

direction methods are suitable for the general NLP problem. The 

gradient projection method is designed for linearly constrained 

problems, although in combination with a transformation method 

(section 4) i t can be adapted to solve the NLP problem. Gellatly's 

and Zoutendijk's methods are directly applicable to the NLP problem, 

and hence the gradient projection method wi l l not be considered 

further in this study. 
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For structural problems of the type 1.3, i t w i l l be shown that 
the major computational e f f o r t in determining a search direction is 

the computation of f i r s t partial derivatives. Thus a useful measure 

of computational efficiency is the number of searches required for 

convergence to fche optimum. In Gellatly's method, only.alternate 

searches reduce the objective function, whereas in Zoutendijk's 

methods every search reduces the objective function. I t seems l ikely 

that Zoutendijk's method w i l l converge more quickly than Gellatly's 

method. Accordingly, a method based on the method of Zoutendijk was 

selected for comparison with other NLP methods. 

2.4 Transformation methods. 

Transformation methods reduce the degree of d i f f i c u l t y of the 

constrained NLP problem by forming a simpler, but related NLP problem. 

Depending on the transformation used, the transformed problem may be 

solved as a sequence of constrained or unconstrained problems. 

Transformation methods are of two types: interior point methods and 

exterior point methods. Interior point methods generate a set of 

feasible intermediate solutions which converge to the solution of the 

original problem. Because exterior point methods generate a set of 

infeasible intermediate solutions, they w i l l not be considered for 

the solution of problem 1.3. 

The Sequential Unconstrained Minimization Technique (SUMT) is 

an interior point method developed by Fiacco and McCormick^. ^Fbr 

the SUMT, a new objective function is formed by adding to the 

original objective function a penalty function (a function of the 



14 

slackness of the constraints) weighted by an arbitrary scalar. 

Thus i f the original problem is written as: 

minimize F(t) subject to f . ( t ) * 0 , i=l , . .»R ; . . .2.4.1 

then the SUMT formulation i s : 

solve the sequence of problems: 

minimize 0 ( t , j ) = F(t) + { k P ( f . ( t ) , i = l , . . , R ) . . .2.4.2 

for k ~ l , 2 , . . . 

where { ) ( . . . ) is the objective function, 

^ is an arbitrary scalar, with » and 

P( . . . ) is the penalty function. 

There are two d i f f i c u l t i e s with SUMT: choice of a suitable value 

f o r ^ - j , and choice of a suitable rate of change f o r f ^ . These can 

be overcome by using the 'Q' transformation of Fiacco and McCormick12; 

the formulation i s : 

solve the sequence of problems: 

minimize Q(t,k) = V f F ^ t } - F(t) } + P ( f t ( t ) , i = l , . . , R ) . . .2 .4.3, 

where Q(t,*k) is the objective function for the kth i terat ion, 

F k - 1 ( t ) i s the value of F(t) 

at the optimum of Q(t,k-1). 

This formulation was not included for comparison with other NLP methods 

but in chapter 8 is recommended for further research. 

The above SUMT transformations do not take advantage of useful 

properties such as the possible l inear i ty of some of the constraints 

or of the original objective function. Fiacco and McCormick12 suggest 

that the linear constraints are not included in the penalty function. 
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The modified SUMT problem i s : 

solve the sequence of problems; 

minimize 0(t ,e) = F(t) + ^ p(- f . ( i ) , i 4 ^ ) 

subject to f ^ t ) *Q , i-Clz , . . , . .2.4.4 

for k=l , 2 , , 

where are the indices of the non-linear constraints , and 

I are the indices of the linear constraints. 

Each "(?(.•.) in problem .2,4.4 can be minimized by a linearization or 
5 

a feasible direction method. Although the modified SUMT method was 

not used in this study, i t is recommended for further research. 

The SUMT formulation of 2,4.2 was chosen as the transformation 

method to be compared with other NLP methods on problem 1.3. There 

are two popular penalty functions used with formulation 2,4.2: 

R P(-"-) = Y2 ( 1 / ( f t ( t ) ) ) , . ..,2,4.5 

1=1 

R 

. 2. P C - ) = J 2 ( -log( f . ( t ) ) ) , . . .2.4.6 
i -1 

Since the evaluation of ' log ' requires more computational e f fo r t 

than a division, a penalty function similar to2.4.5 was selected 

for use with SUMT. The choice of suitable unconstrained optimisation 

algorithms for use with SUMT is made in section 5 of this chapter. 
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2.5 Unconstrained Optimisation Algorithms. 

Unconstrained Optimisation Algorithms (UOA) find the values for 

design variables which optimize an objective function of the var i 

ables. Thus, UOAs are suitable for f inding, within the feasible 

region of the original NLP problem, the minima- of the transformed 

objective functions of the SUMT. Among the most e f f ic ien t UOAs 

are those which search along a sequence of directions unti l an 

optimum is found. Such UOAs have two stages? 

i . f ind a search direction, then 

i i . f ind the optimum along the search direction. 

The two stages are repeated unt i l the global optimum is found. An 

important cri terion for choice of one of the UOAs is the computational 

efficiency of the method. In optimising the problems of the type 1.3, 

the major computational e f f o r t used is that of evaluating the functions 

and, i f required, their derivatives. Thus the computational e f fo r t 

used in optimizing the 0 ( t , ( ) depends upon the number and type of 

evaluations required to f ind the search direction (which is dependent 

on the UOA) and to f ind the minimum along the search direction (which 

is independent of the UOA). 

UOAs can be categorized by whether they require in the determina

tion of their search directions the evaluation of: 

1. functions, their f i r s t and second partial derivatives, or 

2. functions and their f i r s t partial derivatives, or 

3. functions only. 

I t w i l l be shown in a later chapter that derivative evaluations 

require much more computational e f f o r t than function evaluations. 
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Therefore, derivative methods w i l l be computationally competitive 

with non-derivative methods only i f they require correspondingly 

fewer one-dimensional searches to f ind the optimum than the non-

derivative methods require. 

A number of numerical comparisons of UOAs13, 1 4 have shown 

that among the most e f f i c i en t methods are those which generate a 

sequence of conjugate directions or use second derivatives. Accord

ingly, the following UOAs to be used with SUMT were selected for 

comparison with other NLP methods: 

1. Newton's method with f i r s t and second derivatives; 1 5 

2. Fletcher-Powell's method with f i r s t derivatives; 1 5 

3. Stewart's method with f i n i t e difference f i r s t derivatives; 1 7 

4. Powell's method with no derivatives. 1 8 

2.6 One-dimensional search methods. 

Many NLP methods solve the NLP problem by moving the design 

point through design space along a sequence of search directions 

unt i l the optimal solution is found. Such methods consist of two 

stages: 

i . determine a search direction - the direction-finding sub-problem, 

then 

i i . determine a move along the search direction - the searching 

sub-prohlem. 

The searching or one-dimensional search sub-problem finds the move 

to the boundary of the feasible region and/or the move to the minimum 

of the objective function. Thus the one-dimensional search problem 

can be written as: 
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i f t = t + oCd, f ind the t* » t + oC*d .. .2.6.1 

such that either 

1. t* lies on the boundary of the feasible region, or 

2. t* minimizes the objective function, 

where ~t is the best design point on the previous search, 

d is the search direction through T and 

oCis a scalar specifying the move along d. 

Interval methods or point approximation methods may be used to 

perform one-dimensional searches. Interval methods f ind an interval 

in which the move «c* is known to l i e . An interval is chosen. I f 

«C* is not bounded, the interval is expanded. When «<* is bounded, 

the interval is reduced unt i l the prescribed accuracy is achieved. 

There are many interval methods but methods based on the Fibonacci 

numbers or on the Golden Section converge to a prescribed accuracy 

in the smallest number of i t e ra t ions .^ 

Point approximation methods estimate the move, oc*, by poly

nomial approximations. The new point is used in a succeeding approxi

mation for oC*« The process is repeated unti l successive estimates 

converge to within the prescribed accuracy. Despite the guaranteed 

rate of convergence of Fibonacci and Golden Section searches, point 

approximation methods generally converge more quickly. Powell^ 

suggests f i t t i n g a second-order polynomial te three function values 

along the search direction, while Davidon^0 f i t s a third-order 

polynomial to two function values and the two corresponding directional 

derivatives. Davidon's method usually requires fewer approximations 

than Powell's method. I f , however, a derivative evaluation requires 



much more computational e f f o r t than function evaluation, Davidon's 

method w i l l not be as computationally e f f ic ien t as Powell's method. 

A one-dimensional search method based on that of Powell using a 

second-order polynomial was chosen for use in the solution of the 

structural problem 1.3. 

2.7 Algorithms selected for comparison. 

The algorithms selected for comparison in later chapters are: 1 

1. the Method of Approximate Programming (MAP) - a linearization 

method,8 

2. a method based on Zoutendijk's - a method of feasible directions, 

(MFD)1 1. 

3. the Sequential Unconstrained Minimization Technique (SUMT) - 1 2 

a transformation method, used in conjunction with: 

i . Newton's methodJ 5 

i i . Fletcher-Powell's method, 1 6 

17 
i i i . Stewart's method, and 

I P 

i v . Powell's method.1 

Of the above methods only Powell's and Stewart's methods do not re

quire the evaluation of expl ic i t f i r s t partial derivatives. Newton's, 

method requires the evaluation of second partial derivatives. Al l 

the methods except MAP require a one-dimensional search algorithm. 

MAP and Zoutendijk's method of Feasible directions require a Linear 

programming algorithm. 

The following chapter gives further details of the algorithms 

and of the modifications required to solve the structural problems 
1.2 and 1.3. 
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CHAPTER 3 

DETAILS OF THE ALGORITHMS 

3. Introduction. 

Chapter 1 introduced the structural problems to be solved and 

chapter 2 selected methods for solving these problems. This chapter 

gives details of and modifications to the selected algorithms to 

handle the structural problems. 

The general NLP problem was stated in chapter 1 as: 

minimize F(t} ...3.1.1 

subject to f (t) * Q , i=n».. ,r 
i 

and the structural problem to be solved was stated as: 

minimize w'jb ...3.1.2 

subject to * «** - s 
min qs qs max qs 

q=l»..,L , S-1....M 9 

t * t * t 
min j j max j 

j^ls••» P » 

or: 

minimize w'jt ...3.1.3 

subject to 0 ^ (<T <r ) » 
max qs qs 

0 * Ccr - <r ) , 
qs min qs 

q=l 9 . . ,L , s - l , . . ,M » 

0 * C t - t ) , 
max j j 

0 * ( t - t ) » 
j min j 

J"~l a . . »P . 
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3,2 Method of Approximate Programming (MAP). 

As described in chapter 2, MAP'forms a sequence of linear prob

lems obtained from the NLP problem by linearizing all the non-linear 

constraints at intermediate solutions. A set of 'move limit' con

straints are added to the constraints of the NLP problem to aid 

stability and convergence of the algorithm. The MAP algorithm can 

be stated as: 

i . select an initial design point; 

i i . calculate the f i r s t partial derivatives of all the non-linear 

constraint functions at the current design point; 

i i i . linearize the objective function and the non-linear constraints; 

iv. form the 'move limit 1 constraints; 

v. solve the resulting LP problem using an LP algorithm; 

v i . form a new design point from the solution of the LP problem; 

v i i . terminate i f the new. and old design points and objective 

function values converge to within the prescribed accuracy; 

otherwise go to step 11. 

The general LP problem is of the form: 

minimize c_ ' x. ...3.2.1 

subject to A x. - k and 0_ - x. , 

where x is the vector of variables, 

£ and ID are vectors of constants, 

0. is the null vector, and 

A is the matrix of coeffIcients. 



22 

The objective function of the structural problem 3.1.2 is alraa'dy 
linear and does not require linearization for the LP problems. The 
size of the LP problems can be reduced by combining the linear move 
limit constraints with the linear side constraints: 

I f = oC( t - t ) , ( K oiC-\ % ...3.2.2 

j max j min j 

is the move limit on the jth design variable, 

then the move limit constraints can be written as: 

t - f c * t * t + 4 * j=U..»P , ...3.2.3 
0 i j j i 

where TJ is the value of the jth design variable at the 
j 

current solution point. 

The constraints 3.2.3 can be combined with the side constraints 

of 3.1.2 to give: 

(t̂ *) = Maximum( t , T - & ) - t and ...3.2.4 
min j j j j 

U 
t * Minimum( t , t + S ) = ( t ) , j= l 9 . .»P 
j max j j j j 

or 

(t ) « t « (t ) , d^l»..»P , .3.2.5. 
j J j 

The total number of constraints in the LP problem can also be 

reduced by redefining the LP variables thus: 

L 
tt = ( t - t ) , , . . , P , ...3.2.6 
j j j 
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Hence constraints 3.2.5 become: 

U L 
0 * tt * ( t - t ) , j= l , . . ,P ..,3.2.7 

J J i 

The non-linear behavioural constraints in problem 3.1.2 are 

linearized by expanding in a truncated Taylor's series the constraint 

functions about the current solution, T : 
<T = 5" + (175- ) ' ( t - I ) ...3.2.8 

qs qs qs 

Since ior / i t t =iir / i * t 
qs/ j qs ' j , then 

CT = <T + (7?- ) 1 (tt - tt) ...3.2.9 
qs qs qs 

= S" - (Iff ) 'tt ) + (IS- ) 'tt ...3.2.10 
qs qs qs 

or 

<T * ft t (15- }'tt ...3.2.11. 
qs » qs qs 

Equation 3.2.11 substituted into the non-linear constraints of 

problem 3.1.2 gives the linearized constraints: 

or M | 3 + & r )'tt) * «" 
min qs 1 qs qs max qs ...3.2.12 

hence 

- (Vfr }'tt * (B - (T ) and 
qs qs min qs 

+ (VBr )'tt < (<r - 6 ) ...3.2.13 

qs max qs r q s 

which are linear functions of the LP variables, tt. Rearranging 

substituting equations 3.2.6 into the objective function of problem 

3.1.2 gives 
L 

w't = w'tt + w't ...3.2.14 
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Hence the LP approximation of problem 3.1.2 at Jt is: 

minimize w'tt + (W'tL ) , 3.2.15 

subject to 
- ( I ? )'tt * (p - v } , 

qs qs mtn qs 

+ ttr ) 'tt « (r - f t ) , 
qs max qs r q s 

q=l 9 . . ,L , 1».-»M 

and U L 
tt ^ ( t - t ) 
i J i 

0 tt 
3 

S • • 9 P 

where tt » j-1 
j 

9 • • » P are the LP variables. 

Problem 3.2.15 is of the form 3.2.1 and can be solved by the LP 

algorithm described later in this chapter. Suitable values for o( 

in 3.2.2 are chosen in chapter 6. The FORTRAN IV program listing 

of the LP algorithm used in this study is given in the appendices. 

3.3 Method of Feasible Directions (MFD). 

Feasible direction methods search within the feasible region for 

an optimal solution along a sequence of usable feasible directions. 

As.described in section 3 of chapter 2 a usable feasible direction 

w i l l satisfy the following conditions: 
1 o , i -e r (TP © ) ' d 

4 0 + ( V F ® ) ' d 

3.3.1 
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wherte the set I are the indices the active constraints, 
a 

The algorithm for Zoutendijk's^ method of feasible directions 

can be stated as: 

i . select an initial feasible design point; 

i i . search down the negative of the gradient of the objective 

function until a minimum of th.e objective function or a 

constraint is found; 

i i i . evaluate the f irs t partial derivatives of the functions; 

iv. form the direction finding problem: 

maximize y 1 ...3.3.2 

subject to (IF(I))'d + y - 0 , 

- d f t © ) , i + V * 0 • * I f t . 

d is normalized ; 

v. solve the direction finding problem; 

vi . test the direction for acceptability; 

v i i . i f the direction is acceptable then search along i t until a 

minimum of the objective function or a constraint is found, 

then go to ix; 

v i i i . i f the direction is unacceptable then reduce the number of 

constraints in the set I and go to iv; 
a 

ix. terminate i f the new and the old design points and 

objective function values converge to within the prescribed 

accuracy; otherwise go to i i i . 

By a suitable normalization of d, the direction finding problem can 

be formed as an LP problem. In the direction finding problem, the 

arbitrary coefficients can be set to unity for the non-linear 
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constraints and to zero for linear constraints. Zoutendijk tests 

the acceptability of the search direction by examining the value of 

y . By including in the set l & all the constraint functions such that 

0 4 f j lS ) - £ > ...3.3.3 

and assuming that c - 1 for the non-linear constraints, then the 
i 

search direction is usable feasible if: 

*~ y ...3.3.4 

Test 3.3.4 can be obtained by considering equations 2.3.1 to 2.3.7 

and the assumption that the search direction is normalized such that 

«C= 1 is a meaningful move along the direction. The f irs t order 

change in F(t) and f^(t) for a unit move along d_ is given by: 

F(t) - F(t) = (lF(t))'d ...3.3.5 

f 4 ( t } - ;f.(t) = (Vf (tJJ'd ...3.3.6 
1 i ~ i 

But from 3.3.2: 

y 1 - (lF(t))'d ...3.3.7 

and 

/ * + (If.Ct))'d , i f c.=l , * ...3.3.8 

Thus 

i f y > 

then 

0 I 6 * f (t) - f^(t) ...3.3.9 

0 ^ F(t) - F(t) ...3.3.10 
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therefore 

£ * f (t) ...3.3.11 
i 

and 

F(t) ^ F © ...3.3.12. 

Therefore the direction is usable feasible. I f the direction is not 

acceptable, then £ i s reduced and the direction finding problem is 

reformed. 

Since the ĉ  are not dimensionless, the choice of values of 

unity for the non-linear constraints may not be the most computa

tionally efficient. Furthermore, the test of acceptability 3.3.4 

can be incorporated into the direction finding problem. Hence the 

following formulation of the direction problem was used in this 
study: 

the direction d̂  is taken as the solution of the problem 

maximize y ...3.3.13 

subject to ( ( i F ( t ) ) ^ / | A £ * l + y * 0 

( ( - I f t C S J ' i / l ^ M + <ty ^-Vl*f|l» i -e V ' 

and id is normalized 

where 

c.. are dimensionless scalars, = 0 for linear constraints, and 

>0 for non-linear constraints, 

A.F* is the largest possible change in F(t) for a unit move along 

any normalized d through If and has units of F(t ) , and 
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Af* is the largest possible change in f . ( t) for a unit move, 
i T 

along any normalized _d through t and has units of f^(t). 

I f y - £ , where ^ is a very small positive number, then LP problem 

3.3.13 has no feasible region. In this case, 6-is reduced and the 

direction finding problem is reformed. 

The values A F * and Af* depend on the normalization of the 
i 

search direction, d. Zoutendijk suggests a number of possible 

normalizations but some of them require that certain modifications 

be made to the LP algorithm. The following normalization used in 

this research does not require modifications to the LP algorithm: 

d is normalized such that - D ^ d ^ + D , j=l , . . ,P ...3.3.14 
j 

Hence the largest possible changes in F(t) and f . ( t ) for a unit move 

along any normalized 6 through T are: 

A F * = D ) | V F © | | T = | V F ( S | ...3.3.15 
j , - • — 

A f * * D 
i 

P 1 I 
Vf,( t ) * D C Tf (t) ...3.3.16 

1 I T j * l t I 
21 

where subscript T denotes the 'taxicab' normalization defined by 

equations 3.345 and 3.3^:6. 

Pooblem 3.3.13 can be rearranged and combined with normalization 

3.2.14 to give: 
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maximize y ...3.3.17 
subject to (IF©)'d + l&F*\y * 0 * 

- (If .Wi 'd + c,fef*|y , i I , 
i ~ * r r a 

d ^ D , 
j 

j 

Problem 3.3.17 can be solved by an LP algorithm. The total number of 

constraints can be reduced by redefining the LP variables thus: 

dd. = ( d + D ) , j=0,..,P ...3.3.18 

hence 

maximize y ...3.3.19 

subject to ( J F ( i ) ) l i ! + \tf*\y * D £ (W(t)) 

- (IfiCSJ'dd + c \&f*W * D 2 Qf © ) - £ , 1 ^ 1 
1 XX j=l 1 a 

0 * dd. ^ 2D , j « l , . . , P 
J 

To prevent zig-zagging hetween a subset of the constraints, Zoutendijk 

suggested that the set I should incorporate the indices of those 
a 

constraints encountered on some of the previous iterations. Thus in 

problem 3.3.19, I is formed from the union of the two sets 
a act 

and I which are defined by: 

I = the set of indices for which 0 < f (I) ^ £ ...3.3.20 
act i *" 

I = the set of indices of the constraints which have been 
rem 

encountered more than once ...3.3.21 

hence 
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I = ( I )U(I ) ...3.3.22 
a act rem 

I f the seared direction produced in the direction finding problem is 

rejected, then I is emptied and £ t s halved or reduced so that at 
rem 

lease one index remains, in I The set I is reformed and a new 
act a 

direction is determined. I is updated on succeeding iterations. 
rem 

To solve the structural problem 3.1.3 by the formulation 3.3.19, 

the following quantities are required; 

V F ( t ) and VT ( t ) , i - £ l . 

i a 

Since F ( t ) - ' w ' t 5 ...3.3.23 

f (t) = ( ir - cr ) , 
i max qs qs 

(<T - (T ) , 
qs min qs 

C t - t ) , 
max j j 

or (. t - t ) , 
j min j 

VFCt) = w 

then 
l f ' ( t ) . * >Icr » ...3.3.24 

i qs 
:+!<r 

qs 

-e' » 
j 

or +e , 
j 

where, e is the j t h coordinate direction vector, 
j 
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The algorithm for the.feasible direction method used to.solve.the 

structural problem 3.1.3 can be summarized hy the f o i l owing: 

i . form an i n i t i a l feasible design point; 

i i . search, down tfie gradient of the objective function unti l a 

minimum is, found .of .until a constraint is found; 

i i i . evaluate f i r s t partial derivatives of the functions; 

i v . form the direction finding problem 3.3.19 incorporating 

equations 3.3.15, 3.3.16, 3.3.18, 3.3.20, 3.3.21, 3.3.22, . 

.3,3.23 and 3,3.24; 

v. solve the direction finding problem; 

v i . i f y - £ , where 6 is a small positive number, then 
m m 

reduce r-and go to i v ; 

v i i . otherwise, search along the direction for a minimum of the 

objective function or for a constraint; 

v i i i . terminate i f the new and old design points and objective 

function values converge to within the prescribed accuracy; 

i x . otherwise go to i l l . 

Suitable values for the dimensionless coefficients c are selected 
i 

in chapter 6. A FORTRAN IV program l i s t ing of the above algorithm 

as used is given in the appendices. 

3.4 Sequential Unconstrained MlhimizatlonTechnique (SUNT). 

As described in chapter 2, the SUMT is an interior point trans

formation method. A sequence of unconstrained objective functions 

(formed from the original objective function and penalty functions) 

is minimized unti l the minima converge to within the prescribed 

accuracy. The SUMT algorithm can be stated as: 
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i . select an i n i t i a l feasible design point; 

i i . form the transformed objective function 0(t,p }, k=l; 
~ c k 

l i t . minimize (8(t,p ); 
• k. 

i v . terminate i f the new. design point is satisfactory; otherwise 

go to v; 
v. form the new transformed objective function )Ji(t,p ) ; 

c k+l 
v i . estimate the minimum of J)(j:>p ) by extrapolation; 

^k+1 
v i i . go to iu,vvitti lc*\c+l } 

For the reasons given in chapter 2, the o^ective functions used 

in step i i and v are similar to the. form: 

r . 
..3.4.1 0( t ,p ) = F(t) + £ ( Z l ( l / ( . f ( t ) ) ) ) 

\ . k. i= l i 

The sequence of values for £ are determined from: 

P = c a , Q < c O 3.4.2 
v k+1 ^k 

Equation 3.4.2 requires the v a l u e s a n d the coefficient c . The 

scalar P is. often determined such that the weighted penalty term 

is a predetermined proportion of the original objective function at 

the i n i t i a l design point: 

{ a . P ^ F © / P C f ; ( D i t r 1 i . . . r r ) j ...3.4.3 

Typical values for p are .01 50. However the efficiency 

and r e l i a b i l i t y of such an approach is dependent upon the i n i t i a l 

design point. I f the i n i t i a l point is close to one or more of the 

constraints, £ given by equation 3,4.3 may be too small; alternatively 
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i f the i n i t i a l point is not close to any of the constraints, g 
' ' ' . 1 

may be unnecessarily large. Fiacco and McCormick suggest that a 

'natural 1 choice for would be given by the £ that minimizes the 

magnitude of the gradient of; f at T , so that T is close to the 

minimum of 0(t»^.}. Such a value o f £ could,during the f i r s t 

SUMT iteration,reduce the computational e f fo r t used but also reduce 

the amount by which could be decreased. Nevertheless, the 

Fiacco and McCormick value for p was used in this study and can be 

obtained from the following: 

le t (.0 = F + P P ) « ( J l ( t , e ) = F(t) + P P ( f . ( t ) , i = = l , . . . , r ) ) 
V 1 V l V l 1; 

. . .3.4.4 

where t is the current ( i n i t i a l ) design, 

...3.4.5 then 10 = ' VF + o VP 
* 1 

hence £ is given by the £ such that Vj3'|j3 is a minimum. 

But since 

VP' W = CVP + p ' VP ) ' ( VF + a VP ) ...3.4.6 
v l ~ c l ~ 

then 
2 

W 13 = : IP ' l f 7 + 2 * ( VF ' VP ) + p (TP 1 VP ) 
c l v 1 " ~ 

...3.4.7 
Differentiating equation 3.4.7 with respect t o g gives; 

dClp'I^/dp = 2(VF'VP) + 2p (iP'lP) . . .3.4.8. 
v l 1 

V0'V0 has a minimum value when the l e f t hand side of equation 3.4.8 

is equal to zero; hence 

£ = (-IF'1P)/(1P'1P) . . .3.4.9. 
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The minimum value that Vjk'VP can have is zero; hence from equation 

3.4.7: 

/ 2 
C-IF'IP) ± V ( V T F ) - (IF'IF) (IP'IP) 

£ * _ _ _ ...3.4.10 

1 (VP TP) 

In this study, the value for was determined using equation 3.4.10. 

If the quantity under the root sign is, negative, then the value for £ 

was determined from 3.4.9. If the value for is not positive, for 

example when IF'IP - d» then £ was determined from equation 3.4.3. 

An efficient choice for the coefficient, c * in equation 3.4.2, 

is. dependent on the accuracy of the search and on the number of 

unconstrained minimizations attempted. Suitable values for c are 

determined in chapter 6. 

The algorithms used for minimizing the sequence of 0(. . ) are 

detailed in later sections of this chapter. 

Preliminary work for this research and other studies^'23 \ n ( \ \^ 

cate that computational savings of approximately 30% can be made by 

incorporating an extrapolation technique into SUMT as in step vi 

of the algorithm stated above. The technique used in this study is 

as follows: 

i . f i t a Lagrangean polynomial through the previous minima ; 

i i . predict the minimum of the new objective function using the 

polynomial ; 

i i i . search for a minimum along the direction connecting the current 

design point to the predicted minimum design point ; 
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iv. proceed with the unconstrained minimization from the new point. 

OA 

Using a Lagrangean polynomial, the value of a function y(x) can 

be determined at any value of x as 

y(x ) = X J ( U x ) Kx ) ) > ...3.4.11 
n+1 k=0 k. n+1) k 

where 

\ I TT (x - x; 
' i^l tc i 

1 ( x ) - TT ( x 
k n+T- i*l n+1 i / TT (x - x ) . ...3.4.12. 

i^k 

Hence the design point at the minimum of the new objective function 

can be estimated from the following; 

let t*(p ) be the estimate the jth design variable at the 
j S+l 

minimum of the objective function;- j3(jt,p ) , and 
n+1 

let t*(p ) be the design of the jth design variable at the 
0 k 

minimum of the objective functions P(t,p ) , then 

t*(p } = S ( 1 (p } t*(p ) ) , ...3.4.13, 
j Sn+1 P i k. cn+l j c k 

where 

1 (p ) • T T (P - p ) / n 
k Si+l i=l ^n+1 M / I T ( P - P ) 

i?«k / i=l ^k M 
• • o 3 • 4 • "14 < 

k-1 
But, since 0 = c p ...3.4.15, 

^ k VI 

then 

n n i-1 k-1 i-1 
U p ) * T T ( ( c p - c P ) / ( c P - c p ) )...3.4.16 
k Vn+1 i*l M V. -J \ 1 „ V. ! 
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hence 

n n+l-t • k - i 
T C P 1 * T ( C c - 1 )/C c - 1 ) ) ...3.4.17 

k v n + l i -1 

The coefficients 1 Cp) can be determined iterative"!/ by the 
k. v 

following recursion formulae developed from equation 3.4.17; 

n 
1 (P i • ( c - 1 ) / ( c- 1) ...3.4.18, 

n ^n+l 

U p ) - C c" - 1 K c " ^ - 1 ) t 1 ( f ) } ...3.4.19. 
k v n + l k S 

n+l-k E n̂ 
( c - 1 ) ( c - 1 } 

The transformed objective functions for SUMT used to solve tfie 

structural problem 3.1.3 are given by: 

0(t»p ) = w ' t + p ( P + P ) ...3.4.20 

H 1 2 

where 

L M 
P - (er -<T ) 22 2 3 ( V t c r - < r ) + i / ( ( r ) ) 

1 max qs min qs q-l s~l max qs qs qs min qs 
.. .3.4.21j 

P = Ct - t ) £ ( i / ( t - t } + i / ( t - t ) ) 
2 max j min j j=*l max j j j min j 

...3.4.22 

The weighting scalars of equations 3.4.21 and 3.4.22 put the penalty 

terms in non-dimensional form. 

A FORTRAN'IV program l i s t ing of the SUMT algorithm used in this 

study is given in th.e appendices. 
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3.5 Newton's'method10 

Newton's method can be used with SUMT to minimize the sequence 

of objective functions 0(t*£l« The method requires the evaluation 

of functions, f i r s t and second partial derivatives. The method 

used is developed in the following: 

Let 

70 - the vector of f i r s t partial derivatives of the objective 

7 0 - the matrix of second partial derivatives of the objective 

function with respect to the design variables, 

__2 2 

7 0 = I 0 at t , 

then expanding 0 In a truncated Taylor's series about T gives: 

_ I _ _ -2 

0 = 0 + 70 ( t - t ) + h ( t - t ) l 7 0 ( t - t ) . . .3.5.1 

which has a stationary value when 

70 = 0 . . .3 .5.2. 

Differentiating equation 3.5.1 and ignoring higher order terms gives: 

0(1,6) * 
0(JL,P) where £ is the current design point 

function with respect to the design variables t , 

70 at T , 

2 

_2 
70 * 70 + 7 0 ( t - t ) 3 • 5 • 3 • 

Hence 

2 
0 - 7 0 + T 0 C 1* - t) 3.5.4. 
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Newton's method solves equation 3.5.4 for t* which is an estimate 
of the design for the minimum of 0 . When used with SUMT, Newton's 
method may give a t* which lies; in the infeasible region. Newton's 
method is modified' 3 to prevent the design going into the infeasible 
region, thus: 

le t t* = I + o(*d . . .3.5.5, 

where d is, a search direction, 

then t* - T = ot*d . . .3 .5.6. 

Substituting equations 3.5.6 into 3.5.4 gives: 
_ _Z 

O = 7 0 + o C * 7 0 d . . .3.5.7. 

Equation 3.5.7 is solved by setting o(* - 1 to yield a search direction 

d. Tben^ is determined by searching along d for a minimum of 0. 

Thus, the algorithm for Newton's meth.od used with SUMT is : 
- - 2 

i . calculate 0 , 70 and 7 0 ; . . .3.5.8 
- 2 

i i . solve the set of equations, -50 - T 0 jd for d. ; 

t i l . f ind the^f which minimizes 0 along d and replace ~t 

with t* , where _t* - t t ©<* d. » and go to i . 

The process is continued unt i l convergence is achieved to within the 

prescribed accuracy. The algorithm 3.5.8 w i l l he referred to as 

Newton(l), hereinafter. 
A variation of algorithm 3.5.8 which attempts to reduce the 

computational e f f o r t required w i l l be referred to as Newton(2). 
2 

Newton(2) omits evaluating 7 0 on second and subsequent iterations 

but sets V. 0 to the values at the i n i t i a l point. 

Newton(l) and Newton(2) as described above were used with 

SUMT in the tests in chapter 6. A FORTRAN IV program l i s t ing of 

Newton(2) used in this study is given in the appendices. 
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3.6 Fletcher-Powell's method:;16 

Fletcher-Powell's method can he used to minimize the sequence 

of objective functions 0(t ,g}. T n 1 s method requires functions and 

their f i r s t partial derivatives and is similar to Newton's method 

except that the inverse of the Hessian matrix of second partial 

derivatives is replaced by a matrix which, by improvement after each 

i terat ion, converges to the Hessian matrix. The algorithm for 

Fletcher-Powell's method i s : 

i . s tart with an i n i t i a l design t , and an i n i t i a l positive 
D -

definite matrix H » for example, the identity matrix; 
0 

11. calculate Vj3 and set k= 0; 
0 

i i i . determine the search direction d from the equation 
~k 

d = - H VJ3 ; 
k k k 

i v . f i n d j ( * which minimizes 0 along d and 
k k 

calculate t * t + ©t* d ; 
~k+l ~k k ~k 

v. calculate Jj3 and H where 
k+1 k+1 

H = H + M + N , 
k+1 k k k 

M - ( d d' ) / ( d« £ ) , 
k k k k k k 

N = - C I x )( H y ) 7 ( z ' H j r ) , and 
k k k k k k k k 

k k+1 I 

v i . go to i i i , with k = k+1. 
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The process is continued unttl convergence to within the prescribed 

accuracy is, achieved, Fletcher-Powell's method as described above 

was used with SUMT in the tests described in chapter 6. A FORTRAN 

IV program of the method used is given in the appendices. 

3.7 Stewart's method1^. 

Stewart's method is an extension of Fletcher-Powell's method 

enabling the use of f i n i t e difference f i r s t derivatives. In 

addition to updating the matrix H , Stewart's method updates the 

diagonal elements of i t s inverse A , which are used in the deter

mination of the f i n i t e difference derivatives. Stewart considers 

the problem of estimating the f i r s t derivative of a non-linear 

function by a linear form and indenttfies two major sources of 

error; - truncation errors and cancellation errors. Truncation 

errors are caused by the mathematical inadequacy of the derivative 

approximation. Cancellation errors are caused by the loss of 

significant figures in f i n i t e precision arithmetic. Stewart's 

method chooses a f i n i t e difference step length to that the two 

sources of error are approximately equal. Stewart shows that this 

can be done by solving the following equation for each of the 

coordinate directions: 

the step length, , along the j t h coordinate direction is given 

by the solution of 

0 3.7.1, 

where 

is the j t h diagonal element of the matrix A 
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A j 3 is the change in 0 for a step $j along the j t h 
J 3 

coordinate direction, 

0 i s the value of the objective function at the current point, 
0 

V is the j t h component of the last f i r s t derivative calculations* 
S 

is an error bound on the function evaluation. 

Stewart shows that an approximate solution to equation 3.7.1 is 

given by either: 

- & ( 1 - c | < . | s. ) / t
 3 K . | i . + 4 k | ) ) — 3 . 7 . 2 

J 0 

...3.7.3 

where 

or 

S* 5 1 S ( 1 - t 2 | y | ) / ( 3 k \% + 4 | y | ) ) ...3.7.5 

...3.7.6 

where 

. . .3 .7.7. 

Stewart suggests that the value of xj should be the larger of ( i ) 

the estimate of the error bound on the calculation of 0; and ( i t ) 

the error bound on the calculation of 0 by linear expansion about 
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the computer approximation of the current point. 

I f the step length given by the above equations is greater 

than some prescribed upper bound, Stewart suggests that a central 

difference scheme is employed, where i s chosen as the positive 
i 

root of 

\*M + tol*5 -"10"Kto = 0 

where 
-m 

10 is the prescribed upper bound. 

The matrix A used to f ind the second derivatives oL is updated 

m 
in the following manner: 

A = A + + c (JjB'y + } . . .3.7.9, 
k+1 k I k k 2 k k k k 

where 
2 

c 88 ( c / < * * - c W d ) ...3.7.10, and 
1 2 k- 2 ~ k "Tc 

c * 1 / y 'd . . .3 .7 .11. 
2 \ ~k 

The algorithm for Stewart's method i s : 

-1 
i . start with an i n i t i a l design, the matrix H and H = A % 

"0 "0 "0 

i i . calculate 70 and set k̂ O ; 
0 

i i i . determine the search direction d from d = - K Vj3 ; 
k k k k 

i v . f ind the o< * which minimizes 0 along d and calculate t ; 
k k k+1 
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v. determine t j * max J ^ . t ^ q m / ^ 0 | 5 » 
calculate ^ * from eqtns;. 3.7.2 - 3.7.7, and set & * « sign 

4 * j 

(*< ) sign (v )& ; 
ii °3 J 

v i . i f %loC 1 Oo , use a forward f i r s t f i n i t e difference 
1 'did j» x v 

scheme to obtain *j3/cft » 
j 

* 
otherwise calculate from equation 3.7.8 and use a central 
difference scheme to obtain Ĵfyfct ; 

j 

v i i . hence calculate H and A ; 
k+1 k+1 

v i i i . go to i i i , with k = k+1. 

The process i s . continued unt i l convergence to within the prescribed 

accuracy is achieved. 

Stewart's method as described above was used with SUMT in the 

tests described in chapter 6. A Fortran IV program of the method 

used is given in the appendices. 

18 
3.8 Powell's method 

Powell's method can be used with SUMT to minimize the sequence 

of objective functions 0(t*g). The method does not require the 

evaluation of derivatives, but does require modification for use with 

SUMT. 

P o l l ' s algorithm i s : 

define a set of P l inearly independent directions (e.g. the coordinate 

directions) as id , d_ , . . . , id ; define the i n i t i a l point as t 
1 2 P 0 



44 

and the objective function at jt as P(jt ,£} ; then 
r r 

i . fo r r = l , . . , P , f ind oi to minimize 0( t +o(d ,/>} 
r r-1 r 

and define jt = t + oC d ; 
r r-1 r r 

i i . f ind the index R and the quantity D = maximum (D ; r = l , . . , P ) , 
R r 

where D * ( 0(t , f } - 0( t , p ) ) s 
r r-1 r 

i i i . define 0 = 0(t 9p ) and (3 a 0(t »£ ) then calculate 0 1 t p -p v 

0 =0((2t - t ) , ) ; 
Q 1 0 

i v . i f either 0 0̂ and/or 
0 * 
2 2 

%D ( 0 -0 ) ^ C 0 -20 +0 )( 0/- 0 -D ) 
R O P O P Q O P R 

then go to i with t replaced by _t and with the old set 
0 P 

of directions ; d , d , ... , d ; 
1 2 P 

v. i f the tests in iv are not met, then define d =» t - t , 
1+1 1 ~0 

f ind the «c to minimize 0 ( ( t +oCd )9p) » 
P+l P P+l * 

define t =» t + o< d 
P+l P P+l P+l , 

then go to i with t replaced by t and with the set of 
0 P+l 

directions : d , d , . . . , d , d , . . . * d ,d 

n i 1-1 1+1 i i+ i . 
The tests in step iv of Powell's algorithm combine the following 

three tests; 

1. i f ( 0 *f0 + 0 ) 0 , then take step v ; otherwise 
0 P Q 
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2. i f 0̂  * 0̂  » then the stationary point of 0(t,£) lies between 

t and t , and the old directions should be used ; otherwise 
P 0 

3. le t 0 be the stationary point of a quadratic form f i t t e d to 
S 

0 ,0 and 0 » then 
O P Q 

i f J( 0 - 0 ) - J( 0 - 0 ) ^ 7 D , then take step v ; 
O S P S R 

otherwise use the old directions. 

The tests of step iv assume that 0(t»p) is continuous along the 

search direction ( t - t ) between t = t and t = 2t - t . However* 

the formulation with SUMT has 0 ( t , { ) approaching i n f i n i t y as t 

approaches the boundary of the feasible region. Since Powell's 

procedure does not guarantee that t = 2t - t is in the feasible region* 
P 0 

the tests in step iv may not be applicable. A satisfactory test, 

based on Powell's rationale, to determine whether the new direction 

should be accepted, can be developed in terms of 0,0 and 0 -0(jt ,p), 
, , OP M M 

where t - + t, ) . Assuming that 0(t,p) is convex, then t must 
M "> 0 M 

be in the feasible region. 

The three tests combined in step iv can be replaced by the following 

tests: 

1. i f ( 0 - 2 0 + 0 ) < O , then take step v ; otherwise 
0 M P 

2. i f (-0 + 40 -30 ) 4. 0 , then the stationary point of 0(t,p) 
0 M P * 

l ies between t and t. , hence the old directions should be used ; 
P 0 
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otherwise 

3. l e t 0 be the stationary point of a quadratic form f i t t e d to 
S 

13 ,0 and 0 , then 
O P M 

i f </( 0 -0 ) - V ( 0 -0 ) * J D , then take step v , 

otherwise use the old directions. 

The above three tests can be combined. Thus steps i i i and iv become: 

\ \ \ . define 0 = 0( t ,P ) and 0 - 0(jt ,p) , then calculate 
0 0 P P v 

2 
0 * 0((%( t + t )) ,p) and 0 = 0 , ( 0 0 ) /(8( 0 - 2 0 + 0 ) ) } ; 

M P 0 V S M O P 0 M P y 

i v . i f ( 0 - 20 + 0 ) > 0 and 
0 N P 

either (a) C 0 - 40 + 30 ) > Q 
0 M P 

or (b) t 0 - 40 + 30 ) C 0 and 
0 M P 

J C 0 - 0 ) - J( 0 -0 ) > J D 
O S P S R 

then go to i with, t replaced by t and with the old 
0 P 

set of directions : d ,d , . , , , d ; 
1 2 P 

With the ahove modification Powell's method was used with SUMT in the 

tests described in chapter 6. A Fortran IV program of the method 

used is given in the appendices. 
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3.9 One-dimensional search, for tHe minimum of 0. 

The one-dimensional search algorithm to ftnd the local minimum 

of the objective function was used in this study in conjunction with 

the UOAs and SUMT. The algorithm (the programmed with the name ONED) 

finds a sequence of feasible points, f i t s a quadratic polynomial to 

the points, and locates the minimum of the polynomial. One of the 

previous points is discarded and another polynomial is f i t t e d to the 

remaining points and the new point. This process is continued unti l 

successive estimates of the minimum converge $0 within the prescribed 

accuracy. The algorithm can be stated as: 

i . set tf* 0 , t - t and 0. * 0 © ; 
determine the largest negative move ( amin) and the largest 

positive move ( amax) along d that can be taken without 

violating the linear constraints ; determine the resolution 

(the minimum distance between two points along d that are 

considered as different points); for derivative methods , 

form the directional derivative , dy = V0'd ; 

i i . form , tlie move along d to the second point; 
2 

for derivative methods :U. * (0 -0 )/dy , where 0 is 
2 E 1 E 

an estimate of the minimum value of 0 along d» 
for non-derivative methods :o< - 5*(resolution) ; 

2 

i i i . i f oT âmax then e( :« toC ^ amax )/3 ; 

ifoC 4amin then <* ( o( + amin )/3 ; 
2 2^ 1 

evaluate 0 at t * t +o< d ; 
2 ~2 ~ r 
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i f any of th.e non-linear constraints are violated * then 

i f o( V) , set amax - oi and go to i i i » or 
2 2 

i f <0 , set amin *oC and go to i i i ; 

i f none of the non-linear constraints are violated, and i f the 

interval of uncertainty (. amax-amin ) i s less than twice the 

resolution , then terminate at the point with the least value 

of 0 ; 
i v . form o( » the move along d to the third point; for derivative 

methods f i t a quadratic to 0 using dy and two points 0 , 

oC and 0 ,<< ; 
\1 2 2 

i f the quadratic would predict a maximum , findo^by extra

polation; for non-derivative methods, f ind oC by extrapolation 
3 

so that the interval spanned by the three points is three times 
the interval spanned by the f i r s t two points; 

v . i f o( >amax, then <* > (p< +«< + amax )/3 » 
3 3 1 2 

i f oC <amin, then o( teC +*( + amin )/3 ; 
3^ 3 1 2 

evaluate 0 at t, - J + d_ ; 
3 3 3 

i f ajiy of the non-linear constraints are violated , then 

i f oC P » then set amax *ol and go to v , or 
3 3 

i f U < 0 » "then set amin = p< and go to v ; 
3 3 

reset amax and/or amin i f the function values bound the minimum 

of 0 either above and/or below, and i f the interval of uncertainty 

can be reduced; i f the interval of uncertainty ^.2(resolution), 

terminate at the point with the least value of 0; i f the 

estimate of the second derivative is negative, terminate the 
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search; i f i t is less than the test value, then discard one of 

the points and go to iv ; 

v i . formoC , the move along d to the fourth point, by f i t t i n g a 
4 

quadratic polynomial to three points using 0 , * , 0 >U ,0 and 
1 1 2 2 3 

o t ; 
3 

v i i . i f ̂  \amax, then ol {pi +«C + amax )/3 , 
4 ^ 4 2 3 

i f o( 4anr*n> t h e n
 eC (A +<* + amin }/3 ; 

4 4 1 2 

evaluate 0 at t * tf + o ld ; 
4 4 4 

i f any of the non-1tnear constraints are violated, then 

i f *£. > 0 , then set amax * tf. and go to v i i , or 
4 4 

i f oL 4>Q> then set amin - oi and go to v i i ; 
• 4 4 

reset amax and/or amtn i f the function values bound the 

minimum of 0 either above and/or below, and i f the interval 

of uncertainty can be reduced; discard one of the four points; 

v i i i . i f the interval of uncertainty is less than twice the 

resolution, then terminate at the point with the least value 

of 0; 
i f the remaining three points do not bound the minimum of 

0, then go to v i ; 

i f the maximum permitted number of quadratic f i t s has been 

exceeded then terminate at the point with the least value 

of 0; 
go to v i ; 

file:///amax
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A quadratic polynomial is of the form: 

2 
0 = c * + c r t + c . . . 3 . 9 . 1 , 

1 2 3 

where c , c and c are coefficients. 
1 2 3 

Differentiating equation 3.9.1 gives: 

d0 / dot * 2c * + c . . .3 .9.2. 
1 2 

0 has a stationary value, 0*, when d0/dtf = 0 , or when 

0< « «C* - - c / 2c . . .3.9.3. 
2 1 

Equation 3.9.3 Is used in step iv to f ind ©< and in step v i to 
3 

f ind . In step iv , c and c are determined from the solution 
4 1 2 

of the following three equations: 

2 
p = c ot + c oc + c , . . .3 .9.4, 

1 1 1 2 1 3 

0 = coC * c DC + C , *».3.9.5, 
2 1 2 o2 2 3 

dy = 2c <X + . . .3.9.6, 
1 1 2 

which yield: 
2 

c - dy/(<* - « t ) - (0 - 0 ) / ( * - tf) .. .3.9.7 
1 1 2 1 2 1 2 

c * dy - 2c ol . . .3 .9.8. 
2 1 1 

In step vi» c Sfnd c are determined from the solution of the 
1 2 

equations 3.9.4, 3.9.5 and the following: 
2 

0 a c et + c ©C + $ . . .3 .9.9, 
3 1 3 2 3 3 

which yield: 
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c = (0 -0 )/(<* -tL )(<* -oO - (0 -0 )/(* 
1 1 2 1 2 1 3 2 3 2 3 1 3 

...3.9.10 
c = (0 -0 ) / ( * - * ) - - c . . .3 .9 .11. 

2 :2 3 2 3 1 2 3 

Equation 3.9.3 w i l l predict a minimum provided that the second 

derivative of 0 with respect to ©< is positive, or 

2 2 
d 0 / d « * 2c ^ Q ...3.9.12 1 ^ 

or 

c > . 0 ...3.9.13 
1 

A lower bound on ĉ  can be obtained from the following: 

consider three points o£ ,oC » and oC , where = + U) along 
l j m m 1 j 

the search direction c[ ; 

l e t the function value at the three points be 0 ,0 and 0 ; 
i j m 

the coefficient c for thds case is : 
1 

2 
c = ( 0 -20 +0 )/&)(0C +<* ) ...3.9.14. 

1 i m j 1 j 

When using limited precision arithmetic, 0 can not be represented 

exactly; hence 

0 - 9 ) 0 < 0 * (1+9 )0 . . .3.9.15, 
0 m m 0 m 

where n is the error bound on 0. 
0 

The smallest meaningful absolute value c can have occurs when 0 
1 m 

i s given by: 

0 « ( 1 + 0 )(%)( 0 +0 ) ...3.9.16. 
m '0 1 j 
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Substituting equations 3.9.16 into 3.9.14 gives c , a test value 
t 

for c : 

I 2 

c = + 2 n ( 0 + 0 ) / ( < / + «*) ...3.9.17. 
t 1 J / i j 

The positive value from equation 3.9.17 is used in step iv to test 

i f a maximum would be predicted and in step v i . For step i v , 

« oC and oC - oC . 
i 1 j 2 

For step v i , *< - ando< * o< . 
t 1 j 3 

In step v i i , the point to be discarded is chosen in the following 

manner: 

i . i f the latest or the previous best point is an end point of 

the four points, then discard the other end point and go to i v ; 

i i . i f the four points do not definitely bound the minimum, then 

discard the end point in the interval furthest from the minimum 

and go to i v ; 

i i i . i f the four points do bound the minimum, then discard the end 

point which bounds the minimum and go to i v ; 

i v . return to the search algorithm; 

A FORTRAN IV program l i s t i ng of the above search algorithm used in 

this study with the UOAs and SUMT is given in the appendices. 
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3.1Q One-dimensional search for the boundary of the feasible 
region. 

The one-dimensional search algorithm to f ind the boundary of 

the feasible region was used in this study in conjunction with MFD. 

The algorithm (programmed with the name FSMOVE) finds a sequence 

of points within the upper bound move to the boundary defined by 

the linear constraints. A quadratic polynomial is f i t t e d to each 

of the non-linear constraints and the smallest positive root ' is 

determined. One of the previous points is discarded and another' 

set of polynomials is f i t t e d to the remaining points and the new 

point. This process ts continued unt i l i t converges to the boundary 

to within the prescribed accuracy. The algorithm can be stated as: 

i . set oC =0, t - i f , f - f (t )» i - l , . . , R where R is the number 
1 1 11 i 1 

of non-linear constraints; determine the resolution (see 

section 9 of this chapter); determine the largest negative 

move (amin) and the largest positive move (amax) along c[ to 

reach the linear constraints; form the negative of the direc

tional derivatives of each of the constraint functions: 

dy = - (Vf ( t ) ) ' d s i = l , . . , R ; 
1 i 

i i . formo* , the move along ci to the second point, from 
2 

U - minimum ( ( f ( I ) - %€)/dy ; i = l , . . , r ) ; 
2 i i 

i f oOamax, then $etp* = amax; 
Z 2 

evaluate f = f ( t } at t = t + p 4 d; 
12 i 2 "2 ~ 2 ~ 
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i f any of the non-linear constraints have been violated, 

then set amax = <K and continue: 
2 

form p< , the move along d to the third point, which is an 
3 

estimate of the move to the nearest non-linear constraint 

and is found from the solutions of f (t,) - £/2 and of a 
i 

quadratic polynomial f i t t e d to the values ' f f , f , o( , 
i i 1, i2 2 

and dy , i = 1»..,R; 
i 

i f <*>amax, then s e t * * amax; 
3 3 

evaluate f = f } at t - T + d ; 
13 i 3 3 3 

i f any of .the non-linear constraints are violated, then set 

amax =<* and continue ; 
3 

reset amax and/or amin i f the boundary is bounded either 

above and/or below providing the interval of uncertainty 

w i l l be reduced ; 

form©( » the move along d to the fourth point, in a similar 
4 ~ 

manner as in step i i i , except that polynomials are f i t t e d to 
each of the constraint functions using the values 
f » , f , t* , f and ; 

i l 1 i2 2 i3 3 

i f <*. >amax, then set - amax ; 
4 4 

4 
evaluate f - f (t ) at t « t + ©t d ; 

14 1 4 4 4 

i f any of the non-linear constraints are violated, then set 

amax = and continue ; 
4 
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v i . I f the interval In which the boundary lies is less than the 

resolution, then terminate at the point in the feasible 

region; i f the maximum number of quadratic f i t s has been 

exceeded, then terminate at the feasible point nearest the 

boundary; 

v i i . discard one of the points and go to i v ; 

The quadratic polynomials are of the form 3.9.1, and the coefficients 

are determined from the formulae 3.9.7, 3.9.8 or 3.9.10 and 3.9.11. 

To reduce the amount of computer storage and e f f o r t required, advan

tage was taken of the form of the non-linear constraints for the 

structural problem 1.2; 

«T 4 CT & CT , q * l , . . , L , s*1,..,M .. .3.1Q.1. 
min qs qs max qs 

Thus polynomials were only f i t t e d to each of the C , instead of 
qs 

to each of the f ( t ) . The polynomials are of the form: 
1 

2 
<T * c*C + c t f j - c .. .3.10.2, 

qs 1 2 3 

An estimate of the move to boundary Is given by the solution of 

equation 3.10.2 with the following equations: 
or = ( < r + J^J or = ( ^ - £_) ...3.10.3, 

qs min qs 2 max qs 2 

where £ i s given In equation 3.3.3. The four possible solutions 

of equations 3.10.2 and 3.10.3 are given by: 
n 

= ( - c + /c - 4c ( c - d" + hi) )/2c , ...3.10.4 
2 V 2 1 3 max qs 1 

or 
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= C - c + / c 2 - 4c ( c - « w - h t ) }/2c , 
2 V 2 1 3 mln qs 1 

...3.10.5 

In step via* the point to be discarded is chosen in the following 

manner; 

i . order the points such that oC ^ * Cvt *» 
1 2 3 4 

i i . i f the boundary lies between 

a. o£ andoC , discard oC , unless i t is the newest point , 
1 2 4 

in which case discard ©C ; 
3 

b. o£ and<* , discard (< , unless i t is the newest point, 
2 3 1 

in which case discard ; 
4 

c. oC and ^ , discard K , unless i t is the newest point, 
3 4 1 

in which case discard oc . 
2 

A FORTRAN IV program l i s t ing of the above one-dimensional search 

algorithm used with MFD in this study is given in the appendices. 

3.11 Primal-Dual LP algorithm. 

The Primal-Dual LP algorithm, programmed with the name PRMDUL 

and used in this study with MAP and MFD, finds the optimum of the 

problem: 

minimize cj x . . .3.11.1 , 

subject to A x - b » 0 - x . 

where the values in c_, A and in b. may be either positive or 

negative. 
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The inequalities in 3.11.1 may be converted to equations by the 
addition of the variables, s. , called slack variables, 

minimize c' x + cT £ . . . 3 . 11 .2 , 

subject to A x + I_ s « b 9 0 * x , 0 < s_ . 

A basic solution may be obtained by setting x_ = 0 thus 

x - 0 , s. - b. ...3.11.3 . 

where the variables in £ are called the basic variables, and in 

x are called the non-basic variables. 

The LP algorithm moves from the solution 3.11.3 to the optimum 

feasible solution by performing elementary row operations on the 

coefficients of £ , d , A » I . and h . An optimal solution is found 

when a l l the components, of the vector c1 are greater than or 

equal to zero. The vector c_' gives the change in the objective 

function for a unit increase in any of the non-basic variables. A 

feasible solution is found when a l l the components of the vector b. 

are greater than or equal to zero. The algorithm PRMDUL determines 

an optimal solution then searches for a feasible optimal solution 

in the following steps: 

i . determine a basic (feasible or infeasible) solution ; 

i i . operate on problem 3.11.2 unt i l an optimal (feasible or 

Infeasible) solution is obtained, using the Primal simplex 

algorithm ; 

i i i . operate on the optimal solution until a feasible soilu^tion 

is obtained, using the Dual simplex algorithm. 
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The Primal and Dual LP algorithm? operate on the coefficients by 

selecting the pivot element to give the largest increase in 

optimality or the largest decrease in infeas ib i l i ty respectively. 

The Primal and the Dual algorithms are well documented11, 2 5 and 

w i l l not be detailed further. 

To save computer storage space, a condensed tableau which does 

not store the matrix I &ut stores the variables associated with 

the columns of the matrix A was used In PRMDUL. 

A FORTRAN IV program l i s t ing of the algorithm Is given in the 

appendices. 
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CHAPTER 4 

EVALUATION OF FUNCTIONS AND DERIVATIVES 

4.1 Functions and th.etr derivatives. 

The algorithms described in chapter 3 require some or a l l of 

the following quantities: 

F(t) , f ( t ) , p ( t ,£ ) . . .4.1.1 , 
i 

I F ( t ) > If ( t ) » B » ( i e ) . . .4.1.2 , 
t 

and 
2 - 2 2 

VF(t) , V f (t) , iPCt^) ...4.1.3 . 
i 

The derivatives in equations 4.1.2 and 4.1.3 may be obtained either 

exp l ic i t ly by different iat ion or by a f i n i t e difference technique. 

Thus, for problem 1.3 , 

F(t) = w' t . . .4.1.4 ; 

hence, by di f ferent ia t ion, 
2 

i F ( t ) = w , and V F(jt) * Q ...4.1.5 . 
Similarly, 

f ( t ) = (<r *- <r ) , (er - cr ) , ( t - t ) or 
i max qs qs qs min qs max j j 

( t - t ) . . .4.1.6 ; 
j min j 

hence 

i f (1) " ±i<*" » or + e , respectively .,.4.1.7 , 
1 qs j 
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where e is the jth coordinate direction vector , 

J 
and 

2 2 
I f (D = ± 1 ° " » or £ , respectively * ...4.1.8 . 

i qs 
For the function : 

0(t,e) • F(t) + gt 23 ( Vf (£} ) ) ...4.1.9 . 
t - l i 

differentiation yields : 
r 2 

W(ttf) = F ( i ) + p( S 1 / f^(t) ) ( I f ( t ) ) ) ...4.1.10,, 

and 
2 2 e r 3 10(t,P) * V F(t) + /> j:G((+(Vf (t) ) 7f (t) J f (t)) ! 

v * U=l i ~ i i ~ 
2 2 

-O/f (t) ) I f (t) }) 
i i .P.4.1.11 . 

The functions and derivatives in equations 4.1.9, 4.1.10 and 4.1.11 

can be obtained from equations 4.1.4 to 4.1.8. Equations 4.1.6 to 

4.1.8 require, in particular, the evaluation of 

2 

cr, la_ and V £ ...4.1.12 , 

for which the algorithms are described in section 2 of this 

chapter. 

An alternative procedure for obtaining derivatives is to use 

a finite difference derivative scheme. In a forward FD scheme, the 

ith component of Vy is given by: 
6y/Sx = ( y(x + Sx ) - y © )/<5x ...4.1.13 , 

i i i 
where 
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y(x) is the value of yfe)at x , 

4x is the vector ( Q,0,..0,$x . O , . . ^ ) 1 , and 
i i 

is I smai l change In the t t h variable , x . 
t i 

Similarly , 

2 
i y/dx ix = C y(>L + | x + l x ) - y ( ^ + 4 x ) - - y ( x + 6 x ) + y(x) ) 

t j t j i i 
(fee }( 6x ] 

t j 
...4.1.14 • 

Hence f i n i t e derivatives can be found for the functions F(t_) > f (1) 
i 

and 0(t,(>) using equations similar to equations 4.1.13 and 4.1.14. 

4.2 Stresses and their derivatives. 

The evaluation of derivatives as described in section 1 of 

this chapter requires some or a l l of the following quantities : 
2 

<r t v<rand V <r . . .4.2.1 , 

where 

<r is the M x L matrix of memher stresses , 

V<r is the matrix of the f i r s t partial derivatives of ^rwith 

respect to the design variables t , and 
2 

V <ris the matrix of the second partial derivatives of cr with 

respect to the design variables. 

The member stresses, gr, for the truss problems, are taken as the 

axial stress in each member and for the plate problems, as the 

effective stress in each constant stress f i n i t e element. The 

effective stress for the plate problems is defined as: 
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2 2 ~ 

+<T - ( 7 0 * + 3 ( T ...4.2.2 , 
4 * 1 2 1 2 3 

where 

(T - the effective stress, 
4 

cr = the direct stress in the f i r s t coordinate direction , 
1 

<T - the direct stress in the second coordinate direction, and 
2 

6" - the shear stress for the f i r s t and second coordinate 
3 

direction. 

In this study, the stiffness matrix method was used to f ind the 

quantities in 4 .2 .1 . 

The matrix cr is obtained by solving the matrix equation : 

P. = K u ...4.2.3 , 

for u_ and then operating on , thus : 

<r = S u. . . .4.2.4 , 

where 

£ is an N x L matrix of N applied nodal loads for L load 

cases , 

u_ is an N x L matrix of associated deformations , 

K is the stiffness matrix , and 

S is the stress-deformation transformation matrix . 

The matrix, Ycr, is obtained by differentiat ing equations 4.2.3 

and 4.2.4 with respect to the i t h design variable, t , to give : 
i 
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• • • 4 • 2 • 5, 

. . .4.2.6, 

[&p / .̂3 s [ L ^ ^ 3 - + 1 **3J 
j V / U * ] " J j ^ S / U ^ J u + s j b u / b t ^ 

where \J\ denotes a matrix. 

Rearranging equations 4.2.5 and 4.2.6 gives: 

| [&P / &t 1[ * £bK / ^ t ^ u } - KJ^u / 

£ ( V / V t l - [ } S / ? > t ^ u ] = s j b u / o t * ] . . .4.2.8, 

which are of the same form as equations 4.2.3 and 4.2.4. 
2 

The matrix 7 cr is obtained by differentiat ing equations 4.2.7 and 

4.2.8 with respect to the j t h design variable, t , to give: 
2 J 

. . .4.2.7, 

^[b P / 3t 7>t 3 - ^ K / 5t bt 3 u - [ ) K / it^ Jbu / ot 

£(bK / i t / it J + K (9 u / *t Jt 3] 
1 0 

. . .4 .2.9, 
and 

2 
f f b <r / <>t ^3 - f> S / ^t bt 1 u - f^S / frt Tfbu / dt^3 = 

L i j i j J ^ i c j 
2 

Vfbs i bt l^au / b t l + s ^ u / i t % t " \ l 
j i J i j . . .4.2.10. 

Rearranging equations 4.2.9 and 4.2.1Q gives: 

K ^P/cU cH 3 " \)Ztyht >t ^ u - fihC/J>t Tfau/it3 -[&K/dt Tbu/&t] j 
L i j t J 1 J j i " 1 

l ( U u/dt b t l 
c i j " * 

. . .4 .2 .11, 

and 
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> bydt S /dOt^ u - ^ > t / j 6 u / b t ^ £ a $ / b t ^ u / ^ 
1 <3 "10 " I J 

which are of the same form as equations 4.2.3 and 4.2.4. 

Equations 4.2.3 and 4.2.4 are solved using the stiffness method. This 

method can also be used to solve the equations 4.2.7 and 4.2.8 and 

equations 4.2.11 and 4.2.12, providing the l e f t hand sides of the 

equations can be formed. Thus the following derivatives are 

required: 

to solve equations 4.2.7 and 4.2.8: 

SE , and VS ...4.2.13 

and to solve 4.2.11 and 4.2.12: 

2 2 2 
I P , I K and ? S ...4.2.14. 

VP is the change in applied forces caused by a change in the design 
2 

variables. VP and Y_P are null matrices for the structures and the 

loading under consideration. In the stiffness method, the stiffness 

matrix, K, for the assembled structure, can be obtained from the 

element stiffness matrices, k/, for the unassembled structure by 

< 2 ^ 
( } u/dt $t 1 

using the equation: 

K 
j=1 j J J 

4.2.15, 

Where 
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A is a displacement transformation matrix which is constant 
j 

for the structure ; 
2 

hence fK and V K can be considered from an elemental level. 

The stiffness matrix for element j for the truss problems is 

given by ° : 
t E 

1 

1 - 1 

- 1 1 

...4.2.16 

where 

t is the cross-sectional area of the j t h membera 

j 

E is Young's modulus of elast ici ty for the j t h member, and 
j 

1 is the length of the j t h member, 
j 

Hence, different iat ing equation 4.2.16 with respect to the i t h 

design variable gives: 

t*Y M - i l l } for i ^ j 

IS: "I]" - 1 

...4.2.17 

...4.2.18. 

Therefore 

U = 0 
j 

. . .4.2.19. 

The plane stress plate problems can be analyzed using triangular 

constant stress f i n i t e elements. In this study the design variables 
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were taken as the nodal thicknesses of each element. The stiffness 
26 

matrix for element s , k. , can be shown to be : 
s 

k = h ( t + t + t ) C ...4.2.20 , 
s j si s2 s3 

3 A 
123 

where 

t » t , t are the three nodal thicknesses for member s , 
si s2 ts3 

A is the area of the triangular element s, and 
123 

£ is a symmetric matrix of constant coefficients 

formed from the nodal coordinates and Poisson's 

ra t io . 

Differentiating equation 4.2.20 with respect to the i t h nodal 

design variable gives: 

& i < / d t = 0 » t^sl» 1̂ s2 and i^s3 ...4.2.21 , 
s i 

/ &t = E. C , i = s l , i-s2 or i=s3 ...4.2.22 , 
s i 3$ 

123 
2 

Hence I K = 0 » ...4.2.23 . 

s 

The matrix transforms nodal displacements into member stresses. 

For the trusses, the stress transformation matrix for member j 

is given by: 
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S « I ]1 ...4.2.24 ; 

hence 

^ S / & t ^ = 0 , for a l l t and j . . . 4 .2 .25 . 

Thus, 
2 

JS = 0 and 7 S » 0 *. .4.2.26 . 
Similarly, for the plane stress plates, 

S 
j H 

V 123 / 

D ...4.2.27 , 

where 

2 is a matrix with terms which are functions of the nodal 

coordinates. 

Thus 
2 

7S = 0 and 7S - 0 ...4.2.28 . 

Thus fo r the two types of structure considered, equations 4.2.7 and 

4.2.8 simplify to 

- (dK / o t l u * Kfou / o t l ...4.2.29 , 
i J ^ i 

+ [ f c O (T/b t" ] s i ^ u / W " } . . . 4 . 2 .30 . 
i i 

Equations 4.2,11 and 4.2.12 simplify to 

- ^ K / H ^ 5 u / d t ^ + ( l K / k t ^ d u / > t J J = K u / i t 

...4.2.31 

and 
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^ 0 / d t d t ~ J * s u / 9t cVt ~J 
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• •*4•2»32 • 

The solution of equations 4.2.3, 4.2.4, 4.2.29, 4.2.30, 4.2.31 
2 

and 4.2.32 §ives cr, Vcrand V cr directly for the truss problems, 
but only gives o;, cr , cr and their derivatives for the plate 

1 2 3 

problems. The derivatives of the effective stress , cr̂ , can be 

obctained by differentiating equation 4.2.2. Thus, since 

4 

then 

•A 2 2 2 
+ cr - crcr + 3 cr 

2 12 3 •F 
4 4 

...4.2.33, 

...4.2.34, 

hence 

y( /&<r\ (frr\ /d<r\ /toA |d<r\) 

i 
...4.2.35. 

Differentiating equation 4.2.34 with respect to the j th design 

variable gives : 

L<Jt 
^ 4 
(JTcTt 

i 3 4/ 

...4.2.36, 
It 

1 J' 

...4.2.37, 
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where 

\ 2 2 
i (<r } 

4— 
dt bt 

i i 

( 
=. a 

2 
ftoAf^A : ^ /& <r \ 
m I Sit UdTdt 2 

i ' x i j ' 

M/icr \ /oWoV1 

f v 2 

o cr 

At 5t 
x 1 j 

(7/ 2 
11 &t &t 

1 0 

—1 1+60-1 —3 
dt dt J 3 [bt it 

1 
•••4•2•38• 

Equations 4.2.36 and 4.2.38 can be simplified to give: 

°l ( 2 Vt ) (>t bt 
\ r N i j 

2 2 

/ A ty \ / B j r 

2 ( it J wt 9t 
T J 1 J 

• •«4•2•39• 
2 

Equations 4.2.35 and 4.2.39 enable Vo-and 7 crto be evaluated for 

the plate problems. 

The : solutions of the stiffness equations, 4.2.3 and 4.2.4, and 

the derivative equations, 4.2.29 to 4.2.32, are given in the 

following section of this chapter. 
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i i . 

i i t . 

iv . 

v. 

jlutjon of the stiffness and derivative equations. 

fie solution of the stiffness equattons9 4.2.3 and 4.2.4, 

an by the following algorithm : 

assemble the basic data for the idealized structure: ...4.3.1 

position of nodes, location 'of members, boundary conditions, 

material properties and the applied loading ; 

determine the band width of the structure stiffness matrix, 

K , and the compact storage Index matrices ; 

calculate the element stiffness constant, stress trans

formation and weight transformation matrices ; 

Insert the boundary conditions into the element stiffness 

constant matrix so that the rigid body degrees of freedom 

are removed. (This was done by replacing diagonal terms 

of affected rows and columns with ones and the other terms 

of affected rows and columns with zeros); 

determine the design variable values (input data or output 

data from the optimization algorithms) ; form the element 

stiffness and structure stiffness matrices ; 

decompose the structure stiffness matrix, thus: K * ITLU 

where U. Is an upper triangular banded matrix, using the 

following formulae : 

A - s U U u 
l i r\ r l 

1-1 
S ( u U } K U 
r*l 13 n r j 



71 

v t i . solve £ * J U ' J U L L » u$tng a dummy solution, £ , thus: 

P. - U.1 £ » then £ R U_u , giving ju , using the following 

formulae: 

q. - /P. • U . q l l l VU } ...4.3.4 , 
i \ i r~l n r / n 

u s (q - Z J C U u ) ^ ( 1/U ) ...4.3.5 , 
i \ 1 r-t+1 t r r / i i 

where 

A is the order of the stiffness matrix. 

v i i t . solve CT - .S u_ s giving CT; 

ix . for plate problems, determine cr from CT ,0" and cr using 
4 1 2 3 

equation 4.2.2 ; 

The solution of the f i r s t derivative equations 4.2.29 and 

4.2.30 is given by the following algorithm, assuming that steps 

i to ix have been performed already: 

for i * 1,..,P , ...4.3.6 , 

x. form £&K/5t ^u ; 

x i . perform step v t i , but with (bK/dt Ju. replacing £, yielding ^du/fctj ; 

x i i . perform step vttt» but wtth^iu/&t ^ replacing u., yielding (5o/^t]J; 

x i i i . for plate problems, determine Vcr from Vcr , Vcr and vo using 
4 1 2 3 

equation 4.2.35 ; 

Steps i i i to x i i wi l l be repeated for each f u l l partial derivative 

evaluation. For step x, VK has already been formed in step i i i . 
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The solution of the second derivative equations 4.2.31 and 
4.2.32 is given by the following algorithm, assuming that steps 
i to x i i i have been performed: 

for i = 1 , . . , P ; j - i , . . , P ; ...4.3.7, 

xtv. form[^K/at ^ u / ^ t ^ + [^oK/ot^du/at^as In equation 4.2.31 ; 

xv. perform step v t t , but with the^above expression replacing £ 

xvi . perform step v i i t , but within u/dt dt j replacing u ; 
L 1 i r 

xv t i . for plate problems, determine V CT using equation 4.2.39 ; 
4 

FORTRAN IV program listings of the algorithms used in this study 

are given in the appendices. 
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CHAPTER 5 

COMPUTATIONAL EFFORT 

5.1 Introduction. 

Computational efficiency is an important consideration in 

the comparison of the NLP methods introduced in chapter 1. When 

using electronic computers, computational efficiency can be 

measured by the computational effort and the computer storage 

space required to solve the problem. The storage space required 

is becoming less important as computers increase in size. How

ever, inefficient data storage and access may increase considerably 
27 

the computational effor t . Recommendations regarding the storage 

and access of data for the computers used in this study were 

implemented wherever practical. 

The computational effort expended is a function of the 

efficiency of the computer program for the algorithm. As wil l 

be shown later in this chapter and wil l be seen in the results 

in chapter 7, the major computational effort is used in the 

evaluation of functions and their derivatives and since the routines 

used for these evaluations are common to all the algorithms, any 

inefficiencies in their programming wil l affect al l the algorithms 

similarly. 

A multiplication with present day computers takes more 

computer time than an addition or subtraction, and since divisions 
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are relatively few in number, computational effort is often 

measured by counting th.e number of multiplications required to 
> 

perform the operation under consideration. Such an analysis omits 

the computational effort involved in forming DO loops, array 

subscript arithmetic, and logical statements, and since multi

plications may compose only a small proportion of the computational 

effort expended, a more realistic measure of computational effort 

is the amount of computer time required to solve the problem. In 

this study, Central Processor Unit (CPU) time was used as the 

measure of computational effor t . Included in the CPU time are 

the times needed to load registers, to execute the instructions, 

and to store the results. Estimates for CPU time for the IBM 

360/67 are developed in the succeeding sections of this chapter 

using the following procedure : 

i . describe the algorithm ; see preceding chapters ; ...5.1.1 

i i . program the algorithm in FORTRAN : see appendices ; 

i i i . translate the FORTRAN program into an ASSEMBLER program ; 

iv . assign to each of the ASSEMBLER instructions a published 

average instruction time6 , 0 for the computer used ; 

v. sum the times. 

I t should be noted that step iv was only performed on the 

instructions which constituted the major computational effort . 

I t should also be noted the times resulting from the application 

of procedure 5.1.1 are dependent on the programming of the FORTRAN, 

on the FORTRAN/ASSEMBLER translator (compiler) and on the computer 
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and hence can only be, at best, approximations to the actual 
effort required. 

In an optimisation, the computational effort expended con

sists of three components : 

1. the effort used by the optimisation algorithm ; 

2. the effort used to evaluate functions ; 

3. the effort used to evaluate derivatives. 

Estimates of these three components are considered in the 

following sections of this chapter. 

5.2 Effort used by the optimisation algorithms. 

By inspection of the algorithms presented in chapter 3, i t 

can be seen that a large proportion of the computational effort 

wi l l be expended in performing the following steps in the 

algorithms: 

MAP - step v. solve the LP problem , 

MFD - step v. solve the LP problem to give the search 

direction, and 

SUMT - step i i i . minimize J3(t,f) using the UOAs, where a large 

proportion of the effort is used in determining 

the search direction. 

In the LP problems, the major computational effort in each LP 

iteration, is used in finding a pivot element and in transforming 

the LP tableau. Procedure 5.1.1 was applied to the primal-dual 

algorithm described in the previous chapter and gave the 
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computational effort to select one pivot and then transform the 

LP tableau as 

T = 39.3 r c + 144.1 r + 101.5 c + 91.9 . . . 5 . 2 . 1 , 
5.2.1 

where 

T is the CPU tima estimate in microseconds on the IBM 360/67 ; 

r is the numher of rows in the matrix A of the LP problem 

(3.2.1), and 

c is the number of columns in the matrix A of the LP problem. 

11 
Zoutendijk estimates that the number of iterations required by 

a primal simplex LP algorithm to produce an optimal solution is 

between 1 and 2.5 times the number of rows in the primal 

problem. Similarly the number of iterations required by a dual 

simplex LP algorithm to produce an optimal solution is between 1 

and 2.5 times the number of columns in the primal problem. 

Observations of preliminary trials on the structural problems 

indicate that a value of 1.5 times the number of columns gives 

approximately the number of iterations required by the LP algorithm 

used. Thus an estimate of the computational effort to find the 

solution of the LP problems is approximately given by : 
2 2 

T = 58.95 c r + 152.3 c + 216.2 r c + 137.9 c ...5.2.2 
5.2.2 

For the class of problems considered, when using MAP, 

r = P + 2LM , c « P ...5.2.3, 

and thus r is approximately given by : 
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r = 6 P ...5.2.4 ; 

hence the computational effort to find the solution of the LP 
problems associated with. MAP is given by : 

3 2 
T * 353.7 P + 145Q P + 137.9 P ...5.2.5. 
5.2.5 

When using MFD for the problems considered, the number of rows is 

given by: 

r p + v2LM ...5.2.6, 

where v is the proportion of non-linear constraints considered as 

active at the current point. 

The value of v has been found to give r approximately as : 

r = 1.5 P ...5.2.7 ; 

hence the computational effort to find the search direction by 

solving the LP problems is given by : 
3 2 

T « 88.43 P + 476.6 P + 137.9 P ...5.2.8. 
5.2.8 

When using MFD, extra computational effort is used to locate the 

boundary of the feasible design space. Applying procedure 5.1.1 

to the search algorithm (FSMOVE) gives the computational effort 

necessary to locate one point by using a quadratic f i t and associated 

'housekeeping' operations as : 

T = 339.0 R , ...5.2.9 , 
5.2.9 

where R is the number of non-linear constraints used. 

Assume that R = 2P , then 

T <= 678.0 P ...5.2.10. 
5.2.10 
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Typically, only three points are required to locate the boundary, 
hence 

T = 2034 P ...5.2.11. 
5.2.11 

Thus, with MFD, the effort to generate and search along a direction, 

excluding any function or derivative evaluations, is given approxi

mately by combining equations 5.2.8 with 5.2.11 to give: 
3 2 

T = 88.4 P + 476.5 P + 2172 P ...5.2.12 
5.2.12 

When comparing equations 5.2.8 with 5.2.12, i t can be seen that the 

extra effort to search is not as significant as the effort required 

to generate the direction. 

When Newton's method is used with. SUMT to minimize 0(jt,£), the 

major computational effort is used in solving equations 3.5.7, which 

are both linear and symmetric. The procedure 5.1.1 when applied to 

the equation-solving algorithm (GELS) gave the computational effort 

to solve equation 3.5.7 as: 
3 2 

T = 10.68 P + 112.9 P + 102.2 P ...5.2.13 
5.2.13 

When Fletcher-Powell's method is used with SUMT, the major compu

tational effort is in steps i i i and v as described in chapter 3 

section 6. The procedure 5.1.1 was applied to those steps in the 

algorithm (FLEP). The computational effort used to perform steps 

i i i and v is given by: 
2 

T * 129.6 P + 99.20 P + 12.61 ...5.2.14. 
5.2.14 

When Stewart's method is used with SUMT, the computational effort 

required to perform steps i i i and v, as described in chapter 3 
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section 7 is given as : 
T « 129.6 P + 4GQ.6 P + 40.80 ...5.2.15. 
5.2.15 

When Powell's method is used with SUNT, the computational effort 

to generate a new search direction and to perform the matrix 

manipulation prior to each one-dimensional search is given by the 

following : 

T * 16.21 P + 56.78 ...5.2.16. 
5.2.16 

When using a one-dimensional search to find the minimum along a 

search direction in conjunction with an UOA and SUMT, the computa

tional effort necessary to perform one quadratic f i t and associated 

'housekeeping' operations., but to exclude any function or derivative 

evaluations was estimated by procedure 5.1.1 to be: 

T » 23.59 P + 412.2 ...5.2.17. 
5.2.17 

A lower bound on the numher of new points along the search direction 

is 3 , although typically between 4 and 9 points along the direction 

are required to locate the minimum. Thus, assuming that on average, 

6% points are required to locate a minimum and that T is 
5.2.17 

approximately equal to the computational effort required to locate 

any of the points along the search direction, then the computational 

effort used during a one-dimensional search is given by : 

T = 153.3 P + 2679 ...5.2.18. 
5.2.18 

Combining equations 5.2.18 with 5.2.13 to 5.2.16 gives the 

computational effort to generate and search along a directionj but 
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excludes the effort for any function or derivative evalnations, 

for Newton's, method as : 
3 2 

T * 10:68 P + 112.9 P + 255.5 P + 2679 
5.2.19 . . .5 .2 .19 9 

for FT etcher-Powel11s method as : 
2 

T = 129.6 P + 252.5 P + 2692 . . .5.2.20, 
5.2.20 

for Stewart's method as ; 
2 

T = 129.6 P + 553.9 P + 2720 . . .5 .2.21, 
5.2.21 

and for Powell's, method as : 

T = 169.5 P + 2736 . . .5 .2.22. 
5.2.22 

Comparing equations 5.2.13 to 5.2.16 with 5.2.19 to 5.2.22, i t can 

be seen that, with the exception of Powell's method, the computa

tional effort to perform a search is not very significant compared 

with the effort to generate the direction. 

5.3 Effort used in evaluatjng functions. 

The function evaluations required by the optimisation algorithms 

are the determination of : 

F(t) , r ( t ) and/or 0 ( t 5 £ ) . . ,5.3.1 , 

in which the major computational effort is used in determining the 

stresses, £ . The algorithm used to determine cr is given in section 

3 of chapter 4. In the optimisation process, steps i to iv of 

the algorithm wil l be performed only once, whereas steps v to v i i i 
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wil l be repeated many- times. Therefore the computational effort 
used in steps, i to tv wi l l not be considered further. 

All the major computational manipulation in steps v to v l i i can 

be formed from the following operations : 

1. locate an element in a vector, using subscript arithmetic, 

and post i t into another vector ; 

2. add the product of an element in another matrix and an 

element in a vector to an element in a matrix ; 

3. add the product of two elements in a matrix to a scalar ; 

.4. replace an element in a matrix by the difference of the 

element and a scalar ; 

5. replace a diagonal element i;n a matrix by the reciprocal 

of i ts square root ; 

6. replace an element of a matrix by its product with an 

element of a vector. 

Applying procedure 5.1.1 gives the following results: 



82 

Table 5.3.2: Computational effort for basic operations 

Operation CPU time (microseconds) 

1 19.24 

2 19.31 

3 17.96 

4 23.22 

5 115.28 

6 15.53 

Using the values in table 5.3.2, the computational effort to 

complete step v i s given approximately- by : 

T = 19.24 (M)(C) + 19.31 (M)(E) . . . 5 . 3 . 3 , 
5.3.3 

where M is, the number of members , 

C is the number of design variables which affect the 

member st i f fness matrix, and 

E i s the number of elements in the upper part of the 

member stiffness matrix. 

Similarly, the computational effort to complete step vi i s given 

approximately by : 

T = 17.96. (B)(B-l)(3A-2B+l)/6 + 23.22 (B-1) (2A-B,|/2 
5.3.4 

+ 115.28 A + 15.53 (B-l)(2A-B)/2 . . . 5 . 3 . 4 , 

or 

T * 17.96. (B)(B-l)(3A-2B+l)/6 + 38.75 (B-l)(2A-B)/2 
5.3.5 

+ 11.5.28A . . .5 .3.5 9 
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where A is the order of the. system stiffness, matrix, and 
B is the bandwidth of the system stiffness matrix 

The computational effort to complete step v i i is given approxi
mately by: 

T = (2) ((19.31 (B-l)(2A-B)(L)/2) + (38.75 (A)(L))) 
5.3.6 . . .5 .3.6 

where L i s the number of 1oad cases. 

The computational effort to complete step v i i i is given 

approximately by : 

T = 19.24 (L)(M)(D) + 19.31 (L)(M)(D)(S) . . .5 .3 .7 , 
5.3.7 

where D is the number, of nodal displacements associated with 

each member, and 

S i s the number of components of stress associated with 

each, member. 

Equations 5.3.3 to 5.3.7 can be simplified by substituting values 

for the variables from structural problems of the type given in 

chapter 6. Thus, for th.e truss problems, assume that 

M = P , C = 1, E = 10, A - 2P + 2, B = P + 3, L = 2, D = 4, and 

5 1 s . • • • • 5 • 3 • 8 • 

Substituting equations 5.3.8 into .5.3.3 gives: 

T = 19.24 P + 193.1 P - 212.3 P . . .5 .3 .9 , 
5.3.9 

into 5.3.5 gives :, 

T = 17.96 (P+3)(P+2)(4P+l)/6 + 38.75 (P+2)(3P+l)/2 + 
5.3.10 

. 115.28 (2P+2) .. .5.3.10 , 

or 



T = 12.0 P + 121.0 P +453.0 P + 287.3 ...5.3.11 , 
5.3.11 

into 5.3.6 gives : 

T „ = (2) ( ( 19.31 (P+2)(3P+l)/2) + (38.75(2P+2)(2))} 

or 
2 

T * 57.9 P + 445.2 P + 348.6 ...5.3.13. 
5.3.13 

in to5 .3 .7 gives : 

T «. 19.24 (2)(P)(4) + 19.31 (2)(P)(4)(1) ...5.3.14, 
5.3.14 

or 

T = 308.4 P ...5.3.15. 
5.3.15 

Similarly, for tlie plate prob.lemSj assume that 

M -;1.5P-4,.C * 3,.E * 21, A * 2P, B = .25P + 6.1 = 2, D = 6 and 

S = 4 , ...5.3.16. 

Substituting equations 5.3.16 Into 5.3.3 gives: 

T = 19.24(1.5P-4)(3) + 19.31(1.5P-4)(21) = 

694.9 P - 1853 ...5.3.17, 

Into 5.3.5 gives: 

T = 17.96(.25P+6)(.25P+5)(6P-.5P-ll)/6 + 38.75(.25P+5)(4P-
5.3.18 

.25P-6)/2 + 115. ...5,3.18, 

or 
3 2 

T = 1.03 P + 61.4 P + 968.1 P - 2073 ...5.3.19, 
5.3.19 

into 5.3.6 gives : 

T = (2)C(19.31)(.25P-5)(4P-.25P-6)/2 + (38.75)(2P)(2)) 
5.3.20 . ...5.3.20, 
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or 
2 

T * 18.1 P + 488.1 P - 579.3 . . .5 .3 .21, 
5.3.21 

into 5.3.7 gives : 

T = 19.24 (.2)(1.5P~4)(6) + 19.31 (2)(1.5P-4)(6)(4) 
.5.3.22 ...5.3.22, 

or 

T = 1737 P - 4631 ...5.3.23. 
5.3.23 

From equations 5.3.9, 5.3.11, 5.3.13 and 5.3.15, the computational 

e f f o r t needed to evaluate the stresses in the trusses is given 

approximately by : 
3 2 

T = 12.G P + 178.9 P + 1420 P + 635.9 ...5.3.24. 
5.3.24 

From equations. 5.3.17, 5.3.19, 5.3.21 and 5.3.23, the computational 

e f f o r t needed to evaluate the stresses in the plates is given 

approximately by : 
3 2 

T = 1.03 P + 79.5 P + 3888 P - 9136 ...5.3.25. 
5.3.25 

5.4 Effor t used in evaluating derivatives. 

The derivative evaluations required by the optimisation 

algorithms are the determination of : 

2 2 2 
W ( t ) , V f ; ( t ) , I 0 ( t s ( . ) , I F ( t ) , I f;(t) and 7 0( t , ? ) . . .5 .4.1, 

in which the major computational e f fo r t is used to determine the 

derivatives of the stresses.. The algorithms used in this study are 

given in section 3 of chapter 4. Using the values in 5.3.2, the 
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computational e f f o r t to complete stepxp times is given 

approximately by : 

T = (19.24 (L)(D)(M)(C)/(P) + 19.31 (L) (D^)(M) (C)i(P)J (P) 

The e f fo r t to complete step x i , P times 7is. given by: 

T « / T ) (?) ...5.4.3 

5.4.3 v 5.3.6 / 

and to complete step x i i f P times^is given by: 

T b . / T V CP) . . .5.4.4, 

5.4.4 V 5.3.7/ 

Thus, for the truss problems, substituting the values 5.3.8 into 

equation 5,4.2 gives: 
T = 19.24 (2)(4)(P)(1) + 19.31 (2)(16)(P)(l) • 

5.4.5 
* . 771.8 P . . .5.4.5, 

into equation 5.4.3 gives: 
3 2 

T *. 57.9 P + 445.2 P + 348.6 P . . .5.4.6, 
5.4.6 ' 

and into equation 5.4.4 gives: 
2 

T «. 308.4 P . . .5.4.7. 
5.4.7 

Similarly for the plate problems, substituting the values 5.3.16 

into equation 5.4.2 gives: 

T = 19.24 (2)(6)(1.5P-4)C3) + 19.31 (2)(36)(1.5p-4)(3) • 
5.4.8 

5210 P - 16,960 . . .5.4.8, 

into equation 5.4.3 gives: 
3 2 

T = 18.1 P + 4 8 8 . 1 P - 579.3 P . . .5.4.9, 
5.4.9 
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and into equation 5,4.4 gives; 

T *. 1737 P - 4631 P ...5.4.10. 
5.4.10 . 

From equations 5,4.5 to 5,4.10, the computational e f fo r t to 

evaluate the f i r s t derivatives of stress, assuming that the 

stresses have already been evaluated, is given approximately by: 
3 2 

T = 57.9 P + 753.6 P + 1120 P . . .5 .4.11, 
5.4.11 

for trusses, and approximately by: 
3 2 

T 18,1 P + 2225 P ~ 16960 ...5.4.12, 
5.4.12 

for the plates. 

The computational e f fo r t to evaluate the f i r s t derivatives of 

stress using f i n i t e differences, is given approximately by: 
4 3 2 

T ^ 12.0 P + 178.9 P + 1420 P + 635.9 P 
5.4.13 

..,5.4.13, 

for the trusses, and hy: 
4 .3 2 

T = 1.03 P + 79.5 P +3888 P - 9136 P ...5.4.14, 
5.4.14 

for the plates. 

The computational e f fo r t to complete step xiv rP(P+1}/2 

times | is given by:. 

T = / T \ (2)(P+l)/2 ,..5.4.15, 
5.4.15 V 5,4.2/ 

to complete step xv , P(P+1}/2 times is given by: 

T - / T \ (P+D/2 ...5.4.16, 
5.4.16 \ 5.4.3 ) 

and to complete step xviP(P+1 )/2 .timesys. given by: 
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T * / T ) (P+l)/2 ...5.4.17. 
5.4.17 I 5.4.4/ 

Thus* substituting the values 5.3.8 for the truss problems into 

equation 5.4.15 gives: 
2 

T * 771.8 P + 771.8 P ...5.4.18, 
5.4.18 

into equation 5.4.16 gives.: 
4 3 2 

T = 28.95 P + 251.6 P + 396.9 P + 348.6 P 
5.4.19 

•..5.4.19, 

and into equation 5.4.17 gives: 
3 2 

T « 154.2 P + 154.2 P ...5.4.20. 
5.4.20 

Similarly* for the plate problems, substituting the values 5.3.16 

into equation 5.4.15 gives.: 
2 

T = 5210 P - 11,750 P - 16,960 ...5.4.21, 
5.4.21 

into equation 5.4.16 gives: 
4 3 2 

T * 9.05 P + 253.1 P - 45.6 P - 289.7 P 
5.4.22 

...5.4.22, 

and into equation 5.4.17 gives: 
3 2 

T = 868.5 P - 1437 P - 2316 ...5.4.23. 
5.4.23 

From equations 5.4.18 to 5.4.23, the computational effort to 

evaluate the second derivatives of stress, assuming that the 

stresses and their f irs t derivatives have already been evaluated, 

is given approximately hy: 
4 3 2 

T = 28.95 P" + 405.8 P + 1323 P + 1120 P 
5.4.24 

...5.4.24, 
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for the trusses, and approximately by; ^ 

T = 9.05 P + 1122 P + 3728 P - 12040 P...5.4.25, 
5.4.25 

for th_e plates. 

The computational effort to evaluate the second derivatives of 

stress using finite differences, is given approximately by: 
5 4 3 2 

T = 6.00 P + 95.5 P + 798.9 P + 1Q27 P + 317.9 P 
5.4.26 

...5.4.26, 

for the trusses, and approximately by: 
5 4 3 2 

T * .515 P + 40.3 P + 1984 P - 2624 P - 4568 P - 4568 
5,4.27 

...5.4.27, 

for the plates. 

Figures 5.4.28 and 5.4.29 respectively plot estimated compu

tational effort required for the trusses and plates of chapter 6 

using an IBM 360/67 computer to evaluate a function (as given 

approximately by equations 5.3.24 and 5.3.25), a f i r s t derivative 

(as given by equations 5.4.11 to 5.4.14), and a second derivative 

(as given by equations 5.4.24 to 5.4.27). 
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Table 5.4.30: Estimated function and derivative effort ratios*-, E 

P-BAR TRUSSES , P « P-NQDE PLATES , P * 
A B 

P « P * 

3 7 13 21 4 9 16 25 

V0 0 1.81 2.75 3.56 4.05 2.55 5.34 8.07 10.8 

vh 0 4.18 12.0 25.8 45.3 11.0 32.4 76.6 150. 

Px0 0 3.00 7.00 13.0 21.0 4.00 9.0Q 16.0 25.0 

2 
(P +P)0 0 6.00 28.0 91.0 231. 1Q.0 45.0 136. 325. 

Px0 0.60 0.34 0.27 0.19 0.64 0.59 0.51 0.43 

2 2 
V 0 (Pjp)0 0.70 0.43 0.28 0.20 0.91 0.72 0.56 0.46 

Table 5.4.30 gives effort ratios obtained from the results shown 

in figures 5.4.28 and 5,4.29. The effort ratios are defined by: 

E - the computational effort to evaluate A / the computational 
A,B 

effort to evaluate B ...5.4.31. 

5.5 Total computational effort. 

The results obtained in the previous three sections of this 

chapter are summarised in this section. 

One iteration in MAP requires, a function evaluation, a f irs t 

derivative evaluation, and the solution of the LP problem. Thus 

an estimate of the total computational effort required by MAP to 

perform one iteration on a truss problem, is given by: 
3 2 

T = 423.6 P + 2383 P + 2678 P + 635.9 . . .5.5.1, 
5.5.1 
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and on a plate problem is, given by; 
3 2 

T = 372.8 P + 3755 P + 401'8 P - 26100 ...5.5.2. 
5.5.2 

One search in MFD requires, a function evaluation, a f irs t 

derivative evaluation, the solution of a LP problem and two more 

function evaluations on average, to locate the next set of con-

straints. Thus an estimate of the total computational effort 

required by MFD to perform one search on a truss problem, is given 

by: 
3 2 

T = 182.3 P + 284Q P + 7549 P + 1908 ...5.5.3, 
5.5.3 

and on a plate problem is given by: 
3 2 

T = 1Q9.6 P + 2940 P + 13840 P - 44370 ...5.5.4. 
5.5.4 

One search in Newton's method with SUMT requires a function 

evaluation, a f i r s t and second derivative evaluation and 5.5 more 

function evaluations on average, to find the minimum along the 

direction. Thus an estimate of the total computational effort 

required by Newton's method to perform one search on a truss 

problem, is given by: 
4 3 2 

T = 29.0 P + 552.0 P + 3351 P + 11720 P + 6812 ...5.5.5 
5.5.5 

and on a plate problem* is given by; 
4 3 2 

T = 9.Q5 P + 1158 P + 6583 P + 13490 P - 73670 ...5.5.6, 
5.5.6 

If the objective function were quadratic, then Newton's method 

would require only one iteration to find its minimum. 
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One search tn Fletcher-Powell*$ method with SUMT requires a 

function evaluation, a f irs t derivative evaluation and 5.5 

function evaluations, on average, to find the minimum along the 

direction. Thus, an estimate of the total computational effort 

required by the method to perform one search on a truss problem, .Is 

given by: 
3 2 

T = 135.9 P + 2Q47 P + 10600 P + 6825 ...5.5.7, 
5.5.7 

and on a plate problem, Is given by: 
3 2 

T = 24.8 P + 2872 P + 25520 P - 73660 .. .5.5.8. 
5.5.8 

Similarly, when Stewart's method with finite difference derivatives 

is used, the total computational effort to perform one search on 

a truss problem Is given by: 
4 3 2 

T = 12.0 P + 156.9 P + 2712 P + 10400 P + 6853 ...5.5.9, 
5.5.9 

and on a plate problem, Is, given by: 
4 3 2 

T ^ 1.03 P + 86.2 P + 4535 P + 16690 P - 56670 ...5.5.iK). 
5.5.10 

I f the objective function were quadratic, then both Fletcher-Powell's 

and Stewart's methods would require no more than P iterations to 

find its minimum. 

When Powell's method is used with SUMT, then the total com

putational effort to form and search along a direction on a truss 

problem, is given b :̂ ^ 

T * 78.Q P + 1163 P + 9393 P + 6869 ...5.5.11, 
5.5.11 

• 

and on a plate problem, Is given by: 
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3 2 

T = 6.7Q P + 517 P + 25440 P - 56650 ...5.5.12. 
5.5.12 

Powell's method requires, P or P+l searches per iteration, and 

requires no more than P Iterations to minimize a quadratic function. 

For the truss problems and the plate problems respectively, figures 

5.5.13 and 5.5.14 plot estimates of the computational effort required 

by each method to complete one iteration using an IBM 360/67 computer 

(as given by equations 5.5.1 to 5.5.12) against the number of design 

variables. 

An Iteration is defined as: 

the solution of one LP problem when using MAP, 

the solution of one-dimensional search when using MFD, Nl, FP 

or ST, and 

the solution of P one-dimensional searches when using PQ. 

Measurements of the actual computational effort used by each 

algorithm during one iteratlonare given in chapter 7. 
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CHAPTER 6 

TEST PROBLEM DATA 

6.1 Description of the testa. 

Chapter 5 developed estimates of the computational effort 

required by each of the algorithms on the two types of structural 

problem under consideration when using an IBM 360/67 computer. 

This chapter gives details of test problems investigated using 

an IBM 370/145 computer to ascertain the actual computational 

effort used by each of the algorithms. The following results were 

recorded: 

1. the number of 

a. one-dimensional searches, 

b. function evaluations, and 

c. derivative evaluations; 

2. the CPU time expended in 

a. evaluating functions, 

b. evaluating derivatives, and 

c. performing those operations required by the optimisation 

algorithms*, and 

3. the value of 

a. the objective function and 

b. the structural weight. 
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The CPU times* measured using a system subroutine, do not 

include CPU effort expended performing input/output operations. 

The test structures used are: 

3, 7, 13 and 21 member pin-jointed plane trusses, and 

4, 9, 16 and 25 node idealization plane stress plates, 

al l subject to two load cases, with upper and lower bounds on 

stress and design variable values. Data for the structures are 

given in the following sections of this chapter. 

The optimisation algorithms used are summarized in section 7 of 

chapter 2 and are detailed in chapter 3. Selection is made of 

arbitrary coefficients and other parameters required by the 

algorithms in section 3 of this chapter. 

6.2 Test structure data 

The trusses used in this study are similar to one investigated 
29 

by Schmit . The design variables are the member cross-sectional 

areas. The configurations of the test trusses are shown in figure 
6.2.1 and have the following common data: 

initial cross-sectional area of all members = 1.0, 

load case 1, P = 15.0, P - 25.9808, 
1 2 

load case 2, P =-20.0, P = 0.0, 
1 2 

Young's modulus of elasticity = 1.0, 

density =1.0, 

t .«. = 20.0, ...6.2.2 
max j 

t = 0.01, 
min j 
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<r - 20.0, 
max qs 

CT =-15.0. 
mtn qs 

The plane stress plates used In tots study are rectangular and 

are subject to two load cases, one of pure tension and one of 

pure shear. The nodal thicknesses of the finite element idealiza

tion are the design variables. The plates have the configurations 

shown in figure 6.2.3 and have the following common data: 

the initial thicknesses of the nodes are determined from 

linear interpolation using the initial thicknesses of the 

nodes of the 4 node plate, 

Young's modulus of elasticity - 10,000,000.0, 

Poisson's ratio = 0.3, 

density * 2.0, 

t = 1.0, ...6.2.4 
max j 

t = 0.25, 
min j 

cr ~ 15,000.0 - - <T 
max qs min qs 

Figure 6.2.5 shows the configuration of a 21 bar bridge 

which was also used to test the optimisation algorithms. The 

bridge was subjected to one dead load and four live load cases. 

The live loadings are of the type imposed by vehicles on a bridge 

truss. Table 6.2.6 gives load data. Other pertinent data are: 
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2 
initial area of al l members * 95.0 cm » 
initial weight « 1Q6.7 kN * lQ.86Mg, 

2 
Young's modulus of elasticity ~ 21 ,€00 kN/cm , 

-5 3 -5 
density = 7.698 x 10 kN/cm « 0.785 x 10 Mg/cm 

2 
t = 100 cm , 
max j 

2 
t = 10 cm , 
min j 

2 2 
<T « 16.5 kN/cm , and <r * - 12.0 kN/cm 
max qs min qs 

Results for this structure are given in the appendices 
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Table.6,2.6: Loadings on the 21 bar bridge C kN') 

Load Dead load load case 
1 

Live Load 
load case load case 

2 3 
load case 

4 

X3 
- - 40 - 40 -• 

X 
5 

- - - 40 + 40 . -

X 
7 

- -- - + 40 + 40 

X 
9 

- • -, •PI to. + 40 

Y 
2 

10 • - - ' 

Y 
3 

55 + 20.0 + 200 

Y 
4' 

15 -. -

Y 
5' 

55 +200 + 200 -• 

Y 
6' 

15 • _ _, 

Y 
7 

55 + 200 + 200 

Y 
8 

15 - -

Y 
10 

10 . - -
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6.3 Qpttmtsatton algorithm data 

Operational characteristics of optimisation algorithms are 

dictated by control parameters and/or arbitrary coefficients. 

Values for the arbitrary coefficients. (o< in equation 3.2.2 for 

MAP, c in problem formulation 3.3.19 for the MFD, and c in 
i 

equation 3.4.2 for the SUMT) are selected in section 4 of this 

chapter. Values for the control parameters required by the 

optimisation program used in this study are given below. 

The control parameters are used by the optimisation pcogram 

to determine when control should, be returned from a subroutine 

to the calling subroutine or program and to determine when the 

optimisation should be terminated. The control parameters are 

set in the main program or are read as data input. The algorithm 

for the main program used is: 

i . read in structural data and optimisation data; ...6.3.1 

i i . set values for the control parameters for the algorithms 

on this iteration of the main program; 

i i i . go to the optimisation algorithm and on return from the 

algorithm go to iv; 

iv. record results (section 1 of this chapter); 

v. i f the optimisation should be terminated, report results 

and terminate; i f the optimisation should not be terminated 

go to i i . 

In step i , the following optimisation data are input: 
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1. the val ues of the arhitrary coefficients; 

2. the relative accuracy o f 

a. number representation and 

b. function and derivative evaluations; 

3. the minimum allowable relative rates of 

a. reduction in weight, 

b. reduction in objective function, and 

c. change in a l l the design variable values; 

4. the resolution of design points; and 

5. the maximum number of main program iterations allowed. 

The data items, 2a and 2h are used by many of the algorithms to 

generate the test values in the algorithms. The relative accuracy 

of number representation depends on the absolute magnitude of the 

number represented, but was, taken to be an average value of 

0.0QQ 000 1 for the computers used in the tests. Preliminary 

tests showed that the relative accuracy of function and derivative 

evaluations was approximately 0.000 001. 

Data item 3a is required i.n step v of the main program 

algorithm. The program is terminated i f the actual relative 

reduction in weight during the latest main program iteration is 

less than the value 3a. A value of 0.000 010 per main program 

iteration was used. 

Data items. 3b and 3c are used in step i i i by the optimisation 

algorithms to transfer control to the main program. Thus, i f the 
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re la t i ve reduction in the objective function and relative change 

in a l l the design variables are less than the values 3b and 3c, 

then the optimisation algorithms return control to the main program. 

A value of Q.001 per optimisation algorithm iteration was used for 

both. 3b and 3c'. 

Data item 4 is used by- the. one-dtmenstonal search algorithms. 

A value of 0.001 was used for the resolution of design points. The 

maximum number of main program iterations, data item 5, was set 

at .7. 

The control parameters, set In step i i are: the maximum 

number of quadratic f i t s allowed in each one-dimensional search 

and the maximum number of optimisation algorithm iterations allowed 

per main program i terat ion. 

Table 6.3.2: Maximum number of algorithm iterations allowed 

Algorithm Maximum number of 
iterations per main 
program iteration 
allowed. 

MAP 1 + 1/3 * 

MFD 4 + 1/2 

PO 

ST (2 + 1/2)P 

FP 

Nl 2 + 1/2 

N2 (1 + P(3 + i ) ) / 2 

* where i. Is the i teration number of the main program. 



109 

In step i i , the maximum number of quadratic f i ts allowed per 

one-dtmenstonal search was set at (6 + t/3) for all the 

algorithms except MAP. 

In step H i of the main program algorithm* the optimisation 

algorithms return to the main program vthen the maximum number of 

iterations given in table 6.3.2 is exceeded. 

The results in step iv of the main program algorithm are 

listed in section 1 of this chapter. When MAP is being used, the 

weight of a feasihle design obtained from an infeasible solution 

is also recorded. The feasible design is determined by multiplying 

all the design variables of the infeasible solution, by the ratio 

of the stress which violates the allowable stresses by the greatest 

amount to the appropriate allowable stress. The weight obtained 

from the feasible design is called the 'scaled weight' in the 

following chapters. 

In step v of the main program algorithm, the following tests 

are made for termination: 

i . terminate for all algorithms except MAP, i f the weight has 

increased; 

i i . terminate i f the design is feasible or acceptably infeasible, 

and i f the relative rate of change in weight during the 

latest main program iteration is less than the test value 

data item 3a; 

i i i . terminate if.the number of main program iterations exceeds 

the test value, data item 5. 



no 
In test i t , a design ts considered acceptably infeasible providing 

none of the stress constraints are violated by more than 0.000 001 

cr 
max qs 

6.4 Optimisation algorithm arbitrary coefficients. 

Preliminary computer runs were made to establish suitable values 

for the arbitrary coefficients of th.e optimisation algorithms. The 

three bar and seven bar trusses were used as the test structures for 

these runs. 

For the three and seven bar trusses respectively, figures 

6.4.1 and 6.4.2 plot weight against CPU time for the values of the 

MAP arbitrary coeff icients from 0.10 to 0.40. From the results 

shown, o(was selected as 0.2Q for al l the computer runs reported 

in chapter 7. 

For the three and seven bar trusses respectively, figures 

6.4.3 and 6.4.4 plot weight against the number of derivative 

evaluations for the values of the MFD arbitrary coefficients c 
i 

(for all i ) from 0.0001 to 10.0. From the results shown in these 
figures, c for all i was set at 0.10 for all the computer runs 

i 
reported in chapter 7. 

For the three bar truss only, figures 6.4.5 to 6.4.24 plot 

weight against CPU time for the values of the SUMT arbitrary 

coefficient c from 1/10 to 1/320. For data items 3b and 3c 

of section 3 of this chapter, figures 6.4.5 to 6.4.8 have the 

values of 0.005, 0.001, 0.0002 and 0.00004 respectively on 

Newton(l)'s method. Similarly, figures 6.4.9 to 6.4.12, 6.4.13 to 



in 
6.4.16 and 6.4.17 to 6.4.20 have the above values on Fletcher-

Powell's, Stewart's and Powell's methods respectively. For 

Newton(l}!$, Fletcher-Powell's, Stewart's and Powell's methods 

respectively, figures 6.4.21 to 6.4.24 have, for data items 3b 

and 3c, the initial value of 0.001, which is then reduced, as 
22 

recommended by Moe , by a constant factor of 0.4 on each 

succeeding SUNT iteration. From the results shown in figures 

6.4.5 to 6.4.24, an efficient and consistently effective choice 

for the value of the SUMT arbitrary coefficient c is 1/160. 

This value was used for the computer runs reported in chapter 7. 

Figures 6.4.5 to 6.4.24 also verify that the value of 0.001 for 

data items 3b and 3c of section 3 is efficient and that the scheme 

suggested by Moe does not seem to offer significant computational 

advantages. 
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CHAPTER 7 

TEST RESULTS AND DISCUSSION 

7.1 Introduction 

Throughout this chapter the following definitions are used: 

computational e f fo r t * CPU time expended using an IBM 370/145 

computer, 

A-B e f f o r t ratio = E = computational e f fo r t either to perform 
A, B 

operation A or using method A divided by 

computational e f fo r t either to perform 

operation B or using method B, 

minimum weight (MM) = lowest recorded weight of a l l feasible 

designs encountered by any of the 

algorithms. 

near minimum weight (Nl#)=100.5%of the minimum weight defined 

above. 

Slight changes in the arbitrary coefficients can alter the 

computational e f f o r t required by the algorithms. Nevertheless 

i t i s assumed in chapter 6 that either the optimum choice or an 

equally non-optimum choice has been made for the arbitrary 

coefficients of tlie algorithms on a l l of the problems. 

7.. 2 Computer results. 

Table 7.2.1 shows on which problems tfie algorithms were 

tested and indicates whether the near minimum was achieved. 
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Failure to achieve the near minimum weight (NMW) was usually 
caused by the upper time l imi ts s.et for the computer run. How
ever, MFD fai led to achieve the near minimum on both the 21 bar 
truss and the 25 node plate because the LP algorithm lacked ade
quate precautions to prevent cycling. Powell's method and 
Stewart's method were not run on the large problems because 
earlier runs on the smaller problems had established that these 

algorithms were not as e f f i c i en t as the other algorithms. 

Table 7.2.1: Computer tests made 

P-BAR TRUSSES P-NODE PLATES 

ALG 3 7 13 21 4 9 16 25 

MAP Y X , Y Y Y Y Y Y 

MFD v Y Y Y N Y Y Y N 

Nl Y Y Y Y Y Y Y Y 

N2 Y Y Y N Y Y Y Y 

FP Y Y Y Y Y Y Y Y 

ST Y N N - Y Y Y -
PO Y N - - Y Y -

Y = algorithm reaches the NMW of the problem, 

N - algorithm does not f ind the NMW within the 

time allowed, and 

- - problem not run using this algorithm. 

Figures 7.2.2 to 7.2.9 plot weight against total computational 

e f f o r t used during tlie computer runs shown in table 7.2.1. 
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Table 7.2.10 shows values Gfrthe parameters measured at the NMW. 
for each run. The parameters measured and the abbreviations used 

are: 

TF - CPU time (sees) used in evaluating functions. 

TD - CPU time (sees) used in evaluating derivatives, 

TO - CPU time (sees) used in the optimisation algorithms, 

TT = sum> of TF, TD and TO, 

NFE = total number of functions evaluations, 

NDE = total number of derivative evaluations, and 

NITS * total number of iterations. 

The results presented in the remainder of this chapter have been 

derived from the values in table 7.2.10. 

7.3 Ef fo r t used by the function and derivative algorithms 

For the trusses shown in figures 6.2.1 and for the plates 

shown in figure 6.2.3, figures 7.3.1 and 7.3.2 respectively, plot 

measured computational e f f o r t for evaluation of functions and 

derivatives against the number of design variables. Table 7.3.3 

gives the derivative - function e f f o r t ratios, A/B, obtained from 

the results shown in figures 7.3.1 and 7.3.2. 

The e f f o r t ratios for rows 1 and 2 in table 7.3.3 are for 

derivatives obtained by di f ferent ia t ion, and the ratios in rows 

3 and 4 are for derivatives obtained from a forward f i n i t e difference 

scheme. Note that different iat ion - f i n i t e difference e f f o r t ratios 

for f i r s t derivatives shown in row 5 are of a similar magnitude to 

the second derivative ratios shown in row 6. 
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Table 7.2.10: Results measured at tfie NMK. 

P-BAR TRUSSED, p * P-NODE PLATES , p « 
ALG ; - 3 7 13 21 4 9 16 25 

MAP TF 0088 0.54 4.2 14.2 .107 0.77 2.2 5. 
TD .115 1.40 16.4 65.4 .234 3.80 17.0 56 
TO .071 0.41 5.4 19.1 .141 1.45 9.4 40. 
TT .274 2.35 26.0 98.7 .482 6.02 28.6 101. 
NFE 3 5 11 12 3 5 5 5 
NDE 2 4 10 11 2 4 4 4 
NITS 2 4 10 11 2 4 4 4 

MFD TF .352 3.55 52. _ .249 2.1 10. 
TD .369 4.04 43. - .466 8.9 78. -
TO .270 1.71 15. .202 1.5 17. -
TT .991 9.30 110. .917 12.5 105. -
NFE 11 32 138 7 13 22 -
NDE 6 11 26 - 4 9 18 -
NXTS 6 11 26 4 9 18 -

Nl TF 1.57 14.3 57. 196. 2.25 11.Q 42.0 93 
TD 1.87 32.2 251. 1320 3.66 84.2 776. 4300 
TO 0.16 0.6 2. 15 0.34 0.9 2. 5 
TT 3.60 47.1 31Q. 1530 6.25 96.1 820. 4398 
NFE 51 133 157 172 63 70 93 91 
NDE 9 17 19 20 7 12 15 14 
NITS 9 17 19 20 7 12 15 14 

FP TF 2.71 28.6 184. 801. 2.16 28.7 116. 397. 
TD 0.92 16.9 144. 706. 1.48 30.6 221. 1067 
TO 0.26 1.5 6. 15. 0.36 1.5 4. 10 
TT 3.89 47.0 344. 1522 4.00 60.8 341. 1474 
NFE 87 259 485 7Q4 60 179 256 382 
NDE 14 42 84 116 12 30 49 74 
NITS 13 43 85 117 11 30 49 74 

ST TF 5.15 - - 5.75 137. 761. -
TD - - - - - - - -
TO 0.36 - - - 0.50 2. 6. -
TT 5.51 - - - 6.25 140. 767. -
NFE 162 - - 156 880 1690 -
NDE - - - - - - - -NITS 15 - - 12 45 57 -

PO TF 12.1 — - 16.6 417. - -
TD - - - - - - - -TO 0.8 - - 1.1 7. - -
TT 12.9 - - 17.7 424. - -
NFE 387 470 2679 -
NDE - - - - - - -
NITS 17.3 - - - 17.0 47.2 - -
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I n the f i g u r e s 7 .3 .1 and 7 .3 .2 and i n the t a b l e 7 . 3 . 3 , i t 
can be seen t h a t d e r i v a t i v e s obta ined by d i f f e r e n t i a t i o n requ i red 
i n general less computat ional e f f o r t than d e r i v a t i v e s obta ined by 
f i n i t e d i f f e r e n c i n g . The va lues i n tab le 7 .3 .3 compare we l l w i t h 
the est imates given i n t ab le 5 .4 .30 . 

Table 7 . 3 . 3 : Measured f u n c t i o n and d e r i v a t i v e e f f o r t r a t i o s , E 
— A,B 

P-BAR TRUSSES, p * P-NODE PLATES, P « 
A B 

3 7 13 21 4 9 16 25 

TO 9 1.98 3.34 4.43 5.12 3.34 6.35 9.81 13.7 

129 9 4.31 14.4 31.3 55.2 10.1 39.4 107. 196. 

PxjZ) 9 3.00 7.00 13.0 21.0 4.00 9.00 16.0 25.0 

(P 2 +P)0 0 
o 

6.00 28.0 1 91.0 231 . 10.0 45.0 136. 325. 
L 

70 Px0 0.66 0.48 0.34 0.24 0.83 0.70 0.61 0.55 

V 2 0 (P+P)j3 
2 

0.72 0.52 0.34 0.24 1.01 0.88 0.79 0.60 

7.4 E f f o r t used by tha o p t i m i s a t i o n a lgo r i t hms . 

For the t russes s h o w i n f i g u r e 6.2.1 and f o r the p la tes shown 

i n f i g u r e 6 . 2 . 3 , f i g u r e s 7.4.1 and 7.4.2 r e s p e c t i v e l y p l o t measured 

computat ional e f f o r t used dur ing one i t e r a t i o n (as def ined i n 

chapter 5) o f each o f t he a lgo r i thms aga ins t the number o f design 

v a r i a b l e s . Comparison o f f i g u r e s 7.4.1 and 7.4.2 w i t h f i g u r e s 

5.5.13 and 5 .5 .14 shows t h a t except when MAP i s being cons idered, 

the est imated a l go r i t hm i t e r a t i o n e f f o r t r a t i o s agree w i t h the 

measured r a t i o s . When cons ider ing MAP the d iscrepancies a r i s i n g 
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are probably caused by the a r b i t r a r y assumption (made i n chapter 
5) o f the numher o f i t e r a t i o n s , requ i red by the LP a lgo r i t hm to 
f i n d the s o l u t i o n to th.e l i n e a r i z e d problem. 

7.5 Other r e s u l t s . 

Table 7 .5 .1 shows the r a t i o s o f the CPU e f f o r t used i n 

eva lua t i ng f unc t i ons ( F ) , d e r i v a t i v e s (D) or i n per forming the 

o p t i m i s a t i o n opera t ions (0) t o the t o t a l CPU e f f o r t . The 

d e r i v a t i v e - t o t a l e f f o r t r a t i o f o r S tewar t ' s method was determined 

Table 7 . 5 . 1 : Measured e f f o r t r a t i o s , E , to achieve the NMW 
X,Tota l 

P-BAR TRUSSES, P * P-NODE PLATES, P * 
ALG X 

3 7 13 21 4 9 16 25 

MAP F 0.32 Q.23 0.16 0.14 0.22 0.13 0.08 0.05 
D 0.42 0.60 0.63 0.66 0.49 0.63 0.59 0.55 
Q 0.26 0.17 0.21 0.20 0.29 0.24 0.33 0.40 

MFD F 0.36 0.38 0.47 Q.27 0.17 0.10 —. MFD 
D 0.37 0.43 0.39 0.51 0.71 0.74 -
0 0.27 Q.18 0.14 - 0.22 0.12 0.16 -

Nl F 0.44 0.30 0.18 0.13 0.36 0.11 0.05 0.02 
D 0.52 0.68 0.81 Q.86 0.59 0.88 0.94 0.97 
0 0.04 Q.02 0.01 0.01 0.Q5 0.01 0.01 0.01 

FP F 0.70 0.61 0.55 0.53 0.54 0.47 0.34 0.27 
D 0.24 0.36 0.43 0.46 0.37 0.50 0.65 0.72 
0 0.06 0.03 0.02 0.01 0.09 0.03 0.01 0.01 

ST F 0.67 _ _ 0.64 0.54 0.46 _ 

D 0.26 - - - 0.28 0.45 0.53 -
0 0.07 - - 0.08 0.01 0.01 -

PO F Q.94 - 0.94 0.98 -
D - - - - -
0 Q.06 - - - 0.06 0.02 -
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by I n c l u d i n g i n the d e r i v a t i v e e f f o r t on l y those func t i ons 
eva lua t i ons necessary f o r a forward FD d e r i v a t i v e scheme. The 
e f f o r t used by the remaining f u n c t i o n eva luat ions was used to 
determine the f u n c t i o n - t o t a l e f f o r t r a t i o . 

Table 7 .5 .2 shows the average number o f f u n c t i o n eva luat ions 

used per one-dimensional search f o r each o f the a lgo r i t hms . The 

h igh values repor ted f o r S tewar t ' s method are a r e s u l t o f the 

assumption t h a t on l y the forward FD scheme was used hy the 

a l g o r i t h m . As assumed i n chapter 5 , the average number o f f u n c t i o n 

eva lua t ions used per one-dimensional search was approx imate ly 2.5 

when MFD was used and was approx imate ly 6.5 when e i t h e r N l , FP or 

PO was used. 

Table 7 . 5 . 2 : Average number o f f u n c t i o n eva lua t ions per one-
dimensional search. 

P-BAR TRUSSES, P = P-NODE PLATES, P = 
ALG 

3 7 13 21 4 9 16 25 

MFD 1.8 2.9 5.3 3.Q 1.8 1.4 1.2 -
Nl 5.9 7.8 6.6 8.6 9.0 5.8 6.1 6.5 

FP 6.7 6.0 5.7 6.0 5.5 6.0 5.2 5.2 

ST 7.9 9.8 13. - 8.4 1 1 . 13. -
PO 7.4 6 .8 - - 6.9 6.3 - -

I t can be seen i n t a b l e 7 . 5 . 3 , showing the algorithm-MAP e f f o r t 

r a t i o s to reach the NMW.* t h a t f o r the t e s t problems, SUMT i n con

j u n c t i o n w i t h N l , FP» ST o r PO requ i res much more e f f o r t t o reach 

the minimum than e i t h e r MFD or MAP. 
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The e f f e c t o f Improvements to SUMT and the UOAs and o f using 

f i n i t e d i f f e r e n c e d e r i v a t i v e s w i t h MFD and MAP are discussed i n 

sec t i on 6 o f t h i s chapter . 

Table 7 . 5 . 3 : Measured algorithm-MAP e f f o r t r a t i o s , E , to 
reach the H\W ALG.MAP 

P-BAR TRUSSES, P « P-NODE PLATES, P « 
ALG 

3 7 13 21 4 9 16 25 

MAP 1.00 1.00 1.Q0 1.00 1.Q0 1.00 1.00 1.00 

MFD 3.62 3.98 4.20 or 1.89 2.08 3.67 

Nl 13.1 20.2 11.8 15.5 12.9 16.0 28.7 43.5 

FP 14.2 19.9 13.0 15.4 8.28 10.1 11.9 14.6 

ST 20.1 - > 
if - 13.0 23.2 26.8 -

PO 47.1 - - 36.8 70.4 - -

Table 7 .5 .4 shows the r a t i o o f the number o f i t e r a t i o n s made by 

an a l g o r i t h m to reach the near minimum we igh t , to the number o f 

design parameters. Table 7 .5 .5 shows the r a t i o o f the number o f 

i t e r a t i o n s requ i red by an a l g o r i t h m t o reach the NMW t o the 

number o f i t e r a t i o n s requ i red by MAP to reach the NMW. 

7.6 D iscuss ion . 

From the r e s u l t s shown i n t a b l e 7.5.3 which summarizes the 

r e l a t i v e performances o f the a lgor i thms on the s t r u c t u r a l problems, 

i t would appear t h a t MAP and MFD requ i re less computat ional e f f o r t 

than SUMT. This sec t i on i n v e s t i g a t e s the e f f e c t s o f : 
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Table 7 . 5 . 4 : Rat ios off t he number o f I t e r a t i o n s requ i red to reach. 

ALG 
P-BAR TRUSSES, P « 

3 7 13 21 

P-NODE PLATES, P « 

4 9 16 25 

MAP .667 .571 .764 .524 .500 .444 .250 .160 

MFD 2.0Q .157 2.Q0 1.00 1.00 1.00 

Nl 3.00 2.43 1.46 .952 1.75 1.33 .938 .560 

FP 4.33 6.14 6.54 5.57 2.75 3.33 3.06 2.96 

ST 5.00 - - 3.00 5.00 3.56 -
PO 5.78 - - 4.25 5.26 - -

Table 7 . 5 . 5 : Rat ios o f the number o f i t e r a t i o n s requ i red by an 
a l g o r i t h m to reach the NMW to the number requTrecT 
fay MAP. 

P-BAR TRUSSES, P * P-NODE PLATES, P = 
ALG 

3 7 13 21 4 9 16 25 

MAP 1.00 1.00 1.Q0 1.00 1.00 1.00 1.00 1.00 

MFD 3.00 2.75 2.62 - 2.00 2.25 4.52 -

Nl 4.50 4.26 1.91 1.82 3.50 3.00 3.75 3.50 

FP 6.50 10.8 8.56 10.6 5.50 7.50 12.2 18.5 

ST 7.50 - - 6.00 11.3 14.2 -
PO 8.66 - - - 8.50 11.8 - -

1 . us ing a more e f f i c i e n t search technique w i t h the UOAs o f 

SUMT, 

l i . us ing f i n i t e d i f f e rences d e r i v a t i v e s w i t h MAP and MFD and 

l i t . having d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o s d i f f e r e n t f rom 

those o f t h i s s tudy . 
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The number of f u n c t i o n eva lua t ions per one-dimensional search can 

be reduced by a search technique developed by Lund and recommended 

by M o e 2 2 . i n the search , quadra t i c polynomial approximations o f 

the o r i g i n a l o b j e c t i v e and a l l the c o n s t r a i n t func t ions are f i t t e d 

to th ree p o i n t s , the i n i t i a l and two other p o i n t s , along the search 

d i r e c t i o n . The po lynomia l ' approximations are combined to form a 

new transformed o b j e c t i v e f u n c t i o n f o r t h i s search o f SOW. The 

minimum o f the new o b j e c t i v e f u n c t i o n i s found w i t h l i t t l e compu

t a t i o n a l e f f o r t . The o r i g i n a l t ransformed o b j e c t i v e f u n c t i o n i s 

eva luated a t the new p o i n t and the search i s te rm ina ted . There

f o r e , o n l y th ree f u n c t i o n eva lua t ions are requ i red per search. 

The e f f e c t o f using such a search technique i s est imated i n t ab le 

7 .6 .1 from the r e s u l t s i n tab les 7.5.1 to 7 . 5 . 3 . In t a b l e 7.6.1 

Table 7 . 6 . 1 : Est imated a l go r i t hm - MAP e f f o r t r a t i o s , E , 
ALG,MAP 

ALG 
P-BAR TRUSSES, 

3 7 

P * 

13 21 

P-NODE PLATES, 

4 9 

P = 

16 25 

MAP 1.00 1.0Q 1.00 1.00 1.00 1.00 1.00 1.00 

MFD 3.62 3.98 4.20 - 1.89 . 2.08 3.67 -

Nl 10.2 16.8 10.7 14.7 9.88 15.2 27.8 43.1 

FP 8.66 14.1 9.47 11.2 6.22 7.78 8.69 13.0 

ST 11.7 - - - 5.69 14.0 17.2 -
PO 21.2 - - - 16.9 33.8 - -
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i t - c a n be seen t h a t the e f f o r t requ i red by the UOAs and SUMT 

r e l a t i v e to the e f f o r t requ i red by MAP and MFD wou^d be reduced 

by us ing Lund's techn ique. Therefore i n the f o l l o w i n g work i n t h i s 

chap te r , the values i n t a b l e 7 .6.1 w i l l be used. 

When f i n i t e d i f f e r e n c e s are used to ob ta in d e r i v a t i v e s , the 

e f f o r t necessary per i t e r a t i o n and the number o f i t e r a t i o n s 

requ i red are g rea te r than when d e r i v a t i v e s are obta ined by d i f 

f e r e n t i a t i o n . The g rea te r e f f o r t per i t e r a t i o n can be est imated 

from tab les 7 . 3 . 3 , 7 .5 .1 and 7 . 6 . 1 . The greater number o f i t e r a 

t i o n s requ i red can be est imated from tab le 7 .5 .5 by comparing 

the number o f i t e r a t i o n s used by Stewar t ' s method w i t h the number 

used by F l e t c h e r - P o w e l l ' s method. With the assumption t h a t the 

number o f i t e r a t i o n s requ i red i s 25% greater than when de r i va t i ves 

are obta ined by d i f f e r e n t i a t i n g , t a b l e 7.6.2 gives est imates 

o f the algorithm-MAP e f f o r t r a t i o s to reach the near minimum 

we igh t when d e r i v a t i v e s are obta ined by f i n i t e d i f f e r e n c e s . 

Table 7 . 6 . 2 : Est imated algorithm-MAP e f f o r t r a t i o s , E to 
ALG,MAP 

reach the NMW when Lund's search and forward FD 
d e r i v a t i v e s are usecTT 

P-BAR TRUSSES, P = P-NODE PLATES, P = 
ALG 

3 7 13 21 4 9 16 25 

MAP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MFD 3.53 3.53 3.33 - 1.90 2.13 3.91 

ST 7.67 - - - 4.14 8.80 10.0 

PO 13.9 - - - 12.3 21.3 
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The d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o s f o r the f u n c t i o n and 

d e r i v a t i v e e v a l u a t i o n a lgo r i thms used are g iven i n t ab le 7 . 3 . 3 . 

However, d i f f e r e n t f u n c t i o n and d e r i v a t i v e a lgor i thms may g ive 

d i f f e r e n t d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o s which would a f f e c t the 

e f f o r t r a t i o s to reach the near minimum we igh t but should not 

a f f e c t the path taken by the o p t i m i s a t i o n a lgo r i t hm to get to the 

near minimum weight des ign . Table 7.6.3 est imates the e f f e c t on 

the algorithm-MAP e f f o r t r a t i o s to'i>aach the near minimum we igh t , 

o f d i f f e r e n t d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o s . The values are 

determined from the f o l l o w i n g equat ions. 

Le t 

T - e f f o r t to eva lua te a f u n c t i o n , 
0 

T = e f f o r t t o eva lua te a f i r s t d e r i v a t i v e by d i f f e r e n t i a t i o n , 
VP 

T * e f f o r t to eva luate a f i r s t d e r i v a t i v e by forward f i n i t e 

d i f f e r e n c e s , and 

p = number o f design v a r i a b l e s . 

Then 

A ; E = T / 
5 / 0 ' A.0/ 

E = T / T ; E = T / T = P . . . 7 . 6 . 4 , 
V0,0 V0i 

t h e r e f o r e 

E - E P . . . 7 . 6 . 5 , 
V0.0 V0, /$ 

S i m i l a r l y , l e t 

T 9 = e f f o r t t o eva luate a second d e r i v a t i v e by d i f f e r e n t i a t i o n , 

T o - e f f o r t to eva lua te a second d e r i v a t i v e by forward f i n i t e 

d i f f e r e n c e s . 
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Table 7 . 6 . 3 : Est imated a l g o r i t h m - MAP e f f o r t r a t i o s , E , 
ALQ,MAP 

to reach the NMW f o r d i f f e r e n t values f o r the 
d e r i v a t i v e - f u n c t i o n e f f o r t r a t i o * . . 

ALG P-BAR TRUSSES, P * 
3 7 13 21 

P-NODE PLATES, P 
4 9 16 25 

MAP a l l 1.00 1.00 1.0Q 1.0Q 1.00 1.00 1.00 1.00 

MFD 1/P 4.83 4.43 4.06 — 3.22 3.62 7.28 
h 4.51 3.45 2.95 - 2.82 2.69 4.96 _ 

1 3.88 3.07 2.73 - 2.44 2.43 4.62 _ 

2 3.42 2.84 2.60 2.19 2.28 4.44 _ 

10 2.96 2.64 2.49 - 1.95 ' 2.15 4.29 -
Nl V P 10.3 13.0 11.0 16.9 8.70 10.3 17.9 22.8 

h 10.4 14.9 10.7 15.7 8.95 12.5 25.2 35.4 
1 10.4 15.5 11.2 16.2 9.13 13.1 26.2 36.4 
2 10.4 15.9 11.4 16.5 9.25 13.4 26.8 37.0 
10 10.4 16.2 11.7 16.7 9.36 13.7 27.2 37.5 

FP V P 10.0 16.7 13.2 16.4 8.50 11.6 18.9 28.6 
h 9.06 12.1 8:401 9.64 7.10 7.92 11.5 16.5 
1 7.55 1Q.5 7.58 8.95 5.96 6.95 10.6 15.4 
2 6.47 9.48 7.12 8.59 5.21 6.42 10.0 14.9 
10 5.36 8.60 6.73 8.29 4.47 5.94 9.57 14.4 

ST 1/P 17.4 _ _ _ 16.2 52.4 104. 
h 13.9 - - - 10.8 19.1 23.2 -
1 8.71 - - - 6.51 10.5 12.3 -
2 4.98 - - - 3.61 5.52 6.33 -
10 1.13 - - - 0.79 1.15 1.30 -

PO V P 30.1 39.4 123. 
h 24.1 - - 26.3 44.9 - -
1 15.1 - - - 15.8 24.6 - -
2 8.62 - - 8.78 13.0 
10 1.95 - - 1.93 2.71 -
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Then 

E 
7 * T ? / J ; E , - T « A = P ( P+l } / 2 . . . 7 . 6 . 6 ; 

? % 0 Y 0 / 0 tfM AT0/ 13 

t he re fo re 

E o = E 9 P ( P+l ) /2 . . . 7 . 6 . 7 , 
n M 7 2 0 ,A 2 0 

Table 7 .3 .3 gives tha t 

E = E 

V0,$> * V 2 0,A 2 0 . . . 7 . 6 . 8 . 

Therefore l e t 
Ji ? E = E . . . 7 . 6 . 9 . 
' V0,^0 V 2 0 , a Z 0 

Thus, t f = 1/P, then a d e r i v a t i v e eva lua t ion by d i f f e r e n t i a t i o n 

requ i res as much e f f o r t as a f u n c t i o n e v a l u a t i o n ; i f v = 1 , then 

a d e r i v a t i v e eva lua t i on by d i f f e r e n t i a t i o n requ i res as much e f f o r t 

as. one obta ined by forward f i n i t e d i f f e r e n c e s ; i f p - 2 , then a 

d e r i v a t i v e eva lua t i on by d i f f e r e n t i a t i o n requi res as much e f f o r t 

as one obta ined by cen t r a l f i n i t e d i f f e r e n c e s . I f ju - 4 , a 

h igher order f i n i t e d i f f e r e n c e d e r i v a t i v e may use less e f f o r t 

than and may be as accurate as a d i f f e r e n t i a t i o n d e r i v a t i v e . 

The computat ional e f f o r t requ i red by the a lgor i thms to perform 

one i t e r a t i o n i s g iven by : 

T « 1.33 ( T/ + T ) . . . 7 . 6 . 1 0 , 
MAP 0 V0 

T - 1.25 ( 2.5 T + T } . . . 7 . 6 . 1 1 , 
MFD 0 70 

T = 1,02 ( 3.0 T + T + T 0 ) . . . 7 . 6 . 1 2 , 
Nl $ V0 V 20 



T = 1.03 C 3.0 T t T ) 
FP |9 V0 

T = 1.03 ( 3.Q T + T ) 
ST 0 & 

T = 1.03 ( 3.0 T ) P 
PO 0 
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. . . 7 . 6 . 1 3 , 

. . . . 7 . 6 . 1 4 , 

and 
. . . 7 . 6 * 1 5 , 

where the c o e f f i c i e n t s , 1.33, 1.25, 1 .02 , 1.03, 1.03, 1.03 account 

f o r the e f f o r t us.ed by the o p t i m i s a t i o n a lgor i thms and were 

obta ined from t a b l e 7 . 5 . 1 . 

S u b s t i t u t i n g the equat ions 7 .6 .4 to 7.6.9 i n t o 7.6.10 to 7.6.15 

g i v e s : 

HytiP ) T T = 1 . 3 3 
MAP 

T = 1 . 2 5 
MFD 

T = 1 . 0 2 
Nl 

T = 1 . 0 3 
FP 

1.Q3 
ST 

T = 1 . 0 3 
PO 

0 

2.5 + J J P ) T 

3.0 + p P ( P+3 ) / 2 ) T 

3.0 + jil P ) T 

0 

0 

3.0 + P ) T 
P 

3.0 ) P T 
0 

. . . 7 . 6 . 1 6 , 

. . . 7 . 6 . 1 7 , 

. • . 7 . 6 . 1 8 , 

. . . 7 . 6 . 1 9 , 

. . . 7 . 6 . 2 0 , 

and 
. . . 7 . 6 . 2 1 . 

The re fo re , the e f f o r t per i t e r a t i o n r a t i o s are 

MAP,MAP 

MFD,MAP 

N1,MAP 

* 1.0 

1.25 ( 2.5 tyuP ) 
1.33 ( 1 + jiP } 

1.02 ( 3.0 +>uP C P + 3 ) /2 ) 
1.33 ( 1 + J J P ) 

. . . 7 . 6 . 2 2 

. . . 7 . 6 . 2 3 

. . . 7 . 6 . 2 4 
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E 
FP.MAP 

* 1*03 I 3.0 + 
T.33 C I + juP 1 

. . . 7 . 6 . 2 5 

E 
ST,MAP 

« 1.03 ( 3.Q t P ) 
1.33 t 1 + |lP I 

7.6.26 

E 
P0,MAP 

* 1.03 C 3.Q P ) 
1.33 C 1 + /iP ) 

. . . 7 . 6 . 2 7 . 

Equations 7.6.22 t o 7.6.27 and the number of i t e r a t i o n s r a t i o s 

i n t a b l e 7 .5 .5 were used to determine the est imated e f f o r t 

r a t i o s i n t a b l e 7 . 6 . 3 . I n t a b l e 7 .6 .3 i t can be seen t h a t when a 

d i f f e r e n t i a t i o n d e r i v a t i v e eva lua t i on requ i res as mach e f f o r t as a 

f u n c t i o n e v a l u a t i o n , MAP would r e q u i r e less e f f o r t than any o f the 

methods cons idered . MFD would r e q q i r e more e f f o r t than MAP but 

less e f f o r t than the o ther methods cons idered. 

When a d i f f e r e n t i a t i o n d e r i v a t i v e eva lua t i on requ i res as much 

e f f o r t as a c e n t r a l d i f f e r e n c e d e r i v a t i v e e v a l u a t i o n , MAP s t i l l 

r equ i res the l e a s t e f f o r t . 

Whan a d i f f e r e n t i a t i o n d e r i v a t i v e eva lua t ion requ i res much 

more e f f o r t than a c e n t r a l d i f f e r e n c e d e r i v a t i v e e v a l u a t i o n , the 

n o n - d e r i v a t i v e methods r e q u i r e approx imate ly as much e f f o r t as MAP 

and MFD. However i t i s u n l i k e l y t h a t such d i f f e r e n t i a t i o n 

d e r i v a t i v e s would be used s ince h igh order polynomial approxima

t i o n s to the d e r i v a t i v e s would r e q u i r e less e f f o r t and may be as 

accura te . 
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CHAPTER 8 

CONCLUSION 

8.1 C o n c l u s i o n s . 
The t e s t r e s u l t s o f c h a p t e r 7 v e r i f y t h e e s t i m a t e s made t n 

c h a p t e r 5 o f the r e l a t i v e e f f o r t r e q u i r e d by the f u n c t i o n , 
d e r i v a t i v e and o p t i m i s a t i o n a l g o r i t h m s used i n t h i s s t u d y . From 
t h e s e r e s u l t s t h e f o l l o w i n g c o n c l u s i o n s can be drawn: 

1. a f i r s t d e r i v a t i v e e v a l u a t i o n r e q u i r e s much more e f f o r t 
than a f u n c t i o n e v a l u a t i o n ; 

2. a second d e r i v a t i v e e v a l u a t i o n r e q u i r e s much more e f f o r t 
than a f i r s t d e r i v a t i v e e v a l u a t i o n ; 

3. f i n i t e d i f f e r e n c e d e r i v a t i v e s r e q u i r e more computational 
e f f o r t than d i f f e r e n t i a t i o n d e r i v a t i v e s ; 

4. t h e e f f o r t t o s o l v e t h e LP problem f o r MAP o r MFD i s 
a p p r o x i m a t e l y equal t o the e f f o r t to e v a l u a t e a f i r s t 
d e r i v a t i v e ; 

5. t h e e f f o r t t o g e n e r a t e a s e a r c h d i r e c t i o n f o r the UOAs, 
not i n c l u d i n g t h e n e c e s s a r y f u n c t i o n and d e r i v a t i v e e v a l u a 
t i o n e f f o r t , i s a p p r o x i m a t e l y equal t o t h e e f f o r t to p e r 
form a f u n c t i o n e v a l u a t i o n . 

T h e r e f o r e , p r o c e d u r e 5.1.1 can g i v e u s e f u l e s t i m a t e s o f t h e CPU 
t i m e i n v o l v e d i n comp u t a t i o n s . 

The p r e l i m i n a r y r e s u l t s i n c h a p t e r 6 show t h e e f f e c t o f 
'tu n i n g ' an a l g o r i t h m by t h e a d j u s t m e n t o f t h e a r b i t r a r y 
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c o e f f i c i e n t s , and parameters t n t h e a l g o r i t h m s to red u c e t h e 
c o m p u t a t i o n a l e f f o r t expended. For the r e s u l t s r e p o r t e d i n 
c h a p t e r 7» i t i s assumed t h a t a comparable degree o f 1 t u n i n g ' 
has been a c h i e v e d . 

The r e s u l t s o f c h a p t e r 7 show t h a t a l l t h e methods s e l e c t e d 
c a n be used t o s o l v e t h e s t r u c t u r a l problem 1.2 o r 1.3, a l t h o u g h 
t h o s e methods w h i c h d i d not us e d i f f e r e n t i a t i o n d e r i v a t i v e s were 
l e s s e f f e c t i v e t h a n t h e o t h e r a l g o r i t h m s . 

T a b l e 8.1.1 shows t h e a l g o r i t h m s l i s t e d i n i n c r e a s i n g o r d e r 
o f c o m p u t a t i o n a l e f f o r t r e q u i r e d . The t a b l e a l s o shows t h e type 
o f d e r i v a t i v e e v a l u a t i o n to be used. 

T a b l e 8.1.1: The a l g o r i t h m s * l i s t e d i n i n c r e a s i n g o r d e r o f 
comp u t a t i o n a l e f f o r t r e q u i r e d . 

TYPE OF DERIVATIVES TO BE USED 
NO ALGORITHM DIFFERENTIATION FORWARD F.D. CENTRAL F.D. 
1 MAP X - -

2 MAP X -

3 MAP - X 
4 MFD - -

5 MFD - X -

6 MFD - X 
SUMT + FP X -

8 SUMT + Nl X - -

9 SUMT + ST X 
1Q SUMT + ST - X 

SUMT + Nl X o r X 
12 SUMT + PO - - -
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T a b l e 8.1.1 summarizes t h e c c m c l u s r o n s t h a t can be d r a w from 
t h e r e s u l t s o f c h a p t e r 7. 

8.2 Recommendations. 
T a b l e 8.1.1 l i s t s t h e a l g o r i t h m s i n i n c r e a s i n g o r d e r o f 

com p u t a t i o n a l e f f o r t . However, o t h e r c o n s i d e r a t i o n s , a s g i v e n i n 
c h a p t e r 1, may be more i m p o r t a n t than computational e f f o r t , i n the 
s e l e c t i o n o f a l g o r i t h m s . T h e r e f o r e , t h i s s e c t i o n g i v e s recommenda
t i o n s f o r t h e use o f t h e a l g o r i t h m s on problems s i m i l a r to 1.2 or 1.3. 

I f MFD i s s e l e c t e d , the e x t r a p r o v i s i o n f o r i n c r e a s i n g o r 
d e c r e a s i n g t h e a r b i t r a r y c o e f f i c i e n t s to s l o w o r speed t h e o p t i m i s a 
t i o n , may g i v e c o m p u t a t i o n a l s a v i n g s . 

I f SUMT i s s e l e c t e d and second d e r i v a t i v e s a r e a v a i l a b l e , then 
a combined Newton and F l e t c h e r - P o w e l l method i s su g g e s t e d . The 
proposed method would proceed a s i n Newton*s method f o r the f i r s t 
i t e r a t i o n , s t o r i n g t h e i n v e r s e o f t h e second d e r i v a t i v e m a t r i x , 
and then proceed a s i n F l e t c h e r - P o w e l l ' s method on s u c c e e d i n g 
i t e r a t i o n s . However, i f second d e r i v a t i v e s a r e not a v a i l a b l e , 

30 31 

F l e t c h e r - P o w e l l ' s method o r a quasi-Newton method * i s recom
mended. A s e a r c h t e c h n i q u e based on t h a t o f Lund, u s i n g d i r e c t i o n a l 
d e r i v a t i v e s when a v a i l a b l e , i s p r e f e r r e d . 

The 1 Q 1 t r a n s f o r m a t i o n f o r SUMT i s recommended as i t 
o h v i a t e s t h e d i f f i c u l t i e s a s s o c i a t e d w i t h p . I f , however, a n o t h e r 
t r a n s f o r m a t i o n i s chosen and r e q u i r e s ^ , then i t i s recommended 
t h a t p "is found from e q u a t i o n 3.4.3 or from the f o l l o w i n g : 
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P = c p ...8.2.1 
1 3.4.9 

where g i s g i v e n by e q u a t i o n 3.4.9. 
v 3 . 4 . 9 

8.3 F u r t h e r r e s e a r c h . 
A number o f t o p i c s f o r f u r t h e r r e s e a r c h a r i s e from the 

r e s u l t s o f t h i s s t u d y : 
1. e s t a b l i s h t h e r e l a t i v e e f f i c i e n c y o f MAP and MFD when FD 

d e r i v a t i v e s , a r e used i n s t e a d o f d i f f e r e n t i a t i o n d e r i v a t i v e s ; 
2. a . e s t a b l i s h t h e r e l a t i v e e f f i c i e n c y o f t h e Q t r a n s f o r m a 

t i o n and o t h e r SUMT t r a n s f o r m a t i o n s ; 
b. i n v e s t i g a t e t h e e f f e c t on the e f f i c i e n c y o f a l t e r n a t i v e 

schemes f o r e v a l u a t i n g p f o r SUMT; 
c . i n v e s t i g a t e t h e e f f i c i e n c y of the proposed Newton-

F l e t c h e r - P o w e l l method used w i t h SUMT; 
d. v e r i f y t h e e f f i c i e n c y o f t h e s e a r c h t e c h n i q u e based on 

Lund's method used w i t h SUMT; 
3. i n v e s t i g a t e t h e e f f i c i e n c y o f the Modified I n t e r i o r P o i n t 

methods; and 
4. v e r i f y t h e c o n c l u s i o n s f o r o t h e r t y p e s o f s t r u c t u r a l 

problem. 

8.4 Summary. 
The s u b j e c t o f t h e t h e s i s i s a comparison of commonly-us&d 

a l g o r i t h m s a p p l i e d to a c l a s s o f s t r u c t u r a l o p t i m i s a t i o n problems. 
The t y p e s o f s t r u c t u r e under c o n s i d e r a t i o n a r e p i n - j o i n t e d , p l a n e 
t r u s s e s and p l a n e s t r e s s p l a t e s . The o p t i m i s a t i o n problem i s 
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w e i g h t m i n i m i z a t i o n o f t h e s t r u c t u r e s ; s u b j e c t to s t r e s s and d e s i g n 
v a r i a b l e l i m i t s . O p t i m i s a t i o n a l g o r i t h m s f a l l i n t o one o f t h r e e 
c a t e g o r i e s : L i n e a r i z a t i o n , F e a s i b l e D i r e c t i o n and T r a n s f o r m a t i o n 
methods. A l g o r i t h m s have been s e l e c t e d from eac h c a t e g o r y i n 
o r d e r to compare t h e c o m p u t a t i o n a l e f f o r t r e q u i r e d to s o l v e t h e 
s t r u c t u r a l problems. 

Comparison o f t h e r e s u l t s o f t h e computer r u n s shows t h a t 
MAP r e q u i r e s t h e l e a s t e f f o r t , MFD r e q u i r e s more e f f o r t than MAP 
and SUMT r e q u i r e s most c o m p u t a t i o n a l e f f o r t o f t h e methods 
c o n s i d e r e d . 
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C STRUCTURAL OPTIMISATION PROGRAM 
C 
C SYMBOLS USED 
C 
C 
c X( ) X NODE COORDINATE 
c Y< ) Y NODE COORDINATE 
c F( ) = APPLIED LOADS MATRIX 
c P i ) MATRIX OF DISPLACEMENTS 
c EE s MODULUS OF ELASTICITY 
e EENU = POISSONS RATIO 
c RHO DENSITY 
c AK( ) MATRIX SAVING ELEMENT STIFFNESS MATRICES 
c XL ( ) MATRIX WHICH MAPS NODAL THICKNESSES INTO WEIGHTS FOR 
c PLATES OR MEMBER AREAS INTO WEIGHTS FOR RODS 
c STRS() MATRIX WHICH MAPS NODAL DISPLACEMENTS INTO STRESSES 
c SO MEMBER STRESSES 
c OSDT( ) = FIRST DERIVATIVES OF STRESSES 
c IS ITP = 1 I F PLATE PR08LEM, 2 I F ROD PROBLEM 
c N = NUMBER OF NODES 
c M NUMBER OF MEMBERS 
c NB NUMBER OF BOUNDARY CONDITIONS 
c • NODIO = FIRST NODE NUMBER OF FINITE ELEMENT 
c M002() = SECOND NODE NUMBER OF FINITE ELEMENT 
c N0D3O THIRD NODE NUMBER OF FINITE ELEMENT 
c I B ( ) = MATRIX OF DELETED FREEDOM INFORMATION 
c NK = ' SIZE OF STIFFNESS MATRIX I F IN BLOCK 
c NLC = NUMBER OF LOAD CASES 
c NT = NUMBER OF TERMS IN EKO 
c IBW = BAND WIDTH OF STIFFNESS MATRIX 
c NT I M { ) = NUMBER OF TERMS IN EACH ROW STIFFNESS MATRIX 
c ISUM{ ) = LOCATION OF 1,1 STIFFNESS TERM I N EKO 
c c ARSLTS( I = RESULTS MATRIX {REAL VALUES) 
c IRSLTS( ) = RESULTS MATRIX (INTEGER VALUES) 
c IP DIRECTS LEVEL OF PRINTING 
c NONED NUMBER OF ONE DIMENSIONAL SEARCHES 
c NFE NUMBER OF FUNCTION EVALUATIONS 
c 
r 

NGE NUMBER OF GRADIENT EVALUATIONS 

c VIRT VIRTUAL CPU TIME 
c TOTAL = •TOTAL' CPU TIME 
c OPTIM CPU TIME SPENT OPTIMISING 
c FUNTIM CPU TIME SPENT EVALUATING FUNCTIONS 
c DERTIM CPU TIME SPENT EVALUATING DERIVATIVES 
c TOT IM - SUM OF OPTIM,FUNTIM AND DERTIM 
c T O - MATRIX OF NODAL THICKNESS OR MATRIX OF MEMBER AREAS 
c TM AX MAXIMUM ALLOWABLE NODE THICKNESS FOR PLATE OR AREA FOR 
c ROD 
c TMIN = MINIMUM ALLOWABLE NODE THICKNESS FOR PLATE OR AREA FOR 
c ROD 
c SIGA = ALLOWABLE STRESS IN TENSION 
c SIGL = ALLOWABLE STRESS IN COMPRESSION (A NEGATIVE NUMBER) 
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c AL = ALGORITHM TERMINATION PARAMETER : LB ON DESIGN CHANGE 
c FUNl = ALGORITHM TERMINATION PARAMETER : LB ON FUNCTN CHANGE 
c TACTN RESOLUTION REQUIRED OF THE DESIGN VARIABLES 
c WTEST = PROGRAM EXITED WHEN (WTI-WTIMl)/WTI.LT.WTEST 
c EST AN ESTIMATE OF THE MIN OF THE OBJECTIVE FUNCTION 
c EPS = DIST INGU ISHABILITY OF FUNCTION VALUES 
c £PM = MACHINE RESOLUTION 
c TOL TOLERANCE ON TIGHTNESS OF CONSTRAINTS 
c FU = UPPER BOUND ON CONSTRAINT VARIABLE 
c FL = LOWER BOUND ON CONSTRAINT VARIABLE 
c FUN = VALUE OF WEIGHT PLUS PENALTY FUNCTION = OBJECTIVE FUN 
c TREM() MATRIX WHICH HOLDS OLD DESIGN VARIABLES,WEIGHT,AND OF 
c DFDT() GRADIENT OF OBJECTIVE FUNCTION 
c H( ) WORK MATRIX USED BY UOA 
c WTIM1 = WEIGHT BEFORE A NEW ITERATION 
c WTI WEIGHT AFTER AN ITERATION 
c DUN = AN ESTIMATE OF THE OBJECTIVE FUNCTION 
c RP WEIGHTING CONSTANT FOR PENALTY FUNCTION 
c PEN = PENALTY FUNCTION ADDED TO WEIGHT TO GIVE OBJECTIVE FUN 
c FO,FN,FM = SAVED FUNCTION VALUES OLD,NEW,MIDDLE 
c AO,AN,AM = CORRESPONDING MOVES ALONG SEARCH DIRECTION 
c PO{ ) DESIGN FOR FO 
c ALPHA MOVE L I M I T COEFFICIENT FOR MAP 
c NWORK NUMBER OF DESIGN VARIABLES (M FOR RODS, N FOR PLATES) 
c NRPV MAXIMUM NUMBER OF MAIN PROGRAM ITERATIONS ALLOWED 
c L I M I T = MAXIMUM NUMBER OF ALGORITHM ITERATIONS ALLOWED 
c NOR CODE WHICH SPECIFIES THE OPTIMIZATION ALGORITHM USED 
c NOR = 1, POWELL'S METHOD (POWL) 
c NOR = 2, STEWART'S METHOD (STEW) 
c NOR = 3, FLETCHER-POWELL'S METHOD (FLEP) 
c NOR = 4, MODIFIED INTERIOR POINT METHOD (MIP) 
c NOR = 5, METHOD OF APPROXIMATE PROGRAMMING (MAP) 
c NOR = 6, METHOD OF FEASIBLE DIRECTIONS (MFD) 
c NOR = 7, NEWTON'S METHOD (NEWT) 
c NOR = 8, QUADRATIC PROGRAMMING (QP) 
c NOR = 9, NEW PROBLEM TO BE READ IN 
c NOR = 10, END OF JOBS 
c ISRCH MAXIMUM NUMBER OF CURVE FITS PERMITTED IN ONED 
c IOPTS = NUMBER OF ITERATIONS PERFORMED BY MAIN PROGRAM 
c IER 0 NO CONVERGENCE IN ALGORITHM 
c sr 1 CONVERGENCE 
c = 2 MAX NO OF ITERATIONS 
c I HE = 1 YIELDS FIRST DERIVATIVES ONLY 
c ss 2 YIELDS FIRST AND SECOND DERIVATIVES 
c IGH = CODE FOR EFFLD 
c KOUNT NUMBER OF ITERATIONS PERFORMED BY ALGORITHM 
c NUSE NUMBER OF TIMES A SEARCH DIRECTION HAS BEEN USED 
c NSRCH CODE FOR SEARCH WITH POWELL'S METHOD 
c KODER() CODE FOR STEWART'S METHOD 
c I C O E F l ) = VARIABLE ASSOCIATED WITH COLUMN' IN A-MATRIX 
c I REM() = ROW DESIGNATION OF ZERO B'S 
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C NCOL = NUMBER OF COLUMNS IN THE COEFFICIENT MATRIX FOR PRMDUL 
C NROW = NUMBER OF ROWS IN THE COEFFICIENT MATRIX FOR PRMDUL 
C 
C 02FDT2O = HESSIAN OF OBJECTIVE FUNCTION 
C EK() = STRUCTURAL STIFFNESS MATRIX 
C EKL(> = ELEMENT STIFFNESS MATRIX 
C Q(> = MATRIX WHICH SAVES NODAL DEFLECTIONS 
C R ( ) = MATRIX WHICH SAVES APPLIED LOADS 
C U( ) * WORK MATRIX (MOVES DISPLACEMENTS) 
C DUDTO = FIRST DERIVATIVES OF DISPLACEMENTS 
C SSO = MATRIX WHICH SAVES MEMBER STRESSES 
C SPACEU = DUMMY ARRAY IN COMMON BLOCK 'WORK' 
C 
C A O = COEFFICIENT MATRIX FOR PRMDUL 
C 
C PSI = CONSTRAINT WEIGHTING CONSTANT FOR MFD 
C KMI O = INDICES OF CONSTRAINTS HIT ON THE PREVIOUS MFD ITERN 
C KM2{) = INDICES OF CONSTRAINTS HIT ON ALL PREVIOUS MFD ITERNS 
C 
C NOTE 
C 
C 1 . LOAD DATA : SUBROUTINE DAT : I N = INDEX OF NODE • IC=1 FOR 
C FORCE I N X DIRECTION , IC=2 FOR FORCE IN Y DIRECTION , AMNT 
C AMOUNT OF LOAD ; 
C 2 . NODH ) .LT.NOD21 ) .LT.N0D3O ; 
C 3 . BOUNDARY CONDITION DATA : X DIRECTION FREEDOMS DELETED : 
C ENTER NODE NUMBER , Y DIRECTION FREEDOMS DELETED : ENTER 
C 1000 + NODE NUMBER ; 
C 4 . DIMENSION OF EKO = IBW*(NK-IBW/2+1/2) ; 
C 5 . SUBROUTINE GELS IS AN IBM SSP SUBROUTINE ; 
C 6 . AD-SPACEO REPLACES D2FDT2()-SPACE() IN COMMON WORK FOR 
C SUBROUTINES MAP,MFD,PRMDUL AND SIMP ; 
C 

COMMENT : MAIN PROGRAM AND SUMT 

REAL*8 DATE,TIME 
INTEGER VIRT,TOTAL,OPTIM,FUNTIM,DERTIM,TOTIM 
COMM0N/DATA/X(40 ) , Y ( 4 0 ) , F ( 8 0 , 5 ),P(80,5),EE,EENU*RHO,AK{1260),XL(60 

* ) , STRS( 1 8 0 , 6 ) , 5 ( 6 0 , 4 , 5 ) , D S D T ( 6 0 , 5 , 6 0 ) , I SI TP,N»M,NB,NODI(60),N0D2(6 
*0),N0D3(60),IB(80),NK,NLC,NT,IBW,NTIM(80),I SUM 80) 
COMMON/PRINT/ARSLTS(30,30),IRSLTS(30,30),IP,NONED,NFE, NGE 
COMMON/TIME/VIRT,TOTAL,OPTIM,FUNTIM,DERTIM,TOTIM 
COMMON/OPT/T(60),TMAX,TMIN,SIGA,SIGL,AL,FUNL,TACTN,WTEST,EST,EPS, 

*EPM,TQL,FU,FL,FUN,TREM(62),DFDT(60),H(2010),WTIMl,WTI,DUN,RP,PEN, 
*FO,FN,FM,AO,AN,AM,PO(60),ALPHA,NWORK,NRPV,LI MIT,NOR,I SRCH,I OPTS, IE 
*R fIHEtIGH,KOUNT,NUSE,NSRCH,KODER(60),IC0EF(380),IREM(40),NCOL,NROW 
COMMON/W0RK/DEL(60),D2FDT2(60,60),D2FDA2(61),EK(3280),EKL(21),Q(80 

*,5),R(80,5),U(6,5),DUDT(80,60),SS(60,4,5),SPACE(510) 
COMMON/Z/PSI,KM1(280),KM2(280) 
DIMENSION TT T ( 6 2 , 1 2 ) , T I N I T ( 6 0 ) , C L ( 1 2 ) , C C L ( 1 2 ) 
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C *** THIS IS THE MAIN PROGRAM WHICH DIRECTS OPTIMIZATION OF A PLANE 
C *** STRESS PROBLEM 

1 FORMAT {1H1 ) 
2 FORMAT(10H WEIGHT = ,E15.4) 
3 FORMAT (• I N I T I A L VALUE OF RP = ',E15.6) 
4 FORMAT(10H WEIGHT = ,E15.4,7H AFTER ,13,14H OPTIMIZATIONS) 
5 FORMAT(* WEIGHT NOT CHANGING MUCH SO ALGORITHM TERMINATED') 
6 FORMAT(* MAXIMUM NUMBER OF UNCONSTRAINED OPTIMIZATIONS ALLOWED HAS 
X BEEN REACHED. WE HAVE DONE ',13,' OPTIMIZATIONS') 

7 FORMATC WE ARE BEGINNING AN UNCONSTRAINED OPTIMIZATION PROGRAM WI 
CTH RP = • ,E15.4) 

8 FORMAT(' WEIGHT INCREASING, ALGORITHM TERMINATED') 
9 FORMAT( • MATRIX T ( 1 ) '/6X,4HN0DE,11X,4HT(I)/) 

10 F0RMAT(I10,E15.4) 
11 FORMAT{• ERROR CODE FROM OPTIMIZATION ROUTINE = ',13) 
12 FORMAT(/'OINITIAL VALUES FOR ALGORITHM CONTROL PARAMETERS'/'ORESOL 

*UTION ' ,E15.6/'0REL CHANGE WT • ,E15.6/'OREL CHANGE FUN* »E15.6/' 
*OREL CHGE DSIGN',E15.6) 

13 FORMAT COCPU TIMES ARE VIRTUAL CPU TIMES I N MICRO-SECONDS .•) 
14 FORMAT { • OPTIM PERFORMED ',110,' ONE DIMENSIONAL SEARCHES') 
15 FORMAT { 'OINITIAL RP COEFFICIENT = SE15.6) 
16 FORMATC FUN = S E 1 5 . 4 ) 
17. FORMAT ( ' OPTIM PERFORMED ',110,' FUNCTIONAL EVALUATIONS') 
18 FORMAT( • OPTIM PERFORMED ',110,' GRADIENT EVALUATIONS') 
19 FORMAT(' BEGINNING ITERATION ',15,' WE HAVE WEIGHT = ',E15.4, 

X' FUN = •,E15.4) 
20 FORMAT( • AFTER ITERATION ',15,' WITH RP = »,E15.4,' WE HAVE »/ 

X' WEIGHT = «,E15.4/' FUN = ',£15.4) 
21 FORMAT(13) 
22 FORMAT( • UNRESTRAINED OPTIMIZATION ALGORITHM NOT SPECIFIED' ) 
23 FORMAT( 'ORP REDUCTION RATE COEFFICIENT = «,E15.6) 
24 FORMAT( I X , I 3 , 5 E 1 5 . 7 ) 
25 FORMAT(• DESIGN NOT CHANGING MUCH - ALGORITHM TERMINATED •) 
26 FORMAT(IX,3110) 
27 F0RMAT(1X,E15.8) 
28 FORMAT('ORESULTS FOR',13,' PARAMETER PROBLEM USING ALGORITHM NO', 

* I 3 , ' . DATE OF RUN ',A8,' TIME ',A8) 
29 FORMAT('OEND ITERATION ',7115) 
30 FORMAT( 'OTOTAL NUMBER OF •//• ONE DIM SRCHS *,71 15) 
31 FORMAT('OFUNCTION EVALS',7115) 
32 FORMAT(•ODERIVATIVES ',7115) 
33 FORMAT( • 1 ALGORITHM CODE = NOR = ' , I 3 ) 
34 FORMAT(•OVALUE OF•/'OFUNCTION »,7E15.6) 
35 FORMAT{'OWEIGHT «,7E15.6) 
36 FORMATCOCPU TIMES FOR'/ 'OFUNCTION EVALS',7115) 
37 FORMAT{'ODER IVAT IVES ',7115) 
38 FORMAT('OOPTIMIZING ',7115) 
39 FORMAT<'OSUM OF TIMES ',7115) 
40 FORMAT('OMAXIMUM NO OF'/ '01TERATIONS/RP ',7115) 
41 FORMAT(•OQUAD FITS/SRCH•,7115) 
42 FORMAT('OFEASIBILITY ',7115) 
43 FORMAT{'OWEIGHT(SCALED)•,7E15.6) 
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44 FORMAT*•OESTIMATED FUN.'»7E15.6) 
45 FORMAT(•OALPHA MOVE LI M I T COEFFICIENT = «,E15.6) 
46 FORMATCOPSI CONSTRAINT WEIGHTING COEFFICIENT = »>E15.6) 

C 
100 CONTINUE 

WRITE(6,1) 
CALL I N I T 
NWORK=N 
IF(ISITP.EQ.2)NW0RK=M 
NP=NWORK 
NP1=1+NP 
NP2=2+NP 
NRP1=1+NRPV 

C *** SAVE DATA *** 
DO 125 I=1,NW0RK 

125 T I N I T ( I ) = T ( I ) 
SAL=AL 
SFL=FUNL 
STN=TACTN 
£PS=l.E-05 
EPM=l.E-06 
CCC=l./160. 
P S I = . l 

C 
C *** SET UP OPTIMIZATION *** 

200 CONTINUE 
CALL TIMER<DATE,TIME tVIRT,TOTAL) 
T0L=10.*EPM*SIGA 
IF(N0R.NE.6)G0T0 210 
T0L=.01*SIGA 
KU=2*(M*NLC+NP) 
DO 205 K=1,KU 
KM1(K>=0 
KM2(K)=0 

205 CONTINUE 
210 CONTINUE 

OPTIM=0 
FUNTIM=0 
DERT IM = 0 
TOTIM=0 
NFE=0 
NGE=0 
NONED=0 
IOPTS=0 
AN = 0. 
F0 = 0. 
NFE = 1 
CALL SOLVE 

C *** CALCULATE WEIGHT *** 
W R I T E ( 6 t l ) 
WTIM1=0. 
DO 225 I=1,NW0RK 
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225 WTIM1 = WTIM1+XLU )*T( I ) 
IFUP.LT.O)GOTO 1225 
WRITE(6,2)WTIM1 

1225 CONTINUE 
IF{IOPTS.NE.O)GOTO30O 
FUN=WTIMl 
DUN=FUN 
RP=0. 
CALL TIMER(DATE,TIME,VIRT,TOTAL) 
FUNTIM=FUNTIM+VIRT 
DO 245 1=1,NWORK 

245 T R E M ( I ) = T ( I ) 
TREM(NP2)=WTIM1 
IFINOR.EQ.5.OR.NOR.EQ.6)GOTO 300 

C *** CALCULATE PENALTY 
DUM1=0. 
DUM2=0. 
002501=1,NWORK 

2 50 DUM1=DUM1+1./{TMAX-T(I) ) + l . / ( T ( I ) - T M I N ) 
DUM1=DUM1*{TMAX-TMIN) 
DO 275 I = l r M 
DO 275 LC=1,NLC 

275 DUM2=DUM2+1./(SIGA-S(I,4,LC))+I./(S(I,4,LC)-SIGL) 
PEN=(SIGA-SIGL)*DUM2+DUM1 

C *** CALCULATE I N I T I A L RP *** 
C *** FIACCO AND MC CORMICK *** 

RR=.025*WTIMl/PEN 
RP=1. 
FUN=PEN 
IH£ = 1 
DUM1=0. 
DUM2=0. 
DUM3=0. 
DO 276 1=1,NWORK 
S P A C E ( I ) = X L ( I ) 
DUM1=DUM1+XL(I)*XLU ) 

276 X L ( I ) - 0 . 
WRITE(6,27)DUM1 
IF(N0R.LE.2)G0T0 278 
CALL DERFUN 
GOTO 282 

278 DO 280 1=1,NWORK 
280 DEL( I ) = .0001 

CALL DIFFUN 
282 CONTINUE 

DO 284 1=1,NWORK 
XL ( I ) = S P A C E ( I > 
DUM3=DUM3+DFDT<I)*DFDT(I) 

284 DUM2=DUM2+XL(I)*DFDT(I) 
WRITE(6,27)DUM2 
RP=-DUM2/DUM3. 
WRITE(6,27)RP 



180 

DUM5=DUM2*DUM2-DUM1*DUM3 
IF(DUM5.LE.0.)GOTO 289 
DUM5=SQRT(DUM5)/DUM3 
IF(RP>288,288,290 

288 RP=RP+DUM5 
289 IF(RP.LT.O.IGOTO 294 

GOTO 296 
290 IF(0UM5.LT.RP)RP=RP-DUM5 

GOTO 296 
294 RP =RR 

WRITE(6,27)RP 
296 CC=RP*PEN/WTIM1 

FUN=WTIM1+PEN*RP 
WRITE(6,16)FUN 
DUN=FUN 
TREM(NPU = FUN 
C l^CC 
EST».9*WTTMl 
DO 299 I=1,NRPV 
C C L ( I ) = U 

299 CL( 
C 
C *** CALL OPTIMIZATION ROUTINE *** 

300 CONTINUE 
IOPTS = H-IOPTS 
I F ( IP.LT.OGO TO 1325 
WRITE(6 tlJ 
WRITE(6,7)RP 
WRITE< 6,19)I0PTS,WTIM1,FUN 

1325 CONTINUE 
GOTO(401,402,403,404,405,406,407,40 8),NOR 
WRITE(6,22> 
CALL EXIT 

401 ISRCH=6+IOPTS/3 
LIMIT=NP*(2+IOPTS/2) 
CALL POWL 
GOTO 425 

402 ISRCH=6+I0PTS/3 
LIMIT=NP*(2+I0PTS/2) 
CALL STEW 
GOTO 425 

403 ISRCH=6+I0PTS/3 
LlMIT=NP*(2+I0PTS/2) 
CALL FLEP 
GOTO 425 

404 CALL MIP 
GOTO 425 

405 ISRCH=10*NP 
LIMIT=l+I0PTS/3 
ALPHA=.2 
CALL MAP 
GOTO 425 



406 ISRCH=6+I0PTS/3 
LIMIT=4+I0PTS/2 
CALL MFD 
GOTO 425 

407 ISRCH=6+I0PTS/3 
LIM IT=(1+NP*(3+I0PTS))/2 
CALL NEWT 
GOTO 425 

408 CALL QP 
GOTO 425 

425 CONTINUE 
C *** CALCULATE NEW WEIGHT *** 

WTI*0. 
D0450I = 1,NW0RK 

450 WTI=WTI+XL(I)*T(I) 
IF(IP.LT.0)G0T01465 
WRITE(6,1) 
WRITE(6,20)IOPTS,RP,WTI,FUN 
WRITE(6,14)N0NED 
WRITEt 6,17)NFE 
WRITE(6,18)NGE 
WRITE(6,11)IER 
WRITE(6,9) 
WRITE(6,10)(I,T(I),I=l,NWORK) 
WRITE<6,1) 

1465 CONTINUE 
CALL TIMER(DATEtTIME ,VIRT,TOTAL) 
OPTIM=OPTIM+VIRT 
TOT IM = 0PTIM+FUNTIM+DERTIM 
I=IOPTS 

C *** UPDATE RESULTS MATRICES *** 
IRSLTS(I,1)=NQNED 
IRSLTS(I,2)=NFE 
IRSLTS(I,3)=NGE 
IRSLTSlI,4)=FUNTIM 
IRSLTSlI,5)=DERTIM 
IRSLTS(I,6)=0PTIM 
IRSLTS(1,7)=TOTIM 
IRSLTS(I,8)=LIMIT 
IRSLTS(I,9)=ISRCH 
IFEAS=0 
IF(N0R.EQ.5)CALL FEASQ(IFEAS) 
IRSLTS(1,10)=IFEAS 
ARSLTS(I,1)=FUN 
ARSLTS(1,2)=WTI 
SCALE=i. 
IF(IFEAS.EQ.O)GOTO 480 
DUM1=1./SIGA 
DUM2=1./SIGL 
DO 475 L=1,NLC 
DO 475 K=1,M 
DUM=DUM1 



IF(S(K,4,L).LT.0.)DUM=DUM2 
DUM=DUM*S(K,4,L) 
IF(DUM.GT.SCALE)SCALE=DUM 

475 CONTINUE 
480 CONTINUE 

ARSLTS(I»3) = SCALE*WTI 
ARSLTS( 1,4) =EST 
WRI TE (6,1) 
WRITEl6,28)NP,NOR,DATE,TIME 
WRITE(6,29)(1,1=1,1 OPT S) 
WRITE( 6,30 )( IRSLTSd ,1) ,1=1,IOPTS) 
WRITE(6,31)(IRSLTS(1,2),1=1,IOPTS) 
WRITE(6,32)(IRSLTS(I,3),1=1,IOPTS) 
IF(NOR.EQ.5.OR.NOR.6Q.6)GOTO 1900 
WRITE(6,34)(ARSLTS(I,I),1=1,IOPTS) 
WRITEl6,44)(ARSLTSiI,4),1=1,1 OPTS) 

1900 CONTINUE 
WRITE(6,35)(ARSLTS(I,2),1=1,IOPTS) 
IF(N0R.NE.5)G0T0 1902 
WRITE(6,42 )( IRSLTSd, 10) ,1 = 1, IOPTS) 
WRITE(6,43)(ARSLTS(I,3),1=1,IOPTS) 

1902 CONTINUE 
WRITE (6,36) (IRSLTSd , 4 ) , 1 = 1, IOPTS ) 
WRITE(6,37)(IR SLTS(I,5),1=1,IOPTS) 
WRITE(6,38)( IRSLTS(I,6),I = 1,1 OPTS) 
WRITE (6,39) (IRSLTSd ,7) , 1 = 1, IOPTS ) 
WRITE(6,13) 
IF(N0R.EQ.5)G0TQ 1905 
WRITE(6,40) ( IRSLTSd , 8 ) , 1=1, IOPTS) 
WRITE(6,41)(IRSLTS(I,9),1=1,1 OPTS) 

1905 CONTINUE 
WRITE(6,12)STN,WTEST,SFL,SAL 
IF(NOR.EQ.5.OR.NOR.EQ.6)GOTO 1910 
WRITE(6,15)CC 
WRITE(6,23)CCC 
GOTO 1920 

1910 CONTINUE 
IF(NOR.EQ.5)WRITE(6,45)ALPHA 
IF(NOR .EQ.6)WRITE(6,46)PSI 

1920 CONTINUE 
C *** TEST FOR EXIT FROM JOB *** 

500 CONTINUE 
IFdOPTS.EQ.DGOTO 600 
IF(N0R.EQ.5)G0T0 525 
IF(WTI.GT.WTIM1)G0T0 800 
IF(N0R.EQ.6)G0T0 525 
IFIFUN-WTI.LE.EPM*WTI)G0T0 820 

525 CONTINUE 
TEST=ABS((WTIM1-WTI)/WTI ) 

550 IF(TEST.LT.WTEST)GOTO 820 
IF(N0R.NE.5)G0T0 575 
DO 560 I=1,NW0RK 
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TEST = ABS(TREMU )-TU ) ) 
IF(TEST.GT.(AL*T(I>))GOTO 575 

560 CONTINUE 
GOTO 840 

575 IF<10PTS.GT.NRPV)GOT0860 
600 CONTINUE 

WTIM1=WTI 
DO 610 I=1,NW0RK 
TREM( I ) =T( I ) 

610 T T T ( I , I OPTS)=T(I) 
TREM(NP1) = FUN 
TREM(NP2)=WTIM1 
TTT(NP1,I0PTS)=FUN 
TTT(NP2»I0PTS)=WTIM1 
RP=CCC*RP 
DUN=WT1+CCC*{FUN-WTI ) 
FUN=DUN 
EST=WTIM1 
IF<NOR.GT.3.AND.N0R.NE.7)GO TO 300 
IF(IOPTS.EQ.l)GOTO 300 

C *** EXTRAPOLATION *** 
I O P l = l + IOPTS 
IU=I0PTS-1 
CN=CCC**IOPTS 
CL(I0PTS)=(CN-1.)/(CCC-l.) 
DO 660 1=1,IU 
CL< I)=CL(I»*(CN*(1.-CN))/(CCC*CN-CCC**I) 

660 CONTINUE 
DO 670 J=1,NP2 

670 H(J) = 0 . 
DO 690 1=1,IOPTS 
DO 680 J=1,NP2 
H { J ) = H ( J ) + C L ( I ) * T T T ( J , I ) 

680 CONTINUE 
690 CONTINUE 

DO 720 J=1,NW0RK 
720 H<J)=H(J)-T(J) 

EST=H(NP2) 
NUSE=1 
NSRCH=1 
K0UNT=1 
NN0R=N0R 
N0R=1 
CALL ONED 
NOR=NNOR 
GOTO 300 

C 
C *** OPTIMIZATION COMPLETE *** 

800 CONTINUE 
WRITE(6,8) 
DO 805 I=1,NW0RK 

805 T(I)=TREM(I) 



FUN=TREM(NP1) 
WTI=TREM(NP2) 
GOTO 900 

820 CONTINUE 
WRITE(6,5) 
GOTO 900 

840 CONTINUE 
WRITE(6,25) 
GOTO 900 

860 CONTINUE 
WRITE(6,6)IOPTS 
GOTO 900 

900 CONTINUE 
*** READ IN NEXT JOB *** 

READ(5,21)N0R 
WRITE(6,33)NQR 
IF(N0R.EQ.10)G0T0 999 
IF(N0R.EQ.9)G0T0100 
DO 950 I=1,NW0RK 

950 T ( I ) = T I N I T ( I ) 
AL=SAL 
FUNL=SFL 
TACTN= STN 
GOTO 200 

999 CALL EXIT 
END 



COMMENT : OPTIMIZATION ALGORITHMS 

SUBROUTINE POWL 
C *** NOR=l *** 
COMMON CARDS:PRINT,OPT,WORK 

IER = 0 
KOUNT=0 
NZERO=0 
DO 901=1,NWORK 
DO 85J=1,NWORK 

85 D2FDT2(I,J)=0. 
90 D2FDT2(1,1 ) = - l . 

100 CONTINUE 
K0UNT=K0UNT+1 
NUSE=1 
DO 102J = 1,NWORK 

102 PO(J)=T(J) 
ITST=0 
FO=FUN 
DELT=0. 

C *** SEARCH IN THE N DIRECTIONS DEFINED BY D2FDT2 
001081=1,NWORK 
DO104J=1,NWORK 

104 H(J)=D2FDT2(J,I) 
FSAV=FUN 
NSRCH=I 
CALL ONED 
IF(AN.NE.O.)NZERO=0 
IF(AN.EG.O.)NZER0=1+NZER0 
IF(NZERO.GE.NWORK)GOTO 136 
FTST=FSAV-FUN 
IF(DELT.GE.FTST)G0T0106 
DELT=FTST 

C *** DELT IS LARGEST CHANGE IN OF DURING THE NWORK SEARCHES 
C *** ITST IS ITERATION OF THE LARGEST CHANGE 

ITST=I 
106 CONTINUE 
108 CONTINUE 

D0110J=1,NWORK 
110 PN(J)=T(J) 

FN=FUN 
C *** TEST TO SEE IF WE SEARCH IN SAME DIRECTION AGAIN 

D0112J=1,NWORK 
112 T ( J ) = ( P 0 ( J ) + PN(J ) ) / 2 . 

CALL FUNCT 
FM=FUN 
DUM=F0-2.*FM+FN 
IF(DUM.LT.O.)GOTO 120 
I F(FO-4.*FM+3.*FN.GT.O.)GOTO 116 
IF(2.*DELT*DUM.GE.(FO-FN)**2)GOTO 120 

C *** POWL HAS DECIDED TO KEEP OLD DIRECTIONS AS TEST1.LT.TEST2 
116 CONTINUE 
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D0118J=1,NW0RK 
T{J)=PN(J) 

118 CONTINUE 
FUN=FN 
GOTO130 

C *** WE WILL SEARCH IN PN - PO DIRECTION 
120 CONTINUE 

NUSE=0 
DO 122J = l»NWORK 

122 H(J)=PN(JJ-PO(J) 
00124J = 1,NW0RK 

124 T(J)=PN(J> 
FUN=FN 
AO=-1.0 
NSRCH=NWORK+l 
CALL ONED 
IF(AN.NE.O.)NZERO=0 
IF(AN.EQ.O.)NZERO=l+NZERO 
IF(NZERO.GE.NWORK)G0TQ 136 

C **# GET NEW DIRECTION OF SEARCH 
NWMUNWORK-l 
D0126I=ITST,NWM1 
D2FCA2( I ) = D2FDA2(1 + 1) 
D0126J=1,NW0RK 

126 D2FDT2(J»I)=D2FDT2(J»I+l) 
D2FDA2(NW0RK)=D2FDA2(NW0RK+1) 
DQ128J=1,NW0RK 

128 D2FDT2(J»NW0RK)=H(J) 
C *** DO WE TERMINATE 

130 CALL EXTEST 
IF(KOUNT.LT.NWORK) I£R = 0 
IF (IER.GT.0)GOTO 136 

132 D0 134J=1,NW0RK 
134 PO(J)=T(J) 

G0T0100 
136 CONTINUE 

C *** NEITHER FUNCTION NOR VARIABLES CHANGING MUCH SO WE TERMINATE 
RETURN 
END 

SUBROUTINE STEW 
C *** N0R=2 **# 

CALL FLEP 
RETURN 
END 

SUBROUTINE FLEP 
C *** N0R=3 *** 
COMMON CARDS:PRINT,OPT,WORK 
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C H WORKING STORAGE OF DIMENSION N*<N+7)/2. 
N=NWORK 
IER=0 
KOUNT=0 
N2=N+N 
N3=N2+N 
N31=N3+1 

C COMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENT 
IHE = 1 

100 IF(N0R.EQ.3)G0T0102 
DO 101 1 = 1,N 
DEL(I)=0.001 

101 KODER(I)=0 
CALL DIFFUN 
G0T0103 

102 CALL DERFUN 
103 CONTINUE 

C RESET ITERATION COUNTER AND GENERATE IDENTITY MATRIX 
1 K=N31 
DO 4 J=1,N 
H(K)=1. 
HI NV{J)=1. 
NJ=N-J 
IF(NJ)5,5,2 

2 DO 3 L=1,NJ 
KL=K+L 

3 H(KL)=0. 
4 K=KL+1 

C START ITERATION LOOP 
5 KOUNT=KOUNT +1 

C *** SAVE F ARG VECTOR GRAD VECTOR *** 
FO=FUN 
DO 9 J=1,N 
K=N+J 
H(K)=DFDT(J) 
K = K+N 
H(K)=T(J) 
PO(J)=T(J) 

C DETERMINE DIRECTION VECTOR H 
K=J+N3 
TT=0. 
DO 8 L = 1,N 
TT = TT-DFDT<L >*H(K) 
IF(L-J>6,7,7 

6 K=K+N-L 
GO TO 8 

7 K=K+1 
8 CONTINUE 
9 H(J)=TT 

C CHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H. 
DY=0. 
HNRM=0. 
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GNRM=0. 
C CALCULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FOR DIRECTION 
C VECTOR H AND GRADIENT VECTOR DFDT 

DO 10 J = 1,N 
HNRM=HNRM+ABS(H(J)) 
GNRM=GNRM+ABS(DFDT(J)) 

10 DY=0Y + H(J)*DFDT(J ) 
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTIONAL 
C DERIVATIVE APPEARS TO BE POSITIVE OR ZERO. 

IF(DY)11,50,50 , 
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DIRECTION 
C VECTOR H IS SMALL COMPARED TO GRADIENT VECTOR OFDT 

11 IF(HNRM/GNRM-EPS)50,50,12 
C SEARCH MINIMUM ALONG DIRECTION H 

12 CONTINUE 
NSRCH=1 
CALL ONED 
IF(FO-FUN+EPS )50,28,28 

C**«* TEST FOR TERMINATION **** 
28 CALL EXTEST 

IF(KOUNT.LT.NWORK)IER=0 
29 IF(IER.GT.OJGOTO 56 
• IF(AN.LE.O.)GOTO 100 

30 IF(N0R.EQ.3)G0T035 
C *** CALC DEL FOR STEWART *** 

PHI=FUN 
ABPHI=ABS(PHI) 
DO 33 1=1,N 
AL PHA=H I N V ( I ) 
ABAL=ABS(ALPHA) 
GAM=DFDT( I ) 
A8GAM=ABS(GAM) 
DELPH=DEL(I) 
IFtABGAM.LT.(FUN*EPS)JG0T033 
ZET=T(I> 
ABZ=ABS(ZET) 
ETA=EPS 
DUM=ABS(GAM*ZET/PHI )*EPM 
IF(ETA.LT.DUM)ETA=DUM 
DUM=ABAL*ABPHI*ETA 
DELPH=ABPHI*ETA/ABAL 
IF((GAM**2).LT.DUM)G0T03l 
DELPH=2.*SQRT(DELPH) 
DELPH=DELPHM1.-(ABAL*DELPH) / (3.*ABAL*DELPH+4.*ABGAM)) 
G0T032 

31 DELPH=2.*<(DELPH*ABGAM/ABAL)**(1./3.)) 
DEL PH=DELP H*(1.-(2.*ABGAM)/(3.*ABAL*DELPH+4.*ABGAM)) 

32 CONTINUE 
IF((ALPHA*GAM).LT.O.)DELPH=-DELPH 
KODER<I)=0 
IF((0.5*ABAL*ABS(DELPH)).LT.(0.05*ABGAM))G0T033 
K0DER(I)=1 



DUM=ABGAM/ABAL 
DE LPH=-DUM + SQRT(DUM*#2+200.*ABPHI#£TA/A8AL) 

33 DEL(I)=DELPH 
CALL DIFFUN 
GOTO 36 

35 CALL DERFUN 
36 CONTINUE 

COMPUTE DIFFERENCE VECTORS OF ARGUMENT AND GRAD FROM 
TWO CONSECUTIVE ITERATIONS 
DO 37 J = I,N 
K=N+J 
H(K)=DFDT{J)-H(K) 
K=N+K 

37 H(K)=T(J)-H(K) 
Z = 0. 
DO 38 J=1,N 
K=N+J 
W=H(K) 
K = K+N 

38 Z=Z+W*H(K) 
39 IER=0 

IF(N0R.EQ.3)G0T043 
. BETA=0. 
RHO=0. 
D041J=1,N 
K=N+J 
BETA=BETA+H(K)*H(J) 
RHO=RHO+(DFDT(J)-H(K))*H(J) 

41 CONTINUE 
C1=1./B£TA 
C2=(1./AN-RH0*C1) 
D042J=1,N 
K=N+J 

42 HINV(J)=HINVIJ)+C1*((C2-2.)*H<K)+2.*DFDT(J))*H(K) 
43 CONTINUE 

PREPARE UPDATING OF MATRIX H 
ALFA=0. 
DO 47 J=1,N 
K=J+N3 
W=0. 
DO 46 L=1,N 
KL=N+L 
W=W+H( KL)*H( K) 
IF(L-J)44»45t45 

44 K=K+N-L 
GO TO 46 

45 K=K+i 
46 CONTINUE 

K=N+J 
ALFA=A LFA+ W*H(K > 

47 H(J)=W 
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C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF RESULTS 
C ARE NOT SATISFACTORY 

IFU*ALFA)48,1,48 
48 K=N31 

DO 49 L=1,N 
KL=N2+L 
DO 49 J=L»N 
NJ=N2+J 
H(K)=H(K)+H(KL)*H(NJ)/Z-H(L)*H(J)/ALFA 

49 K = K+1 
GO TO 5 

C END OF ITERATION LOOP 
C RESTORE OLD VALUES OF FUNCTION AND ARGUMENTS 

50 DO 51 J = 1,N 
K=N2+J 

51 T(J)=H(K) 
FUN=FO 
DO 52 J = 1,N 
K = N+J 

52 DFDT(J)=H(K) 
C REPEAT SEARCH IN DIRECTION OF STEEPEST DESCENT IF DERIVATIVE 
C FAILS TO BE SUFFICIENTLY SMALL 

IF(GNRM-EPS)55,55,53 
C TEST FOR REPEATED FAILURE OF ITERATION 

53 IF(IER)56,54,54 
54 IER=-1 

GOTO 1 
55 CONTINUE 
56 RETURN 

END 

SUBROUTINE MAP 
C *** N0R=5 *** 
C THIS SUBROUTINE SETS UP THE LINEAR PROGRAMMING PROBLEM 
COMMON CARDS i DAT A,PRINT,OPT,WORK 

IER = 0 
KOUNT=0 
IHE = 1 
NW1=NW0RK+1 
NCOL = NWORK 
NN=NWORK 
NNPUNN + 1 
IWORK=M*NLC 
IW0RK2=2*IW0RK 
NROW=IW0RK2+NW0RK 
NRP1=1 + NR0W 

50 CONTINUE 
DO 95 J=1,NW0RK 

95 PO(J)=T(J> 
99 CONTINUE 

K0UNT=K0UNT+1 



FO=FUN 
CALL DERFUN 
DO 100 J=1,NW0RK 
DO 100 L=1,NLC 
DO 100 K=1,M 
I=(L-1)*M+K 

100 A { I , J )=-DSDT(K,L t J) 
DO 105 J=1,NW0RK 
DO 105 I=1,IW0RK 

105 A(I+IWORK,J}=-A(I,J) 
DO 115 J=1,NW0RK 
DO 110 I=1,NW0RK 

110 AIIW0RK2+I,J>=0. 
115 AtIW0RK2+J,J)=l. 

DO 120 J=1,NW0RK 
120 A{NRP1 , J) -XL ( J) 

A(NRPltNNPl)=0. 
QNMA=AL PHA*(TMAX-TMIN) 
DO 135 1 = 1,NN 
TL(I)=TMIN 
TU(I)=TMAX 
RRR~T( I )-ONMA 
IF(RRR.GT.TLtI))TL(IJ=RRR 
SSS=T(I)+ONMA 
IF(SSS.LT*TU(I))TU(I>=SSS 

135 CONTINUE 
DO 145 L=1,NLC 
DO 145 J = 1,M 
JJ=M*(L-1)+J 
SUM=0. 
DO 140 K=l,NN 

140 SUM=SUM+DSDT(J,L,K)*(T(K)-TL(K)) 
SUM=SUM-S(J,4,L) 
A(JJ,NNP1)=-SIGL-SUM 

145 A(JJ+IW0RK,NNP1)=SIGA+SUM 
DO 150 1=1,NN 

150 A(IW0RK2+I,NNP1)=TU(I)-TL(I) 
CALL PRMDUL 
DO 300 I=1,NW0RK 
T ( I ) = H ( I ) 

300 T ( I ) = T ( I ) + T L ( I ) 
CALL FUNCT 
CALL EXTEST 
IF{IER.EQ.G)GOTO 50 

900 CONTINUE 
RETURN 
END 

SUBROUTINE MFD 
C *** N0R=6 *#* 
COMMON CARDS:DATA,PR INT,OPT,WORK , Z 
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NFA IL = 0 
IER=0 
NP=NWORK 
NC0L=NP+1 
KOUNT=0 
IHE = 1 
NP2=NP+2 
KU=2*(M*NLC+NP) 

100 K0UNT=K0UNT+1 
CALL DERFUN 
IF1K0UNT.GT.DG0T0 125 
IF(IOPTS.GT.l)GOTO 125 
AM = 0. 
DO 105 I=1,NP 

105 H ( I ) = - X L U ) 
FU=SIGA-T0L/2. 
FL=SIGL+T0L/2. 
CALL FSMOVE 
GOTO 100 

125 NR0W=1 
IU=2*M*NLC 
DO 130 1=1,IU 
A(I,NCOLI=0. 

130 A<I,NP2>=0. 
GNRM=0. 
DO 150 1=1,NP 
A(1,NP2)=A(1,NP2)+XL(I ) 
GNRM=GNRM+A8S(XL(I1) 

150 A ( l , I ) = X L ( I ) 
A(1,NC0L)=GNRM 
FU=SIGA-TOL 
FL=SIGL+TOL 
TTCL=TOL 
TEST=l.E+50 
11=0 
DO 275 L=L,NLC 
DO 275 K=1,M 
DUM=S(K,4,L) 
11=1+1 I 
IACT=0 
IF(KM1(II)+KM2(II).GE.2)IACT=1 
KM2UI ) =KM2( I I ) + KMl (11 ) 
KM 1 ( I I ) = 0 
IF(DUM.GE.FU)KM1(II)=1 
IF(KM1( I I ) + IACT.EQ.0)G0T0 225 
DDUM=SIGA-DUM 
IF(DDUM.LT.TTOL)TTOL=DDUM 
TTEST=TOL-DDUM 
NR0W=1+NR0W 
A(NROW,NCOL)=0. 
DO 200 1=1,NP 
A(NROW,NCOL)=A(NROW,NCOL)+ABS(DSDT(K,L,I)) 
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At NR0W,NP2)=A( NROW»NP2)+DSDT(K,L»I) 
200 A(NROW, I ) = DSDT(K,L,I) 

A(NR0W,NP2)=A(NR0W,NP2)-T0L 
A<NROW,NCQL)=A(NROW,NCOU*PSI 
TTEST=TTEST/A(NROW»NCOL) 
IF(TTE ST.GE.0..AND.TTEST.LT.TEST)TEST=TTEST 

225 11=1+11 
IACT=0 
IFIKMK II>+KM2(II).GE.2) IACT=1 
KM2( 11 )=KM2( I I)+KMK I I ) 
KM1(II)=0 
IF(DUM.L£.FL)KM1(II) =1 
IF(KM1< II)+IACT.EQ.O)GOTO 275 
DDUM=DUM-SIGL 
IF(DDUM.LT.TTOl)TTQL=DDUM 
TTEST=TOL-D0UM 
NROW=i+NROW 
A(NROW,NCOL)=0. 
DO 250 1=1,NP 
A(NROW,NCOU =A(NROW,NC0L)+ABS(DSDT(K,1,1) ) 
A<NROW,NP2)=A(NROW,NP2)-DSDT(K,L,1) 

250 AlNR0W,1)=-DSDT(K,L,I) 
A(NR0W,NP2)=A(NR0W,NP2)-TOL 
A(NROW,NCOL)=A(NROW,NCOL)*PSI 
TTEST=TTEST/A(NROW,NCOL) 
IF(TTE ST.GE.0..AND.TTEST.LT.TEST)TEST=TTEST 

275 CONTINUE 
IF(NROW.EQ.1)TEST=0. 
IL=1+NR0W 
IU=1+3*NP+IL 
DO 300 J=l,NCOt 
DO 300 I = I L , I U 

300 A ( I , J ) = 0 . 
FU=TMAX*(1.-T0L/SIGA> 
FL=TMIN*(1.+T0L/SIGA) 
DO 375 J=1,NP 
DUM=T(J) 
11=1+11 
IACT=0 
IF(KM1( II)+KM2(II).GE.2)IACT = 1 
KM2UI )=KM2( IIJ+KMK I I ) 
KM1{11)=0 
IF (DUM.GE.FU)KMK I I ) = 1 
IF(KM1UI)+IACT.EQ.0)G0T0 350 
NR0W=1+NR0W 
AtNROW,J)=l. 
A(NR0W,NP2)=1. 

350 11=1+11 
IACT=0 
IF ( K M 1 ( I I ) + K M 2 ( I I).GE.2)IACT = l 
K M 2 ( I I ) = K M 2 ( I I ) + K M 1 ( I I ) 
K M 1 ( I I ) = 0 



IF(DUM.LE.FL)KM1(II)=1 
IF(KMK II)+IACT.EQ.OIGOTO 375 
NR0W=1+NR0W 
A(NR0W,J)=-1. 
A(NR0W,NP2)=-l. 

375 CONTINUE 
DO 400 J=1,NP 
NROW=l+NROW 
A(NROWt J) = 1» 

400 A(NR0W,NP2)=2. 
NRP1=NR0W+1 
A(NRP1,NC0L)»-1. 
A(NRP1,NP2)=0. 

*** DIRECTION PROBLEM IS SET UP *** 
IISRCH=ISRCH 
ISRCH=10*NP 
CALL PRMDUL 
ISRCH=IISRCH 
IF(IER.GT.L)GOTO 462 
DO 460 1=1,NP 

460 H ( I ) = H ( I ) - 1. 
CALL GETMA(AMAX,AMIN) 
IF(AMAX.EO.O.)GOTO 462 
IF{ABS(H(NCOD) .LT. 1 .E-10) GOTO 999 
GOTO 475 

462 CONTINUE 
IER=0 
NFAIL=l+NFAIL 
IF(NFAIL.GE.10)GOT0 999 
DO 465 K=1,KU 
KM1(K>=0 
KM2(K)=0 

465 CONTINUE 
T0L=T0L/2. 
IF(NFAIL.GE.2)G0T0 125 
IF(TOL.LT.TTOL)TOL=TT0L 
GOTO 125 

475 CONTINUE 
AM=TEST/ABS(H(NCOL)) 
NFAIL=0 
FU=SIGA-T0L/2. 
FL=SIGL+T0L/2. 
DO 495 I=1,NW0RK 

495 P0( I ) = T ( I i 
FO=FUN 

500 CALL FSMOVE 
CALL EXTEST 
IF{ IER.EQ.OGOTO 100 

999 CONTINUE 
RETURN 
END 
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SUBROUTINE NEWT 
C *** N0R=7 *** 
C**** SUBROUTINE PERFORMS NEWTON-RAPHSON WITH ONE DIM. SEARCHES 
COMMON CARDS:PRINT,OPT,WORK 

5 FORMAT(* HESS SINGULAR,RETURN") 
IER=0 
KOUNT=0 
IHE=2 

100 CONTINUE 
K0UNT=K0UNT+1 
FO=FUN 
DO 150 I=1,NW0RK 

150 P O m = T ( I ) 
CALL DERFUN 
GNRM=0 . 
DO 200 I=l,NWORK 
GNRM=GNRM+ABS(DFOTtI)) 
H(I)=~D FDT( I ) 
IF((GNRM-EPS).LE.0.)GOTO 999 
KH=1 
DO 300 J=1,NW0RK 
DO 299 1=1,J 
HE(KH)=D2FDT2(I ,J) 

298 KH=KH+1 
299 CONTINUE 
300 CONTINUE 
400 CALL GELS{H,HE,NW0RK,1,EPS,IER,AUX) 

IF(KS.EQ.1)G0T0 500 
GO TO 600 

500 WRITE(6,5) 
G0T0999 

600 CONTINUE 
HNRM=0. 
00 650 I=1,NW0RK 
HNRM=HNRM+ABS(H(I)) 

650 CONTINUE 
NSRCH=KOUNT 
CALL ONED 

700 CONTINUE 
C**** CHECK FOR TERMINATION **** 

CALL EXTEST 
IF(IER.EQ.O)GOTO 100 

999 RETURN 
END 

SUBROUTINE QP 
C #** N0R=8 *** 

RETURN 
END 



SUBROUTINE EXTEST 
COMMON CARDS:PRlNT,OPT 

1 FORMAT(' DESIGN NOT CHANGING MUCH* ) 
2 FORMAT<• FUNCTION NOT CHANGING MUCH') 
3 FORMAT(• NO CONVERGANCE AFTER',15,•ITERNS* 

IER=0 
00501=1,NWORK 
QTEST = A B S ( P 0 ( I ) - T ( I ) ) 
IF{QTEST.GT.(AL*T (I)MGOT075 

50 CONTINUE 
WRITE(6,1) 
QTEST=ABS(FO-FUN) 
IF(QTEST.GT.(FUNL*FO))G0T075 
WRITE(6,2) 
IER=1 
RETURN 

75 IFiK0UNT.GE.LIMIT)G0T0100 
RETURN 

100 WRITE(6,3)K0UNT 
IER = 2 
RETURN 
END 
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COMMENT : SEARCH ALGORITHMS 

SUBROUTINE ONED 
C *** THIS SUBROUTINE PERFORMS A ONE DIMENSIONAL SEARCH 
C *** AT CONCLUSION IT YIELDS A NEW DESIGN AND NEW GRADIENTS 
COMMON CARDS:PRINT,OPT,WORK 

1 FORMAT(' REGION CONVEX RETURN TO ALGORITHM') 
2 FORMAT (• CAN NOT FIND SECOND FEASIBLE POINT ') 
3 FORMAT ( • CAN NOT FIND THIRD FEASIBLE POINT ») 
4- FORMAT (• CAN NOT FIND FOURTH FEASIBLE POINT «) 
8 FORMAT!« INTERVAL OF UNCERTAINTY BELOW ACCEPTABLE SO WE STOPPED') 
9 FORMAT(* SEARCH TERMINATED AFTER «,I3,' TRIES 1) 

19 FORMAT (• ABS(H)=0. RETURN **********•) 
21 FORMAT (• REGION FLAT,SEARCH TERMINATED AT BEST POINT = «,E15.8) 
22 FORMAT(» LAST POINT FURTHEST FROM BEST POINT,SEARCH TERMINATED") 

NONED=NONED+l 
DQO=0. 
D0105I=l,NWORK 
DQ=ABS(H(I)) 
IF(DQ.LT.D0Q)G0T0105 
DQG=DQ 

105 CONTINUE 
IF(DQQ.EQ.O.JG0T0995 
AOK=TACTN/DQQ 

110 CONTINUE 
KVEX=0 
ICNT=0 
IOIR=0 
IQF = 0 
A1 = 0. 
A2=0. 
A3 = 0. 
A4 = 0. 
F2=0. 
F3=0. 
F4 = 0. 
F1=FUN 
FSAVE= FUN 

C *** SAVE BEST 
AA=A1 
FF = F1 
AQ=A1 
FQ=F 1 

C *** ********* *** 
115 CALL GETMA(AMAX,AMIN) 

DO 120 I = 1 ,N WORK 
120 TSAVE( I )=T( I ) 

FSAVE=FUN 
AH = 0. 
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D0125J=1,NW0RK 
125 AH=AH+H(J)*H(J) 

AH=SQRT(AH) 
DY=0. 

C *** GET SECOND POINT *** 
200 CONTINUE 

IF(NOR.GT.l)GOT0205 
201 IF(NUS£.EQ.1)G0T02Q2 

A2=A1 
F2 = F1 
A1=A0 
F1=F0 
GOTO295 

202 A2=5.*ACK 
G0T0220 

205 Q0206J=1,NW0RK 
206 DY=DY+H(J)*DFDT(J) 
212 IF(IP.LT.3)G0T01012 

1012 CONTINUE 
IF(DY)215,216,213 

213 D0214J = ltNWORK 
214 H(J)=-H(J) 

DY=-DY 
ATEMP=-AMIN 
AMIN=-AMAX 
AMAX=ATEMP 

215 ALFA=(E ST-F SAVE)/DY 
A2=10.*ACK 
I F(ALFA.GT.A2)A2 = ALFA 
IF(A2.GT.l.)A2=1. 
IF(A2.LT.0.)A2=-A2 
G0T0220 

216 A2 = l . 
220 CONTINUE 

AQ=A2 
2 21 IF(AQ.GE.AMAX)AQ=(Al+AMAX)/3. 
222 IF(AQ.LE.AMIN)AQ=(Al+AMIN)/3. 

D0226I = ltNW0RK 
226 T(I)=TSAVE(I)+AQ*H(I) 

CALL FUNCT 
FQ=FUN 

C *** IS 2ND POINT FEASIBLE 
CALL FEASQ(IFEAS) 
I F ( IFEAS.EQ.0)GOTO295 
IF(AQ.GT.O.)AMAX=AQ 
IF<AQ.LT.O.)AMIN=AQ 
IF(ABS(A2).LT.AOK)G0T0 275 
ICNT=ICNT+1 
I F ( ICNT.GT.10)G0T0275 
GOTO 220 

275 IDIR=IDIR+1 
IF(IDIR.GT.l)G0T082l 
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D0280 J = WNW0RK 
280 H(J)=-H(J) 

ATEMP=-AMIN 
AMIN=-AMAX 
AMAX=ATEMP 
G0T0202 

295 ICNT=0 
A2 = A0 
F2 = FQ 
IF(F2.GT.Fi)G0T0 298 
IF(F1.GT.F2)AMIN=A1 
AA=A2 
FF = F2 
GOTO 300 

298 AMAX=A2 
C *** A FEASIBLE 2N0 POINT IS NOW FOUND 
C *** GET THIRD POINT *** 

300 CONTINUE 
IF iAMAX-AMIN.LE.2.*A0K)G0T0 800 
FMIN=FF 

301 IF (NOR.GT. DG0T0305 
302 IF(F2.LT.F DG0T0303 

AQ=Al+2.*(A1-A2) 
FMIN=FF 
GOTO 310 

303 AQ=A2+2.*<A2-A1) 
FMIN=FF 
GOTO 310 

305 C1»(DY*(.AI-A2)-(F1-F2) ) /((A1-A2)*(A1-A2) ) 
C2 = DY-2.*C1*A1 

C *** IS REGION CONCAVE:WILL A MAXIMUM BE PREDICTED? *** 
306 CT=EPM*(F2+Fl)/((A2-A1)**2) 

IF(C1.GT.CT)GOT0307 
AQ=A2+3.*(A2-A1) 
FMIN=FF 
GOTO 310 

307 AQ=-C2/(2.*C1> 
FMIN=(C1*(AQ+A1)+C2)*(AQ-A1)+Fl 

310 CONTINUE 
320 IF(AQ.GE.AMAX)AQ=(Al+A2+AMAX)/3. 
321 IF(AQ.LE.AMIN)AQ=(Al+A2+AMIN)/3. 

D0330I = 1,NW0RK 
330 T( I ) =TSAVE U)+AQ*H( I ) 

CALL FUNCT 
FQ=FUN 
IF(A2.GT.A1)G0T0331 
ATEMP=A1 
FTEMP=F1 
A1=A2 
F1=F2 
A2=ATEMP 
F2=FTEMP 
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331 IF(AQ.LT.A2.AND.AQ.GT.A1)GOTO 337 
C *** CHECK FEASIBILITY *** 

335 CALL FEASQ(IFEAS) 
IF{ IFEAS.EQ.0)G0T0337 
ICNT=ICNT+1 
IF( ICNT .GT.10)G0T0993 
IF(AQ.GT.A2)GOT0336 
AMIN=AQ 
GOTO 320 

336 AMAX=AQ 
GOTO 320 

C *** REORDER POINTS *** 
3 37 ICNT=0 

A3=AQ 
F3 = FQ 
IFtA3.GT.A2)G0T0339 
AT=A3 
FT=F3 
A3 = A2 
F3-F2 
A2 = AT 
F2 = FT 
IF (A2.GT.ADG0T0339 
AT = A2 
FT-FZ 
A2 = A1 
F2 = F1 
A1 = AT 
F 1 = FT 

339 CONTINUE 
C *** A FEASIBLE 3RD POINT IS FOUND 
C *** GET FOURTH POINT *** 

400 IF(FF.LE.FQ)GOTO 405 
AA=AQ 
FF =FQ 

405 CONTINUE 
IF(F3.G£.F2.AND.A3.LT.AMAX)AMAX=A3 
IF(Fl.GE.F2.AND.Al.GT.AMIN)AMIN=A1 
IF(F1.GT.F2.AND.F2.GE.F3)G0T0 410 
IF(F1.LE.F2.AND.F2.LT.F3JG0T0 415 
GOTO 420 

410 IF(A2.GT.AMIN)AMIN=A2 
GOTO 420 

415 IF(A2.LT.AMAX)AMAX=A2 
420 CONTINUE 

IF(AMAX-AMIN.LE.2.*A0K)G0TO 800 
C *** IS REGION CONVEX - WILL A MAXIMUM BE PREDICTED ? *** 

A31=A3-A1 
A21=A2-A1 
A32=A3-A2 
C1=(F1-F2>/(A21*A3i)-(F2-F3)/(A32*A31) 
CT=EPM*(F3+F1)/{A3-A1)**2) 
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425 IF(Cl.GT.CT)GOTO 440 
IFtCl.LE.Q.)GOTO 816 
IF(AA.LT.A3)G0T0 302 
A1=A2 
F1 = F2 
A2=A3 
F2 = F3 
GOTO 302 

440 CONTINUE 
KVEX=0 
ICNT=0 
IQF=IQF+1 
C2=(F2-F3)/(-A32)-Cl*(A2+A3) 
AQ=-C2/(2.*C1) 
D2F0A2(NSRCH)=C1*2. 
FMIN=(C1*<AQ+A1)+C2)*(AQ-A1)+F1 

445 CONTINUE 
450 CONTINUE 
45 5 IF(AQ.GE.AMAX)AQ=(A2+A3+AMAX)/3. 
460 I F ( AQ.L£.AMIN)AQ = (Al+A2+AMINW3. 

DO 465 I=1,NW0RK 
465 T(I)=TSAVE<I)+AQ*H(I) 

CALL FUNCT 
FQ=FUN 

C *** CHECK FEASIBILITY *** 
470 IF(AQ.LT.A3.AND.AQ.GT.A1)G0T0 485 
475 CALL FEASQ(IFEAS) 

IF{ IFEAS.EQ.OJGOTO 485 
ICNT = ICNT + 1 
IF(ICNT.GT.1G)G0T0994 
IF(AQ.GT.A3)G0T0 480 
AMIN=AG 
GOTO 450 

480 AMAX=AQ 
GOTO 450 

C *** REORDER POINTS *** 
485 ICNT=0 

A4=AQ 
F4=FQ 
IF(A4.GT.A3)G0T0 490 
AT = A4 
FT=F4 
A4 = A3 
F4 = F3 
A 3=AT 
F3 = FT 
IF(A3.GT.A2)GOTO 490 
AT = A3 
FT =F3 
A3=A2 
F3 = F2 
A2-AT 

i 
| 



F2=FT 
IF(A2.GT.A1)G0T0 490 
AT=A2 
FT = F2 
A2 = A1 
F2 = F1 
A1 = AT 
F 1 = FT 

'+90 I F ( I P. IT.2 ) GOTO 1025 
1025 CONTINUE 
495 CONTINUE 
*** FOURTH FEASIBLE POINT IS FOUND *** 
*** DISCARD ONE POINT *** 
500 CONTINUE 
505 IF{F2.LT.F1.AND.Al.GT.AMIN)AMIN=Ai 
515 IF(F3.LT.F4.AND.A4.LT.AMAX)AMAX=A4 

IF(AQ.EQ.A1.AND.AA.EQ.A4)GOTO 815 
IF (AA.EQ.ALAND.AO.EQ.A4)GOTO 815 
IF(AQ.EQ.A4)G0T0525 
IF(AG.EQ.Al)G0T0535 
IF{AA.EQ.A4)G0T0525 
IF (AA.EQ.ADGOTO 535 
IF(F3.LT.F2)G0T0520 
IF(F1.GT.F2)G0T0525 
G0T0535 

520 IF<F4.GT.F3)G0T0535 
525 A1=A2 

F1 = F2 
A2=A3 
F2 = F3 
A3=A4 
F3 = F4 

535 A4=0. 
F4 = 0. 

545 CONTINUE 
IF(AMAX-AMIN.LE.2.#A0K)G0T0 800 

*** IS MINIMUM BOUND ? #** 
IF(F2.GT.F1.0R.F2.GT.F3)GOT0 400 

*** TEST FOR TERMINATION OF SEARCH *** 
TOO CONTINUE 
705 IFUA3-A1) .LE.(2.*A0K) )GOTO 800 

IF(A1.EQ.A2.0R.A2.EQ.A3)GOTO 800 
IF(IQF.GE.ISRCH)GOTO 805 
GOTO 400 

*** AN EXIT REQUIREMENT HAS BEEN FULFILLED *** 
800 IF(IP.LT.2)G0T0 820 

WRITE16,8) 
GOTO 820 

805 IF(IP.LT.2)G0T0 820 
WRITE{6 »9)IQF 
GOT0820 

810 1F{IP.LT.2)G0T0 820 



WRITE(6,21)AA 
G0T0820 

815 IF(IP.LT.2)G0T0820 
WRITE(6,22) 
G0T0820 

816 IF(IP.LT.2)GOTO 820 
WRITE(6,1) 

820 CONTINUE 
IF(FQ.LT.FF)G0T0830 

821 AQ=AA 
D0825 I=1,NW0RK 

825 T( I)=TSAVEU)+AQ*H(I) 
CALL FUNCT 
FQ=FUN 
CALL FEASQ(IFEAS) 

830 CONTINUE 
AN=AQ 
G0T0999 

C *** IF WE ARRIVED HERE AN ERROR 
992 WRITE(6,2) 

G0T0821 
993 WRITE(6,3) 

G0T0821 
994 WRITE(6,4> 

GOT0821 
995 WRITE(6,19) 

AN = 0. 
999 RETURN 

END 

SUBROUTINE FSMOVE 
COMMON CARDS:DATA,PRINT,OPT,WORK 

NP=NWORK 
NONED=NONED+1 
IQF=0 
11=0 
12=0 
13=0 
14=0 
IQ = 1 
IF1=0 
IF2 = 0 
IF3=0 
IF4=0 
IFQ = 0 
A1 = 0. 
A2=0. 
A3 = 0. 
A4 = 0. 
AQ=0. 
DQO=0. 

203 

IS APPARENT AND PROBLEM TERMINATED 
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DO 110 1=1,NP 
DQ=ABS(H(I)) 

110 .IF(DQ.GT.DQQ)DQQ=DQ 
IF 1DQQ.EQ.O.)GOTO 910 
AOK=TACTN/DQQ 
DO 120 1=1,NP 

120 T T ( I ) = T ( I ) 
C **# FIND MOVE TO NON-LINEAR CONSTRAINTS *** 
C *** UPPER BOUND FROM LINEAR CONSTRAINTS *** 
C *** THEN FORM DIRECTIONAL DERIVATIVES *** 

CALL GETMA(AMAX,AMIN) 
IFUM1N.LT.0. )AMIN=0. 
IF<AM.LT.AMAX)AMIN=AM 
DO 250 K = 1,M 
DO 250 L=1,NLC 
SS(K,1,L)=S(K,4,L) 
DO 220 IS=2,4 

220 SS(K,IS,L)=0. 
DY=0. 
DO 225 1=1,NP 

225 DY=DY+OSDT(K,L,I)*H<I) 
250 SS(K,4,L)=DY 

11=1 
C *** LINEAR FIT *** 

300 A2=AMAX 
DO 325 K=1,M 
00 325 L=1,NLC 
DY=SS(K,4,L) 
IF(ABS(DY).LT.1.E-25JG0T0 325 
F1=SS(K,1,L) 
IF(DY.GT.0.)AT=(FU-F1)/DY 
IF(DY.LT.O. )AT = ( FL-FD/DY 
IF(AT.GT.AOK.AND.AT.LT.A2)A2=AT 

325 CONTINUE 
IF(A2.LT.AMIN)A2=AMIN 
AQ = A2 
DO 350 1=1,NP 

350 T U ) = T T ( I ) + A Q * H ( I ) 
CALL FUNCT 
CALL FEASQ(IFEAS) 
DO 375 K=1,M 
DO 375 L=l,NLC 

375 SS{K,2,L)=S(K,4,D 
12 = 2 
10 = 2 
IF2=IFEAS 
IFO=IFEAS 
IF { IFEAS.EO.-DGOTO 960 
IF{IFEAS.EQ.1.AND.AQ.LT.AMAX)AMAX=AQ 

C *** QUADRATIC FIT TO DY,A1,A2 *** 
400 AT=0. 

A3=AMAX 



C1 = 1./(A1-A2> 
C2=0. 
C3 = 0. 
C4=A1+A2 
DUM=2.*EPS/((A2-Al)**2) 
DO 425 K = l,M 
DO 425 L=1,NLC 
F1=SS(K,1,L) 
F2 = SS< K,2,L) 
DY=SS(K,4,L) 
QB=C1*(F1-F2) 
QA = C1*(DY-QB) 
QT = ABS(DUM*{F L+F2)) 
IF(ABS(QA).LE.QT)GOTO 425 
QB=QB-QA*C4 
QC=F1-A1*(QA*A1+QB) 
AT=AMAX 
CALL ROOT(QA,QB,QC,AOK,AT,AMIN) 
IF(AT.LT.A3)A3=AT 

425 CONTINUE 
IFU3.EQ.A2) A3=( A1+A2)/2. 

435 AQ=A3 
DO 450 1=1,NP 

450 T( I ) = TT(I)+AQ*H(I) 
CALL FUNCT 
CALL FEASQ(IFEAS) 
DO 475 K=1,M 
DO 475 L=l,NLC 

475 SS(K,3,L)=S(K,4,L) 
13 = 3 
IQ = 3 
IF3=IFEAS 
IFQ=IFEAS 

C *** ORDER PTS Al,A2,A3 *** 
IF(A3.GT.A2)G0T0 485 
AT = A3 
A3=A2 
A2 = AT 
IT = I3 
13 = 12 
I2=IT 
IFT=IF3 
IF3 = IF2 
IF2=IFT 

485 CONTINUE 
IF(IFEAS.EQ.-l)GOTO 960 
IF( IF1.EQ.0)AMIN=A1 
IF{ IF2.EQ.0)AMIN = A2 
I F ( IF3.EQ.0)AMIN=A3 
I F ( IF3.EQ.1)AMAX=A3 
IF UF2.EQ.1) AMAX = A2 

C *** QUADRATIC FIT TO A1,A2,A3 *** 



500 AT=0. 
AA=A1 
IF{IFI.EQ.0.AND.A1.GT.AMIN)AMIN=AI 
IFUF2.EQ.1)G0T0505 
AA = A2 
IF(A2.GT.AMIN)AMIN=A2 
IF(IF3.EQ.1)GOT0510 
AA=A3 
IF(A3.GT.AMIN)AMIN=A3 
GOTO 515 

505 IF(A2.LT.AMAX)AMAX=A2 
GOTO 515 

510 IF(A3.LT.AMAX)AMAX=A3 
515 CONTINUE 

A4=AMAX 
IQF=IQF+1 
Cl=l./<A1-A2) 
C2=l./<A2-A3) 
C3 = 1./(A3-A1) 
C4=A1+A2 
DUM=2.*£PS/((A3-Al)**2) 
DO 525 K=1,M 
DO 525 L=1,NLC 
F i = S S ( K , I l t l ) 
F2=SS(K,I2,L) 
F3=SS(K, 13,L ) 
QB=C1*(F1-F2) 
QA=C3*(C2*(F2-F3)-QB) 
QT=ABS(DUM*(F1+F3>) 
IF(ABS(OA).LE.QT)GOTO 525 
QB=QB-C4*QA 
QC = F1-(0A*AH-QB)*A1 
AT=AMAX 
CALL ROOTtQA,QB,QC,AOK,AT,AMIN) 
IF(AT.LT.A4)A4=AT 

525 CONTINUE 
IF(A4.EQ.A3)A4=(A3+A2)/2. 
1FIA4.EQ.A2)A4=<Al+A2)/2. 

535 AQ = A4 
IQ=4 
DO 550 1=1,NP 

550 T ( I ) = T T ( I ) + A Q * H ( I ) 
CALL FUNCT 
CALL FEAS.Q(IFEAS) 
IF4=IFEAS 
IFQ=IFEAS 
14=4 

*** ORDER PTS A l A2 A3 A4 *** 
IF{A4.GT.A3)GOTO 585 
AT=A4 
A4 = A3 
A3 = AT 
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I T = I 4 
14=13 
I 3 = IT 
IFT=IF4 
IF4=IF3 
IF3=IFT 
IF(A3.GT.A2)GOTO 585 
AT = A3 
A3=A2 
A2=AT 
IT = I3 
13 = 12 
I2=IT 
IFT=IF3 
IF3=IF2 
IF2=IFT 
I F{A2.GT.A1)GOTO 585 
AT=A2 
A2 = A1 
Al =AT 
IT = I2 
12=11 
I I = IT 
IFT=IF2 
IF2=IF1 
IF1=IFT 

585 CONTINUE 
IFdFEAS.EQ.-DGOTO 960 
IF{IFEAS.EQ.I.ANO.AQ.LT.AMAX)AMAX=AQ 
IF(IFEAS.EQ.O.AND.AQ.GT.AMIN)AMIN=AQ 

C *** TEST FOR TERMINATION 
600 CONTINUE 

IF(IQF.GE.ISRCHJGOTO 920 
IF(IF1.EQ.OJGOTO 625 
IF(A1.E0.0.)G0T0 625 

625 IFUF2.EQ.0)G0T0 635 
AT=A2-A1 
GOTO 655 

635 IF(IF3.EQ.0)G0TO 645 
AT=A3-A2 
GOTO 655 

645 IF(IF4.EQ.0)GOTO 700 
AT=A4-A3 

655 AT=ABS{AT) 
IF(AT.LE.ACK)GOTO 930 

C *** NO TERMINATION CONDITION FULFILLED *** 
C *** SELECT REDUNDANT POINT *** 

700 IFT=0 
IF<IF1.EQ.IFT)IFT=1 
IDIS=I4 
ADIS=A4 
IF(IF2.EQ.IFT)GOTO 710 
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IDT S = 11 
ADIS=A1 
I F(IQ.N E.11)GOTO 720 
IDI S = I 2 
ADIS=A2 
IF<IF3.NE.IFT)G0T0 720 
IDI S = I 4 
ADIS=A4 
GOTO 720 

710 IF<IQ.NE.I4)G0T0 720 
IDIS=I3 
ADIS=A3 

720 CONTINUE 
C *** UPDATE MATRIX + INDICES *** 

DO 725 K = 1,M 
DO 725 L=1,NLC 

725 SS{K,IDIS,L)=S(K,4,L) 
IF(AQ.EQ.AL)I1=IDIS 
IF(AQ.EQ.A2)I2=IDIS 
IF(AQ.EQ.A3)I3=IDIS 
IF(AQ.EQ.A4)I4=IDIS 
IF(AOIS.EQ.A1)GOTO 735 
IF(ADIS.E0.A2)G0T0 740 
IF(ADIS.EQ.A3)G0T0 745 
IF(ADIS.F.Q.A4)G0T0 750 

735 A1=A2 
11=12 
IF1=IF2 

740 A2=A3 
12=13 
IF2=IF3 

745 A3=A4 
13=14 
IF3=IF4 

750 A4=0. 
14=0 
IF4=0 

C *** POINT DISCARDED,FIND NEW POINT *** 
GOTO 500 

C *** ERROR OR TERMINATION MESSAGES *** 
910 CONTINUE 

WRITE(6,6) 
CALL EXIT 

920 IF(IP.LT.2)GOTO 940 
WRITE(6,1) 
GOTO 940 

930 IF{ IP.LT.2)G0T0940 
WRITE(6,2) 
GOTO 940 

940 IF(AA.EQ.A0)G0T0960 
I F ( IFQ.EG.O)GOT0960 
AQ=AA 

i 
I 
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DO 950 1 = 1,NP 
950 T ( I I * T T < I ) + A Q * H ( I ) 

CALL FUNCT 
960 IF( IP.LT.2JGOT0980 
980 I F { I P.LT.1)GOTO 990 
990 RETURN 

1 FORMAT(• MAX = OF QUADRATIC FITS REACHED") 
2 FORMATC CONSTRAINT LIES IN INTERVAL LESS THAN RESOLUTION") 
6 FORMAT(' MAX COMPONENT OF H = 0.0 •) 
END 

SUBROUTINE PRMDUL 
C *** A. PRIMAL-DUAL LINEAR PROGRAMMING ALGORITHM **•* 
COMMON CARDS:PRINT,OPT,WORK 

3 FORMAT( • LP SOLUTION UNBOUNDED. EXECUTATION TERMINATED") 
4 FORMAT(" LP ALGORITHM ANTICIPATES LOOPING. EXECUTATION TERMINATED" 
X) 

8 FORMAT{* CYCLING PREVENTION ALGORITHM ERROR NO 1") 
9 FORMAT (• CYCLE PRENTION ALGORITHM ERROR NO 2") 
13 FORMAT(" CAN NOT FIND INITIAL FEASIBLE SOLUTION') 
19 FORMAT('OA PIVOT CAN NOT BE FOUND AFTER",13,' ITERATIONS') 

C . N = NUMBER OF COLUMNS IN COEF MATRIX OF INEQUALITY EQS. 
C M = NUMBER OF ROWS IN COEF MATRIX OF INEQUALITY EQS 
C A = MATRIX CONTAINING COEFS,COSTS,RH SIDES,AND OF 
C IREMH = ROW DESIGNATION OF ZERO B• S 

N=NCOL 
M=NR0W 
NP1=N+1 
MP1=M+1 
NDUM=N+M 
ISAVE=0 
JSAVE=0 
D098J=1,NDUM 

98 ICOEF(J)=J 
ICOUNT=0 

99 CONTINUE 
ICOUNT=ICOUNT+1 
ATEST=l.E+75 
ICK = 0 
JCK=0 
CTEST=1. 
D0100J=1,N 
IF(A(MP1.,J) .GE.CTESTJG0TO100 
JCK=J 
CTEST=A(MP1, J) 

100 CONTINUE 
IF(CT£ST.LT.O.)GOTO 101 
GOTO 161 

101 IF(ICOUNT.GE.ISRCH)GOT0 952 
ICTEST=0 



C *** FIND A PIVOT FOR PRIMAL PROBLEM *** 
DO 102 1 = 1,M 
IF(A<I,JCK)*A(I,NP1).LT.O.)GOTO 103 
IF(A(I,JCK).GT.O.)GOTQ 103 

102 CONTINUE 
C SOLUTION UNBOUNDED 

G0T0951 
103 CONTINUE 

D0111I=1,M 
111 IREM(I)=0 

K=0 
DO 114 1=1,M 

. I F ( A ( I ,JCK)*A(I,NP1))114,112,113 
112 IF <AU ,NP1) .NE.O. )GOTO 114 

IF(A(I,JCK).EQ.O.)GOTO 114 
K = K + 1 

IREM(K)=I 
ATEST=0. 
ICK=I 

GOTO 114 
113 CONTINUE 

ATEST1=A(I,NP1)/A(I,JCK) 
IF(ATEST1.GT.ATEST)G0T0 114 
ATEST=ATESTI 
ICK=I 

114 CONTINUE 
NLOOK=N 

118 CONTINUE 
IF(K.LT.2)G0T0 153 

C AT LEAST 2 B'S ZERO 
NLOOK=NLOOK+1 
NTEST=N+M+1 
IF(NL00K.GE.NTEST)G0T0953 
DO 123 J=1,NDUM 
IF( ICOEF(J).EQ.NLOOK)GOTO 124 

123 CONTINUE 
G0T0954 

124 CONTINUE 
JLOOK=J 
IF(JLOCK.LE.N)GOTO 141 
IDUMY=JLOOK-N 
DO 131 1=1,MP1 

131 DUMMY(I)=0. 
DUMMY(IDUMY)=1. 
GOTO 143 

141 DO 142 1=1,MP1 
142 DUMMY(I ) = A(I,JLOOK) 
143 CONTINUE 

KK=0 
ATEST=l.E+75 
DO 152 1=1,K 
I I = I R E M ( I ) 
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IF (DUMMYU I ) .NE.O. )GOTO 151 
KK=KK+1 
IREM(KK)=II 
ATEST=0. 
ICK = I I 
GOTO 152 

151 ATEST1=DUMMY(11)/A t11,JCK) 
IF(ATE ST1.GT.ATE ST)GOTO 152 
ATEST=ATEST1 
ICK = I I 

152 CONTINUE 
K = KK 
GOTO!18 

153 CONTINUE 
C *** A(ICK,JCK) = PIVOT FOR PRIMAL SIMPLEX *** 

IF(ICK.EQ.ISAVE.AND.JCK.EQ.JSAVE)GOTO 952 
ISAVE=ICK 
JSAVE=JCK 
CALL SIMP1ICK tJCK) 
GOTO 99 

C *** AN OPTIMAL SOLUTION HAS BEEN REACHED *** 
161 CONTINUE 

C *** CHECK FEASIBILITY *** 
IICK=0 
JJCK=0 
TEST=0. 
DO 162 1 = 1,M 
IF(A(I,NP1).GT.TEST)GOTO 162 
TEST=A( I ,NP1) 
IICK=I 

162 CONTINUE 
IF(TEST.GE.-l.E-8)GOTO 900 

C *** FIND A PIVOT FOR DUAL PROBLEM *** 
IC0UNT=1+IC0UNT 
IF<ICOUNT.GE.ISRCHIGOTO 952 
ATEST=-l.E+70 
K = 0 
DO 165 J=1,N 
IF(A(IICK,J)*A(MP1,J))164,163,165 

163 IF(A(MP1,J).NE.O.JGOTO 165 
IF(A(IICK,J).EQ.O.)GOTO 165 
K=l + K 
IR EM ( K ) =J 
ATEST=0. 
JJCK=J 
GOTO 165 

164 ATEST1=A(MP1,J)/A{IICK,J) 
IF(ATEST1.LT.ATEST)GOTO 165 
ATEST=ATEST1 
JJCK=J 

165 CONTINUE 
IF (K.LT.2) GOTO 169 



ATEST=0. 
DO 167 J = 1,N 
IF(A(MP1,J).N£.0.)GOTO 167 
DUM=ABS(A(IICK,J)) 
IF(DUM.LT.ATEST)GOTO 167 
ATEST=DUM 
JJCK=J 

167 CONTINUE 
169 CONTINUE 

C *** A(IICK,JJCK) = PIVOT FOR DUAL SIMPLEX *** 
IF(IICK*JJCK.EQ.O)GOTO 170 
IF(IICK.EQ.ISAVE.AND.JJCK.EQ.JSAVE)GOTO 952 
ISAVE=IICK 
JSAVE=JJCK 
CALL SIMPUICK,JJCKI 
GOTO 161 

170 WRITE(6,19)ICOUNT 
IER=5 
GOTO 910 

C *** A BASIC FEASIBLE OPTIMAL SOLUTION HAS BEEN REACHED 
900 CONTINUE 
910 IF{IP.LT.2JG0T0 1940 
1940 CONTINUE 
912 CONTINUE 

DO 915 J = 1,N 
915 HI J ) = 0 . 

DO 920 J=NP1,NDUM 
I=J-N 
K=ICOEF(J> 
IF(K.GT.N)GOTO 920 
H(K)=A( I,NP1) 

920 CONTINUE 
OF=-A(MP1,NP1) 
G0T0999 

951 WRITE(6,3) 
IER=3 
GOTO 910 

952 WRITE{6,4> 
IER = 4 
GOTO 910 

953 WRITE(6,8) 
RETURN 

954 WRITE(6,9) 
RETURN 

955 WRITE(6,13) 
999 RETURN 

END 

SUBROUTINE SI MP(ICK,JCK) 
C THIS SUBROUTINE CHANGES TABLEAU 
COMMON CARDS:PRINT,OPT,WORK 



N=NCOL 
M=NROW 
NP1=N+1 
MP1=M+1 

C ICK IS ROW DESIGNATION OF PIVOT 
C THE ICK+N COLUMN WILL LEAVE BASIS 

IREM1=IC0EF(JCK) 
ICOEF(JCK)=ICOEF(ICK+N) 
ICOEF(ICK+N)=IREMl 

C CHANGE TABLEAU 
A(ICK,JCK)=l./A(ICK,JCK) 
00 105 J=1,NP1 
IF(J.EQ.JCK)G0T0 105 
A(ICK,J)=A(ICK,J)*A(ICK,JCK) 

105 CONTINUE 
DO 110 J=1,NP1 
IF(J.EG.JCK)GOTO 110 
DO 110 1=1,MP1 
IF{I.EQ.ICKJGOTO 110 
A ( I , J ) = A < I , J ) - A ( I , J C K ) * A ( I C K , J ) 

110 CONTINUE 
DO 115 1=1,MP1 
IF(I.EQ.ICK)GOTO 115 
A(ItJCKl--A(I,JCK)*A(ICK,JCK) 

115 CONTINUE 
RETURN 
END 

SUBROUTINE ROOT(QA,QB,QC,AOK,AT,AM IN) 
COMMON CARDS:OPT 

DUM2=.5/QA 
DUM1=QB*<-DUM2) 
DT={A0K/DUM2)**2 
QT=(.01*(-QB))*#2 
IF(DT.LT.QT)DT=QT 

100 DUM=QB*QB-4.*QA*(QC-FU) 
IF{DUM.GT.0.)GOTO 150 
IF(DUM**2.LT.DT**2)G0T0 120 
GOT0400 

120 IFtDUMl.GT.O.)AT=DUM1 
GOTO 400 

150 DUM=DUM2*SQRT(DUM) 
QT=DUM1+DUM 

200 IF(QT.GT.AMIN.AND.QT.LT.AT)AT=QT 
QT=DUM1-DUM 

3 00 IFtQT.GT.AMIN.AND.QT.LT.AT)AT=QT 
400 DUM=QB*GB-4.*QA#(QC-FL) 

IF(DUM.GT.O.)GOT0 450 
IF(DUM**2.LT.DT**2)GOT0 420 
G0T0700 

420 IF(DUM1.GT.0..AND.DUM1.LT.AT)AT=DUM1 
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GOTO 7 00 
450 DUM=DUM2*SQRT(DUM) 

QT=DUM1+DUM 
5 00 IF(QT.GT.AMIN.AND.QT.LT.AT)AT-QT 

Q T=DUM1-DUM 
600 IF(QT.GT.AMIN.AND.QT.LT.AT)AT=QT 
700 RETURN 

END 

SUBROUTINE FEASQ(IFEAS) 
C THIS SUBROUTINE TELLS WHETHER DESIGN IS FEASIBLE 
COMMON CARDS:DATA* PRINTtOPT 

1 FORMAT (* I FEAS = M'2,« - CONSTRAINT TIGHT •) 
2 FORMAT(* IFEAS = ',12, • - DESIGN FEASIBLE •) 
3 FORMAT<• IFEAS = ',12,• - DESIGN UNFEASIBLE •) 

IFEAS=0 
DO 100 L=1,NLC 
DO 100 K=1,M 
TEST=S(K,4,L) 
TTEST=TEST-SIGL 
TE ST=SIGA-TEST 
IF(TTEST.LT.TEST)TEST=TTEST 
IF(TEST.GT.TOL)GOTO 100 
IFUEST.LT.-TODGOTO 200 
IF(NOR.EQ.5)GOTO 100 
IFCTEST.LT.0.)GOTO 200 
IF(NOR.NE.6)GOTO 100 
IFEAS=-1 

100 CONTINUE 
GOTO 300 

200 IFEAS=1 
300 I F ( IP.LT.2)G0T0 400 

IF( IFEAS)325,350,375 
325 WRITE{6,1)IFEAS 

GOTO 400 
350 WRITE<6,2)IFEAS 

GOTO 400 
375 WRITE(6,3)IFEAS 
400 CONTINUE 

RETURN 
END 

SUBROUTINE GETMA(AMAXt AM IN) 
C THIS SUBROUTINE FINDS MAXIMUM VALUE OF A ALLOWABLE SO AS NOT TO 
C HAVE T .GE. TMAX OR T .LE. TMIN 
COMMON CARDS:PRINTfOPT 

1 FORMATl//' DIRECTION OF TRAVEL IS DETERMINED AS*//4X,1HI,6X, 
S9HDIRECTION/) 

2 F0RMAT(I5,E15.4) 
3 FORMAT(//« MAXIMUM MOVE IN DIRECTION = 1

fE15.4 f« MINIMUM = S 



XE15.4) 
K=G 
DO 100J = ltNWORK 
IF(H(J).6T.O.)GOTO105 
IF(H(J).LT.O. )G0T0110 
G0T0100 

105 CONTINUE 
AMAXT=(TMAX-T{J J)/H(J) 
AMINL=(TMIN-T(J))/H(J ) 
G0T090 

110 CONTINUE 
AMAXT=(TMIN-T(J))/H(J) 
AMINL=(TMAX-T(J))/H(J) 

90 CONTINUE 
K = K+1 
IF(K.GE.2)G0TO91 
AMAX=A MAXT 
AMIN=AMINl 
GOT0100 

91 CONTINUE 
IF(AMAXT.GE.AMAX)GOTO 92 
AMAX=AMAXT 

92 IFIAMINL.LT.AMIN)GOTO 100 
AMIN=AMINL 

100 CONTINUE 
IF(IP.LT.l)GOT0200 
WRITE(6,1) 
WRITE(6,2)( I,H(I),I=1,NW0RK) 

• WRITE(6,3)AMAX,AMIN 
200 CONTINUE 

RETURN 
END 
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COMMENT : FUNCTION AND DERIVATIVE ALGORITHMS 

SUBROUTINE FUNCT 
COMMON CARDS:DATA,PRINT,TIME,OPT 

CALL T IMER(DATE,TIME,VIRT,TOTAL) 
OPTIM=CPTIM+VIRT 
NFE=NFE+1 

300 CONTINUE 
CALL SOLVE 
IF{NOR .EQ.5.0R.NOR.EQ.6)GOT0150 
FUN1=0. 
FUN2=0. 
FUN3=0. 
001001=1,NWORK 
FUN1=FUN1 + T( I >*XL( I ) 
FUN2=FUN2+1./(TMAX-T( I ) ) + l . / ( T { D-TMIN) 

100 CONTINUE 
FUN2=(TMAX-TMIN)*FUN2*RP 
FUN3=0. 
D0110LC=1,NLC 
D0110I = 1,M 
DUM=ABS(SIGA-S<I,4,LC)) 
IF(DUM.LT.l.E-50)GOT0200 
DUM=ABS(S(I,4,LC)-SIGL) 
IF(DUM.LT.1.E-50)GOT0200 

110 FUN3 = FUN3+1./<SIGA-SU ,4,LC) ) + l . / ( S ( 1,4, LC )-S IGL ) 
FUN3=(SIGA-SIGL)*FUN3#RP 
FUN=FUN1+FUN2+FUN3 

112 CONTINUE 
G0T0175 

150 FUN=0. 
DO 155 I=1,NWORK 

155 FUN=FUN+T(I)*XL(I) 
175 CONTINUE 
200 CONTINUE 

CALL TIMER(DATE,TIME,VIRT,TOTAL) 
FUNTIM=FUNTIM+VIRT 
RETURN 
END 

SUBROUTINE DERFUN 
COMMON CARDS:DATA,PR INT,TIME,OPT,WORK 

CALL TIMER(DATE,TIME,VIRT,TOTAL) 
OPTIM=OPTIM+VIRT 
NGE-NGE+1 
NN=N+N 
INLC=NLC 
DO 60 LC=1,NLC 
DO 50 IS=1,4 
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DO 50 K = 1,M 
SS(K,IS,LC)=S(K,IS,LC) 

50 CONTINUE 
DO 60 K = 1,NN 
Q(K tLC)=P(K,LC) 
R(K,LC)=F(K,LC) 

60 CONTINUE 
DO 100 I=1,NW0RK 
DFDT(I)=0.0 
00 100 J=I,NW0RK 
D2FDT2(ITJ)=0.0 

100 CONTINUE 
105 CONTINUE 

NLC =1 
DO 7010 L O l f l N L C 
IGH=1 
DO 2000 I=1,NW0RK 
DO 975 K=1,NN 

975 F(K,1)=0.0 
J = I 
IF(ISITP.EQ.2)GOT01001 
DO 1000 K = 1,M 
CALL 6FFLD(I,J,K,LC) 

1000 CONTINUE 
GOT01003 

1001 K=0 
1002 CONTINUE 

CALL EFFLDtI,J,K,LC) 
1003 CONTINUE 

CALL CHOS 
CALL FIXU 
DO 1050 L=1,NN 
DUDT(L,I)=P(L,1) 

1050 CONTINUE 
1061 CALL GETS 

IF{ISITP.EQ.2)G0T01201 
DO 1200 K=1,M 
S( K,4,1) = (SS(K,3 ,LC)*6.*S(K,3,1)+SS(K,2,LC)*(2.*S{K,2,1)-S(K,1,I)) 

C+SSCK,1,LC)*(2.*S(K,1,1)-S(K,2,1)))/<SS(K,4,LC)*2. ) 
1200 CONTINUE 
1201 CONTINUE 

IF(N0R.NE.5.AND.N0R.NE.6)G0T0 1225 
DO 1220 K = 1,M 

1220 DSDT<K,LC,I)=S(K,4,1) 
GOTO 2000 

1225 CONTINUE 
DO 1251 K=1,M 
DO 1250 IS=1,4 
DSDT(K,IS,I)=S(K,IS,1) 

1250 CONTINUE 
1251 CONTINUE 
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1253 CONTINUE 
DO 1500 K=1,M 
DUM=1./(SIGA-SS{K f4,LC))**2-l./{SS(K t4,LC)-SIGL)**2 
DFDT(I)=DFDT(I)+DSDT(K»4»I)*DUM 

1499 CONTINUE 
1500 CONTINUE 
1999 CONTINUE 
2000 CONTINUE 
2001 CONTINUE 

IF(IHE.EQ.1)GOT07007 
IF(NOR.EQ.5.0R.NOR.EQ.6)GOT07007 
IF ( IHE.EQ.2)GOT03000 
G0T08U0 

3000 IGH=2 
3001 CONTINUE 

DO 7005 I=1,NW0RK 
DO 7000 J=I,NWORK 

4000 CONTINUE 
DO 4025 K=11NN 

40 25 F(K,1)=0.0 
IF{ISITP.EQ.2)GOT05001 
DO 5000 K=1»M 
CALL EFFLD(I,J,K,LC) 
CALL EFFLD(J,I,K,LC) 

5000 CONTINUE 
GOT05004 

5001 K=0 
5002 CONTINUE 

CALL EFFLD(I,J,K,LC) 
5003 CONTINUE 

CALL EFFLDtJ,I,K,LC) 
5004 CONTINUE 
5010 CONTINUE 

CALL CHOS 
CALL FIXU 
CALL GETS 
IF(ISITP.EQ.2JGOT06001 
DO 6000 K=1,M 
S(K,4,l)=(SS(K tl,LC)*(2.*S{K,l,l)-S(K»2 tl) )+SS(K,21LC)*(2.*S(K»21 1 

C)-S(K,1,I)}+SS(K,3,LC)*6.*S(K,3,l)+DSDT(K,l,I)*<2.*DSDT(K,1,J)-DSD 
CT(K,2,J))+DSDT(K,2»I) *(2.*DSDT(K,2,J )-DS0T(K,1,J))+DSDT(K,3,1)*6.* 
CDSDT(K,3,J)-DSDT(K,4,I )*2,*DSDT(K,4,J))/(2.*SS(K,4,LC)) 

I 6000 CONTINUE 
! 6001 CONTINUE 

6986 CONTINUE 
DO 6990 K=1,M 
D2FDT2 ( I , J)=D2FDT2( I t J)+S<K,4, l ) * < l . / ( (SIGA-SS(K,4,LC) ) * * 2 ) - l . / ( (SS 

C( K,4»LC)-SIGL)**2))+2.*DSDT(K•4TI)*DSDT(K,4,J)*(1./ ((SIGA-SS(K,4, 
CLC) )**3)+l./((SS(K,4,LC)-SIGL)**3)> 

6990 CONTINUE 
7000 CONTINUE 

' 7005 CONTINUE 



7007 CONTINUE 
7010 CONTINUE 

IF(NOR.EQ.5.OR.NOR.EQ.6)GOT08000 
DO 7050 I=1,NW0RK 
DUM=(SIGA-SIGL)*DFDT(I) 
DFDT(I)=DUM 
DUM=1./(TMAX-T(I))**2-l./(T(I)-TMIN)**2 
DUM =(TMAX-TMIN)*DUM 
DUM=DFDT(I)+DUM 
DUM=RP*DUM 
DFDT(I)=DUM+XL(I) 

7050 CONTINUE 
7051 CONTINUE 

IF ( IHE.EQ.DGOT08000 
7100 CONTINUE 

DO 7255 I=1,NW0RK 
DO 7250 J=I,NWORK 
D2FDT2U, J)=(SIGA-SIGL)*D2FDT2(I,J) 

7125 CONTINUE 
IF{I-J)7200,7150,7200 

7150 D2FDT2{I,J) = D2FDT2(I,J)+2.*(TMAX-TMIN)*((l./(TMAX-T<I ) )**3) + 
C ( l . / ( T { I ) - T P I N ) ) * * 3 ) 

7200 CONTINUE 
7210 CONTINUE 

0 2FDT2(I,J)-RP*D2FDT2(I,J) 
7211 CONTINUE 

D2FDT2(J»I)=D2FDT2(I,J) 
7250 CONTINUE 
7255 CONTINUE 
8000 CONTINUE 

NLC=INLC 
DO 8100 LC=1,NLC 
DO 805 0 K=1,NN 
F(K,LC)=R(K,LC) 
P(K,LC)=Q(K,LC) 

8050 CONTINUE 
DO 8100 IS=1,4 
DO 8100 K=1,M 
S(K,IS,LC)=SS(K,IS,LC) 

8100 CONTINUE 
CALL TIMERIDATE,TIME,VIRT,TOTAL) 
DERTIM=DERTIM+VIRT 
RETURN 

8110 CALL EXIT 
END 

SUBROUTINE EFFLD{I,J,K,LC) 
COMMON CARDS:DATA,PR INT,OPT,WORK 

4 FORMAT(• ERROR :IGH=',I2) 
100 IF(IGH.NE.1)GOT0200 

DO 105 L=1,NK 
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P(L,i)=Q(L,LC) 
GOTO 210 

200 I F ( IGH.NE.2)G0T0207 
201 DO 205 L=l,NK 

P ( L t 1) =DUDT ( L ? J) 
205 CONTINUE 
105 CONTINUE 

GOTO 210 
207 WRITE<6,4)IGH 
210 CONTINUE 
213 CONTINUE 

IF(ISITP.EQ.2)G0T0280 
IFIN0D1(K).EQ.I)G0 TO 225 
IF(N0D3(K)•EQ.I)GO TO 225 
IF(N0D2(K).EQ.I)G0 TO 225 
G0T0275 

225 IF(IP.LT.4)G0T0226 
226 CONTINUE 

N1=N0D1(K1+N0D1(K)-1 
N2=N1+1 
N3=N0D2(K)+N0D2(K)-1 
N4=N3+1 
N5=N0D3(K)+N0D3(K)-1 
N6=N5+1 
M1=21*<K-1)+l 
M2=M1+1 
M3=M2+1 
M4=M3+1 
M5=M4+1 
M6=M5+1 
M7=M6+1 
M8=M7+1 
M9=M8+1 
M10=M9+1 
M11=M10+1 
M12=M11+1 
M13=M12+1 
M14=M13 + 1 
M15=M14+1 
M16=M15+i 
M17=M16+1 
M18=M17+1 
M19=M18+1 
M20=M19+i 
M21=M20+l 
D1=-(AK(M1)*P(NI,l)+AK(M2)*P(N2tlI+AK(M3)*P{N3,1 ) 

1 +AK(M4)*P(N4»1)+AK(M5)*P(N5,1)+AK(M6)*P( N 6 , l ) ) / 3 
D2=-(AK{M2)*P(N1,1)+AK<M7)*P(N2,1)+AK(M8)*P(N3,1) 

1 +AK(M9)*P(N4, D+AK (M10)*P(N5,1)+AK{Mil)*PIN6,1)) /3 
D3=-(AK(M3 )*P(N1, D+AK <M8)#P(N2,1)+AK( M12) *P( N3, 1) 

1 +AK(M13)*P(N4,1>+AK(M14)*P(N5,l)+AK<M15)*P(N6»1))/3 
D4=-(AK(M4)*P(N1,1)+AK(M9)*P(N2»1)+AK(Ml 3)*P(N3,1> 
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1 +AK(M16)*P(N4,1)+AK{M17)*P(N5, 1 HAK (M18 )*P <N6,1) )/3 
D5=-<AK(M5)*P(N1,1)+AK{M 10)*P(N2,1)+AK(M14)*P(N3,1) 

I +AK(M17)*P(N4,1)+AK(M19)*P(N5,1)+AK(M20)*P{N6,1))/3 
D6=-(AK(M6)*P(N1,1)+AK(M11)*P(N2,1)+AK{M15)*P(N3,1) 

1 +AK(M18)*P(N4,l)+AK(M20)*P(N5,l)4-AK(M21)*P(N6,l))/3 
F<N1,1)=F(N1,1)+Dl 
F(N2,1)=F(N2,1)+D2 
F(N3,1)=F(N3,1)+D3 
F(N4,1)=F(N4,1)+D4 
FIN5,1)=F<N5,1)+D5 
F{N6,1)=F(N6,l)+06 
GQT0284 

275 I F ( I P.LT.4)GOT0276 
276 CONTINUE 

G0T0284 
280 CONTINUE 

N1=N0D1(I)+N0D1(I)-l 
N2=N1+1 
N3=N002(I)+N0D2(I)-l 
N4=N3+1 
M1=1G*(1-1)+l 
M2=M1+1 
M3=M2+1 
M4=M3+l 
M5=M4+1 
M6=M5+1 
M7=M6+1 
M8=M7+i 
M9=M8+1 
M10=M9+1 
D1=-(AK<M1)*P(N1,1)+AK(M2)*P(N2,1)+AK(M3)*P(N3,1)+AK(M4)* 
XP(N4,D) 
02=-(AK(M2)*P(N1,i)+AK(M5)#P(N2,l)+AK(M6)*P(N3,l)+AK<M7)* 

XP(N4,1)) 
D3=-(AK(M3 )*P(N1,1)+AK (M6)*P(N2,1)+AK(M8)*P<N3,1)+AK(M9)* 

XP<N4,1)) 
D4=-(AK(M4)*P(N1,1)+AK(M7)*P(N2,1)+AK(M9)*P(N3,1)+AK(M101* 
XP(N4,D) 
F(N1,1)=F(N1,1)+D1 
F (N 2»1 ) =F ( N2 »1 ) +D2 
F(N3,1)=F(N3,1)+D3 
F <N4,1)=F(N4,1) + D4 

284 CONTINUE 
286 CONTINUE 

RETURN 
END 

SUBROUTINE DIFFUN 
COMMON CARDS:DATA,PR I NT,OPT,WORK 

FO0=FUN 
DO 105 I=1,NW0RK 



105 TT(I)»T(I) 
DO 110 I=1,NW0RK 
T ( I ) = T T < I ) + D E L ( I ) 
CALL FUNCT 
FPO(I)=FUN 
DFDT(I) = (FUN-FOO ) /DEL( I ) 
IF(KODER(I).EQ.0)G0T0110 
T ( I ) = T T ( I ) - D E L ( I ) 
CALL FUNCT 
DFOTII)=IFP0(I)-FUN)/(2.*DEL( I ) ) 

110 T ( I ) = T T < I ) 
1015 CONTINUE 

IF(IHE.EQ.1)GOT0140 
115 DO 130 I=1,NW0RK 

T ( I ) = T T ( I ) + 0 E L ( I ) 
JU=I-1 
IF(JU.EQ.0)G0T0121 
DO 120 J=1,JU 
T(J)=TT(J)+DEL(J) 
CALL FUNCT 
FPP^FUN 
D 2FDT2(J»I)=CFPP-FPO(I)-FPO(J)+F00) 
0UM=DEL( I >*DEL(J > 
D2FDT2{J rI)=D2FDT2(J »I )/DUM 

120 T(J) = T T { J ) 
121 T ( I ) = T T { I ) - D E L ( I ) 

CALL FUNCT 
DUM=FPO(I)-FOO-FOO+FUN 
D2FDT2(I»I)=DUM/{DEL( I )#*2) 

130 T ( I ) = T T ( I ) 
140 FUN=FOO 

RETURN 
END 
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COMMENT : STRUCTURAL ANALYSIS ALGORITHMS 

SUBROUTINE SOLVE 
CALL MERGE 
CALL DCOP 
CALL CHOS 
CALL FIXU 
CALL GETS 
RETURN 
END 

SUBROUTINE INIT 
CALL DAT 
CALL GIBW 
CALL INWK 
CALL GETAK 
RETURN 
END 

SUBROUTINE DAT 
C THIS SUBROUTINE READS DATA 
COMMON CARDS:DAT AtPRINT»OPT 

1 FORMAT(1H1) 
2 FORMAT(13) 
3 FORMAT(19H NUMBER OF NODES = ,I3//5H NODE*14X,1HX,14X,1HY,14X,1HT/ 
C) 

4 FORMAT(2F15.4) 
5 FORMAT(IX,I4,3F15.4) 

6 F0RMAT(21H NUMBER OF MEMBERS = ,I3//5H MEM,3X,2HN1,3X,2HN2,3X,3H 
XN3,4X,11HAREA IF ROD/) 

7 F0RMAT(4I3,F15.4) 
8 FORMAT(IX,14,315) 

9 FORMAT(33H NUMBER OF BOUNDARY CONDITIONS = ,I3//5H NODE,3X,2H3C) 
10 FORMAT(IX,14,1 5) 

12 F0RMAT(F15.4) 
13 FORMAT(14H PRINT CODE = ,13) 
16 FORMAT(19H NUMBER OF LOADS = ,I3//5H NODE,5H CODE,9X,6HAM0UNT/) 

17 FORMATtIX,14,I5tF15.4) 
18 FO RMAT(28H SIZE OF STIFFNESS MATRIX = ,13) 
19 FORMAT(15) 
21 FORMAT(12H MOD ELAS = ,E15.4/18H POISSONS RATIO = ,E15.4) 
30 F0RMAT(I5,4E15.4) 
31 FORMAT(21H MAXIMUM THICKNESS = ,E15.4/21H MINIMUM THICKNESS = , 

XE15.4/' ALLOWABLE STRESS IN TENSION = »,E15.4/» ALLOWABLE STRESS I 
XN COMPRESSION = •,E15.4/•ONUMBER OF ITERATIONS FOR WHICH RP LOWERE 
XD ,,16X, ,= ',15) 

32 FORMATC UOA TERMINATES WHEN (WTI-WTIM1)/WTI LESS THAN WTEST»,6X,• 
X=«,E15.4) 

33 FORMAT(24H NUMBER OF LOAD CASES = ,13) 
34 F0RMAT(E15.4) 
35 FORMAT(11H DENSITY « ,E15.4) 
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36 FORMAT(13H LOAD CASE = t I 3 ) 
38 FORMAT(15,F15.4) 
39 FORMATS WE ARE DOING PLATE PROBLEM IF ISITP IS 1, ROD PROBLEM IF 

X2, ISITP = • ,13) 
40 FORMATUX, I4,2I5,5X,F15.4) 
41 FORMAT (« RESOLUTION FOR DESIGN VARIABLES IS TACTN^UX,' = 

XE15.4) 
42 FORMAT('SUBROUTINE DAT') 
44 FORMAT('OUNCONSTRAINED OPTIMIZATION ALGORITHM NUMBER',13X,* = '» 15) 
45 FORMAT( ' UOA TERMINATES WHEN AL DESIGN CHANGES LESS THAN AL',7X, 

X'=',E15.4/21X,'AND FUN CHANGES LESS THAN FUNL',7X,,E15.4) 
READ(5,2)ISITP 
WRITE(6,39)ISITP 
WRITE(6,1) 
READ(5,2) N 
WRIT£(6,3) N 
00 100 1=1,N 
READ(5,5) I , X ( I ) , Y ( I ) , T ( I ) 

100 WRITE(6,5) I,X( I ) , Y ( I ) , T ( I ) 
WRITE(6,1) 
RE AD(5,2) M 
WRITE(6,6) M 
DO 110 1=1,M 
READ(5,7) ID,NOD 1(I),N0D2(I),N0D3{I),DUMMY 
IF(ISITP.EQ.i)G0TO105 
T(1)=DUMMY 
WRITE{6,40)I,NODI(I),N0D2(I),T(I) 
G0T0110 

105 CONTINUE 
WRITE(6,8) I,N0D1(I),N0D2(I),N0D3{ I ) 

110 CONTINUE 
WRITE(6,1) 
READ(5,2) NB 
WRITE(6,9) NB 
DO 120 1=1,NB 
R£AD(5,19) I B ( I ) 

120 WRITE(6,10) I , I B ( I ) 
NK=2*N 
WRITE(6,1) 
READ(5,2)NLC 
WRITE(6,33)NLC 
DO 130 1=1,NK 
D0130LC=1,5 
Fl I,LC)=0. 

130 P(I,LC)=0. 
D0141LC = 1,NLC 
WRITE(6,1) 
WRITE(6,36)LC 
READ(5,2) NL 
WRITE{6,16) NL 
D0140 1=1,NL 
READ(5,17> IN,IC,AMNT 



WRITE(6,17) INtlCtAMNT 
ID1=2*( IN-D + IC 

140 F(ID1,LC)=AMNT 
141 CONTINUE 

WRITE(6,1) 
READ(5,2) IP 
WRITE(6,13) IP 
WRITE(6,18) NK 
READ<5,4) EETEENU 
WRITE(6,21> EE,EENU 
READ(5,12)RH0 
WRITE(6,35)RH0 
READ(5,30)NRPV,TMAX,TMIN,SIGA,SIGL 
WRITE( 6,31 )TMAX,TMIN,SIGA,SIGL,NRPV 
READ(5,30)LIMIT,AL,FUNL,TACTN,WTEST 
WRITEC 6,32)WTEST 
WRITE(6,45)AL,FUNL 
WRITE(6,41)TACTN 
READ(5,2)N0R 
WRITE(6,44)N0R 
RETURN 
END 

SUBROUTINE GIBW 
COMMON CARDS:DATA 
1 FORMAT (14H BAND WIDTH = ,13) 

I BW=0 
IF(ISITP.EQ.2)G0TO200 
DO 100 1=1,M 
IDM=2*(N0D3(I)-NODl(I)+l) 
I F ( IDM.LE.IBW) GO TO 100 
IBW=IDM 

100 CONTINUE 
G0T0300 

200 CONTINUE 
D0250I=1,M 
IDM=2*(N0D2(I)-NODItI)+l) 
IF(IDM.LE.IBW)GOT0250 
IBW=IDM 

250 CONTINUE 
300 CONTINUE 

WRITE(6,i) IBW 
RETURN 
END 

SUBROUTINE INWK 
COMMON CARDS:DATA,PRINT 

NT = 0 
DO 100 1=1,NK 
ID1=I+IBW-1 



IF(ID1.GT.NK) GO TO 60 
NTIM(I)=IBW 
GO TO 100 

60 NTIM(I)=NK-I+1 
100 NT=NT+NTIM(I ) 

ISUM(1>=1 
DO 200 I=2,NK 
IM1=I-1 

200 I S UM ( I ) = IS UM ( IM1)+NTIM(I Ml) 
1000 CONTINUE 

RETURN 
END 

SUBROUTINE GETAK 
COMMON CARDS:DATA» PRINT,WORK 

D090 1=1,N 
90 X L ( I ) = 0. 

IF(ISITP.EQ.2JG0T02000 
IDUM=0 
DO1000MEM=1,M 
N1=N001(MEM) 
N2=N0D 2(MEM) 
N3=N0D3(MEM) 
X1=X(N1) 
X2=X(N2) 
X3=X(N3) 
Y1=Y(N1) 
Y2=Y(N2) 
Y3=Y(N3) 
X31=X3-X1 
Y31=Y3-Y1 
X32=X3-X2 
Y32=Y3-Y2 
X21=X2-X1 
Y21=Y2-Y1 
A123=. 5MX32*Y21-X21*Y32 ) 
A123=ABS(A123) 
C1=EE /(4.*A123*U.-EENU*EENU) ) 
C2=EE /(8.*A123*(1.+EENU)) 
V=EENU 
EKL(i)=C1*Y3 2*Y32+C2*X32*X32 
EKL(2)=-Cl*V#Y32*X32-C2*X32*Y32 
EKL(3)=-Cl*Y32*Y31-C2*X32*X31 
EKL(4)=C1*V*Y32*X31+C2*X32*Y31 
EKL(5)=C1*Y3 2*Y21+C2#X32*X21 
EKL(6)=-Cl*V*Y32*X21-C2*X32*Y21 
EKL(7)=C1*X32*X32+C2*Y32*Y32 
EKL(8)=C1*V*X32*Y31+C2*Y32*X31 
EKL(9)=-Cl*X32*X31-C2*Y32*Y31 
EKL( 10) =-Cl*V*X32*Y21-C2*Y32*X21 
EKL(11)=C1*X32*X21+C2*Y32*Y2I 



EKL(12 )=Cl*Y31*Y31+C2*X3i*X31 
EKL( 13)=-Cl*V*Y31*X31-C2*X31*Y3i 
EKL(14)=-C1*Y31*Y21-C2*X31*X21 
EKL(15)=C1*V*Y31*X21+C2#X31*Y21 
EKL(16 )=Cl*X31#X31+C2*Y31*Y3i 
EKL(17)=C1*V*X31*Y21+C2*Y31*X21 
£KL(18)=-C1*X31*X21-C2*Y31*Y21 
EKLI19 )=C1*Y21*Y21+C2*X21*X21 
EKL(20)=-Cl*V*Y21*X21-C2*X21*Y21 
EKL (21 )=C1*X21*X21+C2*Y21*Y21 
D0300J=1,21 
IDUM=IDUM+1 

300 AK(IDUM)=EKL(J) 
A123=A123/3. 
XL(N1)=XL( ND+A123 
XL(N2)=XL(N2)+A123 
XL(N3)=XL(N3)+A123 

999 CONTINUE 
CC=EE/(X32*Y21-X21*Y32)/(l.-EENU*EENU) 
Z=.5*(l.-EENU) 
II=3*(MEM-1) 
I I P l = I I + l 
I IP2 = I I + 2 
I I P 3 = I I + 3 
STRS(I I PI,1)=Y32 
STRSd IP1,2) =-EENU*X32 
STRS(IIP1,3)=-Y3l 
STRSd IP1,4)=EENU*X31 
STRS(I I P I * 5)=Y21 
STRS(IIP1,6)=-EENU*X21 
STRS(IIP2,1>=EENU*Y32 
STRS<IIP2,2)=-X32 
STRS(IIP2,3)=-EENU*Y31 
STRSdIP2,4>=X31 
STRSd IP2, 5)=EENU*Y21 
STRSd IP2,6) =-X21 
STRSd IP3,1) =-Z*X32 
STRSd IP3,2)=Z*Y32 
STRSd I P3,3) =Z*X31 
STRS(I IP3,4)=Z*Y31 
STRS(IIP3,5)=-Z*X21 
STRS(IIP3,6)=Z*Y21 
D0995K=IIP1,IIP3 
D0995J=1,6 

995 STRS(K fJ)=STRS(K,J)*CC 500 CONTINUE 
1000 CONTINUE 

0011001=1,N 
1100 X L ( I ) = X L d >*RHO 
1200 CONTINUE 

GOT03000 
2000 CONTINUE 



IDUM = 0 
0021001=1,M 
N1=N0D1U) 
N2=NOD 2(1) 
X2MX1=X(N2)-X(N1) 
Y2MY1=Y(N2)-Y{N1) 
EL=SQRT(X2MX1*X2MX1+Y2MY1*Y2MY1> 
CCC=X2MX1/EL 
SSS=Y2MY1/EL 
ECCL=EE*CCC*CCC/EL 
£SSL=EE*SSS*SSS/EL 
£SCL=EE*SSS*CCC/EL 
EKL(1)=ECCL 
EKL(2)=ESCL 
£KL(3)=-ECCL 
EKL(4)=-ESCL 
EKL(5)=ESSL 
EKL(6)=-ESCL 
EKL(7)=-ESSL 
EKL(8) = ECCL 
EKL(9)=ESCL 
EKL(10)=ESSL 

602 CONTINUE 
D02095J = 1,10 
IDUM=IDUM+1 

2095 AK(IDUM)=EKL(J) 
STRS(I, 1)=-EE/EL*CCC 
STRS(I,2)=-EE/EL*SSS 
STRS(I,3)=-STRS( I,1) 
STRS(I,4)=-STRS(1,2) 

600 CONTINUE 
XL( I ) = EL*RHO 

2100 CONTINUE 
601 CONTINUE 

3000 CONTINUE 
CALL FIXAK 
RETURN 
END 

SUBROUTINE FIXAK 
COMMON CARDS:DAT A t PR INT 

DO 100 1 = 1, NK 
100 I I B d )=0 

DO 110 1=1,NB 
IF { IB(I).GT.IOOO) GO TO 120 
IDUM=IB(I)+IB( I ) - l 
GO TO 110 

120 CONTINUE 
IDUM=2*(IB(I)-1000) 

110 II8(IDUM)=1 
IF(ISITP.EQ.2)G0T0<V00 
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DO 300 1=1,M 
N1=N0D1(I)+N0D1(I)-l 
N2=N1+1 
N3=N0D2<I)+NOD2(I)-l 
N4=N3+1 
N5=N0D3(I)+N0D3(I)-l 
N6=N5+1 
I I = ( I - 1 ) * < 21) 

201 IF(IIB(N11.EQ.O) GO TO 202 
A K ( I I + l ) = l . 
A K U I + 2)=0. 
A KUI+3)=0. 
A K U l + 4 ) = 0 . 
AK(11 + 5)=0• 
AK{ 11+6 )=0. 

202 IF(IIB(N2).EQ.O) GO TO 203 
A K ( I I + 2 ) = 0 . 
A K I I I + 7 ) = 1 . 
A K ( I I + 8)=0. 
A K ( I I + 9 ) = 0 . 
AKU I+10)=0. 
A K U I + 11)=0. 

203 I F ( I IB(N3).EQ.O) GO TO 204 
A K ( I I + 3 ) = 0 . 
AK(II+8)=Q. 
AK(I I + 1 2 ) = l . 
A K U I + 13)=0. 
A K ( I I + 1 4 ) = 0 . 
AK ( I I + 15) = 0. 

204 IF{IIB(N4).EQ.O) GO TO 205 
A K ( I I + 4 ) = 0 . 
AK( 11 + 9 )=0 . 
A K ( I I + 1 3 ) = 0 . 
A K ( I I + 1 6 ) = l . 
A K ( I I + 1 7 ) = 0 . 
A K ( I I + 1 8 ) = 0 . 

205 IF(IIB(N5).EQ.O) GO TO 206 
A K ( I I + 5 ) = 0 . 
A K ( I I + 1 0 ) = 0 . 
A K ( I I + 1 4 ) = 0 . 
A K ( I I + 1 7 ) = 0 . 
A K ( I I + 1 9 ) = 1 . 
AK(11 + 201 = 0. 

206 IF(11B(N6).EQ.O) GO TO 300 
A K ( I I + 6 ) = 0 . 
A K ( I I + L 1 ) = 0 . 
A K ( I I + 1 5 ) = 0 . 
AKUI+18)=0. 
A K ( I I + 2 0 ) = 0 . 
AK(11 + 2 L) = 1• 

300 CONTINUE 
G0T0500 
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400 CONTINUE 
D0450I=1,M 
N1=N0D1(I)+N0D1(I)-1 
N2=N1+1 
N3=N0D2(I)+N0D2(I)-l 
N4=N3+1 
11 = (1-1>*10 

451 I F U I B ( N l ) .EQ.0)G0TO452 
A K ( I I + 1 ) = 1 . 
AK( 11 + 2 )=0• 
A K ( I I + 3 ) = 0 . 
A K ( I I + 4 ) = 0 . 

452 IF(IIB(N2).EQ.O)G0TQ453 
A K ( I I + 2 ) = 0 . 
A K ( I I + 5 > = 1 . 
A K ( I I + 6 ) = 0 . 
A K ( I I + 7 ) = 0 . 

453 IF(IIB(N3).EQ.0)G0T0454 
AK(11 + 3)=0• 
AK{I1+6)=0. 
A K ( I I + 8 ) = 1 . 
AK( I I + 9)=0. 

454 IF(IIB(N4).EQ.0)GOT0450 
A K ( I I + 4)=0. 
A K ( I I + 7 ) = 0 . 
A K ( I I + 9 ) = 0 . 
A M I I+10) = l . 

450 CONTINUE 
500 CONTINUE 
501 CONTINUE 

RETURN 
END 

SUBROUTINE MERGE 
COMMON CARDS:DATAt PRINT*0PTf WORK 

DO 100 K=1,NT 
100 EK(K)=0. 

IF(ISITP.EQ.2)G0T0500 
IDUM=0 
DO 200 I=1,M 
N1=N0D 1(1) 
N2=N0D2(I) 
N3=N0D3(I) 
TTT={T(N1) +T(N2)+T(N3) ) /3. 
D0400J=1,21 
IDUMMDUM+1 

400 EKL(J)=AK(IDUM)*TTT 
DO 40 JJ=1,21 
GO TO (7,l,2,l»3,l,4,2fl,3,l,5tl,3»l,4,3,l,6,l,4)tJJ 

7 N D = 2 * ( N l - l ) + l 
L=ISUM(ND) 
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GO TO 20 
1 L=L+1 

GO TO 20 
2 L=L+2*(N2-N1)-1 

GO TO 20 
3 L=L+2*(N3-N2)-l 

GO TO 20 
4 ND=ND+1 

L=ISUM(ND) 
GO TO 20 

5 ND=2*{N2-1)+1 
L=ISUM(ND) 
GO TO 20 

6 ND=2*(N3-l)+l 
L = I SUM{NO) 

20 CONTINUE 
40 EK(L)=EK(L)+EKl(JJ) 
200 CONTINUE 

G0T0700 
500 CONTINUE 

IDUM=0 
D0600I=1,M 
N1=N0D1(I J 
N2=N0D2(I) 
D0610J = U10 
IDUM=IDUM+1 

610 EKL(J)=AKUDUM)*T(I) 
00640JJ=1,10 
GOTO(6O7,6Ol,6O2»6Ol,6O4t6O2,6Gl»6G5,601,6O4),JJ 

607 N D = 2 * ( N l - l ) + l 
L=ISUM(ND) 
GOT0620 

601 L=L+1 
GOT0620 

602 L=L+2*(N2-N1)-1 
G0T0620 

604 ND=ND+1 
LMSUM(ND) 
G0TG620 

605 ND=2*N2-1 
L=ISUM(ND) 

620 CONTINUE 
640 EK(L)=EK(L)+EKL(JJ) 
600 CONTINUE 
700 CONTINUE 

RETURN 
END 

SUBROUTINE DCOP 
COMMON CARDS:DATArPRINT,WORK 

EK(1)=SQRT(EK(1)) 



DUM=1./EK(1) 
JJ=NTIM(1) 
I F ( J J . E Q . l ) GO TO 100 
DO 100 J=2 tJJ 
EK(J)=EK(J) *DUM 

100 CONTINUE 
KK = J 
DO 500 1=2,NK 
IM1=I-1 
J J = I + N T I M ( I ) - 1 
DO 500 J = I , J J 
KK=KK + 1 
SUM=0. 
DO 490 L=1,IM1 
ITST=NTIM(L)+L-l 
IF(J.GT.ITST) GO TO 490 
ID1=ISUM(L)+I-L 
ID2=ISUM(L)+J-L 
SUM=SUM+EK(ID1)*EK<I 02) 

490 CONTINUE 
IFU.NE.J) GO TO 495 
EK(KK)=SQRT(EKIKK)-SUM) 
DUM=1./EK(KK) 
GO TO 500 

495 EK(KK) = (EMKK)-SUM)*DUM 
500 CONTINUE 

RETURN 
END 

SUBROUTINE CHOS 
COMMON CARDS:DATA,PR I NT,WORK 

D0950LC=1,NLC 
200 CONTINUE 

P( 1,LC)=F(1,LC)/EK(1) 
DO 600 J=2,NK 
SUM=0. 
JM1=J-1 
DO 580 L=1,JM1 
ITST=NTIM(l)+L-l 
IF(J.GT.ITST) GO TO 580 
ID1=ISUM(L)+J-l 
SUM=SUM+EK{ID1)*P(L,LC) 

580 CONTINUE 
ID2*ISUK(J) 

600 P(J,LC)=(F(J,LC)-SUM)/EK(ID2) 
P<NK,LC)=P(NK,LC)/EK(NT) 
NKM1=NK-1 
DO 700 K=1,NKM1 
J=NK-K 
SUM=0. 
JJ=J+1 
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ITST=NTIM(J)+J-1 
DO 680 l=JJ,NK 
IF(L.GT.ITST) GO TO 680 
ID1=ISUM{J)+L-J 
SUM=SUM+EK(ID1)*P(L,LC> 

630 CONTINUE 
ID2=ISUM(J) 

700 P( J,LC )=(P( J,LC)-SUM )/EKUD2) 
803 CONTINUE 
950 CONTINUE 

RETURN 
END 

SUBROUTINE FIXU 
COMMON CARDS:DATA,PRINT 

DO 500 K=1,NB 
ID4=IB<K) 
IF UD4.GT.1000) GO TO 65 
IM*2*( ID4-D + 1 
GO TO 70 

65 I0A«104-1000 
IM=2*ID4 

70 CONTINUE 
D0700LC=1,NLC 

700 P(IM,LC)=0. 
500 CONTINUE 

RETURN 
END 

SUBROUTINE GETS 
COMMON CARDS:DATA•PR INT tWORK 

IF tISITP.EQ.2JGOT01000 
600 CONTINUE 

DO 500 1=1,M 
N1»N0D1(I) 
N2=N0D2(I) 
N3=N0D3(I) 
J=2*(N1-1)+1 
D0101LC = 1,NLC 

101 U(1,LC)=P(J,LC) 
J = J + 1 
D0102LC=1,NLC 

102 U(2»LC)=P(J,LC) 
J=2*(N2-1)+1 
D0103LC=1,NLC 

103 U(3,LC)=P(J,LC) 
J = J+1 
00104LC=1,NLC 

104 U(4,LC)=P(J,LC) 
J = 2*(N3-1> +1 
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00105LC = ltNLC 
105 U(5,LC)=P(JtLC) 

J = J + 1 
DO106LC=l,NLC 

106 U(6,LC)=P(J,LC> 
I I = 3 * ( I ~ 1 ) 
D0107LOl,NLC 
D0108IS=1,3 
S ( I t I S , L C ) = 0 . 
D0108K=1,6 

108 S( I,IS,LC)=STRS(II + IS,K)*U(K,LC)+S(1,IS,LC) 
107 S( I,4tLC) = SQRT(S(I t l t L C ) * S ( I ,1»LC)+S(I t2 , L C ) * S ( I t2»LO-

XSU t2tLC)*S< I,1,LC)+S(I,3,LC)*S( I,3,LC)*(3.) ) 
301 CONTINUE 
300 CONTINUE 

500 CONTINUE 
GOT02000 

1000 CONTINUE 
1600 CONTINUE 

D01500I=1,M 
N1=N0D1(I) 
N2=N0D2(I) 
J=2*N1-1 
D01101LC=ltNLC 

1101 U( 1,LC)=P<J,IC) 
J = J + 1 
D01102LC=l,NLC 

1102 U(2tLC)=P(J,LC) 
J=2*N2-1 
D01103LC=1tNLC 

1103 U(3,LC)~P<J,LC) 
J = J + 1 
D01104LC=1,NLC 

1104 U(4,LC)=P(J,LC) 
D01107LC=1,NLC 
S(I,1,LC)=0. 
D01108K=1,4 

1108 S(I,ltLC)=STRS(I,K)*U{K,LC)+S{I,l,LC) 
S(I,2,LC)=0. 
S( I,3tLC) = 0. 

1107 S( I,4,LC) = SU,1,LC) 
200 CONTINUE 

1500 CONTINUE 
2000 CONTINUE 

RETURN 
END 


