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ABSTRACT

This thesis concerns the strong interactions of elementary
particles and in particular the scattering of particles at the highest
measured energles, .

Chapter one is divided into two parts, of which the first is
an introduction to those aspects of the strong interaction with which
we are concerned. The ideas introduced are then discussed-in the second
part of the chapter in the context of antiproton production in high
energy proton interactions. An approximate calculation of the production
cross-section is presented which gives some insight into the unexpected
features of this process.

Chapter two is a calculation of the multiplicity distribution
produced in proton interactions in a two component model based on Regge
pole exchange. With a view to reducing the number of free parameters,
the multiplicity distribution arising from reggedp-particle collisions
is assumed to be independent of which reggeon is involved (including,
notably, the pomeron). Features of the model are diﬁcussed as they arise
and finally & fit is performed to the observed mulbtiplicity distribution.

In chapter three this model is discussed ih the context of
momenéum dependent measurements. The observed correlation between two
mesons is seen to be in agreement with the model, as is the multiplicity
distribution in all but one of the particles produced when the momentum
of one is measured. Particular attention is also paid to thé\correlation
between & forward proton and a charged particle in the central region,
which is well described without any free parameters. “

In chgpter four the proton inclusive distribution is {iscussed
with regard to the triple pomeron coupling. Particle production from a
model with a non-zero triple pomeron coupling is discussed in relation
to the ‘preceding chapters. |

Finally a brief summary of the findings of these chapters

is presented.
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1.1 What does the stfong interaction look like at high energy?

Before going on to perform calculations in an attempt to
describe the strong interaction, it seems natural to present a descrip-
tion of the broader features found empirically.®

Picture, then, two particles coliiding in their centre of
momentum frame., As the strong interaction has a short range, then they
behave like free particles until they achieve close proximity. What
happens then is impossible for us to see, What we do see is that two or
more particles emerge from the interaction, (again behaving like free
particles by the time we see them) in such a way that their total charge,
momentum, energy, and & number of other quantities are conserved.

Having taken these conservation laws into account one finds
that this is a remarkably gentle process. To illustrate this let us
conslder a few of the possible interactions. If both the initlal and
final states consist of two protons, they have the freedom to come out
at any angle (in opposite directions) relative to the initial direction.
As shown in figure 1.1, they prefer overwhelmingly not to change their
direction very much. The momentum of the final state particles trans-
verse to the initial direction is limited. This phenomenon is not only
observed in elastic interactions but is far more general. If we observe
an interaction and don't bother to count the number of particles that
are produced, but merely measure the momentum of one of them, we find
that it too prefers to emerge without much momentum transverse to the
initial direction.(e.g. figure 1.2).

Once we know that these interactions can produce more part-
icles than went into them, it is natural to ask‘?ow many. Before we
examine the experimental data here, we shall note' how many the conserv-
ation laws allow. Conservation of énergy—momentum\requires at least two,
- If we take an interaction with a total centre of maés energy squared

equal to s, then the maximum number of particles which could emerge is

[
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L s/m._’E 3 where'mn is the mass of the lightest known hadron, the

pion. Even though an event where the whole energy is converted into a
mags at rest is somewhat extreme and even at first glance may be a little
improbable; the average number of particles produced is still a surpris-
ingly small number compared to this, as shown in figure 1.3. Most of the
initial energy, then, comes out in the form in which it went in, as
kinetic energy. And energetic particles emerge in a direction not very
different from the initial direction of the colliding particles.
Furthermore, a large fraction of an initial particle's momentum is.
often carried by Just one of the outgolng particles. This is thus often
thought of as a '"fragment' of the initial particle. The frequent occurr-
ence of a very fast oubtgoing particle is known as the 'leading particle
effect', (see figure 1.4). These effects taken together provide a basic

picture of the scattering of two particles into two or more.



1.2 Amplitudes and cross-sections

(a) The total cross-section

For the scattering of particles from an initial state |i>
to an n particle final state |f> s we have a scattering amplitude
<f|A|1i> and we teke the measured cross-section at a total squared

energy of 8 , to be B

i

2 NY(s,m3 e

d&nlam\w\z ) (1.1)

and the total cross-section is

oY ) Cals) ) (1.2)
n
We use here the conventlonal factors as in reference 2.
d@n is the n particle Lorentz invariant phase space element. A is the
triangle function.

(v) Unitarity and the optical theorem

The probability of producing any final state including the
possibility that they remain in the initial state must be identically
one. This provides us with a constraint on the amplitude.® This is
expressed as the unitarity condition

t 'tS

§S = S9 < 1 (1.3)

on the operator

S= 1+ A (1.4)

It follows that

’ N t'* »
Dise <v \AlLD> = Zj\dén <niAlY <nlAali> (1.5)

o ——



(c)

(a)

where k
!

- .
Dise ALY - ‘<<e\mc'>- <~\‘\‘°>\ (1.6) .

In particular for |i>= [i'> we have using (1.1) 4nd (1.2)

| T &lALLY o
O;.ot( ' MJHW:S) i} 'I\"2 (5, m:;ng‘ .

v

This last is known as the optical theorem. Later we sh;ll discuss a
hypothésis due to Mueller®, which is analogous to this equation, and
has formed the basis of one approach to the phenomenology of many-
hadron problems.,

The Froissart bound \

\

A bound on the total cross-section at high energy was
deduced by Froissart, the prime ingredient of which is unitarit&s.

The bound is \

Ouels) ¢ c[ens] (1.8)

where ¢ is a constant. It is valid for s larger than some
constant 8, As we shall see later, this bound is extremely useful in
that it rules out a number of phenomenological ideas‘which might seem
to be desirable with respect to some of the recent data on high energy
proton-proton scattering.

Inclusive and exclusive cross-sections

If one is performing an experiment to look at a specifie
interaction with a limited number of particles produced, then one can
measure all their momente and obtain more or less complete information
on every event. However, this exclusive approach would clearly be a
rather difficult task when one wants to look at a typical event. at high

energy. As seen from figure 1.3 , the average number of particles pro-

<
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duced at the highest accelerator energies is in excess of a dozen. Most
of the experiments carried out at these energies are therefore inclusive
in nature. In an inclusive experiment one only measures a certain
number of the outgoing particles' momenta. Clearly complete information
could be achieved by a knowledge of all exclusive experiments
ayb 2 1,2,5,0000000a009n
for all n=2 . However it is also trﬁe that complete inform-
ation can be obtained from a knowledge of all inclusive experiments
ayb -91,2?3,........,n + anything unobserved
for all n=0 . This is pointed out clé?rly in reference 6.
Whereas exclusive measurements have a complexity which rises directly
with the number of produced particles, all inclusi;e measurements will
reveal something of many particle production. \
A class of experiments which do not perhaﬁs fall neatly
into either of these categories is that in which the number of particles
are counted but momenta are not measured. Thus we can find Un/atot ’
<n> , <f(n)> for some function f , at least for the case where n denotes

the number of outgoing charged particles. \

\
A

Correlations
If we ask what the possibility i3 of a particle emerging

?
from an interaction with a certain momentum p , then what we wish to

\
measure is the inclusive cross-section

N, (p) = (1.9)

Slg

1
o

We use the notation dp for the Lorentz invariant phase space element

d®p/2E and have normalised to the total cross-section so that

jN.(ﬂ e\P = <n? ~ (1.10)

For the probability of producing k particles with specified momenta, and
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any others , we wish to know the inclusive cross-section

1 __f‘\_QL_ (1.11)
6 dp,-db,

For identical particles

Nkﬁ)-"“ﬁa) =

S

ho(P,...Ph\o\fs....dPh a3 <n(m-)...(n-Rk+4)D (1.12)

It is perhaps more interesting to ask how much more or less
probable it is to find particles with momenta PysPpseesse sy than it
would be to find them individually from different events. We construct

the quantity

C (0P ) = N (PR - M (p YN (P:) (1.13)

which is called ‘the two particle correlation. We then successively
construct the k particle correlation by writing

N2 (423) = MNONGINGE) + N (2N, (23) (1.14)

+ N.("S) Nz(,z,a.) + N‘('Z) Nz(g.'l\ * C3 (1)2;3)

and so on. The possibility cn=0 is referred to as uncorrelated production.
(This is technically ruled out by momentum conservation’ bub may be
approximately true in that C_ can be much smaller than N, .) A meas-
ure of the overall size of the correlation. is provided by the integrated

correlation
\

v
\
)

£ = Jc‘r.-n'df'.. cn(P-'-\"Pﬂ (1.15)
\

fls) = Sd?‘ N{p) = <n> (1.16)



(f) The multiplicity distribution

Perhaps the most basic measurement that can be made of a
particle interaction is just to count the multiplicity of particles
emerging from it. By doing this experiment one can find the fraction
orn/or ,o0f the tc;tal interaction cross-section which goes into the
production of n particles. We define the generating function for the
multiplicity distribution (first introduced to particle physics in

reference 8) by
n G
Des,z) = ; 235 (1.17)

We have that

o= ) G, ' (1.18)

n
and so

Pls,1) = 4 (1.19)

It will also be convenient later if we define
I(s,2) = 22", = o, G(s,2) (1.20)

Clearly

o—"/o' - '}5 (?&Y d’(s’*)\

2:0 (1.21)

and

k
Cn(n-1)... o~k )y = (g;zb ds)2)

zed (1.22)

The generating function can also be expressed in the form

(L1 %]

d)(s,z) = exr { Z @%?“ ’P,,(S') } (1.23)
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where it turns out® that the fn are just the integrated correlations

that we have already introduced. Considering, for now, identical part-

icles we have “
£ = <n>
(1.24)
£,= <nm-vy - inH (1.25)
The standard deviation D of the distribution is defined by
D =z <&ty - <V (1.26)
and so
4: 2

If the multiplicity distribution is a singly peaked distribution, then
one may expect that the sum in (1.23) is the most rapidly convergent
description of the generating function, as f; gives the mean, f2 the
width, and then fa.....ﬁb are more subtle quantities to do with the
shape of the disbtribution.

From this generating function approach Le Bellac® has derived
an interesting theorem. It says essentially that if the correlations fn
are assymptotically like 1n(s) then the quantities on/a fall assymp-
totically like a power of s. This is interesting primarily because many
models suggest that f ~ In(s) .

The generalised optical theorem

The simplest inclusive reaction is the one which may be

described as

ab = X (1.28)

which is the measurement of the total cross-section.
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This is related by the optical theorem to the forward elastic process

a,b = a',b' ,where Pyt = Dy , D.

o' = pb « This is illustrated in

DIAGRAM 1.1 : The optical theorem

diagram 1.1. The discontinuity referred to is

L [ O Amcs-ce)] (1.29)

E-»¢o

Mueller*’® hypothesised that the inclusive cross-sections

might be treatable in a similar way. For the reaction

a,b ""C,x "(1.30)
we observe c¢ and sum over all possible X. The corresponding diagram

is diagram 1.2, The disconbtinuity here is

Lim . [Hs-»a (gf S+iE Sy’ Me i€, Y™ s-.'gb (1.31)
20 . .
ke ~ Ay (Samsrie,, 5,5=M0ig, 30 5“‘«)]

X

fescamnumumed
C

DIAGRAM 1.2 : The generalised optical theorem
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The discontinuity is énky acrogs the cut in one of the variables (the
squared missing mass), but the hypothesis rests. on the possibility of
the analytic continuation in the variables shown. The higher order
inclusive cross-sections can then be hoped to satisfy a similar re-

lation shown in diagram 1.3. In each case the discontinuity is taken

DIAGRAM 1.3

The optical theorem for a,b ->c1,c2,.....,cn,x

in the forward direction, P,=Pys 3 PPy 5 pcl=pc1 s ete. This
hypothesis has been used extensively in conjunction with Regge

phenomenology, (See for example references 6,10).
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1.3 Begge theory

(a) Regge trajectories

So far we have merely defined the quantities which one
might wish to discuss to gain some understanding of physics at very
high energies. No mention has been made of how one might go about
working out what these quantities might look like.\Regge analysisll
provides a framework in which to diséuss such calcuiations, at least
for the high enefgy behaviour of amplitudes. For two bady reactions,
briefly, Regge theory involves expanding the scatteriné amplitude for
large & and small t in a t channel partial wave series and continuing
to complex values of t channel angular momentum, j . The analytic
structure of the amplitude in the complex j plane determines the high
energy (lerge s ) behaviour of the amplitude. A (Regge) pole‘et J=a(t)

implies a high energy behaviour like sa(t2

a(t) is known aé a Regge
trajectory and in the positive t region when o takes on physical

values (integral or half integral), it will correspond to the existence

of a particle of ﬁass ﬁ and spin ¢ such that q(m®)=0 . (For reasons

that we shall not go into here, these particles are expected to be

spaced at intervals of.2bunits in anguler momentum - e.g. the proton

may have recurrences of spins 5 9 etc.). The high energy s channel
scabttering is of course determined by the trajectory when t 1s negative.
These Regge trajectories have the advantage that the same trajectories \\

should appear in different processes with the same t channel quantum \\\

numbers. Diagram 1.4t gives a pictorial representation of the Regge

. c d c d
t N
no
5»>a
b
o ¢ b R I
s

DIAGRAM 1.l : Regge behaviour of amplitudes
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trajectory in two body scattering. Although more complicated singular-
ities in the j plane are now generally thought necessary to explain
the detailed features (e.g. polarisation) found in two body interactions,
the data for many body interactions are generally less precise in the
information given about amplitudes, and so one may seek to use a
phenomenological extension of the simple Regge pole ideas to describ;e
particle production processes. This of course will be based upon the
knowledge of tria.jectories goined from two body scattering.
Ihe_pomeron

It has long been clear from the data that total cross-
sections do not fall with energy. The optical theorem implies that
if the elastic two particle cross-section is dominated by a simple
pole trajectory «(t) then

ooy - 14

1] ~ (1.32)

S0

The Froissart bound then implies that

The approximate constancy of the total cross-section indicated a
trajectory having «(0)=1 . As,all the known mesons with vacuum quantum
numbers seem to lie on lower trajectox‘-ies '(which appear roughly linear
in t with a slope of approximately 1 GeV 2, see figure 1.5), this
trajectory was something new, It was named after Pomeranchuk and is

now generally referred to as the pomeron. The recent observation of
rising total cross-sections indicate that the pomeron is perhaps some-
thing more complicated than & simple pole. The cross-gections may reach
a constant from below or may not. The Froissart bound may or may not be
saturated assymptotically. If cross-sections do rise assymptotically,

then complete s channel unitarity which provides the Froissart bound

\

\

[ \
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+ “
\
i .
will presumably be crucial to any model for particlg production. In any
event the existence of a trajectory having a(0)=1 gi@es rise to certain

difficulties when one tries to use it in & simple way in particle pro-

duction processes.®?12118

The statement of duality'® is that a sum of s channel
resonances or a sum of t channel Regge exchanges form alterﬁative
descriptions of an amplitude, rather than the amplitude beiné\a gum of
both. A further conjecture® would have the resonances 'dual! in this
way to Regge exchanges other than the pomeron, whereas the pomeron
should be 'dual' to the background. This is extremely attractive in two
body scattering as reactions in which the total s channel quantum
numbers are exotic should have no resonances and therefore only the
pomeron in the t channel of the imaginary part of the elastic amplitude.
The cross-section should thus display,a more rapid approach to the
assymptotic pomeron behaviour, whether it be constant or otherwise. This

+ .
is clearly displayed for pp and X p interactions. (See figure 1.6)

A\

\
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1.l Regge ideas in particle produckion

(a) The single Regge limit

Just as Regge behaviour in an elastic amplitude gives, via
the optical theorem, informai'(ion about the total cross-section, we can
gain information about inclusive reactions if we assume that the dis-
continuity (unphysical though it is) of the three to three elastic
amplitude also has Regge behaviour.

Congider the reaction a,b - ¢,X with c in the fragmentation
region of b, (that is c is slow in the rest frame of b). In the optical
theorem diagram we can think of a 'pseudoparticle' with the quantum '

numbers of bc , and assume Regge behaviour for M2 large. ( M is the

total mass of the unobserved X, See diagram 1.5)

DIAGRAM 1.5 : Fragmentation region of a,b =*c,X.

If we define t= (pb—pc)2 , then a pole contribution will

lead to an expression

Z B, (¢, ’-".; ).(n%) | (1.34)

for the inclusive distribution in this region, or equivalently

ofi(ey~1

s %‘a (t, %"> s (1.35)

Pomeron dominance of this process at high energy immediately gives the

scaling criterion suggested by Feymnman that
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(v)

O(ﬁ'"" AA';“

OLP‘- " S04 d‘f’; %‘t )t) (1.36)

This is also equivalent to Yang's statement of limiting fragmentation.

Ideas concerning the exoticity of quantum numbers may again lead via
duality to some expectation of how rapidly scaling should oceur. After
a long discussion by various authorsls, no absolute agreement upon any
exact criterion was reached. Reference 6 does however draw the tentative
conclusion that if bC is not exotic, thus allowing small t dominance,
and abc is exotic, then the pomeron should dominate the amplitude
depicted in diagram 1.5 , leading to rapid scaling. It is also pointed
out there, that in the fragmentation region, the singularities
(especially the pomeron) seem to factorise extremely well. ( It is
easier totest factorisation here then fn elastic two to two scattering
as the quantum numbers of the 'pseudotarget' bc can be varied easily
at will.)

The double Regge limit

In the case where the particle c¢ is slow in neither of thé

rest frames of the colliding particles, diagram 1.6 may be thought more

DIAGRAM 1.6 : The double Regge limit

appropriate. The inclusive cross-section in this case will have the

form

o' {o)-1 oy (o) ~1

= 2. Bir (<) lh\" clud (1.37)

'

rl)
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where
ut 2 2
K = ';' *® F"-t S LA
(1.38)
and
2
s+ L+ = M (1.39)

Assymptotically as s~ with P, fixed we now have the
&

prediction that out of the possible three variables this quantity only

-

depends upon one, the transverse momentum of the observed particle.

The approach to scaling is slower here however than in the fragmentation
L

region. If P,, N 0 in the centre of mass frame, then u,t~ s and so

L : -
the first non leading terms are like &° (0(0)-1) \ rather than ¢"n(0)-1

\
as in the fragmentation region.

\

[y
[y

(c) The triple Regge limit

The triple Regge limit is a special case in which we can
say a little more about the single Regge limit. It is appropriate in
the region of phase space where M® is large (M2>m(2) say), and s/M® is
also large, (s/M>> (l-xo)"l say). ‘We define ag usual the variable x
to be the longitudinal momentum of the observed particle in\\the centre
of mass frame, normalised so that -I1=x<1 , i.e, x=2p2'm/ J’ s\\. For
8 large then

- M \
= 1 % (1.40)

In terms of this variable we are now discussing the region

q
X, § x £ 4- e (1.h1)
S
(The central (double Regge) region is confined in this \

7

variable to a very small area |x|<0(1As) and so it is not very
suitable for discussing the details of the central region.)

For s/ M® large the amplitude for a,b —*¢,X is expanded as



i8
in diagram 1.7 before taking the square modulus. Then doing this and

summing over the missing X one finds

N;“‘)"%‘(ﬂ’i
-1
z%i % ;_\_:_r ae > Z}.‘ Giju (e,59) 3;&&(&)&@) A;(b)ﬁ‘;@ ':‘41) QA"YIU (1.42)
J

where Si(t) is the unit modulus phase (signature) factor predicted by

c X

w(t) DIAGRAM 1.7

Regge theory. The diagram corresponding to this limit is diagram 1.8.
In this region we have the dependence on the s and M2 variables and
the only arbitrary dependence is that on t, in each of the terms in
equation (1.42). The advent of the CERN Intersecting Storage Rings and
the NAL accelerator which allow us to study the otherwise inaccessible
region where s >> ﬂ? >> 1 GeVe, has made this triple Regge expansion
very popular amongst phenomenologists. We shall discuss it in greater

detail in the following chapters.

DIAGRAM 1.8 : The triple Regge limit
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(d) The multi-Regge limit

We have so far considered the single particle inclusive
distribution in a number of different limits., The many particle
inclusive distribution can be treated in a similar way. In chapter
three we shall look in detail at the two particle correlation, so
here we shall point out the broad features indicated by Regge
phenomenology. Consider diagram 1.9. We shall take the limit where all

the sub-energies are at least large enough for the amplitude to be

+ ’ ¢ b
sa't'.

DIAGRAM 1.9 : The multi-Regge limit of the

two particle inclusive distribution

approximated by a sum of Regge terms. If we assume factorisation
(which seems to be good in the fragmentation region) , then the leading

Regge term (ai=aj=a =aP) in the sum

k
o= o=\ o ~1
GNZ (PCoPd) < Z ﬁ;k(“e\ﬁ\s Sz ng Sd: (1.43)
gk

becomes

C Nz - Kal’ xf‘cf’(&\xmp(m y KLP (1.44)
where

Sat Sed Sed Sab
P B R , k:d = ——nt
Sa:\ S'éh

The y are the vertex factors relating to diagram 1.9 . From the optical

.
4 Ve
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theorem for a pomeron dominated cross-section o ~ yafer where
factorisation gives the same 7y factors.
Therefore

N, ~ 7pep "pap

Similarly (see diagram 1.6)

N~ 7pep

Hence :

cz(pc,pd) ~ 0 \

Thus when 805 7 Boq ? and 84, 8re large Ye expect no
correlation. This is the statement of no long range correlation. (Long
range implying very differeﬁt momenta and hence 1arge‘sub-energies.)
Putting lower singularities @ into the cd channel will result in a

behaviour like szal « In terms of the longitudinal rapidities of the

particles, defined from their momenta by .

P s (M‘Co!‘\a , 'ﬁ , M Shinh 53 \\ (1.45)
with ) : ; p \ \\
h
m, v (o pl) (1.46)
this gives
. o-4
C, o [ Coshiy-yo] (1.47)

which is clearly a typical short range correlation vanishing
rapidly for ch—ydl large. The correlation length may be thought of

as L= (1-0)"1 units of rapidity.

\

\

\

A

\
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1.5 An idealiged picture of inclusive reactions

The previous sections give us a very nice picture of what
inclusive distributions should look like, and show the Mueller hypo-
thesis combined with Regge phenomenology to be a very powerful pair
of ideas. The world viewed this way should provide us with inclusive
distributions which scale in the fragmentation region, and which in
the fragmentation region of one of the colliding particles should be
independent of the nature of tﬁe other. In the central region the
inclusive distribution should also scale (albeit more slowly) and
depend only upon the transverse momentum of the observed particle. This
should result in a plateau when plotted against the rapidity variable
which has a range of 1n(s). The fragmentation region, we picture as
being where observed particles are within a correlation length of the
end of the rapldity distribution. The central regilon, we thus expect,
should be clearly visible when 1n(s) >> 4 . (The scale of s is set by
the transverse masses involved.) Correlations should fall rapidly as
the particles' momenta become separated on the rapidity plot, and should
not depend on absolute rapidities but only on differences of rapidities.
These ideas are depicted in figure 1.7 . The integrated correlations
should thus be linear in 1n(s) , as should the mean multiplicity.

Empirical observation provides s tantalising combination of
confirmation and denial of our efforts., The mean multiplicity is
excellently consistent with ln(s) , however the integrated correlations
would prefer a more rapid s dependence. (See figures 1.8-1.11).
Factorisation in the fragmentation region, as discussed, seems good.
There is also evidence for a rapidity plateau. (See figure 1.12). Short
range correlations are not necessarily the only ones present as
indicated by the integrated correlation data. One of the more interegting
problems is the difficulty of incorporating the pomeron into many-

particle problems in a consistent way. (For instance the triple Regge

region produces rather strange results for the three pomeron casele)
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We shall discuss these problems further. The objects of the following
chapters are to try to realise why this short range correlation
approach is not sufficient in certain respects, and to test certain

models which might , in these respects, improve on the basic short

range correlation idea.
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r PART II

The reaction pp = DX

INTRODUCTION
The reaction pp - pX is discussed. Its interest lies in
that it satisfies a number of exoticity criteria. The data do not
scale as expected. A calculation is presented which, whilst being
somewhat simplistic, takes more carefully into account what we
believe to be the more important of the kinematic feai;ures of this
process when the antiproton is observed to be slow in the centre of

momentum frame.
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1.6 Antiproton production : the Mueller-Regge approach

Whilst the Mueller-Regge pnenomenology works very well in
the fragmentation region, certain difficulties appear when specific
applications are made in the central (double Regge) region. As pointed
out by Chan et al.r7, the process pp —pPX ought, at first glance, to
provide an excellent testing ground for phenomenology in the double

*  Regge region., In the notation of the previous sections the channels
abc , ac, bc 9ré all exotic and so one might justifiably expect that

the inclusive cross-section should rapidly become independent of energy.

" ') * T
‘ * u © L \

\ DIAGRAM 1.10 : The double Regge limit‘

Furthermore for the amplitude shown in diagram 1.10 , the kinematic

relation

s e V(1.48)
holds when u,t,s—e , In the central region then

\

'u.~m°‘~rs' L t ~ Mcl‘rs-' (1.49)

and so it might be considered better to have a heavy particle c so

ATt el e

that at smaller s we have large u,t. Antiproton production, then, is

ideal in this respect. However the inclusive distribution for pp —pX
in the central region continues to rise, even at I.S.R. energies. (The
- rise is even more difficult? for dual ideas in the Mueller-Regge

‘ ' approach than would be a fall.) In reference there is introduced a

\
\
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singularity with vacuum quantum numbers, in addition to the pomeron
and usual meson terms. It has to couple negatively to give the rising

distribution and its intercept is tentatively set at around zero.
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1.7 Antiproton production : a direct approach

In this section we shall perform a simple calculation which
illustrates that the rige in antiproton production is a kinematical
effect.I This conclusion stems essentially from the fact that the
lowest multiplicity event which contributes to this process is
P,p-* D,P,P,P - If one takes this to be definitive of: the energy scale,
then one should expect that the features of the s dependence will be
present when s is a factor of four or so, higher than in the total cross-
section (which depends upon Im A(pp—pp)). Whilst this is undoubtedly a
contributing factor, far more important is the size of any of the momentum
transfers involved. Owing to the massive particles in the final state,
the invariant momentum transfer from an initial proton to a final one
can only become smell at large s. This problem is aggravated by demanding
that, if the antiproton is observed with small momentum in the centre of
mass frame, there should be two small momentum transfers as suggested by

diagram 1.11. We take this to be our model for antiproton production.

DIAGRAM 1.11 : A model for p,p—p,X

It is suitable for production in the central region, as for xi)- 0 with

fixed momentum transfers and transverse masses and with small B,

Sisu «‘I; ) Syzg ¥ ‘FP

§o00 S -> ad (1.50)



ARt R 3 T T Dh i MU LS e =2

27
The central vertex is taken with a proton-antiproton pair so that the
assymptotically non-vanishing pomeron contribution can be calculated.

To illustrate the kinematic effect we set m - mé = m3 = m4 =m , and

take the two reggeons to be zero slope pomerons. Thus we write the
amplitude for the process as
Be BEy

A= N. ?_‘3‘*. s__g;su e (1.51)
S3u  Sas.

This is the simplest 'phenomenological preseription where we take all

the 'pomeron mass' dependence of the PP - pp amplitude into B and

agsume no dependence on the variable % =(s / 8 ). We expect

104" 5234
the dominant contribution to be that where s34 is small ag this not

only allows to become large more rapidly, but also allows

8134/864
smaller ltl. Also the amplitude for PP =pp as L becomes large
might be expected to involve baryon exchange and thus become small.

We therefore regard it as a reasonable approximation to set sa4= P ’

and calculate the contribution to the amplitude here., Thus

do | afddl 7 oW :
£, . N EF .éE: + S Sasy & &(R-t;t;zg)3(3.+?-*2.?u\(l.52)

where we have set 33 =R, ( Bas” hn? ) anq absorbed all constant

factors into N2 .

S e $+m2—2.j_3‘(:'-2

3y

Saay* S+ w'- 2FE, } (1.53)

t,~ 2m® = :Ziﬁc:f{M

We now integrate over the phase space in (1.52) keeping the exact
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kinematical limits on the momenta. The assumptions that we have made

simplify the remsining integrals a great deal, We write

3 3
d
olEf" B I8\ A€, d% ddb op (1.55)

%
' E"- E’l

X is the cosine of the angle made by R, with the as yet unspecified

z axis.

The integration de'padEl now serves to remove the 8-functioms.

Integrating dsp2
P "$' ~ 2Py
%
£, — C Euz "'“"ﬁu\z ""H’t&IE}'”‘t Cos em—-‘

and the remaining delta function (after some algebra) becomes

} (1.56)

aE,
® (E e+ Yo + q?w.le\t'"“tc"‘ eu».]g"' €, +2e,~F ) EE:

S(e-0) (EFm") dE, (1.57)
(=26, [E-w + 2,p,Cot®y,

where §), the root of the argument of the delta function on the left of

equation (1.57) is given by

N

(F-26(srun-4EF) = 2, L0584 | Grimt= e B)-uat{ (& REN-WPecoit)
{ = : . ( (1.58)

2( (§-28,Y - upf Ces0),)

The remaining integration is now

3 2 2 P(b\" t;\
R P

Py W QE.QEW +250,Cos8,, (1.59)

t




where now \
Spay = [Somt- 2507
Sys, = Lsemi-af (-26,- Q)] } \(1.60)
and
£y = a2 + [uat)(stot) Cos &y,
(1.61)

tz = dmt— E (-E -QE,._-S\.) 4-\\(5-41,'“")(-‘\? -m') CuQM"Q ~Gm* hcmem

We also have

Cer 8, = (036, CosO,, ~ Sing, Sinb (Cos(d-d,) (1.62)

2] m is of course known. For £4=;é2 we choose the. Zz axis along PA and
so X= cos@,,, and the x axis such that ¢=¢,-¢, . The remaining exp-
ression is integrated numerically¥* for various values of s and D, *
The constant N was chosen to normalise the model to the data at the
point s = 1100 GeVZ, D, =95 GeV/e , x= 0 , and B = 0.7 GeV™2 was
found to give the observed P, dependence for x=0 at I.S.R. energiles.
(See figure 1.13). Away from x=O the cross-section falls rather too
rapidly with x . This perhaps is not too surprising in view of the
fact that the whole central region is concentrated into a very small
region of x and outside this region we do not expect the Regge amplitude
in diagram 1.11 to be so good. The s dependence is now completely

determined and is shown in figure 1.14 , Although this is a little too

rapid over I.S.R. energies, it extrapolates very well down to con-

* Computer calculations here and later were done on the Northern
Universities Multiple Access Computer and also the Rutherford High

Energy Laboratory Computer.

\
R
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ventional accelerator energies. The transverse momentum dependence
at the lower energy is also(remarkabxy good (see figure 1.15). Notice
here that the data are over a somewhat different range from the I.S.R.
data. The small value of B (as compared with the t dependence in
proton-proton elastic scattering for example) must presumably be
ascribed to a rising PP - pp amplitude as the 'masses' of the pomerons
go away from zero., Although the model is clearly oversimplified, it does
provide an illustration of the points made in the Tirst paragraph of
this section.

We should like to refer to two other calculations relevant
to this protess. Humblel® uses a model similar in spirit to ours but
instead of producing a proton-antiproton pair, couples the antiproton

directly tq_megon and baryon Regge poles.

Jengo et al.® have related the pp = PX process to pion
production by assuming that the production of a n*tn~ pair and that of
pp pair are the same if the two pairs have the same total L-momentum,
Our model demonstrates this feature as it is not important what we
call the particle antiparticle pair at the central vertex.

We conclude, then, that we are not yet observing high
enough energies to apply the Muelleq—Regge phenomenology successfully

in the central region for antiproton production. The lower singularity

needéd in reference 1% is thus not too gurprising.



31

- o e e e ——

FIGURES FOR CHAPTER ONE

e g

e e e e ry————— =




32

i6* = *

Ty *

Y=

t (Gev3)
2
ls‘ - % 1
[P [} " )
or2y & 4. 58 . ¢

3 ( Z:grees)

FIGURE 1.1a : The elastic differential cross-

section for proton-proton scattering. NI 8=23% GeV,
(Data are shown ‘in-deference lc)
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FIGURE 1.1b : The elagbic differential cross-section '

for proton-proton scattering. Vs = 53 GeV .
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FIGURE 1.3 ¢ The mean multiplicity of charged particles
from proton-proton interactions. Also shown for
comparison are the minimum and maximum kinematically

allowed.
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FIGURE 1.l : The inclusive cross-section for pp—*pX near
the forward direction showing the leading particle effect.
p,=0.8 GeV/c , B = 25 GeV . Data from reference 43,

The line is solely to guide the eye.
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Re O

FIGURE 1.5 : A Chew-Frautschi plot showing the leading
meson resonances. (For further evidence regarding

%inearity of trajectories see references 11 )
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FIGURE 1.6 : Total cross-sections for various processes
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~ illustrating that non-exotic processes have a more

\

significant falling contribution at’ smell s. Data are

summarised in reference Uh ,
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FIGURE 1,7 : The inclusive distribution and short range
correlations predicted by the Mueller-Regge model. The
arrows in the upper figure indicate the behaviour as s

increases.,
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FIGURE 1.1% : The s dependence of the antiproton
production cross-section at x=0 and pt=0.65 GeV/e ,
showing the extrapolation down to lower energy.

The low energy datum is from reference 46,
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FIGURE 1.15 : The antiproton production cross-section.
at p, = 2 GeV/c , and x = 0 . The line is the '
prediction of our model and the data*® are represented

by the shaded region . \
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CHAPTER TwWO

A ‘two component model

INTRODUCTION

This chapter concerns general features of the multiplicity
distribution of particles produced in high energy collisions of protons,
in particular with regard to a two component model. The model in its
most general form is defined and discussed in the first section. The
rest of the chapter is devoted to the formulation of a specific modelII
based on factorisable Regge pole exchange. The baéés for the model is
introduced in section two. In section three one poésible mechanism
(essentially multiperipheral) is introduced and an integral equation
for the generating function of the multiplicity distf&pution is derived.
Its solution is presented and discussed in sections four and five. The
second,. diffractive, mechanism is introduced in section six and the two
mechanisms are compared in section seven. In section eight we discuss
the features of the model arising from a fit to the proton-proton
multiplicity distribution. In section nine we show that our fpndamental
assumption, that the multiplicity distribution is independent‘qf tﬂe
nature of the projectile, is in fact very restrictive. The final section

g

discusses our model in the context of contemporary literature.
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2.1 Features of the two component model

Before going on to describe our model, we shall in this
section discuss the definitive features of the two component model and
why such a model Seems desirable.

The essence of the two component model lies in the suppos-
ition that particles may interact through two mechanisms which must be
mutually distinct and must both (in any energy range one wishes to
consider - usually assymptotically) give a non zero contribution to the
total cross section. (C;early if one of these conditions fails to hold,
then one is back to having only one component.) The two mechanisms are
usually supposed not to interfere, either on the grounds that their
contributions are to different regions of phase space, or that their
amplitudes are ninety degrees out of phase, one mechanism arising due
to the pomeron which in the forward direction is purely imaginary, and
the other to a purely real sum of exchange degene;qte meson exchanges.
We can now, even without further definition of the Eomponents, make
some observations concerning some of the features of} particle inter-
actions according to this model.

To do this we write down the generating function for the

multiplicity distribution of particles produced by each mechanism. (We

shall denote the mechanisms a and b.')

- 2" 606y _ F @) o }
| Qem= 2. o - v@{g &4 0O
, + (2.1)

Qon= 3 & %O - alf7 €0

And the generating function for the resultant multiplicity distribution :

Sea)e T 2 %9 T el o

c ) N \
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\
oga),’ogb); o are the cross-sections for producing n
b
particles from each mechanism and the vesultant ; a(a), 0( ) are the

total contributions of each mechanism, and ¢ is the total contribution
of both. The fn are the correlations defined in chapter one.

If there is no interference between the mechanisms we have

o, = Gnm + O'nd’, (2.3)
and '
> = 0_@ . C}'db) (2.4)
and hence
Ployz) = %, Pals,2) + ¢, (bb(?’z\ (2.5)
where
) )
O = USO. > ol - % (2.6)
and 8o

2.7)

% + o, = 1 (

For quantities which are solely dependent on the total

available energwaé and the multiplicity of the final state, equations
(2.5) and (2.7) form the basic statement of the two component model.
From (2.5) we can see how to sum the distributions in terms of their

means and integrated correlationé. Recovering these with

fe (B es ],

J

one finds (with some algebra in the scase of the higher moments)

(2.9)

@ &
tyr wafy °‘bﬂ)

@ o) Ab) N\
fr owf R o (10 1) &0

\

A

\!

\
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@) &

b)
4‘3 = ok, » +3u&<b<('m C‘M) (4’@ é
e RGN Conte c\(b)? (2.11)

IRELRTE AT ot o (] R a9

)
- %“b@‘a"‘s\@g - @f:‘)@f > {:ga ))a o6y, (\-bu&g\(ﬁ?‘- 2 )) (2.12)

Inspecting these equations we see that the mean multiplicity fl is,

as one would perhaps have guessed, Jjust the weighted sum of the mean
multiplicities of each component mechanism. The correlations f (n>1)
are, however, not quite so simple. There are in addition to the
expected weighted sum of féa) and fﬁb) y extra terms, To illustrate the
importance of these terms it is interesting to see what happens if a

and b are Poisson distributions. Iq this case

@) (b)
{f. =% =0 Y2 (2.13)

< w

and hence

[\

N = ‘xa V\Q 4 X, T\L (o.14)
. ]
{;— = Mty (Wﬂ -n,) (2.15)
= \$
'Fg ;‘ - aﬂub (“&” o‘b) (V\a"' nh‘) (2.16)
Q.
fu = oot (1~ bsany) (Ra- W) (2.17)

Thus in the case where we add uncorrelated distributions f2 is positive ;
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fs is negabive if the stronger component (the one with the larger o )
has the higher mean and positive if otherwise ; £, is positive unless
@, and @, are sufficiently near to %— « This illustrates clearly how
the two component model can generate significant correlations from
weakly correlated interaction mechanisms. But more than that, it pre-
dicts a particular form for the energy dependence of the correlations.
To see what this is let us look again at the simple case where the
jndividual mechanisms have weak correlations. From equations (2.9) -
(2.17) we see that the two component effect will be most clearly
dominant when the mean multiplicities of the components are very
different. Let us examine how the width D of the multiplicity distribu-
tion varies, under the assumpbtion that at high energies ﬁa > Eb .
Recalling that

D= £+ W (2.18)

2

we expand fi/D in inverse powers of (Ea-ﬁb) and find thet

_“—/D = [% i g Yo% i-& O(:L (2.19)
)

R GREO =l Wy ol R (N

This equation is true even if féa') and fib) are non-zero, provided
thet they are small- compared to (ﬁa—ﬁb)a . We can compare this
expression directly with the data. This is shown in figure 2.1 *. The
comparison is remarkably encouraging as /D may well have reached a
constant at as low an energy as pI.AB=50 GeV/c . The immediate suggestion
is that aa/ o ~ L, or o~ 80% , o~ 20';: . Putting these values into

equation (2.19) we have

D @a" Kb) Ay o.u ('-‘: ab)z (2.20)

* This plot is often named after Wroblewski.
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We note that we are comparing the model with the multiplicitjr\
distribution for charged particles arising from proton-proton
collisions and so ﬁ.ﬁh? 2 , Hence we are again encouraged in that
the second order.term. in (2.19) and (2.20) has a positive sign in
agreement with the data. We may also speculate from the rapid scaling

L

"Ch/ Dp®®  that the second order term is small.* This is

behaviour of n

clearly ensured if E.gh

remaing small (near to 2) whilst i, rises with

energy. This is indeed a feature that will be necessary to our model,

a8 will be seen in the following sections of this chapter. This feature \
also occurs in references 20-22, . \\
At this point we could go on to discuss the momentum AR
dependence of correlation functions in the two component model, but we
postpone this until the next chapter, which is concerned specifically
with this. We shall now proceed to formulate our model which gives

us most natu;rally the integrated correlations discussed above, To
summarise this section, then, we have seen that the two component
model can generate significant correlations from weakly correlated
mechanisms., If the two mechanisms have different mean multiplicities,
the model has a very characteristic prediction for the correlations

and in particular, with no further assumptions, it predicts very well
the qualitative form of - the mean to width ratio of the multiplicity
distribution. We should like to :qote in passing that if the mean
multiplicities of the two mechanisms are the same, then irrespective of
any differences in their distributions, the two component effect would
not occur in correlations lower than f,, and so we stress that the

two component effect is in essence due to a difference in the mean

multiplicities of the mechanisms.

¥ When we say here 'rapid' scaling we have in mind the slow energy

dependence of the mean multiplicity discussed in chapter one.
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Although the model has the characteristic features discussed
above, it still has of course an enormous amount of freedom remaining
in all that we have not said about the nature of the components. One
of the objectives of the following sections is to reduce this freedom
by constructing & model for the components, and by comparison with the
measured mulbtiplicity distribution from proton interactions to find

what properties are required of our model.
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2.2 A factorising model.

\

We shall now discuss the form of the mui?iplicity distribution
generating function for a model in wﬁich interactions proceed through
the exchange of a factorising Regge pole trajectory &kﬁ) . Factorisability
allows us to talk of reggeon-particle scattering amplitudes and crosgs-
sections etc., and we shall do so freely as it coasiderably simplifies
discussion of the model. We factorise the scattering amplitude for

particle-particle scattering as shown in diagram 2.1,

DIAGRAM 2.1

We write, therefore,
<

(e

AL (83 P-Pa) = V(t\(%) BoMie; PuPa) AE)  (221)

The notation here is as in chapter one. V(t) is the vertex function
on the left of diagram 2.1, An is the particle scattering amplitude
for a,b —n particles ; Kn—l is the reggeon-particle scattering
amplitude for the production of n-1 particles ; (s/M?)a(t) is the
reggeon propagator factor in the large s limit when M2 may also be

large. S(t) is the signature factor defined such that ISI =1, We now

factorise the phase space2 in accord with 2.21.

. dbdM oA (M, -pn)
old, (sip- ) hw (s, Mg, md) At

(2.22)
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where
n dg
22 &3 & 'n' 3
A8, (s5p-po) = 4 ent 6(-3p) | GE:
(2.23)
M is a unit mass solely b0 keep d°n dimensionless, and

P“Ih: 8. m and m, are the masses of the incoming particles a and b.

A(a,b,c) is the usual triangle function. The cross-section on(s) for

a,b =n 1s just
Onls)= ’,‘l';j‘ | AnGs; P.-'Pn\r dé,.@j PrePn) (2.25)
Inserting (2.21) and (2.22) into here we have
SusY= I&Esj d%y ("gﬁjdm‘\“"\z G (M58) 22)

where we have again assumed s >> mg 3 mﬁ s and have done the integration
over the n-1 particle phase space to get the cross-section for the
scattering of a particle and a reggeon of mass t at total energy M

into n-1 particles. The tilde in this chapter and the following ones
will always distinguish quantitieé which refer to reggeon-particle
(including pomeron-particle) scattering. 31(M?,t) must clearly be
defined as

G wse) « w, ol fH-s) (220

with the normalisation so as to give

2o¢(&) =2
1 do, _ N(H‘q' S.>

™ db - l b,i.'};\l SO (2 . 28 )

This is just the usual form for the differential cross-section for two
particle scattering with Regge pole exchange. Equation (2.27) implies
' \
N‘;- \

\

\

[y
\
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that S, should be interpreted as the average mass squared of one of the
final state particles.
We next define the generating function discussed in the
previous section. It is convenient here to have it normalised to the

cross-section and so we write

Lew= 7, 266 = o 0. ¢6)

Pred (2.29a)
and so
T(s,4) =
—L(, > ) 6‘(’6"(“‘) (2.29b)
We also define
& o W
J—.,(s»")'i‘) = 2, Z O,(s4) (2.30)

n+1

(The subscript + will later be useful to indicate that the n=1 term

is included) Thus from (2.26) we readily obtain

20()-2

2 ~
I(s®) - %L .‘g#% ("ﬂ e 1.+(<-‘utﬂ) (2.31)

This equation just takes us from the generating function for the
multiplicity distribution in reggeon-particle scattering tc that in
particle-particle scattering. We have written it down in this section

as we shall refer back to it to use it more than once in the following

sections. We note here that because of the integral over the M® variable,

we must assume that the factorised Regge form is a reasonable average
of what is happening when the t channel scattering angle is small

(M2 large). This is an assumption of some form of global duality.
(Note that we are not discussing the resonance region, but have s large
throughout and are discussing the large M® region). Our results should
not in any event be very sensitive to this as we expect V(t) to contain

a cut-off at large |t| , thus stressing the small M® region strongly.

\

\

\
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2.3 The multiperipheral integral equation

The last section made the statement that if we assume that
interactions at high energy proceed through the exchange of a facltiris-
able Regge pole and we know the reggeon-particle multiplicity distribu-
tion, then we can calculate the particle-particle multiplicity
disbribution. In this section we calculate the reggeon-particle
generating Lunction by assuming that reggeon-particle interactions
proceed by Regge pole exchange. If, at sufficiently high energy we
continue to apply this hypothesis we generate the multiperipheral model.
This lLs shown diagrammatically in figure 2.2, We factorise the reggeon-

particle amplitude exactly as in the last section,

+

DIAGRAM 2.2 : t and t' are the 'masses® of the reggeons.

Instead of 2.26 we have now

~ 2"(_6)"Q
it = L t ¢ ~ 2~
e uhgcj"“‘% &) NEol o, 14 @

¥(+',t) is the vertex on the left of diagram 2.2, If we assume that

|¥(t',4)|2 takes the form

W(b',h)la = OU’-‘) 3&-) (2.33)

it follows that En has the form
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Oulsit) = gl Gals)
leaving
‘ 20(6)~2
W) = — (AM'Z (S 2 ‘L
s lbw}u ok (t) (M

and thus the t' dependence is removed.

It will be convenient to define the variable

- AAZ
&= ¥

We also define

mn(f’s) 2- 20!(;:)

K(p) = Y o 6&) e,

(2.34)

(2.35)

(2.36)

(2.37)

(We have not, here, made explicit any s dependence of K other than

through p but we shall return to this point later.) Equation (2.35)

now becomes

AGE 50—‘0 K(F) 0, ()

(2.38)

We now multiply by 2" and sum, obtaining in exactly the same way as

in the previous section
Tlew = ‘2‘50-‘5’ k() 1 (fg =)

where

(2.39)

(2.40)
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and

I(s,2) = T,0,2) - 181(3) (2.41)

Equation (2.39) thus forms an integral equation which will determine
the generating function for the reggeon-particle mulbiplicity
distribution. The multiplicity distribution for particle scattering
can then be obtained using (2.31).* This integral is a generalisation
of that obtained for the cross-section in multiperipheral models by

Chew et al,24

* This integral equation was obtained independently and somewhat
differently by Jengo, Krzywicki, and Petersson®3, Their motivation and
treatment of the equation differ from ours. We should also like, at this

stage, to thank A.Krzywicki for helpful discussion.
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2.4 Solubion of the integral eguation \

We now solve the equation (2.39) arrived at in the previous
section and discuss some of the properties of the solution. First let
us note that if wé assume that the vertices shown in diagram 2.3 ﬁave
the same t dependence, then comparison of equations (2.31) and (2.39),
(neglecting any difference in tmin for exchanges at different points in
the multiperipheral chain), gshows us that the only difference between
the particle scattering generating function, I(s,z), and I(s,z), the
reggeon-particle scattering generating function for at least two \
particles in the final state, is a constant factor. Thus the normalised \Q
generating functions ¢(s,z) = I(s,2z)/I(s,1) and ®(s,z) = I(s,z)/T(s,1) |
are the same and hence so are the multiplicity distributions. We could
of course relax this hssumption concerning the t dependence, but we
should like to stress that we are interested in minimising the number

of free parameters remaining when we come to fit the data, and the

above is the most natural assumption to make. The conclusion it leads

— R

DIAGRAM 2.3 : Dashed lines are reggeons, full lines

are particles,

to (i.e. that reggeon-particle and particle-particle multiplicity .
distributions are the same) is discussed further in the following
chapters. Thus we put

—-— ey

T(xz) = C.1(82) o.12)
and so (2.39) becomes

1
Tisym) = Zjﬂw‘%& K} T(2) + E'C'&*(fg)} (2.43)

S
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Here v is the minimum possible missing mass. Two points should perhaps
be noted at this stage. Firstly we did not have to define ?I'l. We
proceeded as we did because the form (2.27) of '51 is gimple to handle.
The other is that K(p) will depend very little on s . Equation (2.37)
shows us that the only s dependence at fixed p that can enter K(p)
does so through the function t_, (p,s). Let us examine this function.

min
If we consider the process a,b =*c,d with t = (pc—pa')2 then

Coie

1 )
a"‘s' N (5, I ()~ 25 (s 0

(2.44)
2
"4”53-“@1>(“@f:“h4)
If we now expand this in the limit when s >>nZ, m%\ mi and mg=M
\
with p=M%/s , we find \
!l I 2 L \‘
m-my ) e + M,
Cin = — Gimide r (2.45)

where here we have neglected terms smaller by factors of m / 8 etc.

Thus at high energy K(p) depends only on p=M3%/s . We also note that if

g(t) is small for |t| large, (for example an exponential), ﬁl}en equation
\

\

(2.37) tells us that if we write \

2 Lol(o)

K(p) ‘e(e) (2.46)

then k(p) cuts off as p approaches 1. Having noted these properties
of K(p) we proceed formally to solve (2.43). To do this we first write
(2.43) in terms of logarithmic variables which we define by

Y= dn %

2
Y= Mg = L B \
2
Az —Ln M/s 2 =i e
‘ 7”-:3 + A

(2.47)
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Then (2.43) is just

LY
T(e)2) = ag ar K(E™) {IC")""")**CEJY’}‘)f

(o]

(2.48)

This convolution integral now suggests the use of a Laplace transform

which has the property

Z:ﬁwm.q(v-m) - [L:F][L:¢]

T, (w2) f "x(e) )Y
Kew= "™ K(e7)
Do) = fo Q_"‘"Y K(e: ) dA
then (2.48) transforms to
T (wz)= 2 K,_(W)%I‘_(w,z-) + zb(w)j

which upon rearrangement becomes

22 D) K (w)
t]. - 2z k:g_((*)) ‘

tI;_(&d5qg‘ =

: \
To recover the generating function we invert the %transform

\

J_(b z)= Q,mJe, .L‘(W%) OUO\

(2.19)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
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¢ here is the usual contour parallel to the imaginary exis in the

complex ® plane. From (2.27) we have
~t{Al
D)= Ce (2.56)

where all constant factors have been absorbed into C and yo=ln(s0/ ) .
We expect KL(w) to vanish as |w|=© in the left half of the complex
plane, and so we can close the contour ¢ in the left half of the
complex ® plane. { We are of course interested in Y > yo). At high .
energy (2.55) allows us to take the leading pole contribution from
(2.54). This will come from a zero in 1-zKL(a)) . It will become clear
in what follows that we expect a simple pole. The total cross-section
o = I(s,1) is thus assymptotically a power of s and the Froissart

bound implies that

1 = z K(.w) = O (2.57)
can only have a solution w< O when z=1 . (Comparison of the usual
j-plane transformation with the optical theorem (1.7) and equation

(2.50) reveals w = j~1 ). Letting the solution to (2.57) be

w= {2 (2,58)
we have £(z) given by (2.51) and (2.57). We have, then, the implicit
equation )

o0
@) %Y b
y e kM) dr = 72 (2.59)
(]
or

gy £
(- A ORS

o © (2.59v)
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or

K_(fe) = -li

We have then

wY
. EQ'D(W) KL(‘Q)‘Q«
I(&y) 2—) = ?Q&AM
ok we £®) 1~ 2K(w)

That is

2" D(w) K (w) s

:I(_ev %) >
) 3';0( 1- Z.K,_(u)))

W= (=)

From (2.59c) we observe

-

| ’, df Ak (
B S e

'
M, )=

\ we= £(z)

and so we find using (2.56)

(Y4 )5 (®)
I(he) = PG e

or

?(%)

I(s,2) = Cz JF <S.

This result defines the multiplicity distribution of the model.

(2.59¢)

(2.60)

(2.61)

(2.62)

(2.6%a)

(2.63b)

We should like to point out here that although the low

multiplicity cross-section appears explicitly in the above derivation,

the shape of the multiplicity distribution is insensitive to this. It

is determined solely by f(z) which is dependent on the kernel.
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1
(

2.5 Properties of the mulbiplicity distribution of the model

(a) Total cross-section and correlations

We can now discuss features of the multiplicity distribution
Just derived, even before calculation of £(z). Wé note that the total
cross-section must behave like a power of s. If we denote the intercept
‘ \

of the output trajectory (i.e. that of the singular%ty in the imaginary

part of the elastic amplitude ) by Oy then 4

. o =1
o ~ s (2.64)
Equation (2.29) tells us
ol Lde
S.()= Tls,1) = ¢ : AR
and so
. ‘ \
f@) = oue —1 (2.66)

(For the sake of discussion we retain generality here although later we

shall choose o to be a pomeron singularity (aout=1) to obtain an

out
assymptotically non-vanishing cross-section.)
To obtain the correlations we expand £(z) about z=1 defining

constants ¢, by

it n
flzy= 2 @_‘:__‘)_ (2.67)

-
nwv v

We thus have

(2.68)

and the correlations

L= GWE rd,

\

(2.69)

\.
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where the constants dn are glso determined by (2.63). The mean
multiplicity and the correlations are thus linearly dependent upon ln(s).
This 18 the well known short range correlation property of multi-
peripheral models.,

n-particle production cross-gsections and Regge intercepts.

We now examine equation (2.59) which determines £(z) . At

z = 1 this becomes

X

o

1
k@ - 1 (2.70)

Thus the intercept of the output trajectory for a given input singul-
arity determines the overall size of K(p), that is the strength of the
reggeon-reggeon-particle coupling. The definition (2.37) of X(p)

suggests that

2~ 20¢(o)
(U 0 (2.71)
c'-vo \
and so the above integral converges if
and (2.59) converges for z such that
fE)+ 2-2x(= > O (2.72b)

We shall discuss these inequalities in a moment, but first let us
examine the consequences of (2.69) for the n particle production cross-
sections. Looking at the generating function (2.63), we quickly find

that

{1

G~ Tlw) s (2.73)

where the functions Tn depend at most upon a finite power of ln(s) .



68
Although we cannot evaluate £(0) from (2.59) directly we have from
(2.67)

o0 i)
ng\ = %)o g_%.rc" (2.74)

These equations show that all the Gn behave agsymptotically like the
same power of s ., This critérion is often quoted as characteristic of
the multiperipheral model. It is, however, more generally true of any
model posessing only short range correlations., As we discussed earlier
the short range correlation hypothesis leads to correlations of the
logarithmic form (2.69) which in turn leads to (2.73).

Comparison of (2.73) with the power behaviour expected of

o, from (2.28) gives

{er= 2 ~2 (2.75)

and so now the interpretation of (2.72a) is just that

- €
Ongy,  ~ 3 (2.76)

t S 00

with € strictly greater than zero and the same for all n . This
emphasises the difficulty of putting a multiperipheral chain, a
difficulty first pointed out by Finkelstein and Kajantiezs. It is also
just the condition discussed earlier, which was shown in reference 9
for models with the property (2.69).

We also note in passing that an alternative way of expressing
this is the following. If we were to make a model with the output

trajectory the seme as the input, that is « = a(0) s then equation

oub
(2.72a) becomes

oo < 1
(2.77)

which excludes the pomeron.
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(¢) A constraint on the model

We now turn to a point drawn attention to by Harari2®, IT we

combine equations (2.68),(2.74), and (2.75) we obtain

o0 Q)

Aoy * Quer—1 - 2, LS (2.78)

ns=\ nl

Thus if we know the trajectory intercepts aout and a(0) , then we ha;e
a relation amongst the cn . This reiation is quite general as we have
used only the leading power in s to derive it irrespective of logarithmic
terms. The consistency of bthe data with this relation is tested in a
paper of Harari and Rabinovici®2, who assume & two component model, one
of whose components has the short range correlation property (2.69).
Their result is that the first two terms of the sum in (2.78) are
roughly consistent with &_ .=1 and a(0) = 0.5 ¥0.1 . We shall further
discuss their model later in the chapter, but we wish to stress here
that in the interaction calculated in the previous sections, the
relation (2.78) is an in-built constraint. Our viewpoint is that this
equation follows for models with only short range correlations, and so
consistent with the belief that long range cqrrelations are generated
primarily by the two component effect, it should be allowed to constrain
the model. Thus, perhaps we shall be able, from the results of comparing
the model with the data, to say more about ‘the particular features
required of it. This indeed turns out to be the case, as we shall see
later.

(d) An explicit solubtion to the integral equation for the generating function

So far we have presented an integral equation for the
multiplicity distribution generating function and provided a solution
in terms of a function f£(z) defined implicitly in (2.59) in terms of
the kernel of the integral equation. In this section we have discussed
some properties of this solution. It will be instructive here to
consider an explicit solution in an approximation where one is feasible,
Later when we compare our model with the data we shall attempt a more

\
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realistic solution. So for now let us take the approximation that

%

min = 0 for the exchange in diagram 2.2 , and calculate the consequ-

ences for a fixed pole exchange

ol T ‘
U (2.79)

Taking the vertex function to be an exponential function of t

A
,3(.5) = AC—F (2.80)

(2,37) tells us that

2~20¢

Kie) = Oz ¢ (2.81)

where all the multiplicative constants have been absorbed into g2 . Our

function £(z) is now defined by

i
de 2-2x+ £(@) 1
j; e Q azik \

from which by performing the‘integration'we find

.F @) = 32—?: + 200~ 2, (2.85)

We note that the integral converges for z>0 (c.f. equation(2.72b)). Thus

from the solution (2.63) of our integral equation we find

T o (3

and so

Q=2+ g% 4 Q°(R~4)
) O 6 (2.84)

\Ro=2+ g2
O & @’s,,) ¥ (2.85)
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and the normalised generating function is
g'(-4)

oo - =G e

\
4
\

o \
Ouke Ru~d 4 3 \ (2.87)

and (2.86) will be recognised as the generating function for a Poisson

From (2.85) we see thatb

distribution in n-2 particles. The mean of the distribution is just

Ln> = 3”2«»%0 +2 (2.88)

Equation (2.87) is typical of multiperipheral-type models although with

\

a more complicated kernel this will also be more complicated. Equations

(2.87) and (2.88) illustrate the constraint (2,78) where in thi:‘s\ case

1t is satisfied by \
= aor . = 7
e, = 3 5 G O N2 (2.89)

Finally we remark that the model discussed in this sub-section where
the multipliecity distribution turns out to be completely uncorrelated \

(Poisson) is just the well known model of Chew and Pignotti2?, (This

is also nicely summsrised in references la, 28 .) \ '

(e) The need for another mechanism

Without discussion of the momentum dependence of correlations
and inclusive distributions, the need for a second mechanism is already
apparent. Let us calculate /D in this model and compare with the

calculation in section 2.1. Tor this model we find

: Y
2y S 2
é ~~ I,____q+ c,' @A«S ) (2.90)

S~>on
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(Notice that this displays the property D?=h for a Poisson distribution
- ¢=0 ). The data (see [igure 2.1) show no sign of a ri\se in this
quantity at high energy and so we are attracted to the ideas presented
in section 2.1. As di;cussed there we should now be looking for a low
multiplicity mechanism to give the required effect. The need for a
correction to the low multiplicity end of the distribution is obviated
by the fact that o > in the model that we have derived so far (and indeed
cn) mist fall with energy to zero. It seems nabtural then to base a

second component on pomeron exchange in the 2-n amplitude.
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2.6 Diffraction - a second mechanism

To calculatf this mechanism we go back to the basic calcul-
\

ation of section 2.2 and look at pomeron exchange. We redraw diagram 2,2

with a pomeron exchange ¢

A 3.l /n
y !
()
E - ._.....E.......
DIAGRAM 2.4 ‘g

For this dlasgram equation 2.31 gives us

de o (€) (2.91)
L2) - ,w‘ Gp v, te)l l,a(“ %)

Vé ig just the vertex on the left of diagram 2.k ; TP is the pomeron-~

particle scattering generating function ; ID is the generating function
for the (diffractive) process shown in diagram 2.4 . ‘

We now make an assumption which will later prove to be a
powerful constraint on any fit to the data. We assume that the multi-
pliciby distribution arising from pomeron-particle collisions is just
the same as that arising from reggeon-particle collisions. We allow
the total cross-sections of these processes, however, to be different.
Thus we have an intuitive picture of the probability of inbteraction of
two objects being dependent upon the nature of the objects, but once

they interact, all 'knowledge'!' of what the original objects were is

lost, and thus the relative probabilities of producing n particles for
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various n is independent of the incident objects. Further consequences
{

of this assumption are discussed in’detail later. Continuing with the

calculation we have

Tee s B2 T () e50
)

where UPp and URP are the pomeron-particle and reggeon-particle cross-
sections respectively. T . 18 known from the calculation of the previous

sectionsg. We perform the t integration as before defining
i)
2 Zorl )
. (2:93)

-0l
leaving
1

I(s2) = 24( d'e% Y IP(Q'S’%) S (k)
y_f-

s
in analogy with (2.37) and (2.39). Again we have denoted by v the
minimum possible value of the missing mass M, Using (2.63) and (2.U41)

we find

1

'PC%) O;,( o) o)
Ib(s,z): alcgz(s) + zsg—‘—i C@o) ”«r(:’) L p(() (2.95)

V

S

In the next section we shall calculate the correlations from
not only this mechanism but also the multiperipheral mechanism. We shall
then examine the features of the resultant two component model and

compare with the data.
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2.7 Calculation of the model ' ¢

(a) The non-diffractive component

In constructing the two component model from the mechanisms
discussed, it is natural to look for the correlations of each component
and to use the equalions of section one, We first calculate the non-
diffractive, 'pionisation' component, which we shell from now on lebel

with the lebtter m . We have

LE

£~ alni +d, (2.96)

n

where

foy = Z ch(j‘\’;‘)

(2.97)

We calculate the c from equation (2.59) which was
1de
5' C, k'(f) (2.98)

‘ by expanding about z = 1 . Because this integral must be convergent
near z = 1 , it is natural to calculate the correlations fn rather than
the cross-sections On. As our model is attempting to describe the
strong interaction particularly in terms of many-particle final states,
we stress that it is an attractive feature of this scheme that the
mulbiplicity distribution is most conveniently calculated by first
finding the mean, then the width, and then the more subtle correlations.

If we define the integrals

J(ty J
Qj - &) -66’ @""C> Kle) (2.99)

then equation (2.98) becomes at z=1

Qe = 14 . (2. 100)

4
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where we now restrict our attention to the case aout =1lorf(l)=0
to give an assymptotically non-vanishing pionisation component.
Successive differentiation with respect to z at z=1 reveals from (2.98)

using (2,97)

aQ, = 1 . \ " (2.101)
. ~\
\
—@ +cQ = 2 (2102
0 " g - ‘
xR ~ 366 Qy TG Q57 SIS (2.103)

~cu @, +(8ey+ Q-C“CQCQ[GC;‘QQS N c,qu = ¢l \ (2. 104)
and so on. \

Thus the cn can be calculated in turn. We f£ind then

' ' -4
G = Qq (2.105)
-3
c. = Qg {QQ - 2\ ng } (2. 106)
~5
Cze B, Z%,_(Q;Q?Q'f% Q (&~ 3!} )} (2.107)

and
Cy = QT.’ { Q:. (Qq,""q"- ®l¢) ~LQQ: <Q3‘ 3! Q?)
+126; (R-21®)) ~ LRQR3 (R~ R )+3Q,(q-2 Q. )‘j (2.108)

The normalised generating function for the pionisation component is

RS ¢ 3
P, (5,2) = 2" f;—(%’ (—%} (2.109)
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and so
4V g 24O
d, = 2 dn = (2.110)
> ) fO .,

()

Thus the constants dn are determined in terms of the constants ¢

Aig 24. e'Z/C‘ . ‘ (2.111)
2 .

a\,_= -2 _‘c.%‘ - Q/c,) (2.112)
3

ds = L+ Cu/c' - '3.%‘_;3 4 R _c_c:\ (2.113)

To calculate the integrals Q J let us recall the definition

and. discussion of K(p) from sections three and four. Writlng again

“wels) ’
K(ﬂ’ Qzu L‘(P)" (2.114)

2~ Lot (0)
Kp®d = © k() (2.115)

we expect k(p) and kP(p) to become small as p— 1. This followed from
the assumption of a strong dominance of the small Itl region. Rather
than making an ansatz for V(%) and calculating K(p) , we make an ansabz

directly for K(p) embodying the features discussed. We put then

2-2¢(0)

K(p) = P Q'D"B(’] 6(1~bg) (2.116)

and similarly

24

2~2+4,(0)
|<f((’)= e p,P [1~ bfe'] 9(1-‘0?(‘,)) (2.117)

where Ay AP, b , b_ are constants and the @ step functions ensure that

P
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K and K, ere positive. We now evaluate the constants Q’j from (2.99)

and determine A from (2.100). Thus

i \

3t [1‘5[%%] ] ¥ LA

& { ket
J 2‘2”“’] [1 b [ —zo«o)] ]

‘(2.118)
\
and
Q: = jl e [, ([q.z..mm)
) C 2-20(]d
-2o¢(o)
3 2a(%) E’ ”““’JM) (2.119)
4 b>1
whore

J
. > X o
€y = 3 l (2.120)
¢zo
Thus the constants ¢, can now be obtained from equations (2.105)~(2.108)
and hence the constants dn « The non-diffractive component of our
model is thus calculated in texrms of the parameter b . (We note that

as b0 e find Q, = 31(2-24(0))™ and hence ¢ =0 for n>2 . Tuis is,

as expected, just the Chew-Pignotti model again.)

(b) The diffractive component

The diffractive component is now simply calculable in terms

of the already known constants e from equation (2.95). To do this

we let
Gs (s)
.;Pr_... ~ '%‘° ; ¥ 0 (2.121)
Op®) .
As we have taken 0. to he constant, y will measure the s dependence

Rp
of the forward elastic pomeron-particle scattering amplitude. In

\
\
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triple Regge language ¥ = O corresponds to a non-zero triple pomeroa
coupling. We also wish to normalise to the inelastic part of the total
cross-section and we do this simply by approximating the elasbic cross-
segtion to be just the two particle diffractive cross-section at high
ene%g}es. We shall return to these points in later discussion. Equation

(2.95) now becomes

i
“¥+{(2) ‘_)\_ﬁ. #&)-Y
¢

L59)- 233;‘1 C (%) (  O-bplel-be)

QI
LY
(2.122)

As £(1)=0 this integral is very much determined by the behaviour of the
Integrond as p—0 , and the lower limit of integration. Here we assume
o diffractive contribution due to a pomeron-pomeron-reggcon coupling
and postpone discussion ‘of the triple pomeron case., Taking 7>0 then

we have

- 3df C(‘—’z
1(88)= =z d S (2.123)

to leading order in s. Thus at high energy this diffractive
contribution produces a constant inelastic (and total) cross-section
and also a mu}tiplicity distribution which is asiymptotically indepen-
dent of s . (c.f. references 20-22). The multiplicity distribution
given by (2.123) can now be calculated in terms of\f(z) and the new
parameter 7 ., The correlations are most simply calculated in the

A}

following form., The normalised generating function is.

: ! {(=)
(s,2): 23 1@ (¢! X
(bb %) = £@ s°) Y- &)

(2, 124)
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We thus observe from (2.109) that

(b“(s,-'e) ) ¥-f&) é)“%)
CbDCS,E) ) L& v

And so we can calculate more easily
n \
n Ty 02 Dy 2nd (2.126)

and substibtute these expressions directly into the two component model.

We then find

G- « bl - Cas %: e

1) g ¢

f c "‘2 + Ei % (2.128)
LI ¢ - QC‘g 3 é '

£5- ﬁs = CB'QV\GQ, [2 tye Y %‘% v (2.129)

We rewrite equations (2,9)-(2.11) in the form

£ = ,cf’ + H(E7-87) (2.130)
£, = '@zb""{’cr(pz}r‘czb) * Prfo @T"g.b)z

(2.131)
D

A & e (65 ¢ B (PR (-0

~ o (Pr-Po) (87~ 55

so0 that all the energy dependence is now in the terms involving

(2.132)

differences between thc mechanisms. We have also written the strengths

of the components &s p, and p, where of course p_ + Pp = 1.
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2.8 Comparison with the data

We are now in a position‘to discuss thc‘a\‘model in (direc’o
comparison with the data, The parameters which we hgve avallable at the
moment are b, ¥, P, Y, 8, and a(0). The )constants\“c\:n and 4 are
determined entirely by b and «(0), which together with 8, determine the
non-di.ffractive multiplicity distribution § 7 and © determine the
diffractive distribution ; Py detexrmines their relative contributions.

As neutral particles are not observed, to compare with the
data we must find the multiplicity distribution for charged ‘particles.
We choose, in fact, to do it for negatively charged particles.' Con~
servation of charge will then tell us about correlations 'betwee‘n
positives or a.ll.charged particles if we wish. The multiplicities and
correlations which have been calculated are those which apply to the
number of rungs in the multiperipheral ladder. We can think of the
objects emitted at each vertex of the chain as clusters of particles
with similar momenta, each cluster having a small sub-energy s o’ (ec.f.
equation (2.27)). It is clear in this case that the average mass
squa.red 8, of a cluster should not necessarilﬁr be the same as the \

minimum mass squared 2 . We certainly expect, however, that so>o2 \ .

and that neither should be too large. We have in mind then an amplitude

RS

DIAGRAM 2.5

The multiperipheral model with clustering

corresponding to diagrem 2.5. We can very easily estimate the number

of negatively charged particles per cluster from the mean multiplicity
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data., A logarithmic parameterisation of this gives it roughly to be

ANy o~ 0.9 dut 4 ot (2.133)

( <n™> is the mean number of negatively charged particles .) Therefore
we expect from (2.127) and (2.130)

N-c‘ . P ~ 0.4 (2.134)

N here is the average number of negative particles per vertex in the
multiperipheral chain. We know that an 1 . In the Poisson-Chew-Pignotti
limit e, = 2 - 2a(0) . However we have argued that small |t| dominance
implies that the function K(p) is cut off'as p=1 , while its overall
normalisation is kept the same to ensure a constant total cross-section.
We are thus stressing small migsing mass production relative to high
missing mass production as the latter of necessity involves large ltl.
Thus we expect the mean multiplicity and hence cl to be smaller than in
the Poisson distribution case. Examination of the b dependence of (2.118)
for j=1 with equation (2.105) does in fact demonstrate this to be the
case as Q,l increases with b as b increases from zero. We should also
like to point out that, as b increases from zero Q,i becomes greater
than %Q,z and so c, becomes negative. Examination of the general form
(2.99) for the Q 3 leads us to believe strongly that any function k(p)

as defined in (2.114) which has the cut off property as 1, and
normalised such that Qg=1 will give Q,_?L? %Q,a and hence ¢, <, producing
an assymptotically negative two particle correlation in the multiper-
ipheral model. In (2.134) we then have

¢ -
“ 2-2e) (2.135)

We shall constrain & to be the leading meson trajectory (p,f,w,Aa) that
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we expect in elastic proton-proton collisions, putting a(o)#% and thus

finding c 1. Equation (2.13%4) thus tells us that
N 4 (2.136)

We expect, then, at least one negatively charged particle
per vertex of the multiperipheral chain. To make a more detailed
comparison we must discuss the structure of these clusters. We are not
concerned with the momenta of particles within the cluster as a whole,
but we are fofced to say something about the dist%ibution of negatively
charged particles within the cluster. The generatiﬁg function again
provides an elegantly simple technique. Let the gene?ating function

[
A

for the production of clusters be

- % L
Cb(%%) = Z Cb (s,2) (2.137)
The cross-section for the production of nt2 clusters is

N+ \
o-n-o-?.

Gt @uﬂ(h PCs2)

Z=0

= _L b.) %)\

(2.138)

We now also introduce the generating function for the distribution of

negatively charged particles within a cluster. Let this be ¥(z) . Then

«

| /3 Vg
Tn = 5 5%) t‘[—(e.-) Lw | (2.139)

*

defines the probability that a cluster containg n negatively charged

particles. We also have

2
57

NV

N =

(2. 1k0)
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The generating function for production of negatively charged particles

then turns out®® to be

P (s,2) = d)(?; "R.%\) ] (2.141)

We thus have

~

O

2 - 1 5y (2. 142)
T, '“'.<b—?-\ Cb(‘:‘%(‘*))

Pfor the production cross-~section for negatives. As we shall be consider-
ing only proton-proton interactions we maie one small modification to
the above remarks. We assume that in general the protons are the leading
particles (or at least in the leading clusters) and therefore observe
that it is less likely that a negatively charged particle will occur in
the leading clusters. We therefore put the distribution v(z) in only

for the non-leading clusters. We thus write

$(sz) = (s, Tw) (2.143)

*
with ¢ defined in (2.137).
We define the reduced cluster production (i.e. that with the

leading particles subtracted) generating function and moments by

d)*(gﬂ) = e""{é @g___f:f(ﬂj (2.144)

and so 2

. * '
&(s) = @nCs') 4 (n~|)', @)n (2.145)

We also define

o "o~
Oty = expd Z L“?ﬂ,ﬁ" (‘)f

nay

(2.146)



. m e R o el a e e e———— = = -

— . 2 ¥ i S b b

20 - el 3, §Tg1-7 .

(2.147)

os "
S B Gy T
— (o]
e !
The :’c‘;'1 are then the correlations between hegatively charged particles
and the g, are the correlations between the negatively charged particles
within a single cluster (with glﬂ). The quantities \lrk are Just the
moments <n(n-1)(n-2).....(n-k+1)> of the composition of a cluster.
Combination of (2.144), (2.146), and (2,147) then gives

'f = 4, c.* | (2.1'1;8)

\

g“‘ q’:l‘cl* + q'-;,'?‘*

(2.149)
'&. = q,‘gg: + 3‘\*.‘-[1‘_?2* + q’s f‘* (2.150)

or alternatively
'?,- = 3, Q‘* (2.151)

,Q‘ = 3113‘* +3,2<9:k+ Q?‘) (2.152)

'P3; 33%* + 3{}31. (F: T 'pt*) + jsf Gg‘l‘ 3'('::4 &* ) (2.15)

In addition to the parameters discussed at the beginning of this sub-
section we now have the unknown function ¥(z) . In accord with our aim
of reducing the number of free parameters, we look only at possibilities

which can be simply deseribed in terms of a single parameter,
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Our procedure for comparison with the observed correlations
is then to choose a likely distribution of negatively charged particles
in a cluster, and to calculate the multiplicity distribution of |
negatively charged particles according to (2.148)-(2.150) fron;\\the two

component model already constructed in terms of the parameters outlined

above*
i , \
A first guess for the cluster structure might be that the

cluster always contains exactly N negatively charged particles, If this
ansatz is taken, then no satisf;a.ctory fit is found for integral N . If
N is then allowed to vary continuously, however, a reasonably good fit
is found with N=1.%8 . The other parameters take the velues : pD=O.31,
y=1l2,s = 4,0 GeV® , v?= 2.6 GeV® , b =1.0 , (0) =0.5 . 1In
this and following fits we restrict the input trajectory, except where
stated, to have intercept in the range 0.4 ~ 0.6 . The situation here
with N=1.38 is, of course, not satisfactory, and it is necessary to
introduce a distribution with some width. We shall, however, take this
fit as an indication that the mean number of negatives in a cluster is
likely to lie between one and two.

Our next attempt is to take ¥(z) to be the generating function

of a Poisson distribution.
N(z~1)
YY) = ¢
(2.154)

The fit now obtained is singularly unsuccessful. The reason which
rules out this distribution is that when a suitable mean N is taken,
the possibility of producing three or more negatively charged particles
from & cluster is quite large. (The probability of three or more is
roughly% for N~l.h4 , or alternatively v 2.1 ). This produces a

strong positive contribution to f; , directly contrary to the data.

*
For fits to the data the CERN minimisation program 'MINUIT' was

used, both on N.U.M.A.C. and the R.H.E.L 360 computer.

s
\ \
v
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A somewhat narrower distribution seems té be needed.,
FIT I

We thus take a distribution in which one negative charge
appears with frequency (2-N) and two appear with frequency (N-1) . With
this distribution a fit to the data is found which 1s shown in figures
2.3, 2.4, and 2.5 . No sharply defined minimum of the X®parameter used
to compare the theoretical disbribution with the data was found and so
the values found for the parameters can only be regarded as typical and
not in any way definitive. These were : N = 1.27 (negatives per cluster
on average) ; b = 1.1, 80=3.35 GeV2 ; v® = 2,8 GeV® ; a(0) = 0.41 ;

pD=0.31 3 and ¥

1.48 . The only two of these which perhaps deserve
particular comment are Pp and v . '

The parameter Py is larger than in many two component models.
The parameter 7 is also larger than one might at first have expected,
corresponding to a Regge singularity in elastic Pomeron-proton scatter-
ing with intercept of -.48 . This is a typical value in our fit. Fits
can be found with this intercept as high &s zero but no acceptable fit
is found with an intercept higher than this. Physically the large value
of y is restricting the diffractive multiplicity to sma]:1 velues by
keeping the missing mass low. An advantage of this is that we do not
now have to consider the possibility of pomeron exchange in the centre
of a long multiperipheral chain, as the presence of the pomeron would
keep the chain short. The diffractive interaction that we have already
calculated will therefore suffice., The underlying feature of both
these effects, large Pp and large 7 , is that they tend to make the two

component effect more dominant. Consider theform (2.10) of fa « That is

w D . )
'F;‘ ‘Pnpz. * 'P'bez + "%‘PD(M"-'{’&) (2.155)

The last term is going to dominate most effectively if pD-)%- and
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En_ﬁD becomes large as discussed in section 2,1 . The necessity for
this is now more marked as f: is, as we have discussed, assymptotically
negative owing to the effects of momentum conservation (in the form of
the t , effect) and small t dominance. (We also remark that the
clustering effect helps to alleviate this problem). A non-diffractive
mechanism with £,>0 would admit considerably fe\wer difficulties in
describing the data in terms of two components., -

Thé last possibility we consider for t\h‘e cluster structure
is a binomial distribution allowing zero, one, or 1\;yro negatively
charged particles. Constraining, as before, ®(0) to {ie between 0.4 and
0.6 we arrive at identical conclusions from very simiiar parameter
values. and a very similar fit. '

FIT_II

We Ffinally remark that if we allow «(0) to be a little
lower we can improve the fit slightly as shown in figures 2.6, 2.7, and
2.8 . The parameters are now as follows : clusters contain\ a bihomialM
distribution of negatives of mean N = 0.2 ; «(0) = 0.05 ; b = 1.2 ;
7= =0.5 ; Py = 0.34 ; 8o=9 GeVZ ; v2=7.5 GeV2 .  a(0) may perh‘a.ps be
interpreted as an effective trajectory intercept. Other than this' our

~—

conclusions are as before.
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2.9 The pomeron as & projectile

The basic ingredient of our model is that the multiplicity
distribution of the interaction is assumed to be independent of the
nature of the projectile., We shall investigate this further in the next
chapter but at this stage it is perhaps worthwhile to note how restrict-
ive this is to our fit to the multiplicity distribution.

If we relax the assumption that pomeron-proton collisions
produce the same multiplicity distribution as reggeon-proton collisions,
then for a diffractive interaction which can be described by a triple
Regge term of the form pomeron-pomeron-reggeon, we find from (2,9%4)
that the multiplicity distribution is independent of energy. We have
here retained the assumption that the pomeron-proton interaction has '
only short range correlations and thus f§R~ r, 1n(s) o The freedom i
that this arbitrary distribubtion gives to the two component fit is
congsiderable. If we take the Poisson limit of the non-diffractive part
and assume (ad hoc) that the diffractive multiplicity distribution is
also Poisson, the data are easily fitted. This two Poisson fit we label
FIT III . It is shown in figures 2.9’, 2,10 , and 2.11 ., We stress
that a very large number of similar fits are possible depending on what
one assumes for the diffractive distribution. The parameters in-this
fit are : «(0)=0.L45; pD=O.17 3 so=17 GeV®; and the clusters were re-
stricted , each to contain only one negatively charged particle. The
means of the two component distributions are ﬁD=2.9h and fi_=1.1 In(s)+2
Thus we would stress that the assumption lhat the multiplicity

distributions are independent of the nature of the projectile provides

a considerable constraint on the model. |
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2,10 Other two component models

In this section we should like to mention other models based
on the two component prescription outlined in section 2.1 .

The approach of Fialkowski and Miettinen2® ig to make a
Poisson distribution ansatz for one component and to subtract it from
the observed multiplicity distribution to find the other., The second
component, they find, is gignificant only for fewer than eight charged
particles produced and has an independent of energy. ‘

Van Hove2* observes the attractiveness of the two component
model in connection with the Wroblewski plot (figure 2.1) and his fit
to this indicates p, to be roughly 26% .

Harari and RabinoviciZ2?

, a8 discussed earlier, parameterise
the data with a similar two component model. to test the relation (2.78)
for the non-diffractive part. Fitting i and fz they observe that this
relation is satisfied for reasonable aR by the sum taking only the
first two terms c; and c,. Our model having (2.78) built in clearly
has a lot to say about this. Whereas their fit has c2>0 s our model
has difficulty in producing this, as we discussed earlier in this
chapter. Our fits labelled I and II , when one calculates the first
four terms, only satisfy the relation respectively to 88% and T8%.
This emphasises the non-Poisson nature of our pionisation component.
We must conclude then that the series in (2.78) may not be so rapidly
convergent as is hoped by these authors.

’ Frazer and Snider®° propose a mechanism for diffraction into
high masses based on a triple pomeron term and calculate its mean
multiplicity and total cross-section, using the assumption that the
pomeron-particle scattering multiplicity distribution is the same
a8 that for non-diffractive particle-particle scattering. They do not

attempt a fit to the data. We shall discuss such mechanisms in chapter

four.

A}
\\
Ay
\
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Berger and Fox®! also introduce a triple pomeron diffractive
term but note that their £it to the data is more d\c‘apendent on their non-
diffractive component which they takg to be & multib\eripheral cluster
model. It is interesting to note that although their it is primarily
to inclusive distribution data, they find that the clu‘tgters should on
average contain approximately four pions. This is nicely consistent
with ou.r estimate of 1.3 negatively charged particles, Their difficulty
in producing a good fit to the multiplicity disbribution for s<200 GeV2 9
we should to the lack of any suitable mechanism for low mass diffraction
which our analysis (in agreement with references 20 and 22) \indica.tes
to be crucially important in this respect.

Roberts and Roy>2 discuss only the diffractive intera‘ction.
They allow this tv;o cor{xponents corregponding to triple pomeron and
pomeron-pomeron-meson terms, and calculate an approximate form for the

diffractive mulbtiplicity distridbution.
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FIGURES FOR CHAPTER TIWO

The Roman numerals labelling figures 2.3 to 2,11
refer back to those used in the text in seétions

2.8 and 2.9
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CHAPTER THREE

Inelugive distributions and correlations

/

INTRODUCTION

This chapter is, in a way, complementary to the preceding
one in that we now go on to examine the features of the two component
model i;\gcneral and our model in particular, which unlike those
features discussed in the previous chapter, depend on the momenta of'
the observed particles. In section one we discuss inclusive distributions
and correlations from two component models. We show in particular that
the two component model with a low mass diffraction component gives a
good description of the two particle correlation. The second section
discusses the semi-inclusive process pp— p+ n charged particles+ any .
The remainder of the chapter is devoted to discussion of the reaction
PP p,q,X , where q is a charged particle. The ideas leading tP the
model of chapter two are again found to describe the data well., In the
final two sections of this chapter, predictions of the model are outlined
which might prove useful in testing it further when more inclusive and

semi~inclusive data are available.
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3.1 The two component model

Here we shall study, in the same way as in the first section
of the preceding chapter, the basic construction of the two component
model, We are now interested in the inclusive distributions and the

momentum dependence of the correlations. We use again the shorthand

4

notation
. 4p
0\’ ) e (3.1)
and (
.l ™
Nh o C{PV..de (3.2)

For our two mechanisms (which we again denote here a and b) we expect
&O‘;M d‘c_u&(d, (\Lﬁ"MCH o
‘ = + (3.3)
O‘f’r "&Ph df\"dfk df' ' 'dfh

and so in the notation'of section 2.1

(a) b
Nk(?‘"\)k.) = % Nk (P\"Pk\"' o(bNh (PV'PR) (3.4)
with

‘ (oY =
B Vel 1 (3.5)

We now construct the correlations defined in the introductory chapter

Ci(iiz) = N?_(i)_z') - Ni(.‘i) Ni(.z) (3.6)

G(,23) = ME,2,3) ~ Ny (4) N, (2,7) = Ny(2) Ny, 1)
= Na@)M_(i,z\ ~ NV N,G) (3.7)
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Precisely as in section 2,1 , we find equation (3.4t) to be in terms of

these correlations

89+ % C42) 4,842
+ o (No-RE) MO -Nw) 68

\

and [ \

Cs('i) 2, 3) = O(QC;('l, 2,3 ) + %Csl?@) Y 3)
' + %db{ Celu,2-c2,)IN ) - Nt’('B)] + %dkferm}
— oty (- Y M ) N (M- RP ) (5.9)

\
Equation (3.4) for k=1, (%.8), and (3.9) upon in%egration over all
momente involved clearly reduce to (2.9), (2.10), and (2.11). The
situation for higher correlatios will become rapidly more complicated
but fortunately as there are no relevant data we need not discuss' them.
The two component terms are again clearly displayed in equations (3.8)
and (3.9). As in the previous chapter we can look at these terms on
their own. (' Technically CZ and CZ cammot be zero owing to conservation
of momentum constraints, although they can be much smaller than Ni ’ NE).
We take mechanism a to be the short range correlation.mechanism, \
discussed in the first chapter in the context of the Mueller-Regge ‘

analysis, having a plateau in the central region of the single particle

inclusive rapidity distribution. This will correspond to our non-

diffractive mechanism in chapter two. The low mass diffraction mechanism
in chapter two should provide an inclusive distribution which is peaked

at either end of the rapidity plot and approximately zero in the central
region. Thus as s increases its peaks merely move out with the kinematic
limits of the rapidity variable. (See figure 3.1). Thus taking the two

component term in equation (3.8) we have
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C, = opdh, (N:(i)‘N.LU))(N?@)‘ML(?—» (3.10)
We can now examine the behaviour of this correlation., Figure 3.2a
shows where we expect this function to be positive, negative or zero.
In this case the correlation is definitely of long range. In figure
3%.2b this forrelation is plotted against one of its variables with the
other fixed. The short range correlations present in either of the two
components will of course be superimposed on the features shown. (For
example as shown in figure 3.2c.j

We should also like to remark that the data are often pre-

gented in terms of a noymalised correlation. In our notation this is

- _c_z_g&_ (3.11)
R,(1,2) -
This has the advantage that it compares the size of the correlation
with the size of the uncorrelated production distributions. Rlclearly

also satisfies

Ne(42) = MONGREZ+ LY G

If the total Nl is roughly c?nstant as figure 3.1 suggests it might be,
then the shape of R from the\two component model will look just like
Cz. Data for the two particle correlations are shown in figure 3.3 .
The form given by the two component model that we have been discussing
looks qualitively good, as has been discussed by various authors33?34,
As data are now available over a considerable energy range
(the I.8.R. data alone span a factor of five or so in s), we should
like here to examine one particular distinctive feature of the two

component model, Examination of equation (3.8) shows that Cz(yl,yé)fbr
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any y- has a zero as a function of yl whose position does not depend
upon y,- (We have assumed here that CZ and Cz are small - this will be
the case if our two components have only short range correlations and
Y, is kept more than a correlation length away from where we expect the
zero in 02.) Furthermore a low mass diffraction contribution which has
constant multiplicity and cross-section, and which provides a non-zero
contribution Yo the inclusive distribution only within a fixed range of
the end of the rapidity plot, will imply that the zero of 02 will be at
fixed |Y-y| where Y = $In(s/s_). We have here assumed limiting
fragmentation of the pionisation component. We take so=m§ - this is’
arbitrary and does not affect the result. In figure 3.4t we show
IY-yOI where Yo is the position of the zero in 02 found empirically

and defined in our model by

N$(3°) = Nf(?") (3..13)

We take only the very high energy data where oné can more opbimistically
separate long and short range correlations. We display the data for
Iyé-yo|>2 where we expect short range effects to be negligible, choos-
ing also the data where the position of the zero is reasonably well
defined. The results are in excellent agreement with the two component
model prediction although the error bars would permit a slight variation
in the position of the zero with respect to the energy. Figure 3.3 also
shows that when both the partiles 1 and 2 are well in the central region,
then the correlation is independent of energy, just as we should expect
from equation (3.8) if each component has scaling behaviour. This is

shown more clearly in figure 3%.5 .
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3.2 A simple gemi-inclusive measurement

Before turning our attention to the form of further inclusive
measurements predicted by our model, we should like to examine the
recently published date on the experiment'where the multiplicity of the
event is measured, as well as the momentum of a proton in the final
state. This is the simplest experiment in a class denoted semi-inclusive,
A thorough study of this experiment is performed in reference 35 where
references to earlier such analyses (with more limited data) are giyen.

Our model of chapter two tells us that the mean multiplicity
in reggeon-particle channels should be the same, when the available
encrgy is the samc, as the mean multiplicity in non-diffractive particle
-particle scattering, independent of which Regge singularity we choose.
(In the spirit of the model we should have liked to have said that
reggeon-particle multiplicity distributions should be the same as the
overall particle-particle distridbution, but the existence of the pomeron
with @(0)=1 forced us to add diffractive terms in separately.) In
figure 3.6 the mean multiplicities of particles are plotted against the
available energy, E=M-m in the M® channel, and E=fs-2m in the s channel.
<nch— 1> is plotted in the case of the M® channel owing to the smaller
initial charge. The authors of reference 35 make explicit comments that
there appears to be no change in behaviour of HA(M2) as M® rises from
the (pomeron dominated) region where there is strong M® dependence in
the pp pX inclusive distribution, to the region (presumably non-
diffractively dominated) where there is very little M® dependence in
this quantity. This, as well as the similarity to the mean multiplicity
in the s channel, is very natural to our model where the multiplicity
distribution in reggeon-particle collisions is independent of whether
the reggeon is a meson or the pomeron. The multiplicity diskributions

in s and M® channels are shown in figure 3.7 at various energies. This
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experimental result we regard as excellent justification for the

undelying philosophy of our model.
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3¢3 The reaction pp~> p + charged particle + any

In this section we shall calculate the form for the two
particle correlation when one of the particles is a protonIII. The
prime motivation for this is that whereas the praton distributieon in the
reaction pp— pX displays a peak when the proton is observed near x=l,

when a charged particle is observed simultaneously in the central region

the peak is no longer present. This feature occurs very naturally in our

M nt
g
? f i c
(1) ) g (&) (i1)
4 '\
a 2 b a S b

DIAGRAM 3,1 ; Pictorial representation of amplitudes
for (i) & proton ; (ii) a proton and another charged

particle , produced in proton-proton interactions.

model. We first teke equation (2.31) at z=1 , (derived from an amplitude

factorised as 1s in diagram 3.1.i), and sum over n, rewriting it as

1~2a(¥)
(ilfdx = lon ‘N Cly (=) 0' (Q—x)s) (3.14)

t is the invariant momentum transfer to the proton and x is the longit-
udinal Feymman variable of the proton. The sum we expect to include as
in chapter two notably tﬂe pomeron and leading meson term., We neglect
interference between the two on the grounds mentioned earlier. Equation
(3.14) is just that which leads to the triple Regge expansion when Regge

behaviour is taken for o

Rp° It may be expected to be valid for

1= X5 (3.15)
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where X, is some constant. (For example if Regge analysis is good for
s/M® > 2 then X 1 . We shall discuss this point later in connection
with the data.)

The second particle, labelled ¢ in diagram 3.1.ii, is in
the central region and so rapidity is a more convenient variable than
X » The simple Lorentz transform properties of the repidity variable
will also be of use to us. The expression from diagram 3.1.ii analogously

to equation (3.1l4) is

de  _ 1 2 [~2xg(¥) JE (Q-x)s)
-—-—-—-—dkdxdﬁ‘.- Z&d |bw® lvkltn Q—-k) %é

Y, is the rapidity of particle ¢ in the centre of mass and y": is the

(3.16)

rapidity of particle ¢ in the rest frame of the missing mass M2, the
centr of mass of the reggeon-proton interaction. We must now relate

yé to v, o Congidering the reaction represented in diagram 3.2 with

a \

- A\

S —> A
: DIAGRAM 3.2

\
2 ‘\

H?

the momenta given by

P myCochy VP s Seahoy, )
— . \‘\ ' (3.17)
and ])7_ = MLCO%L\&._ ’ ‘FL 3 }'LS«.J\S;) \}

one finds that if v, >0
Yo 7 3 € (L-x) (5.18)

where x is the Feynman variable of 1 or is (1-M%/s). Using the
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linearity property of the Lorentz transform in terms of the rapidity

variable we have
/

- 1 -
Y = Ye + 32 e (L-x) (5.15)

*
For convenience we define the follwing notation .

Let
Y 2 1~ 20¢¢ ()
G.R' TR ‘\}g(.b)\ 6:") (3.20)

As before

. de (<) .
N (55 £y = t(s> chedkdys (3.21)

N:L (g.i x,t ) = ét(s) %{déc) (3.22)

A, (V)
M‘) ol.:)

The tilde we again use to denote reggeon-particle scattering (including

(3.23)

=~ /
Ny (M 5y, 3R)
pomeron-particle scattering). Then equations (3.14) and (3.16_) become
§;xk 5 (M (3.24)
N, (s3xk) = (YrO)Z‘ Ge G'gf(M )

~a Ot ) (3.25)
sz (}'3\(,&, "]o)= JG;@);GKG&(M ) Ni(M 5‘jc)R‘>

*  When the arguments x,t are uset we shall always be referring to the

final state proton. When the rapidity variable is used we are referring
to the meson. Thus, for example, Nl(s;x,t) 1s the single particle

inclusive distribution for pp-»pX. Nl(s;yc) is for pp—ymesontX. They are

not the same function. (N, (M%;y!) is for Rp-rmesoniX.)
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where
M? = Q—-K )S | (3.26)

and

Dy~ L
Je = Yem 5 L) (3.27)

So far we have only agsumed that a number of Factorisable exchanges are
present (c.f. section 2.2). Next we shall compute the form of the
correlations in our particular model.

We do this by noting again that our model hinges on the
assumption that multiplicity distributions from reggeon-particle .coll-
isions do not depend. on whether the reggeon is a pomeron or a lower
lying trajectory. Indeed simplifications introduced in the non-diffract-
ive mechanism made these distributions the same as the non-diffractive
particle-particle scattering multiplicity distribution. The total cross-
section was, however, allowed to depend upon the nature of the interact-
ing objects. Here again we say nothing about the total cross—-sections.
To test the assumption concerning the multiplicity distributions against
momentum dependent data we must make it considerably stronger. We assume

that

N (s;p,eeeensR) =1 _Rp __

g dpl“.ipk
is independent of the incident reggeon R. This of course implies the

assumption above through

Nk(.s) P Ple) O\P. . dﬁ; <V\(‘A-1)\'\‘\. (m+1-k¥> (3.28)

\
as the moments <n(n-1)...(n-k+1)> determine the generating function

completely through

s o0 k
dlLe) = Z % <n(n=1) o o-lerd)> (3.29)
By KRS

and hence determine the mulbtiplicity distribution. This assuﬁptioq is
\
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thus sufficient (but not necessary) to imply the earlier one. In any
case we only actually test the assumption for k=1 here. To do more than
this would require foirly detailed data on three and more particle
correlations.
If‘ﬁl(M?;yé,R) is independent of the reggeon R we can remove

1t from the summation in equation (3.25) obtaining

N(S;X,E, )= lt;(Mt; 1)—\- G 5 M) (5.30)
'3 ‘ﬁt 1 ‘j O}(,‘); R gr(«

which from (3.24) becomes

NZ(S; X)E) ‘*’) = Ni (.s)'x)b) ﬁi (Mz) \‘3:_ ) (3'31)

The steps necessary to achieve this result are recounted pictorially in
terms of generalised optical theorem diagrams in figure 5.8 .

We can now construct the two particle correlation

Calsinbiye) = Ny(oxk) GL(M‘;%: - Ny(ss 4y Go32)
or alternatively

Ni(,Mil' ‘jo’) _
Ny (s ) %c.)

Notice that R is particularly simple as explicit dependence on the

(3.33)

R, (s; %8, 3‘) =

observed proton is not present. The dependence upon the baryon momentum
only enters through equations (3.26) and (3.27).

Before making a comparison with the date we should remark
upon & point relevant to the measurement of inclusive processes. Often
only the angle 9 at which a particle emerges is measured and used in the

form
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*l s - £L~ +aw~e%& (3.34)

r
which is the same as
L] 1
Sinh v e ® (3.35)

hence

T%’== P = Fﬁ_s;hnk 1' = yﬁL§§ﬂaL\:1

tand (3.36)

and so if a particle's mass is much smaller than its average transverse

momentum ( which is the case for a pion ), then 11"“h.and 8o

4 = M (3.37)

Thus for particles observed in the central region, the difference between
y and 1 is often neglected by phenomenologists, We shall do 80 here., In
reference 31 it is noted that in a Monte-Carlo program it makes little

difference which of y and 1 are used,

—
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3.4 Comparison with the data - global structure

{
The data for the\correlation R over the range 0<x<l are

shown in figure 3.9 for I.S.R. energies and 'qc=0 and -0,88. The
general trends that one can see in this data are a roughly zero
correlation in the region 0.5<x<0.9 with a negative correlation for a
very much forward proton. There is also an indication of a positive
correlation at small x. To see what sort of prediction we get from the
model let us consider a very simple form for Nl(s ;yc) and teke

N, (853 )=N_(s5¥,) . The form we take is shown in figure 5.10 . This
is Jjust the Mueller-Regge picture with a central plateau in y being
independent of s, and with limiting fragmentation within a range A of

the end of the plot. That is

Ny (5 9)= 4 t o lyl & [%-A| (3.38)

Ny (5,49) = i‘—(}-b) cyly [B-al G

where Y/2 = Yoy 204 ymin=-Y/ 2 . We take a linear form in the

fragmentation region purely for simplicity - we shall perform a more
detailed comparison as x—1 in the following section. From (3.33), (3.26)
and (3.27) we thus have

R - N1<S(i~x) J 34_(’.«(1-;:)) _ 'f.

(3.40)
Ny (s;9)

If a particle of mass m is observed then Y=ln(s/m2) . We also need the

length of the rapidity plot in the missing mass channel. This is
{ Mt
Y= bz = Y+ La(r-x) (5.41)

Thus the form we have for R becomes (when y is in the central region
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in the s channel) :

R= O R O (3.h2)

and

Eb\l—%m -y +~0AA(‘1"X)] _4

A (3.1;3)

R=
VORD Xe
The x dependence enters owing to the fact that while y can be in the
central region as far as the initial interaction (s chammel) is concerned,
it may well be near to its kinematic limit and hence in the fragmentation
region in the reggeon-particle collision (M® chamnel). If one particle

is seen with momentum x then another cannot be seen with more than (1-x).

The point where the form of the correlation changes is given by

~(t-x) >~ % -y~ 4 (5.4)

or

xe=1- a}az "[iY ~y-a] (3.45)

and the kinematic limit on x when a particle with rapidity is observed

is

x
T

wx = 1 - e‘k\h{"[]iY"‘:)]} (5.46)

The form of R is plotted in figure 3.11 taking A=2 and m=L GeV/c2.
(This 1at1';er we take to represent an average transverse mass for the
centrally observed particle.) For x greater than roughly 0.4 » the
discrepencies between model and data may perhaps be judged to be owing

more to the data than to inherent deficiencies in the model. However
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the model does not give a positive correlation for small x which the
data do seem to indicate. This discrepency is not surprising when one
recalls that foi factorisable Regge poles to be a good approximation
g/M® = (1-x)"* should be large. The fact that R is roughly zero down to
xs 0.4 (s/MPx 1.6) is encouraging as the sum of ‘terms in (3.25) which

simplifies so neatly in this model to (3.31) shoul\q. surely not be

]

\

\
AN

dominated by a single term down to x:w 0.4
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%.5 Detailed cogparison with the data ag x—1

In the previous section we took a global view of the two .
particle correlation. In this section we shall examine the behaviour of
the correlation when the proton is observed very close to the forward °
direction. We take again equation (3.31) and compare it with the more
detailed data near x=1 . We take N,(s;x,t) from the data (see figure
3.12) s and in order to make a parameter free comparison we teake ﬁl(yc)
to be the same as the particle-particle interaction inclusive distribution.
We use data (see Tigure 3.13) for the processes plt:'n" H 7+ g~ ;
pf-u" 3 and pn) % . We choose these as none of them should have a
diffractive peak and we expect none in RC P—)charged particle, which is
effectively the process described by Nas x-1.

We again neglect the difference between the variables y and

N and so
© <9ty =¥ g © 03
o } @41‘7)
©= NS tnsg® = g = =0S £ 0I5
The correlation data are at §=929.5 GeV2 . We thus take the low energy
data at energy M® and calculate x=1-M%/s . For each of the two values

of y we calculate y' knowing x and hence read off ﬁl(Mz;y') from the

low energy data¥. The integral over the small size of the detector we
approximate by
3"* GN . ~ . ,
t ! . )
Ny (M5 9) ‘(ﬁ - Qe Ny(H Jo (3.48)
3¢
Here € = 0.25 .This value is then multiplied by Nl(s;x,t) for proton

production to find the double differential cross-section.

: \
* We also use the data for the relevant O, b0 get the normalised

distribution N . (See figure 3.14) ° \
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The resulting parameter free prediction is shown in figure 3.15 . There
is now no diffractive peak in the double differential cross-section.
The model predicts, if anything, a too rapid decrease as x—*1 . This may
be due to the x resolution of the experiment. To see the model's
prediction for M2>50 GeV2 where there is very little suitable low
energy data, we can extrapolate using a scaling approximation. We assume
that for M2>50 (eV2 the distribution ﬁl(Mz;y') does not depend upon M2,
Dependence on x will still come in through y' . In each case ( ﬂ=90°,
6=117.5°) we extrapolate from the largest M2 point that we have into
the central region where we expect the scaling approximation to work
best, These lines are also shown in figure 3%.15 . Errors on them will
clearly be at least as large as on the points from which the extrapolation
is made, Within this error the description they give of the shape of the

data is excellent.
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\

The exact nature of the correlation when\jhe proton is
produced at small x is difficult to ascertain from the data .(Figure 3.9)
There does, however seem to be a positive correlation. dﬁr model in this
region ig inappropriate. However we can make some remsarks concerning
this region., First let us examine the baryon-meson correlation under
the assumption that one and only one baryon is found with x>0 in proton-

proton interactions. If this assumption is correct, then from:
\

\ .
\ ]

\ t

ne. . \
Cg (‘P&)?P\) \; N: %<?3)PM).- N':(ngNf (?M,) ‘ (3.49)

we have . , \

“...
jcz (Pe:?u)d(’sdfh = <NgMy ¥ = <ng> <n¥= 0 (3.50)

and also

h.8.
Scz (?B)Ph)dq)& = O (3.51) \
If the relative production cross-sections for the various possible baryons

are independent of the number of mesons produced, then can substitute

'proton' for 'baryon' in this discussion. If now there is a short range

DIAGRAM 3.3

correlation between the proton and particle ¢, (the Mueller-Regge
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approach - diagram 3.3 - gives us no reason to suppose \there isn't),

then the long range correlation will have to have the oﬁposite sign to

satisfy (3.51) . This can simply be effected in our model by taking

I[:;:l = (\+8)N1 G:58)

\
where d can be positive or negative as required. '

On the other hand it may be that the short range correlation
(if this is what is observed as x—0) is associated with antibaryon

production and hence a violation of (3.51). \
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3.7 Beyond two particle correlations

The ease with which our model can be generalised makes it
worthwhile to predict further quantities which have yet to be measured.
We take here the case where one proton and two centrally produced
particles which we refer to as ¢ and d are observed.

Instead of equation (3.31) we now have analogously

Ng (¢; %64esY4)= Ny(S5%6) (EZ(MQ; &3: , gj:, (3.53)
The three particle correlation we wish to £ind is from (1,14)
G (55%5 % 9a) = Ny (S5%6, 4y qa) = Ml%, EIN (55, 44)
- Ny (S5 4e) Ny(s;%€, cd,ﬂ ~ N, (55 94) N, (55%,6Y.)

— Ny (3% Ng (s54) Ny (s, Ya ) (3.54)

Equations (3.51) and (3.53) now give
C3(S‘; X,E, Ye) tde\) = Ny (g)-x,ic){ N,_(Mt U,; )‘1;)

= Na(54e s 4 ) = Ny (54 IR (R4 )

= Ny (5540 Ny (M) - “i(*%m(w\} (5.55)

\
We again define in a similar way to Rz \

\
C; (1 )2 3 ) ;
R.(1,2,3) = : L .
S ’ Ny ()N RIN, (3) (3.56)

and so this quantity becomes
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¢

E,s (Q;X'k' Yed Sd) = C(?;_('MQJ- (1:) ‘3& ) — CZ_(S) de) ‘jd)
Ny(ss ‘1@) N-_(_ (.?3 "Jo\)

1 Ml - Rl
Ng (554 Nz (S5 Ya)

(3.57)

The quantities 02 here are the two particle correlations between the
two observed particles other than the proton. Although this formula
looks complicated, ilrl the central region it is fairly easy to see what
it will look like. For yé and y('l to be in the cen‘i':ral region, we must

have analogously to (3.42) and (3.45) \

\

:\
X & Ma(xooxa) (5.58)

A}

where

R R T |

Xa = 1 - &\l% *Uz.““dd‘t\jj

The term involving the product in (3.57) vanishes in this region (that

(3.59)

is R2=0 ). The short range component of (12 will, as discussed in'the

first chapter, only depend upon V. Vq and so, as \

/ !
Y=Y = Y~ Yo (3.60)
then

a(SLor(’ M%e\ — CLCQ‘«OP(' Vluase) = Q (3.61) \

If the long range correlations are of the form (%.10) with the mechanism

b being negligible in the central region and mechanism a scaling and
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having a plateau in its single particle distribution, as discussed

previously, then
Cltrgrume) = C(lmgmg) = O G

leaving

= - ' (3.63)
| RQ 3 \
\
: \
as the prediction of our model. Furthermore if the Rirst term of (3.57)

can be neglected, then we expect, using the behaviour ‘of R2 s that
RS——+ _2 °

x=- ]
Four and higher particle correlations (involving the leading
proton and n-1 others) can be similarly calculated with increasing

degrees of complexity.

\V
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3.8 Semi-inclusive gquantities

An approach to long range correlations which differs
strikingly from ours is that of reference 36. This model genen‘c-a.tes
long range correlations between protons and pions by relating the pion
mulbiplicity to the momentum of the forward proton. By the assumpt:i{on
that a pion at 90° implies a high mulbiplicity event which implies
large M® which a slow proton, the authors of reference 36 are able to
generate a posii;ive correlation as x=20, It is very difficult to
see whether their model has any Regge factorisable structure even as
x=»1., It Jdoes , however, draw attention to semi-inclusive quantities.
Ilere again we can gain some insight into the properties implied by our
factorisable model. Although, again, data here are not availoble we
shall write down a typical prediction of the model for two reasons.
Firstly we are en(couraged by the success of the model so far ( in
particular in the semi-inclusive property discussed in section 3.2) and
gsecondly the results are perhaps not quite what one might expect.

Let n be the number of charged pions‘zi.n the event. The semi-

inclusive cross-section for pp—*p + n charged pions + anything else is

@)
@ . L as
N, (55060 = T dxdt (3.64)

That for pp— 7 + n-1 other charged pions + anything else is

&) ) _’- CLG'(m '
N (8] = g L, (5.65)

and the double inclusive spectrum is

@ 1L dﬁ’hﬂ
N, (5555, 9v) = 5.0) 0&;&“% (3.66)
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Denoting
o, (s) = Gn(5) :
5(9 \(3-67)
we have
T () = 4 (3.68)
®)
Zon® N (s 5,8) = Ny (5308) (5.69)

Zonls) Ny (Sye) = Ng(5 4x)

(3.70)

and

W)

Z 0(“(5) N?_ (?‘)\(,E,:’“_Q = N'}_(g}")é)‘jﬂ') (3.71)

We also define the semi-inclusive correlations

W ) @)
Crf)(s')x,&,:,w) = Ns N (s;x k) N.\ (s, ty— (3.72)

from which it follows (see also reference 36) that

C,* Zu & +Z ( syt Nyt N2 Jm(s;«h\\(s.va)
We also define

QY . CS\)(? X,

(3.74)
Ra N (sue) N ‘(s 3 %)

So far we have defined the semi-inclusive quantities and written down
the equations which follow from the definitions. In exact analogy with
equation (3.31) our model gives us

N (sbge) = N (simt) NG (m Y )

(3.75)
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Thus exactly as before we obtain

Q\) "'G\\

Nie (M5 ) _ 4

Re

Ch\ ('S"' U_“_)

(3.76)

In this case we cannot resort to the scaling argument that

gave R,=0 in the central region.

Instead we assume that the ratio

N:;(s;y)/l\rl(s;y) is independent of y . This implies through (1.10)

that
(h )

%> Yur)
s, Yw)

and so we find

@ w(s)
R; (.35 ")E)‘An') s

';\.(S(v-x))

R-;_(ri ")&) ‘jv) '+i - 1

(3.78)

Here we have a rather strange result. If we measure the

correlation R2 without noting how many pions are produced we get zero

(at least in a certain region).

If we measure the same thing knowing

that exactly n pions are produced we find a number greater than zero

and independent of n ! Not only that, it varies with the momentum of

the proton as shown in figure 3.16 . This result also implies that

z 0an;1 > 0 conbtrary to what is

assumed in reference 36 .

Finally we should like to note that to write down the

correlation Cg we must work out N; .

3.3 we have

Following the notation of section

A

&v\\ - Z C_(ﬁ' Mo

delkdsgy <
ds™

‘1"3.7 (3.79)

= = Z ~ Q‘) (3.80)
O\\(dt QQ

These with the assumption that Nz(Mz;y) is independent of the nature
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of the reggeon projectile, give (3.75) . Equation (3.80) with (3.24)
also implies that

ols) Z Ge o‘“’(u‘)
) % G, g‘,(u) &80

Q)
Np (550602 Ng(8,%8) =

Our assumption of the previous chapter that ;Ep/ %‘Rp is independent of

the reggeon R is now gufficient to give
~ (8
o (M)
(3.82)
(8D

Nh,(Sx% N,i(s‘)'x,%)

With this (3.69) follows from (%.68) and (3.71) follows from (3.75) and
(3.70). (This is just the statement that our factorising model describes
the n dependent quantities consistently.) Hence

V\(. )

()

0wt B o) Sl

(3.83)

To examine (3.82) we should write otn(s) as a weighted sum of diffractive
and non-diffractive parts, and consistent with the model of chapter two
put En(Mz) equal to the non-diffractive part. However as data are not yet
available we regard it as sufficient, to find a rough prediction, to set
'&'n(Mz) and an(s) to the same distribution (as indicated in section 3.2)

and write a Poisson ansabtz

m —~n()
odu(e) = |MLS:\
(3.84)
with mean
() o (3.85)

Thus we find
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Q) Y "
NP (s;%t) _ @_K) {i 4 Q(i“x)j

Ny (s;x,b)

5
Rl (5.86)

This prediction is shown in figure 3.17 for various values of n .
Although in the absence of data these last two sections have
been speculative, they do provide some interesting predictions on which

our model (which seems successful as far as existing data go) could

be tested.
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FIGURES FOR CHAPTER THREE
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FIGURE %.1 : Diagrammetic representation of addition
of inclusive distributions in the two component model.
The arrows represent the behaviour as energy increases.
The second component (b) is a typical low mass diffrac-
tion term with a large rapldity gap and constant

multiplicity.
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FIGURE 3.2.a : The sign of the long range two
particle correlation as a function of the two
rapidities. The broken lines represent the
positions of zeros . The shaded region lies

outside the kinematic limit.
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FIGURE %.2.b : The two component model's long

pliX

renge correlation plotted against one of the

repidities.

\/;3., N\ Yi

o 9

v~

FIGURE 3.2.c¢ : As above but with a typical short

range correlation superimposed.

In both these illustrations the position of the zero,
labelled Vg remains a fixed distance from the end of

the plot as Y becomes large. (See section %.1)
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Data for the two particle correlation

FIGURE %.%.a

in the reaction pp—7y+hadronteny plotted against the

photon rapidity. The white dots are for yh=0 » black

s

(

dots are for yh=-2.5 . Data are from reference 48 .




1

AT

PISA-STONY BROOK
TWO PARTICLE CORRELATION AT DIFFERENY

W VALUES xa Rimgllye0 ’ o
0 P, 2118 GeV/c \
oﬁ‘ es S Vi e23 G !
&2° o Pye 314 G, !
..0@9 a2 %;:% Vi B ow
-5 . .ooo + oo. ° 5 ;
T&¥ o [ Mg '6""“""0 G !
< ooo / 021 0 8y ',
o i Y |
gp x
’ R hpﬂ]’ l\--“? * :
\
L} l i
{ L]
]
i
* L[ ]
L] ;\‘
| SR
! !
i ' .
]
i } '
! v
L]
i
)
. L
" - . e e -'—-'—" el aacta mlba bl ol 3 Ant e s eiasnse sadnlonlh 0 “"""""""""-‘ﬁ-w-v---—--—--—— ———— . -

correlation R . (See reference 49)..

~
-

-

—— e et s o wn  — m——

on

»

FIGURE %.%.b : Data for the mormalised.two parbicle



——— A A T e N E N | o LSS e

158

3 e
2
Ma&“ jo
. 4 |-
(3 L 4
100 oo o000
s (aeV?)

FIGURE 3.U.a : The distance of the zero in the correlation from the

end of the rapidity plot as a function of energy. (Data from fig.3.3%a)

3o

Ha
FIGURE %.4.b : The distance of the zero in the correlation from the

end of the rapidity plot as a function of the rapidity of the second

particle. (Data from fig 3.%b)

The constant behaviour indicated in each case is in accord with our

model. 5 : ) .-
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FIGURE 3.5 :

The two particle correlation as a

function of energy. Data from figure 3.3.a .
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charged particle with rapidity y.
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inclusive distributions.

FIGURE 3.15 : (overleaf =
The top set of points represent data for the inclusive reaction pp— pX.
The large crosses are the inclusive spectrum at the same energy (8=93%0 GeV2)
when a charged‘ particle is observed near 117.5° (upper graph) or 90°
(Lower graph) in the centre of mass. The open points and the curves
represent the result of our model as described in the text. To obtain

these results data from lower energy inclusive experiments were used as

- +
follows : ¢ pHn [:] g Y 4 poT ? B,
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FICURE 3.16 : The semi-inclusive cross-section Réﬁ)
in our model, as a function of the proton momentum.

This is independent of n . \
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The energy here is such that <n™> =5,
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CHAPTER FOUR

The triple pomeron coupling

INTRODUCTION
In this chapter we discuss the effects of the triple
pomeron coupling. In section one we note its presence in the reaction
pp—?» pX and discuss with reference to recent literature its properties
as t—= 0 . We then discuss the properties of many-particle final states
which are implied by the phenomenological triple pomeron model., Finally

we briefly review some of the difficulties associated with the pomeron.
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4.1 The reaction pp—>pX in the triple Regge region

As we briefly mentioned earlier, the more recent high
energy accelerators and storage ring apparatus have allowed experiments
on inclusive processes to reach the region where the missing mass M is
large and where the ratio s/M? is also large. This has stimulated a
great deal of phenomenological and theoretical interest in the triple
Regge limit. The discovery thot cross-sections rise at such high energies
has added yet more interest. Phenomenological fits centre around the

triple Regge form

do
ot

, o (0~ (t)-«; (t.\ o4 (0)-1
= G‘ (.e C(ﬁd)“(t) Q’ ) § (4.1a)

' jk
or alternatively

o4 o)~ leh-4e) sl leb-1

dwb % Gyuls) tadyte (K ) $ (b 10)

which correspond to diagram 4.1 , Gi,jk is the effective triple Regge

coupling (including the external vertices), ¢ij is the phase from the

DIAGRAM 4.1

Regge signature factors ( ¢ 4= 0), and x=1-M?/s . The usual trajectories
included are the pomeron (P) and a leading meson (R) with a(0)~ % .
Interference terms ( i=P and j=R) are usually neglected. We write

these trajactories as
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Np(e) = 4 + oc,,'b

(4.22)
Ke () = ofo) + oqét (k.2p)
The various terms in the expansion are then
..1-'2«*;&-.
: © (%) (4.3)
PFP Geer .
0((0)*'}.‘ 20(",t 0«:9),1 ()4 h)
PPR : .
G‘,m(t\ (\x) S
1-9m(9) - 2
RRP : - - 4,5
Ceer () th5)
~oi(o)~2ee b oe(o)-1 :
RRR Gee K(t) (1~x) S | (4.6)
—a(s) - u\:t *N!&t
me: G (9 Galhelld (% (4.7)

{ /
o e aduia \ LIV/S L

Terms with the pomeron in the M® channel scale whereas those with a
lower singularity do not. The first two of these (the ones that we
refer to as 'diffractive’) are sharply peaked as x~1 , thus giving a
pronounced leading particle effect.

Much of the recent interest in the triple Regge region has
centred around the triple pomeron (4.3) term. A factorisable pomeron
pole ( @(0)=1) in (k.3) gives an assymptotically rising contribution

to the cross-section if GPPP(0)=#O , which of course is inconsistent

with the constant behaviour expected from a factorisable pole in the

elastic amplitude. Thus certainly if GPPP(O) is not zero, then we can

A ke - U A . VR s T a3 PR
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no longer hope to treat the pomeron as a factorisable pole. &he form of
GPPP(t) is, then, of primary interest in fits to the data in the triple
Regge region. The phenomenological situation is no more resolved Phan
the theoretical one. Roberts and Roy87 in a very thorough analysié find
no evidence for any vanishing of the triple pomeron coupling, but
rather find that the data prefer a sharp peak as t tends to zero. On the
other hand Siotis®® finds that 'contrary to a common belief all present
experimental data are consistent with a triple pomeron coupling which

vanishes a8 t tends to zero'. Field and Fox*7 agree with this conclusion.\\

\
\,
\

By way of illustration we should like, here, to make a
simple parameterisation of the triple Regge couplings and compare with
some of the experimental data. We take

b €
A e
Gyelt) = Ay (1.9)

with the exception

Bt

rep
Gepe &) = -~ fppt-e (t.10)

where we put in a predjudice about the triple pomeron coupling at

t=0 . We allow the Regge intercept as before to vary between 0.4 and 0.6
and the slope between 0.9 and 1.1 GeV™2, The pomeron slope we allow to
vary between O and 0.5 GeV™2. Assuming exchange degenerate mesons, the
interference terms (4.7) and (4.8) have, owing to the phase factor, too
small a magnitude to be relevant to the fit. (We put them in initially
but it rapidly became clear that they weren't making any difference. )

It also became clear that our parameterisation was not free enough to
fit all the data. The £it could not produce a deep enough dip in the

x dependence of the N.A.L. data (see for example figure 4,1). Other

triple Regge analyses have also had this problem?g. We can fit the
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I.S.R. data well, out to t=-.65 (see figure 4.2). Larger |t| is difficult
jﬁst because of the form of equation (4.10). To allow for the rising

factor ( t ), the parameter b must be large and thus we find that

PPP
this form drops too rapidly as ]tl becomes large. The form of the GPPP
correspondig to the fit in figure 4.2 is shown in figure 4.3 . The
analyses in references 38,39 perform a fit at each t value separately
and so do not encounter this difficulty. These authors do find one
solution where GPPP seems to dip at small ltl « The fit in reference
37 allows much greater freedom in the forms for the Gijk and the
trajectories. We can then only state that although all fits to the data
require a positive triple pomeron term for t away from zero, whether it
vanishes or not is a very open question. Our parameterisation, which we
regard as the simplest that one might think of, requires just a little

coercion to fit a limited amount of data, but we hope that it illustrates

the controversy around this aspect of the data.
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4.2 Particle production from a triple pomeron model

In chapter two we discussed a two component picture of
particle production. Our first (non-diffractive) component was one in
which the reggeon-particle cross-section was constant : a mechanism
corresponding to the RRP term (4.5) . The second (diffractive) mechanism

had a pomeron-particle cross-section behaving like s"7

» Our fit to the
multiplicity distribution required 7>0 , which one might interpret as
an effective trajectory in Pp interactions having intercept considerably
below one. (That is a PPR term). In this section we shall discuss the
form of the resulting diffractive multiplicity distribution had we kept
y = 0. (That is a triple pomeron mechanism). This has already been
done in part in reference 30, where the mean multiplicity and total
cross-section are calculated, and in referencé“32 where explicit forms
Tor the correlations are not presented.

We follow again the model of the previous two chapters and
assume that the mulbtiplicity distribution in pomeron-proton collisions

is the same as that in reggeon-proton collisions. In the notation of

chapter two then, the correlations in pomeron-proton collisions are

-rn = eV + d, (4.11)
We write then from (2.94)
a7 de T ( S %)
“‘Lﬂ’l" (Sﬂ:) = 2 'é‘ *\P(C) 'Lf‘ ¢, (b.12)
where now the condition

Ir(s)i) = ccmyw (4.13)
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ensures a mechanism having a non-zero triple pomeron coupling. Again we
take '3P(s,z) = TP(s,z)/'fP(s,l) to be the same as ¢n(s,z) . Perhaps the
simplest way of calculating the correlations in IPPP is to expand IP in ~\

\
A

powers of z-1 Ybefore performing the intégrals. One then finds it useful \<‘

to define the integrals
0 A
R * pf dng, KelG) [Y+ e"‘(’,_] (. 14)
-y
somewhat in analogy with (2.99). The expansion then gives

Opre & R, (4.15)

PP g
= ¢ M
1(;. ‘€ d+dy) (4.16)
Pre - 2 R 2
‘g' T Glw %:] +C"g§; +dy-1 (4.17)
and
prr 3 2
3( Rz 3RR, 2R Re _ R, §
‘@3 = q{,—g‘; -—-r“Q;%—R-,; }+3qc,_{§° R (4.18)

R
+ s -2 +e¥.+2
SR,
By calculating the assymptotic behaviour of the integrals

Rz , Wwe now have an idea of the multiplicity distribution produced by

this mechanism. The form (4.14) immediately suggests that

e+l

R~ 7 (4.19)

and so perhaps

ere "

—Q ~ Y (4.20)



162
This, in fact, turns out to be not quite true, although the long range
correlations in this interaction suggested by (4.20) will still be
present. Let us first calculate the correlations for the simplest
approximation. We take (as in the case which led us to the Poisson
non-diffractive distribution) al',=o and ltlmin.-.o. In this

approximation from (2.37) we get

S

D Pb c
Kp,= f Ce &t = /€ (b.21)

- o0

and hence
yQaH.
RQ = C/ﬁ -Q—;i (4.22)
We thus have assympto@ically
Cpop ~ LS (v.23)
pre
’Q ~ Lt (4.24)
) 2
rer 7]
1 )
‘(z M n G @AS (4,25)

eee
Q ~ ‘3 ¢y (‘Q“‘) (.26)

Equation (4.24) is derived in reference 30 , The following two equations,
however, also have a lot to say about this mechanism. Their form
indicates inherent long range correlations (which we also note are
necessary to satisfy the theorem of Le Bellac as on/atot does not
decrease like a power of s ). We find positive f, assymptotically and
negative fa as c2< 0. It is interesting to note that the possible

(1a(s))® term in f_ has a vanishing coefficient.
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The effect .of the tmin kinematic cut off on the above '
equations can be estimated in the following manner. From the discussion
of section 2.4 we recall that b4, effectively cuts off K(p) at some
fixed value of p . Thus although the correct region of integration is

] > Itmin(p)l and p <1, we can approximate the t . cut off by

|t] >0 and p<r (or ln(p)<< = 1n(r) ). This procedure is \
adopted in references 30,32 . In the ab9ve this merely results in the
substitution Y = Y-€ 1in equation (h.22) for the function Rz « Hence
the assymptotic forms (4.23) - (4.26) are unaltered. As we are not, at
this sbage, intercsted in making a quantitative estimate of the behav-
iour of this mechanism at lower energies, we need not discuss this

effect further.

As the assymptotic form of some of these quantities is slightly
different if a% =0 , we should also discuss this case. For g(t)~ eBt in
(2.37) we find

-~ = =
K(e) B =t (4.27)

and so

\/+€u\e>
Al .28)
f ¢ (ﬁ “ Qng, ) e

Expansion in powers of the variable ﬁ/a% - 1n(p) +then gives

Q "
i_, [+ 2;] {&\‘fﬂiﬁ -.FZ:i %-) 6)[1 ,,, (4.29)
(2 n=

W

e g

The assymptotic behaviour as Y- with ai >0 gives

| .
il = L,
Ufﬂ’ ~ -&A ("i + -F.:th) = 0:6 ( 30)

\ .
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pf’rr N gewS l; O'oo"'ij

1 O (b.31)
Pee 1 2 ‘ekSq. O-ob -2 .
(7 f [ o2 -
3 2
eee K1 ~26, + 6, ~2
i o0
b~ 16 @"")[ = |\ (1.33)

This assymptotic behaviour, however, might be long delayed as it holds
only when a]'?ln(s) >> B, When s is large enough for Regge behaviour

but o is small so that Otx',ln(s) < B the forms for o1=0 will be more
appropriate. Thus we have a new energy scale set by the pomeron slope,

\
\

and the transverse momentum cut off B. This is .

B/ ‘
. =~ € T (4.34)

©

\
\

\
The effect of this energy scale is shown for the mean multiplicity

of this mechanism in figure 4.4 .
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4,3 A three component model

The apparent presence of a strong triple pomeron contingent
in the triple Regge analysis of inclusive proton spectra, naturally
stimulated interest in what sort of multiplicity distribution one
should expect. This we outlined in the previous section. Now we ask the
question ¢ how does this fit in with the calculations of chapters two
and three? Let us examine this mechanism as a third component. We shall
take the @=0 case as more representative of energles (even I.S.R.)
at which data are avaeileble. As remarked in reference 32 this mechanism
may well £ill in a dip in the multiplicity distribution which might
otherwise appear between the low mulbiplicity diffractive mechanism
and the non-diffractive component which has increasing multiplicity.
The increasing width (fz) of the triple pomeron mechanism should
effectively prevent this dip.

To see how this three component prescription differs from
the two component prescription of chapter two, we find it convenient
to add first.the triple pomeron mechanism to the non-diffractive
mechanism, and then to add the low mass diffraction term in as before.
Firstly, then, the addition of a small amount of high mass (PPP)
diffraction to the non-diffractive term results in a multiplicity

distribution with the properties .
) \
wo~ elas [ i%']"\ (4.35)
| 2 2 ‘ *
{:; ~ ctic,_ dns + 424 @M\*- Q,zt,_@'eus) (4.36)
12 '
with

L 4 (.57

If we replace the non-diffractive component (a) in chapter two with
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this combination, we expect roughly the following. As fz is now not
strongly negative as before, the two component effect which we
generate by adding the low mass diffraction term (b) , (exactly as
earlier), may not: now need to be so large. Thus the slightly more
slowly varying an y which we have this time, should not be difficult
to accommodate. Another way to see this is to notice that the triple
pomeron multiplicity distribution (equations (4.24)-(4.26)) has a
very similar form to the one produced after the addition of the two
components in chapter two. Thus this third component should not make
too much difference when added to the two we have already.

We should also like to note that the calculations of chapter
are independent of the energy dependence of the pomeron-particle cross-
section. (i.e. of whether we put in a triple pomeron coupling or not).
As, for the most part, we factorise out the cross-section, the only
place where this may not be immediastely obvious is in section 3.1,
where the general form for the two particle correlation between two
mesons is discussed. For this reason we shall outline the form of
the pp— 7 inclusive distribution in this triple pomeron model. We take,
then, the relevant term from equation (3.25) and integrate over the'

momentum of the leading proton. Hence

ds; o l
et = | et |\:|Z(P2-| Q“ x)i 0_‘_% (k) (4,38)
n

A,

Taking the simple form

sy, (v
dyy

for the Pp—n inclusive distribution, we have using (3.19)

(3
o 1o )0y te ) e

17

e, :
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Hence

ds,
;ﬂm = C C‘t&”— \é] (b.b1)

™

C here is a constant normalisation factor. Of course there will also be
a symmetric term when the proton is observed in the opposite direction

and so

T T S

T

Equations (4.23) and (4.24) then imply

pec '
Ni ("3-,1) = L Cy \\ (4.43)
\
This mechanism when added to the non-diffractive meé?anism will not
disturb the plateau feature of the inclusive distribution, but will
break the scaling feature (owing to the form of (4.23) and (4.40)) by
logari%hmic terms. This result can also be found, for example in
reference 40 . Thus the long range correlation inherent to the triple
pomeron term may change, slightly, the prediction concerning the position

of the zeros in an but the long range correlations arising ﬁrom ‘two

component effects should remain substantially unaltered. '
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4,4 Difficulties with the pomeron

In the previous section we found it appropriate to discuss
how a simple triple pomeron mechanism would affect our model of the
previous chapters when included in addition to the mechanisms already
discussed. In this section we should like to note briefly the difficult-
ies which this simple view of the triple pomeron mechanism runs into.
Firstly we have two empirical features of the data. One is that a
diffractive peak is observed in the process pp—pX and it is persisting
as energy rises. The other is that total cross-sections do rise through
I.8.R., energies. One can hardly fall to see the immediate phenomenological
attraction of the triple pomeron mechanism discussed. In reference 37,
for example, it is pointed out that the rise in the total cross-section
is of quite compatible magnitude with the size of the triple pomeron
term in the diffractive peak (whether or not GPPP(O) = 0 ). The possible
double high mass diffractive term is usually idnored on the basis of
an estimate made of it by taking the size of the elastic vertex and the
high mass diffractive vertex and assuming factorisation.

If the triple pomeron coupling does not vanish when all three
pomerons are massless, then the lack of consistency of a pomeron pole
alone is obvious, in that on the one hand the optical theorem gives a
constant total cross-section and on the other the integrated triple
pomeron contribution rises at least like In(ln(s)). If it does vanish
then even so there are difficulties. In the absence of cuts inequalities
have been derived from inclusive sum rules which suggest that GPPP(O)=O
might imply that the pomeron decouples from particle-particle-pomeron
vertices at t=0 . Assumptions concerning the analytic continuations
involved and the effects of cuts in these derivations have been questioned.

If one is merely discussing In(1ln(s)) discrepencies, then

one may think that the data do not have any bearing on the discussion.
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This, however, is not the case. Perhaps the easiest way of seeing this
is in the framéwork of reference 9 . Here the poggron pole in the n—n
forward elastic amplitude is seen as producing shofﬁ range correlations,
constant total cross-section, and o, which fall like a power of s .
This is entirely compatible with a multiperipheral noﬁ—diffractive
model %n which a lower singularity in the multiperipheral chain (Un -0)
adds up to a pomeron in the elastic amplitude (0t -» constant). The need
for any type of mechanism in addition to this must imply a more
complicated form for the elastic n—n amplitudes. Viewed this way the
need for a two component model implies a priori that the pomeron is a
singularity more complicated than a simple pole.

Two contrasting viewpoints emerge from the literature. One
is that the triple pomeron term gives the rising total cross-section
and that this not assymptotic but is approximate over I.S.R. energies,
Before energies become large enough to allow multiple diffractive
scattering, then absorption will have to become important. It is not

1

however clear®’ what the effects of s channel unitarity on current

energies might be. The alternate approach42 is to take a 'bare pomeron!
with intercept less than one and allow this to be repeated in amplitudes

to obtain an output singularity with unit intercept.
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FIGURES FOR CHAPTER FOUR
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FIGURE 4.3 : The triple pomeron coupling from the fit in the

previous Ligures.

The parameters for the various couplings have the values
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CONCLUSIONS

In the first chapter we gav; an introduction to the strong
interaction at high energies and some of the quantities which are
useful in trying to measure and describe it. We described a basic
p&cture of many-particle phenomena in terms of the Mueller-Regge short
range corrclation approach and noted where it seems to be inadequate.
In particular there was presented an illustration of a case ( antiproton
production) where one might expect better results from this approach
than one finds. The direct approach indicates that this process should
become assymptotic more slowly due to the high threshold end momentum
transfers involved. ‘ )

In the second chapter we derived an integral equation for
the generating function of the multiplicity distribution for the
scattering of particles involving a Regge exchange having «(0) <1 .
We assumed this to be a meson known from Regge fits to two body scatter-
ing. In particular owing to momentum conservation constraints, this
maltiplicity distribution was not a Poisson distribution. In addition
to this the data required a second, diffractive, contribution which
we calculated under the assumption that the multiplicity distribution
from pomeron;particle céllisions is the same ag\that for a lower reggeon
projectile. With this assumption (which is excei%ently'born out by the
data as discussed in section 3.2) clustering in the multiperipheral
chain was required. (We note that this would have béen impossible to
tell had we not restricted the freedom of the model by the above
assumption.) Our model also required diffraction into low masses,
(a PPR term), to £it the multiplicity distribution, in accord with

some of the earlier analyses2® In section 3.1 the momentum dependence
\

\
1
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of the long range correlation was also interpreted as being evidence
for diffraction into low masses.

In chapter four a possible mechanism for diffraction into
high masses was discussed. From the forms presented there for the
multiplicity distribution of the mechanism, we should like to argue
that although the fits in chapter two, with the effective trajectory
paraTeter Y , seem to deny the possibility of a triple pomeron
mechanism, in fact they do not. Rather that these fits require more
strongly the prescnec of low mass diffraction to [it the lower energy
behaviour of the mulbiplicity distribution.

Chapter three provided support for the hypothesis that in
reggeon-particle scattering, multiplicity distributions are indepen@ent
of the reggeon (including the pomeron), despite the fact that we had to
make a much stronger hypothesis to test this. This implies that
particle-particle interactions should also provide the same multiplicity
distributions. These conclusions also apply to the inclusive quantities
normalised by the cross-section, provided that one is careful to avoid
processes with a strong leadig particle effect. This caveat stems
essentially from the fact that the pomeron is not included in a cosist-
ent way, but only in a phenomenological spproximation. Even so the
pomeron does seem to be treateble as a factorising singularity and when
considered as a projectile seems to produce, so far as the quantities
discussed above are concerned, very similar results to a particle
projectile, On the other hand the triple pomeron region seems to be
telling us that we need a fully unitary approach to include the pomeron
in a properly consistent way. If this is the case it may well be difficult
to see why our phenomenological approach seems to indicate that factor- ’

isation works so well.
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