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A B S T R A C T 

This thesis concerns the strong interactions of elementary-

particles and i n particular the scattering of particles at the highest 

measured energies. 

Chapter one i s divided in t o two parts, of which the f i r s t i s 

an introduction to those aspects of the strong interaction with which 

we are concerned. The ideas introduced are then discussed^ *n the second 

part of the chapter i n the context of antiproton production i n high 

energy proton interactions. An approximate calculation of the production 

cross-section i s presented which gives some insight into the unexpected 

features of t h i s process. 

Chapter two i s a calculation of the m u l t i p l i c i t y d i s t r i b u t i o n 

produced i n proton interactions i n a two component model based on Regge 

pole exchange. With ,a view to reducing the number of free parameters, 

the m u l t i p l i c i t y d i s t r i b u t i o n arising from regge6n-particle collisions 

i s assumed to be independent of which reggeon i s involved (including, 

notably, the pomeron). Features of the model are discussed as they arise 

and f i n a l l y a f i t i s performed to the observed m u l t i p l i c i t y d i s t r i b u t i o n . 

I n chapter three t h i s model i s discussed i n the context of 

momentum dependent measurements. The observed correlation between two 

mesons i s seen to be i n agreement with the model, as i s the m u l t i p l i c i t y 

d i s t r i b u t i o n i n a l l but one of the particles produced when the momentum 

of one i s measured. Particular attention i s also paid to the > correlation 

between a forward proton and a charged p a r t i c l e i n the central region, 

which i s w e l l described without any free parameters. 

I n chapter four the proton inclusive d i s t r i b u t i o n i s discussed 

with regard to the t r i p l e pomeron coupling. Particle production from a 

model with a non-zero t r i p l e pomeron coupling i s discussed i n r e l a t i o n 

to the"preceding chapters. 
F i n a l l y a b r i e f summary of the findings of these chapters 

i s presented* 
/ V SCIENCE a'fp\ N 
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1.1 What does- the strong^^ interaction look l i k e at high energy? 

Before going on to perform calculations i n an attempt to 

describe the strong interaction, i t seems natural to present a descrip

t i o n of the broader features found empirically. 1 

Picture, then, two particles c o l l i d i n g i n t h e i r centre of 

momentum frame. As the strong interaction has a short range, then they 

behave l i k e free particles u n t i l they achieve close proximity. What 

happens then i s impossible f o r us to see. What we do see i s that two or 

more particles emerge from the interaction, (again behaving l i k e free 

p a r t i c l e s by the time we see them) i n such a way that t h e i r t o t a l charge* 

momentum, energy, and a number of other quantities are conserved. 

Having taken these conservation laws i n t o account one finds 

that t h i s i s a remarkably gentle process. To i l l u s t r a t e this l e t us 

consider a few of the possible interactions. I f both the i n i t i a l and 

f i n a l states consist of two protons, they have the freedom to come out 

at any angle ( i n opposite directions) relative to the i n i t i a l direction. 

As shown i n figure 1.1, they prefer overwhelmingly not to change t h e i r 

direction very much. The momentum of the f i n a l state particles trans

verse to the i n i t i a l direction i s limited. This phenomenon i s not only 

observed i n elastic interactions but i s f a r more general. I f we observe 

an interaction and don't bother to count the number of particles that 

are produced, but merely measure the momentum of one of them, we f i n d 

that i t too prefers to emerge without much momentum transverse to the 

i n i t i a l direction.(e.g. figure 1.2). 

Once we know that these interactions can produce more part

i c l e s than went int o them, i t i s natural to ask how many. Before we 

examine the experimental data here, we shall note', how many the conserv-

ation laws allow. Conservation of energy-momentum requires at least two. 

- I f we take an interaction with a t o t a l centre of ma^s energy squared 

equal to s, then the maximum number of particles which could emerge i s 
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n~ a'^~s/mi. where m i s the mass of the l i g h t e s t known hadron, the 
max 7t ' it * 

pion. Even though an event where the whole energy i s converted into a 

mass at rest i s somewhat extreme and even at f i r s t glance may be a l i t t l e 

improbable> the average number of particles produced i s s t i l l a surpris

ingly small number compared to t h i s , as shown i n figure 1.3. Most of the 

i n i t i a l energy, then, comes out i n the form i n which i t went i n , as 

kin e t i c energy. And energetic particles emerge i n a direction not very 

dif f e r e n t from the i n i t i a l direction of the c o l l i d i n g particles. 

Furthermore, a large f r a c t i o n of an i n i t i a l particle's momentum i s , 

often carried by j u s t one of the outgoing parti c l e s . This i s thus often 

thought of as a 'fragment' of the i n i t i a l p a r t i c l e . The frequent occurr

ence of a very fast outgoing p a r t i c l e i s known as the 'leading p a r t i c l e 

e f f e c t ' , (see figure 1.4). These effects taken together provide a basic 

picture of the scattering of two particles into two or more. 



1.2 Amplitudes and cross-sections 

(a) ^ g ^ ^ t a l ^ c r o s s - s e c t i o n 

For the scattering of particles from an i n i t i a l state |i> 

to an n p a r t i c l e f i n a l state | f> , we have a scattering amplitude 

<f|A|i> and we take the measured cross-section at a t o t a l squared 

energy of s , to be -> 

OL » ~ \4& \<t\*\i>\1 ( l . l ) 

and the t o t a l cross-section is 
i 

Z. ff»Cf) '(1.2) 
n 

We use here the conventional factors as i n reference 2. 

dG>n i s the n p a r t i c l e Lorentz invariant phase space element. X i s the 

triangle function, 

(b) U n i t a r i t y and the op t i c a l theorem 

The pr o b a b i l i t y of producing any f i n a l state including the 

p o s s i b i l i t y that they remain i n the i n i t i a l state must be i d e n t i c a l l y 

one. This provides us with a constraint on the amplitude. 3 This i s 

expressed as the u n i t a r i t y condition 

on the operator ' 
S S f * • 1 (1.3) 

(i»*0 
I t follows that 

Jtlsc < w ' \ M t > * ^ j ^ n <MA|i'>*<V>lAU> (1.5) 



where 

In particular f o r |i>= | i ' > we have using ( l . l ) and (1.2) 

(1.6) 

*tJ's^) - <1,T) 

This l a s t i s known as the o p t i c a l theorem. Later we shall discuss a 

hypothesis due to Mueller , which i s analogous to t h i s equation, and 

has formed the basis of one approach to the phenomenology of many-

hadron problems. 

(c) The Froissart bound \ > 

A bound on the t o t a l cross-section at high energy was 

deduced by Froissart, the prime ingredient of which i s u n i t a r i t y 5 . 

The bound i s > 

* c [ ^ S ] 2 (1.8) 

where c i s a constant. I t i s va l i d f o r s larger than some 

constant S q • As we shall see l a t e r , this bound i s extremely useful i n 

that i t rules out a number of phenomenological ideas which might seem 

to be desirable with respect to some of the recent data on high energy 

proton-proton scattering, 

(d) Inclusive and exclusive cross-sections 

I f one i s performing an experiment to look at a specific 

interaction with a l i m i t e d number of particles produced, then one can 

measure a l l t h e i r momenta and obtain more or less complete information 

on every event. However, t h i s exclusive approach would clearly be a 

rather d i f f i c u l t task when one wants to look at a t y p i c a l event, at high 

energy. As seen from figure 1.3 > the average number of particles pro-

\ 
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duced at the highest accelerator energies i s i n excess of a dozen. Most 

of the experiments carried out at these energies are therefore inclusive 

i n nature. I n an inclusive experiment one only measures a certain 

number of the outgoing p a r t i c l e s ' momenta. Clearly complete information 

could be achieved by a knowledge of a l l exclusive experiments 

a,b -»1,2,3, ,n 
f o r a l l n^2 . However i t i s also true that complete inform

ation can be obtained from a knowledge of a l l inclusive experiments 

a,b -»1,2,3, ,n + anything unobserved 

f o r a l l n̂ O . This i s pointed out clearly i n reference 6. 

Whereas exclusive measurements have a complexity Which rises d i r e c t l y 

with the number of produced p a r t i c l e s , a l l inclusive measurements w i l l 

reveal something of many p a r t i c l e production. v 

A class of experiments which do not perhaps f a l l neatly 

i n t o either of these categories i s that i n which the number of particles 

are counted but momenta are not measured. Thus we can f i n d a J c r ^ t 

<n> , <f(n)> f o r some function f , at least f o r the case where n denotes 

the number of outgoing charged particles, 

(e) Correlations 

I f we ask what the p o s s i b i l i t y i s of a p a r t i c l e emerging 

from an interaction with a certain momentum p , then what we wish to 
\ 

measure i s the inclusive cross-section 

We use the notation dp f o r the Lorentz invariant phase space element 

d3p/2E and have normalised to the t o t a l cross-section so that \ 

1 
For the p r o b a b i l i t y of producing k particles with specified momenta, and 
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any others , we wish to know the inclusive cross-section 

Kit PlJ - 1 T ^ t (!•«) 

For i d e n t i c a l particles 

(1.12) 

I t i s perhaps more interesting to ask how much more or less 

probable i t i s to f i n d particles with momenta p^Pg, ^p^ than i t 

would be to f i n d them ind i v i d u a l l y from different events. We construct 

the quantity 

C, ( ? . . f i O • N j (p,, fr) - H ((,•) N, ( f k) ( i . 15) 

which i s called vthe two p a r t i c l e correlation. We then successively 

construct the k p a r t i c l e correlation by writing 

and so on. The p o s s i b i l i t y C"n=0 i s referred to as uncorrected production. 

(This i s technically ruled out by momentum conservation 7 but may be 

approximately true i n that C"n can be much smaller than NA .) A meas

ure of the overall size of the correlation, i s provided by the integrated 

correlation 
\ 

-f^Cs) = U f V . ' < * f V C^(p,.ApJ (1.15) 
J \ 
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( f ) The m u l t i p l i c i t y m d i s t r i b u t i o n 

Perhaps the most basic measurement that can be made of a 

pa r t i c l e interaction i s just to count the m u l t i p l i c i t y of particles 

emerging from i t . By doing t h i s experiment one can f i n d the fraction 
) 

a I a ,of the t o t a l interaction cross-section which goes into the n 
production of n par t i c l e s . We define the generating function f o r the 

m u l t i p l i c i t y d i s t r i b u t i o n ( f i r s t introduced to p a r t i c l e physics i n 

reference 8) by 

(1.17) 

We have that 

(1.18) 

and so 

(1.19) 

I t w i l l also be convenient.later i f we define 

I fed = I i G n (1.20) 

Clearly 

and 

V 
(1.22) 

The generating function can also be expressed i n the form 

(1..23) 



where i t turns out 8 that the f are just the integrated correlations 

that we have already introduced. Considering, f o r now, identical part

ic l e s we have o 

-f; - < * > 
(1.2*0 

4;= - < n > 2 d- 25) 

The standard deviation D of the d i s t r i b u t i o n i s defined by 

T > a s <n*> - <n> 2 ( 1 < 2 6 ) 

and so 

^ * T>* - < A > (1.27) 

I f the m u l t i p l i c i t y d i s t r i b u t i o n i s a singly peaked d i s t r i b u t i o n , then 

one may expect that the sum i n (I .23) i s the most rapidly convergent 

description of the generating function, as fj L gives the mean, f g the 

width, and then f f are more subtle quantities to do with the 

shape of the d i s t r i b u t i o n . 

Prom t h i s generating function approach Le Bellac 9 has derived 

an interesting theorem. I t says essentially that i f the correlations f 

are assymptotically l i k e l n ( s ) then the quantities aj» f a l l assymp-

t o t i c a l l y l i k e a power of s. This i s interesting primarily because many 

models suggest that f ~ l n ( s ) . 

(g) The generalised o p t i c a l theorem 

The simplest inclusive reaction i s the one which may be 

described as 

which i s the measurement of the t o t a l cross-section. 
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This i s related by the op t i c a l theorem to the forward elastic process 

a.b -»a',b' .where p This i s i l l u s t r a t e d i n P a 

a 

X Disc 

DIAGRAM 1.1 : The optical theorem 

diagram 1.1. The discontinuity referred to i s 

"k" f ~ A

w f c - £ e M ( 1 , 2 9 ) 

Mueller 4' 6 hypothesised that the inclusive cross-sections 

might be treatable i n a similar way. For the reaction 

a,b ->c,X "(1.30) 

we observe c and sum over a l l possible X. The corresponding diagram 

i s diagram 1.2. The discontinuity here i s 

(1.31) 

) 

1 X JJisc 

DIAGRAM 1.2 : The generalised optical theorem 
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The discontinuity i s only across the cut i n one of the variables (the 

squared missing mass), but the hypothesis rests, on the p o s s i b i l i t y of 

the analytic continuation i n the variables shown. The higher order 

inclusive cross-sections can then be hoped to satisfy a similar re

l a t i o n shown i n diagram 1.3. I n each case the discontinuity i s taken 

X a 
Cn 

Disc 
c4 

x 

DIAGRAM 1.3 

The op t i c a l theorem fo r a,b -*c 1,c J ), t°n>^ 

i n the forward direction, p =p , , p. =p, , , p =p i , etc. This 

hypothesis has been used extensively i n conjunction with Regge 

phenomenology, (See for example references 6,10). 

7 
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1.3 Rgggg^hgggy, 

(a) Regge trajectories 

So fa r we have merely defined the quantities which one 

might wish to discuss to gain some understanding of physics at very 

high energies. No mention has been made of how one might go about 

working out what these quantities might look l i k e . NRegge analysis 1 1 

provides a framework i n which to discuss such calculations, at least 
\ 

f o r the high energy behaviour of amplitudes. For two body reactions, 

b r i e f l y , Regge theory involves expanding the scattering amplitude for 

large s and small t i n a t channel p a r t i a l wave series and continuing 

to complex values of t channel angular momentum, j . The analytic 

structure of the amplitude i n the complex j plane determines the high 

energy (large s ) behaviour of the amplitude. A (Regge) pole' at A=u(t) 
aft) 

implies a high energy behaviour l i k e s . a ( t ) i s known as a Regge 

trajec t o r y and i n the positive t region when ot takes on physical 

values ( i n t e g r a l or h a l f i n t e g r a l ) , i t w i l l correspond to the existence 

of a p a r t i c l e of mass m and spin o such that <X(HI2)=CF . (For reasons 

that we sh a l l not go into here, these particles are expected to be 

spaced at intervals of 2 units i n angular momentum - e.g. the proton 

may have recurrences of spins |, g, etc.). The high energy s channel 

scattering i s of course determined by the trajectory when t i s negative. 

These Regge trajectories have the advantage that the same trajectories 

should appear i n d i f f e r e n t processes with the same t channel quantum 

numbers. Diagram 1.1* gives a p i c t o r i a l representation of the Regge 

XT t 

K. OL 
S 

DIAGRAM l.k : Regge behaviour of amplitudes 
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trajectory i n two body scattering. Although more complicated singular
i t i e s i n the j plane are now generally thought necessary to explain 
the detailed features (e.g. polarisation) found i n two body interactions, 
the data f o r many body interactions are generally less precise i n the 
information given about amplitudes, and so one may seek to use a 
phenomenological extension of the simple Regge pole ideas to describe 
p a r t i c l e production processes. This of course w i l l be based upon the 
knowledge of tra j e c t o r i e s gained from two body scattering, 

(b) The pomeron 

I t has long been clear from the data that t o t a l cross-

sections do not f a l l with energy. The optical theorem implies that 

i f the elastic two p a r t i c l e cross-section i s dominated by a simple 

pole traj e c t o r y a ( t ) then 

U ~ S (1.32) 

The Froissart bound then implies that 

The approximate constancy of the t o t a l cross-section indicated a 

trajec t o r y having a(0)=l . As,,all the known mesons with vacuum quantum 

numbers seem to l i e on lower trajectories '(which appear roughly linear 

i n t with a slope of approximately 1 GeV , see figure 1.5)* t h i s 

t r a j e c t o r y was something new. I t was named aft e r Pomeranchuk and i s 

now generally referred to as the pomeron. The recent observation of 

r i s i n g t o t a l cross-sections indicate that the pomeron i s perhaps some

thing more complicated than a simple pole. The cross-sections may reach 

a constant from below or may not. The Froissart bound may or may not be 

saturated assymptotically. I f cross-sections do rise assymptoticallly, 

then complete s channel u n i t a r i t y which provides the Froissart bound 



w i l l presumably be crucial t o any model for particle^ production. I n any 

event the existence of a tr a j e c t o r y having oc(0)=l gives rise to certain 

d i f f i c u l t i e s when one t r i e s t o use i t i n a simple way i n pa r t i c l e pro-

duction p r o c e s s e s . 9 , 1 2 , 1 6 

(c) Duality 

The statement of d u a l i t y 1 3 is that a sum of s channel 

resonances or a sum of t channel Regge exchanges form alternative 

descriptions of an amplitude, rather than the amplitude being a sum of 

both. A further conjecture 1 4 would have the resonances 'dual 1 i n th i s 

way to Regge exchanges other than the pomeron, whereas the pomerdn 

should be 'dual' to the background. This i s extremely attractive i n two 

body scattering as reactions i n which the t o t a l s channel quantum 

numbers are exotic should have no resonances and therefore only the 

pomeron i n the t channel of the imaginary part of the elastic amplitude. 

The cross-section should thus display,a more rapid approach to the 

assymptotic pomeron behaviour, whether i t be constant or otherwise. This 
+ 

i s clearly displayed f o r pp and K p interactions. (See figure 1.6) 

\ 



15 
l.h Regge ideas i n particleproduction 

(a) The^single -Reggg_limit 

Just as Regge behaviour i n an elastic amplitude gives, via 

the o p t i c a l theorem, information about the t o t a l cross-section, we can 

gain information about inclusive reactions i f weassume that the dis

continuity (unphysical though i t i s ) of the three to three elastic 

amplitude also has Regge behaviour. 

Consider the reaction a,b -*c,X with c i n the fragmentation 

region of b, (that i s c i s slow i n the rest frame of b). I n the o p t i c a l 

theorem diagram we can think of a 'pseuctoparticle' with the quantum 

mimbers of be , and assume Regge behaviour for M2 large. ( M i s the 

t o t a l mass of the unobserved X. See diagram 1.5) 

DIAGRAM 1.5 : Fragmentation region of a,b -»c,X. 

I f we define t= ( p b - p c ) 2 , then a pole contribution w i l l 

lead t o an expression 

<v»Co>- 1 

f o r the inclusive d i s t r i b u t i o n i n t h i s region, or equivalently 

- " ' A S . * " ^ - d (1.35) 

Pomeron dominance of t h i s process at high energy immediately gives the 

scaling c r i t e r i o n suggested by Feynman that 
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dor' 
(1.36) 

This i s also equivalent to Yang's statement of l i m i t i n g fragmentation. 

Ideas concerning the e x o t i c i t y of quantum numbers may again lead via 

duality to some expectation of how rapidly scaling should occur. After 

a long discussion by various authors 1 5, no absolute agreement upon any 

exact c r i t e r i o n was reached. Reference 6 does however draw the tentative 

conclusion that i f be i s not exotic, thus allowing small t dominance, 

and abc i s exotic, then the pomeron should dominate the amplitude 

depicted i n diagram 1.5 , leading to rapid scaling. I t i s also pointed 

out there, that i n the fragmentation region, the singularities 

(especially the pomeron) seem to factorise extremely well. ( I t i s 

easier totest factorisation here than in elastic two to two scattering 

as the quantum numbers of the 'pseudotarget* be can be varied easily 

at w i l l . ) 

(b) The_double Regge l i m i t 

I n the case where the pa r t i c l e c i s slow i n neither of the 

rest frames of the c o l l i d i n g p a r t i c l e s , diagram 1.6 may be thought more 

Ollto) 

U 
' t -
C t 

DIAGRAM 1.6 : The double Regge l i m i t 

appropriate. The inclusive cross-section i n t h i s case w i l l have the 

form 

r 
•» 
•J 

(1.57) 
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where 

(1.38) 

and 

Assymptotically as s-**» with p fixed we now have the 

prediction that out of the possible three variables t h i s quantity only 

depends upon one, the transverse momentum of the observed p a r t i c l e . 

The approach to scaling i s slower here however than i n the fragmentation 
X 

region. I f p • « 0 i n the centre of mass frame/ then u,t~ s 2 and so 
// i 

the f i r s t non leading terms are l i k e B * ^ 0 ) " 1 ^ rather than s"" 1^" 1 

as i n the fragmentation region. 
\ 

(c) The t r i p l e Regge l i m i t 

The t r i p l e Regge l i m i t i s a special case i n which we can 

say a' l i t t l e more about the single Regge l i m i t . I t i s appropriate i n 

the region of phase space where M2 i s large ( M 2 ^ 2 say), and s/M2 i s 

also large, (s/M2> ( l - x ) - 1 say). 'We define as usual the variable x 

to be the longitudinal momentum of the observed p a r t i c l e in\ the centre 

of mass frame, normalised so that - l ^ t f ^ l , i . e . x*=2p°^/ ',fa\t For 

s large then 
\ x- 1 - ^ 

* X S (l.Uo) 
I n terms of t h i s variable we are now discussing the region 

(The central (double Regge) region i s confined i n t h i s \ 

variable to a very small area |x|<D(l/«/s) and so i t i s not very 

suitable f o r discussing the details of the central region.) 

For s/M2 large the amplitude for a,b -»c,X i s expanded as 
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i n diagram 1.7 before taking the square modulus. Then doing t h i s and 

summing over the missing X one finds 

r ;jk 

where S.(t) i s the u n i t modulus phase (signature) factor predicted by 

DIAGRAM 1.7 

Regge theory. The diagram corresponding to t h i s l i m i t i s diagram 1.8. 

I n t h i s region we have the dependence on the s and M2 variables and 

the only a r b i t r a r y dependence i s that on t , i n each of the terms i n 

equation (1.42). The advent of the CERN Intersecting Storage Rings and 

the NAL accelerator which allow us to study the otherwise inaccessible 

region where s » M2 » 1 GeV2, has made t h i s t r i p l e Regge expansion 

very popular amongst phenomenologists. We sha l l discuss i t i n greater 

d e t a i l i n the following chapters. 

DIAGRAM 1.8 : The t r i p l e Regge l i m i t 
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(d) The SS.lti-Reggg l i m i t 

We have so f a r considered the single p a r t i c l e inclusive 

d i s t r i b u t i o n i n a number of di f f e r e n t l i m i t s . The many pa r t i c l e 

inclusive d i s t r i b u t i o n can be treated i n a similar way. I n chapter 

three we sha l l look i n d e t a i l at the two p a r t i c l e correlation, so 

here we shall point out the broad features indicated by Regge 

phenomenology. Consider diagram 1.9» We shall take the l i m i t where a l l 

the sub-energies are at least large enough for the amplitude to be 

A t k 

DIAGRAM 1.9 : The multi-Regge l i m i t of the 

two p a r t i c l e inclusive d i s t r i b u t i o n 

approximated by a sum of Regge terms. I f we assume factorisation 

(which seems to be good i n the fragmentation region) , then the leading 

Regge term (0^=0^=0^=0^) i n the sum 

• • i 1 ^ 

becomes 

• \ ? ( l M ) 

where 

The y are the vertex factors r e l a t i n g to diagram 1.9 • From the optical 
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theorem f o r a pomeron dominated cross-section of ~ ''apPpfc w n e r e 

factorisation gives the same 7 factors* 
Therefore 

N 2 ~ 7PcP 7PdP 

Similarly (see diagram 1.6) 

\ ~ yPcP 

Hence 
1 

c 2(p c,p d) ~ 0 

Thus when s a- , s Q d , and s ^ are large we expect no 

correlation. This i s the statement of no long range correlation. (Long 

range implying very d i f f e r e n t momenta and hence large sub-energies.) 

Putting lower singularities a int o the cd channel w i l l result i n a 

behaviour l i k e B ̂  . I n terms of the longitudinal r a p i d i t i e s of the 

pa r t i c l e s , defined from t h e i r momenta by 
\ 

\ 
\ 

\ (1.^5) 

with 

X 

t h i s gives 

<X-1 

which i s clearly a t y p i c a l short range correlation vanishing 

rapidly f o r | y c ~ y d l large. The correlation length may be thought of 

as L= (1-a)"*1 units of ra p i d i t y . 
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1.5 An idealised picture of Inclusive reactions 

The previous sections give us a very nice picture of what 

inclusive distributions should look l i k e , and show the Mueller hypo

thesis combined with Regge phenomenology to be a very powerful pair 

of ideas. The world viewed t h i s way should provide us with inclusive 

distributions which Bcale i n the fragmentation region, and which i n 

the fragmentation region of one of the col l i d i n g particles should be 

independent of the nature of the other. In the central region the 

inclusive d i s t r i b u t i o n should also scale (albeit more slowly) and 

depend only upon the transverse momentum of the observed p a r t i c l e . This 

should result i n a plateau when plotted against the r a p i d i t y variable 

which has a range of l n ( s ) . The fragmentation region, we picture as 

being where observed particles are within a correlation length of the 

end of the r a p i d i t y d i s t r i b u t i o n . The central region, we thus expect, 

should be clearly v i s i b l e when l n ( s ) » k . (The scale of s i s set by 

the transverse masses involved.) Correlations should f a l l rapidly as 

the pa r t i c l e s ' momenta become separated on the r a p i d i t y p l o t , and should 

not depend on absolute r a p i d i t i e s but only on differences of rapidities. 1 

These ideas are depicted i n figure 1.7 • The integrated correlations 

should thus be linear i n l n ( s ) , as should the mean m u l t i p l i c i t y . 

Empirical observation provides a t a n t a l i s i n g combination of 

confirmation and denial of our e f f o r t s . The mean m u l t i p l i c i t y i s 

excellently consistent with l n ( s ) , however the integrated correlations 

would prefer a more rapid s dependence. (See figures 1.8-1.11). 

Factorisation i n the fragmentation region, as discussed, seems good* 

There i s also evidence f o r a r a p i d i t y plateau. (See figure 1.12). Short 

range correlations are not necessarily the only ones present as 

indicated by the integrated correlation data. One of the more interesting 

problems i s the d i f f i c u l t y of incorporating the pomeron into many-

p a r t i c l e problems i n a consistent way. (For instance the t r i p l e Regge 

region produces rather strange results for the three pomeron case 3 , 6) • 
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We shall discuss these problems further. The objects of the following 

chapters are to t r y to realise why t h i s short range correlation 

approach i s not s u f f i c i e n t i n certain respects, and to test certain 

models which might , i n these respects, improve on the basic short 

range correlation idea. 
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PART I I 

The reaction pp -»p"X 

INTRODUCTION 

The reaction pp -*pX i s discussed. I t s interest l i e s i n 

that i t s a t i s f i e s a number of e x o t i c i t y c r i t e r i a . The data do not 

scale as expected. A calculation i s presented which, whilst being 

somewhat sim p l i s t i c , takes more carefully i n t o account what we 

believe t o be the more important of the kinematic features of th i s 

process when the antiproton i s observed to be slow i n the centre of 

momentum frame. 
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• ̂  Antiproton production : the Mueller-Regge approach 

Whilst the Mueller-Regge pnenomenology works very well i n 

the fragmentation region, certain d i f f i c u l t i e s appear when specific 

applications are made i n the central (double Regge) region. As pointed 

out by Chan et a l . 1 7 , the process pp -*pX ought, at f i r s t glance, to 

provide an excellent testing ground fo r phenomenology i n the double 

Regge region. I n the notation of the previous sections the channels 
> 

abc , ac, be are a l l exotic and so one might j u s t i f i a b l y expect that 

the inclusive cross-section should rapidly become independent of energy. 

a u t 
DIAGRAM 1.10 : The double Regge limit'' 

Furthermore f o r the amplitude shown i n diagram 1.10 , the kinematic 

r e l a t i o n 
\ 

holds when u,t,s-»« . I n the central region then 

(1.^9) 

and so i t might be considered better to have a heavy p a r t i c l e c so 

that at smaller s we have large u,t. Antiproton production, then, i s 

ideal i n t h i s respect. However the inclusive d i s t r i b u t i o n f o r pp -*pX 

i n the central region continues to r i s e , even at I.S.R. energies. (The 

r i s e i s even more d i f f i c u l t 1 7 f o r dual ideas i n the Mueller-Regge 

approach than would be a f a l l . ) I n reference there i s introduced a 
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singularity with vacuum quantum numbers, i n addition to the pomeron 
and usual meson terms. I t has to couple negatively to give the r i s i n g 
d i s t r i b u t i o n and i t s intercept i s tentatively set at around zero. 

\ 

\ 
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1•7 Antiproton production t a direct approach 

I n t h i s section we shall perform a simple calculation which 

i l l u s t r a t e s that the rise i n antiproton production i s a kinematical 

e f f e c t . * This conclusion stems essentially from the fact that the 

lowest m u l t i p l i c i t y event which contributes t o th i s process i s 

P*P~* PJPJPJP • I f o n e takes t h i s t o be de f i n i t i v e of the energy scale, 

then one should expect that the features of the s dependence w i l l be 

present when s i s a factor of four or so, higher than i n the t o t a l cross-

section (which depends upon Im A(pp-*pp)). Whilst t h i s i s undoubtedly a 

contributing factor, f a r more important is the size of any of the momentum 

transfers involved. Owing to the massive particles i n the f i n a l state, 

the invariant momentum transfer from an i n i t i a l proton to a f i n a l one 

can only become small at large s. This problem i s aggravated by demanding 

that, i f the antiproton i s observed with small momentum i n the centre of 

mass frame, there should be two small momentum transfers as suggested by 

diagram 1.11. We take t h i s to be our model f o r antiproton production. 

I t i s suitable f o r production i n the central region, as f o r x^ RO with 

f i x e d momentum transfers and transverse masses and with small s_. 

DIAGRAM 1.11 : A model f o r p,p-»p,X 

> 
(1.50) S-*oo S-> **> 

r 
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The central vertex i s taken with a proton-antiproton pair so that the 

assymptotically non-vanishing pomeron contribution can be calculated. 

To i l l u s t r a t e the kinematic effect we set m =m = m = m = m . and 
1 2 3 4 

take the two reggeons to be zero slope pomerons. Thus we write the 

amplitude f o r the process as 

A* M. 12*. S J ? u , • C (1.51) 

This i s the simplest phenomenological prescription where we take a l l 

the * pomeron mass* dependence of the PP -»pp amplitude into P and 

assume no dependence on the variable TJ =(s .s / s ). We expect 
134 234 

the dominant contribution to be that where s i s small as t h i s not 
34 

only allows s /s to become large more rapidly, but also allows 
134 34 

smaller | t | . Also the amplitude f o r PP -*pp as s g 4 becomes large 

might be expected to involve baryon exchange and thus become small. 

We therefore regard i t as a reasonable approximation to set s = ̂ m2 , 
34 

and calculate the contribution to the amplitude here. Thus 

where we have set ̂  = p^ ( ^m2 ) and absorbed a l l constant 

factors i n t o N 2 . 

« n u
m s + * ( 1 , 5 3 ). 

We now integrate over the phase space i n (1.52) keeping the exact 
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kinematical l i m i t s on the momenta. The assumptions that we have made 
simplify the remaining integrals a great deal. We write 

f . hue,a x a* % (1.55) 

X i s the cosine of the angle made by p with the as yet unspecified 

z axis. 

The integration d 3p dE^ now serves to remove the 6-functions. 

Integrating d 3p 

4s -Jf>.~*N 

and the remaining delta function (after some algebra) becomes 

(1.57) 

where H, the root of the argument of the delta function on the l e f t of 

equation (1.57) i s given by 

• f t - (1.58) 

The remaining integration i s now 

C A - = N 
J^-^i Qs^^e^^^V^7 + 2 . ^ 0 * ^ ( 1 ' 5 9 ) 
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where now 
\ 
\ 

V (1.60) 

and 

b, - 2™- ](s-a*v)(5£-«vi l) Cos©A l 

"} (1.61) 

We also have 

C m » C b s © ^ 6 c s 8 l l w - s u e ^ s < n ^ . c , ( v K ) (1.62) 

0.^ i s of course known. For p =̂ 0 we choose the z axis along p and 

so X= cos0 l 4 > and the x axis such that <l>=<l>1-<l>4 . The remaining exp

ression i s integrated numerically* f o r various values of s and p . 

The constant N was chosen to normalise the model to the data at the 

point s = 1100 GeV2, p =.95 GeV/c , x = 0 , and 0 = 0.7 GeV"2 was 

found to give the observed p dependence for x=0 at I.S.R. energies. 

(See figure l . l j ) . Away from. x=0 the cross-section f a l l s rather too 

rapidly with x . This perhaps i s not too surprising i n view of the 

fact that the whole central region i s concentrated into a very small 

region of x and outside t h i s region we do not expect the Regge amplitude 

i n diagram 1.11 to be so good. The s dependence i s now completely 

determined and i s shown i n figure l.lU . Although t h i s i s a l i t t l e too 

rapid over I.S.R. energies, i t extrapolates very well down to con-

* Computer calculations here and l a t e r were done on the Northern 

Universities Multiple Access Computer and also the Rutherford High 

Energy Laboratory Computer. 
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ventional accelerator energies. The transverse momentum dependence 

at the lower energy i s also remarkably good (see figure 1.15). Notice 

here that the data are over a somewhat different range from the I.S.R. 

data. The small value of 0 (as compared with the t dependence i n 

proton-proton elastic scattering f o r example) must presumably be 

ascribed to a r i s i n g EP ~>pp amplibude as the 'masses1 of the pomerons 

go away from zero. Although the model i s clearly oversimplified, i t does 

provide an i l l u s t r a t i o n of the points made i n the f i r s t paragraph of 

t h i s section. 

We should l i k e to refer t o two other calculations relevant 

t o t h i s process. Humble,18 uses a model similar i n s p i r i t to ours but 

instead of producing a proton-antiproton pair, couples the ant1proton 

d i r e c t l y to meson and baryon Regge poles. 

Jengo et a l . 1 0 have related the pp -»pX process to pion 

production by assuming that the production of a rc+7i~ pair and that of 

pp pa i r are the same i f the two pairs have the same t o t a l ^-momentum. 

Our model demonstrates t h i s feature as i t i s not important whajb we 

c a l l the p a r t i c l e a n t i p a r t i c l e pair at the central vertex. 

We conclude, then, that we are not yet observing high 

enough energies to apply the Mueller-Regge phenomenology successfully 

i n the central region f o r antiproton production. The lower singularity 

needed i n reference 17 i s thus not too surprising. 
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FIGURES FOR CHAPTER ONE 
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FIGURE 1.1a : The elastic d i f f e r e n t i a l cross-

section for proton-proton scattering. ^s=23 GeV* 

(Data are shown 1-n-reference l c ) 

\ 
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FIGURE 1.1b : The elastic d i f f e r e n t i a l cross-section 

for proton-proton scattering. •fs => 53 CteV * 

\ 
\ 
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FIGUEE 1.5 : The mean m u l t i p l i c i t y of charged particles 

from proton-proton interactions. Also shown f o r 

comparison are the minimum and maximum kinematically 

allowed* 
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FIGURE l.U : The inclusive cross-section f o r pp-*pX near 

the forward direction showing the leading p a r t i c l e effect, 

p =0.8 GeV/c , *Tb = 23 GeV . Data from reference h}. 

The l i n e i s solely to guide the eye. 

i. 
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Re a 

t (GeV2) 

FIGURE 1.5 : A Chew-Frautschi p l o t showing the leading 

meson resonances. (For further evidence regarding 

l i n e a r i t y of trajectories see references 11 ) 
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FIGURE 1.6 : Total cross-sections f o r various processes 

i l l u s t r a t i n g that non-exotic processes have a more 

significant f a l l i n g contribution at' sm.12. s. Data are 

summarised i n reference kh . 
\ 
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FIGURE 1.7 : The inclusive d i s t r i b u t i o n and short range 

correlations predicted by the Mueller-Regge model. The 

arrows i n the upper figure indicate the behaviour as s 

increases. 
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FIGURE 1.8 : The-mean m u l t i p l i c i t y from proton-proton 

co l l i s i o n s . The data i n t h i s and the following two 

figures i s summarised i n reference l b , where references 

to the o r i g i n a l papers may be found. 
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FIGURE 1.9 J1 The integrated two p a r t i c l e correlation\ 

i n proton-proton interactions., 
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FIGURE 1.10 : The integrated three p a r t i c l e 

correlation i n proton-proton interactions. 
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FIGURE 1.11 : The mean to width r a t i o f o r the 

m u l t i p l i c i t y d i s t r i b u t i o n i n proton-proton 

interactions. 
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FIGURE 1.12 ; The inclusive d i s t r i b u t i o n for pp -*n 

i n the central region withes":* 30.U GeV , for various 

values of p^. Data are shown i n reference l b . 
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FIGURE 1.13 : Our f i t to the antiproton production 

inclusive cross-section at x = 0 over the I.S.R. 
\ 

energies. Data are from reference ^5. \ 



kb 

0 0 

CM 

8 

CM 

FIGURE 1.1̂  : The s dependence of the antiproton 

production cross-section at »=0 and p̂ .=0.65 GeV/c , 

showing the extrapolation down t o lower energy. 

The low energy datum i s from reference k6. 
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FIGURE 1.15 : The antiproton production cross-section. 

at p„ 24 GeV/c , and x = d . The l i n e i s the 1 

lab 
prediction of our model and the data 4 6 are represented 
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by the shaded region . \ 



C H A P T E R TWO 

A two component ^model 

INTRODUCTION 

This chapter concerns general features of the m u l t i p l i c i t y 

d i s t r i b u t i o n of particles produced i n high energy collisions of protons, 

i n p articular with regard to a two component model. The model i n i t s 

most general form i s defined and discussed i n the f i r s t section. The 
I I 

rest of the chapter i s devoted to the formulation of a specific model 

based on factorisable Regge po3e exchange. The basis f o r the model i s 

introduced i n section two. I n section three one possible mechanism 

(essentially multiperipheral) i s introduced and an integral equation 

f o r the generating function of the m u l t i p l i c i t y d i s t r i b u t i o n i s derived. 

I t s solution i s presented and discussed in sections four and f i v e . The 

second,, d i f f r a c t i v e , mechanism i s introduced i n section six and the two 

mechanisms are compared i n section seven. I n section eight we discuss . 

the features of the model arising from a f i t to the proton-proton 

m u l t i p l i c i t y d i s t r i b u t i o n . I n section nine we show that our fundamental 

assumption, that the m u l t i p l i c i t y d i s t r i b u t i o n i s independent of the 

nature of the p r o j e c t i l e , i s i n fact very r e s t r i c t i v e . The f i n a l , section 

discusses our model i n the context of contemporary l i t e r a t u r e . * 
\ 
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2*1 Features of the two component model 
Before going on to describe our model, we shall i n t h i s 

section discuss the d e f i n i t i v e features of the two component model and 

why such a model seems desirable. 

The essence of the two component model l i e s i n the suppos

i t i o n that particles may interact through two mechanisms which must be 

mutually d i s t i n c t and must both ( i n any energy range one wishes to 

consider - usually assymptotically) give a non zero contribution to the 

t o t a l cross section. (Clearly i f one of these conditions f a i l s to hold, 

then one i s back to having only one component.) The two mechanisms are 

usually supposed not to in t e r f e r e , either on the grounds that t h e i r 

contributions are to di f f e r e n t regions of phase space, or that their 

amplitudes are ninety degrees out of phase, one mechanism arising due 

to the pomerori which i n the forward direction i s purely imaginary, and 

the other to a purely r e a l sum of exchange degenerate meson exchanges. 

We can now, even without further d e f i n i t i o n of the components, make 
\ 

some observations concerning some of the features of p a r t i c l e i n t e r 

actions according to t h i s model. 

To do t h i s we write down the generating function f o r the 

m u l t i p l i c i t y d i s t r i b u t i o n of particles produced by each mechanism. (We 

shal l denote the mechanisms a and b.') 

' (2.1) 

And the generating function f o r the resultant m u l t i p l i c i t y d i s t r i b u t i o n 
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a(&) '(jOO- a a r e c r o S s - s e c t i o n s f o r producing n 

(a) (b) 
particles from each mechanism and the resultant ; or , a are the 
t o t a l contributions of each mechanism, and o i s the t o t a l contribution 

of both. The f are the correlations defined i n chapter one. n 
I f there i s no interference between the mechanisms we have 

cr„» <r*> (2.5) \ 
and 

and hence 

where 

b ^ b ^ * ' , ( 2 5 ) 

°<a* °/0. y tfb» V a (2.6) 

and so 

(2.7) 

For quantities which are solely dependent on the t o t a l 

available energy -fa and the m u l t i p l i c i t y of the f i n a l state, equations 

(2.5) and (2.7) form the basic statement of the two component model. 

From (2.5) we can see how to sum the distributions i n terms of t h e i r 
1 

means and integrated correlations. Recovering these with 

(2.8) 
2*1 * 

J 
one finds (with some algebra i n the p&se of the higher moments) 
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-^^e-O^-^^^C'-^X^-^f (2.12) 

Inspecting these equations we see that the mean m u l t i p l i c i t y f i s , 

as one would perhaps have guessed, just the weighted sum of the mean 

m u l t i p l i c i t i e s of each component mechanism. The correlations f (n>l) 

are, however, not quite so simple. There are i n addition to the 

expected weighted sum of f j ^ and , extra terms. To i l l u s t r a t e the 

importance of these terms i t i s interesting to see what happens i f a 

and b are Foisson distr i b u t i o n s . I n th i s case 

(2.15) 

and hence 

4 * ^ ("a~K) (2.15) 

•f* - - ° C v ^ b ( . ^ - 0 ( . ^ - n b ^ (2.16) 

fu * (>~ v>) ("*~ "v,^ ( 2 < 1 T ) 

Thus i n the case where we add uncorrelated distributions f i s positive ; 
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f i s negabive i f the stronger component (bhc one with the larger a ) 
3 

has the higher mean and positive i f otherwise ; f 4 i s positive unless 

a a and ot^ are s u f f i c i e n t l y near to \ . This i l l u s t r a t e s clearly how 

the two component model can generabe significant correlations from 

weakly correlated interaction mechanisms. But more than that, i t pre

dicts a particular form f o r the energy dependence of the correlations. 

To see what t h i s i s l e t us look again at the simple case where the 

individual mechanisms have weak correlations. Prom equations (2.9) -

(2.17) we see that the two component effect w i l l be most clearly 

dominant when the mean m u l t i p l i c i t i e s of the components are very 

d i f f e r e n t . Let us examine how the width D of the m u l t i p l i c i t y d i s t r i b u 

t i o n varies, under the assumption that at high energies n f t » n^ . 

Recalling that 

we expand n/D i n inverse powers of (\~\) a n <* ^ n <^ that 

(2.18) 

•V -
D 

This equation i s true even i f f ^ and f ^ are non-zero, provided 

that they are small- compared to ("a""^) 2 • We c a n compare t h i s 

expression d i r e c t l y with the data. This i s shown i n figure 2.1 . The 

comparison i s remarkably encouraging as n/D may well have reached a 

constant at as low an energy as P j ^ j j 8 ^ 0 GeV/ c . The immediate suggestion 

i s that
 a-J\~)* t o r "a"- > % ~ 2 0$ • Putting these values i n t o 

equation (2.19) we have 

" " i ) 
• U. J W \ C V * ^ / (2.20) 

ion \a.iy) we nave 

* This p l o t i s often named after Wroblewski. 



53 
We note that we are comparing the model with the m u l t i p l i c i t y ^ 

d i s t r i b u t i o n for charged particles arising from proton-proton 
ch 

collisions and so n^ 2 . Hence we are again encouraged i n that 

the second order, term, i n (2.19) and (2.20) has a positive sign ik 

agreement with the data. We may also speculate from the rapid scaling 
i 

behaviour of n c h/D c l 1 that the second order term i s small.* This i s 

clearly ensured i f n^ remains small (near to 2) whilst n & arises with 

energy. This i s indeed a feature that w i l l be necessary to our model, 

as w i l l be seen i n the following sections of thi s chapter. This feature 

also occurs i n references 20-22. 

At t h i s point we could go on to discuss the momentum 

dependence of correlation functions i n the two component model, but we 

postpone t h i s u n t i l the next chapter, which i s concerned specifically 

with t h i s . We sha l l now proceed to formulate our model which gives 

us most naturally the integrated correlations discussed above. To 

summarise t h i s section, then, we have seen that the two component 

model can generate significant correlations from weakly correlated 

mechanisms. I f the two mechanisms have different mean m u l t i p l i c i t i e s , 

the model has a very characteristic prediction for the correlations 

and i n p a r t i c u l a r , with no further assumptions, i t predicts very w e l l 

the q u a l i t a t i v e form of rthe mean to width r a t i o of the m u l t i p l i c i t y 

d i s t r i b u t i o n . We should l i k e to note i n passing that i f the mean 

m u l t i p l i c i t i e s of the two mechanisms are the same, then irrespective of 

any differences i n t h e i r d i s t r i b u t i o n s , the two component effect would 

not occur i n correlations lower than f 4 , and so we stress that the 

two component effect i s i n essence due to a difference i n the mean 

m u l t i p l i c i t i e s of the mechanisms. 

* When we say here 'rapid' scaling we have i n mind the slow energy 

dependence of the mean m u l t i p l i c i t y discussed i n chapter one. 



5* 
Although the model has the characteristic features discussed 

above, ib s t i l l has of course an enormous amount of freedom remaining 
i n a l l that we have not said about the nature of the components. One 
of the objectives of the following sections i s to reduce th i s freedom 
by constructing a model f o r the components, and by comparison with the 
measured m u l t i p l i c i t y d i s t r i b u t i o n from proton interactions to f i n d 
what properties are required of our model. 

\ 
\ 

i \ 
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2.2 A factor1sing model. 

We shall now discuss the form of the m u l t i p l i c i t y d i s t r i b u t i o n 

generating function f o r a model i n which interaction's proceed through 

the exchange of a fac t o r i s i n g Regge pole trajectory a ( t ) . Fac t o r i s a b i l i t y 

allows us to t a l k of reggeon-particle scattering amplitudes and cross-

sectione etc., and we s h a l l do so freely as i t considerably simplifies 

discussion of the model. We factorise the scattering amplitude for 

p a r t i c l e - p a r t i c l e scattering as shown i n diagram 2.1. 

Q 
rv. 

\ 

OK 

DIAGRAM 
\ 
\ 
\ We w r i t e , therefore 

The notation here i s as i n chapter one. V(t) i s the vertex function 

on the l e f t of diagram 2.1. A R i s the pa r t i c l e scattering amplitude 

for a,b -*n par t i c l e s ; A n - 1 i s the reggeon-particle scattering 

amplitude f o r the production of n-1 particles ; ( s / M 2 ) " ^ i s the 

reggeon propagator factor i n the large s l i m i t when M2 may also be 

large. S(t) i s the signature factor defined such that |s| = 1 . We now 

factorise the phase space2 i n accord with 2.21. 

o l k l s i f V P O - ^ " ' ^ ( M V - M ( 2. 2 a ) 
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where 

(ft 

n t-* (2.23) 
H i s a u n i t mass solely t o keep d* n dimensionless, and 

P̂ P̂ s s . mQ and m̂  are the masses of the incoming particles a and b. 

X(a,b,c) i s the usual triangle function. The cross-section ^ ( s ) for 

a,b -»n i s j u s t 

°*to>" ^ 1 lA^;?.-p^r P - - f ^ (2.25) 

Inserting (2.21) and (2.22) i n t o here we have 

where we have again assumed s » m| , , and have done the integration 

over the n-1 p a r t i c l e phase space to get the cross-section f o r the 

scattering of a p a r t i c l e and a reggeon of mass t at t o t a l energy M 

into n-1 p a r t i c l e s . The t i l d e i n t h i s chapter and the following ones 

w i l l always distinguish quantities which refer to reggeon-^artlcle 

(including pomeron-particle) scattering. cf ; L(M 2,t) must clearly be 

defined as 

3i(H*,t). irMMOtfiTtf-O (8.*) 

with the normalisation so as to give 

1 a& (1) (2.28) 

This i s j u s t the usual form f o r the d i f f e r e n t i a l cross-section f o r two 

p a r t i c l e scattering with Regge pole exchange. Equation (2.27) implies 

\ 
\ 
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that s Q should be interpreted as the average mass squared of one of the 
f i n a l state p a r t i c l e s . 

We next define the generating function discussed i n the 

previous section. I t i s convenient here to have i t normalised to the 

cross-section and so we write 

T(.*>. Z * *W . ejn.te*) ( 2 i 2 9 a ) 

and so 

We also define 

i+C«*fcJ?) * £ ^ (2.30) 

(The subscript + w i l l l a t e r be useful to indicate that the n=l term 

i s included) Thus from (2.26) we readily obtain 

This equation j u s t takes us from the generating function f o r the 

m u l t i p l i c i t y d i s t r i b u t i o n i n reggeon-particle scattering to that i n 

pa r t i c l e - p a r t i c l e scattering. We have written i t down i n t h i s section 

as we s h a l l refer back to i t to use i t more than once i n the following 

sections. We note here that because of the integral over the M2 variable, 

we must assume that the factorised Regge form i s a reasonable average 

of what i s happening when the t channel scattering angle i s small 

(M 2 large). This i s an assumption of some form of global duality. 

(Note that we are not discussing the resonance region, but have s large 

throughout and are discussing the large M2 region). Our results should 

not i n any event be very sensitive to this as we expect V(t) to contain 

a cut-off at large | t | , thus stressing the small M2 region strongly. 

\ 

i 



2.5 The multiperipheral i n t e g r a l equation 

The l a s t section made the statement that i f we assume that 

interactions at high energy proceed through the exchange of a f a c b i r i s -

able Regge pole and we know the reggeon-particle m u l t i p l i c i t y d i s t r i b u 

t i o n , then we can calculate the p a r t i c l e - p a r t i c l e m u l t i p l i c i t y 

disbribution. I n t h i s socbion we calculate the reggeon-particle 

generating function by assuming that reggeon-particle interactions 

proceed by Regge pole exchange. I f , at s u f f i c i e n t l y high energy we 

continue to apply t h i s hypobhesis we generate the multiperipheral model. 

This i s shown diagrammatically i n figure 2.2. We factorise the reggeon-

p a r t i c l e amplitude exactly as i n the last section. 

t and t ' are the 'masses' of the reggeons DIAGRAM 2.2 

Instead of 2.26 we have now 

(2.52) 

V ( t ' , t ) i s the vertex on the l e f t of diagram 2.2. I f we assume that 

| v ( t ' , t ) | 2 takes the form 

|v(Xfc)|a * 0 (" f c )3 t f c ) ( 2 , 5 5 ) 

i t follows that of has the form 
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3; fob') - ^ ) 5 ; W ( 2 , 3 l° 

leaving 

and thus the t ' dependence i s removed. 

I t w i l l be convenient to define the variable 

p « M* (2-56) 

We also define 

t • 

-eb 

(We have not, here, made e x p l i c i t any s dependence of K other than 

through p but we shall return to t h i s point l a t e r . ) Equation (2.35) 

now becomes 

(2.38) 

We now multiply by z n and sum, obtaining i n exactly the same way as 

i n the previous section 
/ 

I M = *J4p *(() I +(f S> 1) (2-39) 

where 

(2.1*0) 

\ 
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and 

(2.M) 

Equation (2.39) thus forms an i n t e g r a l equation which w i l l determine 

the generating function f o r the reggeon-particle multiplicity-

d i s t r i b u t i o n . The m u l t i p l i c i t y d i s t r i b u t i o n f o r p a r t i c l e scattering 

can then be obtained using (2.31). This i n t e g r a l i s a generalisation 

of that obtained f o r the cross-section i n multiperipheral models by 

Chew et a l . 2 4 

* This i n t e g r a l equation was obtained independently and somewhat 

d i f f e r e n t l y by Jengo, Krzywicki, and Petersson 2 3. Their motivation and 

treatment of the equation d i f f e r from ours. We should also l i k e , at t h i s 

stage, to thank A.Krzywicki f o r helpful discussion. 

11 
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2.h Solution of the integra] equation 

We now solve the equation (2.39) arrived at i n the previous 

section and discuss some of the properties of the solution. F i r s t l e t 

us note that i f we assume that the vertices shown i n diagram 2.3 have 

the same t dependence, then comparison of equations (2.31) and (2.39)* 

(neglecting any difference i n t m ^ n for exchanges at different points i n 

the multiperipheral chain), shows us that the only difference between 

the p a r t i c l e scattering generating function, l ( s , z ) , and l ( s , z ) , the 

reggcon-particle scattering generating function for at least two 

particles i n the f i n a l state, i s a constant factor. Thus the normalised 

generating functions *(s,z) = l ( s , z ) / l ( s , l ) and *(s,z) = l ( s , z ) / l ( s , l ) 

are the same and hence so are the m u l t i p l i c i t y distributions. We could 

of course relax t h i s assumption concerning the t dependence, but we 

should l i k e to stress that we are interested i n minimising the number 

of free parameters remaining when we come to f i t the data, and the 

above i s the most natural assumption to make. The conclusion i t leads 

DIAGRAM 2.3 : Dashed lines are reggeons, f u l l lines 

are particles. 

t o ( i . e . that reggeon-particle and pa r t i c l e - p a r t i c l e m u l t i p l i c i t y , 

distributions are the same) i s discussed further i n the following 

chapters. Thus we put 

and so (2.39) becomes 

(2.1»2) 

(2.1*3) 
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Here x> i s the minimum possible missing mass. Two points should perhaps 

be noted at t h i s stage. F i r s t l y we did not have to define o . We 

proceeded as we did because the form (2.27) of i s simple to handle. 

The other i s that K(p) w i l l depend very l i t t l e on s . Equation (2.37) 

shows us that the only s dependence at fixed p that can enter K(p) 

does so through the function t . (p,s). Let us examine t h i s function. 
mm 

I f we consider the process a,b -*c,d with t = (p ~ P 0 ) 2 then 

I f we now expand t h i s i n the l i m i t when s » m^m^m2 and m^M 

with p ^ / s , we f i n d 

where here we have neglected terms smaller by factors of m2/ s etc. 

Thus at high energy K(p) depends only on psM2/ s . We also note that i f 

g ( t ) i s small f o r | t | large, ( f o r example an exponential), then equation 
\ 

(2.37) t e l l s us that i f we write ^ 

then k(p) cuts o f f as p approaches 1. Having noted these properties 

of K(p) we proceed formally to solve (2.U3). To do t h i s we f i r s t write 

(2.^3) i n terms of logarithmic variables which we define by 
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Then (2.U3) i s j u s t 

y 
/ y . _ 

(2.U8) 

This convolution in t e g r a l now suggests the use of a Laplace transform 

which has the property 

* A 

Hence defining the Laplace transforms 

DM- f 
04 r w Y qf) d\ 

then (2.U8) transforms to 

which upon rearrangement becomes 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.5>0 

To recover the generating function we invert the transform 

e X c ^ \ (2.55) 
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<B here i s the usual contour p a r a l l e l t o the imaginary axis i n the 

complex 0) plane. From (2.27) we have 

j ^ u ) * £ e ^ ( 2 .56) 

where a l l constant factors have been absorbed into C and yQ-ln(sJx^) . 

We expect K^(co) to vanish as |coj —>«» i n the l e f t half of the complex 

plane, and so we can close the contour <& i n the l e f t half of the 

complex a) plane. ( We are of course interested i n Y > y Q ) . At high 

energy (2.55) allows us to take the leading pole contribution from 

(2.5U). This w i l l come from a zero i n l-zK^a)) . I t w i l l become clear 

i n what follows that we expect a simple pole. The t o t a l cross-section 

a « l ( s , l ) i s thus assymptotically a power of s and the Froissart 

bound implies that 

1 - alCM = O {2.57) 

can only have a solution o>< 0 when z=l . (Comparison of the usual 

j-plane transformation with the opt i c a l theorem (1.7) and equation 

(2.50) reveals a> = j - l ). Letting the solution to (2.57) "be 

<*> * (2,58) 

we have f ( z ) given by (2.51) and (2.57). We have, then, the i m p l i c i t 

equation 

f. Hie, ) d A • 'Z 

00 
e WjZ> )C\A~ ' 4 (2.59a) 

or 

j . e ^ * (2.59i) 
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or 

KuCt<&) * (2.59c) 

We have then 

1 - sK-Uw) (2.60) 

That i s 

Y w 

From (2.59c) we observe 

and so we f i n d using (2.56) 

(2.61) 

(2.62) 

(2.65a) 

or 

A*) 
(2.63b) 

This result defines the m u l t i p l i c i t y d i s t r i b u t i o n of the model. 

We should l i k e to point out here that although the low 

m u l t i p l i c i t y cross-section appears e x p l i c i t l y i n the above derivation, 

the shape of the m u l t i p l i c i t y d i s t r i b u t i o n i s insensitive to t h i s . I t 

i s determined solely by f (z) which i s dependent on the kernel. 
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2.5 Properties of the m u l t i p l i c i t y d i s t r i b u t i o n of the model 

(a) Total^cross-section' ancl^gorrgjgtions 

We can now discuss features of the m u l t i p l i c i t y d i s t r i b u t i o n 

j u s t derived,' even before calculation of f ( z ) . We note that the t o t a l 

cross-section must behave l i k e a power of s. I f we denote the intercept 

of the output trajectory ( i . e . that of the singularity i n the imaginary 

part of the elastic amplitude ) by aou^. then 

o ; ^ ^ (2.6k) 

Equation (2.29) t e l l s us 

and so 
\ 

(2.66) 

(For the sake of discussion we retain generality here although l a t e r we 

sha l l choose olqvl^ t° be a pomeron singularity ( a
o u ^ ~ l ) *° obtain an 

assymptotically non-vanishing cross-section.) 

To obtain the correlations we expand f ( z ) about z=l defining 

constants c by n 
\ 

(2.6?) 

We thus have 

and the correlations 

(2.68) 

(2.69) 
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where the constants d f i are also determined by (2.63), The mean 
m u l t i p l i c i t y and the correlations are thus l i n e a r l y dependent upon l n ( s ) . 
This i s the well known short range correlation property of m u l t i -
peripheral models, 

(b) n-particle production cross-sections and Regge intercepts. 

We now examine equation (2.59) which determines f ( z ) . At 

z = 1 t h i s becomes 

^ £ « f ) » 1 (2.70) 

Thus the intercept of the output trajectory f o r a given input singul

a r i t y determines the overall size of K(p), that i s the strength of the 

reggeon-roggeon-particle coupling. The d e f i n i t i o n (2.37) of K(p) 

suggests that 

K ( f ) <* f (2.71) 

and so the above i n t e g r a l converges i f 

and (2.59) converges f o r z such that 

o (2.72a) 

We shall discuss these inequalities i n a moment, but f i r s t l e t us 

examine the consequences of (2.69) f o r the n pa r t i c l e production cross-

sections. Looking at the generating function (2.63), we quickly f i n d 

that 

where the functions depend at most upon a f i n i t e power of l n ( s ) . 
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Although we cannot evaluate f ( 0 ) from (2.59) d i r e c t l y we have from 
(2.67) 

(2.1k) 

These equations show that a l l the cr^ behave assymptotically l i k e the 

same power of s . This c r i t e r i o n i s often quoted as characteristic of 

the multiperipheral model. I t i s , however, more generally true of any 

model posessing only short range correlations. As we discussed earlier 

the short range correlation hypothesis leads to correlations of the 

logarithmic form (2.69) which i n turn leads to (2.75). 

Comparison of (2.73) with the power behaviour expected of 

o g from (2.28) gives 

(2.75) 

and so now the interpretation of (2.72a) i s j u s t that 

% ^ S (2.76) 

with e s t r i c t l y greater than zero and the same for a l l n . This 

emphasises the d i f f i c u l t y of putting a multiperipheral chain, a 

d i f f i c u l t y f i r s t pointed out by Finkelstein and Kajantie 2 3. I t i s also 

j u s t the condition discussed e a r l i e r , which was shown i n reference 9 

f o r models with the property (2.69). 

We also note i n passing that an alternative way of expressing 

t h i s i s the following. I f we were to make a model with the output 

tr a j e c t o r y the same as the input, that i s a ^ = oc(0) , then equation 

(2.72a) becomes 

(2.77) 

which excludes the pomeron. 
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(c) A constraint on the model 

We now turn to a point drawn attention to by H a r a r i 2 6 . I f we 

combine equations (2.68),(2.7*0, and (2.75) we obtain 

Thus i f we know the traje c t o r y intercepts a
Q u^. and oc(0) , then we have 

a r e l a t i o n amongst tha c . This relation i s quite general as we have 
n 

used only the leading power i n s to derive i t irrespective of logarithmic 

terms. The consistency of bhe data with t h i s r e l a t i o n i s tested i n a 

paper of Harari and Rabinovici 2 2, who assume a two component model, one 

of whose components has the short range correlation property (2.69). 

Their result i s that the f i r s t two terms of the sum i n (2.78) are 

roughly consistent with a
o u t = l and <x(o) » 0,5 ±0.1 , We shall further 

discuss t h e i r model l a t e r i n the chapter, but we wish to stress here 

that i n the interaction calculated i n the previous sections, the 

re l a t i o n (2.78) i s an i n - b u i l t constraint. Our viewpoint i s that t h i s 

equation follows f o r models with only short range correlations, and so 

consistent with the b e l i e f that long range correlations are generated 

pr i m a r i l y by the two component e f f e c t , i t should be allowed to constrain 

the model. Thus, perhaps we sh a l l be able, from the results of comparing 

the model with the data, to say more about 'the particular features 

required of i t . This indeed turns out to be the case, as we sha l l see 

l a t e r . 

(d) An e x p l i c i t solution to the i n t e g r a l equation fo r the generating function 

So far we have presented an integral equation for the 

m u l t i p l i c i t y d i s t r i b u t i o n generating function and provided a solution 

i n terms of a function f ( z ) defined i m p l i c i t l y i n (2.59) i n terms of 

the kernel of the i n t e g r a l equation. In t h i s section we have discussed 

some properties of t h i s solution. I t w i l l be instructive here to 

consider an e x p l i c i t solution i n an approximation where one i s feasible. 

Later when we compare our model with the data we shall attempt a more 
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r e a l i s t i c solution. So f o r now l e t us take the approximation that 
*min = 0 f o r e x c n a n S e i n diagram 2.2 , and calculate the consequ
ences fo r a fixed pole exchange 

^ (2.79) 

Taking the vertex function to be an exponential function of t 

* A e (2.8o) 

(2,37) t e l l s us that 

2 2rL* 
t4f)= G (2-81) 

where a l l the m u l t i p l i c a t i v e constants have been absorbed int o g 2 . Our 

function f ( z ) i s now defined by 

? j (2-82). 

from which by performing the integration we f i n d 

(2.83) 

We note that the i n t e g r a l converges f o r z>0 (c.f. equation(2.72b)). Thus 

from the solution (2.63) of our int e g r a l equation we f i n d 

and so 

- (8.) ^.85) 

\ 
\ 
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and the normalised generating function i s 

<|>(.VO - ^ (2.86) 

Prom (2.85) we see that 

\ (2.87) 

and (2.86) w i l l he recognised as the generating function f o r a Poisson 

d i s t r i b u t i o n i n n-2 p a r t i c l e s . The mean of the d i s t r i b u t i o n i s just 

<{rr> m +• a (2.88) 

Equation (2.87) i s t y p i c a l of multiperipheral-type models although with 

a more complicated kernel t h i s w i l l also be more complicated. Equations 

(2.87) and (2.88) i l l u s t r a t e the constraint (2,78) where i n t h i s case 

i t i s s a t i s f i e d by \ 

Fi n a l l y we remark that the model discussed i n t h i s sub-section where 

the m u l t i p l i c i t y d i s t r i b u t i o n turns out to be completely uncorrelated 

(Poisson) i s j u s t the well known model of Chew and P i g n o t t i 2 7 . (This 

i s also nicely summarised i n references l a , 28 . ) 

(e) The need fo r another mechanism 

Without discussion of the momentum dependence of correlations 

and inclusive d i s t r i b u t i o n s , the need fo r a second mechanism i s already 

apparent. Let us calculate ii/D i n t h i s model and compare with the 

calculation i n section 2.1. For t h i s model we f i n d 
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(Nobice that t h i s displays the property D 2=ii f o r a Poisson d i s t r i b u t i o n 

quantity at high energy and so we are attracted to the ideas presented 

i n section 2.1. As discussed there we should now be looking f o r a low 

m u l t i p l i c i t y mechanism to give the required effect. The need for a 

correction to the low m u l t i p l i c i t y end of the d i s t r i b u t i o n i s obviated 

by the fact that a g i n the model that we have derived so f a r (and indeed 

a^) must f a l l with energy to zero. I t seems natural then to base a 

second component on pomeron exchange i n the 2-+ n amplitude. 
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2.6 D i f f r a c t i o n - a second mechanism 

To calculate t h i s mechanism we go back to the basic calcul-

ation of section 2.2 and look at pomeron exchange. We redraw diagram 2.2 

with a pomeron exchange : 

fc 

a\ 3 . . n o <V<0 

DIAGRAM 2.4 

For t h i s diagram equation 2.31 gives us 

C J ( 2 / f ^ W " 2 ~ 
(2.91) 

Vp i s j u s t the vertex on the l e f t of diagram 2.h ;. 1^ i s the pomeron-

p a r t i c l e scattering generating function ; "L^ i s the generating function 

f o r the ( d i f f r a c t i v e ) process shown i n diagram 2.k . 

We now make an assumption which w i l l l a t e r prove to be a 

powerful constraint on any f i t to the data. We assume that the m u l t i -

p l i c i b y d i s t r i b u t i o n a r i s i n g from pomeron-particle collisions i s jus t 

the same as that arisi n g from reggeon-particle collisions. We allow 

the t o t a l cross-sections of these processes, however, to be dif f e r e n t . 

Thus we have an i n t u i t i v e picture of the probability of interaction of 

two objects being dependent upon the nature of the objects, but once 

they in t e r a c t , a l l 'knowledge' of what the o r i g i n a l objects were i s 

l o s t , and thus the r e l a t i v e probabilities of producing n particles f o r 



various n i s independent of the incident objects. Further consequences 

of t h i s assumption are discussed in°detail la t e r . Continuing with the 

calculation we have 

X>.») = -Kl II*,*) ^ 

where and 0 ^ are the pomeron-parbicle and reggeon-particle cross-

sections recpectively. I i s known from the calculation of the previous 

sections. We perform the t integration as before defining 

(2;93) 

leaving 
1 

s 

i n analogy with (2.37) and (2.39). Again we have denoted by u the 

minimum possible value of the missing mass M. Using (2.63) and ( 2 . i l l ) 

we f i n d 

At 

I n the next section we sha l l calculate the correlations from 

not only t h i s mechanism but also the multiperipheral mechanism. We sha l l 

then examine the features of the resultant two component model and 

compare with the data. 
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2.7 Calculation of the model ( 

(a) The non-diffractive component 

In constructing the two component model from the mechanisms 

discussed, i t i s natural to look f o r the correlations of each component 

and to use the equations of section one. We f i r s t calculate the non-

d i f f r a c t i v e , 'pionisation' component, which we shall from now on label 

with the l e t t e r 7t . We have 

where ^ 

.(W) » Z (2.97) 

We calculate the c from equation (2.59) which was 

(2.98) 

by expanding about z = 1 . Because t h i s integral must be convergent 

near z = 1 , i t i s natural to calculate the correlations f rather than ' n 
the cross-sections o^. As our model i s attempting to describe the 

strong interaction p a r t i c u l a r l y i n terms of many-particle f i n a l states, 

we stress that i t i s an at t r a c t i v e feature of t h i s scheme that the 

m u l t i p l i c i t y d i s t r i b u t i o n i s most conveniently calculated by f i r s t 

f inding the mean, then the width, and then the more subtle correlations. 

I f we define the integrals 

(2.99) 

then equation (2.98) becomes at z=l 

Q 6 = ± <2-100) 
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where we now r e s t r i c t our attention to the case a
o u^. = 1 or f ( l ) = 0 

to give an assymptotically non-vanishing pionisation component. 
Successive d i f f e r e n t i a t i o n with respect to z at z=l reveals from (2.98) 
using (2,97) 

cQ t * 4 \ (2.101) 

\ 

.*<7) = Q\ > (2.102) 

(2.103) 

- Cg. G>< + (8cJ + - fc c ^ Q j * c?C} a * Q. [ (2. io4) 

and so on. 
Thus the c can b e calculated i n turn. We f i n d then n 

\ 

\ 

\ 
-1 

q * Q ± (2.105) 

(2.106) 

and 

The normalised generating function f o r the pionisation component i s 

f ( i ) ^ 
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and so 

/ i f (2.110) 

1) 
Thus the constants d are determined i n terms of the constants c 

n n 

(2.111) 

(2.112) 

(2.113) 

To calculate the integrals l e t us r e c a l l the d e f i n i t i o n 

and discussion of K(p) from sections three and four. Writing again 

(2.1110 

(2.115) 

we expect k(p) and kp(p) to become small as p-* 1. This followed from 

the assumption of a strong dominance of the small | t | region. Rather 

than making an ansatz f o r V ( t ) and calculating K(p) , we make an ansabz 

d i r e c t l y f o r K(p) embodying the features discussed. We put then 

K(f) * f A-Ci-tf] (2.ll6) 

and s i m i l a r l y 

where A,' A p, b , b are constants and the 0 step functions ensure that 
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K and Kp are positive. We now evaluate the constants Q.. from (2.99) 
and determine A from (2.100). Thus 

(2.118) 

and 

. i ^ ^ - ' 0 (2.119) 

where 

C O 
(2.120) 

Thus the constants c n can now be obtained from equations (2.105)~(2.108) 

and hence the constants d^ . The non-diffractive component of our 

model i s thus calculated i n terms of the parameter b . (We note that 

as b-*0 we f i n d = j l (2-2a(0))"^ and hence cn=0 f o r n52 . This i s , 

as expected, j u s t the Chew-Pignotti model again.) 

(b) The d i f f r a c t i v e component 

The d i f f r a c t i v e component i s now simply calculable i n terms 

of the already known constants cfl from equation (2.95). To do t h i s 

we l e t 
- y 

^ - U \ ,. n o ( 2 . 1 2 1 ) 

V . 
As we have taken cr_ to be constant, y w i l l measure the s dependence Hp 
of the forward elastic pomeron-particle scattering amplitude. I n 
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t r i p l e Regge language 7 = 0 corresponds to a non-zero t r i p l e pomeron 
coupling. We also wish to normalise to the ine l a s t i c part of the t o t a l 
cross-section and we do t h i s simply by approximating the elastic cross-
section to be ju s t the two p a r t i c l e d i f f r a c t i v e cross-section at high 
energies. We shall return to these points i n l a t e r discussion. Equation 
(2.95) now becomes 

A 

(2.122) 

As f ( l ) = 0 t h i s i n t e g r a l i s very much determined by the behaviour of the 

Integrand as p~»0 , and the lower l i m i t of integration. Here we assume 

a d i f f r a c t i v e contribution due to a pomeron-pomcron-reggcon coupling 

and postpone discussion of the t r i p l e pomeron case. Taking 7>0 then 

we have 

(2.123) 

to leading order i n s. Thus at high energy th i s d i f f r a c t i v e 

contribution produces a constant inelastic (and t o t a l ) cross-section 

and also a m u l t i p l i c i t y d i s t r i b u t i o n which i s assymptotically indepen-

dent of s . (c.f. references 20-22). The m u l t i p l i c i t y d i s t r i b u t i o n 

given by (2.123) can now be calculated i n terms of ,f (z) and the new 

parameter 7 . The correlations are most simply calculated i n the 

following form. The normalised generating function i s -
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We thus observe from (2.109) that 

(2.125) 

And so we can calculate more easily 

OS 5L«i 
(2.126) 

and substitute these expressions d i r e c t l y i n t o the two component model. 

We then f i n d 

(2.127) 

(2.128) 

(2.129) 

We rewrite equations (2.9)-(2.11) i n the form 

(2.150) 

(2.131) 

(2.132) 

so that a l l the energy dependence i s now i n the terms involving 

differences between the mechanisms. We have also written the strengths 

of the components as p^ and p^ where of course p^ + p^ * 1 , 
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.8 Comparison with the data v^ 

We are now i n a position to discuss the^ model i n direct 

comparison with the data. The parameters which we have available at the 

moment are b, y. p , x>, s , and a(0). The ̂ constants >vc and d are 

determined e n t i r e l y by b and oc(o), which together with s Q determine the 

non-diffractive m u l t i p l i c i t y d i s t r i b u t i o n ; y and x> determine the 

d i f f r a c t i v e d i s t r i b u t i o n : p determines t h e i r r e l a t i v e contributions. 

As neutral particles are not observed, to compare with the 

data we must f i n d the m u l t i p l i c i t y d i s t r i b u t i o n for charged particles. 

We choose, i n f a c t , to do i t f o r negatively charged particles^ Con

servation of charge w i l l then t e l l us about correlations between 

positives or a l l charged particles i f we wish. The m u l t i p l i c i t i e s and 

correlations which have been calculated are those which apply to the 

number of rungs i n the multiperipheral ladder. We can think of the 

objects emitted at each vertex of the chain as clusters of particles 

with similar momenta, each cluster having a small sub-energy s Q. (c.f. 

equation (2.27)). I t i s clear i n t h i s case that the average mass 

squared s of a cluster should not necessarily be the same as the o 
minimum mass squared 2 . We certainly expect, however, that s ^ o 2 

and that neither should be too large. We have i n mind then an amplitude 

V 
DIAGRAM 2.5 

The multiperipheral model with clustering 

corresponding to diagram 2.5« We can very easily estimate the number 

of negatively charged particles per cluster from the mean m u l t i p l i c i t y 
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data. A logarithmic parameterisation of t h i s gives i t roughly to be 

<<i\"> oA JUa. $ co^r^JC (2.135) 

( ,<n"> i s the mean number of negatively charged particles .) Therefore 

we expect from (2.127) and (2.130) 

(2.13»0 

N here i s the average number of negative particles per vertex i n the 

multiperipheral chain. We know that p ^ 1 . In the Poisson-Chew-Pignotti 

l i m i t c = 2 - 2a(0) . However we have argued that small | t | dominance 

implies that the function K(p) i s cut o f f as p-» 1 , while i t s overall 

normalisation i s kept the same to ensure a constant t o t a l cross-section. 

We are thus stressing small missing mass production relative to high 

missing mass production as the l a t t e r of necessity involves large | t | . 

Thus we expect the mean m u l t i p l i c i t y and hence c^ to be smaller than i n 

the Poisson d i s t r i b u t i o n case. Examination of the b dependence of (2.118) 

f o r j = l with equation (2.IO5) does i n fact demonstrate th i s to be the 

case as increases with b as b increases from zero. We should also 

l i k e to point out that, as b increases from zero Q2 becomes greater 

than -|Q2 and so c 2 becomes negative. Examination of the general form 

(2.99) f o r the Qj leads us to believe strongly that any function k(p) 

as defined i n ( 2 .llU) which has the cut o f f property as 1 , and 

normalised such that QQ=1 w i l l give Q2^ and hence c 2 ^D, producing 

an assymptotically negative two pa r t i c l e correlation i n the multiper

ipheral model. I n (2.I3U) we then have 

(2.135) 

We shall constrain a to be the leading meson trajectory (p,f,<D,Ae) that 
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we expect i n elastic proton-proton c o l l i s i o n s , putting ofo)*^ and thus 
finding c ^ 1. Equation (2.131*) thus t e l l s us that 

(M >, ± (2.156) 

We expect, then, at least one negatively charged p a r t i c l e 

per vertex of the multiperipheral chain. To make a more detailed 

comparison we must discuss the structure of these clusters. We are not 

concerned with the momenta of particles within the cluster as a whole, 

but we are forced to say something about the d i s t r i b u t i o n of negatively 

charged par t i c l e s within the cluster. The generating function again 

provides an elegantly simple technique. Let the generating function 

f o r the production of clusters be 

(2.137) 

The cross-section f o r the production of n+2 clusters i s 

& - M I ® 
1= 0 

(£. 138) 

We now also introduce the generating function for the d i s t r i b u t i o n of 

negatively charged particles w i t h i n a cluster. Let t h i s be ¥(z) . Then 

(2.139) 

defines the pro b a b i l i t y that a cluster contains n negatively charged 

pa r t i c l e s . We also have 

^-1 (2.1U0) 
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The generating function f o r production of negatively charged particles 
then turns o u t 2 9 to be 

4>"&*} * 4>& $#0 (2.1^1) 

We thus have 

f o r the production cross-section f o r negatives. As we shall be consider-

ing only proton-proton interactions we make one small modification to 

the above remarks. We assume that i n general the protons are the leading 

par t i c l e s (or at least i n the leading clusters) and therefore observe 

that i t i s less l i k e l y that a negatively charged p a r t i c l e w i l l occur i n 

the leading clusters. We therefore put the d i s t r i b u t i o n Uf(z) i n only 

f o r the non-leading clusters. We thus write 

* fW) (2.1*3) 

with * defined i n (2.137). 

We define the reduced cluster production ( i . e . that with the 

leading particles subtracted) generating function and moments by 

4>VJ* e x l f Z , ft'0 * M \ (ZAkk) 

and so 

(2.1*5) 

We also define . 

(2.1U6) 
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and 

» 1+ £fe-o 
(2.1i*7) 

The f ~ are then the correlations between negatively charged particles 

and the g R are the correlations between the negatively charged particles 

wit h i n a single cluster (with g,^N). The quantities ^ are Just the 

moments <n(n - l)(n -2 ) (n-k+l)> of the composition of a cluster. 

Combination of (ZAhk), (2.1^6), and (2.lVf) then gives 

fx ~ ^ f j (2.1U8) 

(2.1U9) 

(2.150) 

or a l t e r n a t i v e l y 

I n addition to the parameters discussed at the beginning of th i s sub

section we now have the unknown function ^(z) • I n accord with our aim 

of reducing the number of free parameters, we look only at p o s s i b i l i t i e s 

which can be simply described i n terms of a single parameter. 
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Our procedure f o r comparison with the observed correlations 

i s then to choose a l i k e l y d i s t r i b u t i o n of negatively charged particles 

i n a cluster, and to calculate the m u l t i p l i c i t y d i s t r i b u t i o n of 

negatively charged particles according to (2.lU8)-(2.150) fromythe two 

component model already constructed i n terms of the parameters outlined 

above* 

A f i r s t guess f o r the cluster structure might be that the 

cluster always contains exactly N negatively charged part i c l e s . I f t h i s 

ansatz i s taken, then no satisfactory f i t i s found for i n t e g r a l W . I f 

N i s then allowed to vary continuously, however, a reasonably good f i t 

i s found with N=1.38 . The other parameters take the values : pD=0.31, 

7 = 1.2 , s q = k.O GeV2 , U2= 2.6 GeV2 , b =1.0 , cc(o) =0.5 . I n 

th i s and following f i t s we r e s t r i c t the input trajectory, except where 

stated, t o have intercept i n the range O.k - 0.6 . The situation here 

with W=1.38 i s , of course, not satisfactory, and i t i s necessary to 

introduce a d i s t r i b u t i o n with some width. We shal l , however, take t h i s 

f i t as an indication that the mean number of negatives i n a cluster i s 

l i k e l y to l i e between one and two. 

Our next attempt i s to take ¥(z) to be the generating function 

of a Poisson d i s t r i b u t i o n . 

(2.15b) 

The f i t now obtained i s singularly unsuccessful. The reason which 

rules out t h i s d i s t r i b u t i o n i s that when a suitable mean K i s taken, 

the p o s s i b i l i t y of producing three or more negatively charged particles 

from a cluster i s quite large. (The probability of three or more i s 

roughly i f o r Uhl.h , or al t e r n a t i v e l y \|r « 2.7 ). This produces a s s 
strong positive contribution to f ~ , di r e c t l y contrary to the data. 

3 

\ 

For f i t s to the data the CERN minimisation program 'MMUIT' was 

used, both on N.U.M.A.C. and the R.H.E.L 360 computer. 



87 

A somewhat narrower d i s t r i b u t i o n seems to be needed. 
FIT I 

We thus take a d i s t r i b u t i o n i n which one negative charge 

appears with frequency (2-N) and two appear with frequency (N-l) . With 

t h i s d i s t r i b u t i o n a f i t to the data i s found which i s shown i n figures 

2.3, 2.k, and 2.5 . No sharply defined minimum of the ^parameter used 

to compare the theoretical d i s t r i b u t i o n with the data was found and so 

the values found f o r the parameters can only be regarded as t y p i c a l and 

not i n any way d e f i n i t i v e . These were : N = 1.27 (negatives per cluster 

on average) ; b = 1.1 , so=3.35 GeV2 ; t> 2 » 2.8 GeV2 ; cc(o) = 0.1*1 ; 

PD=0.31 ; and 7 = 1.U8 . The only two of these which perhaps deserve 

p a r t i c u l a r comment are p^ and 7 . 

The parameter i s larger than i n many two component models. 

The parameter 7 i s also larger than one might at f i r s t have expected, 

corresponding to a Regge singularity i n elastic Pomeron-proton scatter

ing with intercept of -.^8 . This i s a typi c a l value i n our f i t . F i t s 

can be found with t h i s intercept as high as zero but no acceptable f i t 

i s found with an intercept higher than t h i s . Physically the large value 

of 7 i s r e s t r i c t i n g the d i f f r a c t i v e m u l t i p l i c i t y to small values by 

keeping the missing mass low. An advantage of t h i s i s that we do not 

now have to consider the p o s s i b i l i t y of pomeron exchange i n the centre 

of a long multiperipheral chain, as the presence of the pomeron would 

keep the chain short. The d i f f r a c t i v e interaction that we have already 

calculated w i l l therefore suffice. The underlying feature of both 

these effects, large p D and large 7 , is that they tend to make the two 

component effect more dominant. Consider theform (2.10) of f . That i s 

The l a s t term i s going to dominate most e f f e c t i v e l y i f p^-*? and 
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r i ^ - r i ^ becomes large as discussed i n section 2.1 . The necessity f o r 
t h i s i s now more marked as f i s , as we have discussed, assymptotically 

negative owing to the effects of momentum conservation ( i n the form of 

the t . effect) and small t dominance. (We also remark that the mm * 
clustering effect helps t o al l e v i a t e t h i s problem). A non-diffractive 

mechanism with f 2 X ) would admit considerably fewer d i f f i c u l t i e s i n 

describing the data i n terms of two components. -

The l a s t p o s s i b i l i t y we consider f o r the cluster structure 

i s a binomial d i s t r i b u t i o n allowing ,zero, one, or km negatively 

charged pa r t i c l e s . Constraining, as before, <x(0) to l i e between 0.1* and 

0.6 we arrive at i d e n t i c a l conclusions from very similar parameter 

values and a very similar f i t . 

FIT I I 

We f i n a l l y remark that i f we allow a(o) to be a l i t t l e 

lower we can improve the f i t s l i g h t l y as shown i n figures 2.6, 2.7> and 

2.8 . The parameters are now as follows : clusters contain a binomial 

d i s t r i b u t i o n of negatives of mean N = 0.2 ; <x(0) = 0.05 ; b = 1.2 ; 

7= -0.5 5 P D = O.3U ; Sq=9 GeV2 ; U2=7«5 GeV2 . <x(o) may perhaps be 

interpreted as an effective trajectory intercept. Other than this^ our 

conclusions are as before. 
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2.9 The jjpmeron as a p r o j e c t i l e 

The "basic ingredient of our model i s that the m u l t i p l i c i t y 

d i s t r i b u t i o n of the interaction i s assumed to be independent of the 

nature of the p r o j e c t i l e . We sha l l investigate t h i s further i n the next 

chapter but at t h i s stage i t i s perhaps worthwhile to note how r e s t r i c t 

ive t h i s i s to our f i t to the m u l t i p l i c i t y d i s t r i b u t i o n . 

I f we relax the assumption that pomeron-proton collisions 

produce the same m u l t i p l i c i t y d i s t r i b u t i o n as reggeon-proton co l l i s i o n s , 

then f o r a d i f f r a c t i v e interaction which can be described by a t r i p l e 

Regge term of the form pomeron-pomeron-reggeon, we f i n d from (2.9*0 

that the m u l t i p l i c i t y d i s t r i b u t i o n i s independent of energy. We have 

here retained the assumption that the pomeron-proton interaction has 

only short range correlations and thus r n l n ( s ) . The freedom 

that t h i s a r b i t r a r y d i s t r i b u t i o n gives to the two component f i t i s 

considerable. I f we take the Poisson l i m i t of the non-diffractive part 

and assume (ad hoc) that the d i f f r a c t i v e m u l t i p l i c i t y d i s t r i b u t i o n i s 

also Poisson, the data are easily f i t t e d . This two Poisson f i t we label 

FIT I I I . I t i s shown i n figures 2.9" , 2.10 , and 2.11 . We stress-

that a very large number of similar f i t s are possible depending on what 

one assumes f o r the d i f f r a c t i v e d i s t r i b u t i o n . The parameters i n t h i s 

f i t are : cc(0)=0.U5j pD=:0.17 5 sQ=17 GeV2; and the clusters were re

s t r i c t e d , each to contain only one negatively charged p a r t i c l e . The 

means of the two component distributions are ^=2.9^ and ^=1.1 ln(s)+2 

Thus we would stress that the assumption that the m u l t i p l i c i t y 

d i s t r i b u t i o n s are independent of the nature of the p r o j e c t i l e provides 

a considerable constraint on the model. 
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2.10 Other two component models 

In t h i s section we should l i k e to mention other models based 

on the two component prescription outlined i n section 2.1 . 

The approach of Fialkowski and M i e t t i n e n 2 0 i s to make a 

Poisson d i s t r i b u t i o n ansatz f o r one component and to subtract i t from 

the observed m u l t i p l i c i t y d i s t r i b u t i o n to f i n d the other. The second 

component, they f i n d , i s significant only f o r fewer than eight charged 

part i c l e s produced and has or independent of energy. 

Van Hove 2 1 observes the attractiveness of the two component 

model i n connection with the Wroblewski p l o t (figure 2.1) and his f i t 

t o t h i s indicates p D to be roughly 26$ . 

Harari and Rabinovici 2 2, as discussed e a r l i e r , parameterise 

the data with a similar two component model to test the relation (2.78) 

f o r the non-diffractive part. P i t t i n g n and f they observe that t h i s 

r e l a t i o n i s s a t i s f i e d f o r reasonable « E by the sum taking only the 

f i r s t two terms c x and c 2. Our model having (2.78) b u i l t i n clearly 

has a l o t to say about t h i s . Whereas their f i t has c2>0 , our model 

has d i f f i c u l t y i n producing t h i s , as we discussed ear l i e r i n t h i s 

chapter. Our f i t s labelled I and I I , when one calculates the f i r s t 

four terms, only s a t i s f y the r e l a t i o n respectively to 88$ and J&f>. 

This emphasises the non-Poisson nature of our pionisation component. 

We must conclude then that the series i n (2.78) may not be so rapidly-

convergent as i s hoped by these authors. 

Frazer and Snider 3 0 propose a mechanism for d i f f r a c t i o n into 

high masses based on a t r i p l e pomeron term and calculate i t s mean 

m u l t i p l i c i t y and t o t a l cross-section, using the assumption that the 

pomeron-particle scattering m u l t i p l i c i t y d i s t r i b u t i o n i s the same 

as that f o r non-diffractive p a r t i c l e - p a r t i c l e scattering. They do not 

attempt a f i t to the data. We sha l l discuss such mechanisms i n chapter 

four. 0 
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Berger and Fox 3 1 also introduce a t r i p l e pomeron d i f f r a c t i v e 
term "but note that t h e i r f i t to the data i s more dependent on t h e i r non-
d i f f r a c t i v e component which they take to be a multiperipheral cluster 
model. I t i s interesting to note that although their x f i t i s primarily 
to inclusive d i s t r i b u t i o n data, they f i n d that the clusters should on 
average contain approximately four pions. This i s nicely consistent 
with our estimate of 1.3 negatively charged particles. Their d i f f i c u l t y 
i n producing a good f i t to the m u l t i p l i c i t y d i s t r i b u t i o n f o r s<200 GeV2, 
we should to the lack of any suitable mechanism for low mass d i f f r a c t i o n 
which our analysis ( i n agreement with references 20 and 22) indicates 
to be c r u c i a l l y important i n t h i s respect. 

Roberts and Roy 3 2 discuss only the d i f f r a c t i v e interaction. 

They allow t h i s two components corresponding to t r i p l e pomeron and, 

pomeron-pomeron-meson terms, and calculate an approximate form f o r the 

d i f f r a c t i v e m u l t i p l i c i t y d i s t r i b u t i o n . 

\ 
Y 

\ \ 
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FIGURES FOR CHAPTER TWO 

The Roman numerals l a b e l l i n g figures 2.3 to 2.11 

refer back to those used i n the text i n sections 

2.8 and 2.9 

\ 
\ 

'"1 I 
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I t e r a t i v e derivation of the 

multiperipheral model. 
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C H A P T E R T H R E E 

Inclusive distributions and_correlations 

INTRODUCTION 

This chapter i s , i n a way, complementary to the preceding 

one i n that we now go on to examine the features of the two component 

model i n general and our model i n particular, which unlike those 

features discussed i n the previous chapter, depend on the momenta of 

the observed pa r t i c l e s . I n section one we discuss inclusive distributions 

and correlations from two component models. We show i n particular that 

the two component model with a low mass d i f f r a c t i o n component gives a 

good description of the two p a r t i c l e correlation. The second section 

discusses the semi-inclusive process pp-»p+ n charged particles+ any . 

The remainder of the chapter i s devoted to discussion of the reaction 

pp-»p,q,X , where q i s a charged p a r t i c l e . The ideas leading to the 

model of chapter two arc again found to describe the data well. I n the 

f i n a l two sections of t h i s chapter, predictions of the model are outlined 

which might prove useful i n testing i t further when more inclusive and 

semi-inclusive data are available. 
\ 

\ 
\ 

\ 

\ 
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3.1 The two component model 

Here we sha l l study, i n the same way as i n the f i r s t section 

of the preceding chapter, the basic construction of the two component 

model. We are now interested i n the inclusive distributions and the 

momentum dependence of the correlations. We use again the shorthand 

notation 

dp s 

f 

4i 
ae. (3.1) 

and 

N * - ~j (5.2) 

For our two mechanisms (which we again denote here a and b) we expect 

(3.3) 

and so i n the notation'of section 2.1 

with 

1 ^ b (3.5) 
We now construct the correlations defined i n the introductory chapter 

C^Z) - jv^OU) - K ^ N ^ ) (3.6) 

"^{3)^)^2) > m ± ) W | ( x ) K / ( ( ? ) (3.7) 
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Precisely as i n section 2.1 , we f i n d equation (3«̂ ) to be i n terms of 

these correlations 

- W^X^^V^V ̂K̂ )-̂ )̂ (5.9) 

Equation (3.*0 f o r k=l , (3.8), and (3.9) upon integration over a l l 

momenta involved clearly reduce to (2.9), (2.10), and (2.11). The 

situation f o r higher correlatios w i l l become rapidly more complicated 

but fortunately a.s there are no relevant data we needjnot discuss' them. 

The two component terms are again clearly displayed i n equations (3«8) 

and (5.9). As i n the previous chapter we can look at these terms on 
a b 

t h e i r own. ('Technically C2 and cannot be zero owing to conservation 

of momentum constraints, although they can be much smaller than , N^). 

We take mechanism a to be the short range correlation<i,mechanism, 

discussed i n the f i r s t chapter i n the context of the Mueller-Regge 

analysis, having a plateau i n the central region of the single p a r t i c l e 

inclusive r a p i d i t y d i s t r i b u t i o n . This w i l l correspond to our non-

d i f f r a c t i v e mechanism i n chapter two. The low mass d i f f r a c t i o n mechanism 

i n chapter two should provide an inclusive d i s t r i b u t i o n which i s peaked 

at either end of the r a p i d i t y p l o t and approximately zero i n the central 

region. Thus as s increases i t s peaks merely move out with the kinematic 

l i m i t s of the r a p i d i t y variable. (See figure 3«l)« Thus taking the two 

component term i n equation (3.8) we have 

(3.8) 

and r \ 
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C A « 0 4 ^ (^W^K/.S^Vl-^W) (3.10) 

We can now examine the behaviour of t h i s correlation. Figure 3.2a 

shows where we expect t h i s function to be positive, negative or zero. 

I n t h i s case the correlation i s d e f i n i t e l y of long range. In figure 

3«2b t h i s c o r r e l a t i o n i s plotted against one of i t s variables with the 

other fixed. The short range correlations present i n either of the two 

components w i l l of course be superimposed on the features shown. (For 

example as shown i n figure 3.2c.) 

We should also l i k e to remark that the data are often pre

sented i n terms of a normalised correlation. I n our notation t h i s i s 

o ^ t y ) (3.11) 

This has the advantage that i t compares the size of the correlation 

with the size of the uncorrelated production distributions. clearly 

also sat i s f i e s 

^ii±,Z) - H&^tyfat)* l ] (3.12) 

I f the t o t a l W i s roughly constant as figure 3*1 suggests i t might be, 

then the shape of E from the two component model w i l l look ju s t l i k e 

C . Data fo r the two p a r t i c l e correlations are shown i n figure 3«3 • 
2 

The form given by the two component model that we have been discussing 

looks q u a l i t i v e l y good, as has been discussed by various a u t h o r s 3 3 ' 3 4 . 

As data are now available over a considerable energy range 

(the I.S.S. data alone span a factor of f i v e or so i n s ) , we should 

l i k e here to examine one particular d i s t i n c t i v e feature of the two 

component model. Examination of equation (3.8) shows that G 2(y 1,y j 2)for 
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any y 2 has a zero as a function of y whose position does not depend 

upon y g. (We have assumed here that and C2 are small - t h i s w i l l be 

the case i f our two components have only short range correlations and 

y 2 i s kept more than a correlation length away from where we expect the 

zero i n C .) Furthermore a low mass d i f f r a c t i o n contribution which has 
2 

constant m u l t i p l i c i t y and cross-section, and which provides a non-zero 

contribution t o the inclusive d i s t r i b u t i o n only within a fixed range of 

the end of the r a p i d i t y p l o t , w i l l imply that the zero of C2 w i l l be at 

fixed |y-y| where Y = §ln(s/s0). We have here assumed l i m i t i n g 

fragmentation of the pionisation component. We take s0=m^ - t h i s i s ̂  

a r b i t r a r y and does not affect the result. I n figure J,k we show 

|Y-yQ| where y Q i s the position of the'zero i n C2 found empirically 

and defined i n our model by 

^(3.) - (5ll3) 

We take only the very high energy data where one can more opti m i s t i c a l l y 

separate long and short range correlations. We display the data for 

|y2-yQ|>2 where we expect short range effects to be negligible, choos

ing also the data where the position of the zero i s reasonably well 

defined. The results are i n excellent agreement with the two component 

model prediction although the error bars would permit a sl i g h t variation 

i n the position of the zero with respect to the energy. Figure 3.3 also 

shows that when both the p a r t i l e s 1 and 2 are well i n the central region, 

then the correlation i s independent of energy, just as we should expect 

from equation (3.8) i f each component has scaling behaviour. This i s 

shown more clearl y i n figure 3»5 • - v 
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3.2 A simple semi-inclusive measurement 

Before turning our attention to the form of further inclusive 

measurements predicted by our model, we should l i k e t o examine the 

recently published data on the experiment where the m u l t i p l i c i t y of the 

event i s measured, as w e l l as the momentum of a proton i n the f i n a l 

state. This i s the simplest experiment i n a class denoted semi-inclusive. 

A thorough study of t h i s experiment i s performed i n reference 35 where 

references to ea r l i e r such analyses (with more li m i t e d data) are given. 

Our model of chapter two t e l l s us that the mean m u l t i p l i c i t y 

i n reggeon-particle channels should be the same, when the available 

energy i s the same, as the mean m u l t i p l i c i t y i n non-diffractive p a r t i c l e 

- p a r t i c l e scattering, independent of which Regge singularity we choose, 

( i n the s p i r i t of the model we should have l i k e d to have said that 

reggeon-particle m u l t i p l i c i t y distributions should be the same as the 

overall p a r t i c l e - p a r t i c l e d i s t r i b u t i o n , but the existence of the pomeron 

with a(o)=l forced us to add d i f f r a c t i v e terms i n separately.) I n 

figure J.6 the mean m u l t i p l i c i t i e s of particles are plotted against the 

available energy, E=M-m i n the M2 channel, and E=̂ fs-2m i n the s channel. 

<n ck~ 1> i s plotted i n the case of the M2 channel owing to the smaller 

i n i t i a l charge. The authors of reference 35 make e x p l i c i t comments that 

there appears to be no change i n behaviour of n(WP) as M2 rises from 

the (pomeron dominated) region where there i s strong M2 dependence i n 

the pp pX inclusive d i s t r i b u t i o n , t o the region (presumably non-

d i f f r a c t i v e l y dominated) where there is very l i t t l e M2 dependence i n 

t h i s quantity. This, as well as the s i m i l a r i t y to the mean m u l t i p l i c i t y 

i n the s channel, i s very natural to our model where the m u l t i p l i c i t y 

d i s t r i b u t i o n i n reggeon-particle collisions i s independent of whether 

the reggeon i s a meson or the pomeron. The m u l t i p l i c i t y distributions 

i n s and M2 channels are shown i n figure 3'T at various energies. This 
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experimental result we regard as excellent j u s t i f i c a t i o n f o r the 

undelying philosophy of our model. 

\ 

\ 
\ 

\ 
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5*3 The reaction pp-> p + charged p a r t i c l e + any 
I n t h i s section we shall calculate the form for the two 

I I I 
p a r t i c l e correlation when one of the particles i s a proton . The 

prime motivation f o r t h i s i s that whereas the proton d i s t r i b u t i o n i n the 

reaction pp->pX displays a peak when the proton i s observed near x=»l, 

when a charged p a r t i c l e i s observed simultaneously i n the central region 

the peak i s no longer present. This feature occurs very naturally i n our 

I ( i ) i i AAAA-'VAAA. 

" I 

DIAGRAM 3.1 : P i c t o r i a l representation of amplitudes 

for ( i ) a proton ; ( i i ) a proton and another charged 

p a r t i c l e , produced i n proton-proton interactions. 

model. We f i r s t take equation (2.31) at z=l , (derived from an amplitude 

factorised as i s i n diagram 3«l«i)> and sum over n, rewriting i t as 

our 

t i s the invariant momentum transfer t o the proton and x i s the l o n g i t 

udinal Feynman variable of the proton. The sum we expect to include as 

i n chapter two notably the pomeron and leading meson term. We neglect 

interference between the two on the grounds mentioned earlier. Equation 

(3.1*0 i s ju s t that which leads to the t r i p l e Regge expansion when Regge 

behaviour i s taken f o r o . I t may be expected to be v a l i d f o r 
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where X q i s some constant. (For example i f Regge analysis i s good for 
s/M? > 2 then x *» ̂  . We shall discuss t h i s point l a t e r i n connection 
with the data.) 

The second p a r t i c l e , labelled c i n diagram 3.1.ii, i s i n 

the central region and so r a p i d i t y i s a more convenient variable than 

x . The simple Lorentz transform properties of the r a p i d i t y variable 

w i l l also be of use to us. The expression from diagram 3»l»ii analogously 

to equation (5.lU) i s 

y c i s the r a p i d i t y of p a r t i c l e c i n the centre of mass and y^ i s the 

ra p i d i t y of p a r t i c l e c i n the rest frame of the missing mass M2, the 

centr of mass of the reggeon-proton interaction. We must now relate 

^c *° ̂ c ' Considering the reaction represented i n diagram 3.2 with 

\ 

s > f \ 
DIAGRAM 3.2 

\ 

the momenta given by 

and Pz_ - M ^ C ^ ^ j K ^ j O ^ (5'1?) 

one finds that i f y > 0 

\ 

J j i ? k &*,C±-*) (3.18) 

where x i s the Peynman variable of 1 or i s ( l - M ^ s ) . Using the 
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l i n e a r i t y property of the Lorentz transform i n terms of the rapi d i t y 
variable we have 

For convenience we define the follwing notation . 

Let 

As before 

(3.19) 

&R< = | T i * l V « W \ (-*> (3.20) 

The t i l d e we again use to denote reggeon-particle scattering (including 

pomeron-particle scattering). Then equations (3.lU) and (5.16) become 

When the arguments x,t are uset we shall always be referring to the 

f i n a l state proton. When the r a p i d i t y variable i s used we are referring 

to the meson. Thus, f o r example, N (e;x,t) i s the single p a r t i c l e 

inclusive d i s t r i b u t i o n f o r pp->pX. N (s;y ) i s f o r pp-»meson+X. They are 
J* c 

not the same function. ( ̂ ( M p j y 1 ) i s f o r Rp-*meson+X.) 
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where 

(5.26) 
and 

t 

(5.27) 
So f a r we have only assumed that a number of factorisable exchanges are 

present (c.f. section 2.2). Next we shall compute the form of the 

correlations i n our pa r t i c u l a r model. 

We do t h i s by noting again that our model hinges on the 

assumption that m u l t i p l i c i t y distributions from reggeon-particle . c o l l 

isions do not depend>on. whether the reggeon i s a pomeron or a lower 

l y i n g trajectory. Indeed simplifications introduced i n the non-diffract-

ive mechanism made these distributions the same as the non-diffractive 

p a r t i c l e - p a r t i c l e scattering m u l t i p l i c i t y d i s t r i b u t i o n . The t o t a l cross-

section was, however, allowed t o depend upon the nature of the interact

ing objects. Here again we say nothing about the t o t a l cross-sections. 

To test the assumption concerning the m u l t i p l i c i t y distributions against 

momentum dependent data we must make i t considerably stronger. We assume 

that 

Nk(s;pi....pk,R) • 1 gRp 
a dp i M.dp k 

i s independent of the incident reggeon R. This of course implies the 

assumption above through 

\ 

as the moments <h(n-l)... (n-k+l)> determine the generating function 

completely through 

and hence determine the m u l t i p l i c i t y d i s t r i b u t i o n . This assumption i s 

pi • • pfe) dp. • • e t a " «*-*)'>• Cw+i-ky> (5.28) 

Ob 

<Kw-0 ŷ-k+4.)> (5.29) 

\ 
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thus s u f f i c i e n t (hut not necessary) to imply the earlier one. I n any 

case we only actually test the assumption f o r k=l here. To do more than 

t h i s would require f a i r l y detailed data on three and more p a r t i c l e 

correlations. 

I f Ni(M 2;y' ,R) i s independent of the reggeon R we can remove 

i t from the summation i n equation (3.25) obtaining 

which from (3»2*0 becomes 

NtUjx.t,^) - MjCv^) NitH',^ ) (3-31) 

The steps necessary to achieve t h i s result are recounted p i c t o r i a l l y i n 

terms of generalised o p t i c a l theorem diagrams i n figure 5.8 . 

We can now construct the two p a r t i c l e correlation 

or a l t e r n a t i v e l y 

.1 / 
^<-M » ) - 1 (3.33) 

Notice that R i s p a r t i c u l a r l y simple as e x p l i c i t dependence on the 

observed proton i s not present. The dependence upon the baryon momentum 

only enters through equations (3.26) and (3*27). 

Before making a comparison with the data we should remark 

upon a point relevant to the measurement of inclusive processes. Often 

only the angle at which a p a r t i c l e emerges i s measured and used i n the 

form 
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L r 

which i s the same as 

hence 

(3.36) 

and so i f a particle's mass i s much smaller than i t s average transverse 

momentum ( which i s the case f o r a pion ) , then p̂ <vmA and so 

^ a \ (3.37) 

Thus fo r par t i c l e s observed i n the central region, the difference between 

y and i\ i s often neglected by phenomenologists. We sha l l do so here. I n 

reference 31 i t i s noted that i n a Monte-Carlo program i t makes l i t t l e 

difference which of y and TJ are used. v 

\ 
\ 

\ 

\ 
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J.k Comparison with the data - global structure 

The data f o r the correlation R over the range <Xx<l are 

shown i n figure 5.9 f o r I.S.R. energies and n =0 and -0.88. The 

general trends that one can see i n t h i s data are a roughly zero 

correlation i n the region 0.5<x<0«9 with a negative correlation f o r a 

very much forward proton. There i s also an indication of a positive 

correlation at small x. To see what sort of prediction we get from the 

model l e t us consider a very simple form f o r N (s;y ) and take 

N1(s;yc)s=Ni(s;yc) . The form we take i s shown i n figure 3«1° • This 

i s j u s t the Mueller-Regge picture with a central plateau i n y being 

independent of s, and with l i m i t i n g fragmentation within a range A of 

the end of the p l o t . That i s 

N j ^ i j ) - i . : \>j I « l\-A[ (3.38) 

(5-39) 
A 

where Y/2 *= y and y . =-Y/2 . We take a linear form i n the ' "'max Jm.n 

fragmentation region purely f o r simplicity - we shall perform a more 

detailed comparison as x-*1 i n the following section. Prom (5»55); (5«26) 

and (3.27) we thus have 

I f a p a r t i c l e of mass m i s observed then Y=ln(s/m2) . We also need the 

length of the r a p i d i t y p l o t i n the missing mass channel. This i s 

CJ.H) 

Thus the form we have fo r R becomes (when y i s i n the central region 
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tote) 

and 

K - ^ — = - 1 tote) 

The x dependence enters owing to the fact that while y can be i n the 

central region as f a r as the i n i t i a l interaction (s channel) i s concerned, 

i t may well be near to i t s kinematic l i m i t and hence i n the fragmentation 

region i n the reggeon-particle c o l l i s i o n (M2 channel). I f one p a r t i c l e 

i s seen with momentum x then another cannot be seen with more than ( l - x ) . 

The point where the form of the correlation changes i s given by 

or 

and the kinematic l i m i t on x when a par t i c l e with r a p i d i t y i s observed 

i s 

The form of R i s plotted i n figure 3«H taking A=r2 and GeV/c2. 

(This l a t t e r we take to represent an average transverse mass for the 

centrally observed p a r t i c l e . ) For x greater than roughly O.k , the 

discrepencies between model and data may perhaps be judged to be owing 

more to the data than to inherent deficiencies i n the model. However 
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the model does not give a positive correlation for small x which the 

data do seem to indicate. This discrepency i s not surprising when one 

recalls that fo£ factorisable Regge poles to be a good approximation 

s/M2 = (1-x)" 1 should be large. The fact that R i s roughly zero down to 

xw O.U (s/M2w 1.6) i s encouraging as the sum of |;erms i n (3.25) which 

simplifies so neatly i n t h i s model to (3.31) should surely not be 

dominated by a single term down t o xw 0.̂  . ' 
\ 

\ 
\ 
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3.5 Detailed comparison with the data as x-»i 

I n the previous section we took a global view of the two • 

p a r t i c l e correlation. I n t h i s section we sh a l l examine the behaviour of 

the correlation when the proton i s observed very close to the forward " 

direction. We take again equation (3.31) and compare i t with the more 

detailed data near x=l . We take N 1(s;x,t) from the data (see figure 

3.12), and i n order to make a parameter free comparison we take N (y ) 
* c 

to be the same as the p a r t i c l e - p a r t i c l e interaction inclusive d i s t r i b u t i o n . 

We use data (see figure 3.13) f o r the processes p ^ i T ; TI+^HT ; 

p-»Tt ; and p**7t . We choose these as none of them should have a 

d i f f r a c t i v e peak and we expect none i n R° ̂ » charged p a r t i c l e , which i s 

e f f e c t i v e l y the process described by N as x-» 1 . 

We again neglect the difference between the variables y and 

T) and so 

The correlation data are at s=929.5 GeV2 . We thus take the low energy 

data at energy M2 and calculate x=l-M2/ s . For each of the two values 

of y we calculate y 1 knowing x and hence read o f f N^M^jy 1) from the 

low energy data*. T h e i n t e g r a l over the small size of the detector we 

approximate by 

Here e = 0.25 .This value i s then multiplied by N ( s j x , t ) for proton 

production to f i n d the double d i f f e r e n t i a l cross-section. 

We also use the data f o r the relevant Qj^. to get the normalised 

d i s t r i b u t i o n N . (See figure 3.1*0 \ 



121 
The resulting parameter free prediction i s shown i n figure 3.15 . There 

i s now no d i f f r a c t i v e peak i n the double d i f f e r e n t i a l cross-section. 

The model predicts, i f anything, a too rapid decrease as x-» 1 . This may 

be due to the x resolution of the experiment. To see the model's 

prediction f o r Wp>50 GeV2 where there is very l i t t l e suitable low 

energy data, we can extrapolate using a scaling approximation. We assume 

that f o r Ma>50 GeV2 the d i s t r i b u t i o n N (Wpjy 1) does not depend upon M2. 

Dependence on x w i l l s t i l l come i n through y 1 . I n each case ( &=90°> 

<8=117.5°) we extrapolate from the largest M2 point that we have into 

the central region where we expect the scaling approximation to work 

best. These lines are also shown i n figure 3.15 • Errors on them w i l l 

clearly be at least as large as on the points from which the extrapolation 

i s made. Within t h i s error the description they give of the shape of the 

data i s excellent. 
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3.6 The correlation as x-» 0 x 

The exact nature of the correlation when* the proton i s 

produced at small x i s d i f f i c u l t to ascertain from the, data .(Figure 3.9) 

There does, however seem to be a positive correlation. Our model i n t h i s 

region i s inappropriate. However we can make some remarks concerning 

t h i s region. F i r s t l e t us examine the baryon-meson correlation under 

the assumption that one and only one baryon i s found with x>0 i n proton-

proton interactions. I f t h i s assumption i s correct, then from 1 

\ 

we have . . ^ 

c* (ft.fc) o t f e ^ M " <W> ~ <"\j> < n M > ^ 0 (3.50) 

and also 

(3.51) 

I f the r e l a t i v e production cross-sections for the various possible baryons 

are independent of the number of mesons produced, then can substitute 

•proton 1 f o r 'baryon1 i n t h i s discussion. I f now there i s a short range 

P 
DIAGRAM 3.3 

correlation between the proton and pa r t i c l e c, (the Mueller-Regge 
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approach - diagram 3.3 - gives us no reason to suppose\there i s n ' t ) , 

then the long range correlation w i l l have to have the opposite sign to 

sa t i s f y (3.51) . This can simply be effected i n our model by taking 

where & can be positive or negative as required. 

On the other hand i t may be that the short range correlation 

( i f t h i s i s what i s observed as x-»0) i s associated with antibaryon 

production and hence a v i o l a t i o n of (3«5l)» v 

\ 

V 

A 

file:///there
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3*7 Beyond two p a r t i c l e correlations 

The ease with which our model can be generalised makes i t 

worthwhile to predict further quantities which have yet to be measured. 

We take here the case where one proton and two centrally produced 

particles which we refer t o as c and d are observed. 

Instead of equation (3«3l) we now have analogously 

The three p a r t i c l e correlation we wish to f i n d i s from (l.lk) 

- N^/O K I S ^ J N ^ ( ^ ) ( 3 T 5 U ) 

Equations (3.5l) and (3.53) now give 

~ «i£»s ^ K? 4 (MVji) - N ± ( J . " O K i ^ i ^ l ( 5 ' 5 5 ) 

We again define i n a similar way to R '2 

" www '' (5,56) 

and so t h i s quantity becomes 

\ 

\ 
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(3.57) 

The quantities Cg here are the two pa r t i c l e correlations between the 

two observed particles other than the proton. Although t h i s formula 

looks complicated, i n the central region i t i s f a i r l y easy to see what 

i t w i l l look l i k e . For y'Q and y^ to be i n the central region, ,we must 

have analogously to (3.^2) and (3.^5) v 

(3.58) 

where 

(3.59) 

The term involving the product i n (3»57) vanishes i n t h i s region (that 

i s R2=0 ). The short range component of Cg w i l l , as discussed in'the 

f i r s t chapter, only depend upon 7c~y^ a n d so, as ^ 

(3.60) 

then 

I f the long range correlations are of the form (3.10) with the mechanism 

b being negligible i n the central region and mechanism a scaling and 
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having a plateau i n i t s single p a r t i c l e d i s t r i b u t i o n , as discussed 

previously, then 

(5.62) 

leaving 

(5.63) 

as the prediction of our model. Furthermore i f the f^irst term of (3«57) 

can be neglected, then we expect, using the behaviour '>of R̂  , that 

R- >-2 . 
3 ,* x-» X 

Four and higher p a r t i c l e correlations (involving the leading 

proton and n-1 others) can be si m i l a r l y calculated with increasing 

degrees of complexity. 
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3.8 Semi-inclusive quantities 

An approach to long range correlations which d i f f e r s 

s t r i k i n g l y from ours i s that of reference 36. This model generates 

long range correlations between protons and pions by relati n g the pion 

m u l t i p l i c i t y to the momentum of the forward proton. By the assumption 

that a pion at 90° implies a high m u l t i p l i c i t y event which implies 

large M2 which a slow proton, the authors of reference 36 are able to 

generate a positive correlation as x-»0 . I t i s very d i f f i c u l t to 

see whether t h e i r model has any Regge factorisable structure even as 

x-* 1 . I t does, however, draw attention t o semi-inclusive quantities. 

Here again we can gain some insight into the properties implied by our 

facborisable model. Although, again, data' here are not available we 

shal l write down a t y p i c a l prediction of the model for two reasons. 

F i r s t l y we are encouraged by the success of the model so far ( i n 

particular i n the semi-inclusive property discussed i n section 3«2) and 

secondly the results are perhaps not quite what one might expect. 

Let n be the number of charged pions i n the event. The semi-
t f 

inclusive cross-section f o r pp-»p + n charged pions + anything else i s 

M is;**) (3.00 

That fo r pp~»7t + n-1 other charged pions + anything else i s 

L c l r GO 
(5.65) 

and the double inclusive spectrum i s 

GO 1 
5 £ ) 

<i0 

(3.66) 
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Denoting 

we have 

and 

(5.68) 

(3.69) 

(3.70) 

I •= N i C * ; * , ^ ) ( 5 . 7 1 ) 

We also define the semi-inclusive correlations 

from which i t follows (see also reference 56) that 

We also define 

,6) >' Ct ( r ; x.fc M f r ) 

So f a r we have defined the semi-inclusive quantities and written down 

the equations which follow from the definitions. I n exact analogy with 

equation (3.31) our model gives us 

n £ V » ^ = NfOi*» CSV, tf) 
(3.75) 
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Thus exactly as before we obtain 

(3.76) 

I n t h i s case we cannot resort to the scaling argument that 

gave R2=0 i n the central region. Instead we assume that the r a t i o 

N^(s;y)/W (s;y) i s independent of y . This implies through (i.lO) 71 

that 

v T C ? ) (3.77) 

and so we f i n d 

v\ (?) 

(3.78) 

Here we have a rather strange result. I f we measure the 

correlation R2 without noting how many pions are produced we get zero 

(at least i n a certain region). I f we measure the same thing knowing 

thab exactly n pions are produced we f i n d a number greater than zero 

and independent of n ! Not only that, i t varies with the momentum of 

the proton as shown i n figure 3«l6 • This result also implies that 

I a
nCg > 0 contrary to what i s assumed i n reference 36 . 

correlation we must work out 

Fin a l l y we should l i k e to note that t o write down the 

Following the notation of section 
— if 

3.3 we have 

2-> ^ JA (3.79) 

(3.80) 

These with the assumption that I^fMpjy) i s independent of the nature 
7C 
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of the reggeon p r o j e c t i l e , give (3*75) . Equation (3.80) with (3.2*0 

also implies that 

""n irs> 

Our assumption of the previous chapter that 0^/ a i s independent of 

the reggeon R i s now su f f i c i e n t to give 

H Cv^)' ^^"'^7^3 (5,82) 

With t h i s (3.69) follows from (3.68) and (3.71) follows from (3.75) and 

(3'70). (This i s jus t the statement that our factorising model deocribes 

the n dependent quantities consistently.) Hence 

To examine (3.82) we should write a
n ( s ) as a weighted sum of d i f f r a c t i v e 

and non-diffractive parts, and consistent with the model of chapter two 

put ^ ( M 2 ) equal to the non-diffractive part. However as data are not yet 

available we regard i t as s u f f i c i e n t , to f i n d a rough prediction, to set 

(^(M2) and a
n ( s ) to the same d i s t r i b u t i o n (as indicated i n section 3«2) 

and write a Poisson ansatz 
- i * CO' 

w 1 (3.8U) 

with mean 

K (3.85) 

Thus we f i n d 
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Co) 

(3.86) 

This prediction i s shown i n figure 5.17 for various values of n . 

Although i n the absence of data these l a s t two sections have 

been speculative, they do provide some interesting predictions on which 

our model (which seems successful as f a r as existing data go) could 

be tested. 
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FIGURES FOR CHAPTER THREE 
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3 

FIGURE l . l : Diagrammatic representation of addition 

of inclusive distributions i n the two component model. 

The arrows represent the behaviour as energy increases. 

The second component (b) i s a t y p i c a l low mass d i f f r a c 

t i o n term with a large rapidity gap and constant 

m u l t i p l i c i t y . 

t 
In S 
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FIGURE }.2.a : The sign of the long range two 
particle correlation as a function of the two 
rapidities. The broken lines represent the 
positions of zeros . The shaded region l i e s f 

outside the kinematic l i m i t . 
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-

/ \ 
•J 

a. * 

FIGURE ^.2.b : The two component model's long 
range correlation plotted against one of the 
rapidities. 

\ 
\ 

\ 

f \ 
3» 

\ 

FIGURE ^.2:c : As above but with a typical short 
range correlation superimposed. 

In both these illustrations the position of the zero, 
labelled y Q, remains a fixed distance from the end of 
the plot as Y becomes large. (See section ' i . l ) 
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FIGURE 3.3.a : Data for the two particle correlation 
i n the reaction pp-»7+hadron+any plotted against the 
photon rapidity. The white dots are for yh=0 , "black 
dots are for y^=-2.5 • Data are from reference h8 . 
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PISA-STONY BROOK 
TWO PARTICLE CORRELATION AT DIFFERENT 
H, VALUES 
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FIGURE l . i . b : Data for the normalised, two particle 
correlation R . (See reference ^9)" 
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FIGURE i.U.a : The distance of the zero i n the correlation from the 
end of the rapidity plot as a function of energy. (Data from f i g . 3.%) 

0 

i 

U 
-3 

JL 
-2 -1 O 

FIGURE *.k.b : The distance of the zero i n the correlation from the 
end of the rapidity plot as a function of the rapidity of the second 
particle. (Data from f i g *i.*b) 
The constant behaviour indicated i n each case is in accord with our 
model. x • " « 
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FIGURE 3.5 : The two particle correlation as a 
function of energy. Data from figure 3»3«a • 
Upper points : y = y g = 0 

Lower points : y x = 2 ; y g = -2.5 
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FIGURE 3.6 : 

Upper graph: The average multiplicity i n pp interactions 
(crosses) 

The average multiplicity i n pp-+pX (points) 
Lower graph: The average multiplicity i n 7tp interactions 

(crosses) 
The average multiplicity i n itp-*pX (points) 

For the points on each plot, <nc^>-l is plotted against the 
available energy Eo i n the Hp channel. 
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FIGURE 3.7 : The m u l t i p l i c i t y distributions from pp 

interactions i n s and channels. (The figures f o r s 

and if are i n GeV2). 
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FIGURE 5.8 : Calculation of the two p a n i c l e inclusive 

d i s t r i b u t i o n with one p a r t i c l e i n the fragmentation region. 

The "blobs represent Mueller discontinuities of forward 

elasti c amplitudes. 
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FIGURE 3.9 : The correlation E 2 between a proton 

(characterised by (the Peynman variable x) and a 

charged p a r t i c l e with rap i d i t y y. 

Left : y=0 

Right : y = -.87 
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FIGURE 3»10 ' An approximate parameterisation of 

the single p a r t i c l e inclusive d i s t r i b u t i o n . 
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FIGURE 3.11 : As f o r figure 5.9 but with a t y p i c a l 

result from our model superimposed. 
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FIGURE 5.12 : The inclusive d i s t r i b u t i o n for the 

reaction pp-»pX showing the d i f f r a c t i v e peak. 
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FIGURE 5.13a : The inclusive rapidity d i s t r i b u t i o n of 

a pion i n proton-proton interactions. ( c f . following 

three figures) \ 
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FIGURE 3.1^ : Total cross-sections used to normalise 

inclusive distributions. 

FIGURE 3.15 : (overleaf -» 

The top set of points represent data for the inclusive reaction pp-*pX. 

The large crosses are the inclusive spectrum at the same energy (s=93° GeV2) 

when a charged p a r t i c l e i s observed near 117.5° (upper graph) or 90° 

(lower graph) i n the centre of mass. The open points and the curves 

represent the result of our model as described i n the text. To obtain 

these results data from lower energy inclusive experiments were used as 

follows : (J> p2>7t~ ; tjj 7t+E>7t~ ,; A p^>it~ ; v P̂ *1*" • 
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FIGURE 5.16 : The semi-inclusive cross-section R ^ 
pit 

i n our model, as a function of the proton momentum. 

This i s independent o f n . v 
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FIGURE 3.17 : The semi-inclusive proton d i s t r i b u t i o n 

i n our model for various numbers of negatively charged 

particles observed plotted against the proton momentum. 

The energy here i s such that <n~> = 5 • 



C H A P T E R POUR 

The t r i p l e ppmerpn coupling 

INTRODUCTION 

In t h i s chapter we discuss the effects of the t r i p l e 

pomeron coupling. I n section one we note i t s presence i n the reaction 

pp->pX and discuss with reference to recent l i t e r a t u r e i t s properties 

as t-*0 . We then discuss the properties of many-particle f i n a l states 

which are implied "by the phenomenological t r i p l e pomeron model. Finally 

we "briefly review some of the d i f f i c u l t i e s associated with the pomeron. 

\ 

\ 

\ 

\ 
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k.1 The reaction pp-»pX i n the t r i p l e Regge region 

As we b r i e f l y mentioned earlier, the more recent high 

energy accelerators and storage rin g apparatus have allowed experiments 

on inclusive processes to reach the region where the missing mass M i s 

large and where the r a t i o s/M2 i s also large. This has stimulated a 

great deal of phenomenological and theoretical interest i n the t r i p l e 

Regge l i m i t . The discovery that cross-sections rise at such high energies 

has added yet more interest. Phenomenological f i t s centre around the 

t r i p l e Regge form 

r — i ^ 

cfcdf fee a* J " ' ( " - l a ) 

or alt e r n a t i v e l y 

which correspond to diagram k.l . G i s the effective t r i p l e Regge 

coupling (including the external vertices), *. . i s the phase from the 

DIAGRAM k.l 

Regge signature factors ( 0), and x=l-M2/s . The usual trajectories 

included are the pomeron (P) and a leading meson (R) with a(o)~ \ . 

Interference terms ( i=P and j=R) are usually neglected. We write 

these trajactories as 
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The various terms i n the expansion are then 

PPP : G k) ( l - * ) (^3) f f f v 

PPR 

RRP 
' v. / 

RRR : G W O*) S 

PRP 

RPR 

Terms with the pomeron i n the M2 channel scale whereas those with a 

lower singul a r i t y do not. The f i r s t two of these (the ones that we 

refer t o as ' d i f f r a c t i v e * ) are sharply peaked as x-* 1 , thus giving a 

pronounced leading p a r t i c l e effect. 

Much of the recent interest i n the t r i p l e Regge region has 

centred around the t r i p l e pomeron (^.3) term. A factorisable pomeron 

pole ( a(0)=l) i n (^.3) gives an assymptotically r i s i n g contribution 

to the cross-section i f GpppC 0) 8^ 0 > which of course i s inconsistent 

with the constant behaviour expected from a factorisable pole i n the 

elastic amplitude. Thus certainly i f Gppp(o) i s not zero, then we can 
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no longer hope to treat the pomeron as a factorisable pole. The form of 

Gppp(t) i s , then, of primary interest i n f i t s to the data i n the t r i p l e 

Regge region. The phenomenological situation i s no more resolved than 

the theoretical one. Roberts and Roy 3 7 in a very thorough analysis f i n d 

no evidence f o r any vanishing of the t r i p l e pomeron coupling, but 

rather f i n d that the data prefer a sharp peak as t tends to zero. On the 

other hand S i o t i s 3 8 finds that 'contrary to a common b e l i e f a l l present 

experimental data are consistent with a t r i p l e pomeron coupling which 

vanishes as t tends to zero 1. Field and Pox 4 7 agree with t h i s conclusion. 

By way of i l l u s t r a t i o n we should l i k e , here, to make a 

simple parameterisation of the t r i p l e Regge couplings and compare with 

some of the experimental data. We take 

with the exception 

where we put i n a predjudice about the t r i p l e pomeron coupling at 

t=0 . We allow the Regge intercept as before to vary between O.k and 0.6 

and the slope between 0.9 and 1.1 GeV"2. The pomeron slope we allow to 

vary between 0 and 0.5 GeV"2. Assuming exchange degenerate mesons, the 

interference terms (^.7) and (^.8) have, owing to the phase factor, too 

small a magnitude to be relevant to the f i t . (We put them i n i n i t i a l l y 

but i t rapidly became clear that they weren't making any difference.) 

I t also became clear that our parameterisation was not free enough to 

f i t a l l the data. The f i t could not produce a deep enough dip i n the 

x dependence of the W.A.L. data (see for example figure h.l). Other 

t r i p l e Regge analyses have also had this problem 3 9. We can f i t the 
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I.S.R. data w e l l , out to t=-.65 (see figure k.2). Larger | t | i s d i f f i c u l t 
j u s t because of the form of equation (4.10). To allow f o r the r i s i n g 
factor ( t ) , the parameter bppp m u s " t "be large and thus we f i n d that 
t h i s form drops too rapidly as I t l "becomes large. The form of the G 

PPP 
correspondig to the f i t i n figure h.2 i s shown i n figure k.J , The 

analyses i n references 58,39 perform a f i t at each t value separately 

and so do not encounter t h i s d i f f i c u l t y . These authors do f i n d one 

solution where Gppp seems to dip at small | t | . The f i t i n reference 

37 allows much greater freedom i n the forms for the G. and the 

tra j e c t o r i e s . We can then only state that although a l l f i t s to the data 

require a positive t r i p l e pomeron term for t away from zero, whether i t 

vanishes or not i s a very open question. Our parameterisation, which we 

regard as the simplest that one might think of, requires j u s t a l i t t l e 

coercion to f i t a l i m i t e d amount of data, but we hope that i t i l l u s t r a t e s 

the controversy around t h i s aspect of the data. 

\ 
\ 

\ 
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h.2 Particle production from a t r i p l e pomeron model 

I n chapter two we discussed a two component picture of 

pa r t i c l e production. Our f i r s t (non-diffractive) component was one i n 

which the reggeon-particle cross-section was constant : a mechanism 

corresponding to the BRP term (̂ .5) . The second ( d i f f r a c t i v e ) mechanism 
-7 

had a pomeron-particle cross-section behaving l i k e s . Our f i t to the 

m u l t i p l i c i t y d i s t r i b u t i o n required 7>0 , which one might interpret as 

an effective trajectory i n Pp interactions having intercept considerably 

below one. (That i s a PER term). I n this section we shall discuss the 

form of the resulting d i f f r a c t i v e m u l t i p l i c i t y d i s t r i b u t i o n had we kept 

7 = 0 . (That i s a t r i p l e pomeron mechanism). This has already been . 

done i n part i n reference 30, where the mean m u l t i p l i c i t y and t o t a l cross-section are calculated, and i n reference 32 where e x p l i c i t forms 

f o r the correlations are not presented. 

assume that the m u l t i p l i c i t y d i s t r i b u t i o n i n pomeron-proton collisions 

i s the same as that i n reggeon-proton collisions. In the notation of 

chapter two then, the correlations i n pomeron-proton collisions are 

We follow again the model of the previous two chapters and 

C+.u) 

We write then from (2.9*0 

ft. 12 

where now the condition 

(̂ .13) 
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ensures a mechanism having a non-zero t r i p l e pomeron coupling. Again we 

take *_(s,z) = I ( s , z ) / l _ ( s , l ) to be the same as * (s,z) . Perhaps the 

simplest way of calculating the correlations i n Ippp i s to expand Ip i n 

powers of z-1 before performing the integrals. One then finds i t useful 

to define the integrals 

somewhat i n analogy with (2.99). The expansion then gives 

(4.16) 

and 

By calculating the assymptotic behaviour of the integrals 

, we now have an idea of the m u l t i p l i c i t y d i s t r i b u t i o n produced by 

t h i s mechanism. The form (b.lk) immediately suggests that 

g - y (*.i9) 

and so perhaps 

+1 ~ y (4.20) 
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This, i n f a c t , turns out to be not quite true, although the long range 

correlations i n t h i s interaction suggested by (k.20) w i l l s t i l l be 

present. Let us f i r s t calculate the correlations for the simplest 

approximation. We take (as i n the case which led us to the Poisson 

non-diffractive d i s t r i b u t i o n ) otp=0 and M^n"0, ^ n 

approximation from (2.37) we get 

V 
and hence 

(it.ai) 

We thus have assymptotically 

<frz ^ \ i ^ ^ (u.25) 

(4.26) 

Equation (4.24) i s derived i n reference 30 . The following two equations, 

however, also have a l o t to say about this mechanism. Their form 

indicates inherent long range correlations (which we also note are 

necessary t o sat i s f y the theorem of Le Bellac as a / d o e s not 

decrease l i k e a power of s ). We f i n d positive f 2 assymptotically and 

negative fQ as c^< 0 . I t i s interesting to note that the possible 

( l n ( s ) ) 3 term i n f has a vanishing coefficient. 
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The effect.of the t . kinematic cut o f f on the above ̂  

mm 
equations can be estimated i n the following manner. Prom the discussion 

of section 2.U we r e c a l l that t . effectively cuts o f f K(p) at some 
min 

f i x e d value of p . Thus although the correct region of integration i s 

| t | > | t -„(p)| and p < 1 , we can approximate the t . cut o f f by 
A l l .1* A A AAA •!• AA 

| t | > 0 and p < r (or ln(p)<-e = l n ( r ) ). This procedure i s 

adopted i n references 30,32 . I n the above t h i s merely results i n the 

substitution Y -> Y-e i n equation (k.22) for the function R̂  . Hence 

the assymptotic forms (̂ .23) - (U.26) are unaltered. As we are not, at 

bhis stage, interested i n making a quantitative estimate of the behav

iour of t h i s mechanism at lower energies, we need not discuss t h i s 

effect further. 

As the assymptotic form of some of these quantities i s s l i g h t l y 
0t 

d i f f e r e n t i f oĉ  =j=Q , we should also discuss this case. Por g ( t ) ~ e i n 

(2.37) we f i n d CL 

and so 
* 

Expansion i n powers of the variable P/oĉ  - ln(p) then gives 

The assymptotic behaviour as Y-*00 with a£ >0 gives 



C A
 J 0>-3l) 

'o6 

\ 

(̂ .32) 

(̂ .33) 

This assymptotic behaviour, however, might be long delayed as i t holds 

only when <x£ln(s) » P. When s i s large enough for Regge behaviour 

but oc£ i s small so that <xp.n(s) < p the forms f o r a£=0 w i l l be more 

appropriate. Thus we have a new energy scale set by the pomeron slope, 

and the transverse momentum cut o f f 0. This i s 

The effect of t h i s energy scale i s shown for the mean m u l t i p l i c i t y 

of t h i s mechanism i n figure h.k . 
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h.3 A three component model 

The apparent presence of a strong t r i p l e pomeron contingent 

i n the t r i p l e Regge analysis of inclusive proton spectra, naturally 

stimulated interest i n what sort of m u l t i p l i c i t y d i s t r i b u t i o n one 

should expect. This we outlined i n the previous section. Wow we ask the 

question : how does t h i s f i t i n with the calculations of chapters two 

and three? Let us examine t h i s mechanism as a t h i r d component. We shall 

take tho 0Cp=O case as more representative of energies (even I.S.R.) 

at which data are available. As remarked i n reference 52 t h i s mechanism 

may well f i l l i n a dip i n the m u l t i p l i c i t y d i s t r i b u t i o n which might 

otherwise appear between the low m u l t i p l i c i t y d i f f r a c t i v e mechanism 

and the non-diffractive component which has increasing m u l t i p l i c i t y . 

The increasing width (fz) of the t r i p l e pomeron mechanism should 

e f f e c t i v e l y prevent t h i s dip. 

To see how t h i s three component prescription d i f f e r s from 

the two component prescription of chapter two, we f i n d i t convenient 

to add f i r s t the t r i p l e pomeron mechanism to the non-diffractive 

mechanism, and then to add the low mass d i f f r a c t i o n term i n as before. 

F i r s t l y , then, the addition of a small amount of high mass (PPp) 

d i f f r a c t i o n t o the non-diffractive term results i n a m u l t i p l i c i t y 

d i s t r i b u t i o n with the properties 

with • 

t ' + ^ " i <•..*> 

I f we replace the non-diffractive component (a) i n chapter two with 
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t h i s combination, we expect roughly the following. As f i s now not 

strongly negative as before, the two component effect which we 

generate by adding the low mass d i f f r a c t i o n term (b) , (exactly as 

e a r l i e r ) , may not; now need to be so large. Thus the s l i g h t l y more 

slowly varying n y which we have ̂ this time, should not be d i f f i c u l t 

to accommodate. Another way to see t h i s i s to notice that the t r i p l e 

pomeron m u l t i p l i c i t y d i s t r i b u t i o n (equations (4.24)-(4.26)) has a 

very similar form to the one produced after the addition of the two 

components i n chapter two. Thus t h i s t h i r d component should not make 

too much difference when added to the two we have already. 

are independent of the energy dependence of the pomeron-particle cross-

section, ( i . e . of whether we put i n a t r i p l e pomeron coupling or not). 

As, fo r the most part, we factorise out the cross-section, the only 

place where t h i s may not be immediately obvious i s i n section J>.1, 

where the general form f o r the two par t i c l e correlation between two 

mesons i s discussed. For t h i s reason we shall outline the form of 

the pp-»ix inclusive d i s t r i b u t i o n i n this t r i p l e pomeron model. We take, 

then, the relevant term from equation (3.25) and integrate over the 

momentum of the leading proton. Hence 

We should also l i k e to note that the calculations of chapter 

1 % f ( K t ) ere 6 - 0 
i t * 1 -

(4.38) 

Taking the simple form 

As 

f o r the Pp-*7t inclusive d i s t r i b u t i o n , we have using (3.19) 

c (4.40) 
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Hence 

M D 

C here i s a constant normalisation factor. Of course there w i l l also he 

a symmetric term when the proton i s observed i n the opposite direction 

and so 

M2) 

Equations 0*.23) and (k.2h) then imply 

K - v M5) 

This mechanism when added to the non-diffractive mechanism w i l l not 

disturb the plateau feature of the inclusive d i s t r i b u t i o n , but w i l l 

break the scaling feature (owing to the form of (̂ .23) and (^.^O)) by 

logarithmic terms. This result can also be found, f o r example i n 

reference ̂ 0 . Thus the long range correlation inherent to the t r i p l e 

pomeron term may change, s l i g h t l y , the prediction concerning the position 

of the zeros i n C2 but the long range correlations arising from %wo 

component effects should remain substantially unaltered. 

\ 
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h,k D i f f i c u l t i e s with the pomeron 

In the previous section we found i t appropriate to discuss 

how a simple t r i p l e pomeron mechanism would affect our model of the 

previous chapters when included i n addition to the mechanisms already 

discussed. I n t h i s section we should l i k e to note b r i e f l y the d i f f i c u l t 

ies which t h i s simple view of the t r i p l e pomeron mechanism runs into. 

F i r s t l y we have two empirical features of the data. One i s that a 

d i f f r a c t i v e peak i s observed i n the process pp-*pX and i t i s persisting 

as energy rises. The other i s that t o t a l cross-sections do rise through 

I.S.R. energies. One can hardly f a i l to see the immediate phenomenological 

at t r a c t i o n of the t r i p l e pomeron mechanism discussed. I n reference 37* 

f o r example, i t i s pointed out that the r i s e i n the t o t a l cross-section 

i s of quite compatible magnitude with the size of the t r i p l e pomeron 

term i n the d i f f r a c t i v e peak (whether or not Gppp(0) = 0 ). The possible 

double high mass d i f f r a c t i v e term i s usually idnored on the basis of 

an estimate made of i t by taking the size of the elastic vertex and the 

high mass d i f f r a c t i v e vertex and assuming factorisation. 

I f the t r i p l e pomeron coupling does not vanish when a l l three 

pomerons are massless, then the lack of consistency of a pomeron pole 

alone i s obvious, i n that on the one hand the optical theorem gives a 

constant t o t a l cross-section and on the other the integrated t r i p l e 

pomeron contribution rises at least l i k e l n ( l n ( s ) ) . I f i t does vanish 

then even so there are d i f f i c u l t i e s . I n the absence of cuts inequalities 

have been derived from inclusive sum rules which suggest that Gppp(0)=0 

might imply that the pomeron decouples from particle-particle-pomeron 

vertices at t=0 . Assumptions concerning the analytic continuations 

involved and the effects of cuts i n these derivations have been questioned. 

I f one i s merely discussing l n ( l n ( s ) ) discrepencies, then 

one may think that the data do not have any bearing on the discussion. 
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This, however, i s not the case. Perhaps the easiest way of seeing this 

i s i n the framework of reference 9 • Here the pomeron pole i n the n-*n 

forward elastic amplitude i s seen as producing shor^ range correlations, 

constant t o t a l cross-section, and crn which f a l l like, a power of s . 

This i s e n t i r e l y compatible with a multiperipheral non-diffractive 

model i n which a lower si n g u l a r i t y i n the multiperipheral chain (o -»0) . n 
adds up to a pomeron i n the elasti c amplitude (cr^ -»constant). The need 

fo r any type of mechanism i n addition to t h i s must imply a more 

complicated form f o r the elastic n-*n amplitudes. Viewed th i s way the 

need f o r a two component model implies a p r i o r i that the pomeron i s a 

sin g u l a r i t y more complicated than a simple pole. 

Two contrasting viewpoints emerge from the l i t e r a t u r e . One 

i s that the t r i p l e pomeron term gives the r i s i n g t o t a l cross-section 

and that t h i s not assymptotic but i s approximate over I.S.R. energies. 

Before energies become large enough to allow multiple d i f f r a c t i v e 

scattering, then absorption w i l l have to become important. I t i s not 

however c l e a r 4 1 what the effects of s channel u n i t a r i t y on current 

energies might be. The alternate approach 4 2 i s to take a 'bare pomeron1 

with intercept less than one and allow this to be repeated i n amplitudes 

to obtain an output singularity with unit intercept. 
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FIGURES FOR CHAPTER FOUR 
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FIGURE 4.1 : The proton inclusive spectrum at small | t | . 

For N.A.L. data see reference 59 • 
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FIGURE ̂ .2 : Our f i t t o the proton inclusive d i s t r i b u t i o n 

at various values of s and t . (See also the following two 

pages.) gee also reference 50 • 
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FIGURE U.3 : The t r i p l e pomeron coupling from the f i t i n the 

previous figures. 
The parameters f o r the various couplings have the values : 
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FIGURE h.k : The value of the coefficient a i n the equation 

"pPP~ a , c i ' l n ( s ) 8 S a f > u n c' b i o n o f s • T h e t y p i c a l values 
p a l and oc£ = 0.1 are taken. The assymptotic behaviour i s 

a—> 1 
S-»eo 
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C O N C L U S I O N S 

In the f i r s t chapter we gave an introduction to the strong 

interaction at high energies and some of the quantities which are 

useful i n t r y i n g to measure and describe i t . We described a basic 

picture of many-particle phenomena i n terms of the Mueller-Reggo short 

range correlation approach and noted where i t seems to be inadequate. 

In p a rticular there was presented an i l l u s t r a t i o n of a case ( antiproton 

production) where one might expect better results from t h i s approach 

than one finds. The direct approach indicates that t h i s process should 

become assymptotic more slowly due to the high threshold and momentum 

transfers involved. 

I n the second chapter we derived an integral equation for 

the generating function of the m u l t i p l i c i t y d i s t r i b u t i o n f o r the 

scattering of particles involving a Regge exchange having ot(o) < 1 . 

We assumed t h i s to be a meson known from Regge f i t s to two body scatter

ing. I n particular owing to momentum conservation constraints, t h i s 

m u l t i p l i c i t y d i s t r i b u t i o n was not a Poisson d i s t r i b u t i o n . In addition 

to t h i s the data required a second, d i f f r a c t i v e , contribution which 

we calculated under the assumption that the m u l t i p l i c i t y d i s t r i b u t i o n 

from pomeron-particle collisions i s the same as^ that f o r a lower reggeon 

p r o j e c t i l e . With t h i s assumption (which i s exceilently born out by the 

data as discussed i n section 5»2) clustering i n the multiperipheral 

chain was required. (We note that t h i s would have been impossible to 

t e l l had we not r e s t r i c t e d the freedom of the model by the above 

assumption.) Our model also required d i f f r a c t i o n into low masses, 

(a PPR term), to f i t the m u l t i p l i c i t y d i s t r i b u t i o n , i n accord with 

some of the e a r l i e r analyses? 0 I n section 3.1 the momentum dependence 
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of the long range correlation was also interpreted as being evidence 

fo r d i f f r a c t i o n into low masses. 

In chapter four a possible mechanism for d i f f r a c t i o n into 

high masses was discussed. From the forms presented there for the 

m u l t i p l i c i t y d i s t r i b u t i o n of the mechanism, we should l i k e to argue 

that although the f i t s i n chapter two, with the effective trajectory 

parameter y , seem to deny the p o s s i b i l i t y of a t r i p l e pomeron 
j 

mechanism, i n fact they do not. Rather that these f i t s require more 

strongly tho presence of low mass d i f f r a c t i o n to f i t the lower energy 

behaviour of the m u l t i p l i c i t y d i s t r i b u t i on. 

Chapter three provided support f o r the hypothesis that i n 

reggeon-particle scattering, m u l t i p l i c i t y distributions are independent 

of the reggeon (including the pomeron), despite the fact that we had to 

make a much stronger hypothesis to test t h i s . This implies that 

p a r t i c l e - p a r t i c l e interactions should also provide the same m u l t i p l i c i t y 

d i s t r i b u t i o n s . These conclusions also apply to the inclusive quantities 

normalised by the cross-section, provided that one i s careful to avoid 

processes with a strong leadig p a r t i c l e effect. This caveat stems 

essentially from the fact that the pomeron i s not included i n a cosist-

ent way, but only i n a phenomenological approximation. Even so the 

pomeron does seem to be treatable as a factorising singularity and when 

considered as a p r o j e c t i l e seems to produce, so f a r as the quantities 

discussed above are concerned, very similar results to a p a r t i c l e 

p r o j e c t i l e . On the other hand the t r i p l e pomeron region seems to be 

t e l l i n g us that we need a f u l l y unitary approach to include the pomeron 

i n a properly consistent way. I f t h i s is the case i t may well be d i f f i c u l t 

to see why our phenomenological approach seems to indicate that factor

i s a t i o n works so well. 
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