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Abstract

The constant K4 for the hexagonal magnetocrystalline anisotropy
of the basal plane has been measured at various temperatures between
77k and 180K for alloys of Terbium and Scandium of compositions

Tbecl_x where x = 0.895, 0,825 and 0.89
using a torque magnetometer with automatic balancing and recording.

Simple methods were devised for setting up the instrument and for
analysing torque curves so as to correct fo; shearing and distortions
introduced by rotational hysteresis. Instability in the magnetometer was
cured by increasing the speed of response. Three methods of calibration
were compared.

The variation of K@ with temperature for the Tb/Sc alloys indicates
that the anisobropy is of single ion origin and due to the second o;der
magnetostriction of hexagonal symmetry. Analysis of the results of P.hH.
Biy ( 1967, Ph.D. thesis, University of Durham, unpublished) leads to
the same conclusion for pure Terbium. Estimates of K4 at absolute zero
indicate that the hexagonal anisotropy contributes significantly to the
driving energy to ferromagnetism in pure Terbium end the Terbium rich
alloys.

Reported changes in the easy axis of Dysprosium have been investigated.
Those below 80K are associated with hysteresis in the movement of the
domain walls and are not reproducible. Those above 130K may be explained
by the existence of fan-like spin structures but could also be due to the

uncertainty associated with determinations of easy axis using a torque

negnetometer with an unsaturated specimen.
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CHAPTER 1

INTRODUCTION

1.1 Aims of this investigation

In the heavy Rare Earth metals the magnetic ordering is,strongly
influenced by magnetostriction and magnetocrystalline anisotropy
energies; both help to precipitate the onset of ferromagnetic behaviour
and the latter energy determines the direction of the spontaneous
magnetisation in the ferromagnetic state and the detailed form of the
periodic antiferromagnetic structures.

The alms of this investigation were;

(1) to measure the basal plane anisotropy coefficients of a

series of Terbium-Scandium alloye as a contribution to
an understanding of the striking effect of dilution with

v
Scandium on the magnetic ordering of the Rare Earth;

(2) to examine further the changes of easy axis in Dysprosium

reported by Bly et al., (1969);

(3) to examine the possibility of determining the origin of
the basal plane anisotropy from the temperature variation
of the coefficieats for the alloys, pure Terbium and

Dysprosium.

1.2 Some basic properties of the Rare Earths, Scandium and Yttrium

The Rare Earths or Lanthanides are the 15 metallic elements having
the atomic numbers 57 to 71 inclusive. A list, together with some of

their relevant physical properties, is given in Table 1.1. Similar
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9

information for Scandium and Yttrium is added to the list, These two
elements are also members of group IIIA of the periodic table and have
many properties in common with the rare earths,
The chemical properties of the rare earth metals are very similar
and this made the separation of the pure elements extremely difficult
before the development of the ion-exchange method. All are active
reducing agents although they are moderately stable in dry air. Europium
is attacked most easlily by moist air and so toc are Lanthanum, Cerium,
Praseodymium and Neodymium in order of decreasing activity. Samarium,
the heavy rare earths, Scandium and Yttrium are more stable, Dysprosium
and Terbium among the rare earths being least affected by a moist '
atmosphere while Scandium is not attacked rapidly even by water. !
Of special relevance to this investigation are the electronic
configurations, the crystal structures and the alloying properties of

these metals, A survey of thelr general properties is given by Taylor

(1970).

1.2.1. FElectronic Structures

The similarity of chemical properties in the Rare Earths arises from '
the similarity of their outer electron structures. The distribution of
electrons in the neutral atom is as follows:

2

182 252 2p% 352 3p° 34

4s? 4p® 4410 4™ 562 5p8 541 662
This is the Xenon structure with the addition of a variable number
of 4f electrons (up to the maximum of 14) a possible 5d electron and

two 68 electrons, In the description of atomic and ionic electron

structures in Table 1.1, only the additional electrons are listed.



The ions are formed by the loss of the 6s electrons and the 5d
electron (if it exists) or of one electron from the 4f shell, An
exception to this is Cerium which sometimes loses both 4f electrons
giving the ion the stable Xenon structure and a valency of four.

Other exceptions are Europium and Ytterbium which are usually divalent,
losing only the two 6s electrons and leaving intacs the stable half-
full and completely~full 4f shells respectively. In all the ions the
outermost electrons are the two 5s and the 6 5p electrons, differences
being only in the number of 4f electrons.

The elements are conveniently grouped into the Light rare earths
(La to Eu) with zero to seven 4f electrons and the Heavy rare earths
(Gd to Lu) with seven to fourteen 4f electroms.

The angular momenta, disposition and small spatial extension of
the 4f electrons are of interest because they are responsible for the

unique range of magnetic properties found in the rare earths,

1.2.2. JTonic and atomic magnetic moments

The magnetic moments of the Rare Earth elements are due to
the resultant angular momentum of the 4f electrons. The filling of the
4f shell is in accordance with Hund's rules, i.el so that the resultent
spin angular momentum S is a maximum and that the resultant orbital
angular momentum L has the highest value consistent with that value of
spin and with Pauli's exclusion principle.

When the 4f shell is less than half filled the resultant angular

momentum is given by

J=L-=-8 (1.1)



(a) Data from Chikazumi (1064 )
(b) Data from Rhyne, page 129 ol.scq. of Elliott (3972)

Number of| Trivalent | Saturation moment Effective moment
Element 4t jon nsaf:msa-r/ mny Nepp = meff/ )
electrons| S L J calc. obs. calc. obs.
g3 glI(3+1) V=V |5+ion | metad
(v) {a) (v)
Ia 0 00 O 0 0 0
Ce 1 t 5 28 | 2.4 2.54 | 2.56 | 2.52 | 2.51°
Pr 2 15 4 | 8.2 5.58 [ 5.62 | 5.6 | 5.56"
Na 5 i 6 4 5.27 3.62| 3.68 | 8,5 | 5.45°
Pm 4 2 6 4 2.40 5.68 | 2.85
Sm 5 2k 5 2% 0.72 0.85 | 1.55 1,748 *
Eu 8 55 0 0 |»3 0 $.40 8.5 %
¢a 7 5 0 5 7.0 7.55 7.94| 7.94| 7.8 | 7.98
Tb 8 55 6 9.0 9.54 9.72| 9.70 | 9.74 | 9.71
Dy 9 2 5 7% | 10.0 10,55 10.64 | 10.6 [10.5 |10.64
Ho 10 2 6 8 |10.0 10.54 10,6 | 10.6 [10.6 |11.2
Er 11 i3 6 % 9.0 9 9.58| 9.6 | 9.6 | 9.9
Tm 12 15 6 7.0 7,14 7.56| 7.6 | 7.1 | 7.8
Yo 15 5 5 4.0 4,55| 4.5 | 44 | O
Lu 14 00 O 0 0 0 0

» Bep data for the light rare earths is complex.
These values should be regarded with caution.

Table 1.2 The Rare Farth metals: magnetic moment data




When the shell is half filled or more,then
J=L+S8 (1.2)

Except for Samarium and Europium the measured effective magnetic
moments of the Rare Earth trivalent ions in salts agree quite well with

the moments calculated from the expression

Moee = 8 mﬁ/J(J+l)

where g is the Landd splitting factor, ny is the Bohr magneton and J is

obtained from equations 1,1 or 1,2, Values are given in Table 1.2.

Sm3+ and Eu3+ ions give values of L higher than that obtained
from the theoretical expression above. This was explained by Van Vleck !
by taking into account the transfer of some ions to the first excited
state which has a larger value of J and lies close to the ground state
for these two clements,

In the heavy rare earths with the exception of Ytterbium, the effective
magnetic moments in the metallic state are close to those of the ions in
salts, the slight differences being attributable to polarisation of the
_ conduction electrons in the metal; this is taken as confirmation that
the 4f electrons are localised even in the metals. A rdsumé of this

and other evidence for the small spatial dimensions of the 4f shell is
given by de Gennes (1962). Neutron scattering experiments indicate

that the mean radii of the 4f shells are of the order of 10% of the

interatomic distance.

1.2.3, Crystal structures

In the rare earths and Scandium and Yttrium, close packed

crystal structures predominate. In a close packed arrangement the

sy



atoms may be visualised as spheres packed in plamnes, which for ease of
description may be imagined to be horizontal. The arrangement of spheres
within one plane is unique but one plane may be stacked on another in
either of two alternative positions. The positions of atoms in the first
plane and of other atoms lying vertically over them may be called "A"
sites, Similarly the alternative positions of atoms in the second layer
define the positicns of "B" and "C" sites.

The stacking sequence A B AB A Bor ACA CA C gives the hexagonal
close packed structure, denoted by "hcp" in Table 1.1. Similarly the
sequences A BACABAGC, and ABCABC A B C give the double
hexagonal close packed and face centred cubic structures, denoted by
d-hcp and fcc respectively.

Samarium has a stacking sequence peculiar to itself, namely,
ABABCBCAGC.

Except for Europium, which already has a body centred cubic structure,
and Pm, Er, Tm and Lu for which there is no certain data, all the metals
change to a body centred cubic form at temperatures approaching their
melting points. This is not a close packed form,

In addition, Lathanum changes to a face ceﬁtred cubic form at
temperatures above 533K and Cerium has a double hexagonal close packed
structure below 200K and a further change to a face centred cubic form
below 77K.

Dysprosium on entering the ferromagnetic phase is distorted so much
by magnetostriction that its crystal structure can then be described as
orthorhombic. Evidence exists (Bucher et al. 1970) that high purity

Ytterbium, as normally prepared, is a mixture of hcp and fcc phases and
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that a change to 100% hcp can be produced by cooling to 77K, This

phase persists on warming up to room temperatures but may be entirely

removed by annealing at 150K.

1.2.4. Ionic dimensions

Apart from the two normally divalent elements, it can be
seen from Table 1,1 that the dimensions of the Rare Earth ions decrease
with increasing atomic number. This is the well known Lanthanide
contraction. The metallic interatomic distances (given roughly by the
length 'a' for the hcp crystals) hardly alter at all across the series,
an indication that the ion core does not play a large part ia the
binding. This applies a fortiori to the 4f orbitals which are much
nearer to the nuclei. The ratio c/a or ¢/2a is given in Table 1.1 for
the hexagonal structures. This departs from the value 1.633 which it
would have for the perfect packing of geometrical spheres and has

important consequences for the anisotropy energy.

1.2.5. Alloying properties

The Rare Earths form among themselves and with other

elements a vast array of intermetallic compounds of definite stoichiometry.
These exhibit a great variety of properties and are the objects of much
interest and investigation. A review is given by Taylor (1971).

The heavy Rare Earths with the exception of Ytterbium form
continuous solid solutions with each other and with various other metals
such as Thorium, Yttrium and Scandium,

Yttrium and Scandium have similar outer electron configurations to
the Rare Earths but are non-magnetic. They also have the hep crystal

structure and so do their alloys with hcp Rare Earth metals. They form



therefore ideal diluants for altering the magnetic and other properties of
the Rare Earths in a controlled manner and so gaining an insight into the
magnetic interactions involved,

The volume of the Yttrium atom is very close to that of Gadolinium and
dilution of the heavy Rare Earth metals with Yttrium does not alter the
lattice parameters greatly. Dilution with Scandium, in contrast, causes
a reduction of the lattice parameters. For Tb/Sc alloys, Chatterjee
and Corner (1971) have shown that there is a linear relationship between
the "c" axis lattice parameter and the atomic percentage of one
constituent, while there is a nearly linear relationship for the "a"
axis lattice parameter.

The effects of dilution with Yctrium and Scandium on the magnetic
properties of Rare Earth metals are considered in Chapter 4 following the
introduction of some fundamental magnetic concepts and definitions in

Chapters 2 and 3.



CHAPTER 2

SOME BASIC CONCEPTS AND DEFINITIONS

2.1 Units

S5.I. units are used throughout. The magnetisation or magnetic
polarisation,which is the magnetic moment per unit volume, is symbolised by
M and is related to the flux densiéy (B) and the magnetic field strength
(B) thus:

B =u°(H + M) (2.1)

The units of M are therefore Am-l.

This convention, usually attributed to Sommerfeld (1964, page 89)
differs from that used in many standard works but is embodied in the
Symbols, Units and Abbreviations report of the Royal Society (1969) and
is the one accepted by the Intermnational Union of Pure and Applied
Physics., It is also associated with methods of developing the theory of
magnetism in which prominence is given to current loops rather than to
the concept of magnetic poles,

The maximum torque on a current loop of area A carrying a current
I in a field of flux density B is B A I, The Soﬁmerfeld convention
allows the product AI to represent the magnetic moment (m) of the current

loop so that
Maximum torque = Bm (2.2)

The small 'm' is used to represent magnetic moments. Thus the Bohr
magneton is represented as 'mB'.
For a current loop where m = Al, the relationship (2.2) above holds

both in free space and in isotropic homogeneous magnetic fluids,



provided that the fluid is allowed to penetrate the loop. 'A permanent
magnet, provided that it has a very high coercive force, can be
represented by a system of currents but is only equivalent to them in
vacuo. The magnetic moment is then defined by equation (2.2),

In a homogeneous isotropic magnetic fluid the bar magnet is
equivalent to a system of current loops from which the fluid has been
excluded and the maximum torque is then (Whitworth and Stopes-Roe, 1971)
given by:

Maximum torque = p Hm (2.3)

Jouguet (1972) points out that neither (2.2) or (2.3) above can be
applied directly in all cases. They are identical in free space and
become so in a magnetic fluid when account is taken of the change in
magnetic polarisation produced when a bar magnet displaces the fluid.

As a result of (2.3) the maximum torque on an atomic spin is
Maximum torque = p HJgm, (2.4)

where g is the Landé 'g! factor and J is the angular momentum quantum

number.

The work done per unit volume in magnetising a body is
M
W =u°6f H aM (2.5)

M(T) denotes the magnetisation at a temperature T. The reduced magnetisation,

here denoted by s is given by m, = %%%%, where M(0) is the magnetisation

at absolute zeru. In describing experimental results, field strengths
are given as uoH(=Bo) and in units of Tesla rather than in Am-l. The

quantity Bo is called variously 'Applied flux density', 'External flux
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density', or less rigorously 'Field Strength' (Bates 1970), Comparison

with other work is then facilitated by the easy numerical relationship.

Bo/Tesla = 30/104 Oersted (2.6)

Comparison of specific magnetic moment (o) is also easy

(J/Amzkg—1 = g/e.m,u. gmul (2.7)

2.2 Varieties of magnetic behaviour

For an isotropic material, or for a particular direction in an
anisotropic material, the magnetic susceptibility Xp is defined by the

relationship
M= &nﬁ, (2.8)

Since M and H have the same dimensions in the Sommerfeld convention, Xh
is a dimensionless quantity as in the c.g.s. system. Because of
rationalisation however, X.m of unity in S.I. units is equivalent to a

volume susceptibility of 1l/4mw when M and H are measured in c.g.s. units,

xm is not in general a constant and its value and variations with

. magnetic field strength and temperature can be used to distinguish

varieties of magnetic behaviour,

2.2,1., Diamagnetism

For diamagnetic substances X is negative, small, (of the
order of 10_5 for solids) nearly independent of applied field strength
and usually independent of temperature also. The bulk magnetisation of
magnetic materials is due to the orbital and spin angular momenta of
electrons. In solids however the degeneracy of the orbitals which allows

the motion of electrons from one orbital to another may be removed by
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bonding and the orbital angular momentum of unpaired electrons may be
partly or wholly quenched. Magnetic effects are then due to spins only,
In diamagnetic substances the electrons are paired so that their resultant
angular momenta are zero. The effect of an applied magnetic Field may be
understood in classical terms as causing precession of orbits and spins
about the field direction in such a sense as to produce a magnetic moment
in the opposite direction to the Afplied field. The effect occurs in all
materials including those described as 'non-magnetic', but is masked in
all magnetic materials by the larger magnetic polarisation due to the

atoms having resultant magnetic moments.

2,2,2. Paramagnetism

In paramagnetic substances Xm is positive, of the order of
10-3, is independent of applied field strength and varies with temperature

according to the Curle law

=L
ST (2.9)
or the Curie-Weiss law
S
xm = T_e - (2.9&)

in which C and 6 are constants, O being known as the paramagnetic or
asymptotic Curie temperature, see Fig.2.1l, Paramagnetic behaviour at
ordinary temperatures can be accounted for by regarding the elementary
moments as randomly orientated due to thermal motion. When a magnetic
field is applied, orientations more nearly parallel to the field have
a lower potential energy and the fraction of the elementary moments

having those orientations increases in accordance with the Boltzman law.
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g% «  exp(-W/KT) (2.10)

%g is the number of moments per unit solid angle orientated at a given

angle to the field and W is their potential energy. There is thus a
resultant bulk magnetic polarisation M(T) parallel to the applied field
at a given temperature,

If J is the total a