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ABSTRACT

The physics related to two aspects of the T N — JTITN
reaction is studied.

We first consider tlic imposition of the constraints of
analyticity, unitarity and, in particular, crossing, on the
pion-pion scattering amplitudes, as extracted from studies of
the low dipion mass kinematic region of the T N = ITIT N re-
action. The application of the Roy equations to pion-pion
scattering is discussed, then physical region crossing sum
rules are systematically derived and applied, in conjunction
with finite energy sum rules, to obtain information on the
asymptotic pion-pion scattering amplitudes. The amplitudes
are found to be well described in terms of Regge and pomeron
exchange; with rho-f strong exchange degeneracy broken and aa
asymptotic total cross section for pion-pion scattering rather
smaller than that expected from naive factorization arguments.

Other evidence for a small meson-meson scattering asym-
ptotic total cross section is collected, and possible explana-
tions for the apparent failure of the pomeron to factorize are
discussed.

The second part of this thesis deals with diffraction
dissociation processes. We discuss how the Deck-Drell-Hiida
mechanism, in conjunction with the diffractive production, and
subsequent decay, of resonances provides a good qualitative
explanation of many of the features of inelastic diffractive
scattering. Detailed data on the angular distributions of the
diffractively produced pion-nucleon system in the 16 GeV.
MN= ITIT N reaction are then interpreted quantitatively in
terms of a simple model based on the above ideas, with full
account taken of spin and interference effects. Information
is obtained on the pomeron couplings, and the high energy t
channel isospin zero pion-pion scattering amplitude, directly
determined, is found to be consistent with the sum rule cal-
culation results and a small asymptotic pion-pion scattering
total cross section.
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I: INTRODUCTION

The division of physics into the spheres of influence
of four distinct interactions may be one of the most unphysical
distinctions ever made.()) Nevertheless, in spite of ambitious
unification schemes (see eg. ref. (2) and references therein),
a realistic unified theory is probably a very long way off,
and it remains useful to consider the interactions separately
when interpreting experimental data. It is currently fashion-
able (once again) to use field theory in attempts to understand
the strony interaction, and the literature is full of quarks,
gluons and gauge theories. However, as Bjorken points out (3),
there is in fact little direct evidence for these things, and
so it is still useful to work with the general principles of
S-matrix theory, which should be true whichever underlying
theory turns out to be correct.

S-matrix ideas have been extremely successful in organ-
izing and interpreting a great deal of strong interaction data,
in addition to providing rigorous results like the dispersion
relations and the Froissart bound (4). Only recently has
the S-matrix approach led, via the dual models, back to field
theory. The basic S-matrix theory assumptions provide a way
of bypassing the step from quark-gluon ideas to hadronic
interactions, by being concerned only with the properties of
the observable amplitude for scattering from a given 'in'
state to a given ‘out!' state. It is required that the amplitude
be Lorentz invariant, T, C, P invariant, crossing symmetric,
unitary, and analytic in the complex plane (for 2 - 2 scatter-
ing) of Mandelstam variables, with the only singularities
being particle poles and those required by unitarity. . (See
ref.(5) for more details,)

We shall woxk, in this thesis, within the framework of
S-matrix phenomenology of strong interactions. (The term
'phenomenology' is used here to denote the organization of
data and its interpretation in terms of empirical rules and
models.) _We shall be mainly concerned with the 16 - 17 GeV/c
TN 9ITNMN reaction; this simple process contains a surprising
amount of interesting physical information.

Firstly, as briefly discussed in section 1.7, the prop-
erties of ITIT = MIT scattering (See refs.(13) for reviews of
pion-pion scattering.) may be extracted by studying the
TTN =N reaction in ;héﬁﬁﬁéﬁéggiate kinematic region, when

v ) .
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the mass of the outgoing pion-nucleon system is large. Since
there are no pion targets, pion-pion scattering can only be
studied indirectly by this, or a similar, means. Pion-pion
scattering is the simplest possible strong interaction process,
as it involves c<pinless equal mass particles. The general
S-matrix principles are thus most easily applied, and constrain
the reaction strongly. Models for the strong interaction are
most easily constructed for pion-pion scattering, and their
predictions are simple and easily tested. One of the few
strong interaction calculations which may be performed from
'first principles' uses current algebra ideas to obtain pre-
dictions for the pion-pion scattering lengths (6); these pre-
dictions are now beginning to be tested as information on low
energy pion-pion scattering becomes available. The duality
predictions of linear Regge trajectories, exchange degeneracy,
daughter resonances and straight line amplitude zero paths
may be easily checked if good pion-pion scattering data is
available., This role of pion-pion scattering as the proving
ground for strong interaction phenomenology provides the
motivation for the enormous effor* devoted to detailed pion-
pPion phase shift analyses.based on suchreactions as TN == ITTIN
(7-12).

The application of the general S-matrix principles to
pion-pion scattering will be the concern of the first part of
this thesis. In particular we shall be concerned with the use
of sum rules wvhich, as a consequence of analyticity and cross-
ing, link the low and high energy scattering amplitudes by
integral equations. Finite energy sum rules for a 2 = 2
elastic scattering process such as 7TN = TN , are well known.
(14) They tend to suffer from dependence on the energy
chosen as the boundary between low and high energy descriptions
of the amplitude, and to weight unfairly the higher energy
region of the low energy amplitudes. Less well known are the
physical region crossing sum rules, which may be obtained by
imposing full three channel crossing on the amplitude for an
equal mass 2 :) 2 elastic scattering process such as pion-pion
scattering. The sum rules resemble, but are independent of,
finite energy sum rules, have a more even weighting, and
are very much less dependent on the choice of boundary between
low and high energy amplitudes. Together, crossing and finite
energy sum rules are very useful for obtaining information




about high energy pion-pion scattering; this will be the
subject of much of chapter two.

The N = MT/TN reaction displays many interesting
features in the kinematic region where the incident pion
suffers little change in momentum in scattering from the
nucleon, which dissociates into a low mass pion-nucleon sys-
tem., A simple physical picture of the processes contributing
to this 'diffraction dissociation' reaction may be obtained
by considering the nucleon as a loosely bound state of pion
and nuclecn., Either of these particles may then be 'hit' by
the incident pion, leaving the other as a 'spectator'. Alter-
natively an excited state of the pion-nucleon system may be
formed, which subsequently decays to a free pion and a nucleon.
The contributiocis of these three processes may be separated by
considering the angular distributions of the outgoing pion-
nucleon system. Direct information on high energy pion-pion
scattering is obtained from the spectator nucleon process;
information on how the pomeron (which mediates the interaction
between the incoming pion and the nucleon) couples to the
nucleon to excite a nucleon resonance may also be extracted.
We shall show in the second part of this thesis how the de- -
tailed distributions of the outgoing low mass pion-nucleon
system may be understood suprisingly well in terms of,basic-
ally, the simple mechanisms outlined above.

In the remainder of this introductory chapter, after a
very briesf discussion of the kinematics of a 2 = 2 scattering
process, we consider in more detail how the principles of
analyticity, crossing and unitarity constrain a scattering amp-
litude, emphasizing the simplest case of pion-pion scattering.
We show how analyticity relates the asymptotic and low energy
forms of a scattering amplitude by the finite energy sum rules,
and how these may be applied to the pion-pion scattering
amplitudes. We discuss the processes contributing to the
TIN = ThN reaction, and show how the partial wave amplitudes
for pion-pion _scattering may be extracted.




1.1: KXinematics

There are 3n - 4 independent kinematic variables avail-
able to describe a general 2 - n particle reaction. It is
often convenient to choose these as Lorentz scalars, which
may easily be related to experimental observables in any frame
of reference. For the 2 = 2 reaction, two out of the three
usual Mandelstam variables s, t, u, (see eg.ref.(15)) are often
chosen. The three variables obey the relation:-

.
s+ C+u = 2 m? (1.1)
Z

When the four particles all have the same mass, the
variables are c¢imply related to the centre of mass momenta,
q, and scattering angle 6@ by:-

s= b(m+|4f) (3.2)
t= -2|4*(1- 06 (1i.3)
= -29f*(1+ o 0) (1.4)

Thus physical scattering (in the 's-channel') occurs when

s ) 4am2, t4£ 0, u 0. We choose our normalization (see appen-
dix (A)) such that, for 2 =) 2 equal mass scattering, the diff-
erential cross section is related to the transition matrix T
by:- :
do 1 frf*

d(we) 3275 (1.5)

We show how to derive the analagous result for 2 - 3 scattering
in appendix 1B, and discuss the kinematics of 2 - 3 scattering
in later chapters.

1.2: Analyticity, crossing and dispersion relations

As a consequence of unitarity, the elastic scattering
amplitude, considered as a complex valued function of the com-
Plex variable s, must have a branch point at every value of s
corresponding to the threshold for a kinematically allowed
reaction. (See eg.ref.5) To make the amplitude a single
valued function it is simplest (and conventional) to cut the
complex s plane from the lowest energy branch point to s = oo

For simplicity, we now specialize to equal mass scatter-




ing, as exemplified by the m’n’— n’n’ process. The
scattering amplitude, T (s, t, u), is single valued in the
complex s plane cut from s = 4 to s = o0 (vhere we take the
pion mass to be unity). The crossing postulate implies that
the same amplitude must also describe ' channel' m°rr° scatter-
ing, when u) 4, s€ 0, t ¢ 0; thus in order that the ampli-
tude be single valued a cut must be made in the complex

u plane from u = 4 to u=00, which appears in the s plare,

by eq.(1.1) as cut froms = -t to s = -~ .

The singularity arising from t-channel scattering when

t > 4 may similarly be taken care of., We take the physical
(s=channel) scattering amplitude as the limit, as & = 0+, of
T (s+<£ , t).

The Mandelstam hypothesis (16) states that the only sing-
ularities in the physical amplitude are those required by
unitarity (a slightly less stringent condition may be derived
from the postulates of axiomatic field theory (5)) and se the
singularities outlined above are the only ones present in the
nfn°scattering amplitude. (In general 2 - 2 scattering,

s

Fig.l.l. Dispersion relation contour of integration. The
same contour, with a finite cutoff, is used in the
derivation of finite energy sum rules.




there may also be poles on the real 's' axis corresponding to
particles C, of mass less than the sum of the masses of A and
B, formed in the AB -y C reaction. No such particles can be
formed from two pions.) We may summarize these properties by
integrating the function T (s, to, u)/(s = sp), with t fixed .
at t = to, around the contour shown in fig.l.l (maintaining
the mass-shell condition (1.1)) and using Cauchy's theorem,

to obtain the unsubtracted fixed t dispersion relation:-

Re T(S,,éo)«o) s j( (or!éa! +A(x,'£,[)a(4; +j‘ Al '{-! (1.6)
x =5 x=Mo n o«-5,

The s - u crossing property T (s, t, u) = T (uw, t, s) has been

used to write the integral over the left-hand cut in terms of

the integral over the right-hand cut; the absorptive part of

the amplitude, A (s, t, u) is defined as:-

A(sté u) = £&m0 T(s+4£;) ~T(s-i¢ ¢) (1.7)
+ 4

This is equal to the imaginary part of the amplitude if s, t
and u have such values that the scattering is physical. Eq.(1.6)
is.only meaningful if L#T(x;f)/ﬁ"s)'-'o. For this tc be

true, T (s, t) = O as s oo ; if this is not the case we

may repeat the above procedure, replacing T (s, t, u) by

T (s, t, u)/(s -s1) to obtain the once-subtracted dispersion
relation:- '

Re T (s, 45, 4,) - Re T (5,45, 4) =

o (1.8)
_fo__s_;j Alx o1 ]Jx +f‘r(,¢) e

- 1'59)(95" 9;) 65 "“o) ( x"a’) A («' SO) (x ~$ ')

b

The integral over [' now converges if T(S,f)/S >0 ass oo .,
This procedure may in general be carried out with n subtractions
so that the integral over I' converges ifT(5¢)/s"> 0 as s o0 .
For pion-pion scattering, Martin (17) has shown, from the
postulates of axiomatic field theory, the important result that
at most two subtractions are needed in dispersion relations

for the amplitude when sg ) 4, 4) tg ) - 28 (this includes
an energy region wvhere the scattering is unphysical).




1.3: Further consequences of crossing

In elastic pion-pion scattering it is possible (since all
the particles are the same) to impose t - u crossing at the same
time as s - u crossing, thus obtaining extra constraints on the
scattering amplitude. We shall discuss these constraints in.,
more detail in the next chapter; here we indicate the idea.
Suppose that the n°p® scattering amplitude obeys an unsub-
stracted dispersion relation; we mayv then write, for fixed
t =uy -

Re T(SO) “o, éo) =L j(-f“)'“az + A(OCL___)_M, ) da (1.9)

x -5,

where the s - u crossing property has been used, Using t - u
crossing, T (sg,Ug,to) = T (sp,to,Up), and equating eq. (1.9)
to eq. (1.6) we find the crossing sum rule:-

“-éo OC'SO 1—0(0

S(A(x’uo)('&—,-—;o +_1 ) - A(:z,ft-o)(__L_. +_1_))obc = 0 (1.10)

A similar operation may be carried out using once-subtracted
dispersion relations, resulting in a more rapidly convergent
integral -~ this will be left as an exercise for the reader.

For charged pions, the application of crossing is com-
plicated by the fact that the scattering is described by three
independent amplitudes, T¥ (s, t, u), where I(= 0, 1, or 2,)
is the total isospin of the state in which scattering occurs.
Whereas for n°m’ scattering we had simply T (s,t,u ) = Tg (t,s,u)
(the suffix indicating the channel in which scattering is phy-
sical) we now need to define the combination of s channel amp-
litudes:- '

/
Te(s64)= T C TI(s,é,a)
7 TS (1.11)

such that, when continued into the t channel,

T:(SJ ‘(7,44) = T: (t; $) U-) (1.12)




Likewise, we must define the combination of s channel amp-
litudes:-

I Su y 4 _ 1.13
T (s,6u) = 2 CET(5,4,4) (1.13)
b §
such that, when continued into the u channel,
T (1.14)
T, (s4,4) = T (« 4 s -

the crossing matrix, CSY for example, is obtained by writing
the s - u crossing postulate for the ab - cd reactiorn as:-

(cd/T/a 6> = (< Z|T /aat> (1,.15)

vhere b, d, are the charge conjugate states of b, d. Taking
great care with phases, and expanling each side of the equation
into isospin amplitudes, the relation between s and u chanrel
isospin amplitudes is obtained (see ref. (15) for details).

For completeness ve note here the crossing matrices:-

5 L 5

‘ é ’ 3 3 ‘I 3

s¢ [ 1 L -5 se [1 1 5
C = 3 2 6 )y C = 3 7 3% (1.16)

A ] L

3 2 ¢ 3 L2 4

(we have used the phase convention that Iﬂ*> EE+'II I> and
ITr") = + // -1 ) ) « Crossing sum rules for charged
pion scattering may now be obtained; these will be discussed
in detail in the next chapter.

The 1mp031t10n of s - u crossing allows a reduction in
the number of subtraction constants needed in dispersion
relations for charged pion-pion scattering amplitudes. The
t-channel isospin amplltudes T (s, t) have the simple s - u
crossing property T (s, t, u) (=1)I T I (u, t, s). Now it
is believed that T (s, t, u) is well descrlbed by rho Regge




exchange as § - oo ; thus T% ~ J5 and the amplitude
will require a once subtracted dispersion relation. However
the s -~ u crossing -~ odd property allows the subtraction con-
stant to be removed (18) and so an unsubtracted dispersion
relation may be written. Likewise Tg (s, t, u), controlled
asymptotically by pomeron exchange (thus T (s, t, w) ~ s),
needs at first sight a twice subtracted dlbper31on relation,
but in fact the s - u crossing even property allows a once-
subtracted relation to be written.(18)

l.4: Unitarity and the partial wave expansion
Unitarity of the § matrix implies that a scatterlng
amplitude for spinless (distinguishable) particles may be
written as an infinite sum of Legendre polynomials of the form
(see eg.ref.(15)):-

T(O;/) Z(ﬁlu/ fe P (m@ (1.17)

where kX = 1 when T is normalisedas in appendix 1A, k = 1/32IT
when T is normalised as in the next chapter. The partial
wave amplitude is

£ - L L (7, 2ide_ 1) (1.18)

vith O <’7L¢<(J

For pion-pion scattering in a state of total isopin I,
eq.(1.17) must be modified to take account of the fact that
pions obey Bose statistics., In fact:-

_rr(e}// ’7% !ﬁ{ﬁﬁa& ;(Qﬁ ’)(H(")e*?ferpe(w 9) (1.19)

£, =J72, if the final state pions are not distinguished, Qf
= l if they are. :The total cross section is given by:-

2
L 5 IT, d fL (1.20)
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The optical theorem then takes the form:-

0’;]— 1 TmTr(O) ‘ (1.21)

k515

The analytic properties of the amplitudes, together with uni-
tarity can be shown (15) to imply that Fg~ q2 as q = 0; thus
only the partial wave amplitudes of smail f are important in
low energy scattering, and the partial wave expansion eq.(1.17)
converges rapidly. For pion-pion scattering, values of Z >3
are unimportant at energies of up to 1.8 GeV (19).

The partial wave expansion is valid in a larger region
of the complex Z (= cos@ ) plane than the physical region.
In general the domain of convergence of a Legendre polynomial
expansion of a function is the interior of the largest ellipse
with foci at £ 1 which can be drawn in the Z plane without
including any singular points of the function (20). The near-
est (to Z = 0) singularity of the pion-pion scattering ampli-
tude comes from the branch point at t = 4; thus the semi-
major axis of the largest ellipse is of length 1 + 8/(s - 4).
It has been shown (21) that the partial wave expansion of the
absorptive part of the amplitude is in fact valid for
-28 ¢ t{ 4 and for any s such that 4 { s (o ; this result,
combined with that of Martin (17) shows that it is rigorously
correct to write down twice subtracted fixed 't!' dispersion
relations for pion-pion scattering amplitudes and to describe
the absorptive parts in terms of a partial wave expansion,
for —=28 ¢ t{ 4. An interesting and phenomenologically use-
ful application of these ideas has been made by Roy (22) who,
making partial use of the three-channel crossing property of
pion-pion scattering to remove the subtraction constants in
twice subtracted dispersion relations, obtained a set of
integral equations for the partial wave amplitudes. Imposing
full three channel crossing yields three of the family of
crossing sum rules, as supplementary conditions. We shall
discuss the Roy equations and their applications in rather
more detail in the next chapter.

1.5: Finite energy sum rules and the pomeron
High energy 2-body scattering processes fall into two
distinct groups; those with cross-section decreasing rapidly
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with energy and thosewith cross section approximately constant.
The former group can qualitatively be well understood with

the aid of the dynamical assumption that the amplitude is
dominated by the exchange of one or two Regge poles#{With more
complicated singularities also present but of less importance)
with intercept o(o A~ 1 ; features such as shrinkage of

the forward peak, fixed t structure and factorization may

also be explained. The second group of processes are diffrac-
tive in character and occur when the ouigoing particles

retain the same quantum numbers as the incoming, and when little
momentum is transferred between the incoming particles. These
properties are characteristic of the exchange of the pomeron
which, though probably not a simple pole in the angular momen-
tum plane, shows many of the features to be expected from a
Regge pole of intercept doty | . We write, for the simplest
asymptotic description of the spinless 2 - 2 scattering
amplitude:~-

(ot~ T A 1 2T (99 0

‘ _ %im 7To( (%)

{ where, for the it‘ Regge pole, Bi(t) is the residue function,
o; ({:) = o, + &/ € is the trajectory function and T; = Il
[ is the signature.
| Assuming that, for s ) Sg? the above description becomes
‘ a good approximation to the physical amplitude, we may relate
the Regge description to the low energy amplitudes by inte-
grating the quantity T (s, t, u) =T (Regge approx.) around
the contour of fig.l.l, taking ¥ at the finite energy s = s
instead of at s = o0 as before. By assumption, J; = 0 and we
have, for pion-pion scattering in a state with isospin I in the
t channel, the finite energy sum rule (FESR):-

Ss;l:x A: (x)/é)(:lx-—lf. M‘:)Mr = jsoA (Re”e) (1.23)
b 4

o

I=0,1, 2; n+ I is odd and positive.
" The same expression occurs on the right-hand side as on
the left, but with the amplitudes replaced by their Regge

* for a good introduction to Regge theory, see ref.(15).
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approximations. We have defined an integrand symmetric under
S = u crossing in order that the integral along the left
hand cut of fig.l.l. maps onto that along the right hand cut.
Since only s - u crossing has been used, similar relations
may be obtained for any AB - AB reaction. Any suitable '
integral value of n, the 'moment' of the FESR may be chosen,
however in practice a choice of n ) 1 results in a severe
dependence of the integral on the cutoff energy, s,. “
For an tideal' scattering amplitude we might hope to
describe the iow energy amplitude purely as a sum of resonances,
and the high energy amplitude as a sum of simple Regge poles,
without the pomeron. The FESR then shows that either descrip-
tion is valid if the amplitude is averaged over a range of
energy - we say that the Regge pcles are dual to the resonarces.
Explicit examples of amplitudes which satisfy the FESR's
exactly and show simultaneously Regge behaviour and resonance

- saturation, - (but violate unitarity) have been constructed

and studied in great detail; these are the dual resonance
models, and the reader is referred to refs.(23) for more
information. Specialising again to pion-pion scattering, we
note that the absence of 'exotic' isospin two pion-pion reso-
nances and Regge trajectories, implies that (if the right and
left hand cut contributions can be treated independently):-

J‘A (x j[é"f(x{ "-‘Ae(:)( é]o(oc - (1.24)

N

and so, if rho and f exchange dominate the t-channel isospin
one and zero amplitudes respectivelyi-

o () = pt) 5 ImBu(t) -

3 L ﬂf(é) (1.25)

The rho and f Regge trajectories are strongly exchange degen-
erate., - - 7

Of course, in a real scattering process, both low energy
background and high energy pomeron exchange are present. Har-
ari and Freud (24) suggested that these contributions to the
amplitude may be dual, in that their FESR integrals are equal;
this idea is given weight by the appearance of a new singu-
larity in the angular momentum plane (the pomeron ?) when
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non-planar dual diagrams (with t~channel vacuum quantum
numbers and no s--channel resonances) are calculated in speci-
fic dual models. In practical calculations, including the
full low energy amplitudes and with rho, £ and pomeron tra-
jectories exchanged at high energy, eq.(1.25) should be test-
ed rather than assumed. A lack of high energy pion-pion '
scattering data means that the FESR type of calculation is
almost the only way of determining the properties of the
Regge exchanges in pion-pion scattering. While the rho tra-
jectory can be determined from the FESR eq.(1.23) (with
I =1, n= 0), the contributions tc the amplitude from the
exchange of pomeron and f Regge trajectories, which possess
the same quantum numbers, cannot be easily separated without
) assuming the strong exchange degeneracy condition eq.(1.25)
or attempting the unstable cutoff dependent procedure of
solving between FESR's of different moment. As will be seen
in the next chapter, the crossing sum rules provide extra
constraints which make this separation a possibility.

The pomeron singularity, as well as having a special
role in duality schemes, differs from normal Regge poles in
having an intercept of unity (or near), a less steep slope and
i - no associated particles. Recent results show that the total
cross section of several elastic scattering processes is rising
at the highest experimentally available energies. For instance,
the proton-proton total cross section may be parametrised
as (25, 26):-

0"1(5) o~ g, +0; ew"(s/so) (1.26a)

0:07

or O'T(S)’l Oy S (1.26b)

Froissart has shown (4) that any rise of cross section
faster than {m?(s) will eventually violate unitarity. The
pomeron cannot thus be a simple Regge pole of intercept 1.07,
as suggested by eq.(1.26b) and must be a more complicated ob-
Ject. If the pomeron were a simple pole, we would expect
the residue function to factorize, leading to the prediction
(27):~

_

oz (rm) = 0;1(7,-,,)/0; (¢) | (1.27)
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in the energy region where the processes are dominated by
pomeron exchange. If the intercept of the pomeron trajectory
is unity, the relation eq.(1.27) is energy independent, (once
the pomeron contribution to the amplitudes is dominant) and
predicts 07 (M ) &2 |5mf. which, as will be seen in later,
chapters, is rather too large. The question of factorization
of the pomeron will be discussed in more detail in chapter 3.

For most of our purposes it will be sufficiently accu-
rate to treat the pomeron as a Regge pole of intercept unity.
The optical theorem, eq.(l.21) shows that the imaginary part
of the scattering amplitude is very large in the forward di-
rection (t =0); thus the pomeron must be mainly imaginary at
t = 0 and so has even signature.

16

77772

%
va ( (eva

)
% 32

o oy

Fig.l.2. Dalitz plot of the 16GeVk JTN = TTITN reaction,
The shaded areas correspond to the kinematic re-
gions studied in this thesis.
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1.6: Processes contributing to the TN = TTTT N reaction
~The TTN = TN reaction contains a great deal of
physically interesting information. In fig.l.2 we show the
Dalitz plot for this reaction at 16 GeV/c; the two shaded
regions, corresponding to the productior of a pion-nuclear
system of mass 1-2 GeV/cQ and a dipion system of mass
0.3 - 1.8 GeV/c2 are of particular interest. Most of the
low mass pion-nucleon production occurs when the dipion mass

is large (and vice versa). An isospin analysis (see chapter 3)
may be carried out to separate the isospin zero exchange con-
ponent of the pion-nucleon production amplitude; for suffi-
ciently high sub-energy this will be dominated by pomeron ex-
change. We shall present evidence in later chapters that the
amplitudes for three processes - pion exchange, or spectator
nucleon (fig.l.3a), nucleon exchange, or spectator pion (fig.
1.3b) and N* resonance production and decay (fig.l.3c) -
provide the major contributions to the diffractive production
of a low mass pion-nucleon system. (Analagous amplitudes will
be present in other inelastic diffraction dissociation reactions).

{c) Resonance Excitation

(a) _n Deck A {b) N Deck

i 0
| N3, .

{ thet. ), spin J, mass/S,,
! -

Ael.y ) \\n {hel.y .

N

B E

™

Fig.1.3. The three processes taken to contribute to the
TTTP— 1~ (7' ) reaction, in the
kinematic regions shaded in fig.l.2. Process
'a' dominates when the outgoing dipion mass is
low.
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The first and third amplitudes are of particular interest as,
if their relative contributions can be separated, we shall
have information on how the pomeron behaves in high energy
pion-pion scattering, as well as how it couples to the NN*
system, In fact, since the two diagrams lead to different
angular distributions of the pion-nucleon system, their
contribution can be separated - but it is necessary to con-
sider the spins of the particles involved (and thus a model
for the pomeron couplings is needed), interference, duality,
and the role of the nucleon exchange diagram, fig.l.3b. This
procedure and the results obtained are discussed in detail in
chapters 4 and 5.
For high mass pion-nucleon systems (and low mass dipion
! systems) the resonance production and decay amplitudes will
become small as the pion-nucleon decay width of the N* resonan-
ces decreases. If in addition the momentum transfer between
the ingoing and outgoing nucieons, t yy, is restricted to
small values, then only the pion exchange amplitude (fig.l.3a)
will be important and, since the exchanged pion is not far
off shell, the angular distribution of the dipion system
should be very near to that which would be obtained were the
pion-pion scattering physical, with a pion target (an experi-
mental impossibility)+. We see from the Dalitz plot of fig.
1.2 that overlap between the production of a low mass dipion
system, and of N# resonances in the 1-2 Gev/'c2 mass region,
will be small. This indicates a means of obtaining information
about pion-pion scattering without the need for a pion target.,
We outline below, very briefly, one procedure for extracting
TrIT partial waves from data on the TN = IT/TN reaction,
and refer the reader to refs.(7 - 9) Ffor more details.

1.7: JTIT partial waves from TIN = TITIN
It is assumed that the one pion exchange mechanism

dominates the TN = JT/TN reaction when tyn is small and
the outgoing pion-nucleon sub-energy is large. After making
corrections for small off-shell and absorptive effects, the
modulus of the pion-pion scattering amplitude may be obtained
at each required dipion mass from the angular distributions of
the outgoing dipion system. The procedure for obtaining the

* We now consider isospin one and two, as well as isospin

zero, exchange,

s -
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TTIT partial wave amplitudes is then precisely the same as if
real pion-pion scattering had been measured. The coefficients
of the Legendre polynomials in the partial wave expansion
eq.(1.17) are found by taking moments of the angular distri-
bution. The overall phase of the amplitude may be fixed by
requiring that the leading partial waves be consistent with
unitarity and resonance behaviour (7), or by requiring the
amplitude to have the correct analyticity properties. (28, 29).
Usually the T p —'7T n'n reaction is studied to
obtain information on isospin zero and one pion-pion scatter-
ing, with information on the small isospin two amplitude input
from a study of TT*’P — T rtn (see eg.ref.(52));

the Tr*p — TTHITTAY (0), Tp —mTtX°
(11) and TP — ]7°77°7u (12) r=actions have alsc been
used.

Unitarity provides a severe constraint on the solutions
for the amplitude in the region where the scattering is mainly
elastic, at energies below about 1GeV (the threshold for the
JITIT — K 'R' process), but has less effect at higher
energies when inelasticity is large. In the analysis of
ref.(7) it is shown that an unavoidable 4 - fold ambiguity
arises, because it is not known which of three roots from the
three complex conjugate pairs of roots of the sixth order poly-
nomial equation IT(cose )'z= 0 to choose as the solution
for T (cos@ ). Physical considerations on the path of the
zeros of T (cos@ ) in the complex energy plane then reduce
the 8-fold ambiguity to a 4-fold one. The authors of ref.(7)
suggest that accurate measurements of TT—P — TT°TT°¢u
are required to select the physical solution; however recent
results have shown that the imposition of analyticity may
allow the correct solution to be selected. Froggatt and
Petersen (28), by carrying out a partial wave analysis of the
pion-pion scattering amplitude at energies between 1.1 and
1.8 GeV and simultaneously demanding that the amplitude possess
the correct analyticity properties, obtain a solution similar
to solution B of ref,.(7), with a large /0/ daughter resonance
in the P wave under the 'g' resonance. Johnson, Martin and
Pennington (29) find that only solutions B and D of ref.(7)
can be made consistentwith analyticity (as embodied in fixed
't' dispersion relations for Tr_IT+ —) 7T-7'T+ and
nnt — 1*mT  scattering); their calculation deter-
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mines the overall phase of the solutions. Both solutions B
and D possess the p’ resonance; to decide between them
good TT P = m°rm’n data is still required. Shimada
(30) finds solution A of ref.(7) (without a /J’ resonance)
preferable, on the grounds that this solution is the most
consistent with JT~7T° — 177 77° data around 1.3 GeV
and that unitarity constraints obtained from studying the

TT T —=3 KK Dprocess are better satisfied by solution A.
It is important that the ambiguity be decisively resolved, as
the /-)’ resonance is an important prediction of dual models;
furthermore, quark models which describe the ‘1// (3700) as
a 'radial excitation' of the J'/l// (3100), of necessity
predict the existence of the - /a' as a radial excitation of

the/J .
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2: CROSSING AND THE PHYSICAL PION-PION SCATTERING AMPLITUDES

In this chapter we discuss how, in practice, the prin-
ciple of crossing, in addition to analyticity and unitarity,
constrains the JT 7T == JTJT scattering amplitudes. We shall
concentrate on those constraints which apply to the physical
scattering amplitudes; much work has been carried out on
unphysical region crossing constraints (see eg.refs. (31 - 33)
but these are generally harder to use and probably contain no
more information than the physical region constraints.

The Roy equations (22) are of great value in determining
the range of possible pion-pion scattering amplitudes consist-
ent with analyticity, crossing, and unitarity, embodying as
they do these properties in a manner which is easy to apply.
They may also be used both to compute partial wave amplitudes
in experimentally unknown regions and to check the consistency
of phase shift analysis results. We discuss in section 2.1
the Roy Equations and some of the results which have been
obtained from their application.

To enforce total crossing on the amplitudes it is still
necessary to impose a set of supplementary conditions to the
Roy equations; these are a subset of the family of crossing
sum rules. Crossing swn rules have been derived in a variety

of ways, usually From dispersion relations (33 - 38); we shall

present a systematic derivation for all crossing sum rules in

section 2.2. These sum rules provide extra constraints on the
i amplitudes, and it is possible that their systematic applica-
| tion might enable the ambiguity in the o’ phase shift
} solutions to be resolved, It turns out, however, that the
leading partial waves, which are very similar in all phase-
shift solutions, provide the dominant contribution to the
crossing sum rules and that uncertainty in the pocrly known
isospin two pion-pion scattering amplitude is more important
than the difference between the 77~ 17 phase-shift solutions.

The crossing sum rules are found to be of most use when

applied to study the asymptotic form of the scattering ampli-
tudes. Such a study may be attempted using only FESR's (39)
or continuous moment sum rules (40), however results depend
strongly on the poorly known phase shifts at the high energy
‘ end of the data, and on the cutofft chosen. Crossing sum

| +So in eq.(1.23).

_ .
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rules provide valuable extra independent constraints and in
genergl have a more even weighting and are very much less
dependent on the cut-off than normal FESR's.

2.1: The Roy Equétions
The Roy equations are a set of integral equations for
the pion-pion scattering amplitudes embodfing the analyticity,
crossing and unitarity properties of the amplitudes.
To derive these equations, a twice subtracted fixed t

dispersion relation (rigorously valid for 0¢ s (o0, 4 )
t ') - 28) is written for the amplitude, and s - u, with
partial t - u, crossing is imposed to allow the amplitude

at the subtraction poiats to be determined. The amplitudes
are then exrvressed in terms of partial waves to arrive at an
equation of the form:-

r N, ’
Re & (S) = consts. + §§L G-er(oc,s) é)ﬁmlf;(x) doc +

0

lsitedie o
N

We illustrate this procedure for the TTOTTO scattering
amplitude in appendix 2A. The constants are simply related
to the TTTT S and P wave scattering lengths® and the
‘cutoff', N, is chosen at any convenient value, above which
a high-energy parametrisation of the amplitudes is used. Since
gl (x)nzbéx3, the equations are not very sensitive to the form
of this parametrisation. The equations are valid for
0< s¢ 60 ( 1.08GeV) but, as mentioned in appendix 2A,
small errors may arise in practical calculations unless this
range is restricted to ) ¢ s { 32 ( 0.8 GeV) (41). Full
t - u crossing may be imposed, as indicated in appendix 2A,
and leads to three supplementary conditions (crossing sum rules).
A detailed study of the uses of the Roy equations has

The scattering lengths are defined as (in units where the
pion mass is unity).-

I _ g T
“e',ﬁ;';,-;.g_e_

W'4f£ q/= ‘:!_’J-S_-T

2e+!

4
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been carried out by Basdevant, Froggatt and Petersen(42).
These authors start by assuming that the mass and width of
the A resonance is known, inelasticity below the JTIT - KK
threshold is negligible and that there is no isospin two
resonance below this threshold. They construct a unitary,
analytic, crossing symmetiic function and use this to solve
the Roy equations iteratively. A wide range of allowed values
for the JT/T scattering lengths is found, with an infinity
of solutions for the amplitudes below 1.08 GeV. This result
shows, that the solutions obtained in ref.(43) using the un-
Physical region constraints and with an input similar to the
above, form only a small subset of the class of possible so-
lutions. The authors of ref.(42) then consider the effect of
including extra experimental information in the calculation;
namely a set of isospin zero S-wave phase shifts in the region
500 MeV € Mg ¢ 1100 M e V. The Roy equations
then lead to a very narrow band of solutions for a; and ﬂg
in the ( a: , d} ) pPlane, a result very similar to the 'uni-
versal curve! of solutions for a: and af found by Morgan
and Shaw (44) from simple forward dispersion relation calciu-
lations. Indeed, by strict adherence to one input set of
phase-shifts Pennington and Protopopescu (45) find the near
unique values for the scattering lengths of a: = 0.15 % 0,07
and dg = - 0,05 £ 0.028, however a larger range is found
if realistic errors are allowed. The pion-pion scattering
amplitudes at energies below 1 GeV are essentially determined
by the Roy equations once a? , and a particular set of
phase shifts, are chosen. The first order current algebra
predictions for the scattering lengths are (6 ) a: = 0.16,
df’ = =0.05; unitarity corrections (46) lead to the values
of d: = 0.21, a: = -0,043, These values are consistent with
the results of the Roy equation calculations and with the
latest experimental determination of g} , from a study of the
decay process kKt = 77*77-e'v’ , (47) which gives a value
of 0.31 % 0.1

The D and F wave pkase shifts in the energy region below
1GeV., are well determined by the Roy equations, better in fact
than by experiment, (42) and may be used as input to phase
shift analyses, as in ref.(7). Since the Roy equations closely
relate the partial waves in different energy regions, it is
possible to check the consistency of phase shift solutions.

_ -
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A disturbing feature to emerge is that all experimentally
determined P wave phase shifts in the energy region below
600 MeV are inconsistent with the results of Roy equation
calculations. (48) The present belief is that the experimen-
tal analysis giving the low energy P wave must be incorrect; .’
if this analysis is in fact confirmed then serious fundamen-
tal problems must be faced. v

The simple Roy equations cannot be used to determine
partial wave amplitudes at energies greater than ~ 1.1 GeV.
Mahoux, Roy and Wanders (49) have generalised the equations,
basing them on curved dispersion paths to obtain a {more
unwieldy) set of equations valid for -~28 { s {( 125 (~ 1.56 GeV).
There is no reason why, by a process of analytic continuation,
the analagous equations to those of ref.(49) cannot be exten-
ded to arbitrarily high energies (paying the price of increasing
complexity, however) thus providing another possible tool for
resolving phase-shift solution ambiguities.

Dispersion relations and sum rules may also be written
for the inverse of the pion-picn scattering amplitudes (50, 51),
however 1t is not clear that such relations contain any more
information than the Roy eguations with the physical region
crossing sum rules.

&

2.2: Derivation of 7T 7T crossing sum rules

In this section we present a systematic derivation of
physical region crossing sum rules for pion-pion scattering.
We normalize the pion-pion scattering amplitudes throughout
this chapter so that:-

A:—(S) £, “) = ‘2’: GZ(HF"I)HI)E (2€+i) Pe(%) ael' (2.2)

and so that the optical theorem (eq.1l.21) reads:-

eI (9 = 3T Al (s,0) (2.3)

Js(s-4)

We choose units so that the charged pion mass is unity, and
always impose the mass shell condition eq.(1.l):-

S+4€ +u =4 (2.4)
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Physical region crossing sum rules for pion-pion scatt-
ering are derived using the property special to this process
that crossing may be enforced among all three channels.

It is most convenient to work with the combination of
s channel amplitudes T% (s, t, u) defined in eq.(1i.1ll).

Total crossing may be enforced by the two independent con-
straints

T:(SJ 'f') u) E(—I)I'Z' C::/ T:’(S,'(:_,u) =(—-I)rT:(S) ulf) (2.5)

II

T:‘ (3,4,, .a) = (—I)IT:("‘; t 5) (2.6)

The simplest interpretation of crossing sum rules is as neg-
ative moment FESR's. Consider

&.iﬂ‘__(Ai(oc,u)—(-:)rA;(xlé))=S + { = () (2.7)
\ 2-$ | s R

vhere C is the usual FESR contour of fig.l.1l with [! at
finite energy s = N, and I takes values 0, 1, 2. Eq.(2.5)
implies that the numerator of the integrand vanishes at x = s.
We ‘assume, in the usual FESR manner, that a Regge approxima-
tion for the amplitudes is valid for x greater than some
cutoff, N, and onl'. Using Eq.(2.6) the left-hand cut is
mapped onto the right-hand cutt after collapsing 7 on to the

*Phere is a slight problem in choosing the contour such that
the integral of both A (x, t) and A (x, u) along the left
hand cut maps onto that along the right hand cut. In order
that the lower limit maps to '4' in each case, take the con-
tour around - min (/t/, /u/) at the right hand end. Choose
the centre 6f the contour such that ' joins the left hand
cut at (4-N-t) for (t-u) > O oxl'éat’ (4-N~u) for (t-u) { O.

N t[4-4
The additional assumption Su Fr(“’ é)&(:’c) é/‘“)"‘“ =0

is then required to obtain eq.(2.8).




24

real axis, to obtain
R s = RIACE )= <)
(2.8)

+_=2L_ cs:‘A,c( } ‘[Aﬂe”.e :

Clearly eq.(2.8) could have been alternatively obtained
by equating unsubtracted dispersion relations for F (s, u, t)
]
and f; CII' i (s, t, u) where FI(s, t, u) =T (s, t u) -

2fRegge(S- t, u), the 'centre' variable is fixed, and we assume
[FI(x, t) £ (x, t, u) dx=0 (Cf. eqg.(1.10)),
N

At t = u, the three sum rules eq.(2.8) for I =0, 1, 2
all reduce to the same equation
N
N
=J/\ (2.9)
4

th(A;(x’é)(ZlTZ) - A(2t (x Tprae xl-’c)} ‘gt

The properties of sum rules (2.8) and (2.9) will be discussed
in more detail in section 2.5.
Formally take ( @és) of eq.(2.8) to obtain

jh[aAe(“ ) (L +7) - Alfnd 4 2C ' Au(zt)

AR -4/ (-9 Gup

N )
o o A (2.10)
+( A (“ ((" ) @C-u)’) \[, “are

These three equations are now independent at t=u.

These are just the relations considered by Wanders,(18)
who obtained them by combining unsubtracted and once-subtracted
dispersion relations for the scattering amplitude; thus he has

N
'j: Agegge 10 Place of J4 ARegge_and’ as noted by him, their

L)

use in such a form may not be valid.
We could have obtained the Wanders sum rules eq.(2.10)
by subtracting from eq.(2.7) the identity
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fgo“é% [A:(“z“') —(-U’Ai(x//c)} -0

It is clear that if the It = 1 amplitude increases less rapidly

than x, or if the It = 2 amplitude tends asymptotically to
zero, then for the resulting equation the contour [T can be
expanded to infinity for I = 1 or 2 respectively. Ve thus

o . N
obtain J; ARegge in place of j

+

4 ARegge' and reproduce eq.(2.10)

on taking the limit s' = u'.
Now take (@ﬁs) of eq.(2.10) to obtain

Sh{(x,.) EIF AL (2 6) - A () + 2Ae (L, —(50,5)

4
b P §
QELACCY A ) A “}1 jA“ (2.22)
)3{7 ) (st -u)?) (- u)z Mz( ) J Resge

We can now take all the Regge integrals over x) N.

Eq.(2.11) has again been quoted in ref.(18). It may alterna-
tively be obtained by combining once subtracted dispercion
relations. Note that at t = u, the three equations reduce to
one:-

5:4‘” {Asl (%4)( (x-glm)’) 12 %%6 (¢

s (5 (L -} - [P

v

(2.12)

Clearly this process may be continued indefinitely. Taking
(@Qs)u of eq.(2.11) produces a set of three equations, inde-
pendent at t = u, which may otherwise be obtained by combining
once and twice subtracted dispersion relations. Then taking
(Qés)t produces the set of equations obtained from combining
twice subtracted dispersion relations; these are the Roy
equations supplementary conditions (22) written in a form
containing derivatives. Again at t = u, these collapse

*It is more convenient to integrate over x ) N when possible.
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to one equation.,

As this process is continued, the convergence of the
integral is increased and the lower partial waves are syste-
matically removed from the expansion of the absorptive parts
of the amplitudes - for instance eq.(2.11) has no S waves;
and the Roy equation supplementary conditions have no § or
P waves. This may be viewed as a consequence of the differen-
tiation process, or as a result of the relation of the sum
rules to subtracted dispersion relations,

Note that our equations (2.8 - 2.10) do not depend on the
validity of unsubtracted or once-=subtracted dispersion rela-
tions for the scattering amplitudes, but on the assumption
that the asymptotic amplitudes are well described by a Regge
form. These equations are thus more akin to FESR's than to
the rigorously valid crossing sum rules obtainable from
twice subtracted dispersion relations, but in numerical appli-
cations, because of the extra factors of Uéc in the integrands,
results are much less cut-off dependent than those obtained
from FESR's., However care must be taken in the use of these
equations near t = O where the lower limit of the integral
‘over Regge amplitudes can cause complications.

In the following sections we shall evaluate appropriate
combinations of these rules and discuss their properties in
more detail. First however we turn to a consideratior of the
phase shift solutions which will be used as input to the
sum rules, and which we shall attempt to distinguish.

2.3: Phase Shifts

We consider three phase shift solutions; the solution
of Hyams et al (8) and solutions A and B of Estabrooks and
Martin (7). These describe S,, P, D, and F waves in the
energy range 1.0 to 1.8 GeV, covering the £ and g resonances.
The solution of Hyams also describes these partial waves in
the region 0.6 to 1.0 GeV, covering the QR resonance; we use
only this solution in this energy range, Below 0.6 GeV simple
scattering length approximations for the phases are used such
that the solutions match at 0.6 GeV. The contribution to the
sum rules from the region below 0.6 GeV is usually unimportant;
where it is significant it is assigned large errors. So-
lution A of ref.(7) differs from the other two considered in
having no/f'resonance under the g. Solution B is similar to
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that of Hyams et al. Fig.2.1 shows the totalr T~ cross

sections 075 ( 7T 7) (taking an intermediate isospin 2 ampli-

tude - see below) for these solutions. It is seen that at

1.8 GeV T(7r+7T-) is between 12 and 15 mb, and falling fast.
The s channel isospin 2 amplitudes are not determined

in the above phase shift analyses and unfortunately turn out

to be important in several of the sum rules. We shall present

results using two extreme possibilities for these amplitudes.

For energies lower than 1.1 GeV we take scattering length

approximations to give an 5, wave of -25° and D, wave of

-3.5° at 1.1 GeV, consistent with the results of Hoogland et

al (52). For our one extreme solution (the small I = 2) we

assume that these values remain constant up to 1.8 GeV, re-

sulting in a total m ¥ 1T cross section o‘T( gt mr?t) of

2.5 mb at that energy. This appears, from the rcesults of

ref.(52), a reasonable assumption. Asymptotically 0 p( mtrt)

is expected to approach aﬁr( m* T ~) which from Fig.2.1 could

be as large as 12 mb., There is nothing in the analysis of

60

40

¢ TOTAL
(mb)

20

ENERGY (GeV)

Fig.2.1 Total T * 7T ~ cross-section for the phase-shift
solutions of Hyams et.al., and solutions A fnd § of
Estabrooks et.al., and range of possible 77 T
total cross-sections.
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ref,(52) to prevent a rotation of overall phase of the 82 and
D2 waves whilst keeping their relative phase unchanged; this
corresponds to an onset of inelasticity and leads to an in-
creased U'T( ﬂ'+ n‘*). These considerations motivate us to
take the other extreme isospin two amplitude (the large I=2) ,
from a steady rise of o’T( mt ) up to 12.5 mb at 1.8 GeV.
Fig.2.1 shows the range of 0 ( T+ T *) between the two
extremes. Physically, a large inelasticity of the M Y7 ¥
scattering amplitude seems unlikely, as few coupled inelastic
channels are available,

As discussed in section 2.1, JTJT partial waves may be
calculated in the energy range between 500 and 1100 MeV using
the Roy equations (42, 45), with information about the rho
resonance, S0 Fhase shifts and tne expected asymptotic forms
of the amplitudes. The energy region below 500 MeV is always
unimportant in the sum rules, and those rules which have an
important contribution from the 500-1100 MeV range are do-
minated by the rho resonance, which is taken as given in the
calculations of refs.(42, 45). Thus there is no significant
difference in the results obtained by taking these partial waves
or those of Hyams et.al. in this low energy region (see eg.
ref.51).

Most of the contributions to the sum rules come from
partial waves when resonating, thus the neglect of ) 4
partial waves for energies less than 1.8 GeV is justified
unless large cancellations occur between the dominant re-
sonance contributions.

2.4: The asymptotic I, =1 and I, =2 amplitudes

We discuss in this section how the Ccrossing sum rules
and FESR's may be used to study the properties of the t channel
isospin one and isospin two pion-pion scattering amplitudes.

To evaluate a particular sum rule, the phase shifts from
a given solution are substituted into the integrand to obtain
'the low -energy sun', while 'the high energy sum' is obtained
by numerically evaluating the integral with the amplitudes
written in a form describing simple Regge pole exchange. The
cutoff, N, is taken as 1.8 GeV unless otherwise stated.

The asymptotic t channel isospin two amplitude can only
contain contributions from exchanges with exotic quantum
numbers; it is usually assumed that these contributions may
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be represented by the exchange of trajectories with zero or
negative intercepts. 1In Fig.2.2 we show the integrand of the
low energy part of the isospin two, first moment FESR' eva-
luated at t=0. The oscillatory nature of the integrand means
that the sum will increase only slowly, if at all, as the cutoff
energy N is increased; this is consistent with the above
assumption. From now on we assume that the asymptotic It=2
amplitudes may ve neglected compared with It=0 or It=1’ unless
occurring in a sum rule where the former is excessively
wveighted.

We shall now consider which combinations of crossing
sum rules are of most use to us for a study of the It=1 asym-
ptotic amplitude.

We find, as will be seen in the next section, that no
such useful rule can tc obtained from eq.(2.8). Next, consider
eq.(2.10). For I=1, we find the well known rule (18, 51, 53-56)
for t=u:--

: .
[ (elisieg) « 09 o)
SA,A“W@

(2.13)

The high energy sum is clearly dominated by the I
thus this sum rule is of immediate use to us.

2 1 T T T
— — — — SOLUTION A

t=1 amplitude,

-

- © 60 € @ SOLUTION B
HYAMS

. - ENERGY (GeV)
2 1 1 1 |

0-2 . 0-6 10 1-4 1-8

Fig.2.2. Integrand of first moment isospin 2 FESR (invn;=1 units)
for the phase shift solution of Hyams et.al. and
solutions A and B of Estabrooks et.al. An intermediate
low energy isospin 2 amplitude is used.

CONTRIBUTION TO 1=2 FESR (X10°)

*Pake I = 2, n = -1 in eq.(1.23)
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We may obtain another rule, containing only It=1 and
I.=2 amplitudes, by taking the combination (I=1) - (I=2)
of eqs.(2.10) for t=u.

S"m(a'j;)z("\é(“}‘) Ae(fré))+ 2 Ae(t)

x-4+2€ 9%

ey (QAﬁ(oré ) =24 (a4 “XA"‘W
(x-4)(oc-4+2¢) | 9 N

(2.i4)

Unfortunately this will be of little use to us as the It=l
amplitude is suppressed with respect to the I,=2; thus the
contribution to the high energy sum from exotic exchanges may
be important.+ We also find large cancellations between the
dominant partial wave contributions in the low energy sum;
thus it may not be correct to neglect partial waves of >3 .
This rule is very similar to that obtained by writing eq.(2.10)
for I=2, which has been found of little use because of large
cancellations and cutoff dependence.(53, 54) We do not con-—
sider sum rule (2.14) any further.

We may obtain a useful rule from eq.(2.11) by taking the
(I=1) + (I=2) combination. For convenience the limit t < W
is taken to replace differences by derivatives (we could
alternatively have taken the (I=1) + (I=2) combination, at
t=u, of (¥5), of eq.(2.11)).

§' [@Ma + L )(244¢ (%4 +z%§. ()

S — L\ PA¢ (x 4 ¢ ¥ (2.15)
(@C-lﬂzé)’ +6c-e)’)(aé"t( ’ ) 362 (:r )} &‘*we

This is essentially a 'higher moment' form of eq.(2.14) but
the differentiation has resulted in sign changes so that the
It=1 amplitude is no longer suppressed. We shall use the sum
rules of eqs.(2.13) and (2.15) in conjunction with the FESR's
to study the asymptotic I¢= 1 amplitude. First we consider
the use of the FESR's,

*we mention the analogous rule from eq.(2.8) in the next
section,
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We take for the imaginary part of the asymptotic It=1
amplitude the Regge form
(%)
AL (s,4)- $W( 5
(2.16)

A(t)= o, + ot 5,51 ( [ 6eV?)

First, following Schmid (39) we attempt to determine the
slope 0(/and intercept & o of the trajectory by solving the
second moment It=1 FESR with the zeroth moment FESR. The
former is unfairly weighted towards high energies, and severely
cutoff dependent., The same partial waves dominate in each rule,
thus the solution is unstable, depending for instance strongly
on the isospin 2 low energy amplitudes.

We find an intercept of between 0.1 and 0.3, the result
depending on phase shift solution and isospin 2 amplitudes,
for a cutoff of 1.8 GeV. The slope is poorly determined, being
dependent on t, but not inconsistent with the canonical
d/ =1cev2,

Rejecting the use of the second moment FESR as unreli-
able, we could alternatively solve the zerotl'1 moment FESR with
a crossing sum rule to determine 0(0 and 0(/ . For simplicity,
however, we try inputting the 'conventional' values for a
rho trajectory, °(o =0.5 and c(,'=0.9 GeV"2, determining X (t)
and checking the results for consistency with the crossing sum
rules. Similar calculations have been presented in refs.

(51, 53, 55, 56).

Ve determine X (t) by evaluating both sides of the zero
moment FESR at a range of t values between zero and -0.55 GeV2
(-28/42). Fig.2.3 shows § (t) for solutions A and B, and. Ffor
the two extreme I=2 amplitudes; the main uncertainty in X (t)
comes frcm the uncertainty in the I=2 amplitudes. We see that
¥ (t) is well described by the form.

th

X(ff) =a+b€t, a=07; 2015 (2.17)
b= 19 tols 6ev?

A very similar b/ (t) is found using an intercept & o = 0.25.
Our cutoff is abeout midway between the g and the expected
e = 4 resonance predicted from a linearP - f trajectory; (57)
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the value of 'a' varies inversely, slowly, with the cutoff.
For example, had we chosen a cutoff of 1.9 GeV, at the end
of the data of Hyams et.al., with a large I=2 amplitude, a
value of 'a' of 0.6 would have been obtained. (This was
found as the ‘central' value of 'a in ref.(51) where a very
large I=2 contribution was used to obtain an extreme). The
errors in eq.(2.17) allow for cutoff dependence.

l i ! ! { P

0-8 —
— — — — $0
yit)
0:6 -
0-4 -
N\
(ti,
% ! N\ .
g(t) \ \
0-2 —
NN

Q \ \0-8, large
S o8 ]

\ -8,small

A

0-0 } } } } } 55»\0-4,large -

0-1 0-2 03 05 04 ,small
i It (Gev?) l

B,small
-021 | A,small |
- B,large -

A, large

Fig.2.3. Rho (¥ (t)) and f (&(t)) residue functions. ¥ (t)
is shown for soutions A and B of Estabrooks et al.
for the small and large extreme isospin 2 amplitudes;
it is well described by the form a + bt. Results for
the Hyams et al solution lie in between those for so-
lutions A and B. § (t) is shown as obtained using so-
lution B with the two extreme isospin 2 amplitudes and
f (0)=0.4 and 0.8. Solution A and the Hyams et al.
solution produce very similar results, with slope of
f(t) a 1ittle steeper.
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_ We now check our results for the asymptotic It=1 amp-
litude with the crossing sum rules. Consider sum rule (2.13).
The low energy sum has contributions from P, Do' D2 and F
wvaves, the P wave dominating; we show these contributions in
table (2.1). Results are very similar for the three phase
shift solutions. The contribution from energies below
600 MeV is significant; we allow a 50% uncertainty on this.

The high energy sum is calculated using the parameters,
X(’Q = 074 +19¢ with () «(t)= 05+ 0.9¢

() d(¢)= 0a5+¢

(2.18)

t iz in.units of GeV2.

Figure 2.4a shows the low and high energy sums of the
sum rule of eq.(2.13) as functions of t.+ Good agreement
is obtained using the parameters of eq.(2.18(i)) but there is
disagreement when the parameters of eq.(2.18(ii)) are used.
Next consider the sum rule of eq.(2.15). This contains
double derivatives and may thus be very sensitive to the t
dependence of the amplitude; however, since we think thic is

16 T T T T T | 7 T T T T

SUM_RULE {2.15)

12

SUM

SUM
(x10%)

{x10%)

o 1t] (Gev® : 1t (Gev?)

Fig.2.4 Low and high energy sums of (a) sum rule (2.13) and
&) sum rule (2.15) (in m2 = 1 units), The hatched

bands indicate the range of low-energy sums resulting
from the uncertainty in the phase shifts below 600 MeV
and in the isospin two amplitudes. The high energy
sums use the parameters (2.18(i)), with o 5 = 0.5,
(dotted curve) and (2.18(ii)), with ® g =0.25 (dashed
curve)., Results are identical for a cutoff taken any-
wvhere between 1.4 and 1.8 GeVv




TABLE 2.1

2
Sum Rule lt] (Gev™) S, P D, F S, D, TOTAL x
a.13 0.0 - 2.3% -0.7 -0.1 - 0.0 1.5% -3
0.24 - 1.1% -0.6 -0.1 - 0(0.05) 0.4%(0.35) 10
Q.05 0.0 - 3.8% - -0.1 - 0.0 3.7% 4
0.24 - 1.1% - -0.1 - 0.0 1.0% 10
2.2l 0.0 - - 3 ; - - -
0.24 -0.55% - 3.5 - 0.0(-0.1) 0.1 (0.3) 3.0 (3.1) 1
2.9 0.0 -0.7% 3.5 -0.7 0.7 0.2(0.4) 0.0 (0.1) 3.0 (3.3)
0.24 -0.5% 2.7 -0.1 0.1 0.2(0.3) 0.0 (0.1) 2.4 (2.6) 1
I=0 0.0 2.0 8.9 6.3 9.5 4.7(8.1) 0.4 (4.9) 31 (40) 103
M
Hmnmmmwmnn 0.24 1.8 5.7 2.0 1.8 3.7(7.8) 0.2 (2.4) 15 (21) 103
2.22. 0.0 - - 11.3 -2.7 - -0.3 (-0.8) 8.3 (7.8) -6
0.24 - - 7.8 2.1 - 0.1 (-0.5) 5.6 (5.2) 10
.33, 0.0 - - 4.9 - - 0.3 (0.4) 5.2 (5.3) -6
0.24 - - 24.9 - - 0.6 (1.4) |'25.5 (26.3) 10

Contributions to sum rules from partial waves with Q £ 3.

A cutoff of 1.8 GeV is taken,

and solution B of Estabrooks et al,with the small extreme I=2 amplitude is used, results

for the large I=2 amplitude being shown in brackets.
10% of the contribution comes from the energy region below 600 MeV.
pressed in units where 4}% =1.

An asterisk denotes that more than

The sums are ex-
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fairly well known it should be a reasonable check. The low
energy sum has contributions from P, D2, and F waves; these
are shown in table 2.1 for t=0. The P wave dominates com-
Pletely. The contribution to the sum from energies above 1
GeV is negligible, thus the three sets of phase shifts give
the same results. There is again a significant contribution
to the sum from below 600 MeV; we assign a possible error of
50% to this., Fig.2.4b shows the low and high energy sums of
sum rule (2.15), again agreement is good for the parameters
of eq.(2.18(i)) and poor for those of eq.(2.18(ii))*.

The above results are not greatly affected by varving
¥ (t) within its range of uncertainty. A rho intercept of
0.25 is clearly inconsistent with the crossing sum rules;
the fact that this value is consistent with a higher moment

il

FESR is probably an indication of the uncertainties inherent in
the use of the latter.
We thus conclude that a form of the imaginary part of

the asymptotic I_=1 amplitude consistent with analyticity,

t
crossing, and unitarity is

Aé (s){:) = (és;é)o((é) (a( +6’-6)
vt A(%)
' Q

¢

This form corresponds to the exchange of a rho trajectory with
a zero at t=0.39 ¥ 0.05 GevZ,
These results are consistent with those of refs.(51, 53,

55, 56).

05+ 09¢
074 £ 015
109 * 0.18 GeV?

u

2.5: The Asymptotic I, = 0 amplitude

We discuss in this section how the FESR's and crossing
sum rules may be used to study the t channel isospin zero asym-—
ptotic pion-pion scattering amplitude, and how we may attempt
to separate the pomeron and & exchange contributions to this

*Wwe avoid the region 0 { t{ 4 where the lowest energy phase
shifts are excessively weighted.
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amplitude. First we consider which crossing sum rules are do-

minated by this amplitude, and thus of most use.

The sum rule of eq.(2.8) appears irmediately useful as the
high energy sum of this is dominated by the required amplitude.
At first sight eq.(2.8) appears to be not independent of eq.
(2.9), the respective high energy sums being related by

[3(e]) - [(¢] . - X:ch{(A;(a,é)O(jl)+A§(354)0(;c’-)} (2.19)

(where the abbreviation [8(t)] yp Means 'the high energy sum
of eq.(2.8) evaluated at a given value of t'), The right

hand side of eq.(2.19) is small compared with either of the
terms on the left hand side. The low energy sums of eqs.(2.8)
and (2.9) are not trivially equal, however, as they contain
contributions from different partial waves. This suggests
that it is worth taking combinaticns of eq.(2.8) to isolate
further I,=0 (and I,
additional constraints.

Before considering the It=0 rule we shall first dispose
of the I=1 possibility. The only rule dominated by the I=1
amplitude is obtained from the (I=1) + (I=2) combinaticn of
eq.(2.8):~

b (4 () Al ) — 55) + ALk + )

N
- Ag(%4) (32'7{ +5c'l-'u)} K 5# A“'W

This is not useful for our purposes since an exotic

=1) dominated rules, which may provide

(2.20)

trajectory with an intercept of -1 would give a contribution

to the high energy sum of the same order of magnitude as that
of the rho trajectory. ( (Qés)t of eq.(2.20) produces eq.(2.14)
which we found in the previous section to have the same pro-
perty).

A sum rule dominated by the I.=0 amplitude may be ob-
tained by taking the (I=0) + 2(I=2) combination of eq.(2.8);
this produces the equation for the absorptive part of the

77° 17 © scattering amplitude A% (s,t) = &%(s,t) + 2A2(s,t)
(cf.eq.(1.10))
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(2.21)

This equation vanishes when t=u. For convenience we take
u=0 to relate the amplitudes at arbitrary t in the range
(4,-28) to those at t=0.

In the previous section two independent sum rules from
eq.(2.10) were noted. We may take the third as the combination
(1=0) + 2 (I=2) of eq.(2.10), however this is simply the de-
rivative of eq.(2.21), containing the same partial waves,
and having very similar properties to eq.(2.21). We thus do
not consider this sum rule any further.

One sum rule from eq.(2.11) has been noted already; there
remain two more. At t=u, eqs.(2.11), for each I, reduce to
eq.(2.12), which is not now dominated by any one t channel isos-
pin amplitude. However, followirg Wanders (29) we may subtract
eq.(2.13) from eq.(2.12) to obtain a (well known) sum rule do-

minated by the I, ,=0 amplitude:-

t
” [
Al (x4) (32-4)  _ 2 dAJ(7,4) 4
J(=f-é)‘(ﬂc-1r+2f&){ ( @c-4+2¢)? 3 o¢ () ) (2.22)
+10 A% (x ¢ y
3 s >} LAW’W

Eq.(2.22) may be derived by several alternative methods (33,
36, 37). The low energy sum contains no S or P wave contri-~
butions.

Taking the combination (I=0) + 2(I=2) of eq.(2.11)
produces a rule analagous to eq.(2.21) but now also with no
S or P wave contributions, For simplicity we take the limit
t 9 uto obtain®

‘I {M"( )(f’”'“f) (oci)’) aa;”((j:é)‘ ‘(97-"@7:'6)‘)}

L
= - &,Akqme

*We could alternatively take the appropriate combination of

(2.23)
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Eq.(2.25) has been used with t=0 to obtain inequalities for
partial waves and resonance widths (18, 36).

We have now presented all the crossing sum rules we shall
use in conjunction with FESR's to study the asymptotic t cha-
nnel isospin zero amplitude.

We assume that the asymptotic I.=0 amplitude may be
described in terms of the exchange of pomeron and £ Regge tra-
Jjectories. To determine the t dependence of these exchanges,
we first try making the simplifying assumption that the £
trajectory is strongly exchange degenerate with that of the
rho. Thus we write for the asymptotic amplitude, where a po-
meron of intercept unity has been taken:-

A (54) = 34 H&) s(s-4) + %X(é) (s_s-(,;‘_)*(‘) (2.24)

A simple calculiation with the first moment I=0 FESR then
immediately leads to trouble, independent of the choice of
cutoff. For all phase shift solutions studied the pomeiron t
structure is such that g(t) is either nearly constant (for the
large I=2 amplitudes) or actually grows as ’t' increases
(for the small I=2 amplitudes). The value found for Ap depends
on the isospin two amplitude used, and results in an asymptotic

¢ (77T ) of 2.5 - 8 mb, which is much smaller than the
value expected from Ffactorization argumeiits. )

With the aid of the crossing sum rules we can investi-
gate the t dependence of the pomeron and f exchanges using
weaker assumptions. We now replace X'(t) in eq.(2.24) by an
unknowvn function of t, £(t). There are three sum rules (the
FESR and eqs.(2.9) and (2.11)), which do not contain derivatives;
we may solve between any two of them to determine £(t) and
g(t). Eqgs.(2.9) and (2.21) are related by eq.(2.13) so we do
not solve between these. We notice that the dominant contri-
bution to both the first moment I=0 FESR and to sum rule (2.9)
comes from the P wave as Itl increases (see table 2.1).
Solving between these two equations may thus be analogous to
solving between 2 FESR's of different moments. We find, in
fact, unstable cutoff dependent results from this procedure,
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from which no conclusions can be drawn’. The sum rule of
eq.(2.21) has very different partial waves dominating the
low energy sum, but requires an input of the value of the
f residue function at t=0, £ (0) into the high energy sum
in order to obtain a solution with the FESR,

14 —
o
°
°
®
12 99 o
\ o
°© ——— FESR
\ ¢
1ok ° eooe 000 SUMRULEDI]£(0)=0-8
N ° ~ — — SUM RULE22/,4(0)=0-4

—1

$1t)

Fig.2.5 Solution of sum rule (2.21) with first moment isospin
zero FESR for the pomeron and _f residue functions,
£(t) and A.g(t), at t=-0.24GeV2, Solution B of Esta-
brooks et aR., both extreme isospin two amplitudes,
and inputs of £(0)=0.4 and £(0)=0.8 to sum rule (2.21)
are used. The solution for £ (t) is insensitive to
the isospin twoe amplitude, and results are similar
for other phase shift solutions.

*The solution at t=0 is highly dependent on the I=2 low energy
amplitude, and also depends on the precise form of the Regge
amplitude, for example whether the f energy dependence is

sq (0) or (s-4) « (0 . No solution at all is obtained for a
considerable range of t, however, this result is sensitive

to small changes in cutoff and f intercept.
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First the FESR is evaluated at t=0 and at a range of
values of t down to t = «0.55 GeV2, to pcroduce an equation
relating £ (t) to A_g(t) at each value of t. Sum rule (2.21)
with an input of E(Og produces a similar set of equations (at
t#0); thus at cach value of t there are two independent equa-
tions relating £(t) and g(t) which may then be solved. 1In
Fig.2.5 the graphical solution at t=-0.24 Gev® is shown for
Phase shift solution B, taking two extreme values of £(0),

0.4 and 0.8. The latter value is approximately that expected
from rho-f exchange degeneracy at t=0. The solution is
insensitive to small changes in the low energy sum of equation
@.21), thus the uncertainty in the I=0 S wave below 600 MeV

is unimportant. The results do not depend strongly on the
cutoff either; in fact one can see that results should not change
much if the cutoff is taken above the positions of the expected
resonances (57) with f =4 and € =5 on the P trajectory.
(Quantitative estimates of this change are not easy to make as
the FESR is not dominated by leading partial waves to the same
extent as the crossing sum rules and so possible daughter
resonance contributions could become increasingly important).
£(t) and g(t) are almost unchanged if the £ intercept is varied
by 20% from its assumed value of 0.5.

Figs.2.3 and 2.6 display the solutions for £(t) and g(t)
obtained with both extreme I=2 amplitudes and with the two
chosen values of £(0). The pomeron residue function is much
more sensitive to the I=2 amplitude than that of the f£. The
solutions with the small £(0) and large I=2 amplitudes produce
the smoothest form of g(t), with g(t)n/ebt, as is seen in fig.
2.6; £(t) has a zero at t 2 -0.55 Gev2 and b&2,5 Gev™2,

We now briefly discuss the possibility of using the
remaining two I,=0 dominated sum rulcs to distinguish betweein
the solutions found above. First consider sum rule (2.22).
The low energy sum has contributions from DO’ D2 and F waves.,
From table 2.1 it is seen that there is a considerable can-
cellation between Dg and F waves, and that the D, contri-
bution is significant. Fig.2.7a shows the low energy sum for
the three different phase shift solutions, and the high energy
sum for four of the possible solutions for the asymptotic
I,=0 amplitude. The D

t 0
Hyams et al solution are nearly identical to those of the

and F wave absorptive parts of the

Estabrooks et al solution; the large difference between the
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Fig.2.6. Pomeron residue function (normalized to unity at
t=0), g(t), for phase shift solution B wiih the
large and small extreme isospin two amplitudes.
The solution with §(0) = 0.4 and the large ispspin
two amplitude is closest to the form g(t) = e Pt

corresponding iow energy sums seen in fig.2.7a arises because
of a difference in overall phase between the two solutions,
and shows that the sum rule of eq.(2.22) is very sensitive
to this. It is thus not clear that useful conclusions can be
drawn from the sum rule when applied in this manner (as is
attempted in ref.54). While agreement might be obtained with
any of the asymptotic solutions, the large I=2 or small
£ (0) solutions are favoured.

Sum rule (2.23) contains double derivaties and will thus
be very sensitive to the t dependence of the amplitudes.
Only DO and D2 partial waves contribute to the low energy sum;
their contributions are shown in table 2.1. The D, contri-
bution is not important, but again the sum rule is sensitive
to small changes in the overall phase. In fig.2.7b we show
for sum rule (2.23) the low energy sums for the phase shift
solutions of ref.(7) and ref.(8), and the high energy sum for
four of our suggested solutions for the asymptotic It=0
amplitude. Agreement is again better for the large I=2,
small £(0) solutions but a small change in the phase shifts
might produce agreement with other asymptotic solutions.
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(a) (b)
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Fig.2.7. (a) sum rule (2.22) and (b) sum rule (2.23).
The low energy sums are for the phase-shift.  solutions
of Hyams et al., and solutions A and B of Estabrooks
et al.; the width of the bands indicates the uncer-~
tainty in the Do wave. The high energy sums use the
solutions for the asymptotic It = O amplitude with

. £(0) = 0.4 (dotted curve for the large isospin two
amplitude solution and full curve for the small is-
ospin two solution) and £ (0) = 0.8 (long-dashed
curve for the large isospin two solution and short-
dashed curve for the small isospin two solution).

m%. = 1 units are used.

2.6: Conclusions

We have shown, in this chapter, how the principles of
analyticity, crossing and unitarity constrain the pion-pion
scattering amplitudes and allow them to be studied in regions
inaccessible to phase shift analysis. The Roy equations
allow a good deal of information on low energy pion-pion scatt-
ering to be obtained if information on higher energy scatter-
ing is given. 1In particular, a one parameter family of so-
lutions for the S wave pion-pion scattering lengths may be
obtained; the values found are consistent with the predictions
of the totally different theoretical approach of current alge-
bra. The low energy P wave amplitude as determined by the
Roy equations, is however in disagreement with the results
of all phase shift analyses.
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The systematic derivation of physical region crossing
sum rules for pion-pion scattering, presented here, is useful
in linking together all the crossing sum rules which have
been separately derived, by different methods, in the liter-
ature, and ensures that none are missed. In conjunction with
finite energy sum rules they are of considerable value in'
studying the asymptotic form of the pion-pion scattering amp-
litudes, but they are unsuccessful in resolving the ambigui-
ties of phase shift analyses, largely because the isospin two
pion-pion scattering amplitude, which is hard to determine
experimentally, is poorly known.,

We find, using the sum rules, that the imaginary part
of the asymptotic t channel isospin one pion~pion scattering
anmplitude is well described by the exchange of a conventional
rho trajectory. If strong rho-f exchange degeneracy is assumed
a FESR calculation shows that the pomeron contribution to the
t channel isospin zero amplitude is such that the asymptotic
total cross section for 7T Yoo scattering is between 2.5 and
8 mb. With the aid of crossing sum rules, the pomeron and
f exchange contributions may be separated without this assump--
tion; evidence then points to the breaking of R - £ exchange
degeneracy and,if the isospin two amplitude is very inelastic
below 1.8 GeV, the 1T T 7T~ asymptotic total cross section
can be as large as 12.5 mb. Since there are few inelastic
channels available, the Tr+7T+ scattering amplitude can be
expected, however, to be nearly elastic, indicating a much
smaller total cross section for Jv T 7r ~ scattering; we also
present further direct evidence in chapter 5 that the asym=-
ptotic total cross section for pion-pion scattering is near
6 mb. The question as to why the naive factorization argu-
ments (which predict a total cross section for pion-pion scatt-
ering of about 15 mb) should fail so badly, will be discussed
in the next chapter.
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3: MESON-MESON TOTAL CROSS-SECTIONS AND
NUCLEQN DIFFRACTION DISSOCIATION

In this chapter we present evidence that the total cross
section for elastic meson-meson scattering is small, and dis-
cuss possible explanations for the apparent failure of the
pomeron to factorize. We show how the separation of the con-
tributions to the diffractive production of low mass pion-
nucleon systems allows several items of physical interest,
including the high energy pion-pion scattering total cross
section, to be studied. We conclude the chapter with a brief
discussion of how the diffractive component of the ITTN = TT/TN
reaction may be found experimentally.

3.1: The meson-meson scattering total cross-section

In the previous chapter we obtained the result that either
the isospin two pion-pion scattering amplitude is large and
inelastic, or the coupling of the pomeron to pion-pion scatt-
ering is smaller than that expected from naive factorization
arguments. The available direct experimental evidence also
points *o a small asymptotic total cross section for meson-
meson scattering. This cross-section should be determined
most easily from a study of scattering amplitudes which have
no s channel resonances and are pomeron dominated in the t
channel (such as in T Y77 % or M~ K ~ scattering). Such
a cross section may be expected to rise rapidly to its asym-
ptotic value; several experiments (52, 58, 59) have found the
Vs ot - TI7 * 17 * total cross section to be in the
2.5-5 mb. range in the 1.4 - 2 GeV energy region, though
larger values would be obtained if the amplitude were very
inelastic. The 7T~ Kk ~ total cross section has been determined
as 5-6 mb. in the 1.8 - 2.8 GeV energy range (60). It could be
that these cross-sections are still rising, as few inelastic
channels are available in 77 Y7  or 1 * K + scattering at

low energies, and the asymptotic regime may not yet have been
reached. We obtain, however, in chapter 5, evidence that the
pomeron contribution to the m Y74 = S 1 Y7 ~ total cross
section is about 6 mb., in the 3 - 4 GeV energy region; there
are many available inelastic channels and so there is no rea=-
son to suppose that the pomeron has not attained its asymptotic
coupling. Another estimate of the pion-pion scattering total
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cross section has been obtained by the Stony Brook -
Michigan - Batavia - Pittsburgh collaboration (61), who
studied the 100 GeV/c 7T+ n - pX inclusive reaction. On
the assumption that pion exchange dominates the amplitude at
low momentum transfer, a triple- Regge-description allows the
7 ~1r * total cross section to be extracted. Values of |
15 £ 4 mb at 4.5 GeV and 13.5 £ 2.5 mb at 5.6 GeV were Ffound;
these cross sections include p and f exchange contributions,
and the pomeron contribution, and thus the asymptotic ~ T
total cross section,is smaller, in the region of 9 mb. The
total 7 _ T *cross section was found to lie between 10 and
25 mb, at energies up to 10 GeV, however these results are not
SO reliable, as the momentum transfer between nucleon and
proton is such that pion exchange may no longer dominate the
amplitude. -

+

We thus conclude that the coupling of the pomeron to
meson-meson scattering is probably considerably smaller than
expected. We discuss below possible explanations.

3.2: Factorization of the pomeron
There 1s good experimental evidence that factorization
of the pomeron holds to better than 20%, between meson-baryon
and baryon-baryon systems. For instance we find (25):-

j‘i;’___’(n'p-ﬂr'w(mo)) N ﬁ‘{(k‘p-;k’N(mo) _ 42 (5o —FN(iir) o)
- Lo (im0 « - S
-j—g' (P> 1) —f("f’%k P) -"%:"’(Pf’—> Fp)

at 8 and 16 GeV/c, for[t]¢0.4 GevZ, Similarly (25) the ratios
of the cross sections of the reactions with TT7T or pp at the
upper vertices and with either pp, ppI1T °, PP (2 77 %), pp{37T °)
at the lower vertices are all about equal at 16 and 19 GeV/c.
These results do not however check the simultaneous validity
of factorization between meson-meson, meson-baryon, and baryon-
baryon processes, and will still hold if either of the two
explanations for the small meson-meson cross section, dis-
cussed below, is correct. It has been shown in refs. (62, 63)
that the i p, PP and Kp elastic scattering data may be well
described by including the exchange of a pomeron trajectory of
intercept 1.07. If indeed the pomeron intercept is not unity,
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factorization can only be applied to the total cross-sections

of TTJT , 7T p and Kp scattering if all the reactions are con-
sidered at the same energy (which must be high enough for pomeron
exchange to dominate the amplitude). Writing for the pomeron
contributions to the total cross section:-

Ofr(TTf’) = 615007; O;-'(PF) . sto-ovj O;(TTTT)L‘ 6"3 so-o‘l (3.2)

with, from refs.(61, 62) Gy = 15 mb, G, = 25 mb,
then factorization of the pomeron implies:-—

6= 6/6, = Imé. (3:3)

and thus the pomeron contribution to the total pion-pion scatt-
ering cross section is about 10 mb., at 2 GeV, which is nearer
the values indicated in section 3.1. The pion-pion scattering
cross section will grow asymptotically, and the 'failure of
factorization' is an illusion.

Another explanation of the small coupling of the pomeron
to meson-meson systems, compared to its coupling to meson-
baryon and baryon-baryon systems,; has been suggested by Penn-~
ington and Gula (64) in terms of dual loop models of the po-
meron. The generally accepted model for the dual pomeron
in meson-meson scattering, embodying Harari-Freund duality
(24) (non resonant s-channel background with t channel vacuum
quantum number exchange) is as in fig.3.la, and for meson-
baryon and baryon-baryon as in figs.3.1lb, 3.1lc (taken from
ref.(64)). Such diagrams, where only qq or qqq intermediate
states are allowed, lead to the usual factorization predictions.
The authors of ref.(64) point out that, as qqqq intermediate
states are required in all dual schemes involving baryon-
antibaryon scattering, there is no reason why they should not
be present in meson-baryon and baryon-baryon scattering also.
The pomeron can then couple, in meson-~baryon and baryon-bar-
yon scattering, via the diagrams of figs.3.2a, 3.2b in addi-
tion to the 'conventional' couplings of figs.3.1lb, 3.1lc. Thus
this model predicts that the pomeron couples more strongly to



meson-baryon and baryon-baryon channels than to meson-meson
channels. There are in fact enough free parameters in the

model of ref.(64) to accommodate any experimental ratios of
the three cross-sections,
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(a)

Fig.3.1. Conventional dual quark diagrams for the pomeron in:
I (a) meson-meson, (b) meson-baryon, (c) baryon-baryon
scattering. (Taken from ref.(64))
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(a) | (b)

Fig.3.2. Additional dual quark diagrams for the pomeron,

when gqqqq states are allowed, in: _
sa) meson-baryon, and (b) baryon-baryon scattering.
from ref.(64).

3.3: The low 7TTN mass kinematic region
of the TN — T1WN reaction

To obtain direct information on high energy pion-pion
scattering, we can consider data from the TN = TN
reaction in a kinematic region of the Dalitz plot (fig.l.2)
different from that studied in previous chapters. For an in-
cident pion momentum of 16 GeV/c, t, . > -0.15 GeV/b2
(when pion exchange should be important) implies that
Mpy £ 10 GeV, and so the region of the Dalitz plot where
Mvrﬂ fay 3 GeV and My, = 4.5 CeV should give good
information on high energy pion-pion scattering, free from in-
terference with N* resonance production. The detailed data

available, however, is in the low mass region of the Dalitz plot,

wvhere N* resonance production may be important.

In common with other diffraction dissociation reactions,
many interesting features are shown by the distributions of
the diffractively produced low mass system in the 71N —97f(ﬂ~)
reaction. From a study of such diffractive processes, it may
be deduced that mechanisms corresponding to those shown in
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£ig.1.3, for TIN = T (TN ) are present. The diagram of
fig.1l.3a was first suggested (65) to account for the diffrac~
tive production of low mass 7T Q systems in 77 p = TR P,
and is usually referred to as the pion exchange Deck (or
Deck-Drell-Hiida)mechanism. As will be discussed in chapters
4 and 5, there is good evidence for the presence of the othef
mechanisms (the nucleon exchange Deck mechanism and the direct
resonance production mechanism) of fig.1.3 in the JTN = n'(nmo
reaction, with analogous mechanisms in other diffraction di-
ssociation reactions.

In order to separate the contributions of the diagrams
of fig.1l.3 to the t channel isospin zero exchange part of the
TN = T (TN ) reaction, it is first necessary to consider
the role of duality. The exchange of the pion trajectory,
when the momentum transfer between ingoing and outgoing nu-—
cleon is small, leads to a mainly real amplitude, as the pion
trajectory has an intercept close to zero, and even signature.
Since duality only applies to the imaginary parts of amﬁlitudes,
pion exchange may not be dual to any resonance. The nucleon
exchange amplitude (fig.1.3b), on the other hand, has a ]arge
imaginary part and may be dual to the amplitude for the pro-
duction of N* resonances. Together, these facts suggest that
the pion exchange amplitude, with either the resonance pro-
duction or the nucleon exchange amplitude, should be used to
describe the diffractive 71N - 77 (TN ) reaction.

The presence of resonance bumps in the cross—-section for
the production of pion-nucleon systems of mass greater than
1.4 GeV/c leads naturally to the choice of the resonance ex-
citation amplitude here (although the nucleon exchange amp-
litude should also give, on average, a valid description of
this part of the amplitude). For pion-nucleon systems of lower
mass, the nucleon exchange amplitude is the natural choice to
use with the pion exchange amplitude, to describe the diffrac-
tive reaction, and its presence is indicated by the data, as
will be seen. i

In"order to take correctly into account the interference
between the amplitudes of fig.l.3 it will be necessary to
determine how the helicity states of the outgoing nucleon are
populated. This is straightforward for the pion and nucleon
exchange amplitudes, but, to calculate the resonance excita-
tion diagram of fig.l.3c, a model is needed to describe how
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the pomeron couples to the NN* system. We shall motivate the
idea that the pomeron may have a vector coupling, in chapter
5.

It is by the different kinematic properties of the pro-
cesses shown in fig.l.3 that their respective contributions to
mN > 7 (M N ) diffractive scattering may be identified and-
separated, It is thus necessary to study the kinematics of a
5-body reaction in some detail; we do this in the next chapter,
emphasizing the qualitative features of the data which may
be interpreted in terms of the different processes.

First however we show how the isospin zero exchange am-
Plitude has been extracted from experimental data on the

TN - N reaction.

3.4: Isospin and prism plot analysis of TN > TN
The cross sections for the seven possible charge con-
figurations of the process T P = T (N ) can be expressed
{66 - 68)

in terms of three independent complex amplitudes M§E

(in the notation of ref.(66)) where, for the exchanged object,
I, =0 and I, = 1 are considered and where I (= % or g) derontes
the isospin of the produced ( NTT ) system. Six of the seven
possible processes may be measured in a bubble chamber experi-
men? and from these may be obtained the required quantity

’Mglz, which determines  the distributions of the diffractively
produced pion-nucleon system. This is the method of isospin
analysis.

An alternative method of obtaining information on the
diffractive amplitude in, say, the 77 +p - 17 * (p TTO) re-
action, is the prism plot analysis. This involves the assum-
ption that the reaction proceeds via certain well defined non-
interfering channels, each occupying a different region of
four-dimensional phase space. Firstly, by examining one or
two dimensional samples of the four dimensional distribution,
the principal reaction channels are guessed. A Monte~Carlo
calculation is thern carried out to give the probability of
each expériméhtal point to lie in a given channel, and the re-
lative weights of different channels. This process is re-
peated, re-determining the probability of experimental points
to lie in a particular channel by using the newly found
weights of the different channels. The process is continued
until convergence occurs, keeping a watch for untagged
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points to see if new channels are required. Thus, for example,
assuming that nucleon diffraction dissociation and the produc-
tion of dipion resonances, dominate the 16 GeV JT +p -)77+TT°p
reaction, the respective contributions of these processes
may be separated. While the assumption of non-overlapping
channels cannot be correct. it is seen from the Dalitz plot

of fig.1l.2. that overlap between low mass dipion and pion-
nucleon systems is small, and so results should be reasonable,
The results obtained in ref.(69) by means of this techanique
are consistent with those obtained by the isospin analysis of
ref.(66), using the same data.

We shall be concerned in some detail in the following
chapters with the distributions of the diffractively produced
pion-nucleon system in the 16GeV/c Jr p = T (TN ) reaction,
obtained from the isospin anaysis carried out by the Aachen-
Berlin-Bonn-CERN-Heidelberg collaboration (55) on data from
the CERN two metre bubble chamber. These distributions are
presented in considerably more detail than in any othcr pub-
lication to date, and a considerable amount of information may
be extracted from them.
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4: KINEMATICS OF DIFFRACTIVE AMPLITUDES
AND A QUALITATIVE INTERPRETATION OF DIFFRACTION DISSOCIATION

In this chapter we discuss the kinematics of a general
five body reaction, and consider in some detail the kinematic
properties of the pion and nucleon exchange Deck amplitudes
for the 2 = 3 diffractive scattering process, as exemplified
by the TN = (TN ) reaction. We then show how qualitative
features of nucleon diffraction dissociation may be inter-
preted in terms of the -Deck mechanisms, in association with
the diffractive production of nucleon resonances.

4,1: Invariants and coordinate systems

For the general AB - CDE reaction we define, as illus-
trated in fig.4.1, the Lorentz invariant energies

sCE

Fig.4.l. Kinematic invariants for dgeneral 5 body process.
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ym
t.. = (P -PY)(p -P . A set of five independen
"Xy _(x Y?(X/“_YM) ] ve 1ndependent
invarliants may be chosen in several ways from these. Several

relations between the invariants of fig.4.1 hold; these are

_ (oM
S::cy« = (Px + Py) (le“ + P ) and momentum transfers

most easily derived by considering a pair of particles to-
gether and using the relation for 2 - 2 scattering:-

5+'€-+44=‘_Zm§’ (4.1)

Thus taking A and B together we have:-

S + ScE + Spe (4.2)

2 2 2
SAe + Mg+ my + g .

Taking AC together:-

(4.3)

{-CA +omg tmy Mg Soe + Cog * Lry
and so on. .

For the AB - CDE reaction we shall in general be inter-
ested in the properties of the scattering amplitude as a
function of Sy, toas Sppand the angles e , }5 of particle_
E in the frame of reference where the centre of mass of par-
ticles D and E is at rest. To calculate the amplitudes from
a givenr model, the energies and momenta of all the particles
in this frame of reference, as well as the other invariants,
will be needed. First we must define the coordinate systems
in which € and p’ are measured; as several different conven
tions are in current use we choose ours to agree with that
of the Aachen-Berlin-Bonn-CERN-Heidelberg collaboration (66)
whose data we shall discuss in detail below. It is usual
to use either of two coordinate systems, the so-called s and
t channel systems, which are distinguished by the direction
chosen for the Z axis in the E D centre of mass system. For
the 7T N - 71T N reaction we define A=T7 , B=N, C=1T, D=1 ,
E=N. Consider first the t-channel frame (fig.4.2a); we take
the Z axis to lie along the direction of momentum of particle
B, and define the Zx plane as that containing the momenta of




(a) t chanhel

%Z=_a
Pa
/
/ Pe
lo. |
Ll
~ |y
Fe ~~ | =
~
~_ |
x pRX

(b) s channel

Fig.4.2. Definition of t and s channel coordinate systems.
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particles A and B. Define:-

A (4.4)

A
= y_/\_'z'__L

= Py ARy )

AN

Thus (PA)x<0 and, for ;5 +=0» incident A(T ) and outgoing
E(N) are on oppesite sides of the Z axis. The polar and
azimuthal angles are as depicted in fig.4.2a. This convention
is used in refs.(66, 69). Refs.(70 = 72) take &(x Py AR,

and thus have the azimuthal angle equal to ;’ft+77: In refs.
(73, 74) particle E is defined as the pion and thus the azimu-
thal angle equals p't+7T and the polar angle equals IT - § "

8>

lag >

In the s channel we take the Z axis in the direction of
momentum of particle C, and the Zx plane as that containing
the momenta of particles B and C. Define:~

2=£3_££°_ ) X=Ha2 (4-3)
85| ]
Thus (PB)X< 0 and, for % =0 incident B(N) and outgoing
E(N) are on opposite sides of the Z axis. The polar and azi-
muthal angles are then as depicted in fig.4.2b.. This is the
convention used in refs.(66, 69); other conventions involve

taking Z = - B (73, 74) or ¥ & B, A By (71).

4.2: Energies, momenta and angles

In this section we describe how to relate the quantities
of physical interest, in the s or t channel, to the invariants
and to each other. We work throughout in the frame where the
centre of mass of particles D and E is at rest, and assume we
are given the invariants SAB' tCA' and SED’ with the angles
(] ¢ and ﬂ £

Consider particle R, mass \I_S;' , decaying to particles
E and D. 4-momentum conservation may be written:-

Pe = P = P, (4.6)

Squaring then gives us immediatly the energy of particle E:-

Ee = Sep + Mc— M5 (4.7)
25
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and interchanging the labels D and E gives:-

E, = Sgp + Mo - Mg (4.8)

2 Isgp

To obtain the energy of particle C, E,» square the equation:-

P, + Pg =P + P (4.9)

Thus:-
Ec = (SAB - Sgp - M?)/;zrs;; ~.(4.10)

Rewriting eq.(4.9) as P, = P, = P - P, and squaring, we

have:-

By = (Seo + Mg = %) /5055, (4.11)
and from conservation of energy:-—

E,= E +E +E, -F, ' (4.12)

The momenta of the particles are obtained from the usual ire-
lation:-

‘ Ifx, =+ JEI-M (4.13)

_ We shall also need the invariants SCD and tEB.

tEB(= (Pé-PB)Q) is obtained immediately in terms of known
quantities:-

(4.14)

bo= Mo+ Mg -265 + 2[P]IR]cos B,

-
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To calculate S, we first need the angle')(t(0< 'X.t (1T )

between EB rand _le, defined by

t = miemz-2EE, + 2[R+ LB o Xe (4.15)

(where P, = P, + Py has been used).

Using P, = -PBp, we find:-

S,y = mi+my +2E E, +2[F|[B]c0 8, + 25, P, (4.16)

With our definition of the t channel coordinate system
PX { 0 and so:-

Seo = ”‘62 rmy +2 E ,ED * ‘Ql’fe//fo/m O +

FALLIE] o 6, cae 2|1, [ 8] sin X in6y co

(4.17)

wvith sin Xt = +J 1 - cos? Xy

The only remaining problem is to determine the s channel
angles in terms of the invariants., We obtain 95 directly
from :-

Sp © M, + my + 2E E, +2/_Pc//f0/ooa O (4.18)

Defining %, as the angle between Ppand P, (-X¢ ‘Xs Mo,
we obtain cos ¢ s from the equation:-

€op = m2+m +2E.E, = 2| P [Ry](sim X 5im O co £ (4.19)

- —meswxs

where P’Bc ( O has been used.
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'XS is obtained from :-

€.z mS+mg —2E By + 2[R -2)L)[ Py 0 %y (4.20)

Note that we still do not know the sign of ﬁf g+ To determine
this, we need to evaluate the invariant

ExB¥s PZ( PBB PCX 1sgivl both s and t channels. We
show in Appendix (3A) that in fact 0 ¢ ﬂ {71 if only if
0 <'ﬁ5 { T, for any values of the other independent

varlables.

4,3: Xinematic properties of Deck model anplitudes

We discuss in this section tiie distributions of a pion-
nucleon system produced by the Deck mechanism in the
TTN = TTTT N reaction. We shall consider the Deck ampli-
tudes in more detaii in chapter 5; for our present purpocses
is sufficient to write for the pion exchange Deck amplitude
(fig.l.3a):-

A~ (a,gw + @Jf;) e@ém (4.21)
€8 ~

For the nucleon exchange Deck amplitude (fig.l.3b) the deno-
minator is replaced by tog - m§:

It is necessary to carry out a detailed calculation to
determine properly the kinematic properties of these ampli~-
tudes, however a general idea of what to expect may be ob-
tained without resorting to the computer.

First note that the amplitude is largest when SCD
large and thus, by eq.(4.2) when SpE (and SCE) is small; also
the amplitude is large only when tCA and tEB or tDB

" These properties result in a particularly large cross-—section

is small.

for the production of low mass pion-nucleon systems.

The exact calculation shows that d¢o~ (Deck) falls more

dt
CA

steeply with tCA when the mass of the pion-nucleon system is
near its threshold value, than when larger, and that this
effect is more pronounced for the pion than for the nucleon
exchange Deck amplitude. This kinematic effect arises as,
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when SED L (mE + mD)2. we may write, approximately:-

ey = mME +mp-2Am, g (4.22)
br © mE b2
pe T M + Mg ~— 27"0 EB (4023)

Equs. (4.3) and (4.11) then give immediately:-

{_DB e £, Myt M Mg m m, ( )
'mD.-l- '”\B
and:-
~ 2

Specializing to the /T N = IT /T N reaction of fig.(4.1) we
£ind to first order in mn-/hN:-

’/('t':s"‘m;—) = I/('t-CA-—l'm}T) (4.26)
and:-

’/(605 L I WS CIEEES (4.27)

Thus in the amplitude of eq.(4.21) the toa dependence is en-
hanced by the teg OF tpp dependence of the propagator, the
enhancement being greater for the pion exchange Deck amplitude.
An important feature arising from the peripherality of
the amplitude with tgg (or tDB), is a preference for the reac-
tion to be coplanar, resulting in an anisotropy of the azi~
muthal angular distributions. Consider first the pion ex-
change Deck amplitude. Since the amplitude is large only

wvhen tEB is small, the nucleon is a spectator in pion-pion
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scattering and has little momentum available to offset any
non-coplanarity between the outgoing dipion system and the
incoming pion-nucleon system. The degree of coplanarity

will become greater as the energy of the pion in the out-
going pion-nucleon centre of mass frame increases, and so we
may expect an increasing anisotropy of the azimuthal angulaf
distributions as the mass of the pion-nucleon system increases
from its threshold value. The outgoing pions will tend to
move in oppositedirections, and so the differential cross
sections will be largest for ﬁfcr 777 . Similarly, for the
nucleon exchange Deck amplitude; we have a 'spectator pion!

in pion-nucleon scattering and can expect peaks in the azi-
muthal angular distributions at ﬂ = 0. This anisotropy means
that helicity of the nucleon is not conserved in either the

s or t channel, as we demonstrate in appendix 4E.

The spectator aspect of the nucleon (pion) also results
in a tendency for the outgoing nucleon (pion) to be aligned
with the incoming nucleon, in the t channel, leading to a peak
in the polar angular distributions at & t=0(TT‘). This effect
is in fact suppressed for small tcA and SED’ as has been de-
monstrated by Berger (70). For Spg Y Sgp and t,, £ 0, the
following approximate relations hold:-

C

~ 1
Sp ¥ Sas ep— ™3) (4.28)
Sgp -~ m} .
Sce & Sas (“oe""'ez) ‘ (4.29)
Segp - w%

The pion or nucleon pole thus cancels out of the SCD(or SCE)
"dependent part of the amplitude, removing the tEB and thus

the © dependence. The pole remains in the ‘/_S?D or fS_C;
dependent part of the amplitude. In fact the exact calcu-
lation shows that the relations (4.28, 4.29) soon break down
as S, increases from its threshold value and I tCAI increases,
and prominent peaks appear in the polar angular distributions.




4.4: Qualitative features of diffraction dissociation

We discuss, in this section, how the qualitative fea-
tures of inelastic diffraction dissociation processes may
be understood in terms of the Deck effect, in association with
the direct diffractive production of resonances. .

In all inelastic diffraction dissociation reactions a
large enhancement of the cross-section is observed, when the
mass of the diffractively produced system is near its thres-
hold value, and less than that of the lowest mass resonance
observed in formation experiments. This can be immediately
understcod in terms of the kinematic effects of the Deck
model, discussed in section 4.3. Enhancements are also ob-
served when the mass is greater and, if the selection cos
e N { 0 is made on the data to suppress the pion Deck ampli-
tude, are considerably more pronounced. This effect is seen
in fig.4.3, from ref.(75), for the T p = mw (nmT ) and pp -»
P (n T ) reactions; the peaks in the cross section may
clearly be interpreted as due to the direct diffractive pro-
duction of the N(1470), N(1520) and N(1690) resonances. Re-
sonance effects are also seen in f£ig.4.4 (from ref,(66)},
vhere selections on to, are made on the ( IT N) mass distri-
butions of the 16 GeV diffractive T N = 1 (T N) reaction.

The low mass enhancement dominates when t is small, but at

larger t.,, wvhen the contribution to the 2$plitude from the
Deck mechanism becomes less important, the mass spectrum
peaks in the region of the N(1470), N(1520) and N(1690) re-
sonances. The so0lid curves in fig.4.4. are a fit made by the
authors of ref.(66) to their data using an incoherent sum

of the Deck amplitude with the amplitude for the diffractive
production of N(1520) and N(1690) resonances. The most gene-
ral production and decay mechanism of a spin J nucleon reso-
nance in the T N - T (IT N) reaction leads to angular dis-

tributions of the outgoing T N system of the form:-

nJ'—
L‘I oS ¢, e Lm O, (4.30)
eﬁ' m:=0

h= J=

do L5 b %zh% (4.31)
c‘}ﬂg n=0
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Rescnance peaks, more pronounced for cos 6 t { 0, are
visible.
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These distributions are symmetric about @ = I and / = T
2 2

thus, as we shall see below, resonance production cannot be
the only process occurring in the diffractive production of
high mass TT N systems.

t= 0.0-006(Gevk)? | t: 006-04(Geve)® | 120.1 -0.3{Gevi)
20 ]
i
10 1 '
/
{4 .
d o 3
QAo ol . o i
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o + :
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nmt system in 16 GeV Py (T tn), for different
intervals of tcp. (from ref.(66)) The solid curves
are a fit to the data, made in ref.(66), using an
incoherent sum of pion Deck plus resonance produc-
tion amplitudes.

\
M (NT), GeV
Fig.4.4. Mass distributions of the diffractively produced
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We now consider data on the angular distributions of
diffractively produced pion-nucleon systems,

We examine the distributions m%t) and %,gt of the

diffractively produced pion-nucleon system in the 16 GeV

W N->TTIT N reaction, in the t channel, for tCA both less than
and greater than -0.06 GeVQ. We consider the distributions in
five mass bins, as shown in figs.4.5, 4.6 (taken from ref.66)
where the cross sections for the diffractive production of a
T *n system in the T "p 3 ™ m*n reaction are plotted*. The
so0lid lines are our fits and predictions, discussed in the
next chapter.

Consider the data in the resonance region. The most
notable feature i23 the large peak in -d—(%é%:é-t), present for
[tcal > ©0.06 GeV
[ts, [<0.06 GevZ, This combined with a %—gt distribution
which rises to a maximum around,lf t=TI’, is a clear indication
of the pion exchange Deck effect. However,.the peaks at
cos Gé = =1, as well as the size of the cross-section near
ﬁt =0) cannot be reproduced by this alone; the obviouz inter-
Pretation is that resonance production and decay is also

occurring.

but almost absent for

The situation is less clear in the lower mass region.
. d o _ ! . . .
Peaks in 3 coset) at cos Ot = 1 are still present in the

t) 0.06 Gev2 data, but are less pronounced, as is expected

from the kinematic properties of the pion exchange Deck ampli-

tude. Peaks in %—9- at ﬁ =JT confirm the presence of this
7 e

amplitude. The peaks in '&Tc':%;!é_ ) at cos et = -1 indicate
t

the presence of nucleon exchange Deck amplitude, however this
cannot be very large as there are no peaks in g—%} at )dt = 0.
t

Similar considerations have been applied to the NN =% N (TTN)
reaction by the Fermilab-Northwestern-Rochester-SLAC collabor-
ation, (76) who estimated that about equal amounts of pion and
nucleon exchange were present in the amplitude near the thres-
hold for (7 N) production. Another strong indication of the

¢

*The diffractive part of the T "p = T~ T *n reaction is
extracted from data on the general W N = W /T N reaction
by means of an isospin analysis, as discussed in the
previous chapter.
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presence of both these exchange mechanisms is obtained from

a study of cross—-over systematics carried out by the Aachan-

Berlin~-Bonn-CERN-Heidelberg collaboration, for the diffractive

production of low mass T ~ A ** systems in the TT Zp minatt

reactions (77). Their arguments ire as fgllows. -
suppose the diffractive 7T p 5> T~ 1M~ A ++ ampilitude

is dominated by both pion and A Deck exchange amplitudes.

It] < 5:06 (Gev/c)?

108 -1-2 1:2-1-32 132 = 144 144 -16 16 -18

— L4
d cos 9‘

I |
wior m kgl _ij o

-1 0 1 -] 0 1 -1 0 I | 0 1 -1 0 H
cos 6y
108-12 12 =132 132144 1-44-1-6 $:6=-18
E_ 44 . 4 + + +. 1
d By .1. T
p/30" 27 Hi T"’ﬁiy&i}% Lo '
T 1.
T IS ML}%’%&
0 L 4 ! A 1 1 !
0 n 0 T 0 )3 0 © 0 )d
#¢

Fig.4.5. t-channel angular distributions of the diffractively
| ‘ produced *n system in the T ~“p - 7~ 7T *n reac-
tion, for different intervals of 7r *n mass )
(GeV/c2) and with |tgal < 0.06 (Gev)2 . The data is
| from ref.(66) and the solid curves are the fits (of
| chapter 5) for rr+n mass ) 1.2 GeV/c2 and predic-
tions for 7r *n mass ¢ 1.2 GeV/c2.
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We would then expect the 0 ( ¢s { _727: region of phase space+

++

to be dominated by A exchange, and the _7§r. < ¢s Crm

region to be dominated by 7T ~ exchange., The T+ A **
channel is exotic, and so we expect, for O ¢ ¢s 4 ..2_7., the

slope of the differential cross section of the T ‘ induced

process, (_i_g_'+, to be less than that of the T ~ induced process,
dt

and for _d_g"' (t =0) to be less than do (t =0). Likewise,

dt dt
for T ¢ ¢s (I , when the amplitude will contain the pion-

pion 2'sc:at’cc—:::'ing sub-process, with the T ~ T ~ channel exotic,
we expect do@ (0) ) de~(0) and that the slope of the former
dt dt

It| > 0-06 (Gev/c)*

T { ) ! 1]

1.08-1-2 12 =132 132144 144 -1°6 16 ~-18

15+ L 1 . 4 . _Y 1

—_ 107
d cos Ot

pb /0-2 ' ,} }/

—

—

-1 0 1-1 0 1 -1 0 1-1 0 1 0 1
cos 6y
'0.. -+ -+ F S - .o
108 ~-12 12 =132 132-144 144 -1-6 16 -18
4o
d Bt .I. +
b 30. 5"' - -+ - M . -+
l" / + 1 '{‘I‘L
wﬁ 1.1 Y V" 'i‘ 1
| e
‘L_ nb
o HT 1 % 1 - L 1 1
0 x 0 ® 0 ] 0 3 0 K
- "

Fig.4.6. As £ig.4.5, but with | tg,| > 0.06 (Gev/c)2.

*We use our definition of #, which differs by T from that in
ref,(77) |
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wvill now be greater. Thus cross—overs may be expected in plots
of these distributions. These predictions are nicely confir-
med by the experimental results, as shown in fig.4.7 (from
ref.77); indeed the cross-overs even appear to occur at values
of 't* close to those at which cross-overs are seen in real
TTIT and 7Tp scattering. It would be interesting to check
that the same cross-overs are observed when the appropriate
selection on O, instead of @, is made.

+
s P—b Ty (=AY AT 16 GeV/c
T T T 1 T + = p 1 T ' T
! $- TP -
3 a) \d 1>m/2 I b) |¢>s|<vr/z ]
™ i\ )
> 1 .
Q
A §
<
E -
“‘_S Oc' -_i
wvlv j
]
o 1 b \ -
—----?----- \ :
i ..---..‘ .....
]
0.0! I 1 1 ! | 1 1 | i i i
0O -~ 0.2 0.4 06 O 0.2 0.4 0.6

tea (Gevre)?

Fig.4.7. t distributions of the diffractively produced _ +t
71— A++ system in 16 GeV/c mm¥p o> 2 (772 ™)
for ¢s both greater and less than rr, showing the

2

change in the sign of the crossover.(from ref.(77):
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It is likely that these ideas are also capable of re-
solving the problem of the crossover in diffractive Q (X*iT)
production, which has cast doubt on the Deck model in the past.
In the beam diffraction dissociation reactions ¥op = (x*~ 1m¥)p

and X°p = (k*t T T)p the cross-over of %g;for data integrated
t »
over azimuthal angle ., is found to be in the opposite direc-

tion to that expected if the pion exchange Deck amplitude do-
minates. (78, 79). However if, as we now suspect, K* exchange
is present also, it is necessary to consider separately the
data corresponding to two different regions of @, and we may
then find that in fact the model and the data are in agree-
ment. An alternative but more artificial solution to the Q
problem has been proposed in ref.(80), where the B -w ex-
change diagrein is enlisted to cancel the effects of the pion
exchange Deck diagram and so reverse the sign of the cross-
over (for all azimuthal angles). It seems rather unlikely that
this diagram will give a large enough contribution, with the
correct phase, but it may well be present in addition to the
K* exchange. The final choi¢e between these two ideas lies

in a re-analysis of the experimental data, so that dg¢ ma, be
dt
plotted in the two regions ¢ I and g > 1T .
2 2

A problem arises with the Deck model when we consider the
cross section for the production of a low mass diffractive
system, as a function of t,,. The data of ref.(66) shows that
the cross-section for the diffractive production of a low mass
pion-nucleon system is particularly large for ltCA’<0-06 Gev?
and falls rapidly as 'tCAl increases, but only slowly for

’tCAI ) 0.3 Gev2, 1In fig.4.8 (from ref.(75)) we show the
relation between the mass of the diffractively produced system

and the stope, b, (writing de(t) = do(o) ebt) for theyp =
_ dt dat
(3 )p and pp = (p1r )p reactions, and observe a rapid change

of slope with mass. This 'mass-slope correlation' cannot be
explained simply by the Deck enhancement of the tcA dependence
(81, 82) and may be partly due to peripherality of the inelastic
diffraction dissociation process in impact parameter space.

As discussed in ref.(83) a target proton which appears as a

ring in impact parameter space will give rise to a sharp
decrease in 460 to a minimum at t., 2 -0.2 Gevz, in the

CA
dtcA
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part of the (7 N) production amplitude which conserves he-
licity in the s channel., This dip arises from the first zero
of the Bessel function JO(R J =t) (with Rzl fermi) and can
only be important for low mass T N systems, when the non-
£lip amplitude is large. Furthermore, this effect will be
most important in the nucleon exchange part of the amplitude.
We may see this by calculating do~ Ffor low mass, small
dgs
toa TN systems; the nucleon exchange Deck amplitude gives
rise to a much less sharply peaked distribution than the
pion exchange amplitude and thus has a larger non-flip com-
ponent.

Wt T

) T (¢) '

w+p—> (Iml+p ntp = (p) +p

50 — 300 6eV/c
(5 «% 415} —+

| 1 ol L ] i1
%8 & 6 i 2 3
by (65) W) ey

Fig.4.8. Mass~-slope correlation for the diffractive reactions:
(a) TP 2 (37)p in the 5-20 GeV/c momentum range
Fnd)gb) np = (p m)p at 50 - 300 GeV/c. (From ref.
75)).
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,os:, np—>{pn7)p (50-300 6eV/c)
5 M (prr) <135 Gev/c®
_ + €059, < O
%%' o C0§6; >0
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unibs) -
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Fig.4.9. Differential cross-sections for the process np =
pPmM~)p for cos 6 t > 0 and cosé  ( 0. (from ref.

83)).
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This idea is supported if a selection is made on 6.
when studying do-/dt, so as to separate the pion and nucleon
Deck exchange contributions. In Fig.4.9 (from ref.(83)) it
is seen that 4 ¢ /dt falls more steeply with to, for the
nucleon Deck amplitude (which dominates when cos €, { 0)
than for the pion Deck amplitude, (which dominates when cos

e & > 0); the simple Deck model predicts the opposite effect,
as 1is seen from egs.4.26, 4.27. This suggests, that absorp-
tion of the nucleon Deck amplitude is important and leads
to an enhanced tCA dependence of d’v‘/ﬁtCA, when the mass of
the produced pion-nucleon system is low. Berger and Pirila
(84) have carried out a detailed study of absorptive effects
in nucleon diffraction dissociation, and obtained predictions
in agreement with experiment.

When the mass of the diffractively produced system is
great enough, resonance production will lead to a flattening of
the slope of do-/dt; this effect contributes to the compari-
tively large cross section for producing high mass (N7 ) sys-
tems at large t, seen in fig.4.4.

A good qualitative understanding of inelastic nucleon
diffraction dissociation has thus been obtained, in terms of
the pion and baryon Deck exchange mechanisms with the direct
diffractive producfion of resonances. In the next chapter
we present a simple quantitative model based on these ideas,
to describe the angular distribution data of ref.(66).
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5: A RESONANCE-DECK INTERFERENCE MODEL FOR
MN—=TTTTN DIFFRACTIVE SCATTERING

5.1: The Model

In this chapter, angular distributions of the pion-
nucleon system produced in the diffractive TTN = TT (7TN)
reaction at 16 GeV/c (66) are interpreted quantitatively in
terms of a simple model. Taking full account of spins
and interference, we take the amplitude, for the production of
a pion-nucleon system of mass in the resonance region, as a
coherent sum of pion exchange Deck amplitude with the ampli-
tude for production and decay of the dominant isospin % nu-
cleon resonarnces. We take these T as the 1470 (1%), 1520
(%_) and 1690 (%+), as suggested by Morrison's rule (85) and
the spin-parity analysis of ref.(86). We calculate how the
helicity states of the resonances are populated by taking the
pomeron to couple as a spin one object, and test various mo-
dels for the required three coupling constants. Duality gives
a reason for neglecting baryon exchange and provides a counter
to Fox's (87) argument that, were the pomeron like a photon,
then the sum of the three possible diffraction dissociation
amplitudes would equal zero, in the forward direction. Below
the resonance region we take the diffractive amplitude as a
coherent sum of pion and baryon exchange Deck amplitudes.

We obtain a very good quantitative description of the data in
the N* resonance region and, with a naive inclusion of absorp-
tive effects, a good description in the low pion-nucleon mass
region also. We obtain information on high energy 7T~ T s
T -.TT+ scattering and our best description of the data is
found using a parametrization of isospin zero exchange con-
gsistent with the results of chapter 2. The pomeron contri-
bution to the 77 ~IT ¥ S T * cross section is found to
be about 6 mb at energies of 3 - 5 GeV.

*we do not explicitly include the 1470 in our fits as its
decay angular distributions are isotropic, and cannot be
separated from those of the 1520,
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Similar but less detailed Deck plus resonance models
have been proposed elsewhere. Berlad et al.(73, 88) discuss
quaiitative Features of the T N = 7 (7T N) reaction at
3.5 GeV in terms of such a model. The authors of ref,.(66)
interpret their data in a similar manner but do not consider
angular distributions; neither studies takes into account
spins or interference. '

A detailed partial wave analysis of the pion Deck con-
tribution to the pp = pn Tt reaction has been carried out
by Uehara et al.(89) who also consider qualitatively the
consequences of interference of the amplitude with six pion-
nucleon resonances, on the assumption that t-channel helicity
is conserved in their production. Ansorge et al.(90) fit the
moments of the pion-proton angular distribution for the
np = ppIT reaction, at 9-24 GeV/c, by decompocing the pion
exchange Deck amplitude into partial waves and adding in five
resonances. A reasonable description of the data is obtained
with the inclusion of resonances violating Morrison's rule,
and approximate t channel helicity conservation is found to
be obeyed. No attempt is made to explain t distributions or
to include baryon exchange amplitudes.

Ochs et al.(91) have presented a qualitative interpre-
tation of the momentum distributions in 14 GeV diffractive
TP 1 (NT) and W p = 7w (T A ) reactions, in terms
of pion and baryon exchange in addition to resonance produc-~
tion. Spin effects are neglected, and interference is only
included in a very crude manner. Evidence is found for pion
and baryon exchange in about equal amounts, in addition to a
background attributed to resonance production and decay.

5.2: The Deck and resonance production amplitudes

First consider the pion exchange Deck amplitude (fig.l.3a).
We write for this:-

Auulr) = Almm) s ), o ) )

bep — mr-

92/47T = 14,6, and the Dirac spinors are normalised as in
appendix 4A. We calculate the isospin zero exchange
momrto 1T - 1T amplitude, Ag (Trm) as if it were on
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shell, and parametrize it in terms of pomeron and f exchange:-

.
() = BT, o5 i, (F b _

1 (5.2)

S GOy CREADG

with °<f(t) = 0.5 + 0.9t and °(p = 0.22 GeV™2., The 32 T factor
converts the normalization of chapter 2 to that of appendix
1, and the l/Tﬁ'arises because the outgoing pions are distin-
guished (see eq.(1.19)). We take, consistent with the results
of chapter 2, 0.1 ¢ A, < 0.3 (4mb. (o (T~ IT* > 7™M ™)
< 12mb.) and 2.5 ¢ b { 5.5 GeV™ =2, As discussed in chapters
1 and 2, a FESR calcubatlon of rhe asymptotic pion-pion scatt-
ering amplitudes from low energy phase shift data relates the
pomeron and f residue functions at t = O, Ap and a. We find
a & 3(C ~ Ap) where 0.3 C< 0.5, within the uncertainties
(1argely those of the low energy isospin two amplitude) of
the T17r phase shift data. The parameter b is chosen so
that the f residue function has a zero at t = =0.6 GeV2, (as
found in chapter 2) but in fact results are very insensitive
to this parameter and are virtually unchanged if a zero at
t= -0.4 GeV® is taken.

In appendix 4B the coupling ﬁ%(n)x’su%(p) is explicitly
calculated and the other couplings are listed.

Consider next the nucleon exchange Deck amplitude. We
write for this amplitude (fig.l.3b):-

(N) GA(IrN) f_ sd(éoa)e-dr(d(éoe) ) -u:v(N) Xs “,«(F) (5.3)
/ﬁ,r ‘/F; ~ My

wvhere o (t) = -0,35 + 0.85t. We take the off shell 3y n -
T "n scattering amplitude A(T N) as equal to the on shell
Tr+p -> n'+p amplitude. We use the parametrization for this
from the data fit of ref.(62) where it is assumed that the
pomeron -N=N coupling is scalar.

We argue that, because of duality, we cannot include
simultaneously this amplitude and the resonance production
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amplitude in the N*¥*resonance region. As discussed in chapter
4, there is considerable evidence that resonance production
does take place, and so we should only need the nucleon ex-
change amplitude when the pion-nucleon mass is low. We can,
however, test semi-local duality by using the nucleon exchange
amplitude instead of the resonanceproduction amplitude in '
the higher pion-nucleon mass region; we mention the results

of attempting this in the next section.

It is not clear how nucleon exchange should be para-
metrized when the pion-nucleon sub-energy is very low. We
find that contributions from the amplitude are only large
when tDB'> O, near the nucleon pole, and so it makes little
difference wnether we use the above simple pole description
or a more sophisticated parametrization including nonsense
wrong-signature zeros. The inclusion of the Redgge phase is
arguable, but slightly improves the data fits. 1In appendix
4C we show how to evaluate the various helicity amplitudes of
eq.(5.3), and list them.

In the kinematic regions of the 71 p = 1T ~ 1 *n
reaction wvhich concern us, both SCD and SCE lie principally
in the region of 12-30 GeV2 and so both pion-pion and pion-
nucleon scattering sub-processes should be well described by
Regge parametrizations,

We assume that, in addition to the plon-excgange Deck

effect, direct excitation of the N% " (1470) and N’f (1520)

resonances tg&es place in the 1.44{ M {1.6 GeV mass region,

TN
and of the Ni (1690) in the 1.6{ M, {1.8 GeV mass region

(fig.1.3c).

We need to calculate how the N* helicity states are
populated, and thus require a model for the pomeron-N-N*
coupling. If we assume that the pomeron if 'f dominated'
and so couples like the f meson, and that the £ and w are
exchange degenerate we would expect the pomeron to couple like
the w meson. The w couples like the isoscalar part of the
photon, thus the pomeron may also couple in this manner (92).
This is the motivation for our assumption that we may take the
most general coupling of the pomeron to be vector. The
coupling for the excitation of a spin J, helicity P
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resonance is then of the form:-

T o« u..'r ( ) A
kﬁ d‘d’... dJ'i 3/ P4‘ 53 e PB + g&XB 5’ 5, ) .P“?_i-'- 93 &’B szl ‘ .53'.1',. uMQ
ﬁJx o is the Rarita~-Schwinger spinor for a spin
LR O

J fermion of helicity') , P = %(PB+PN*), Q = %(PA+PC). Ve

work in the DE centre of mass with the t channel coordinate
system; for an incoming proton of helicity +%, N* states

of spin projection +1 are populated by gq» of +7 by Jor and
of i% and +% by g3. We outline, in more detail, this for-

malism for spin 3 and spin 5 particles in appendix 4D and
2 2

\ show explicitly how to calculate the helicity amplitudes
‘ ijk . These t-channel helicity amplitudes vanish if
\ =Ml > 1.
For a nucleon resonance of spin J and helicity ) the amp-
litudes A,,) for decay to a pion and a nucleon of helicity
v can be calculated as a function of the centre of mass ang-
les and N* mass in terms of one coupling, as we show in appen—
| dix 4E. VWe write for the full resonance excitation and decay
amplitude:-

AT oy & : .
S o FXs L ‘ (5.5)

r
Av/‘('rcs = ?AYX-FA/‘“_ )

p
AB Py

. - Myt —SDE —=iM, 1

of';=0.22 GeV™2 and ', the total N* width, is taken as
140 MeV for both N(1520) and N(1690). All normalization con-
stants, including the N* <5 N width, are absorbed in the
pomeron-N-N* couplings of eq.(5.4). The N(1470) has isotropic
decay angular distributions and so its contribution to these
distributions cannot be separated from that of the N(1520);
we thus do not include the N(1470) in our fits.

There are several models for the N* couplings, which
we test. T-channel helicity conservation (a scalar pomeron)
would imply simply that 92=g3=0. If, on the other hand,
the pomeron couples like the isoscalar part of the photon,
we would expect the preference for helicity % N*= ¥ N decay,
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over helicity % state decay (93) to be preserved in diffrac-
tive production. Now the couplings calculated in appendix
4D are precisely those for the decay N* 93’ N, if we replace
the 4-vector Q by the photon polarization vector € . The
T%% amplitude then vanishes, and we have the requirement for

the other helicity 1 amplitude, T%_% to vanish, from eq.(4D 19)

4 < 9z/fwlz = 92(5,,_%”) (5.6)

Ey+my
In the N* centre of mass, EI-_l_(m;2+m§) for photo-decay, and
2m¥
SO:--
< X *
#, = Lo (mi-m) (5.7)

¥
my

which gives g4=0.11g, for the N(1520) and g4=0.179, for the
N(1690). Of course, as the couplings in this model have been
continued in mass and spin from m=0, J=1 to the Regge region,
it is not obvious that either the coupling relationship
eq.(5.7) or the conserved nature of the current will be pre-
served. However, it is in any case interesting to see if

the couplings <P and g, are required at all. Another sugges-
tion arises from a quark model approach, see eg.ref.(94),
which predicts s channel helicity conservation at the pomeron
NN vertex, or in general gl=0. We also test this possibility
in our fits to the data.

In this resonance region we argue, by duality, that the
nucleon exchange amplitude is automatically included with the
resonance production amplitude. The pion exchange amplitude,
which is mainly real, must however be included in addition.

5.3: Description of data by model

In the N(1520) and N(1690) regions, where we consider
pion Deck with resonance production mechanisms, we take:-

do = I > [ALM +AVM(4~es”1 (5.8)

dRdt, dmgy (32,7r it A

tas B
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and when the mass of the pion-nucleon system is lower, we
replace the resonance production amplitude A‘aL(res) by the
nucleon exchange Deck amplitude A v (N). (We show how to
obtain the general expression for the differential cross
section of a 2 = 3 scattering process in appendix 1B.)
The sum over spin, withparityconservation, implies that in
general the cross sections d¢°/df must be symmetric about
#= T , as is demonstrated in appendix 4E.

We calculate the differential cross sections in five

L} L] Ll T -—1
108 -1-2 12 -1-32 132 -144
10 1 1{ L WL
du l W
d cos O,
ib / 02
pp/oz |
0
-1 I
cos Og
1108 -1-2 12 =132 132 - 1.44
10+ 4 4
do {-
ifs b
ko/20 ‘} ! J\ T"}_‘{J v ’.'tx
] [T Tl g
Gy
° 1 Y 1 1 J, -
0 n 0 n 0 n 0 ® 0 4
$s

Fig.5.1. s~channel angular distributions of the diffractively
produced ® *n system in the ©™ ~p - T ~ T *n reac-
tion for different intervals of *n mass. The
data in from ref.(66) and the solid curves are the
predictions of the model.
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different regions of pion-nucleon mass between 1.08 and 1.8
GeV. In each region we evaluate eq.(5.8) at three values
of SEb, 12 values of ¢ (15° to 345°), 10 values of cos 0(-0.9
to +0.9) and 14 values of ton (6 values below -0.07 GeV2, 8
values between -=0.07 and -~1.5 Gevz), and integrate over all
variables but one to obtain the appropriate angular distri-
butions.

In each of the four mass regions between 1.2 and 1.8

GeV we fit simultaneously to the 3T35%€;%7 and g‘r' distri-

butions, for tCA both less than and greater than -=0.06 GeV2,

by minimizing '752. We find the best set of'pion—pion scatt-
ering parameters in the resonance region, and use these in
the low pion~nucleon mass region. We then check our results
by predicting the t channel angular distributions in the mass
region 1,08-~1.2 GeV, and the s channel angular distributions
(integrated over tCA) in all five mass regions.(To obtain -
the s channel angular distributions we simply transform each
pair of s channel angles into the t channel, as described in
chapter 4, and then calculate the amplitude as before, letting
the s channel angles run over the values listed above)

In the N(1520) and N(1690) regions of the pion~-nucleon
mass spectrum, we obtain a good description of the data,
as depicted in figs.4.5 and 4.6; all the qualitative Ffeatures
are reproducgd. We do not, however, find sufficigntly sharp
peaks in a-(—-——r(r- near cos @, =1 for t) 0.06 Gev-. ¥ we
show in fig?g?]?-g?;r predictionb for the s channel angular dis-
tributions; again agreement with the data is good.

Interference effects are not large in this mass region,
as the pion exchange amplitude predominantly flips the nucleon
helicity and tends to populate the ﬂt =JT , cos Qtel
regions of phase space whereas the resonance production and

decay amplitudes contain both flip and non-flip parts, and

*This is not simply a binning effect and could be due to an
incomplete _separation of non-diffractive amplitudes in the
isospin analysis of ref.(66), resulting in a contamination
of the data with some isospin 1 (@ ) exchange, This would
increase the proportion of SCD dependent data, and thus

enhance the peak, as described in the previous chapter.
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populate all phase space. Nevertheless, the fits are sig-
nificantly improved by taking the interference effects into
account.

In the N(1520) region, the three suggested models for
the coupling ~onstants give an equally gdood description and,
cannot he distinguished (the pion-pion scattering parameters
determined simultaneously are also virtually unaffected by
the choice of model). In the N(1690) region a good descrip-
tion cannot be obtained with t channel helicity conservation,
and our best fit is obtained with all three couplings free,
when we find 93/92=O.12, compared with a photodecay value
of 0.17 (eq.(5.7)). Ve can also obtain an acceptable descrip-
tion with the quark model prediction 91=0' The pion-pion
scattering parameters of eq.(5.2) which produce the best fit
over the two mass regions are

A
&

a

n

016 (or(rr= n'ﬂ*)s §5mé)
3.9 6eV™*
087 (C= 045)

(5.9)

L

A reasonable description cannot be obtained with a
pomercn corresponding to O‘T in the range 12-18 mb. The para-
meters of our fits are shown in table 5.1%. Wwe also show in
this table the results of fifting the data in this mass region
using a sum of pion and nucleon exchange Deck amplitudes with
no resonance contributions. Although a much poorer descrip-
tion of the data is obtained, results are sufficiently good
to lend support to the idea that nucleon exchange is dual to
resonance production. The best results are obtained with
completely unabsorbed nucleon exchange and a pomeron corres-—
ponding to O’T( TIr )~ 8 mb.

*wo points which contribute large values to'X'2 are ignored
in the values tabulated. The point at cos @ ¢=-0.3,

-2 a—- . . .
t €0,06 GeV2 for HTEB%ETET in the N(1690) reglgﬁffont?lbutes
NSO, and that at cos et=009, t) 0.06 for m in the
N(1520) region contributes ~10.
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We now consider the model applied to the low pion-
nucleon mass kinematic region. We first attempt to describe
the t channel angular distributions, in the two pion-nucleon
mass bins lying between 1.2 and 1.44 GeV, in terms of a sum
of pion and nucleon exchange Deck amplitudes. We fix the
pion-pion scattering parameters at the values given by
eq.(5.9)" and take G, of eq.(5.3), (which determines the size
of the nucleon Deck contribution ) as the only variable
parameter, the same in both mass regions. We are unable to
obtain a good description of the data.

As mentioned above, this may indicate the need for ab-
sorptive corrections. We may naively include absorption of
the nucleon exchange amplitude, eq.(5.3), by multiplying this
amplitude by the factor (& +J (RJ—:E;é))/(l+d ), where o
is a free parameter and R is taken as = 1 fermi. We find a
considerably improved description, withg =0, althougn the

3T=§§%§§7 distributions are still not correct.

We can make numerous other modifications to the ampli-
tude but none of them lead tc significantly improved descrip-
tions of the data. A more thorough consideration of absorp-
tion including spin effects could possibly further improve
results, but we do not attempt this here. The parameters
of our fits are given in table 5.1. We show in figs.4.5
and 4.6 our best descriptions of the data, as well as a pre-
diction of the t-channel angular distributions for the mass
region 1,08=1.2 GeV and the s channel distributions for all
three mass bins (in fig.5.1). The predictions agree well
with the data, in general.

Interference between pion and nucleon exchange Deck
amplitudes is large in this low pion-nucleon mass region,
as the kinematic regions where each is important overlap con-
siderably. Thus our results, indicating a fairly small nu-
cleon Deck contribution, are not necessarily at variance with
those of refs.(76, 91), where interference was not taken into
account, and where the pion and nucleon Deck amplitudes were
estimated to contribute about equally.

In fig.5.2 we show the S0 distributions in four

dtCA

+Again we do not obtain a good description if we use a lar-
ger pomeron coupling.
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mass regions between 1.08 and 1.8 GeV, as determined by our
model. In qualitative agreement with data, there is a
strong mass-sliope correlation, largely due to the increasing
proportion of resonance excitation amplitude as the mass of
the pion-nucleon system increases. We consistently predict
rather smaller cross sections at large tCA than are found

in ref.(66); our model is probably too simple to describe
this region correctly.

o 12-144 (x%)

‘ tca l GeVz

Fig.5.2. Momentum transfer distributions of the diffractively
produced ( m+n) system in theypa 7~ r+n reaction,

/ as predicted by the model, for different intervals
of (1 *n) mass (GeV/c2).
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5.4: Summary of results

In this chapter, we have shown that a good quantitative
description of the angular distributions of the high mass
pion-nucleon system, diffractively produced in the 16 GeV/c
T N mw (7 N) reaction, may be obtained from our model,
which takes the amplitude as the pion exchange Deck amplitude
coherently added to the émplitude for direct excitation of
N(1520) and N(1690) resonances by a 'photon-~like' pomeron ex—
change. The resonance couplings we obtain are consistent with
simple quark model ideas or, for N(1520) production only, with
t chamnel helicity conservation. However, results do not supp-
ort t channel helicity conservation in N(1690) production,
and the total amplitude for the production of high mass pion-
nucleor systems strcngly violates helicity conservation in
both s and t channels. We also obtain information on the
high-energy pion-pion scattering amplitudes, finding a des-
cription of the t channel isospin zero amplitude consistent
with the results of chapter 2, and a pomeron contribution to
the pion-pion scattering total cross-section of about 6 mb
in the 3 - 5 GeV energy region. The use of the nucleon ex-
change amplitude instead of the resonance excitaticn ampli-
tude in the high pion-nucleon mass region produces a reason-
able description of the data, lending support to the idea
of duality between nucleon exchange and resonance excitation.
For the production of low mass pion-nucleon systems, our mo-
del of simple pion exchange Deck amplitude coherently added
to nucleon exchange Deck amplitude does not reproduce the
data well unless some attempt is made to include absorptive
effects; this suggests that absorption may indeed be the clue
to understanding effects arising in this low mass region.

We find interference to be large between pion and nucleon ex-
change amplitudes and that, separately, the pion and nucleon
Deck total cross sections are in the approximate ration of
3.5 to 1.

Althoughour model does not predict quite large enough
cross sections for diffractive (7T N) production at large t,
the t dependence of the model is generally in good qualitative
agreement with data, and a large slope-mass correlation is
predicted.
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6: CONCLUSIONS

This thesis has illustrated some of the features of
strong interaction phenomenology by means of two studies based
on the I N = 7w IT N reaction. '

In the first two chapters we showed how the general
principles of S-matrix theory can be applied to the simplest
possible strong interaction process, pion-pion scattering, on
which information may be obtained from a study of the
T N->TINN reaction in the appropriate kinematic region.
These principles constrain the pion-pion scattering ampli-
tudes considerably, when given a certain amount cf experi-
mental information, and provide a means of studying the
amplitudes in energy regions not easily accessible to phase
shift analysis. A thorough application of the crossing prin-
ciple, by means of physical region crossing sum rules, yiel-
ded the information that high energy pion-pion scattering may, .
as expected, be described in terms of Regge and pomeron ex-
change, that the asymptotic pion-pion scattering cross sec-
tion is probably rather small, and that the rho and f trajec-
tories, coupling to pion-pion scattering, are apparently not
strongly exchange degencrate. We found that a lack of good
experimental information about low energy isospin two pion-
pion scattering is the main barrier to obtaining better know-
ledge of high energy pion-pion scattering by means of the sum
rule approach.

It would be interesting to extend the work of chapter
2 to relate the scattering of all in particles in the SU(3)
pseudoscalar octet, by writing the crossing sum rules for
U or V spin multiplets instead of for the isospin multiplet.
The chief difficulty lies in the large mass differences
between the particles in the octet, resulting in different
thresholds for different scattering processes.

The second part of the thesis illustrates the use
of strong interaction phenomenology in organizing data and
understanding its general features in terms of simple ideas
(without, however, obtaining any deep theoretical understan-
ding or finely detailed predictions). We recalled evidence
to demonstrate that double exchange processes (the Deck effect),
with resonance excitation, explain qualitatively well a good
deal of inelastic diffraction dissociation data. We then
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showed in detail, taking spins and interference properly into
account, that the pion exchange Deck mechanism, with resonance
production and decay, affords a good description of the diff-
ractive production of a pion-nucleon system of mass between
1.4 and 1.8 GeV in the 16 GeV/c T N = 1T 7T N reaction. The
diffractive production of lower mass pion-nucleon systems in
this reaction can be accounted for rather less well by taking
the amplitude for the reaction as a sum of pion and nucleon
exchange Deck amplitudes; it is necessary to make the model
more complicated by including 'absorption'. The two main
results to emerge from this calculation, are that the pomeron
NN* coupling may, consistently with the data, be described as
vectorlike, and that the pion-pion scattering total cross sec-
tion at high energy is about 6 mb., This latter result, taken
with the other evidence for a small meson-meson scattering
total cross section, emphasizes the fact that the pomeron is
not a simple factorizable Regge pole of intercept unity.

The work of chapters 4 and 5 can clearly be extended to
other inelastic diffractive reactions as good angular distri-
bution data becomes available; in particular the model for the
pomeron coupling should be further tested,and the nrp = (mWwmwW)p
reaction can be studied to resolve the problem of the existence
or otherwise of the A, meson, by studying the angular distri-
butions of the r (T ) system.

This thesis has demonstrated the remarkable amount of
Physics contained in the 1T N = T 7T N scattering process.
It has illustrated the role of strong interaction phenomenology
in extracting much interesting information from data, and in
interpreting many physical effects in terms of a few simple
ideas. The work described is a step along the path towards a
good general description of strong interactions, to await a
deeper understanding in terms of fundamental theory.
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APPENDIX 1

A: S-matrix and state normalization

We define the transition matrix in terms of the S-matrix
by:-

[ —_—
3 = +am)* 4 87k ) Tge (1A1)
with the covariant stéte normalization:-

RE QESB_(_I_’-_E’)(,’UT)Q (142)

The phase space element is:-

7T‘. ”(3F‘- : (1A3)
fina} state (27_’_)3 Q.E'
¢

particles

With the flux factor 1/4mBlRLI= 1/4 [E'!BCMI , ve have the
cross section for the AB ~-1l....n reaction as

oo | S (an)! ) o, (Er ~F,
thlf,_, (Q'Tr) QE( I(Ff pN!TIPAPB>lz

(1A4)

wvhere my is the mass of target particle B and R, is the labor-

atory beam momentum.
For a 2 = 2 reaction,

o(_gﬁ. a{grz X Sl*(ﬂd’f&— S (F~P P)o( P14 (145
:LEﬁ':lE;4QZD (i Q-JP- '
and so

do 4s B (246)
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B: Differential cross section 2 - 3 reaction

For three particles in the final state, the phase space
integral is, from eq.(1A4):-

3. 3, ,3 ¢/ '

I - [LBLBd §H (Pt rh-p -5) (282)
BE, £, £, @)

To cast this into a more useful form, consider prarticles

1 and 2 together as 'R', and insert into eq.(1Bl) the ident-
ity:-

J 8 (ep-r)m [#hedse §*(hr,-r)

(1B2)
Rearranging, we then have:-
(1B3)
I = 0‘ P 0{ F3 g (PR"‘P PA PB)
J2E, ag (amP

P P 65 (Pe-p-R)dse
2E ze(zvr) 21

Using eq.(1A5):-

T - 5 LB an, 1 1B Ang dse (184)
LA (aﬂ)‘ (I3 2T

210M and.Jl,, are the momenta and solid angles of particle 1

in the R centre of mass frame; pr and _fL R are the momenta
and solid angles of R in the AB centre of mass frame.

Since the AB —) R3 reaction is coplanar, we may inte-
grate over g,. Using d(cos ) R) = 9ta3

- 2[prl 2

, we have:-

T= _I j]f‘”]a{ﬁ.,o(tm dSq (185)
ar*J 8 LIl fs
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and so the differential cross section, from eq.(1A4), is:-

do = 1 X|f'c,,.|“(ﬂ:°(t.«\30(“n|7'lz (1B6)
(32 ﬂzI_P‘_I 'm.a)z
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APPENDIX 2

A: The JT°T° Roy equation

The T T © scattering amplitude, T(s,t.u) obeys a
twice subtracted fixed t dispersion relation for s » 0O and -
4 » t » - 28.(17) The s - u crossing property, T(s,t,u) =
T(u,t,s), allows a subtraction constant to be removed (18)
and so we may write the once subtracted relation:-

T(S)'to) = T(O) 'éo) +_1.?_F ‘ISA(:)C) éo)( l — | \dax

(2-5)2¢  (e-f+s5té)o-4 +eo) (241)

(The subtraction point s,=0 has been chosen in eq.(1.8))
To remove the 't' dependence of the subtraction constant
we first use s - t and t - u crossing to write:-

T (0, %5y b £,) = 7"(4.—/6,,) 9, 6(,) (2a2)

A rigorously valid fixed t dispersion relation may now be
written for T(4 - t,r O, to). Subtracting at s = 4 (t, = 0)
we have:i-

(4‘ 4,9, ) T(é" - rj A(N o)(@c—lﬁéo)(«ﬂ (;%J“)h

(2A3)

1

T(4, 0) is just the (constant) scattering length a°°. sub-
stituting eq.(2A3) into eq.(2Al) leads to:~-

'r(s,é,) = a, + s(€,+5-4) rA(ac,«g,)( - b+ 2x )(xx

T Vi @c-s)(z}(:x—“sré,)(x r60—1,)

o0 (244)
- +-ﬁ§i&§u:él.r Az, dx— )dx
( D)(Q' 607(:)%1'4* 60) (0(-—4)

T
Yy

eq.(2A4) is valid for o{s <o , 43 t ) -28, For s ) 4
the left hand side is replaced by Re T(s,to) and the right
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hand side by a principal value integral. To obtain the
integral (Roy )equation for the partial wave amplitudes, A(wx,t)
and A(x,0) are expanded using eq.(1.17). The partial waves
are projected from T(s,t) using :-

(9 < 2[5 [ e (@) ez (215)

Since Z = 1+2t/(s~-4), we can obtain fe(s) for 4{ s{ 32,
However since T(s,t,u) = T(u,t,s) the integral can be rewritten
as over the range of Z from zero to one, and the Roy equation
can then be used for 44 s{ 60, In practice, iterative cal=-
culations are performed with amplitudes which may not obey
the s-u crossing property, and errers (usually small) may be
introduced by using the half range integration.(4l) The ex-
tended Roy equations of ref.(49) do not suffer from this pro-
blem. To impose three channel crossing on the full amplitude,
wvrite eq.(2A4) for T(s, 4-s—to,t0) and equate to eq.(2A4) (thus
imposing t - u crossing). The resulting equation is the supp-~
lementary condition (crossing sum rule) for the JT ° 7T °
scattering Roy equation.
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APPENDIX 3

A: The sign of the s-channel azimuthal angle

We can determine cos ¢s- as described in chapter 4 but do
not immediatly know the sign of ¢s'
Consider the invariant:-

dBYS
By 4-momentum conservation:-
X = g

B ¥ps
AY§ PAP Py P (3A2)

and antisymmetry implies:~

-3
k=o(Bb’$APP/FP (3A3)
In the DE centre of mass, Py+P, = ( JSDE' 0,0,0) and so:=-
K s ‘]-S-;E (_PA‘/\ fB)' .PD (3A4)
= =I5 (Bya —e)c FPe
And so, in the t channel:-~
X == T |B)|By] oin X, 5in 0, 0in g (345)
Since 0 (9t<Tr , 0<7Ct< T , we have:=-
sign( ﬁe ) = — sign (}() for o ,@J( T (346)
Using Ba+Es =£C, we have from eq.(3A4):-
==l (£ a _PB)._PE (347)
in the s channel:-
X = - bE (348)




91

. sign g

- sign (X) (3A9)
and ‘'so sign ¢s = sign ;th (3A10)

VS 0<¢t<TT if and only if G(IZ)'S{ m
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Appendix 4

A: Dirac Formalism

We use the Bjorken-Drell (95) convention for the Dirac
}( matrices:~-

I 0 0 O O © | o
0
z o | 0 o = = - X =
b/o 4 . 0)) = o 0 0 1| )
0 0 ~I o = = ] o0 o0 0
0 o 0 - 0 !/l o o0

g is the usual Pauli matrix vector.

The Dirac spinors for a spin F particle of momentum p and polar

angles © , & are:-

co (6/2)

4 (p)= TEm o (o/z) ¢
4 (121/(2+m)) co(6/2)

(121/(E+m) m;.@/z)z"/ (442)

- oh\(eﬁJ e-i;/
N v o (6/a)
(P) = JE4m (121/(€ +m))oi-n(9/o) e'éﬂ
A 121/ (E+w) coo(6/2) /

B: The Pion exchange coupling

We wish to calculate the TT NN coupling appearing in
fig.1.3, U (RE)K;LKEB), in the 71T N (DE) centre of mass frame,
using the t channel coordinate system (fig.4.2a)

The incoming nucleon (B) has its helicity along the Z
axis, while the outgoing nucleon (E) has its helicity at angles
(0,4).- We-calculate the 'non-£flip' coupling and state the
results for the others.
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Consider T’i‘-ﬁ (rr) ol U'_al (PE) Xs u_zL (%)

+
using equs.(4Al, 4A2):-
T,, € (IE4 M)/JE +M)(co_e oing -if P -
4 it W Bt c0g) g e IR og [Blong) [ 18]\ o,
Eg+M Eg+ M Eg+M

0

0

0

] qum—

4 oC ({EE+M)(JEB+m}(!fa[ ~ [ Bel )mg_ (4B3)
<

Wi~

We find, likewise, that

E'ﬁ o —(IEE"A)/‘I?B"'M){/‘EB’ - /f,,—l) o'nge""d

EB+M EEJ’M

(4B4)

and

Ty (6) = - Tyy(9)

iy (6 p)- 1o (9)'/’)

(4B5)

We may check these results by calculating explicitly

4 Ja'= iy (4B6)
PR

which is the same result as obtained by writing

1 T.,.ace((,r,’; + 1) ¥ (s +n)Xs)

1y )
MV
iy

2 M
—am* + 2R F

o ™ " s
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C: The Nucleon exchange coupling

This 1is the coupling appearing in the diagram of
fig.1.3b and is to be evaluated in the 7 N (DE) centre of
mass, using t-channel axes. We write:-

T(n) o “(Fe) — L ¥ u(Py) (4c1)
#y-Fy -1

which may be rewvritten:-

T(N)°C K(PE)L&'/D “") 2{5“(”6) (4c2)

‘TDB— M2

which, with the aid of the Dirac equation, reduces to:-

T(N)°C - (P) P ¥, u(p) (4C3)
Epp - M*

It is now trivial, but tedious, to calculate the spin ampli~
tudes, using eqs.4Al and 4A2, We find:-

Ti ', oC J(E9+M)(EE+M) ,,,,, /( Pl _ _E]

ébe M2 a'H’I Ee-fl’l (4C4)
A
(l ~ | BgllFs I'
(Ea+)(Eg +m),

T,, o< J(Ea+m)(Ecenm) an_e(E (/L’ | + ,.Egl) + (4C5)
2 € bg — M? Eg+M Epim

)

and _J_J(e)-— 14 (9)) ,“(9 g)= T, (9 v/) (4C6)

Vi~
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Awvay from the threshold for pion-nucleon production, when

Eg. c'lgnl , we find, either by explicit calculation or by
the use of trace methods:-

AL 2 ,
'L 2 /T«v (k)" = _Q_'_Eﬂ_ (EE * Ifs,)l/ee +|Ba] e ©) )
ﬁ-’i (éos""“z)z
D:

N* resonance production couplings

We first summarize the formalism needed for the descrip-
tion of spin 3

> and spin % particles. The wave function for a
spin 3 particle is written as the direct product of a spin

one and a spin # wave function:-

3 _ / Clebsch (4D1)
[2,%) = L, [1m>]d m/)x crevsc
I
Qh*'l\"x
+3 LT,
Thus u;" = E/u u * (4D2)
44 # 3 o *i
and u#"=J_LE/“ w4 éfﬂuz (4D3)
3 3

The spin E wave functions

are obtained from the direct product
of a spin one and a spin

% wave function :-

I“ )\> =5 ,,,n,}[ m>x Clebsch

m™,n/
min'=)\

(4D4)
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Thus: -
+3 s 2
u"'a' = E u 2 (4D5)
MY MY
3 +| I'L
+% o I2%2 = 2
= 2 & u + [3 & U
- | % 2 D6
Uv g MY T MY (4D6)
¥ T2 71 12
3 0 t'i 3 E + 2 | g u 2
=[3 €, u_°" 2 otu Uy T4 » v (4D7)
v T H F 1o

¢
In the N* rest frame, the spin one polarization vectors § are:-
()
& = (0, 0, o, I) (4D8)
b o]
€ - ]é"(o) ly -4, 0) (4D9)

Now consider 7T N =) IT/ N* gcattering. If the pomeron is taken
to couple as a natural parity spin one particle, as in chapter

5, then the most general pomeron -N—N*%' coupling, for the pro-
duction of an N* of spin projection \ , may be written:-

n
1

G )g PP g, g u) )

where F

‘é’, (PN + PN.) = 'ﬁlz',(E"+ My*, fﬂ) (4D11)

In the N* centre of mass frame of reference,
The other independent 4-vector may be taken as

Q = (P'rr + F'n’) = '2!" (Err"Ew'J fw+fn') (4p12)

J
2
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5
For the production of N*2 states, the most general coupling

is of the form.-
B _X\,,
e T (g PP g YO g ) oy

Noting that

Y 2l ' .
(4D14)
PE, =0

"we see that only the Evo parts of eqs.(4D6, 4D7) contribute

tq_(:ﬂ , 'and thus the pomeron couplings for a spin % N* are
simply proportional to those for a spin % N#*, and are obtained
immediately.

3 N*, of helicity %, we

For the production of a spin 5

write:-

+

TS - _E [ (Eyrmy (-9': ¢, f, QBIf,,

(4p16)
+Lg,[8)(8 = 102 ) + g, Q, )

[
Euﬂ"'r‘ﬂ

which can immediately be expressed in terms of known N* centre
of mass angles, energies and momenta. We find:-

4
2

Pl-

T T (4D17)

|

- slw
bk v




98

and similarly:-

33 3.2
TJ‘ZZ - __‘T--T 2 - 93 Qx JE,'».”;(EMWM”) (4D18)

2 2 ey _ .

‘3"% %'5. (4D19)
T, =-T, = j_;_ fl'mﬂz(E”M»N) X

2 T2 ‘3

a
A(Eytmy)

E: N* = T N decay, helicity conservation and
azimuthal angular distributions

The amplitude for the decasy of an N* resonance of spin
J, and spin component A\ to a pion, and a nucleon of helicity
v and polar angles ( @ , @) is given by:-

HVTX oC D;:( (% Q«ﬁ)/‘; = ,{,,\U;(G)ei(bv),dﬁi (4E1)

b g
The rotation functions J%m,(e ) are calculated from the

general formula, due to Wigner, given in appendix A2 of ref.(15).
Parity conservation in the decay implies

Ai l (_’)T"zA-a; ””nﬂkn” (4E2)

where ‘n, x is the intrinsic parity of particle X.
Since we assume that only natural parity N* resonances are
produced, eq.(4E2) implies that:-

A:r =~A7

Y - (4E3)
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SinceVv = * 1, the decay only involves one coupling constant.

The angular distribution of the outgoing pion-nucleon system
is giﬁen by:-

AN LT |%
W(G) ﬂ() x I,Z;:, T; val (4E4)

(where m , v take values ¥ 1). This will be independent of
# unless more than one N¥* helicity state is populated. Thus
if an anisotropy is observed in the azimuthal angular distri-
bution in a given frame of reference, helicity is not conser-
ved in the production of a pion-nucleon system in that frame
of reference.

For the overall amplitude for N* production and decay,

- JA i - a .
Tv,u = g'T/“ M,\  we find, by eqs. 4D17 - 4D19 and 4E4,

T.%,;,(o,ﬂ) = —-T'_’L;' (6-7)

(4E5)

T

u

-5 (0f) Ty (0-9)

These relations also hold for the pion and nucleon ex-
change Deck amplitudes (eqs.4B5, 4C6) and are in fact a general
consequence of parity invariance. ' The angular distribution
must therefore, from eq.(4E4), obey:-

W (6,4)=w(o-4
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