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ABSTRACT .

Three assumptions are normally made about roundoff error sequences in
fixed—-point arithmetic digitai processors: all values of error, within
the limits set by the roundoff process, have an equal probability of
occurrence; they are random; and they are not correlated with any other
signal or error sequence. The validity of these assumptions for digital
filter realisations employing a signal wordlength in the range of 4 to
3 bits is examined. The investigation begins by using a fast Fourier
transform algorithm to perform spectral analysis on roundoff error
sequences when the test signal is a quantised sinusoid. It continues by
comparing the varviance of the error sequence measured at the output of
various filter realisations with that theoretically predicted using the
normal assumptions; this is done using random test sequences., It is
shown that under certain conditions, for the signal wordlengths under
consideratinn, each of the three assumptions can become invalid. In
conclusion this work reports attempts to develop more accurate predictive

noise models which only incorporate assumptions of greater validity.
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CHAPTER 1 -~ INTRODUCTTION.

The processing of electrical signals is a key activity in almost
every tphere of contemporary scientific and technological enterprise.
Indeed, some of the most important fields of investigation rely on
signal processing for their very existence. Speech communications and
synthesis, radar, sonar, pattern recognition, forensic science,
physiology, ard seismology are all activities which could not continue
in their present form without processing information borne by electrical
signals. Herein lies one of the primary reasons for the great importance
of electronics,

Before about 1960 all signal processing was performed using the
cirzuit techniques of analogue electronics. However, the variety of
tasks which could be executed in this manner was severely restricted by
such factors as the limited range of practical component values, and
the lack of any convenient means of delaying or storing signals, It is
not surprising, therefore, that when digital electronic hardware,
particularly the general purpose computer, became readily available
there was great interest in the application of digital techniques to
signal processing. Many aspects of signal processing theory which had
hitherto been of purely academic interest came to be of great practical
importance as the application of the digital computer became feasible,
The development of digital hardware has progressed rapidly over the last
fifteen years so that the processing resources available have increased
tremendously. This has continually prompted and motivated the development
of signal processing theory in a constant attempt to take full advantage
of the computing power available at any time. Hence the practical
capability of signal processing has increased very greatly and this has
brought a corresponding growth in its application and importance.

Digital signal processing can be categorised into two main
g/u } A
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activities, spectrum analysis and filtering. Both fundamentally involve
the production of a sequence of numbers by some arithmetic operation on
what may be termed an input sequence of numbers. It is usual to think of
the input sequence as represeunting a quantity which is a function of
time, If this is the case then spectrum analysis recsults in the
production of a number sequence representing a function of frequency;
this function is the frequency spectrum of the time~domain input sequence.
Spectral analysis, therefore, involves a transformation from the time-
domain to the frequency-domain. This transformation is reversible so if
the input sequence to the processor is regarded as being a frequency
function then the eutput is the time-varying sequence with the given
frequency spectrum, Filtering does not involve a transformation between
domiins, but is a convolution process. If the input sequence is a
function of time then so too is the output sequence. The two sequences
have different frequency spectra, the characteristics of this modification
being determined by the properties of the filter. Filtering can be
further subdivided into linear and non-yinear processes, Of the three
signal processing categories mentioned only linear filtering is
considered in the ensuing work. It is hoped, however, that the resuyts
and conclusions presented will prove to be of more general significance.
The majority of the research into digital signal processing has
been geared to the exploitation of the large main-frame computer. The
use of such a machine is often not feasible, however, especially when
dedicated hardware is required as in real-time signal processing. The
minicomputer is often employed in this kind of application, but its use
is restricted by the expense of implementing such a system. It is
necessary, therefore, to consider means by which digital signal
processing may be performed at greatly reduced cost. Two options
available to the designer are to construct a hard-wired purpose-built

digital system, or to program a microprocessor to perform the task. The



former approach has the advantage that the design can be optimised to
perform one function alone with the result that a relatively high
processing speed may be achieved. The microprocessor, on the other hand,
offers the flexibility to modify the process easily and the versatility
to perform many different tasks just by loading an appropriatc program,
But the addition of these features must, in general, result in some loss
of processing speed. Whichever approach is used the quest for high
processing speed and low cost requires three system parameters to be
minimised: the complexity of the arithmetic unit; the quantity of data
which has to be stored; and finally the number of binary digits (bits)
used to represent data items, that is, the wordlength. An increase in
any of these three must cause either a degradation in processing speed
or a rise in price.

Linear digital filtering is achieved by circuits consisting of two
fundamental elements, The first is the time delay, and the second is the
constant multiplier, Time delays can easily be practically implemented
on a digital processor and are of no great interest. The other process
is the multiplicacion of the numbers of which the signal sequences
consist by constant, usually non-integral, coefficients which define the
ideal response of the filter. In general, no digital processor can
perform such multiplications to infinite precision, but can only return
an approximation to the accurate result. If a large main-frame processor
is employed the degree of such approximation need be negligible so the
practical filter response is virtually ideal. On thke other hand, if a
processor with a relatively short data wordlength is being used, for
reasons of cost or speed, significant errors are created in performing
the signal by coefficient multiplications. Such errors, defined as the
difference between the accurate result of a multiplication and the
approximation returned by the processor, are termed roundoff ercors. The

generation of these roundoff errors causes the practical behaviour of a



filter to deviate from the ideal response. As the data wordlength
employed is shortened this discrepancy between the ideal and practical
behaviour must increase.

Because of the speed and cost considerations already mentioned,
there is often great purpose in determining the minimum data wordlength
required to allow the performance of a given signal processor to come
within the limits of the design specification. For this reason there has
been considerable interest in producing tiieoretical models which permit
a prediction of the effect of -oundoff errors on the behaviour of a
given filter. However, it wculd appear firstly, that much of the work
ﬂas been of a predominately theoretical nature, and secondly, that the
very short data wordlengths encountered, for example, when using a
microprocessor have not received particular attention. The object of
this project is to investigate, both experimentally and theoretically,
some of the effects of roundoff errors on filters realised using a very

short data wordlength.



CHAPTER 2 - DISCRETE-TIME LINEAR FILTERING,

2.1 Discrete-time signals.

A discrete-time signal is one which is formed by repeatedly
sampling a continuously varying signal at instants in time. If any of
the frequency information contained in the continuously varying signal
is to be retained in the resulting discrete-time signal, the duration
between consecutive samples must be known. The simplest casc is when the
duration is constant and each sample is separated from the next by the
time T. This system of sampling, the only one in common usage, is
éepicted in Tigure 2.1. It can be seen that the continuous signal is
converted into a sequence of numbers which represent the amplitudc of a
sanple. No information is retained concerning the behaviour of the
continuous signal in between samples, which leads dirzsctly to a
phenomenon which pervades the whole subject of discrete~time signal

processing: that of aliasing.

2.1.1 Aliasing,

Consider Figure 2.3 in which the sampling of a continuous sinusoid
is shown]. Both the sinusoids depicted, and infinitely many more of
higher frequency, would yield the same sequence of numbers when sampled
at constant intervals of T, Hence it is impossible to decide which
sinusoid the sequence of samples is meant to represent. This effect in
which one frequency 'impersonates' others is called aliasing. At this
stage it may be stated without proof that the infinite series of
frequencies which are indistinguishable from one another is given by

© = 2tn t for any integer n. (2.1.1)
T

(Further extension and application of Figure 2.3 would substantiate this



Figure 2.1 Sampling_a continuously _varying_signal
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Figure 2.2 A continuous -time signal reconstructed.
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Figure 2.3 An example of glasing.
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Figure 2.4 The periodic frequency spectrum of a discrete-time signal
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statement), It may be inferred from equation (2.1.1) that the frequency
spectrum of a general discrete-time signal will have the form shown in
Figure 2.4, That is, the frequency spectrum is periodic with a period
equal to a radian frequency of 2w/T, the frequency of the sampling
process, and is symmetrical about w = 0, i

A discrete-time sequence has no unique representation, but has an
infinice variefy of accurate interpretations. This is a concept which is
both unnecessarily sophisticated and difficult to work with., It is usual,
therefore, to restrict the representation of discrete-time sequences to
one bandwidth of w/T, which is half the frequency of the sampling
process, In principle this segment may be chosen anywhere in the
frequency spectrum, but it is most usual to consider the irequency
interval 0 to w/T radians per second. This is because, at the stage of
reconversion from a discrete~time sequence to a continuous signal, there
is no information available on the raouired behaviour of the continuous
signal in between samples, so that the signal is held constant for the
duration of the samplipg period. Hence the reconstructed continuous-time
signal will have the general shape shown in Figure 2.2. A lowpass
analogue filter may be used to remove the frequencies above /T contained
in this waveform, yielding the original cuntinuous waveform as in Figure
2.1.

The important conclusion is that only continuous-time signals with
all frequency components within the range O to 7/T may be sampled and
reconstructed. The radian frequency n/T, the half-sampling or Nyquist
frequency, is therefore of the utmost significance in the field of

discrete~time signal processing.

2.2 Discrete-time linear filtering.

Having made the preliminary, general remarks above which appertain

to the whole field of discrete-time signal processing, the theory of



filtering discrete-time signals may now be developed. It is important to
understand the breadth of the term filtering in this context and hence

the relevance of studying the process. The term filtering is applied to
any linear process whereby a single discrete signal, x(nT), is processed
to give a single discrete output signal, y(nT). The signal x(nT) is the
only stimulus to the system so that the operator relating the input and

4]
output sequences is time independent"3.

2.2.1 Properties of discrete-time filters.

For a linear discrete system, such as a filter, the input and
output sequences may be related by linear difference equations with
constant coefficients of the form2

k m

y(nT) =.2 aix(nT-iT) -'2 biy(nT-iT) ) (2.2.1)

1=0 i=]
Such difference equations, whilst they lead directly to a practical
filtering algorithm, do not facilitate the determiunation of the
macroscopic properties of a filter, This problem is also encountered in
continuous-time filtering where the differential equation relating the
input and output signals does not present information on the overall
filter characteristics in a readily comprehensible form. In order to
overcome this difficulty the Laplace transformation is commonly employed
in continuous-time circuit analysis. In discrete—time analysis the
Z-transform is used for the same purpose. This is really only an
extension of the Laplace transform so a brief consideration should be

given to the latter at this stage.

2.2.1.1 The Laplace transformation.

In continuous-time circuit analysis the Laplace transformation is

used both to solve the differential equations and also to express the



behaviour of a filter in terms of a transfer function. If the operation
of Laplace transformation of a continuous-time function £(t) is denoted
by L{f(t)}, then the filter output y(t) can be related to the filter

input x(t) by4

L{y(t)} = (Transfer function).(L{x(t)}) (2.2.2)
The Laplace transformation L{f(t)} is detined to be2
L{£(t)} -—/f(t)e-Stdt = F(s) (2.2.3)
0

The resulting function F(s) is seen to be a function of the variable s
which has been introduced in the :cransformation. The term st must be a
pure number so the variable s has the units 1/t, that is, it is a
frequency variable, In fact, s is a complex frequency variable which may

be written
s =0 + jw (2.2.4)
It is perhaps necessary to consider briefly the concept of complex

frequency and hence the physical significance of the s—planea. Firstly

consider the steady-state sinusoid defined by
a(t) = A.cosmot (2.2.5)
This real-~time function may be rewritten in terms of two rotating phasors.
a(t) = %(ej“’ot e (2.2.6)

That is, it may be considered as the summation of two phasors rotating



with complex frequencies jmo and —jwo respectively eth having amplicude
A/2, Hence the sinusoid can be represented in the s-plane by impulse
functions of real amplitude A/2 at s = ijwo.

Consider now that the sinusoid is no longer of constant amplitude

but is decaying exponentially for t > 0, that is_
-0 t -
a(t) = A.e o cosw t (2.2.7)
which again may be written in terms c¢f rotating phasors.

a(t) = Aie(_oo * jwo)t + e(—oo— jwo)t} (2.2.8)
2
It can be seen that the exponentially decaying oscillation may be
represénted by the sum of two phasors each with real amplitude A/2 and
with frequencies —o, * jmo and =0, - jwo. Hence this function is
represented in the s-plane by impulse functions of real amplitude A/2 at
s = -0 + jmo.

The above examples suggest the following interpretation of the
variable s = ¢ + jw. Periodic functions of constant amplitude have ¢ = 0
and are therefore represented on the imaginary axis of the s-plane.
Convergent functions for t tending to infinity have o < 0 and so map
onto the left-hand half of the s-plane. Conversely divergent functions
have ¢ > 0 and map onto the right-hand half of the s-plane. This is
summarised in Figure 2.5.

The s-plane may be used to represent any time function which can
be written in the form of a summation of phasors each with a constant
complex frequency and a constant complex amplitude. The resulting
function is therefore 4-dimensional. It should also be noted that a real-
time function is always represented by complex conjugate pairs of

. 4
frequencies .
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Having now gained some insight into the complex frequency variable,
it is possible to continue the study of the Laplace transformation and
particularly ﬁhe nature of the transfer function introduced in equation
(2.2.2). The Laplace transform of an impulse function at t = 0, L{G(t)},
is equal to 1, from substitution in equation (2.%.3). Therefore if such
an impulse function is applied to a circuit as input then the Laplace
transform of the resulting output funcéion is equal to the transfer
function, which way be termed K(s). This is clear from equation (2.2.2)

which may now be rewritten
Y(s) = K(s).X(s) (2.2.9)

where Y(s) = L{y(t)} and X(s) = L{x(t)}. The transfer function may be
fully factorised and hence expressed in terms of its discontinuities:

its poles and zeros

(s-z])(s-zz)(s—z3)...
(s=p,) (s-p,) (s=pj) ...

K(s) = (2.2.10)

Zys Zgs Zg see. are positions of zeros and Pys Pps Py ....are pole

positions. IL is worth noting here that a pole at a site in the s-plane
for which o > 0 indicates that the impulse response as t tends to infinity
is divergent, which in turn indicates that the circuit response is

inherently unstable,

2.2.1.2 The Z-transformation.

Naturally the Laplace transformation cannot be employed in a
discrete~time environment, but an analogous transformation exists for

. . . .. . 5 .
discrete~time analysis. This 1s called the Z-transformatlon~. A direct

discrete—-time analogue of the Laplace transformation could be written

10



m

-snT
f(nT)e " (2.2.11)
0

F(s) =
n

o~ 8

However a further change of variable is desirable in order to produce a
complex plane with a more convenient coordinate system in view of the
periodicity of the frequency variable previously mentioned. This change

of variable is defined as

—_— (2.2.12)

where T is the sampling period and z is a pure complex number variable.
Equation (2.2,11) may therefore be rewritLen2

00

F(z) £(nT)z (2.2.13)

n=0
which is the definition of the Z-transformation.
It is instructive to consider the relationship of the z=-domain to
the s-domain. From equation (2.2.12) z may be rewritten

z = eGT.erT (2.2.14)

so that the magnitude of z is given by
|z| = e (2.2.15)

It is clear that for any constant value of g, z is a function of the
frequency w and is a periodic function with a period of 2w/T, which
exactly follows the phenomenon of aliasing. Hence the infinite series of
aliasing frequencies resulting from sampling a single sinusoid all map
onto a single point in the z-plane, yielding great clarity and

conciseness. (This is demonstrated in Figure 2.6). It is for just this
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reason that the variable change z = eST is employed.
From Figure 2.6 it can be seen that

(i) o <0 = |z| < 1. The entire left half of the s-plane can be mapped
into the interior of the unit circle in the z-plane,

(ii) o =0= Izl = ], The imaginary axis of the s-plane can be mapped
onto the circumference of the unit circle in the z-plane,

(iii) o > 0 = Izl > 1. The entire right half of the s-plane can be
mapped onto tlie exterior of the unit circle in the z-plane.
In the same way as the equation of a continuous filter was stated

concisely in the s—domain in equation (2.2.9) the operation of a discrete

filter may be thus expressed in the z-domzin

Y(z) = H(z).X(z) (2.2.16)

where Y(z) is the Z-transformation of the output sequence y(nT), X(z) is
the Z-transformation of the input sequence x(nT), and H(z) is the
z-domain transfer function of the filter. The Z-transformation of the
discrete impulse function, 8§(nT) = {l for n=0, 0 for n#0}, is clearly
equal to 1, so the transfer function H(z) again has the significance of
being the transformation of the impulse response. Transforming the

general difference equation (2.2.1) into the z-domain yields

m . k .
Y(z)(l + z b.z_l) = X(z) 2 a.z t (2.2,17)
i=1 * i=o0 *
so that
LI
Y(z) - .Zoaiz
H(z) = = ~ : (2.2.18)
X(z) 1 + 2 b_z.-1
i=1 *

where H(z) is a proper rational function of z-].

12



2.2.2 Characteristics of a discrete~time filter.

Just as the characteristics of a continuous—-time filter may be
completely determined from the pole and zero positions of the transfer
function in the s-domain, so for the discrete-~time filter the pole and
zero positions cf the transfer function in the z-~domain define its
characteristics. The steady-state frequency response of a continuous
filter is determined by evaluating the transfer function along the
imaginary axis in the s—domain, Likewise for a discrete-time filter the
steady—-state fiequency response is obtained by evaluating the transfer
function H(z) around the unit circle |z| =1,

In general the transfer function H(z) may be factorised and
written

(z—zl)(z-zz)(z—ZB).....

H(z) = (2.2.19)
(z—pl)(z-pz)(z—p3).....

Z,. Zyy Zge.. are the zeros and Py» Pps Pge.. are the poles. The transfer
function will have k zeros and m poles where k and m have the same
significance as in equations (2.2.1), (2.2.17), and (2.2.18). The order
of the filter is said to be equal to the number of zeros or the number
of poles, whichever is the greater. As in the casc 2f continuocus circuit
analysis, where a transfer function pole having ¢ > 0 in the s-domain
indicates circuit instability, the same inference may be drawn when a
pole in the z~domain has Izl = eUT > 1, That is, a pole outside the unit
circle in the z-plane is prohibited in stable filter design.

The frequency response of the filter may be found by evaluating
equation (2.2.19) for z = eij, that is, around the unit circle. The
magnitude of the frequency response is given by6

@T-2,) (T2 ) 19Tz ) ...

lued®Ty| = |— : . (2.2.20)
(eJmT-pl)(erT_pz)(erT—P3)"'

13



Equation (2.2.20) is expressed graphically in Figure 2.7 for a second
order filter. El’ ;2, E], and 52 are the vectors connecting their
respective discontinuity to the frequency w_ at which the response
magnitude is to be evaluated. For this example of a second order filter,
equation (2,2.20) is applied thus -

17115

lucederT) | (2.2.21)

lpll“lpz'
An equation of similar form may be applied to a filter of any order.

The phase response at frequency W in Figure 2.7 is given by6
¢ = (0] + 02) - (¢] + ¢2) (2.2.22)

where 6], 02, ¢1, and ¢2 are the angles which the vectors El’ 22, S],
and 52 make with the positive real axic. Again an equation of similar
form is valid for any discrete-time filtev. In general the phase respomse

is given by

jwT
I_‘"_{J_L(S___)l] (2.2.23)

-1
P(w) = tan ,
[Re{H(erT)}

2.3 Filter realisation.

Having seen the way in which the properties of a filter can be
determined via the transfer function H(z) in the z-domain, it is
necessary to be able to derive the difference equation corresponding to
any required transfer function. In the case of H(z) being in the form of
the ratio of two polynomials as in equation (2.2.18), this is a trivial
process.

-i
a.z
i

I~ %

0

i
H(z) = = :
1 + '2 biz
i=]

14

(2.2.18)
i
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transforms back to the difference equation (2,.2.1)

k m
y(nT) = } a,x(nT-iT) - } b, y(aT-iT) (2.2.1)
i=0 * i=1 *

2.3,1 Realisation of discrete equivalents of continuous-time filters,

The system function H(z) may not, however, always be directly
available, The requirement may be to produce the discrete aquivalent of
a continuous filter whose transfer function is defined in the s-domain.
If this function K(s) is fully factorised, that is, expretsed in terms
of its poles and zeros, then the corresponding z-domain function H(z)
is found by mapping these poles and zeros into the z-domain by the change

of variable z = eST. So

(s—a])(s-az)(s—aB).....

K(s) (2.3.1)

(s-bl)(s-bz)(s—bB).....

gives

Rz = (et (2=e2) (a-e?3T) ... . (2.3.2)
(z-e17) (z-e”27) (z-e”3T) ... ..

It is rather more common for K(s) to be given in 2 less convenient
form such that it is not possible to map poles and zeros from the s-plane
into the z-plane directly. One method which can be used in this
situation is called impulse invariance6. This yields a discrete filter
whose response to an impulse is identical to the sampled impulse
response of the continuous filter. The first step is to determine the
impulse response, k(t), of the continuous filter by taking the inverse

Laplace transform of the transfer function K(s). So

k() = L' { K(s) } (2.3.3)

15



The effect of sampling k(t) is to produce a discrete sequence h(nT)

so that

h(nT) - k(t) for t=nT and n integral. (2.3.4)

The z-domain transfer function may be found by taking the Z-transform of

the sequence h(nT). That is,

(-

H(z) = z{ h(aT) } = | n@D)z " (2.3.5)
n=0

To take the general example of

m Ai
K(S) = 2 E——:—S—- (2.36)
1= i
-1 u -5t
k() =L {K(s) } = ] Ace®i (2.3.7)
. i=1 *
Therefore
° =-s.nT
hinT) = ] Ae i (2.3.8)
i=1
and
T v -s.nT -n
H(z) = § A, § e i .z (2.3.9)
. 1
i=1 n=0
which may be rewritten
m Ai
H(z) = T (2.3.10)

i=1 1 - e "1 .2

Hence the transformation from the s-domain to the z-domain can be

16



written

m Ai m Ai
k&) = I g55; = 1 ST C e @san
1=1 i 1i=] | - e "i",.2z

Once H(z) has been determined some further manipulation 1s usually
. . expres . . . .
required 1n order to etate the function in a form which can be conveniently
transformed to give the appropriate difference equation. Other methods
of determining the transfer function have not been found necessary
during the course of this work and have therefore not been described

here2’6-12.

2.3.2 High order filter realisation.

It is often not desirable, mainly for reasons of circuit stability,
to realise high order filter32 by the implementation of a single transfer
function H(z). Hence the total filtering operation is often subdivided
into several processes which synthesise to give the required overall
transfer function. There are two basic ways in which this subdivision
may be achieved, yielding, in one case, a cascade of subfilters, and in
the other case, a parallel configuration of subfilters.

If the transfer function H(z) 1is fully factorised then the
subfilters, Hi(z), may be formed by choosing small sub-sets of poles and
zeros from the total function. The subfilters are then arranged in a
cascade to achieve the overall transfer function., This may be expressed

mathematically by
H(z) = Hl(z) X Hz(z) X teeesse X Hz(z) (2.3.12)
This realisation is shown in Figure 2.8 from which it can be seen that

the output from one subfilter forms the input to the adjacent subfilter

in the cascade. These subfilters may theoretically be arranged in any

17



Figure 28 Series cascading_of low order subfiliers
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order in the cascade, but in practice there may well be one particular
. . . . 13,14
ordering which yields optimum performance .

The parallel configuration shown in Figure 2.9 may be defined

mathematically by

L
H(z) = } H(2) (2.3.13)
i=1]
N ¢y o .
where £ 1s an v constant, Figure 2.9 indicates that the separate
outputs from the subfilters are summed sample by sample to yield the

overall output y(nT). That is,

y(nT) = .§ yi(nT) (2.3.14)
1=]
This realisation has practical advantages over the cascade form, but the
mathematical manipulation required to determine the functions Hi(z) from
H(z) is often a major disadvantage, whether H(z) is in the form of a
ratio of two polynomials in z—] or in fully factorised form as in
equation (2.2.19). In practice the subfilters in either of the

configurations need te of no greater complexity than second order.

2.3.3 Circuit flow-diaprams of difference equation realisationms.

Once the difference equation has been determined for a required
subfilter or filter, there are several circuit configurations which may
be employed in its realisation. These are presented below using the
terminology suggested by Rabiner15 for use in the circuit flow-diagrams

of discrete filters, which is reproduced in Figure 2.10.

2.3.3.1 Realisation of recursive difference equations.

If, in the difference equation of a filter (equation (2.2.1)), the

constant coefficients bi are not all equal to zero, then the filter is

18
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Figure 210 The recommended terminology used in discrete filtering.

Unit delay
y(nT) = oc{(n-1)T)

Adder/subtraclor.

rinT)=oc(nT} * y(nT)

Constant multiplier,

y{nT)= k. xc(nT)

Branching operction.

x{nT)

y(nT)

x(nT)

Y

y(nT)
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said to be recursive, that is, the current output y(nT) is dependent on
previous outputs y((n-i1)T). (Such filters have an infinite impulse

. . . . . Varioyr
response, IIR). A recursive difference equation may be realised in ene

ef—two—general forms,‘“¢L as

(1) Direct formz.

Equation (2.2.1) can be realised directly as in Figure 2.11,

(11) Canonic form.

An intermediate state may be defined in the z-domain as

X(2)

W(z) = - (2.3.15)
1 + z b.z ©
i=1
which enables equation (2.2.18) to be rewritten
X4
Y(z) = (] a,z ). W(z) _ (2.3.16)
. i
i=0
Transforming these two equations into the time-domain gives
m
w(nT) = x(uT) = ] b, w(nT-iT) (2.3.17)
i=1
and
k
y(@T) = ] aw(nl-iT) (2.3.18)
i=0

which may be represented2 by Figure 2.12,

Comparing Figures 2.1l and 2.12, it can be seen that both forms
comprise two basic summation stages, one realising the transfer function
zeros and the other the poles. The difference between them lies in the
reversal of the order in which the two steps are executed. Figure 2,12
may be realised more concisely yielding a saving in the number of delay

elements required and hence a reduction in data storage. The resulting
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Figure

212 A direcl filter realisation from which the Canonic form

is _derived,
w{nT
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Figure 213 Circuit flow diagram of the canonic form of a kth order filter
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. 2, . . .
canonic form 1is depicted in Figure 2.13,

Theoretically both these forms have identical performance in every
respect, but in practice one of the forms will probably more nearly

. . ‘o . 10
achieve the required specification than the other .

2.3.3.2 Realisation of non~-recursive difference equations.

If the constant coefficients bi in the difference equation (2.2.1)
are all equal to zero, the resulting filter is said to be non-recursive,
that is, the current output y(nT) is only dependent on present and past
input samples; there is no feedback f;om the output. (These filters have
a finite impulse response, FIR,) Non-recursive filters are usually ot a
higherlorder than is common in recursive filters. Figure Z.14 shows the

COmmon . . . 2
only form applicable to a non-recursive filter .

2.4 Summary.

The above discussion has attempted to set out the fundamental theory
of discrete-time linear filtering. All the common structures for
implementing filters by means of a linear difference equation algorithm
have been introduced. Attention must now be turned to the practical

realisation of such discrete-time linear filters.
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CHAPTER 3 - FINITE WORDLENGTH EFFECTS IN DIGITAL FILTERS.

3.1 Introduction.

Hitherto the discussion has been of 'discrete—time' signal
processors, placing the emphasis on the consequences of sampling a
continuous signal at instants in time. This emphasis must now be shifted
to coiucide with the main concern of this work. The purpose of converting
continuous signals to discrete sequences ~f nuwbers is to permit signal
processing by digital electronic techniques using either a programmable
digital computer or a digital circuit designed to execute a particular
operation on a signal. An immediate consequence of using such devices is
that, not only 1s it impossible to represent the time variable
continuously, it is similarly impssible to represent the amplitude
variable continuously. That is, there is a finite set of numbers which
may be represented in a digital electvnnic device. Hence it is impossible
to carry out the arithmetic operations, described previously, with

absolute precision.,

3.2 Number representation.

A number in a digital device is represented by one or more binary
digits (bits) which are either logical ! or 0. An array, or word, of
n bits can represent 2" distinct numbers and, in principle, the decision
on the meaning given to any particular combination of 1's and 0's is
purely arbitrary. However, it is clearly advantagecus to adopt a
systematic scheme of representation which permits arithmetic operations
without complicated programming or circuitry. Four such systems are

described below.

3.2.1 Fixed-point arithmetic.

The simplest system of number representation is called fixed-point
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arithmetic. If the wordlength of the digital device is taken to be
(B+1) bits then all these bits are taken to represent one of a set of

numbers defined by
= [- ]
x = (=x .20+ ] x ..27).A (3.2.1)

where X 0 is the least significant bit of the word representing X
’

is the most significant bit and x is the sign bit, The

*n, B-1 n,B

quantity A is the separation between consecutive allowed numbers and is
equal to the value attributed to the least significant bit of the word;
it may be termed the quantisation width., Equation (3.2.1) defines a
system of fixed-point number representation called two's complement
notation. Other forms of fixed-point representation are occasicnally
encountered but there is no need to discuss them here. Using equation
S s . B+1 .

(3.2,1) it is possible to represent 2 different numbers in the range

B B . . . . . .
-27,A to (27-1).A inclusive, The quantisation width A is constant over
the whole range. It is often convenient to consider A equal to unity, so

that the numbers represented are integers.

3.2,2 Floating-point arithmetic.

The second main system of number representaticn is floating-point
arithmetic. A sub-set of the bits in a word are interpreted as a fixed-
point two's complement mantissa, whilst the remaining bits represent a
two's complement exponent.

For a given wordlength, (B+l1), floating;point arithmetic allows a
greater range of numbers to be represented than is possible using fixed-
point arithmetic, (that is, the ratio of the largest:smallest allowable
numbers is greater). The separation between adjacent numbers is no longer
constant but depends on the magnitude of the numbers. For example, if an

8-bit wordlength is used, 4 bits may express a two's complement
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fractional mantissa whilst the other 4 bits represent a two's complement
integral exponent of 2, The separation, A, between two adjacent numbers
having the same exponent m is therefore 2_3.2m.

It will be appreciated that arithmetic operation using such number
representation is much more complicated than the. fixed-point mode,
although in general greater accuracy is possible, Whereas it is perfectly
possible to implement floating-point arithmetic on a device such as a
microprocessor, it is seldom desirable. Hardware floating-point
arithmetic units are not at present available on microprocessors so
software must be used to realise this arithmetic mode. This both
increases the memory requirement and reduces the speed of the processor,
factors which weigh heavily against the use of floating-point arithmetic.

For this reason the implementation of digital signal processors using

floating-point arithmetic has not been considered further.

3.2,3 Block-floating—point arithmetic,

Oppenheim16 has suggested a scheme of number representation called
biock-floating—point arithmetic, which is intended to exhibit some of the
advantages of floating-point arithmetic without incurring the same level
of programming complexity in a fixed-point device.

All the signal data items held in a device during any particular
signal sampling period are scaled up or down by the same power of 2. The
exponent of 2 used is held as an additional data item. All the arithmetic
operations required are performed in fixed-point arithmetic on the
scaled data items, making no reference to the stored exponent. A scaled
result is thus produced which requires to be rescaled by the power of 2
indicated by the stored exponent.

The purpose of using this method is to make better use of the
available wordlength than is possible using fixed-point arithmecic. For

example, in fixed-point arithmetic, the signal data items at one
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particular instant may only require a maximum of 4 out of an available
8 bits for representation., The result of an arithmetic operation on
these data items may require only 5 bits. If the data items are scaled
up by 23, then the result before rescaling will occupy the full 8 bits. .
The rescaled 5-bit result may well be more accurate than that nroduced

by simple fixed-point arithmetic, The experimental results of testing

this expectation of increased accuracy are presented in Chapter 5.

3.2.4 Modular arithmetic.

Interest has recently been developing in the utilisation of what
may be regarded as a fourth mode of number representatinn; this may be
termed modular arithmetic. Only positive integers are required to be
stored in the computer, which makcs this form of representation
equivalent in complexity to two's complement fixed—-point arithmetic.
Agarwal & Burrus]7 have recently published a tutorial paper in which they
indicate the advantages of using modular arithmetic for transformations
used to implement digital convolutiou. Use of block filtering methods
proposed by Burrus]8 allows recursive, or infinite impulse response (IIR),
filters to be realised via such transformations. Digital filters realised
in this manner require only the addition of data items; no multiplication
is necessary. This often leads to increased speed and accuracylg. There
are, however, detailed problems encountered in this form of filter

realisationzo, but these are gradually being solved2].

3.3 Error sources,

In a practical digital signél processor, such as a filter, there
are three basic sources of deviation from the theoretical performance.
(i) When a signal is originally converted from a continuous signal to a
discrete sequence by an analogue to digital converter the digital output

has a finite wordlength so that the amplitude of the continuous input
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signal cannot be represented with absolute precision. This error source
may be called input quantisation. The effects of input quantisation have
been studied quite ext:ensivelyzz_30 and appear to be well understood, so
that little research interest remains.

(ii) Any general digital signal processor requires arithmetic cperation
involving constant coefficients. Again, because of the finite wordlength
of a practical device, only a discrete set of coefficients can be stored,
Hence the required coefficients determined by theoretical design can
only be approximated. This source of error is termed coefficient
quantisation. The effects oi coefficient quantisation have also received

close attentiont?!0»31746

. The emphasis of such research has been on the
development of design techniques which optimise the characteristics of a
signal processor implemented using allcwed coefficients.

(iii) One of the major operations in a general signal processor is the
multiplication of a signal data item by a constant coefficient. If, for
example, the signal data items are stored as two's complement, fixed-point
integers and the coefficients are held as fixed-point fractions, then the
result of a multiplication between the two would, in general, be a number
with both an integral and fractional part, Such a number cannot be held
and so must be approximated to an integer. The error source exemplified
may be called multiplication roundoff, and is perhaps the most interesting
of the three sources described. It is with.this area in particular that
this current work is concerned. The standard theories on the subject

will be presented in the following sections. The purpose of this work

is to test the veracity of some of these theories for short wordlengths

of 8 bits or less.

3.4 Roundoff processes in fixed—-point arithmetic,

As mentioned above, the result of a multiplication must in general

be approximated to a number which can be stored. There are three basic
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mechanisms which may be employed to execute this approximation: namely
truncation, sign-magnitude truncation and rounding. Each yields

characteristic properties and has certain advantages and disadvantages.

3.4_1 Truncation. -

If a two's complement integer of wordlength n is multiplied by an
unsigned, fixed-point fraction of wordlength m, the resulting number
requires (m+n) bits to represent it accurately, but only n bits are
available, If the m least significant bits of the accurate product are
simply discarded leaving the n most sigrnificant bits, the process is
termed truncation. This 1s the easiest form of approximation to
implement, The characteristics of this approximation method are
displayed in Figure 3.1 for two's complement fixed-point arithmctic.

It will be observed from Figure 3.1 that the .approximate product
is always the allowed number just less than the accurate product. Hence

if the error £ incurred is defined by

€ = approximate answer - accurate answer (3.4.1)

then € must lie in the range 0 » € > -A. If a sequence which is
symmetrical about zero is multiplied by a constant coefficient, then
truncated, the resulting sequence will no longer be symmetrical about
zero, but a negative shift will have been applied to the mean level.

This is a disadvantage of the simple truncation process.

3.4.2 Sign-magnitude truncation.

Because of the non-symmetrical nature of the simple truncation
process, a variant called sign-magnitude truncation is sometimes
preferred, despite the increased complexity of implementation. Figure 3.2

depicts the characteristics of this process.
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Figure 31 The truncation process
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Figure 3,2 indicates that the approximate answer is always the
allowed number whose magnitude is just less than the magnitude of the
accurate answer. Such a process is symmetrical. A positive number yields
a negative error € in the range 0 » € > -A, whilst a negative number
results in the production of a positive error e in the range A > € » 0,
This correlation between the sign of the result and the sign of the error

is disadvantageous in many signal processing applications.

3.4.3 Rounding.

In order to retain the symmetry of sign-magnitude truncation without
incurring the problems of correlation between the sign of the error and
the sign of the product, it is necessary to employ the process of
rounding. This is the most difficult of the three processes to iImplement,
but in every other respect is the most-advantageous. Figure 3.3
describes this approximation method.

In each example depicted in Figure 3,3 the allowed number is chosan
whose value most nearly approximates the accurate result. The process is
symmetrical and generates an error with minimum magnitude. The error
must lie in the interval -A/2 < € € A/2. The magnitude of the error must
be less than or equal to A/2 whereas in the other two methods the error
magnitude is bounded by A. For this reason rounding is nearly always
employed to minimise finite wordlength roundoff errors in a digital

signal processor.

3.5 A theoretical model for roundoff error processes,

Having described the sample by sample behaviour of each of the
three approximation methods, it is important to attempt to formulate a
theoretical model of.the effects of such approximation on a complete
system. This has been achieved by considering the effect of multiplying

a sequence by a constant coefficient and making certain assumptions
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about the resulting sequence of roundoff errors. The input sequence is
assumed to be wide-sense-stationary. The theory has been developed for
the rounding process as this is the best behaved and most widely used

form of roundoff.

24,1528

Knowles and Edwardszg, making reference te _earlier publications ~°" °" ",

state the two following assumptions for the rounding error process in

fixed-point arithmetic realisations, which have formed the foundation

of all ensuing error analysesl3’l6’47-57.

(i) A1l error values within tlie allowed interval have equal probability
density.

(ii) Rounding errors form a random sequence which is uncorrelated with
either the input or output sequence at a multiplier, so that the
error sequence may be regarded as having a uniform spectral density,
that is, it may be termed white noise and treated as such.

Knowles and Edwards preface thesc assumptions with one prior
restriction, that the separation between allowed numbers, A, must be
small, presumably in comparison to the signal level. The implication is
that the above assumptions become invalid at some stage as A increases
relative to the signal level, that is, as the effective wordlength

. 50 . . .
decreases, Liu~ suggests that these assumptions are 'quite satisfactory

. [
at least down to a wordlength of 8 bits. 24, 25,2¢

23424527

It is important to note that all of the works cited by
Knowles and Edwards29 consider the situation of a signal whose amplitude
can be continuously variable being quantised to a discrete amplitude
, _ woblem ,

system, This is an inherently different from the one discussed by
Knowles and Edwards, where a signal which is already quantised is
multiplied, and the product must also be quantised.

Following the first of the two assumptions, the probability density

for the errors incurred at a single multiplication employing rounding

may be depicted as in Figure 3.4. The error sequence arising from such
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Figure 3 4 Probability density for rounding_errors
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a probability density obviously has zero mean. The variance of the error

. 2 .
sequence from its mean, ¢, 1s calculated to be29

2
2 _ A .

Applying the same assumption to the simple truncation process
gives a mean error of -A/2 and a variance about the mean again of A2/12.
The assumed probability density is depicted in Figure 3.5.

In order to apply the same kind of theory to sign-magnitude
truncation, it is necessary to add the constraint that an input sample
to the multiplier has an equal probability of being either positive or
negative., In this case th= probability density may be depicted as in
Figure 3,6. The mean error is zero, but the variance of the error
sequence about its mean is given by

9
o’ = -’35— (3.5.2)

It should be noted that such an error is highly correlated with the
signal, so that sign-magnitude truncation cannot be treated by the
Knowles~-Edwards model. This problem has been considered by Liu and Van

2
Valkenburgs“ and more recently by Claasen, Mecklenbr}uker and Peekss.

3.6 Error analysis of some filter realisations.

Before performing error analysis on particular forms of filter, it
is necessary to establish the rules of such analysis which arise out of
the theoretical model formulated in §3.5:

(1) If an error sequence having variance 02 is multiplied by a constant
k, then, neglecting any further error caused at the multiplication,
2 2

. . . 10 .
the variance of the resulting error sequence ~ is k .o .

(ii) As all error sequences are assumed to be purely random, when a
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number of simultaneous error samples from different error sources

are summed € = € + €, + €4 + €y + .... , the resulting error

. . 10 .
sequence 1S also random and has variance given by

2 2 2 2 2
C =0 0, +03+0, t ...

3.6.1 Direct realisation in fixed-point arithmetic,

Consider the direct realisation of a second order filter shown in
Figure 3.7. The input sequence, {xn}, is assumed to be free from error
so that only the effect of errors committed in the filter is under
examination. Each of the five multipliers will create an error sequence
which is assumed to be of the kind indicated by the theoretical model.
Hence, for rounding, each of the error sequences € *eve Eg has zero
mean and a variance about the mean of A2/]2, which is termed oz.

The actual filter output may be written

V. = a.x -b

n - 0% T -1 T ¥ T

* (El,n * E2,n TE

2Vn-2
) (3.6.1)

1Vn-1

The sequences E| +ree Eg MAY be combined to give the sequence Eg so that
equation (2.6.1) may be rewritten
voSagx +tax  +ax ,-bv ,-byv o+ €t n (3.6.2)
The error sequence at the filter output is defined by
€ =v_ -y (3.6.3)

where {yn} is the ideal signal output sequence. Hence equation (3.6.2)

can be written
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Figure 37 An equivalent circuit for a practical direct realisation of a
second order filter
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Figure 3.8 Equivalent noise model for a direct realsation of a second-
order_filter
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yn * €n,n = aoxn * alxn-l * a2xn—2 - blyn-] - bZyn—Z
- 0L - +
lsn,n-l bZEn,n-Z Eg,n (3.6.4)
which simplifies to
€,n = Sen T blen,n—l - bZEn,n—Z (3.6.5)

This equation can be represented by the equivalent noise model shown in

Figure 3.8.

Transforming equation (3.6.5) into the z-domain gives

EE(Z)

E (z) = = ) (3.6.6)
n (1 + blz + b,z ")
2
which may be rewritten in general as
EE(Z)

E (z) = = (3.6.7)

n B(z ')

-1, . . . .
where B(z ') is the denominator of the filter transfer function.

The variance of the random output sequence en may be related to

the variance of the equivalent random input sequence eE by‘O
% = 02 (o - f dz ____) (3.6.8)
n J B(z).B(z ).z
|z]=1
. . -1 -1 -2
where, in this example, B(z ) =1 + blz + bzz so that

B(z) =1 + b]z + bzzz. Equation (3.6.8) may be evaluated by contour
integration or by numerical methods59 for any particular filter
coefficients.

In general for a filter of any order the variance of the

equivalent input error sequence is given by
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2 2

= + L] .
OE o (m + p) (3.6.9)
where m is the number of non-unity coefficients defining the zero
positions of H(z) and p is the number of non-unity coefficients defining
the positions of the poles. Equation (3.6.8) may be applied to any

direct realisation filter by substituting the appropriate 02 and B(z—l).

£

It will be seen from this equation that for given m and p the variance

of the output error sequence is dependent only on the pole positions of

H(z).

3.6.2 Canonic realisation in fixed-point arithmetic.

A similar form of analysis can be applied to the canonic
realisation of a filter, as exemplified by the practical second order
filter shown in Figure 3.9. To prevent.overflow in -the intermediate
stage of the filter, it is usually necessary to scale-down the input
sequence. This is performed by the multiplier a_ in Figure 3.9,
Rescaling is effected by appropriately increasing the coefficients ags
a and a,. The equivalent noise model is shown in Figure 3.10 where the
operation marked H(z) indicates the ideal filtering process. From Figure

3.9 the variance of the sequence {¢ n} is given by

£,

2 2
og = (p + 1).0; (3.6.10)

and the variance of the sequence {eo n} by
]

o = m.o (3.6.11)

where m and p have the same significance as before. Following equation

(3.6.8) the variance of the output error sequence {en n} is given by
]
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Figure 39 An equivalent circul for a practical canonic_realisation of a
second order filter.
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Figure 3.10 Equivalent noise model for a canonic filter.
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-1
2 _ 2 2 1 H(z) H(z ).dz
g —00+O€ (-Z-Tf—j_ 'f Z_) (3.6.12)
|z|=1

18
It shewkd—be inferred from this equation that, for given m and p, both

the zero and pcle positions of H(z) affect the variance of the output

error sequence,

3.6.3 Filter realisations in block-floating-point arithmetic.

. 16 . . .
Oppenheim =~ has presented a roundoff noise analysis for a direct
realisation of a filter with two poles but no zeros, employing one form
of block-floating-point arithmetic. This analysis is extended below to

both direct and canonic realisations of a general filter of any order.

3.6,3.]1 Direct realisation.

Figure 3.11 shows a circuit flow-diagram of a second order filter
using block--floating-ppint arithmetic. The difference equation describing

the fiiter can be seen to be

— l ~ o) "
Y, = K; ( age8 X+ a].cSn.un_l +a,.8 .U,
LY N\
- bl.Gn.{«‘rn_l = by.d W, ) (3.6.13)

where A is the current scaling factor and is a power of 2. This scaling
factor is related to the one used during the previous cycle of the

filter by

An = Gn. -1 (3.6.14)
The five data items which are used to compute the output are
X =A . .x (a) (3.6.15)
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(b) (cont,)

n-1 n-1""n-|
0n—2 B An-l'xn—2 (e)
ﬁn—l - Ah-l Yn-1 ()
ﬁn—Z = An—l yn—2 (e)

These data items are then rescaled by the factor Gn, which may be a
positive or negative power of two, so that the overall scaling factor
becomes An' To make best use of this mode of arithmetic the scaling
factor should be kept as large as possible without causing data items to
exceed the storage capability of the digital device in use. Oppenheim
discusses the relative advantages of several variant methods of
determining the most appropriate value of the factor 6n.

In order to produce a noise analysis which involves only
apparently reasonable assumptions Oppenheim has imposed the constraint
on the scaling factor An that it must be a non-negative power of two. It
is possible to design a system without this limitation, so that An could
scale either up or down. However, the theoretical noise model could not
be applied to such a system with any reasonable degree of validity. The
consequences of this constraint on A_ are that there is no error in the
actual values of Gn.x

» 8 .u or 8 .u as |2 | » ,xnl < |6n.i |,

n n-1 n—-2 n n

A~

|ﬁn—l| > |xn-|| < lsn'ﬁn-ll and IGn—Z' > lxn_zl < |6n.u and that

n—2|’

Iynl < l?nl, so that normal roundoff occurs at the final rescaling of
the output.

Figure 3,12 shows the equivalent circuit for a practical filter
with error sources € «+0-€g marked. For simplicity these error sources
are taken to arise from rounding processes. Hence according to the model,
each of these sequences has a variance of A2/12, which is termed oz,
and is uncorrelated.

Following the kind of discussion used in §3.6.1 for a fixed-point

arithmetic direct realisation of a second order filter, an equivalent
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input error sequence EE can be determined. The variance of this sequence

is given by

2

02 = 02.k2.(5 + b
€ 1

2
. + 2b2) (3.6.16)

where k2 is the mean value of (I/An)2 and the mean value of (Gn)2 has
been assumed to be unity. Following equation (3.6.8) and adding in the

effect of the error sequence €gs the variance of the output error

sequence en may be stated as

02 = 02 + 02 (-—Lr . dz ) (3.6.17)
n € £\ 2nj -1
| B(z).B(z ).z
z|=l
where B(z-]) =1 + b]z_l + bzz_2 for the second order case,

Equation (3.6.17) may be applied to a filter of any order by

substituting appropriate expressions for 02 and B(z-l). The variance of

£
the appropriate input error seduence € for a filter with m non-unity
coefficients defining the zero positions and p non-unity coefficients
defining the pole positions of the filter transfer function, is given by

il (mepy + 5 iv?) (3.6.18)

£ E . i
i=1

The value of the factor k2 is dependent both on the input signal and on
the filter characteristics, and it would appear that its only source

lies in experimental measurement, a fact which restricts the usefulness

and significance of this model.

3.6.3.2 Canonier realisation.

Figure 3.13 shows the equivalent circuit for a practical canonic
realisation of a second order filter employing block-floating-point

arithmetic. The equivalent noise model for this circuit is shown in
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Figure 313 Equivalent circuit of a practical canonic realisation of a
second order filter,

Figure 3.14 An equivalent noise model for a canonic realisation of a

second order filter using_tlock-flooting - point _arithmetic,
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Figure 3.14. The equivalent input error sequence eg has variance given by

2 2 .2
GE = Ue'k (3 +Db

2

2
Lt 2b2) (3.6.19)

4

Frem Figure 3.13 the variance of the output error sequence € is given by

-1
0% = 02.(1 £ 3% 02.( 51—~ : J{‘H(z)'ﬂ(z ):dz y (3.6.20)

n ] z
|z|=l

Hence in general for a filter of any order

-1
2 2 2 2 ] . H(z) .H(z ).dz
Gn = OE.(] + mk”) + GE'( —2—16- f z ) (3.6.21)
|z|=1
where
= Pul e+ 1y + | ib?) (3.6.22)
E e. - _i- J L ] [ ]

i=1

and the integers m and p have the same significance as before.

3.7 Filter realisation by a look~up table.

Peled and Liu60 have proposed a filter realisation which does not
comprise distinct multipliers, but which uses the current input sample
to the filter together with other delayed signal samples to address
locations in a table, which in practice would probably be a read-only
memory. The contents of the addressed locations in the table are
combined to form the current output sample of the filter. This
realisation provides an interesting alternative to the conventional
forms. This design philosophy has recently been applied to the fast
Fourier transform and to general signal processorssl’Gz_

The realisation described below may be termed a direct look-up

table realisation as it is developed directly from a single difference
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equation, It is possible to conceive of a canonic look-up table
realisation developed from a pair of difference equations. However, this
would require two separate look—up tables and would be much more complex
than the direct version. llence this possible form has not beea pursued
furiher. ' -

Consider the example of a second order difference equaticn

y. =ax + ax tax o~ bly -b

Assuming that all signal samples are represented in two's complement

fixed-point arithmetic, having quantisation width A between allowed
numbers, and that the wordlength is (B+1) bits, then, for example,

following equation (3.2,1), X ~may be written
.27 ).a (3.7.2)
Hence equation (3.7.1) may be rewritten

n,B * alxn-l,B * a2xn-2,B

)

y_ = -2B.A.( agx

= P Ya-1,8 T PoVn-2,B
n,j * alxn—l,j * a2xn—2,j
- by - b,y ) (3.7.3)

n-1,j n-2,j

Defining a function ¢ of five binary arguments Tys Tos Tgs T, Tos as
—— B -—
w(rl,rz,rs,r4,r5) = A2 (aor| +ar, *a,r b.r b.r.) (3.7.4)

2°3 174 ~ Y25

where T ... Tg are each either 0 or 1, equation (3.7.3) may be

written
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B

-1 .
2J-B.w(x

SR 0,37 Mnm1,30 2,57 To-1,50 Yn-2, 5

1

— \p(xn,B’ xn—],B’ xn"z,B’ yn_],B’ yn—2,B) (3.7.5)

As the function ¢ arising from the difference equation (3.7.1) has
five parameters each of which may have one of two values, ¢ has 25 = 32
distinct values defined by (3.7.4). Equation (3.7.5) indicates that the
filter output y, may be formed by an additive combination of (B+1)
values of ¢y, Figure 3.15 shows a block diagram for this realisation, in
which the table permanently stores 25 distinct values of .

It can be seen from Figure 3.15 that sach of the data words X s
X _1» Xpogr Ypop @0d ¥, is converted into a serial stream of length
(B+1) bits consisting of logical I's and 0's. Thus (B+1) distinct
addresses are presented to the look—up table during each filter cycle.
The first B addressed data words wj are progressively summed and thLe
runqing total is held in the accumulator. The content of the accumulator
is divided by two before each successive addition. The final data word
wB is subtracted from the contents of the accumulator and the value of

y, results. (No division by two is performed).

3.7.1 Error analysis.

As the range of values which can be stored in the addressable
memory is bounded by -ZB.A and (2B—l).A, it is often necessary to scale
down the stored values of ¢ to bring them within this interval. Hence

the scaled values of ¢, y', may be defined by
' = o 4
- w (rlsrz’r3’r4’r5) = 2 -¢(r|,r2ar3sr4’r5) (3-7-6)

so that equation (3.7.5) becomes
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B-1

q i-B ,
c= 2 . . . .
yn ( JZ 2 v (xn’J’ xn-l’J, Xn_z,J,

- lj)'(x

yn"l sj ’ yn—Z,j)

n,B° *n=1,8’ *n-2,8" Yn-1,B’ yn_z’B) (3.7.7)

p' are the theoretical scaled values, but in practice a roundoff error

occurs as these are approximated to the actual stored values @, so that

ﬁ(rl,rz,rB,rA,rS) = w'(rl,rz,r3,r4,r5) + E; 3 (3.7.8)

where e; . 15 the roundoff error.
H

Referring to the equivalent circuit diagram shown in Figure 3.16,

Bl Ly
r
“n T B B O g X5 Ko g Vet Va2, )
= ¥, g Xuoi,BY *n-2,8’ Vn-1,B’ Vn-2,B (3.7.9)
Let w; be approximated to Gn, sn that
-
wo =W ot 83’n (3.7.10)
where €3 is the roundoff error. So on rascaling
3
v =294 (3.7.11)
n n
The error at the filter output is therefore given by
q Bl i-B
= - = n - "
en,n = Va " Yn 2 (83,n * jZO 2 en,j E:n,B
N blen,n-l - bZEn,n—Z (3.7.12)

Comparison of this equation with Peled and Liu's expression for the

output error will reveal a difference. They have taken account of
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quantisation errors in the input sequence {xn}, which is not strictly
necessary in an error analysis of the filter alone. They also appear to
have omitted the effect of rescaling the filter output by 29 from their
analysis.

Following the assumptions set out in §3.5 and taking the error
processes to be rounding, the error sequences {E;sj} and {83, } are

considered to have variances equal to oz (A2/12). An equivalent input

error sequence can be defined by

B-1 .
= 24 J™B _
€ n 2 (53’n + z 2 L en,B) (3.7.13)
j=0
vhose variance is given by
2 .2q 2/ 2 _j-B
o = 270 .2 2277+ 1) (3.7.14)

3=0

As in the case of a normal direct realisaiion the variance of the output

error sequence {cp

.} is given by
HELLIR

o? = o
n £*

dz

. = (3.7.15)
|z|=1 B(z).B(z ).z

L
27]

The variance of rhe equivalent input error sequence {Eg,n} may be
reduced by choosing filter coefficients so that no roundoff errors are
committed in forming the stored scaled values ¢ from the theoretical
values y. If this is the case then e: 3 is zero for all allowable values

of j. Hence equation (3.7.13) reduces to

- € = 2q.e

£E.n 3n (3.7.16)

indicating that all the noise is generated by the final rounding of the

filter output. The variance of {e n} is then

Es
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og = .a (3.7.17)

The variance of the output error sequence méy then be found using
equation (3.7.15). The variance of the equivalent input noise sequence
is independent of the order of the filter, so this analysis may be
extended to a filter of any order simply by using the appropriate
function for B(z_]) in equation (3.7.15).

The experimental results presented 1n Chapter 5 indicate that a
significant reduction in noise can be achieved by this modification. The
disadvantage of this form is that there is a finite, discrete set of
filter coefficients which can be accurately implemented, The
population of this set is reduced as the filter wordlength is decreased.
A similar restriction, however, is also imposed in a conventional filter
if, realistically, the coefficients are limited to the same wordlength

as the signal,

3.8 Sumnary.

The sources of errors arising in finite wordlength digital filters
have been described, and the effect of roundoff errors in particular has
been discussed. The assumptions involved in the formulation of Knowles
and Edwards'29 theoretical model for error analysis have been stated and
error analyses performed on several digital filter realisations. This
includes consideration and correction of the analysis for the look-up
table form proposed by Peled and Liu60. Tﬁe results of these analyses
must be tested experimentally in order to assess the validity of the
theoretical model, particularly as the effective wordlength is decreased

below 8 bits.
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CHAPTER 4 — SPECTRAL ANALYSIS OF ERROR SEQUENCES.

4.] Introduction.

One of the assumptions of the model for error analysis is that the
roundoff error sequences are truly random and may therefore be regarded
as white noisezg. The validity of this should clearly be tested. One
method which may be used is the spectral analysis of error sequences.,

A signal, which is normally considered as a real function of time,
can equally well be regarded as a superposition of sinusoids of
different frequencies. Spectral analysis yields the amplitude and
rélative phase of each component sinusoid as a function of frequency.
Hence spectral analysis is the transformatiop of the signal from the
time~domain to the frequency-~domain.

When a white noise sequence undergoes spectral analysis the
amplitude of the resulting signal should be constant and therefore
independent of frequency. Any variation of amplitude with frequency
indicates that the time-domain signal is not truly random.

First of all, the theory of spectral analysis as applied to
discrete sequences must be discussed, and then the results of the use of

this technique on some roundoff error sequences will be presented.

4.2 The Fourier transform.

The mathematical tool used to transform a signal from the time-
domain into the frequency-domain is the Fourier transform. Hence spectral
analysis of a signal is also called Fouriar analysis. The Fourier

transform of a time-domain signal f(t) is defined as10
F(w) = 3(E()} =ff(t).e_3wtdt. (4.2.1)
F(w) is the frequency-domain function and both this and £(t) may be
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complex functions of a real variable. The ability of the Fourier
transform to analyse a signal into its component sinusoids can be

expressed mathematically thus10

A Y a.et) = 2 a 600 - w)) (4.2.2)
i i

where &6(w - mi) denotes a unit impulse at w=w, . That is, a signal
composed of several overlapping sine wavet in the time-domain is
transformed into a sum of impulses in the {requency-domain which are by
definition non-overlapping.

The invarse Fourier transform used for traunsformation from the

frequency-domain to the time-~domain is defined by]O

() =3 {F(W)} = 5 F(w) e Py, (4.2.3)

"~

The similarity of form between the Fourier transform and its inverse

should be noted as this fact increases the usefulness of the tool.

4,2,1 The discrete Fourier transform.

Naturally the transformation defined above, which is the continuous
Fourier transform (CFT), cannot be applied to the discrete-time signals
with which this work is concerned. However, it is possible to define an
analogous transformation (and its inverse) which has very similar
properties of spectral analysis. If the discrete-fuuction in the time-
domain is represented by f(nT), where n is an integer and T is the
duration between consecutive samples of the signal, the discrete Fourier

transform (DFT) is defined by

F(w) = % £(aT).e 97T (4.2.4)

n=-o
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which follows directly from equation (4.2.1) assuming that f(t)=0 for
t#nT where n is an integer. However, practical use of this transformation
dictates a finite sequence length for £(nT). If £(nT) is a sequence of N

samples then its DFT is defined bylo

N-1 . .
F(k.Aw) = ) £(nT).e JXAenT (4.2.5)
n=0
where F(k.Aw) is a discrete function in the frequency-domair, k is an

integer, and Aw is the separation in frequency between two consecutive

samples in the frequency-domain.

Ay = —— . (4.2.6)

It is clear from equation (4.2.5) that the frequency function
F(k.Aw) is periodic with period 2w/T. Hence there can only be N distinct
values of F(k.Aw) computable, which correspond to integral values of k
from O o N-1. It is further shown in Appendix 1 that for any real
sequence in the time-domain, the DFT is symmetrical about w=(2n-1)7w/T
for any integer n. Considering the N distinct values of k=0 to N-1 this
point of symmetry is at w=n/T. This is a restatement of the phenomenon
of aliasing. In fact the finite DFT may be thought of as an evaluation
of the Z-transform of the discrete-time function f£(nT) at the N points
in the z-plane, all equally spaced along the unit circle at angles of
(k.Aw) radians.

Although the DFT has very similar properties to the continuous
Fourier transform, it is important to understand the differences. If the
continuous function c(t) has been sampled for a finite duration to yield

the discrete-time sequence f(nT), then f(nT) is defined by
f(nT) = c(t).g(t).s(t) = h(t) (4.2.7)
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t <0 and t » NT

1l
(@]
Hh
@)
=

where g(t)

1 for 0 ¢ £t < NT

y 6(t - nT)

n==—oco

and s(t)
It is a general property of the Fourier transform that a product of two
sequences in the time-~domain yields the convolution of the Fourier
transforms of the two sequences in the frequency—~domain. Herce the

Fourier transform of equation (4.2.7) is

AHh(t)} = FHe(wd} * F{g(r)} * As(L)}

that is, H(w) = C(w) * G(w) * S(w) . (4.2.8)

It can be shown thatlo
_ NT.sin(wNT/2)
G(w) = (L)NT/Z (4.2.9)
and that
S(w) = %1 Y 8w - 3%3, (4.2,10)
n=-—0ow

The significance of these equations can most easily be demonstrated
by an example]. Let c(t) be a cosine wave of frequency W . Since c(t) 1is
a real, even function, its Fourier transform is also real and even, and
as c(t) is monochromatic C(w) consists of two impulse functions at w=im°
(see Figure 4.1(a)). Now consider the effect of making c(t) a finite
function by multiplying it with the 'window' function g(t), (see Figure
4,1(b)). Hence the Fourier transform becomes C(w)*G(w), whose form is
shown in Figure 4.1(c). Next consider sampling this finite continuous

signal. The Fourier transform now becomes C(w)*G(w)*S(w) a section of
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Figure 41 The effect of using_the

discrete Pourier transform
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which is shown in Figure 4.]1(e). Finally this continuous Fourier transform

must be, sampled to give the discrete Fourier transform H(k) defined by

[

H(k) = 2 § (w 21Tk (C( ) * {I‘]T.S(]‘.Jgr](j(;)gT/Z)} { 2 §(w - l‘n_n-)})

k=eo n=-cw

- (4.2.11)

As H(k) is periodic with period equal to 2w/T all the information is

available in the one cycle -N/2<k<N/2, Hence equation (4.2.11) may be

simplified to give
N/2-1 gk

HK) = ] 80 - o) (Clw) * {
k=-N/2

(4.2.12)

NT.sin(wNT/Z)})
wNT /2

The important conclusion which must be drawn both from these
equations and from Figure 4.1 is that the function g(t) in the time-
domain causes a very significant reduction in the resolution of the
discrete Fourier transform. What should ideally be an impulse function

has become a (sin x)/x curve.

4,2,1,1 Window functions.

The function g(t) above is often termed a rectangular 'window'
function. The Fourier transform of this function is the source of the
(sin x)/x curve found in the DFT of a finite sequence of a sampled
sinusoid. Various modified 'window' functions have been proposed in an
attempt to improve the resolution of the discrete Fourier transform. The
defining equations of these 'window' functions are set out in Appendix 2.

As shown in Figure 4.1(b) the (sin x)/x curve has one main-lobe and
a series of side-lobes which decay in amplitude with frequency deviation
from the centre of the main-lobe. All the frequency-domain functions
listed in Appendix 2 have the same general features: a main-lobe and a
series of lower level side-lobes. A good measure of the spectral

resolution permitted by a particular 'window' function is the ratio of
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the main-lobe width : side~lobe amplitude of rthe frequency-domain
functiqn.

A decision on the most appropriate 'window' function to use was
based on the results of the experiment described in Appendix 3. The
convoluted Hamming 'window' suggested by Richarc}s68 was chosen and has

been used for all succeeding power spectra measurements,

4,2.2 The fast Fourier transform.

The direct evaluation of the discrete Fourier transform equation
(4.2.5) for k=0 to N-1 requires N2 complex multiplications and additionslo.
For a sequence length N, say, greater than 1000, this represents an
impractical length of computing time. Cooley and Tukey70 proposed a
technique in 1965 which permits much greater efficiency in the
evaluation of the DFT, This work was followed by that of Stockham71 and
later by Rader72 and many others. The many related algorithms which
permit the fast evaluation of the DFT are given the generic title of the
fast Fourier transform.(FFT). Several useful review papers detail the
properties of the FFT and consider the most significant algorithms]’73’7a.
These algorithms are at their most efficient when the sequence length N
is a power of tw07l, and for this reason the value of N used throughout
this work was chosen to be 210=1024. (This is long enough to give
reasonable resolution in the frequency-domain when the convoluted
Hamming68 'window' is used). When N is a power of two the FFT algorithms
require only of the order of N.logZN computations rather than NZ, which
for N=1024 represents only 17 of the original computing time. The details
of the fast Fourier transform algorithm used are presented in Appendix 4.

There is one final property of the fast Fourier transform which
needs to be mentioned. Equation (4.2.5) may be rewritten in the form

(4.2.13)
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where

- o~i(2m/N)

W (4.2.14)

Excluding normalising factors, the inverse discrete Fourier transform is

defined by74 -
N-1 .
£ = VF e 2/Mnk (4.2.15)
n ok
k=0
Hence it is only necessary to redefine the value of W to be
w = eI (27N (4.2.16)
so that the inverse transform can be written
Nil ak
f = F, W (4.2.17)
n k=0 k

As this has exactly the same form as equation (4,2.13) the same algorithm

may be used for both the normal and inverse transformatioms.

4,.2.3 Number theoretic transforms.

Agarwal and Burrus17 have recently reviewed the properties of
transformations performed using modular arithmetic; such operations are
termed number theoretic transforms (NTT). They propose a transformation
which may be regarded as an alternative to the normal FFT. This
transformation requires only word shifts and additions, but no
multiplications; no storage of complex number data is needed, and there
is no generation of roundoff errorsSI. There are also disadvantages

19,75

encountered in employing this technique . There is an interaction

between the available data wordlength and the length of sequence which

may be transformed. There is also a problem of overflow. Rader20 has
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suggested that these problems are eased by two-dimensional processing.
21 . .

McClellan has reccntly produced a hardware implementation of one of

these transforms. Number theoretic transforms are clearly of the utmost

significance for the future of digital signal processing.

4.3 Spectral analysis of error sequences.

Having discussed the theory of the discrete Fourier transform,
chosen a 'window' function to optimise the spectral resolution, and
developed a fast Fourier transform algorithm and program, the spectral

analysis of some error sequences can now be undertaken.

4.3.1 Experimental technique.

The above consideration of the Fourier transform has tacitly
assumed that spectral analysis is to be carried out using a large off-
line computer. This is the only feasible approach as the use of a
sufficiently powerful on-line computer cannot be countenanced, and
purpose-built instrumentation is not to hand. Having decided on this
approach, it is a short step to the conclusion that the error sequences
should also be produced by the off-line processor., It is possible to
conceive of a hybrid approach whereby the error sequences are produced
in real-time, stored in some form, then loaded as data into the large
computer, However, it is far more advantageous to perform the entire
experiment by simulation on the large processor. The location of the
boundary between simulation and real experiment is, in any case, rather
debatable when the operation of a logical device, such as a
microprocessor, is under investigation.

Figure 4.2 depicts the method for performing spectral analysis on
the roundoff error sequence produced at a single multiplier. The single
multiplier represents either the simplest entire digital filter or the

fundamental element of a more complex signal processor. Figure 4.2
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indicates that the same quantised input sequence is processed by two
multipliers in parallel. The quantisation and amplitude of the input
sequence are detcrmined by the constraints imposed by the short wordlength
and arithmetic mode under consideration. That is, using a wordlength of

8 bits and fixed-point arithmetic, the input sequence is restricted to
integers in the range -128 to 127. The two multipliers have the same

value, which is normally less than unity. The difference between the

2
two parallel processing channels occurs in the output sequences. The
short wordlength channel has the same quantisation and amplitude
restrictions as the input channels. Hence roundoff occurs at the
multiplier. The so-called 'infinite' wordlength channel is, however,
capable of much greater precision of number representation, such that
the output sequence can be consid=red to be free from roundoff error. In
practice, 64-bit floating-point arithmetic (56-bit mantissa, 8-bit
exponent) is used in this channel. A sample by sample subtraction of the
two output sequences therefore produces a roundoff error sequence, which
must also be represented in 64-bit floating—point arithmetic. This
sequence is then transmitted through the 'window' function and processed
by the fast Fourier transform algorithm.

Any non-uniformity in the spectral distribution of an error
sequence will probably be caused by a degree of correlation between the
input sequence at a multiplier and the corresponding roundoff error
sequence, If any such correlation exists then the frequency spectrum of
the error sequence will have some affinity to that of the input sequence.
In order to make any resemblance between the two spectral distributions
as clear as possible, it is desirable to use an input sequence with a
simple, known spectrum. This reasoning leads to the use of a sampled
sinusoid as the input sequence,

Some care is required in choosing the frequency of the sinusoid

used as the input sequence. The DFT samples the frequency-domain function
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at intervals of 2n/NT and it is clearly desirable to choose one of these
allowed. frequencies. In other words, the finite sequence must represent
an integral number of whole cycles of the input frequency. (1024 is the
sequence length used), This, however, is not a sufficient constraint, A
1024 sample sequence representing an even number of whole cyclcs may be
subdivided intq two or wmaybe more identical sequences, This introduces
unwanted redundancy into the experiment. In general, redundancy exists
if the integral number of cycles represented and the sequence length
have a common factor. The sequence length ewployed, 1024, has the single
prime factor 2, so to aveid redundancy any input frequency may be chosen
which yields an odd number of whole cycles in this sequence length,

It is always desirable to take more than one set of resuits for an
experiment, so that they can be averaged and the error in the mean
determined., If 100 observations are made, then the error in the mean may
always be quoted to one significant figure as its fractional error is
107. This appears to be a reasonable level of precision, and 100 is
therefore taken as the.standard number of independent observations of a
result used throughout the experimental work. This figure would be
unrealistically high if the experiments were not performed by computer
simulation.

In an experiment simulated on a computer it should always be
possible to reproduce a run exactly by setting up the same initial
conditions. The problem arises, therefore, of producing numerous sets of
results, for the purpose of averaging and error calculation, which are
not identical. A solution has been found in varying, from run to run,
the phase offset at which the sampling of the sine wave commences. This
initial offset is incremented by w/100 for each of the 100 runs, so if
it starts at zero it will be 0.997 on the final run. Hence each of the
runs will use a different input sequence.

The results of spectral analysis on some error sequences are
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presented in the next section, In all cases rounding, which has the best
behaved. characteristics of the three roundoff forms, is the error process
employed. Various wordlengths, multiplier values and input frequencies
are considered, all for fixed-point arithmetic. In order to gain a fair
impression of the effect of varying wordlength, -the amplitude cf the
input sequence is set to the maximum permitted by the wordlength. The
Fortran 1V program used to effect these simulations is listed in

Appendix 6; the main program is entitled SPEC.

4.3.2 Experimental results,

Figures 4.3 to 4,12 depict the results of spectral analysis on
some roundoff error sequences. The details of coefficient value, signal
wordlength and input frequency relative to the sampling frequency are
noted on the individual graphs. The graphs are plots of relative
amplitude as a function of frequency. The relative amplitude is recorded
in decibels, where 0dB refers to the mean amplitude over all frequencies.
The frequency axis covers the range from zero to the Nyquist frequency.
This axis is graduated in terms of the harmonics of the frequency of the
input sequence; the reason for which should be obvious on inspecting
the results.

The plots de not carry error bars as these have been omitted for
clarity. Calculation of the errors indicates that most points with a
relative amplitude of around 25dB have an error of about 0.01dB, while
points around -10dB have errors in the region of 1dB. In general, the
error is found to increase with decreasing relative amplitude. The
magnitude of these errors indicates that all the important structural
features depicted in the plots are in no way created by the statistical
fluctuations in the results from run to run.

Although the discrete Fourier transform yields a discrete frequency

function, the presentation of continuous line plots can be justified.

52



£S

fLouanbaay 3ndut Jo sOTUOWIRH
6% 5% 19 L€ £e 6¢ 6¢ |§4

Ll

£l

—

s
o

T ——

—————

—_—
o —

————r
—4"_.:-’A~
—_—
= —
- - e

*%201/6 = Aouenbaiz andut 9aTiE[3y ‘sS31q g8 = YaBuaIpaoM “yzOl/Il = Og

*aduanbas 10119 ue jJo sIsdfeue [EBIIIAAG ¢°y 2axnd1jg

—_ -

s
T
(]

(dp) opniirdue aAr3ze]ay

L
5.

=
=)
]




Aousnbaxy 3ndul JO SOTUOWIBH

e e e
—_—

e e

e — e e - e
—=l c T
—— -

*4701/6 = Aouenbaajy 3ndut aar3leTdy °siiq 4 = ya8uaipaoM “HzoI/111 = Og

*2ouanbos 10112 Ue JO STSATRUB [BIJDAdS - H°4 2IANBIJ

£s _ 6Y . m..u iy , LE 153 mNIJ m.N ¥4 L1 ¢l .m 1 €=
40¢-
s A _ﬂr ! i ' ]| 4
oy L _ J Fa _ \f o £ { ¥ |
‘:D__ m M gr_ :..c__, .F } __J% _.J.. Pﬂ_ __ EY _fw__ _,_J. \,p A , _._ SF i)._. h 1 y\
SRETAT AN FARLTANAN | joi-
_ {

1
T
Q

S

"(gp) opnatrdue 2aTIETSY




£e

62

Aousnbaag indutr Jo sOTUOWIRH

<z

1Z

L1

€l

-t

Jhos——
p———
—— >
==L
—
—
—
—
e
‘_'_,_b
)
—
=

==
—

B
S—

"#Z01/6 = Aouenboay andut aarTzeley “s3Tq ¢ = YiBualpioMm ‘HzZOI/III = Op

*@ousnbas 10119 ue JO SISATRuUR [®13d9dS.G*H 2an31g

e
)
—

|

U
o

(gdP) @pnitrdue aarieTay

=

i




Lousnbaiy 3ndul jo sd>TuOWIBH

£ 6% Y ly ., LE €€ 62 T4 iz L1 €l ¢~
+0¢-
! VoA A m \
- _T b L _____ v oa | ¥ J ] |
[ F_“f ___:_ LR \ | ] .; "\ J. ] | { §
2 __:4 —:H i fk_ _g &g x / iy )D F « g N, w 7 _d , ﬁ \ T:-a
ALY NIRRT IR | .-
| 1 _ | ~ B | [l | o
| BRI, | | :
_ _ , w A | e
W \ _\ | | ]
] _ , { _ o
| ! a
AT x ~
y : _ &
llO— o
j
40t
| *$701/6 = Aousnbaij andur 2ATIETSY ‘s31q 9 = y3BusipioM ‘zol/Il1 = Oe
*@duanbas 10119 ue jo sisAjeue ea3dad§ 9°y ain31g %om




LE

62 .

sz

Aousnbaxjy 3ndur 3o sotucwiey

12

gl

-0~

i

"%201/6

€€

KLousnbaiy 3ndut satjeIay “siiq ¢/

p—

—_—

Yy3a3ua1pIoM “4zol/ 11!

*?aouanbas 10113 ue 3o sisdjeue jeijoads.,/°y @andig

—

LO1-

& .'
—_ o
(gp) @pnmiTrdue aATIRTSY




Aousnbaxy 3ndutr jo soiuowary

€S 67 <Y X L€ 33 62 gz Iz L1 €1 S 06—
Loz-
N !
- f_ f b | 3 | > - b +o1-
ﬁ |
M \ ‘/“ # W M A ] _
,_ |

—

*%701/6 = Adousnbaay 3ndut saTIERISY “si1q § = yidusipaop ‘%201/111 = Og

*aduanbas 10212 ue Jo sisAJeue [eijoads-g'y 2ind1g

1

ol

+0¢

Lo€

(€p) °pnitidue aatjeTay




£s

Louonbaay 3andur 3o soTuUOWIERY

Ll

14!

——

&% SY Iy _LE £€ 62 st 1Z

h

— -
.'—'—’"*
- 2.
m——
ma—— o
- e
="
=

*%Z701/6 = Adousnbai3y 3Indut aaT3E[sY s3i1q g = yaSusaypaop ‘9Z01/11y = Og

*oousnbas 10113 ue Jo SISK[EUB EBI3DadS ' aan81g

—_—

—r

..ON'

: 3 &
(@] o
— o —
(2p) °pnitldue saryefoy '

I\

T
(=]
™~

Loe




Aouanbaiz indur 3o sOTuOWIEH
S

——3

=

—

*HZ01/GY

——— T
————

L
T

9

¥

——,

——

Kouanbaal 3ndur aaTIeRISY S3Tq g = UYadBualpaop ‘vzOoI/I1l

5
T

0

*@ouenbas 10112 ue 3O sIsAJeUB [B13D3d§ Q[°H 2In3T1g

__1-
o

(dp) epnitjdwe anrleisy

2




S

£fousnbaiz andur Jo soTuowIEH
9

<

-+

—————

== T

*®Z0l/¢SY

T

——

PUE

S—

ALousnbaiy 3Indur sAT3IRIaY s3Tq g = yaBuaipiopm ‘%z01/111

0

*2ousnbas 30112 ue jo sTSA[EUR [EBaAjoads 11*% @aan81g

———.

=4
&
{

LOZ-

(dp) spnitrdue aatjelay




Kouanbaxz 3nduy jo SoTudWIBY
6 8 L 9 _ S B

i ] I 1

L1 0l

T T T ¥

"5Z01/S% = Kousnbaiy andul sATa®iey ‘s3Tq g = yIBuaTpioM ‘4zol/11Y = Oe

*3ousnbas 10119 ue jo sisATeue TEBa3o=adg Zf°%f =an31g

T ————

—\:—T——"———-
Q

E

(gdp) opnit[duie aAijelag

&
T




Firstly, as indicated in Figure 4.1, the DFT samples an underlying
continuqus frequency function. Secondly, although the choice of 'window'
function has optimised the spectral resolution of the DFT, there is still
a certain degree of 'blurring', which makes the linear interpolation,
inherent in drawing a continuous line plot, a more valid operation. As
the plots are produced from 512 pecints linearly distributed along the
frequency axis, the degree of interpolation is not great. Above all, the
plots present their information clearly.

A cursory glance at Figuies 4.3.to 4.12 reveals clear non-
uniformity in the spectral distributions. A slightly more prolonged
ihspection indicates a definite structure in the spectral responses.
This can be seen clearly in Figure 4.3, where the relative amplitude
peaks at the odd harmonics of the input frequency.

A comparison of Figures 4.3, 4.8 and 4.9 shows the effect of the
coefficient value on the harmonic content, with the input frequency and
the signal wordlength kept constant. The harmonic peaks become less
strong and well-defined as the multiplier value increases from 11/1024
to 411/1G24, Figures 4,10 to 4,12 permit a similar examination of the
effect of coefficieni value, this time employing a higher relative input
frequency. These distributions contain some strong peaks which do not
appear to coincide with harmonics of the input frequency. However,
detailed inspection indicates that these are harmonics above the Nyquist
frequency which are aliasing back intc the sub-Nyquist range. These
three figures again show the decline in harmonic structure with
increasing coefficient value.

The effect of varying input frequency can be observed by comparing
the three pairs of graphs, Figures 4.3 and 4.10, 4.8 and 4.11, 4.9 and
4,12, Both members of a given pair of spectral distributions appear to
have about the same level of harmonic structure. This implies that the

input frequency has little or no effect on the degree of harmonic content
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found in a roundoff error sequence.

Finally, Figures 4.4 to 4.8 allow a consideration of the effect of
signal wordlength at a constant input frequency and coefficient value. A
dependence of the level of harmonic content on wordlength is clearly
discernable, the peaks becoming stronger with decreasing wordlcngth; a
relationship which intuitively appears very reasonable.

In summary, it would appear from Figures 4.3 to 4.12 that the
spectral distributions of the roundoff error sequences considered are
clearly non-uniform and contain strong harmonics of the input frequency.
The harmonic structure seems to decline as the coefficient value is
increased in the range 11/1024 to 411/1024. There is a iess marked
decline as the signal wordlength increases from 4 to 8 bits. The
frequency of the input sequence, liowever, appears to have no effect on

the level of harmonic structure present in a roundoff error sequence.

4,3,3 Harmonic generation,

It is not within-the scope of this present work to attempt to give
a full explanation of the form of the spectral distributions shown in
Figures 4.3 to 4.12, The clear non-uniformity of response is the
important conclusion to be drawn. However, it may be of some interest to
make a brief, qualitative indication of the kind of mechanism involved
in creating the observed harmonic structure.

Figure 4.13(a) disblays the error function for the multiplier
11/1024, The input range covered is —~127 to +127: the range allowed by
an 8-bit wordlength. The curve possesses two discontinuities where it
encounters the error bounds *A/2, Any input signal with an amplitude in
excess of 46 will traverse this pair of discontinuities in the error
curve. Figure 4.13(b) shows the error signal produced at such a
multiplier when a sampled sine wave of amplitude 127 is processed. The

continuous error waveform shown is that which must underlie the discrete
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sequences actually produced. The shape, and therefore the spectral
content, of this error waveform is dependent on the amplitude of the
sine wave input, and the value of the multiplier, but the frequency of
the input only alters the time-scale of the waveform, not the shape.
Figure 4.13(c) indicates how the error waveform may be analysed into
three components: a sine wave at the input frequency but in antiphase,
and a pair of square waves of amplitude A/4. It may be inferred from
this diagram that the error waveform will contain all the odd harmonics
of the input frequency. The amplitudes of the harmonics will generally
decrease with rising harmonic number, that is, frequency. This accords
well with the observed results depicted in Figure 4.3.

Certain general principles may be drawn from Figure 4.13. Any
error waveform produced when a sampled periodic signal is processed by a
multiplier may be analysed into an amplitude-scaled, and perhaps
inverted, replica of the input waveform and several pairs of square
waves with fundamentals coinciding with that of the input sequence. The
amplitudes of the square waves sum to A/2. The number of pairs of square
waves equals the number of pairs of discontinuities in the error function
traversed by the input sequence in one period. This implies that any
error waveform produced by a sampled sinusoid input is entirely composed
of odd harmonics of the input frequency. Any peak in Figures 4.3 to 4.12
which appears to occupy the position of an even harmonic must in fact be
a super-Nyquist odd harmonic which has aliased.

The principles revealed by Figure 4.13 allow an assessment of
which situations will be the most prone to give error sequences with
strong harmonic structure. If an error waveform contains many pairs of
square waves, then the amplitude of these square waves will be
correspondingly small. Moreover it is probable that there will be a high
degree of partial or total cancellation of the harmonics. It is the

number of discontinuities in the error function encountered by the signal
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which therefore determines the degree of harmonic content in the error
sequence. As this number is increased, so the assumption of a uniform
spectral distribution becomes more valid. As discontinuities occur at
uniform intervals <n the input level axis of the curve, the number
encountered may clearly be raised by increasing -the amplitude of the
input sequence, which, in turn, is permitted by raising the signal
wordlength. Increasing the multiplier value in the range 0 to }
exclusive has the effect of increasing the gradient magnitude of the
error function and therefore decreasing the spacing between
discontinuities, In the coefficient range } to 1 exclusive, increasing
the value yields a decreasing magnitude of gradient (now positive) and
an increase in the separation of the discontinuities, (For a given input
sequence, the multiplier x yields the same error waveform as (1-x) but
with phase reversal). The harmonic content of error sequences may
therefore be expected to increase with decreasing wordlength13 and also
as the multiplier approaches an integral value, usually zero or unity.
The frequency of the inpuyt sequence should not affect the degree of
harmonic content in an error sequence. These conclusions correlate well

with the observed results presented in the previous section.

4.4 Conclusioms.

Three important conclusions should be drawn from the observations
reported.

(2) Any roundoff error sequence produced by processing a sampled
sinusoid at a single multiplier does not possess the uniform
spectral distribution expected of white noise, but consists of odd
harmonics of the input frequency. To regard roundoff error sequences

as white noise sources as does the Knowles -~ Edwards model29 is

clearly invalid in many situations where the input sequence has a

periodic content,
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(b) The high first harmonic content found in the roundoff error sequences
indicates a significant correlation between the signal and error
sequences at the multipliers. Once again an assumption of this model
is seen to be highly suspect in some situations.

(c) It would clearly be unwise to test any of the other model 2ssumptions
using a periodic input sequence. The only alternative is to use a
random input sequence, that is, white noise, so that the modelling

of roundoff error sequences as white noise sources should be valid,.
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CHAPTER 5 - THE VARLANCE OF ROUNDQOFF ERROR SEQUENCES.,

5.1 Introduction.

In Chapter 3 equations were presented for calculating the mean
variance of the roundoff error sequence at a given filter output. The
worth of such equations lics in their ability to enable a designer to
predict which filter form - direct, canonic, or look~up table - will
give the best performance in his particular application, and what
wordlength is required to give, for example, a specified signal to noise
ratio. However, if the equations are inaccurate so that they represent
éhe options falsely and lead the designer to make a poor selection, they
become a hindrance not an asset, )

Their formulation relies fuadamentally on the assumption that
roundoff error sequences can be treated as white noisezg. The results of
the experiment reported in Chapter 4, however, indicate that, given a
signal with periodic content and a short wordlength, this assumption is
invalid. This immediately limits the proper use of the equations to
random signal situations for the wordlengths under consideration: no
slight restriction. It is clearly desirable to discover experimentally
whether this random signal constraint is sufficient to guarantee the
accuracy of the predictive equations, or whether other model assumptions,
like the uniform amplitude distributions accredited to roundoff error
sequenceszg, become invalid at short wordlengths.

This chapter records the nature and results of an experiment which
measures the output error variance of a variety of first and second order
filter realisations, all under random signal conditions. This permits an
assessment of the accuracy of the predictive equations and of the
validity of the underlying model assumptions., A consideration of the
sensitivity of equation accuracy to filter form or wordlength is also

possible, as is an evaluation of the importance of block-floating-point
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. . 16 . . .
arithmetic =~ which, as stated in Chapter 3, cannot in general be
theoretically assessed. The chapter concludes with a theoretical

consideration of the experimental findings.

5.2 Error variance measurements on filters.

As with the spectral analysis experiment of Chapter 4, so too this
investigation is carried out by simulation on an IBM 370/168 computer.
This approach allows absolute control and reproduceability of experimental
conditions, particularly test signals, which could not be achieved in a
real situation. In consequence the results of the experiment can be
interpreted with greater certainty than would otherwise be permissibie.

Table 5.1 indicates the various permutations of filter order, form,
arithmetic mode, and roundoff process which are examined. These
realisations are tested over the wordlength range of 4 to 8 bits. Four
first and four second order filter chavacteristics have been chosen for
implementation. There are two lowpass and two highpass first order
filters, whilst the sacond order responses represent lowpass, highpass,
bandpass, and bandstop filters. All have gains which closely approach
unity at their frequconcy of maximum response. Appendix 5 contains tables
displaying the filter coefficients used and the characteristics thus
obtained as defined by pole and zero positions in the z-plane.

The coefficients employed for the direct and canonic forms require,
in general, 10 bits for accurate representation. This is considered to
be long enough, relative to the signal wordlengths being used, to free the
filters from any effects of a short coefficient wordlength. A comparison
may be undertaken of realisations of the same set of ideal filter
coefficients for different signal wordlengths, thus permitting a study
of those effects alone which are attributable to a short signal
wordlength, The modification of the look-up table form suggested to

yield a noise reduction, however, relies on using filter coefficients
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Table 5.1 Filter realisations tested.

Arithmetic

Filter Arithmetic || Direct Canonic Look~up Look=-up
Order Moda Table Table,
3 Reduced-
noise
Fixed- Rounding
point & Rounding Rounding
Arithmetic || Truncation
First
Order
Rlock-
floating- Rounding
point
Arithmetic
Fixed- Rounding Rounding
point & & Rounding Rounding
Arithmetic {| Truncation | Truncation
Second
Order
Block-
floating- Rounding Rounding
point




which can be accurately represented within the available signal
wordlength, Hence the coefficients used for these forms lead to pole and
zero positions which are only approximations of the ideal, as shown in
Appendix 5. The omissions from the tables in Appendix 5 are caused
because this approximation becomes degraded as the wordlength is
decreased, and becomes unacceptably poor for some of the filters at the

shorter wordlengths,

5.2.! Experimental method.

The technique employed to measure roundoff error variance is
broadly similar to that used for the spectral analysis of error
sequences. That is, an error sequence is formed by the parallel
processing of a given input signzl in a limited wordlength chanmnel and
in a so-called 'infinite' wordlength channel, and the subsequent sample
by sample subtraction of the two output sequences., There are, however,
several important differences from the previously reported experiment;
the two processing channels no longer consist of single multipliers, but
now contain the filter realisations under test; the input sequence, as
previously mentioned, consists of random integers; and the error
sequences formed are processed by firstly computing the mean of the 1024
error samples, and then calculating the mean squared deviation, or the
variance, of these samples from their mean. This is schematically
represented in Figure 5.1, and Appendix 6 contains a listing of the
Fortran IV main program, EXEC, used to implement the experiment, The
results of 100 runs processing different input sequences are averaged so
that a mean variance can be returned along with its standard error.

One problem which arises with filters is that of their transient
response, In general, filters determine a particular output sample not
only from the current input sample but from previous input and output

samples. Hence when the first input sample is applied to a filter its
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output depends on the signal data which happens to have been stored
beforehand at the appropriate locations in the filter structure. The two
filters which perform the parallel processing in this experiment have
all data locatiocns corresponding to previous inputs or outputs set to
zero before processing the initial sample of the first input scquence.
The measurement of the variance of an error sequence is strictly
only meaningful when the sequence is wide-sense-stationary, that is, when
neither its mean nor the variance about that mean change with time, As
the filter signal data is set up so that there is no error in the delayed
output samples in the short wordlength filter, it could be argued that
stationarity of the output error sequence will not be obtained
immediately filtering commences. Such an argument has particular weight
when using the asymmetrical truncation process so that the mean error
stabilises at a significant deviation from zero. Assuming that
stationarity is achieved within the first run of 1024 samples, the error
variance is not measured during this run, but the signal data stored in
the filters at the end.of it permits the commencement of the second run
without any loss of stationarity. Similarly all subsequent runs employ
the signal data remaining in the filters from the previous sequence
processed, Hence 101 batches of 1024 input samples are processed, the
results of the first being discarded, whilst the final 100 are used to

compute the mean error variance and its standard error.

5.2,1.1 Generation of the random input sequence.,

Consideration must now be given to the generation of suitable
random input sequences with which to test the filter realisations. On
the grounds of experimental reproduceability and control, and of
consistency of approach, the use of a hardware white noise generator is
excluded, and a software technique must be used. One of two basic methods

may be chosen; a standard table of random numbers may be stored in the
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computer memory and read as required; or a mathematical algorithm may be
employed to generate what can only be a pseudo-random number sequence.
The former approach is impractical because of the large number (over 105)
of sequence samples required. A technique in the latter category is
therefore chosen even though a truly random sequence cannot be produced
because each element is determined mathematically from another, usually
that preceding it. Much care is needed in the choice of algorithm to
produce a sequence which is most nearly truly random. MacLaren and
Marsaglia76 have presented a paper in which they discuss the various
algorithm types and also apply tests of sequance randomness which they
suggest are more stringent than those commonly employed. The algorithm
which performed best in their tests forms the basis of the gencrator
used for the error variance measurement experiment.

To improve upon the properties of a sequence generated by the
common multiplicative congruential aigorithm76, such a sequence is
shuffled into an order determined by a second pseudo-random sequence
also produced by a congruential method. The two sequences they suggest

may be represented by

_ 17 35
Uk+l = (2 +3 ).Uk mod 2 (5.2.1)
and
— 35
Vk+l = (2" +1 ).Vk + 1 mod 2 (5.2.2)
where UO = 1 and V0 = 0 and k indicates the position of the element in

the sequence, Firstly the numbers U are written into a table

l L L128
in the computer memory, then the least significant 7 bits of Vk are used
to address this table and access the kth random number. This store
location is then refilled with the next element in the main sequence U.

Equations (5.2.1) and (5.2.2) cannot, however, be implemented on an IBM

370/168 which has a wordlength of 32 bits and therefore permits
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arithmetic modulo 231 but not 235 as stated in the equations. This
modification should have little effect on the properties of the random
sequence thus produced, apart from reducing the available sequence
length before repetition to somcthing in excess of 231, which is much
longer than the experimental requirement of less than 2]7.

The method described produces a random sequence whose elements
ideally are uniformly distributed in the region O to (231 - 1) inclusive,
The requirement for the experiment, however, is for sequences which are
symmetrical about zero, and the maximum amplitude ever needed is 127,
This calls for appropriately shifting and scaling the original sequence.
The scaled-down sequence must contain only integers and so roundoff
occurs in their formation; rounding is always the method used to achieve
this, Such scaling and roundoff should produce sequences with
characteristics of randomness which do not deviate significantly from
those of the fundamental sequence. Appendix 6 contains listings of the
two Fortran IV subroutines, PRAND and RAND, which together are used to
generate the random input sequences required.throughout this experiment.

The amplitude of the random input sequence fed to a particular
filter realisation under examination is zlways the maximum which does
not cause the signal level, at any point in the filter in the short
wordlength processing channel, to exceed the limits imposed by the
signal wordlength under consideration; this allows the greatest
advantage to be taken of the available wordlength. For all the first
order filter realisations tested, subroutines have been written which
calculate this amplitude for the given filter coefficients, form, and
wordlength, and these are listed in Appendix 6; LIMSl, BOUND, and LIMPSI
are used for the direct fixed-point arithmetic, direct block-floating-
point arithmetic, and the look-up table forms respectively. No suitable
algorithm has been discovered, however, to provide the same information

in the case of second order filters. This means that the appropriate
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amplitude for the input sequence has to be found by trial and error. The
amplitude is initialised to the maximum allowed by the signal wordlength,
Thereafter if an excessive signal level is detected at any point in the
filter, the input amplitude is reduced by one and the entire experiment
must be recommenced. This clearly becomes very wasteful of computer time
when the final amplitude is significantly lower than the initial value.
The failure to solve this problem arises from an inability to predict

the allowed signal conditions which yield a maximum-signal level at the

output of a second order filter.

5.2.2 Experimental results,

The results of this experiment are presernted both graphically in
Figures 5.2 to 5.9 and in tabular form in Tables 5.2 to 5.9, As all the
signals consist only of integers, the quantisation width is always unity
and is not dependent on the wordlength, For this reason the presentation
of absolute error variance measurements permits the most clear assessment
of performance., Each graph and table pair exhibits the measurements
obtained from all the various realisations tested of a given ideal filter
response; note that the graphical information relating to each second
order filter is presented on two separate plots, denoted (a) and (b).

The short horizontal bars shown on the graphs represent the error
variance theoretically predicted by the appropriate equation as presented
in Chapter 3; this information is also given in the tables. For reasons
of clarity no attempt is made to include error bars on the graphs.
However, each mean experimental result presented in the tables bears its
calculated standard error.

The reason for not testing some of the reduced-noise look-up table
realisations has already been given. There are, however, other gaps in
the results which require explanation. Care has been taken throughout

the execution of this experiment to detect situations where the output
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sequence from a filter multiplier can only consist of zeros. In such a
case the particular multiplier has an effective coefficient value of

zero, and so the filter can no longer be deemed to be an adequate
realisation of the ideal response; the results, therefore, are not
presented. There are a few cases, most notably the canonic block-floating-
point arithmet?c realisation of the second ovder bandpass filter, where
the particular combination of filter coefficients, form, wordlength, and
arithmetic mode requires that the amplitude of the input sequence be
reduced to zero before signal overflow is avoided at all points in the

filter; results in such a situation are clearly meaningless.

5,2.2.1 First order highpass(i) filter.

The results of the tests carried out on this filter are presented
in Figure 5.2 and Table 5.2. Figure 5.2 shows a general lack of agreement
between experiment and theory which is revealed more clearly still when
the experimental errors indicated in Table 5.2 are taken into
consideration, The degree of discrepancy varies quite markedly with the
realisation., For instance, the experimental values of the normal look-up
table form deviate widely from the theory, whereas the results obtained
from the reduced-noise look—up table form are very close indeed to those
theoretically predicted. The error variances yielded by the direct,
block-floating-point arithmetic implementations also show a significant
deviation from the theory. It should be noted that whereas the theoretical
equations predict that the use of block-floating-point arithmetic will
yield a slightly higher error variance than the use of fixed-point
arithmetic, the opposite is in fact the case. The two direct fixed-point
arithmetic forms show good agreement at the higher wordlengths, but this
deteriorates as the wordlength is decreased. In practice all three direct
forms yield a similar level of error variance. In general, the look-up

table forms show a lower degree of deviation from the ideal; this is
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Table 5.2 Error variance measurements.

First order highpass(i) filter.

Pealisation Wordlength (Bits).
4 5 6. 7 8

Direct, Rounding, 0.257 0.311 0.316 0.308 0.315
Fixed-point. + % * + *

0.002 0.003 0.003 0.002 0.003
Direct, Truncation, 0.341 0.355 0.310 0.309 0,309
Fixed-point, + + + + +

0.003 0.003 0.003 0.002 0.003
Direct, Block- 0.224 0.329 0.278 0.268 0.271
floating-point, + + - + +
Experimental. 0.002 0.003 0.002 0.002 0.002
Theory. 0.33354 0.32250 0.31995 ¢.31798 0.31717
Look-up Table, 0.381 0.158 0.166 0.201 0.184
Experimental. % * + + +

0.004 0.002 0.002 0.002 0.002
Theory. 0.44863 0.45838 0.46326 0.46570 0.46692
Look-up Table, 0.1337 0,157 0.155 0.157 0.156
Reduced-noise, + + + + t
Experimental. 0.0008 0.002 0.001 0.001 0.001
Theory. 0.13675 | 0.15802 | 0.15802 |0.15802 | 0.15489
Theory: Direct, Fixed-point 0.31209




particularly true for the reduced-noise look-up table realisations.

5.2.2,2 Tirst order lowpass(i) filter.

Figure 5.3 and Table 5.3 indicate that the results obtained for
this filter possess many of the characteristics mentioned in the
previous paragraph. Once again the normal look—-up table form shows the
most marked discrepancy between theory and practice, and moreover theory
again predicts a worse performance than is actually achieved. The
increase in the noise produced by the 4- and 5-bit look—up table forms,
when compared with the longer wordlength realisations of this structure,
is caused by the need to double the rescaling factor at the filter
output, Theory predicts that the use of block-floating-point arithmetic
will produce a minor degradation in performance, but this does not
result., The reduced-noise look-up table form exhibits both the best

performance and the highest degree of agreement with the theory.

5.2.2.3 First order highpass(ii) filter.

The results obtained for this filter, as shown in Figure 5.4 and
Table 5.4, display many of the properties already mentioned. The well-
behaved nature of the reduced-noise look-up table form is once more to
be remarked upon. The ordinary look-up table form also gives a relatively
low noise level despite the poor expectations produced by the theory.
The direct forms all yield similar performances with block-floating-point
arithmetic again proving to be more useful than theoretically
anticipated. The results obtained for the direct fixed-point arithmetic
implementations display a trend for the discrepancy between theory and

experiment to become diminished as the wordlength is increased.

5.2,2.4 First order lowpass(ii) filter.

This filter has its pole positioned extremely close to the unit
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Table 5.3 Error variance measurements.

First order lowpass(i) filter,

Realisation Wordlength (Bits).
4 5 6 7 8

Direct, Rounding, 0.1861 0.2073 0.206 0.207 0.209
Fixed-point. + + + + *

0.0009 0.0008 0.001 0.001 0.002
Direct, Truncation, 0.1894 0.204 0.206 0.208 0.206
Fixed-point. * * + + t

0.0C09 0.002 C.001 0.002 0.001
Direct, Block- 0.1750 0.229 0.1831 0.:199 0.1896
floating-point, + + .t + t
Experimental. 0.0009 0.002 0.0009 0.001 0.0009
Theory. 0.24346 | 0.2375i | 0.23543 | 0.23409 | 0.23360
Look~up Table, 0.464 0.621 0.1420 0.1692 0.152
Experimental, t * + + +

0.002 0.003 0.0008 0.0008 0.001
Theory. 1.1890 1.2148 0.30693 | 0.30855 | 0.30936
Look-up Table, 0.0956 0.1023 0.1026 0.1032 0.1034
Reduced-noise, * + + * *
Experimental. 0.0005 0.0004 0.0005 0.0005 0.0005
Theory. 0.09697 | 0.10306 | 0.10306 | 0.10306 | 0.10306
Theory: Direct, Fixed-point 0.20678
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Table 5.4 Error variance measurements.

First order highpass(ii) filter.

Realisation Wordlength (Bits).

4 5 6 7 8
Direct, Rounding, 0.1953 0.1778 0.1677 0.1669 0.1698
Fixed-point. * * * * +

0.0009 | 0.0007 | 0.0007 | 0.0008 | 0.0006

Direct, Truncation, 0.1318 0.1643 0.1739 0.1704 0.1675 .
Fixed-point, * + + * *
0.0906 0.0008 J.0007 0.0007 0.0007

Direct, Block- 0.2173 0.1735 0.1639 0.1627 0.1656
floating-point, t + - + +
Experimental. 0.0008 0.0007 0.0007 0.0007 0.0006
Theory. 0.21804 | 0.21821 | 0,21610 | 0.21549 | 0.21515
Look~-up Table, 0.0841 0.0875 0.0998 0.1500 0.0924
Experimental. + + * + +

0.0003 | 0.0003 | 0.0004 | 0.0007 | 0.0003

Theory. 0.24333 0.24862 0.25126 0.25258 0.25324
Look-up Table, 0.0824 0.0832 0.0833 0.0831 0.0847
Reduced-noise, t + + + +
Experimental. 0.0003 0.0003 0.0003 0.0003 0.0003
Theory. 0.08466 | 0.08466 | 0.08466 | 0.08466 | 0.08466

Theory: Direct, Fixed-point 0.16927




circle in the z-plane. In consequence the value of the coefficient aq
must be.made very low., This in turn gives rise to the large number of
omissions from Figure 5.5 and Table 5.5 at the shorter wordlengths. The
most significant feature of these results is the deviation trom theory

of the error variances obtained for direct fixed-point arithmetic
realisations. The error variances measured for the 6~ and 7-bit direct
fixed-point arithmetic forms employing rounding exceed the theoretical
prediction by more than an order of magnitude. Use of block-floating-
point arithmetic, however, brings greatly reduced noise, and an increased
conformity to theory. The reduced-noise look-up table form is again the
only one both to yield a low error variance and to act in a predictable

manner,

5.2.2.5 Second order bandpass filter.

As this filter has its poles very close to the unit circle in the
z-plane its pole section has a high gain. This causes problems of
excessive signal levels, especially at the intermediate stage of canonic
realisations. The fact that |b|| + Ibzl > | means that only relatively
low amplitude input sequences can be successfully processed by the
canonic forms, indeed when block-floating-point arithmetic is used the
input amplitude has to be reduced to zero to avoid signal overflow. The
fixed-point arithmetic direct and canonic realisations yield results
which differ more markedly from the theory than is generally the case
for first order filters. The error variances measured for the canonic
forms are in general somewhat lower than those obtained for the direct
fixed-point arithmetic realisations, and comparable to the results for
the direct block-floating-point arithmetic filters, which once again
perform better than theory would suggest. The worth of the reduced-noise
look-up table form is demonstrated once more, while the normal look-up

table realisations yield relatively low noise levels significantly below
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Table 5.5 Error variance measurements,

First order lowpass(ii) filter.

Realisation Wordlength (Bits).
4 5 6 7 8
Direct, Rounding, 26 26 11.6
Fixed-point, + + *
2 2 0.3
Direct, Truncation, 3.57 9.1 8.8
Fixed-point. + * t
0.08 0,2 0.2
Direct, Block- 2.13 2.73 2.01]
floating-point, * + t
Experimental. "0.07 0.08 0.06
Theory. 1.9874 1.9662 1.9567
Look=up Table, 2.46 1.04
Experimental. * +
0.07 0.03
Theory. 3.3283 3.3371
Look-up Table, 0.67 0.88 1.01
Reduced-noise, + * +
Experimental. 0.02 0.02 0.03
Theory. " | 0.68817 | 0.91022 | 1.0879

Theory: Direct, Fixed-point 2.2305
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Table 5.6 Error variance measurements.

Second order bandpass filter.

Realisation Wordlength (Bits).
4 5 6 7 8
Direct, Rounding, 2,63 2.44 2,33
Fixed-point, + + *
0.04 0.04 0.04
Direct, Truncation, 1.16 1.81 2.42 2.43 2.46
Fixed-point. + + * + +
0.02 0.03 0.04 0.04 0.04
Canonic, Rounding, 2.98 1.97 1.94
Fixed-point. + + +
0.04 0.02 0.03
Canonic, Truncation, 1.78 2.04 2.10 2.23
Fixed-point. * * * *
0.02 0.03 0.03 0.03
Direct, Block- 2,69 2,08 2.22
floatiag-point, + * +
Experimental. 0.04 0.04 0.04
Theory. 2,8C73 2,779 2.7845
Canonic, Block-
floating-point, Unsuitable for implementation as
Experimental,
lbll + lbzl > 1.
Theory.
Look—-up Table, 0.90 0.85 1.01 1.05
Experimental, + + + +
0.02 0.02 0.02 0.02
Theory. 1.3199 1.3340 1.3410 1.3445
Look-up Table, 0.357 0.481 0.442
Reduced—-noise, + t +
Experimental, 0.005 0.006 0.006
Theory. 0.35915 | 0.47166 | 0.43721

Theory: Direct, Fixed-point  2,2467
Canonic, Fixed-point 2.1216




the thcoretical predictions.

5.,2.2.6 Second order bandstop filter.

The results obtained for chis filter, as presented in Figures
5.7(a) and (b) and Table 5.7, demonstrate well the main characteristics
of the results of the entire experiment. The canonic forms produce
rather less noise than the direct forms. The use of block-floating-point
arithmetic brings a small, unpredicted reduction in the degree of error
variance. The normal look-up table form yields a further decrease, which
is larger than anticipated. Finally, the reduced~noise modification to
the look-up table realisation produces the lowest noise level and
excellent agreement between theory and practice. The direct and canonic
forms show a general trend towards a diminishing discrepancy between

experiment and theory as the signal wordlength is increased.

5.2,2,7 Second order lowpass filter.

The error variance measurements recorded for this filter are
presented in Figures 5.8(a) and (b) and Table 5.8. As predicted by the
theory, the canonic forms yield lower noise than their direct
equivalents. The use of block-floating-point rather than fixed-point
arithmetic in the direct form makes little difference to the resulting
error variance, despite the theoretical prediction of degraded
performance. The canonic form does, however, benefit from the employment
of block-floating-point arithmetic, and the results show much better
agreement between theory and experiment than is generally the case for
this arithmetic mode. For once the look-up table forms do not compare
favourably with other realisations; this is especially true of the
unmodified forms. This arises because of the need to rescale the filter
outputs by a factor of two, which degrades the error variance by a factor

of four. Despite this, the canonic realisation employing block-floating-
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Table 5.7 Error variance measurements,

Second order bandstop filter.

Realisation Wordlength (Bits).
4 5 6. 7 8
Direct, Rounding, 0.338 0.379 0.400 0.404 0.405
Fixed-point. * * * + *
0.002 0.002 0.002 0.002 0.002
Direct, Truncation, 0.375 0.385 0.389 0.403 0.408
Fixed-point. t + + + *
0.092 0.002 0.002 0.002 0.002
Canonic, Rounding, 0.439 0.338 0.339 G.358 0.373
Fixed-point, + + ot * +
0.002 0.002 0.002 0.002 0.002
Canonic, Truncation, 0.281 0.315 0.317 0.339 0.363
Fixed-point. + * * * *
0.002 0.002 0.002 0.002 0.002
Direct, Block- 0.311 0.363 0.386 0.388 0.388
floating-point, t * + + +
Experimental. 0.002 0.002 0.002 0.002 0.002
Theory. 0.46464 0.47777 0.47531 0.47431 0.47382
Canonic, Block- 0.328 0.304 0.307 0.333 0.349
floating-point, + 1 + + +
Experimental. 0.002 0.002 0.002 0.002 0.002
Theory. 0.38115 | 0.41100 | 0.40115 | 0.40036 | 0.39959
Look-up Table, 0.1778 0.1755 0.1793
Experimental. + * +
0.0008 0.0008 0.0008
Theory. 0.25203 | 0.25336 | 0.25402
Look—-up Table, 0.0841 0.0839 0.0847 0.0848 0.0851
Reduced-noise, + * + + +
Experimental. 0.0003 0.0003 0.0003 0.0003 0.0003
Theory. 0.0857!1 { 0.08395 | 0.08519 | 0.08492 { 0.08492
Theory: Direct, Fixed-point 0.42448
Canonic, Fixed-point 0.36775

fF
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Table 5.8 Error variance measurements.

Second order lowpass filter.

Realisation Wordlength (Bits).
4 5 6 7 8
Direct, Rounding, 0.689 0.607 0.635 0.587
Fixed-point. + * t *
0.005 0.004 0.004 0.003
Direct, Truncation, 0.756 0.604 0.559 0.563 0.554
Fixed-point, + * + + *
0.0G5 0.004 0.004 0.004 0.003
Canonic, Rounding, 0.534 0.509 0.511 0.497 0.471
Fixed-point, + + I + +
0.004 0.004 0.003 0.003 0.003
Canonic, Truncation, 0.311 0.374 0.398 0.435 0.453
Fixed-point., + + 4 + +
0.002 0.00z 0.002 0.002 0.003
Direct, Block- 0.590 0.553 0.594 0.540
floating-point, i + + +
Experimental. 0.004 0.004 0.004 0.004
Theory. 0.61892 | 0.62786 | 0,62652 | 0.62593
Canonic, Block- 0.369 0.415 0.411 0.381 0.369
floating-point, t + * + *
Experimental., 0.002 0.003 0.003 0.003 0.003
Theory. 0.46449 | 0.42397 | 0.42344 | 0.39899 | 0.39228
Look—up Table, 0.960 0.927 0.684 0.749 0.849
Experimental. E> + * + *
0.006 0.006 0.004 0.004 0.005
Theory. 1.2901 1.3181 1.3321 1.3392 1.3427
Look-up Table, 0.418 0.418 0.440 0.447
Reduced-noise, + + + *
Experimental. 0.002 0.002 0.002 0.003
Theory. 0.42198 | 0.42198 | 0.44012 0.44567
Theory: Direct, Fixed-point 0.56090
Canonic, Fixed-point 0.46446




point arithmetic is the only one to give less noise than the modified
look-up. table form, and the latter maintains its excellent correlation

with theoretical expectations.

5.2.2.8 Second order highpass filter. -

Figures 5.9(3) and (b) and Table 5.9 record the results obtained
for this filter, which theorctically has a response which is the mirror-
image of that for the lowpass filter considered in the previous
paragraph. In practice too the performances of the various realisations
bear a very high degree of similarity to those for the lowpass filter.
This is not true, however, for the look-up table forms; rescaling of the
filter output is no longer required, enabling these realisations to
produce low noise levels, especially those which have been modified for

the purpose.

5.2.3 Discussion of the experimental results.

Having noted the.experimental results in some detail it is now
necessary to discuss their general implications and hence decide what
conclusions may reasonably be drawn from them. The most significant
experimental finding is the generally large discrepancy between the
experimental results obtained and the theoretically predicted error
variances; this must be given careful consideration and explanation.
First, however, a few other points arising from the experimental results

should be discussed.

5.2.3.1 Block-floating-point arithmetic.

The results obtained when using block-floating-point arithmetic
. . . e 1 .
appear to contradict Oppenheim's own findings 6. The results just
reported do not contain a single instance where the use of this arithmetic

mode has caused a really significant noise reduction. Furthermore in
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Table 5.9 Error variance measurements.

Second order highpass filter,

Realisation Wordlength (Bits).
4 5 6 7 8
Direct, Rounding, 0.692 0.617 0.632 0.585
Fixed-point, + + + *
0.004 0.004 0.005 0.003
Direct, Truncation, 0.523 0.510 0.516 0.542 0.536
Fixed-point. * + + + +
0.003 0.003 0.003 0.003 0.004
Canonic, Rounding, 0.540 0.511 0.513 0.492 0.479
Fixed~-point. * + * * %
0.004 0.003 "0.003 0.003 0.003
Canonic, Truncation, 0.323 0.367 0.392 0.434 0.455
Fixed-point. + + + + *
0.002 0.002 0.003 0.002 0.003
Direct,” Block- 0.603 0.563 0.594 0.537
floating-point, + + + t
Experimental. 0.004 0.004 0.004 0.004
Theory. 0.63072 | 0.62794 | 0.62660 | 0.6260!
Canonic, Block- 0.376 0.418 0.409 0.387 0.373
floating-point, + + + + *
Experimental. 0.003 0.003 0.003 0.003 0.002
Theory. 0.46551 | 0.42506 | 0.42484 | 0.39946 | 0.39289
Look-up Table, 0.249 0.1647 0.225 0.247 0.314
Experimental. + * + * +
0.002 0.0008 0.002 0.002 0.002
Theory. 0.32252 | 0.32953 | 0.33304 | 0.33479 | 0.33566
Look-up Table, 0.1039 0.1056 0.1099 0.1116 0.1113
Reduced-noise, + + + + *
Experimental. 0.0005 0.0005 0.0005 0.0005 0.0006
Theory. 0.10549 0.10549 0.11003 0.11142 0.11174
Theory: Direct, Fixed-point 0.56090
Canonic, Fixed-point 0.46446




many of the cases tested the theory predicts a degradation in the
performance, although this never really materialises because of the
large discrepancies between theory and practice already noted. It is
important to consider firstly, why this arithmetic mode is so
ineffective, and secondly, why the theoretical predictions deviate so
markedly from the actual findings.

The ability of this arithmetic mode to yield reduced noise levels
depends on its scaling up of the signals within a filter to make fuller
use of the available signal wordlength. Equations (3.6.18), (3.6.21) and
(3.6.22) indicate that the predicted noise variance is approximately
proportional to k2, the mean squared rescaling factor at the filter
output. Oppenheim records values of k2 which range from 0.0137 cto 0.1162
for his first order filters, and from 0.00151 to 0.15527 for the second
order realisations. In contrast the k2 values for the results presented
above vary from 0.5742 to 0.7897 for the first order forms, and from
0.6337 to 0.9239 for the second order implementations., That is, much
higher levels of signal scaling were achieved within Oppenheim's filters
than was the case for those tested above, which explains the predicted
ineffectiveness of the arithmetic mode on these latter filters.

This marked discrepancy in the degree of signal scaling obtained
can be traced to two important differences between the sets of experiments.
The first is that Oppenheim tested filters which possessed only
multipliers to define pole positions; and the second that, to avoid
output signal overflow, he restricted the amplitude of the input white
noise sequences to 1/16 and 1/128 of that allowed by the available
wordlength for first and second order filters respectively. Presumably
this high degree of prescaling was found to be necessary in order to
accomodate high instantaneous signal levels in the output, Calculation
shows, however, that the r.m.s. output signal levels obtained from

Oppenheim's filters are generally very low and make exceedingly poor use
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of the available signal wordlength, so that the inherent signal to noise
ratio is relatively low. Hence plenty of scope is allowed for
significantly increasing the signal levels within the filter, and thus
achieving a high degree of noise reduction and a corresponding improvement,
in the signal to noise ratio. In comparison the filter designs presented
in Appendix 5 and the input amplitudes used are intended to result in
relatively high general signal levels which, for a given pole-zero map,
make the fullest use possible of the avaiiable register space, so that
the inherent signal to noise ratio is relatively high. There is,
therefore, little opportunity for increasing the general signal levels
within the filters, and thus reducing the' absolute noise level and
improving the signal to noise ratio.

The degree of signal scaling possible also depends on the number
of signals which have to be considered when determining the instantaneous
scaling factors, An; in general the larger the number of signals taken
into account, the smaller will be the mean scaling level obtained.
Oppenheim's first order filters consider two signals, the current input
and the delayed output, but the input amplitude is so restricted that
scaling is effectively only controlled by the delayed output sequence.
His second order filters consider three signals, the current input and
the two delayed outputs, but similarly this can be reduced by one. The
first order filters presented in Appendix 5 were designed to process
input sequences of the full amplitude allowed by the sigmal wordlength,
so scaling is controlled both by the input and by the delayed output
sequence. The addition of a zero—-section to the second order filters
requires that scaling be dependent on 5 signals for a direct realisation
and 3 for the canonic form. This is the second reason for the low levels
of signal scaling obtained.

Having discussed the theoretical performance of block-floating-

point arithmetic, the obvious lack of agreement between theory and
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practice needs to be considered. Again the low level of signal scaling
can be shown to be at the source of the problem, this time by causing
some parts of the equivalent noise models for block-floating-point
arithmetic filters to become invalid. (Figures 3.12 and 3.13 depict the
equivalent noise models.) The values of k2 obtained indicate that on thec
majority of occasions the instantaneous rescaling factor, I/An, is unity,
However, for a significant proportion.of the time, some 207 for a typical
k2 of 0.8, the factor is j}. Factors of less than | can be reasonably
assumed to occur with negligibie frequency. The model states that the
final scaling by I/An yields a roundoff error sequence with the usual
variance of oz, that is, 1/12 for A equal to unicy. If, however, l/An ic
unity, no roundoff occurs, and if it is } then an error is only incurred
if the sample being rescaled is ar odd integer. Hence roundoff probably
only occurs about 107 of the time, giving rise to a roundoff error
sequence with an approximate variance cf cnly 1/40., A low level of signal
scaling also has implications for the roundoff error sequences created
at the 6n multipliers in the filter pole-sections. Continuing the
assumption that the instantaneous scaling factor A.n only takes the values
] and 2, the dn multipliers can only have the magnitudes }, | and 2.
Roundoff can only occur when 6n is § and then only if the sample being
scaled is an odd integer. Again a value of 1/40 seems a reasonable
approximation for the variance of error sequences created at the Gn
multipliers. Such rough calculation is sufficient to demonstrate the
inadequacy of the model in situations where only a low level of signal
scaling can be obtained. It also indicates that there is good reason for
the noise levels practically achieved to be significantly less than
those predicted.

In conclusion, it seems reasonable to suggest that block-floating-
point arithmetic is not of great significance. Its effectiveness and

predictability depend too greatly on the level of signal scaling achieved
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within a filter, and this can only be roughly estimated before the filter
is actually implemented. Moreover, it is thought that filters and
conditions, such as Oppenheim's, which allow block-floating-point
arithmetic to yield a significant, predictable noise reduction, would
seldom be found in practice. For these reasons the consideration of this

arithmetic mode is carried no further in this work.

5.2.3.2 Look-up table forms.

One of the interesting fzatures of the results obtained for the
look-up table filter realisations is that the normal form as suggested
by Peled and Liu60 gives generally poor agreement between experiment ard
theory, whereas the results of the form modified to give a reduction in
noise correlate extremely well with the theoretical predictions. As
previously mentioned, this modification involves storing ¢ values in the
table which do not contain any roundoff error. This suggests that the
theoretical noise model for the unmodified look—-yp table realisation
does not adequately deal with the roundoff errors in the stored ¢ values.
Reference to §3.,7.1 indicates that these roundoff errors are taken to
yield an error sequence {e:} with the customary A2/12 variance. This is
not necessarily true, however, as demonstrated by the so-called reduced-
noise modification which is nothing more than a special case where {e;}
has zero variance. Some thought shows that the variance of this sequence
is dependent both on the set of ¥ values stored and on the relative
frequency with which each member of the set is accessed. Given the
condition of a random input sequence, it is reasonable to assume that
each table location has an equal probability of being addressed. This
allows the calculation of an error sequence variance for a particular
set of Y values, which should enhance the accuracy of the model,

No such problems arise, however, when using the reduced-noise

modification of the look-up table form., Such realisations yield
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consistently excellent results both in terms of low noise and of the
degree of theoretical agreement, The coefficient quantisation involved
in achieving this modified form should not be a problem in the majority
of applications; it is no more severe than the coefficient quantisation
which would normally be imposed in the practical- realisation cf a
conventional fi}ter form., The ease of hardware implementation
demonstrated by Peled and Liu60 is obviously unchanged foir the modified
form., Indeed the look-up tabie form is particularly well suited to
realisation on a small programmable device such as a microprocessor. For
all these reasons the reduced-noise modification of the look-up table

filter form is to be strongly recommended.

5.2.3.3 Uniform error distributiomn.

One of the main assumptions of the theoretical model is that all
roundoff error magritudes within the allowed limits have an equal
probability of occurrencezg. Hence when averaged over a long time the
error distribution obtained at any multiplier should be as shown in
Figure 3.4 for rounding and Figure 3.5 for truncation. If this is the
case, then the variance of the roundoff error about the mean is A2/12.
However, the previous two sections both consider situations where this
is not true so that the assumption of uniformly distributed roundoff
error sequences produces inaccurate theoretical predictions., It seems
reasonable, therefore, to try to discover whether this assumption is
likely to be at the root of the discrepancies obtained between experiment
and theory for the conventional fixed-point arithmetic direct and

canonic form filters.

5.3 Error variance at single multipliers.

It is necessary to return to the examination of roundoff error

sequences at single multipliers begun in the previous chapter, in order
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to discover whether or not uniform error distributions are achieved in a
practical situation. This may be done by measuring the variance of a

. . . 2 .
roundoff error sequence and conparing it with the A"/12 which would

result from a uniform distribution of errors.

5.3.1 The measurement of error variance.

The fundamental method is the two channel processing technique as
employed in the experiment represented in Figure 5.1, However, on this
occasion the two processing channels contain single multipliers as in
Chapter 4. It is desired to measure the error variance at a given
multiplier as a function of the input sequence awmplitude, as this will
show any effect of signal wordlength on the error distribution. As
before the input samples are to be unifeormly distributed within the
allowed amplitude limits. Because a single multiplier has no memory of
previous signals, unlike a filter, the particular ordering of the input
sequence 1is meaningless. Hence there is no need to use a random signal
generator. The input sequence used is in fact a positive integer ramp
from O to 127 in steps of one, thus examining wordlengths up to 8 bits
inclusive. As rounding is the only error process to be tested, there is
no need for the input ramp to go negative as this would duplicate
information, because of the symmetrical roundoff process. The zero sample
is given half the weight of the other ramp levels in order to gimulate a
uniformly distributed symmetrical input sequence. At each step of the
input ramp the accumulating roundoff is calculated and its variance
computed. Because the use of a ramp yields an absolutely uniformly
distributed input sequence, and because the ordering of the input
sequence has no effect on the measured error variance, there is nothing
to be gained from multiple runs of this experiment. The main program,

VARAMP, used to conduct this investigation is listed in Appendix 6.
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5.3.2 Results of error variance measurements.

The results of testing three 10-bit coefficients are presented
graphically in Figures 5.10 to 5.12. The three multipliers considered
are 11/1024, 111/1024, and 411/1024, that is, those also examined in the
previous chapter., The error variance values are again absolute and so
should be compared to the theoretical 1/12 (0.0833°) expected of
uniformly distributed roundoff error sequences.

The conclusions to be drawn from the results are threefold. First,
the error variance is seen to te dependent on the input amplitude in all
three cases. Second, the deviation of the results from 1/12 is
érogressively reduced with increaéing input amplitude. Finally, the
results for the smallest coefficient, shown_in Figure 5.10, show the
highest degree of variation from the ideal; this deviation decreases with
the successive increases of coefficient value. Because of the symmetrical
nature of the rounding process a coefficient (1-x) produces the same
error variance as a coefficient x, for a given input sequence. It may
therefore be concluded that the possible deviation of the error variance
from the ideal value increases as the coefficient approaches zero or
unity. This inference, however, takes no account of the possible effects

of variations in coefficient wordlength.,

5.3.3 Explanation of results.

Inspection of Figures 5.10 to 5.12 indicates that the points do
not deviate haphazardly from the ideal, but that for a given coefficient
there is a definite mechanism connecting the input sequence amplitude
and the error variance. The nature of this relationship must briefly
be considered.

If a two's complement signal sample is multiplied by a 10-bit
unsigned fraction, and the result rounded to the signal wordlength, then

0

a 10-bit error remains. Hence there are 2l (1024) discrete error levels
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within the permitted range of -A/2 to +A/2. If all these error levels
were to.be used once then a uniformly distributed input sequence with an
amplitude of 51! would be required, that is; the maximum amplitude
permissible for 10-bit signals. Hence for the wordlengths of 8 bits and
less being considered only a relatively small proportion of the error
levels are ever occupied. This does not inherently cause deviation of
the error variance from A2/12; it is the distribution of the magnitudes
of the occupied error levels which is all important. If all the occupied
error levels are of relatively low magnitude then the roundoff error
variance will also be low, and vice versa.

Figure 5.13 presents the error functions for two of the coefficient
values tested, 11/1024, and 111/1024, The magnitudes of the discrete
error levels are found by sampling the curves at integral values of
input level, Figure 5.13(a), for the coefficient 11/1024, shows the
error level magnitude rising from zero as the input level is increased
in the region 0 to 46. Hence the error variance, as shown in Figure 5.10,
also rises prngressively above zero with the input amplitude over this
range. After the discontinuity in the error function, at a theoretical
input of 512/11 (just over 46), error magnitudes start to decrease, but
the error variance does not begin to drop until the squared magnitude of
the roundoff error falls below the current variance, which occurs at an
input amplitude of 65. For input samples in excess of 93 the error
magnitude once more begins to increase, which eventually causes the
error variance to start rising again at an input amplitude of 120. With
each increment in the input sequence amplitude comes the occupation of a
new error level, This has the effect of damping the oscillation of the
error variance so that it converges towards the ideal with increasing
input amplitude. Figure 5.13(b) is the error function for the coefficient
111/1024, (Note that the input level scale is different from Figure

5.13(a)). This has the same basic features, but differs in what may be
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termed its 'periodicity', which for a coefficient value |x| ¢ } may be
defined to be I/x, Figure 5.11 shows the increased rate of oscillation
of the error variance which arises from the decreased periodicity of the
error function of Figure 5.13(b). Not only is the rate of cscillation
affected, but its initial amplitude is also reduced. Hence the error
variance comes within a given tolerance about the ideal at a lower input
amplitude than Qith the smaller multiplier value, Figure 5.12, for the
coefficient value 411/1024, demonstrates the progression of these trends.
The particular shapes, however, of Figure 5.10 to 5.12 are not of
great significance., Their purpose is to demonstrate that the error
variance can deviate widely from the ideal, and to indicate the effects
of coefficient value and signal wordlength. The important conclusion is
that the error variance at a singie multiplier cannot safely be
considered to be a constant. Moreover it should be clear that in
choosing to test with uniformly distributed inpuc sequences, one
particular case has been selected from the infinite number of
possibilities., In general, the error variance at a given multiplier is a
function of the amplitude distribution of thé samples in its input
sequence. If this is known, however, because of the one to one
relationship between an input sample and an error level, the error

variance can be determined.

5.4 Conclusions.

Throughout this chapter conclusions drawn fromn the experimental
results have been noted. However, it is useful to collect these together
here in summary.

First, with regard to the effectiveness of block-floating-point
arithmetic]6, the results indicate that only under certain conditions,
for example those considered by Oppenheim, is there a significant and

predictable noise reduction. In general, however, this arithmetic mode
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does not significantly diminish the absolute noise level, neither does
it behave in the manner that the theoretical model assumes. This
arithmetic mode is seldom likely to prove advantageous and because of
the difficulty of accurately predicting its effectiveness it is not
recommended for use. -

Second, the usefulness of the look-up table filter form as
suggested by Peled and Liu60 is demonstrated. The value of modifying
this form as previously proposed is also clearly indicated. This
modification yields both a uscful increase in the signal to noise ratio
and a very high degree of agreement between experiment and theory. It
is therefore worthy of some attention.

Finally, considering the direct and canonic fixed-point arithmetic
filter forms, relatively large discrepancies between the experimental
results and the theoretical predictions are seen to be general. The
measurements of error variance at a single multiplier indicate that the
assumption of uniform error distributionszg, fundamental to the
theoretical model, itz not justifiable at the signal wordlengths under
examination. As the error variance at a multiplier is seen to be
dependent on the amglitude distribution of the multiplier input sequence,
a more accurate theoretical prediction should be permitted if these
distributions can be determined and taken into account. The next chapter

begins by examining this possibility.
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CHAPTER 6 - PREDICTIVE NOISE MODELS.

6.1 Introduction.

The results reported in the previous chapter demonstrated the
deficiencies of the predictive noise model as originally proposed by
Knowles and Edwardszg, even under random signal conditions. In particular
the weakness oflthe assumption of a uniform distribution of roundoff
errors at each multiplier was shown. This chapter begins by considering
and applying methods of predicting actual error distributions, again
taking the random input sequence case, thus permitting the development
of a more sophisticated noise model. Attention is restricted to what may
be called distinct multiplier filter forms, as opposed to the look-up

table realisation; fixed-point arithmetic is the only mode considered.

6.2 Error distribution prediction.

The unique correspondence between an input sample and an error
level at a given multiplier allows the distribution of errors to be
calculated easily once a prediction is made of the likely amplitude
distribution of the input sequence. It should be clear that any attempt
to predict the amplitude distributions of the input sequences to all the
multipliers of a filter must involve some kind of assumption about the
amplitude distribution of the input sequence to the filter. The nature
of such an assumption must properly depend on the signal characteristics
expected in a given application., Likely input signals may, in general,
be classified into two categories, those with a uniform amplitude
distribution, and those with a Gaussian distribution. The models tested
in this chapter assume uniformly distributed input sequences, but the

modification required to accomodate any given distribution is simple.
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6.2.1 A model for first order filters.

The general difference equation for an ideal digital filter is

m

k
y_ = Z aj.x . - izl by s (6.2.1)

This indicates that the current output Y, is dependent on the current
and delayed input samples and on the delayed output samples. For a first
order filter, however, the current output Y is formed only from the

current input X and the delayed output Y- This delayed output is

itself a function of x (and of course yn—Z)’ but as {xn} is taken to

n—1
be a random sequence, X and Yo-1 should be statistically independent.
Such independence of the samples from which.the current filter output is
| formed is unique to the first order case and leads to a method of
predicting signal amplitude distributions which is not applicable to
higher order filters.

If X and Y,-1 are independent, and if given values of X, and Y-

have probabilities of occurrence Oy and py respectively, then the
probability of the particular value of Yo being formed from these signal
samples is px.py. In a practical filter a given value of y, may be
formed from a finite number of combinaticns of X and Y1 values. Hence
for a given output level y, an equation can be set up which states that
the probability of the given Yo is the sum of a number of joint
probability terms each referring to a particular combination of X and

Y1 from which the given y, may be formed. Such an equation can be

written for each of the allowed output levels, that is, in general,

o. = Y Y Co_ «p. ) (6.2.2)
m

where py is the probability of occurrence of output level i, and Py is
i m
the probability of input level m. The summation is not performed over

81




all allowed values of m and k, but only those which give rise to the
output level i.

At this stage the need to make an assumption about the distribution
of the input sequence {xn} becomes clear. Once {xn} has been accredited
with a particular distribution, the terms p, can be given acctual values.
Hence the only unknowns in equation (6.2.2) Zre the py's. If there are N
allowed output levels then N equations of the form of (6.2.2) can be
written down for i=] to N; these constitute N simultaneous equations
rélating the N variables p cee py . This set of simultaneous equations

1 N
is unsuitable, however, because no constant term appears. That is, in

the general matrix formulation of simultaneous equations
Ax = b (6.2.3)

where A is the coefficient matrix, zlis the coiumn vector of the
variables, and b is the column vector of the constants, b consists only
of zeros. This can be remedied by replacing one of the N equations of
the form of (6.2.2) by the equation which states that the probabilities

of all the permitted output levels must sum to unity:
N
z p = ] (6.2.4)

Hence the column vector b now contains the single constant unity in
addition to (N-1) zeros, and the simultaneous equations (6.2.3) can be
solved.

The probability values py] tee pyN which result from this solution

constitute a definition of the amplitude distribution of the filter

output sequence {yn} and therefore also of the input sequence {yn_ } to

1
the multiplier bl' Once the amplitude distributions of the input

sequences at both filter multipliers have been predicted, the calculation
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of the error distributions and resulting noise variances at each
multiplier can easily proceed. The normal assumption that the error
sequences at separate multipliers are statistically independent is
retained, so the two error variances are summed to give the variance of
the equivalent input error sequence. Whereas the simple model ctates
that this sequence will have a variance of 2.(A2/12), the solution of
the simultaneous equations permits a more accurate prediction of this
variance for a given filter and input sequence amplitude distribution.
The results of testing this model development are presented later in
this chapter.

6.2,2 Models for higher order filters.

The prediction of signal amplitude distributions in higher order
filters is much more complicated. Taking the example of a second order

direct filter realisation, Y, is a function of X X and

-1* *p-2* Yn-1

Yp-23 Yp-q 18 2 function of X

~1® ¥pp andy o5 andy _, is a function

of X o Clearly with such a degree of statistical interrelationship a
method using simultaneous probability equations is out of the question.
It is not at all obvious whether, given a random input sequence
{xn} with a particular amplitude distribution, there is a unique
amplitude distribution for the corresponding output sequence {yn}. Indeed
the statistical interdependence just mentioned gives theoretical reason
to expect that the amplitude distribution of {yn} should be dependent on
the ordering of {xn} right from n=0, and also on the initial values
given to X —1° ¥p=2° Ypi and Yn-2 at n=0, How strong such dependence
might prove to be in practice is not certain. The current filter output
sample is much less dependent on the input and output samples at some
considerably earlier stage in the sequences than on the most recent
samples. This suggests that in practice, given sequences of sufficient

length, the amplitude distribution of the output sequence should be
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essentially independent of the initial conditions. By the same kind of
argument, the dependence of the output sequence amplitude distribution
on the ordering of the input sequence might be expected to diminish
with increasing sequence length, so that it would converge to a shape
dictated only by the amplitude distribution of the input sequence.

If it can be demonstrated in the future that the output sequence
{yn} of a given second or higher order filter has a unique amplitude
distribution for a random input sequence with a particular distribution,
then the search for a method by which this may be predicted will be
both justified and feasible. In the meantime it is possible to suggest
some developmants to the standard model which should result in more
accurate noise predictions. )

As stated in the previous chapter. given a 10-bit coefficient, a
uniformly distributed input sequence with an amplitude of 51! is
required for all the error levels to be used with equal frequency, and-
this cannot be true for signal wordlengths of 9 bits and less. It would
seem reasonable to suggest, therefore, as a first stage of improvement,
that the allowed signal amplitude be taken into consideration. In this
case the roundoff errors may be assumed to be uniformly distributed
among those error levels which can be occupied, so that each allowed
output level must be assumed to have an equal probability of occurrence.
As mentioned previously, the filter designs presented in Appendix 5
have theoretical gains just less than unity at their respective
frequencies of maximum response. In consequence the output sequences
from these filters have smaller variances than their corresponding random
input sequences. During the investigation reported in Chapter 5, however,
many of the output sequences obtained were found to have higher
amplitudes than their uniformly distributed input sequences. This
combination of a decrease in variance and an increase in amplitude can

only be explained if the output sequences do not have uniform amplitude

84




distributions, The indication is that low magnitude output samples have

a greater probability of occurrence than high magnitude samples. This
suggests that it could be helpful to assume that a filter output sequence
has a Gaussian amplitude distribution with a variance equal to that
theoretically expected of the output sequence. In general, for a random

. . . 2 . 2. ,
input sequence with variance Oy the output variance oy is given by

=1
(
2o g2 H(z).01(z ) .dz

1
y x " 2my z
|z]=1

(6.2.5)

Obviously the distribution cannot be purely Gaussian as this theoretically
has finite probabilities for all deviations up to infinity. However, the
inaccuracy involved in neglecting the area under the tail of the Gaussian
is almost certainly less than that incurred in making the assumption of

a uniformly distributed output sequence. Whether or not the existence of

a unique output sequence amplitude discribution can be demonstrated, it

is suggested that the assumption of an appropriate Gaussian distribution

can only improve the model accuracy.

6.2.3 Testing the model for first order filters.

The model development outlined in §6.2.] needs to be tested
experimentally to see whether or not its employment produces the
agreement between theory and practice which the simple model lacks.
Experimental error variance measurements are obtained by the method
described in the previous chapter. Once more the signal wordlength range
of 4 to 8 bits is under consideration. In the experiments recorded
previously in this work effects have been found which depend in some way
on the multiplier value involved. In order to detect any such effect in
this investigation, first order highpass filters have been designed to
use the whole range of possible coefficients. That is, the radius of the
is

filter pole location in the z-plane, equal to the coefficient bl’
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varied systematically within the limits O to 1. The theoretical maximum
gain of a first order highpass filter, at the Nyquist frequency, is
given by

i)
G = Ty ] (6.2.6)

This is made unity by setting a, equal to (l-b]) for all the filter

0
realisations tested in this chapter, As before the coefficient values
selected all require 10 bits {or representation,

If both the filter input sequence and the roundoff preccess are
symmetrical, then the number of simultaneous equations which have to he
solved, to give the predicted amplitude distribution of the output
sequence, can be halved. In other words, there is no need to set up
equations for both positive and ‘megative output levels. Because the
computer time and space required to {formulate and solve the simultaneous
equations is basically proportional to the square of their number, this
represents a considerable saving. For example, when calculating the
predicted noise variance for an 8-bit signal wordlength filter, the
computer memory allocation required for tne coefficient matrix of the
simultaneous equations is reduced from 64k to 16k 32-bit words. For this
reason only filters using the symmetrical rounding process are tested.
This should not, however, be taken to imply that there is any difficulty
in implementing the model when the asymmetrical truncation process is
employed, apart from the quantity of computer memory required; time is
not a problem as the IBM 370/168 takes about | second of CPU time to
return the predicted noise variance.

The subroutine SIMQ used for solving the simultaneous equations
does not differ significantly from the IBM supplied subroutine of the
same name., The algorithm employed is a standard successive elimination

method; all calculation is performed in 32-bit floating-point arithmetic.
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SETA is the subroutine which sets up the initial coefficient matrix A of
equation (6.2.3). The algorithm involves considering all the possible

combinations of X and Y- values which yield a given value of Yo

)
determining the probability of occurrence of the particular combination,
and appropriately modifying the coefficient in the correct location of
the matrix A. These two are the most important of several subroutines

called by the main program AMPMOD during the execution of a noise

variance prediction; all are listed in Appendix 6.

6.2.4 Experimental results.

The resuits of the investigation are presented in Figures 6.1 to
6.5, that is, one graph for each wordlength _ under consideration. The
figures are plots of the deviaticn of the measured error variance from
the predicted value for different filter responses., The asterisks refer
to the predictions of the simple uniform error distribution model,
whereas the triangles correspond to the more sophisticated model. Note
that the scale of the x—axes changes at a pole radius of 0.8. The
deviation of the experimental error variance from the model predictions

as plotted in decibels is defined as

2
C..

SN = 10.1og]0-“2- dB (6.2.7)
9p

2 . . . 2
where o_ is the experimental error variance and o

E P is the value predicted

by the particular model. Standard errors were measured for all the mean
experimental values of roundoff error variance but these are not
presented; error bars would have an insignificant separation compared
with the size of the symbols used on the graphs.

Figures 6.1 to 6.5 indicate that the use of the more sophisticated
noise model, rather surprisingly, has little or no effect on the

predicted values of noise variance. The graphs for 6-, 7-, and 8-bit
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signal wordlengths show more difference between the two models, but
neither, is consistently better .than the other. Moreover, the experimental
results are seen to deviate by up to 20dB from the model predictions.

The results shown in Figure 6.5 for the 8-bit signal wordlength filters
most clearly demonstrate the manner in which the deviation varies with

the filter pole radius. For pole radii below 0.95 there is good agreement
between the predictions of either model and the experimental results.
However, above this pole radius the deviation rises sharply to about 20dB.
With successive decreases of wordlength the pole radius at which the
deviation begins to rise significantly above 0dB becomes diminished,

énd for a given pole radius the deviation decreases with increasing

signal wordlength, Filters with a pole radius close to unity rcquire a
coefficient a, correspondingly near to zero, but as the signal wordlength,
and therefore the filter input amplitude, is decreased, there is a

growing tendency for the output sequence from the multiplier a, to

0
consist only of zeros, rendering the results meaningless. Hence the
maximum pole radius for which results are presented falls from 0.99 for
an 8-bit signal wordlength to 0.92 in the 4-bit case.

It is unfortunate that the large deviations from theory should
occur for filters with a pole very close to the unit circle in the
z-plane as these are often the most useful in practice because of the
high degree of rejection of unwanted frequencies which they yield. It is
important, therefore, to seek to understand what is causing the observed
deviation from the theoretically predicted performance. As a first stage
in this investigation, the practical variances of the equivalent input
error sequences were checked against the values predicted by the modified
noise model. The agreement here was extremely good for all wordlengths
and pole radii, indicating, firstly, the statistical independence of the
roundoff error samples created at multipliers a, and bl which are summed

0

in the theoretical model to form the equivalent input error sequence,
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and secondly, that the simultaneous equations accurately yield the
amplitude distribution of the filter output sequence. Consequently such
input error sequences must experience, on filtering, a variance gain

which deviates from that predicted by the theoretical models.

6.3 Correlation effects.

The autocorrelation function of a sequence {en} may be defined as

R (1) =E(Ce .e . )/02

(6.3.1)

: . e 2 . .

where E( ) indicates the mean, and g, is the variance of {en}. If the

sequence {en} is truly random then its autocorrelation function is unity

for i=0 and zero for all other i. If, however, it is not truly random

then the autocorrelation function takes on finite values when the lag i

is not zero. The equation relating the variance of the equivalent input
2

error sequence o

g

direct filter, usually written

. 2 . .
to the output error variance on is, for a first order

oi = 025;—3 f dz_] (6.3.2)
|z|=l B(z).B(z ).z
where
- -1

Bz ) = (1 +bz ') (6.3.3)
This can be evaluated to give

ol = 2| —1 (6.3.4)

nooEL -2

) 1

However equation (6.3.2) is a simplification of a more general equation

SE(z).dz

= (6.3.5)
B(z).B(z ).z




where Sg(z) is termed the power spectral density of the equivalent input
error sequence. It is related to the autocorrelation function of the

sequence by the equation

L R ()2 (6.3.6)

™ N

SE(Z) =g

that is, by a transformation from the time-domain to the z-domain. If
the autocorrelation function is zero for i#0, then the power spectral
density is simply a constant egual to the variance 02. Hence in such a
case of a truly random equivalent input error sequence equation (6,3.5)
simplifies to equation (6.3.2). However, when a non~random sequence is
being treated equation (6.3.5) must be used:

The results recorded in the previous section indicate that in some
circumstances equivalent input error sequences do not experience a
variance gain of 1/(1-b?) on filtering. This demonstrates that in such
cases the use of the simplified equation (6.3.2) is not justified, which
in turn means that the error sequences do not have autocorrelation
functions which go to zero for all finite lags i. That is, they are not
truly random. The remainder of this chapter is devoted to an investigation

of how a non-random input error sequence can arise and what may be done

to take account of such an effect in a predictive model.

6.3.1 Signal to error correlation at a single multiplier.

If the input signal to a filter is taken to be a random sequence
. . 2 . . . .
with variance cx then the ideal autocorrelation function of the filter

output sequence is given by

2

R (i) = Txf. 1 . H(z).H(z" ") 2714z 6.3.7)

yy 2 2‘"'j z [ ] L] [ ] . .
%y |2=1

. 2, .
where the variance of the output sequence oy is given by
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2 2 -1, -1
g = ox'an H(z).H(z ).z .dz (6.3.8)

Izl=l
The important point of equation (6.3.7) is that although the filter
input sequence is random, the output sequence is not, Hence 1if there
were any mechanism by whick the roundoff error at the coefficient bl
could be correlated to the filter output sequence, this error sequence
would also be non-random. This would result in the non-randcmness of the
equivalent input error sequence and hence explain the experimental
results., In the absence of any other obvious explanation it is convenient
to proceed on the assumption that such correlation exists and to

examine what can be done about it.

6.3.1.1 Achieving zero correlation.

At first sight the only way of taking such signal to error
correlation into account in a predictive model might seem to be by
incorporating the evaluation of equations (6.3.5) and (6.3.6). In
addition to the mathematical complexity of such a calculation, it is not
at all clear how the autocorrelation function of the equivalent input
error sequence could be predicted., In the light of these difficulties it
seems wise to seek an alternmative solution to the problem.

Consider the sample X; of an input sequence {xn} to the multiplier
a; the ideal output is ¥; but when this is rounded y{ is produced and a

roundoff error e is created. That is,

= g.X., + e, (6.3.9)

The correlation coefficient r between {xn} and {en} is defined as

E( X;.e. )

r = L7 (6.3.10)
g .0
X €
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where the mean is taken over the entire length of the sequences. Making

the definition

t
r = o ¢ [ L] .
z ( X; . ) (6.3.11)
i
it can be seen that zero correlation is only achieved when r' is zero.

Using equation (6.3.9) it is possible to rewrite equation (6.3.11)

| - Vo A K
r' = z xi( ' G X, ) (6.3.12)
i
Regarding r' as a function of o alone, and differentiating with respeoct

to o, yields
-1
e __y xi (6.3.13)
i

By postulating a change in the theoretical coefficient value the
correlation coefficient may be reduced to zero. The coefficient value

must be modified to a+da, where

~-!

ar’y 2
o E €%

g ( x;.e. )

(6.3.14)

Hence, for a given practical multiplier a, calculation of Sua requires
only the knowledge of the amplitude distribution of the input sequence
{xn}. Such information can be made available in a predictive model for a
first order filter by the solution of simultaneous equations as described
previously. Therefore by using equation (6.3.14) it is possible to predict
the modified theoretical values of the coefficlents a, and b1 required
to give zero signal to error correlation at the two multipliers.

It must be understood that no change in the practical filter

coefficients or actual signal sequences is involved in the proposed
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modification for zero correlation. By altering the theoretical
coefficients the ideal filter response is redefined. Because the
practical signal sequences remain unaltered the roundoff error
sequences become modified; it is this modification which allows zero
correlation to be achieved. The redefined ideal.filter response is
dictated by the amplitude distribution of the filter input sequence; the
ordering of the sequence is insignificant.

Once the required thecoretical coefficient modifications have been
predicted it is a simple matter to calculate the variances of the
redefined roundoff error sequences at a. and b

0 1’

equivalent input error variance, and finally to compute the output error

sum them to give the

variance using the simplified equation (6.3.4) employing the modified

theoretical value of bl'

6.3.1.2 Sign-magnitude truncation.

The sign-magnitude truncation roundoff process was described in
Chapter 3, and the fact that it causes a significant degree of signal to
error correlation was noted. It has not been used in any of the
experimental work sc far, because the simple noise model is clearly not
applicable. Liu and Van Valkenburg52 have presented a noise model which
takes the particular form of signal to error correlation into account,
but the mathematical difficulty in so doing is very great. It would
appear that the accurate prediction of noise by their model not only
requires the knowledge of sequence amplitude distributions but also of
their precise ordering; it is not clear how this information may be
obtained. It is possible to simplify the mathematics slightly and
calculate a bound on the error variance. This calculation has the
advantage of not requiring data on sequence orders. However, Liu and Van
Valkenburg admit that this bound is rather too loose to be of any great

predictive value,
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It should be clear that the method described in the previous
section for achieving zero signal to error correlacion is also applicable
to filters employing sign-magnitude truncation. Not only does this
approach lead to a much simpler prediction and description of the
practical behaviour of a filter, it can also be argued that the
description is more precisc because the error sequence at the filter
output is statistically independent of the output signal, whereas this
is not true when signal to error correlation is present at the

multipliers.

6.3.1.3 Testing the zero correlation model.

The desirability of applying the zero.correlation modification to
the filters tested earlier in this chapter is obvious. It is clearly
necessary to see whether the predictioﬂs of a noise model incorporating
the postulated alterations to the theoretical filter coefficients do
indeed come into agreement with the measured output error variances.
Moreover, at this stage the existence of signal to error correlation in
filters employing rounding has not been directly proved, but merely
assumed as the only obvious explanation for the results reported
previously. If, however, it can be shown that the theoretical filter
coefficients do require modification according to equation (6.3.14), the
original existence of signal to error correlation will be proved. In
order to demonstrate the applicability of the technique to sign-magnitude
truncation, filters using this roundoff method are tested in addition to
those employing rounding.

The application of the zero correlation modifications makes the
practical measurement of error variance a little more complicated than
usual. Basically each 1024 sample input sequence has to be processed
twice., During the first time the roundoff errors at each multiplier are

calculated relative to the ideal filter response defined by the

94




unmodified coefficients; the rerms required by equation (6.3.14) for
calculating the required coefficient modifications are also determined.
These coefficient modifications are then evaluated and the ideal filter
response thus redefined. The second time, the variance of the output
error sequence with respect to the redefined ideal response is computed.
The mean of 100 variance results is recorded as usual along with the
standard error. In addition, the means of the 100 values of the modified
theoretical coefficients ag and bl are recorded with their standard
errors. This permits a comparison with the modified theoretical
coefficient values predicted by the model and also gives some idea of
the variation of the degree of signal to error correlation from run to
run, ZCDIRI is the subroutine, called by the main program EXEC, which
both performs the filtering and measures the above mentioned parameters.
ZCMOD is the main program which yields the model predictions. This
algorithm is virtually identical to AMPMOD, described in the first part
of this chapter, but it has the additional capability of calculating and

using the modified theoretical coefficients.,

6.3.1.4 Presentation of results for first order filters.

The results of this experiment are shown in Figures 6.6 to 6.10;
again each graph refers to one of the signal wordlengths under
consideration. Instead of plotting the deviation of the measured output
error variance from the predicted value, as before, the deviation of the
observed noise variance gain from that theoretically anticipated is
recorded. This has the advantage of taking account of any inaccuracy in
the prediction of the variance of the equivalent input error sequence. In
fact, the observed values are in very close agreement with those
predicted. The pole radius attributed to a particular practical filter
is that defined by the theoretical value of b1 as modified for zero

signal to error correlation. There is no problem in doing this as

95




snipel afod

"1 $6°0 6°0 68°0 8°0 9°0 %0 ¢°0 0°0
H — f “ i " —+ t
' v
1 A+
“ v
_ v v x
m
! v ¥
m * +
: *
* #
*®
. < 4
@
v *uorjedunay apnjTudew-uldlg -+
v
*3utpunoy v
*s31q % = yiBuaipioM “u0OTIET91I0D 013z I0J PITIIIPOW SIJUSTIDTIFV0)
*SUOT]IOTPald JopoW WOlJ UTBe 9STOU TBIUSWIASAXS JO UOTIBIASQ 9°Q 2an3TJ L

<’0

~r
o

O
0
(o]

(gp) uo1je1asQ




sNIpel 9104

0° 1 §6°0 6°0 G8°'0 8°0 ouo quo Nuo 0°0 _,
h T T — “ w 2 LT b T x4 v T < o O O
“ v Ao v v v M '
(A4 ¥
m vow X . v
| K Kox ®
“ x %
! #€
; * +S°0
H
w ' +0°1
ﬂﬂ
*
w o |Im-—
A_q
v v ow
*uorjeduniy opnitudew-uldIS 1oz
*3utpunoy ¢
*S31q 6 = y3BuaIpIoM “UOTIRIIAIOD 013Z I0J POTFIPOW SIUITIDTIIL0)D
*SU0T30TPaad [opow WOII Uled aSIouU TBIUWTIBAXD JO UOTIBIASQ (°Q 3AnTd1g L6z

(8p) uOTILTASQ




snipea aJod
(V| $6°0 6°0 680 8 9°0 %70 <0 0°0,..
i T T v ¥ < mqm LT AT T N v v Tt wﬂIITOO
, : < y S % % % % X x ¥ v
¥ m w * *7 X
i x
H
v L% 101
"
v
() ) llO.wa
<
[ Tl'.
o
< c.
o
w B |
- . &
T0 Mm_ 7
‘uotieduniy apnitudew-uldig 10y
*3utpunoy v
*S31q 9 = Y33ua[paoM ‘UOTIRT9I10D 019z 10J PITITPOW SJUITIIIIS0)H
"SuOT3IDTpaad [3poW WOIJ UTBS SSTOU [BIUSWIISAX® JO UOTIBTIASQ §°9 °2iN81J

-~0°¢




snipea 910d

$6°0 €°0 68 0 870 9°0 %°0 z°0 0°0
1 ] 1 ! | 4 . .
1 %y ! 15 AT 4.@‘1.1[.,« v \fﬂ n.km = w7 A.._.n«. T v 7 nﬁl-ﬂ.. T < < % 1 ¥ ~ tx wmﬂ\_ ‘IO O
v T “ w K H g XK e e Mo o x X X
v ) * A"
R
]
. * O ow
*
“ +0°1
]
*
ﬂﬂn
) +0'CY%’
<
e
o
=X
| ol
o
=
g
[V
v +0°e&
nﬂq
*uoIljedunay Ipnirudew~udig y 40
*3utpunoy v
*s31q £ = y3iBusIpaoy ‘uOTIP[DI10D 013z I0J PITIIPOW SJUITDTIF20)
*SUOTIOIpPaid T9pow WOIJ UIRE ISTOU [RIUAWIISAXD JO UOTIBTIADQ 6°9 2an3Tg 410°¢




snipel a10d

0°1 $6°0 6°0 68°0 8°0 9°0 7°0 2°0 - b.oo.o
i =T ﬂdeﬂﬂﬂ.ﬂ-fﬂrﬂ\.QQ.‘hqemit J((1<ﬂ1_ﬂ4¢<{_(1Jm< @A
v v . .
)
X m Lot
X % .
*
*
- . +0°¢C
+0°¢
‘uoiledunay 9pnlTudew-uldiIg 10y
*8urpunocy y
v v ’
*$311q g = y33ua[pioy ‘UOTIPTSI10D 019z 10J PITIIPOW SIUIIDTFF30)
*SU0TIOTpaad Tspow WOl UTed SSTOU [EBIUSWTIAAXS JO UOTIBIASQ ([ 9 °aN31d i0°S
v

(dp) uorieTAY(




extremely good agreement is found between the values predicted by the
model for the modified coefficients and those obtained in practice. The
variation in these experimentally determined values from run to run, as
indicated by the standard errors in the means, is found to be
insignificantly small, The symbols on these graphs do not have the samc
meaning as in Figures 6.1 to 6.5, This time the triangles refer to
filter realisagions employing rounding, while the asterisks indicate the
use of sign—-magnitude truncation. As usual 2rror bars would be very small
and are omitted for clarity.

Although it is not made absolutely clear in the presentation of
the results, careful comparison of these graphs with those for the
previous experiment shows that the coefficient values b] are indeed
modified to achieve zero signal to error correlation; in fact, this is
also true for the a, coefficients. As the signal wordlength is decreased
so the theoretical coefficient modifications become greater. This proves
that signal to error correlation is normally present in these filters
and that such correlation grows strenger with reduced wordlength., An
absence of results is to be noted for filters with a high pole radius
which use sign-magnitude truncation; this increasingly becomes the case
as the wordlength is shortened. This is partly caused, as mentioned

before, by the tendency for small values of a, to become effectively

0
zero in practice, and partly by the fact that for sign-magnitude
truncation the application of the zero correlation modification must
always result in theoretical coefficients of reduced magnitude.

Figures 6.6 to 6.10 show that the application of the theoretical
coefficient modification to achieve zero signal to error correlation
permits a significant improvement in the accuracy of noise predictions.
For example, the deviation recorded for an 8-bit wordlength filter

employing rounding and with a pole radius of 0.98 is reduced from 18dB to

5dB. However, the equivalent input error sequences still do not experience
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the variance gain expected of pure noise, as defined by equation (6.3.2).

6.3.1.5 Discussion of results,

By the same argument as was used before, in a case where an
equivalent input error sequence does not experience a variance gain as
predicted by equation (6.3.2), it must be concluded that the sequence
has an autocorrelation function which does not go to zero for all finite
values of the lag i.

Once again it is suspecied that the problem may have its source at

the multiplication of the delayed filter output Y- by the coefficient

1
bl' For ease of notation, let the sequence {yn—l] be renamed {vn}. The
autocorrelation function of {vn} is identical to that of the filter output
{yn} which, as previously shown, has finite terms for non-zero lags 1i.

If {en} is the roundoff error sequence created at bl then, when the
theoretical modification to bI is applied, there is zero correlation
between {en} and {vn}. However, it is quite possible for {en} to be
correlated with {vn_]}.or {vn_z} and so on. For example, {Vn—l} may be
analysed into two component Sequences {un_l} and {wn-l}' {un-l} is taken
to be perfectly correlated with {vn}, while {wn_]} is completely
independent of {vn}. {en} could be perfectly correlated with {wn_l}, and
so be partially correlated with {vn—l} and still have zero correlation
with {vn}. The sequence {wn-l} may reasonably be supposed to have an
autocorrelation function which does not go to zero for all non-zero lags.,

),

The cross—-correlation function between {e } and {w }, ECe ..w

n n-1 n—-i" n-l
therefore has finite values even when i is not equal to zero. In
consequence the roundoff error sequence {en} has an autocorrelation
function which is not zero at all finite lags, that is, {en} is not a
random sequence, This in turn has the effect of making the equivalent

input error sequence non-random, and the use of equation (6.3.2) strictly

invalid.
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The above paragraph demonstrates the theoretical possibility of
obtaining a non-random roundoff error sequence even when the main signal
to error correlation has been reduced to zero. Having used the coefficient
modification technique to reduce the correlation of {en} with {vn} to
zero, it is not possible to apply the technique.a second time to remove
subsidiary correlations such as perhaps {en} with {vn_]}. This possibly
indicates that the reduction of E( e eV ) to zero reprecents the most
that can be done to bring the predicted behaviour of a filter into
agrecment with that obtained in practice. On the other hand, a method
may be found of modifying the theoretical filter coefficients according
to some diffefent relationship from equation (6.3.14), in such a way
that the randommess of {en} is optimised. As stated, this is ail
speculation and there is obviously great scope for more work to be done
before the roundoff processes can be more fully understood and bpetter

theoretical predictive models produced.

6.3.2 Correlation between error sequences in higher order filters.

A very recent paper by Parker and Girard77 demonstrates that
correlations can arise between the roundoff error sequences at various
points in the structure of a filter.

Consider the second order canonic filter structure as depicted in
Figure 3.9. Parker and Girard show that when the same sequence is
multiplied by two coefficients, the roundoff error sequences at the two
multipliers may be partially correlated. So in Figure 3.9 {sz,n} and

}

{64,n} may be correlated, as may {EB,n} and {ES,n}' Furthermore {EZ,n

and {54 n} may both be correlated with {s] n-l}’ and by the same argument
1] 3

the following pairs of roundoff error sequences may also have non-zero

correlation coefficients: {63,n} and {sl,n—Z}’ {ES,n} and {El,n-Z}’

{EB,n} and {EZ,n-l]’ {63,n} and {64,n—l}’ {es,n} and {EZ,n—l}’ and

finally {es n} and {54 n-l}' Note that these are not the signal to error
»
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correlations at a single multiplier treated previously in this chapter,
It is also important to realise that such correlations cannot occur in a

first order filter as the two multipliers a. and b] can never process the

0

same signal sequence.

Parker and Girard show that the error functions for two given
multipliers coincide periodically along the input level axis at a zero
error level, Tﬂe greater the period of coincidence the less will be the
correlation between the roundoff error sequences at the two multipliers.
One of the consequences of this is that correlation is likely to be most
significant when short coefficient wordlengths are in use. (This may
explain the statement made in a recent paper by Hadjifotiou and Appleby45
that for a short coefficient wordlength roundoff errors tend tu become
deterministic). Parker and Girarc consider an cxample which uses a 2-bit
and a 3-bit coefficient and they show that in such a case significant
correlation is obtained even when the input signal to the multipliers is
supposedly unquantised. Moreover, if a quantised input sequence is used
then the degree of correlation is found to increase. On the basis of
these findings it seems reasonable to suggest that significant levels of
correlation will also be obtained in a situation where the coefficient
wordlength is relatively long while that of the signal is short. This
suggests, incidentally, that significant correlations existed between the
various error sequences in the second order direct and canonic filters
tested in Chapter 5.

Parker and Girard indicate how the output error variance may be
predicted when correlations between roundoff error sequences are
considered. Signal to error correlations will also be present but these
are not taken into account. The mathematics involved in the noise
prediction is extremely complicated. The final expression for the noise
variance includes, as might be expected, correlation coefficients for all

the correlations between error sequences present, The evaluation then
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continues by assuming integral values for some of the filter coefficients.
No roundoff occurs at such multipliers, and the expression for the noise
variance thus becomes simplified so that only one of the correlation
coefficients is still required. It is still not possible, however, to
attribute a precise value to this correlation coefficient, but only to
state bounds within which it must lie. Although the result of this is a
prediction thatithe noise variance should be somewhere in a fairly narrow
band of values, it does not appear that the method could be applied with
great ease or certainty to a more realisti. example.

It is possible to start thinking of trying to solve this problem by
feducing the correlations to zero by making appropriate modifications to
the theoretical filter coefficient values iq a similar way to that used
before, More careful consideration, however, indicates several
difficulties. First, while it may be possible to predict correlations of

the type {ez’n] with {64,n}’ those of the type {83’n} with {e }

4 ,n-1
require knowledge of the ordering of the filter signal sequences. Second,
although an equation can be formulated to calculate the required
modification to a given theoretical filter coefficient, this modification
is not the same as that indicated by equation (6.3.14) for zero signal to
error correlation; it is, therefore, impossible to reduce both forms of
correlation simultaneously to zero. The last problem is that already
discussed of predicting signal amplitude distributions in higher than

first order filters. It would seem, therefore, that the accurate prediction

of error variance in practical discrete multiplier filters of higher than

first order is likely to remain a difficult problem for some time.

6.4. Summary.

The experiment reported in the first part of the chapter indicates
that, while it is possible, by the solution of simultaneous equations, to

predict roundoff error distributions very accurately for first order
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filters, the incorporation of this information into a noise model yields
no impravement on the simple model which assumes uniformly distributed
errors. Furthermore, it is shown that the observed discrepancies between
the measured error variances and the theoretically predicted values must
be explained in terms of the non-randomness of the equivalent input
error sequence.

This non-randomness can be caused by correlation between the signal
and error sequences at a filter multiplier; A method is presented which
allows zero signal to error correlation to be achieved at a multiplier by
a redefinition of the theoretical value of the coefficient. The prediction
of such theoretical coefficient modifications requires the precise
assessment of signal and error amplitude distributions as provided by the
solution of simultaneous equation:. The experimental investigation
reported in the second part of the chapter demonstrates that the
employment of the above technique yields a significant improvement in the
agreement between the theoretical and practical results. It also shows
that the prediction of .error variance in filters employing sign-magnitude
truncation is facilitated by this technique. Reduction of the main signal
to error correlation to zero, however, still does not yield true
agreement between experiment and theory. The possibility of this being
caused by subsidiary signal to error correlations is discussed, but no
solution to the problem is presented.

Brief consideration has been given to the possible correlation
between the roundoff error sequences at various points in a filter
structure demonstrated very recently by Parker and Girard77. This kind of
correlation is likely to exist in any discrete multiplier filter of higher
than first order; this is in addition to the signal to error correlations
already mentioned. Unfortunately a method of modelling such behaviour,
without the need for highly complicated mathematics and the estimation of

correlation coefficients, remains to be found.
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CHAPTER 7 - CONCLUSION,

The first section of this final chapter summarises the detailed
theoretical conclusions which have been presented in previous chapters
alongside the experimental results from which they are inferred.

The first experimental results are presented in Chapter 4. The
experiment reported uses a fast Fourier transform to analyse the
frequency spectra of roundoff error sequences created when a quantised
sinusoid is processed by a single multiplier. Each error sequence is
found not to possess a flat frequency spectrum, but to consist of odd
harmonics of the input signal frequency. It is shown that harmonic
content can arise whenever the input sequence contains a periodic
component, The presence of the first harmonic in the error sequence
indicates a degree of correlatioh between the signal and error. Hence,
under these experimental conditions, the assumption that roundoff error
sequences can be treated as white noise, and the assumption that error
sequences are uncorrelated with any cther sequence are both seen to be
invalid. .

Chapter 5 prescnts the results of measuring the output error
variance for several first and second order filter realisations when
tested with random input sequences. The main conclusion to be drawn from
these results is that there is generally poor agreement between the
experimental measurements and the values predicted using the normal
noise modelzg. The assumption that roundoff errors are uniformly
distributed within the range allowed is considered and it is demonstrated
that, for the signal wordlengths under examination, this assumption is
not valid, and its use can cause very misleading predictions of error
variance, Several of the filter realisations tested employed block-
floating-point arithmeticl6. These results show that only under rather

rare experimental conditions can this arithmetic mode produce a
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significant noise reduction; in general, its use is not recommended. One
category of filters tested showed consistently close agreement between
experiment and theory and also a marked npise reduction when compared
with other realisations of the same filter response; this was tne look-up
table form60 with the modification for reduced noise applied as

suggested in Chapter 3.

Chapter é suggests an algorithm which can be used to predict
actual roundoff error distributions in first order filters processing a
random input sequence. The effect of incorporating this algorithm into
a predictive noise model is tested experimentally for a range of first
érder responses. The results indicate that, in the great majority of
cases considered, the addition of this featqre to the noise model has
little effect on the error variance predicted; so the discrepancies
between experiment and theory remain. These can only be explained by the
presence of signal to error correlgtions causing non-random error
sequences. The algorithm for predicting error distributions can be
further developed to predict the correlation coefficients and a method
is proposed for their reduction to zero by a modification to the
theoretical filter coefficient values, This suggestion is tested
experimentally and is found to cause a significant improvement in the
agreement between the theoretical and experimental results. Lagged
signal to error correlations are presumed to account for the remaining
level of discrepancy.

Of necessity this investigation has only given close consideration
to a few selected signal processing methcds. It is important, therefore,
to attempt to use the above results and conclusions as a basis for
recommending which techniques should be given wider application, and for
suggesting the future investigation of some topics which might prove
very fruitful.

The digital filter implementation proposed by Peled and Liu60 was
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aimed at increasing the processing speed by reducing the quantity of
arithmetic performed during each filter cycle; this is achieved by an
increase in the amount of data permanently stored in the filter to

define its response. Such a reduction in the arithmetic required also
gives the look-up table form a potential for low.noise. This potential

is only fully realised when filter coefficients are chosen so as to allow
the data stored in the look-up table to be free from error. This is the
essential feature of the so-called reduced-noise modification to this
form. Correlations exist between error and signal sequences when a
discrete multiplier filter is implemented using a short signal wordlength.
For filters of higher than first order this problem is compounded by the
presence of correlations between the various error sequences. Any such
correlations effectively prevent a simple but accurate theoretical
prediction of error variance. Consideration of the .look-up table
realisation in its reduced-noise form suggests that there is no possible
mecbanism whereby correlation can occur. This is borne out by the
experimental results which show that this is the only filter form whose
performance can be accurately predicted using an uncomplicated model,

For this reason and for its low noise this filter form is to be highly
recommended for further use.

The work carried out during this project has all been concerned
with the realisation of digital filters by the implementation of
recursive linear difference equations, For low order filters this is
probably the best method, but it becomes ever more difficult to use as
the filter order is increased. If a particular application allows the
filter input sequence to be processed in blocks rather than sample by
sample, the cyclic convolution property possessed by the discrete
Fourier transform can be used to perform filtering. The property of
cyclic convolution means that the convolution of two sequences can be

found by transforming them, multiplying the two function transforms
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together, and taking the inverse transform of the result., Hence the
convoltuion process of filtering can be achieved by two discrete Fourier
transforms, one on the input sequence block and one on the desired
filter impulse response, and one inverse DFT on the product of the two
transforms, Because of the computational efficiency of the FFT algorithm
used for these three transformations, high order filtering can often be
achieved more rapidly in this way than by the implementation of recursive
linear difference equations. A useful investigation could be carried out
into the effects of a short wordlength on filters realised using the
fast Fourier transform. In the light of the present project it would be
particularly interesting to study Peled and Liu's proposal for the
implementation of the fast Fourier transformﬁl, using a similar design
philosophy to their filter realisation and employing a short wordlength,
Any transform possessing the vital property of eyclic convolution
must involve multiplying the N numbers of the sequence being transformed
by integer powers of the Nth root of unity. In the conventional number
system the Nth root of unity is a complex number, as are its integer
powers. This explains the need for sequence samples to be multiplied by
complex coefficients during the discrete Fourier transformation. There
is, therefore, an inherent difficulty in the implementation of the FFT
on a processor having only an unsophisticated arithmetic unit and a
limited capability for data storage. For these reasons there is great
current interest in a class of transformations called number theoretic
transforms (NT’I‘)]7 which possess the property of cyclic convolution and
can be performed using the same algorithm structure as the FFT. Because
arithmetic is performed modulo-M, where M is an integer, the sequence
length N can be chosen so that the Nth root of unity and all its integer
powers are integers. Use of these transforms only requires the storage
of positive integers. The arithmetic operations needed are restricted to

additions and word shifts so that even in a short wordlength processor
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no roundoff errors are generated; the only error source is the
quantisation of the input sequence prior to the transformation. These
transforms have an obvious potential both in spectral analysis and
filtering applications. An investigation of the implemeﬂtaLion of these
transforms using a short wordlength device such as a microprocessor
should prove to be particularly fruitful.

These reéent developments demonstrate the increasing interest in
the implementation of digital signal processors using relatively
unsophisticated systems or arrays of simple elements. It is hoped that,
in a small way, this current project will augment the existing expertise
and encourage further activity in this field. The birth and early
development of digital signal processing were prompted by the existence
of the large computer. Time may prove, however, that the continued growth
in the importance of the subject- will be fostered by a trend towards the

use of comparatively simple and inexpensive processors.
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APPENDIX 1 - MATHEMATICAL PROOF OF ALIASING FOR REAL SIGNALS,

The discrete Fourier transform is defined as

N-1

F(k.Aw) = J £(aT),e J°n00-T (A1.1)
n=0
_ j2u/N . .
Let W=e so that equation (Al.1) may be rewritten as
Nl -kn
F(k) = § f(n).W (A1.2)
n=0
Therefore
Nl ~n (N-k)
F(N-k) = § £(n).W (Al.3)
n=0
However, W-nN = ] so therefore
N-1 n
FONK) = § £(n).W (Al.4)
n=0

Comparing equations (Al.2) and (Al.4) it can be seen that if f(n) is a

real function

FON-Kk) = F(k)" (Al.5)

If, as is normally the case, only the magnitude of the frequency-domain

function is of interest then

|[F(v-k) | = |F(K)] (A1.6)

and aliasing is observed.
However, if f(n) is an even function so that f(n) = f(-n), this
proof may be taken a stage further. Expanding equation (Al.2) into its

real and imaginary parts gives
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N-1 N-1 N-1
I @ = ] ) .cosH - 5] £(n).sindik (A1.7)
n=0 =

n=0 n=0

and since F(k) is periodic with period = 27/T and f(n) is an even function

N-1 N/2-1
2 f(n).W kn _ Z f(n).W kn
n=0 n=-N/2
N/2-1 N/2-1
= ] fm.cosBE - 5 Y  f(n).sindK (A1.8)
n=-N/2 n=-N/2
But since sin x is an odd function and f(n) is even
N/2-1
T £ .sin®t o £(-N/2).sin2E, () (A1.9)
N N 2
n=-N/2
for all integral k. Hence equatibon (Al.8) reduces to
N-1 N/2-1
I e@a = ] £(m).cosZ < F(k) (A1.10)
n=0 n=-N/2

indicating that F(k) is a real, even function so that F(N-k) = F(k)

which is aliasing in the fullest sense.
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APPENDIX 2 - WINDOW FUNCTIONS.

The time-domain functions, g(t), for all the window functions

considered are defined below. The corresponding frequency-domain

functions, G(w), are also given in the majority of cases. Unless

otherwise stated, the time-domain functions, g(t), arc defined for

|t| < NT/2 and are zero outside these limits.

(i) The Rectangular windowlo.

g(t) =1
_ sin(wNT/2)
6(w) = = §77

(ii) The Bartlett window63.

g(t)

oz
NT

. 2
_ {sin(wNT/4)
Glw) = [ WNT /% ]

(1iii) The Hann or Cosine Bell window64.

1 2nt
g(t) = 7{1 + cos—ﬁT)

Clw) = sin(wNT/2) . 1{sin(wNT/2+w) + sin(wNT/2-m)
w) = wNT/2 20  wNT/2+7% wNT/2-%

(iv) The variation of the Hann window proposed by Welches.

g(t)

| - |t (N=D)T/2
(N+1)T/2

0 for other t.

2
] for 0 < t < NT
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Welch gives an approximate corresponding frequency-domain function,

Normalising factors have been ignored.

2

1 i ] 2
Gw) = {a.z[stgf’f;w?l.“g’ - cos (N+1)mT/2]} (a2.8)

(v) The extended Cosine Bell window proposed by Bingham, Godfrey & Tukey66

g(t) =1 for !tl < O.4NT (42.9)
) %(] B Cos"(lt(I).INg'aNT)} for 0.4NT<|t|<0.5NT

The corresponding frequency-domain function has not been given.

(vi) The Parzen window67.

_ 2t 2t 3 1| 4 0
g(t) =1 -6|| + 6|—N-,f for |t} < NT/ (A2.10)
2t 3
= 2(1_— Iﬁ"r‘] for NT/4<|t|<NT/2
ew) = sin(wNT/8) 4 (A2.11)
W = (TN -
neglecting normalisation factors.
(vii) The variation of the Parzen window proposed by Welch65,
(t) =1 - |&=2 (N_”T/ZI2 for 0 € t < NT (A2.12)
& (N+1)1/2 ° )
=0 for other t.

Welch gives an approximate corresponding frequency-domain function.

Normalising factors have been ignored.
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4
_ [sin(N+1)wT/4
G(w) = [ N+ 1) wT /4 ] (A2.13)
(viii) The Blackman window64.
_ 2nt 4drt ’
g(t) = 0.42 + O.SCOSLTﬁ% + 0.0SCOSGTﬁJ . (A2.14)
- sin(wNT/2) sin(wNT/2+7w) sin{wNT/2-7)
Glw) = 04— 77~ * 0'25{ WNT/2Ztn T wNT/2-m
sin(wNT/2+27) sin(wNT/2-27)
* 0'0“[ WNT/242m ' wNI/2-2m (A2.13)
(ix) The Hamming window64.
g(t) = 0.54 + o.z.ecos(ig—;-] (A2.16)°
- sin(wNT/2) sin(wNT/2+w) sin(wNT/2-7)
G(w) 0.54——m7—2—— + 0.23[ Q)NT/Z'HT + (,ONT/Z"TI' (A2.17)

(x) The window formed by convoluting the Hamming window with itself,

proposed by Richards68.
2t 2t . 2t
g(t) = 0.74]5 {1 + 0.35cos(2n]ﬁ|]} + 0.157sm[2n|ﬁ]] (A2.18)

The frequency-domain function is the square of the G(w) given in (ix)
above,
. . . . 12,69
(xi) Windows formed by using the Dolph-Chebyshev functions .
Here the Dolph-Chebyshev function has the required form for the frequency-

domain function which is given by

| cos(n cos_llz0 cos (wT/2)|)]

G(w) = (A2.19)

cosh (N cosh_] zo)
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The parameter z, controls the half-~width of the main-lobe, 6w, which is

0
defined, by the equation

1/cos(8uT/2) (A2,20)

N
]

that is,

Sw

%.cos_](]/zo) (A2.21)

The parameter 2 also determines the main-lcbe : side~lobe height,

which is cosh(N.cosh-lz . It should be noted that all the side~lobes of

o’
a Dolph-Chebyshev function wre the same height. Increasing 2 has the
effect of increasing both the width of the main-iobe and the ratio of
main-lobe height : side-lobe height.

The window function in the cime—domain has not been formulated

and therefore has to be derived from the frequency-domain function by

means of the inverse Fourier transform
-1 1 r it
g(t) = T {c(w)} = 7= f G(w).ed ™, dw (A2.22)

For use with discrete-time signals the frequency—domain function must
be sampled to give G(k), then the inverse discrete Fourier transform
must be used to determine the discrete window function g(n).

N/2-1

gn) = § Gk).e
k=-N/2

j2mnk /N (A2.23)




APPENDIX 3 - EXPERIMENTAL SELECTION OF A WINDOW FUNCTION.

This experiment attempts to determine the amplitude of the side-
lobes of the resulting frequency-domain function at various deviations,
Im-wol, from the centre frequency w 1024 consecutive samples of a
sinusoid of frequency w  were modified by transmission through a
particular windgw. The DFT of the resulting sequence was then computed.
Many of the window functions give rise to frequency-domain functions
which go to zero at integral multiples of Aw from the centre frequency
. The discrete frequency function produced by the DFT samples at
integral multiples of Aw, so if the centre frequency W, is also chosen
to be an integral multiple of Aw, the frequgncy function will for the
most part be sampled at its zero points, hence yielding no intformation
on the height of its side~lobes.. For this reason the centre frequency,
wo, w;s chosen to be half way between two integral multiples of Aw. In
consequence the discrete frequency function consists of samples which
are (2n-1).Aw/2 from the centre frequency W, where n is an integer. As
a  result, the side-lobes of the frequency function are sampled very close
to their maximum value, Finally, the frequency of the sine wave, s is
chosen to be very close to 2n/4T. This gives a maximum spacing between
the main-lobe of the frequency function and its alias, which in turn
gives minimum interference between the two.

Table A3.! summarises the results of this experiment, On the basis
of these results the convoluted Hamming window suggested by Richards68
has been used for all succeeding power spectrum measurements. It can be
seen that for |w-uw |»>11.4w/2 the side-lobe height is less than 1074 of
the main-lobe,

2,69

The window formed by use of the Dolph-Chebyshev function] with

zo=l/cos(3'5w/N) has a rather better performance. In theory the maximum

5

side-lobe height for |w—m°|>7.Aw/2 is 3°35.10 °, but in practice, because
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Table A3.] Magnitudes of frequency functions from some window

functions.

Frequency separation from centre frequency w
Window (Aw/2 = w/NT) °
Function
Aw/?2 3.0w/2 5.Aw/2 7.0w/2 9.40w/2 il.Aw/2
Rectanguld?(6.37x107" | 2. 12x1071 |1.27x107 | 9. 10x1072]7.07x1072| 5. 79x1072
- - - -7 - -

partlect®? [8.11x107" | 9.01x1072{3.24x1072} 1.65%1072 | 1.00%10"2]6.70x10™3
Hann Cosine o 0. 10711, 70%107" |2.43x107218.08x1073|3.67x107 | 1.98x107°>
Bell 64
Welch-Hang® |7.74x107112.92x1072|6.54x107>| 2.51x1073 |1.26x10"2|7.48x10"%
Extended 66 |¢ o5.1071 15 06x107"{9.43x1072]4.08x1072|1.01x1072|7.49x1073
Cosine Bell
parzen®”  [9.02x1071|3.78x1071 |4.90x1072]3.76x1074|1.37x1074|2.09x1073
Welch-~ 8.10x1071|8.95x1072{3.26x1072 1.63x1072{1.01x10 2 !6.57x10™>
Parzen
Blackman®® [8.81x107"{2.94x1071 1.42x1072| 1.22x1073|1.06x1073 |6, 76x107%
Hamming®®  [8.17x107" [1.13x107" [1.82x1073]6.59x1073 |7. 35x1073|6.89x1073
Convoluted g /107113, 89x107" |5.60x1072]7.32x107%[1.03x10™%|6.66x107>
Hamming 68

1269
Dolph Cheby -1 -1 -3 -4 -2 -3
-shev  z,=|8.23x107 ' |1,22x107 ' |4.62x107>|8.08x10""|1.10x107%|1.25%10
1/cos(2w/N)
Dolph Cheby -1 -1 -2 -4 -4 -4
—shev  z,=|8.77x107 ' [2.83x10" " [1.49x107%|3.80x10"*|1.67x10™*{1.98x10
1/cos(3n/N)
Dolph Cheby -1 -1 -2 -5 -6 -5
~shev  z.=8.93x10"" |3.46x10"" |3.69x1072]7.21x10™° |6.06x107®]9.63x10
1/cos3.5n/N
Dolph Cheby -1 -1 -2 -3 -5 -5
—shev  zo=[9.06x10" " {4.00x10™" [6.35x1072[1.53x1072 |2, 15x10™>|2.29x10
1/cos(4m/N)
Dolph Cheby - -1 -2 -3 -6 -7
~shev zo=19.16x10 4,46%10 9.23x10 5.24x10 2.87x10 1.94%10
1/cosb.57/N
Dolph Cheby -1 -1 - -2 -3 -5
-shev  z_=9,37x107 ' [5.50x107" {1,80x107"{2.90x107%|1.69x107|1.22x10
1/cos (61 /N)




of the limited accuracy of the computer, 10 = appears to be the maximum.
However; this function was not used as it requires an inverse Fourier
transformation to produce the time~domain window from the Dolph—Chebyshev
frequency-domain function. The extra computing time involved in this was
not thought to be justified by the small improvement made possible over

the convoluted Hamming window68.
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APPENDIX 4 ~ FAST TOURIER TRANSFORM ALGORITHM,

The mathematical derivation of the actual algorithm used is given
belowl. The example of N=8 is used for clarity., It will be seen, however, .
that this can be extended for N equal to any power of two. The discrete

Fourier transform may be written in the form

N-1

nk
Fo= I f£.W (A4.1)
n=0

where

W= e d2n/N) (A4.2)
The indices n and k can be represented as binary numbers,

. 2 . 1 0

that is, ne=2 n, + 2 n, + 2 n, (A4,.3)

where Nys My My equal 0 or 1. So fn can he represented as fn=f(n2,nl,n0),
where the leftmost parameter n, represents the most significant bit of

the index and the rightmost parameter n, represents the least significant

0

bit. Using this notation equation (A4.1) can be rewritten as

11
F(ky,k ,ky) = nz=0 n2=0 nX=o(f(n2,n],n0). (A4.4)

2 1 0 2 1 0)
w(2 n2+2 nl+2 no)(2 k2+2 k‘+2 ko))

By noting that wm+“=wm.w“ and that W is the Nth root of unity, equation
(A4.4) reduces to
1 1 1

Fkykokg) = § ) z_o(f(nz,nl,no).w

2
(kg)-27ny (A4.5)

=
Il

o

=]
1]
o

=
1

1 0 1 2 1 0 0
w(2 k1+2 ko).2 nl.W(2 k2+2 k|+2 ko).Z no]

115




This may be analysed into the three (1og28 ) separate summations

defined by
' (k.22

(1)  F'(ognpkg) = £ (ng,r ,ny) 00700 2 (A4.6)
n,=0
2

' =

where f (no,nl,n2 f(nz,nl,no)
1 1. ..0 I

(i) F'(ng,k k) = ) 1«~'(1_10,n],k0).w(2 k1#27%kp) .2 n, (A4.7)
n, =0
|
I 2 1. .0 0

(i) Flkyk k) = 1 F'(ngk ko)W K2 k2 kg)2mg (x5
n,=0
0

In general there are 1og2N of these calculation stages. Prior to
these stages, the order of the original sequence fn is rearranged to
give the sequence denoted by f;.'This rearrangement is defined by the

equation

f'(no,nl,nz) = f(nz,n],no) (A4.9)

This reordering is called bit reversal and it can be seen that the MSB
parameter of the sequence fn becomes the LSB parameter of the sequence f;
and vice versa. If N were 16 then the equation defining the reordering

would become

\ —
f (no,n],nz,n3) = f(n3,n2,nl,n0) (A4.10)

so that, for example, f . with n =1 and n,, n, = 0 would become f!.

10 3* M 2> "o 6
Figure A4.1 is a flow diagram summarising the FFT algorithm for
N = 8. The dots represent terms in an array and the arrows indicate the

. 2 .
transfer of an array term. If an expression, such as W , accompanies an

arrow this indicates that the array term is multiplied by the expression
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before transfer. The diagram includes the further simplification of

equations (A4.6) to (A4.8) which can be made by noting that for (n.k):>N/2

nk _ o(-N/2) -N/2 _ % _jw L

W w”.w = W.e = -W

and, of course, WO =1,

it can be seen from Figure A4.l that, once the initial shuffling of
the array has been done, the basic operation of the algorithm is to take
a pair of terms from the array, fj and fk, and to produce a new pair,

8 and 8" For j<k this operation can be defined by

.= £, + (WS A4, 1)
85 f ( QO ( )
X
and 8 = fj - (W 'fk) (A4.12)
where x is an integer in the range from 0 to (N/2 - 1). The new terms gj

and By overwrite fj and f, respectively in the array, so that there is

k
no need to use a secong array for any of the calculation stages. However,
a- second array must be used for the initial reordering of the array.

This array would normally be redundant during the ensuing calculation
stages, but in the Fortran subroutine FFT listed in Appendix 6 this array
has been used to store the N/2 required values of w". This permits a
further saving in computing time as it is only necessary to work out each
required value of W' once. The appropriate power of W can then be looked
up in the array. Hence for every pair of new terms formed the only
calculation required is one complex multiplication, one complex addition
and one complex subtraction. So, excluding the initial N/2 computations
of W", this algorithm requires (N/2).1og2N of each of the three

arithmetic operations mentioned above for the complete Fourier

transformation, which demonstrates its efficiency.
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APPENDIX 5 - FILTER CHARACTERISTICS.

Table AS5.) First order highpass(i) filter.

Realisation a b Pole position

Direct Form 0.3115234375 0.6826171875 -0.6826171875

Look-up Table.
Reduced-noise. 0.25 0.625 =0.625
4 bits,

Look-up Table. .
Reduced-noise. 0.3125 0.6875 -0.6875
5 bits.

Look-up Table,.
Reduced-noise, 0.3125 0.6875 -0.6875
6 bits.

Look-up Table,
Reduced-noise. 0.3125 0.6375 -0.6875
7 bits.

Look—up Table.
Reduced-noise. 0.3125 0.6796875 -0.6796875
8 bits.
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Table A5.2 First order lowpass(i) filter.

Realisation

Pole position

Direct Form

0.5400390625

-0.46404296875

0.4404296875

Look-up Table.
Reduced~noise.
4 bits.

0.5

=0.375

0.375

Look-up Table.
Reduced-noise,
5 bits.

0.5

-0.4375

0.4375

Look-up Table.
Reduced-noise.
6 bits.

0.53125

=0.4375

0.4375

Look-up Table.
Reduced~-noise.
"7 bits.

0.546875

-0.4375

0.4375

Look-up Table,
Reduced-noise.
8 bits.

0.5390625

=-0.4375

0.4375

119




Table A5.3 First order highpass(ii) filter,’

Realisation

Pole position

Direct Form

0.8681640625

06.1240234375

=-0.1240234375

Look-up Table,
Reduced-noise.
- 4 bits.

0.875

0.125

-0.125

Look-up Table,
Reduced-noise.
5 bits.

0.875

0.125

-0.125

Look-up Table.
Reduced-noise,
6 bits,

0.875

0.125

-0.125

Look—-up Table,
Reduced-noise.
*7 bits,

0.875

0.125

~0.125

Look-up Table.
Reduced-noise,
8 bits.

0.8671875

0.125

-0.125
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Table A5.4 First order lowpass(ii) filter,

8 bits.

Realisation a, b] Pole position
Direct Form 0.0302734375 -0.2619140625 | 0.9619140625
Look-up Table,
Reduced-noise. 0.03125 -0.9375 0.9375
. 6 bits.
Look-up Table.
Reduced-noise. 0.03125 ~0.953125 0.953125
7 bits.
Look—-up Table.
Reduced~-noise. 0.03125 -0.9609375

0.9609375
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APPENDIX 6 — FORTRAN IV PROGRAM LISTINGS,

Index of Programs.

AMPMOD page 163 MULAR page 167
BLKC2 157 PMUL 162
BLKDI 144 PRAND 159
BLKD2 154 RAND 159
BLKFT2 143 RES2 142
BLKFT3 156 RES5 151
BLKFT5 153 SETA 165
BOUND 148 SETPSI 134
CAN2 147 SIMQ 166
DIR] 135 SPEC 127
DIR2 145 TABI 141
ERROR 138 TAB2 149
EXEC . 131 THVAR 160
FFT 129 VAR 155
INTGRL 150 VARAMP 162
LIMPSI 140 ZCDIRI 136
LIMSI 146 ZCMOD 168

ZCVAR 170
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aEaNaNalaNel

[aNuNgl

[aXuNel

OO0 OO0

SPEC

SPEC - MAIN PROGRAM,

SPECTRAL AMALYSIS CF RCUNDOFF ERROR SEQUENCE.
QUANTISED SINE wAvE INPUT,

SINGLE MULTIPLIER,.

ROUNDING ONLY.

OIMENSTION TH{1024},SPEC(1024),R{100,512}

REAL=A AMP({100) AMUL {SCAL JANMPT Ay FRy,TOTRyTOTGsATsAM X ¥y 2,

% GyERyANORM,ERR,MEAN
COMPLEX%Ll6& AAL1024),C(1024)
WRITE (6,400}
400 FORMAT (1H1,10X,36H SPECTRAL ANALYSIS OF ERRCR SEQUENCE)
MTYPE=0

REAL AND WRITE EXPERIMENTAL PARAMETERS,

RFAD (5,10C) MUL,NORM
100 FORMAT (2110}
READ (5,101} LENGTH
READ (5,101) KR
101  FORMAT (ilO) - -
NM=1024
WRITE (64401) MUL,NORM
401 FORMAT (1HO0,20X,8F AMUL = 110,34 /7 ,110)
WRITE (64402) LENGTH
402 FORMAT {1H0,20X,26H SIGNAL DATA WOROLENGTH = ,(2)
WRITE (6.:403) KR,NKM
403 FORMAT {1HO,20X.28H RELATIVE INPUT FREQUENCY = ,1104.3H /
AMUL=CFLOAT{PUL)/DFLOAT INORM)
SCAL=DFLOAT(2¢*={LENGTH-1}-1}
ANM=DFLOAT(NM)
PI=3.141592654C0
A=4,000*PL/7ANM
FR=0DFLOAT (KR /ANM
TOTR=0.000

D0 100 RUNS.

D9 3 I=1,100
TOTG=0.G00
Al=0FLOAT(I)
Al={AI-1.000)/0.203

YAIY DETERMINES THE INITIAL PHASE OFFSET OF THE INPUT SIGNAL.
PROCESS 1024 SAMPLES.

DO 2 N=1,KM
FORM QUANTISED INPUT SAMPLE FRCM THE JDEAL SINE WAVE.

AM=DFLOAT (N-11}
X=2.000%«P]*{ (FR*AM) ¢+A1)
X=DSIN(X)*SCAL

1x=X

A=DFLOAT(IX)

IF (AM=-X~0,500) 4,5,6
IX=1Xx-1

GO T0 5

IF (AM-X+0.500) 7,5,5
IX=1X¢1

X=DF LOAT (I X)

Vi~ & o
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(s N aExNaNel (s X aNal

[aXa el

[« zKaXal [a X aNal [a XN gl

anon

[aXaX gl

SPEC (cont.)

DETERMINE THE TRANSMISSION "G" OF THE WINDOW FUNCTION.

AM=DFLOAT(N-1)

Y=DABS{AM-ANN/2.0D0)

Z=AxY

G=0.7400%( ANM-2.0N0*Y) /ANM*(1.0D0+0.35D0%DCOS(2})
* +0.15700%DSINL LY

TOTG=TOTG+G

PERFORM PRACTICAL THEN IDEAL MULTIPLICATION,
MER" IS THE ROUNDCFF ERRORy WHICH [S MULTIPLIED BY THE WINDOW
TRANSMISSION "GY, THEN STORED READY FOR FOURIER ANALYSIS.

CALL PMUL (MUL,1X,1XyNORM,MTYPE]}
K=AMUL*X
ER=DFLOAT{IX)~X
AANIMN)=DCMPLX(ER*G,0.,0D0)

2 CONTINUE

SUBFOUT INE “FFT* PERFORMS A FAST FOURIER TRANSFCRM ON THE CONTENTS OF “AA®,

1=-1.0D0
CALL FFT {(AA,D,IH,NM,Z}
ANORN=ANM/TQTG

FILL ARRAY "R"™ WITH THE NDRMALISED, ABSOLUTE VALUES OF THE TRANSFORMED FNa.

DN 1 N=1,512
Nl=N#1
R{1+NI=ANORM*CCABS{AA(NL))
TOTR=TOTR+R{],N)

1 CONTINUE

3 CONTINUE

“TOTR" [S THE MEAN RESPONSE OVER ALL FREQUENCIES.

TOTR=TOTR/(0.502«ANM)
DO 50 h=1,512
MEAN=0.,0D0
DO 60 1=1,100
AMP{I)=R(I,N)/TOTR
MEAN=MFAN+AMP(T}

60 CONTINUE

"MEAN" IS THE MEAN RELATIVE RESPONSE AT THIS FREGUENCY.
SUBROUT INE "ERROR"™ MUST BE USED IF RESULTS ARE TABULATED.

MEAN=MEAN/0,103
CALL ERROR (ANP,MEANJERR)

CCNVERT TO DECIBELS.
MEAN=2,0D1#DLDGLO{MEAN)
SPEC(N}=SNGL{MEAN)

50 CONTINUE

PLOT RESULTS,

CALL PLOT (SPECKR)

sToP
END
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(2 X2 XsKaluNaXal

2 XaXalzl acaoon [aNale)

(s ¥akal

[a XNyl

aAOOOO

FFT

SUBROUTINE FFT {(AA,DyIHiN,2)

FAST FOURIER TRANSFORM CN ARRAY AA,

AA HOLDS ORIGINAL STQUENCE AND RETURNS 1FANSFORMED SEQUENCE.
N HOLDS LENGTH DF SEQUENCE AND IS A POWER GF 2.

1=-1.0 INDICATES OISCRETE FOURIER TRANSFURMATION.

2=1.0 INDICATES INVERSE DISCRETE FCURIER TRANSFORMATION.

DIMENSION IH(IN)

REAL*8 P1,Z+ANORM,AN

COMPLEX216 ALIN)  O(N1,ByCIyW,sY

AN=DFLOAT(N)

PI=3,141592£5500

CI={0.0D0,1.0D0) .
W=CDEXP(2*Cl*2,0DC*P[/AN]

W TAKFS THE APPROPRIATE VALUEt FOR NORMAL OR INVERSE TRANSFORMATION.
IF (2} 20,20,21

NORM IS USED LATER AS A NCRMALISING FACTOR.
NORM TAKES THE APPROPRIATE VALUE FOR NORMAL BR INVERSE TRANSFORMATION.

20 NORM=N
G} 1O 22
21 NORM=]
22 M=N
DO 1 I=1,N,

THIS LOOP EVALUATES LN=LOG2{N)
M LOOPS ENSURE JUMP QUT CF DC LOOP.

LN=]

M=M/2

IF (M.EQ.l) GO TO 23
1 CONTINUE

LN=LOG2{N}

23 J=LN/2
DO 2 I=1,N

LaINDEX OF TERM IN ORIGINAL ARRAY.

L=1-1

00 3 K=1,LN
TH{K)=MOD{L,2)

IF (L-IH{K])) 25,24,25

24 L=0
G0 TO 3
25 L=(L-1H(K)}I/2
3 CONTINUE

TH(K) HOLDS THE KTH, BIT OF THE [NDEX L. '
TH{K}=0 OR I FOR K=1 TO LOG2(N}.
BIT REVERSAL IN IH(K),

DO & K=1,J
M=K-1
II=TH(K)
TH{K) =TH{LN=-M)}
IH{LN-M)=11

4 CCNTINUE
M=Q -
D0 5 K=1.LN
TH(K)=2% ¥ (K=1)*]H(K)
M=M+IH{K]

5 CONTINUE
M=M¢l
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OOOOOO

[ X2Xs)

COOn

[aKaXal

anon

FFT (cont.)

M IS RIT REVERSED INDEX CORRESPONDING TO 1.
ORIGIHNAL ARRAY 1S HOWA SHUFFLED.

IF (1-M) 2642,27
26 Otli=AA(D)
AALT) =AA (M)
GO 10 2
27  AA(1) =DM}
2 CONTINUE

AA HAS NOW BEEN SRUFFLED.

THIS LOOP EVALUATES ALL THE INTEGER POWERS OF W UP TO N/2.
THESE VALUES ARE STURED IN THE ARRAY D.

THE ARRAY D IS USED AS A LOOKX UP TABLE,

M=N/2

DO 8 I=1,M

J=1-1

DI )=w%xxy -
B CONTINUE

DO 6 I=14LN

J=1

L=0

M=N/{2%%])

I1=2%x{1-1)
28 K=J+It

IND=(M&L )+l

HERE IS THE COMPLEX MULTIPLICATION.

Y=O{IND)*AA(K}
B=AALJ)
AA(J)=DB+Y.
AALKY =B~y

NEW TERMS FORMED. COMPLEX AODITION £ SUBTRACTION,.
IF K=N START NEW STAGE OF TRANSFORMATIOM,.

IF (K.EQ.N) GO TO o
L=t+¢l

IF (L.EQ.ITI) L=0

IF (MOO(J,11).EQ.0) J=X
J=J+1

EVALUATE NEXT PAIR OF TERMS,

GO 1O 28
6 CONTINUE

AA HAS BEEN COMPLETELY TRANSFORMED.
THIS LCOP NORMAL ISES AA,

ANORM=DFLOAT {NORM)

DO 7 I=14N

AALT)=2.0D0%AALT )/ ANORM
7 CUNTINUE

RCTURN

END
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EXEC

EXEC - MAIN PROGRAM. )
EXECUTIVE PROGRAM FOR ALL NOISE VARIANCE EXPERIMENT SIMULATIONS.

INTEGER*4 PSI(12)
REAL*¥8 AA4AQO4Al,A2,81,R24ANORM, TOTEE(L100) yMEANEE,CRR ¢ AMSQK,y
® TOTSQK(LOU}ER(1024)
WRITE (6,4C0)
400 FORMAT (1H1,20X,37H NOISE VARIANCE RESULTS CF STMULATION)

PEAD DEFINITICN CF FILTER,

WNUFDER" ENTERS CRDER OF FILTER,

WIMPNTY NEGATIVE INDICATES CAMONIC FORM, ZERO IMDICATES DIRECT FORM,
POSITIVE INDICATES LCCK UP TARLE FCRM,

"MODLY NEGATIVE INDICATES BLOCK FLOATING POINT ARTTHMETIC,

OTHERMISE FIXED PCINT ARITHMETIC IS USED.

“HYYPE"™ NEGATIVE INDICATES TRUNCATION, ZERO INDICATES ROUNOING,
POSITIVE INDICATES SIGN MAGNITUDE TRUNCATIQOM,

*NCOKR™ EQUALS ZERO INCICATES THAT TiE FILTER COEFFICIENTS ARE TO BE
MODIFIED TO GIVE AM UNCOPRELATED ERRGR SEQUENCE.

READ (5,200) NCRDER, IMPNT ,MODE,MTYPE,NCORR
200 FURMAY (5110)

PRINT THIS INFORMATION, -

WRITE (6,401) NORDER
401 FORMAT (1HO0.20X«19H CRDER OF FILTER = ,12)
IF (iMPHNT) 1,2,3
1 WRITE (6,402)
6402 FORMAT (1H0,20X,13H CANONIC FORM)
GO TO 4 ’
2 WRITE (6,403}
493 FORMAT (1HQ,20X412H DIRECT FORN)}
GO T0 4
3 WRITE (6,404)
404 FORMAT (1HO,20X,19H LOOK UP TABLE FORMI)
4 IF {(MODE) 6,5,5
S5 WRITE (649405)
405 FORMAT (1H0,20X,23H FIXEC POINT ARITHMETIC)
1F [NCCRR) 8,748
T WRITE (6,406])
406 FORMAT (1H0,20X,17H ZERC COPRELATION)
GO TD 8
6 WRITL (6,407)
407 FORMAT (1H0,20X,32H BLOCK FLOATING POINY ARITHMETIC)
8 IF (MTYPE) 9,10,11
9 WRITE (6,408)
408 FOR'MAT (1HO0,20X+11H TRUNCATION)
GO 70O 12
10 WRITE (6,409)
409 FORMAT (1i10,20X¢9H ROUNDING)
GO TO 12
11 WRITE (6,410)
410 FORMAT {1H0,20Xs26H SIGN MAGNITUDE TRUNCATION]}

READ AND WRITE SICGNAL WORDLENGTH.
SET MAXIMUM ALLCWED SIGNAL AMPLITUDE "MAXY,

12 READ (5+201) LFNGTH -
201 FORMAT (101
WRITE (6,411) LENGTH
411 FORMAT {(1HO,20X,26H SIGNAL DATA WORDLENGTH = ,12)
MAX=2%%(LENGTH-11]-1

131




[2XslaNala BN « XNl OO OO0

OOO0 OO0

[aNaXel oo O00N

[aXaNaNalNal

EXEC (cont.)

BRAMCH ACCORDING TD FILTER ORDER.

IF (NORDER-1) 13,1314

FIRST CRDER.

READ,

13
202

WRITE AND CONVERT FILTER COEFFICIENTS TO FLOATING POINT.

READ (5,202) 1A0,I81,NQRM
FORMAT (31101

WRITE (644131 1AQ0,NORAM
WRITE (6,416) IB1,NORM
ANORM=DFLOAT (NORM)
AO=DFLOAT{IAD)} /ANORM
B1=DFLOAT{IB81)/ANORM

BRANCH ACCORDING YO FILTER FORM.

IF (IMPNT) 15,15..16

OIRECT FORM. -
SUBFOUTINE “LIMSL"™ DETERMINES SIGNAL AMPL ITUDES.

sSTOP
15

50
500

60
80
£01

If EITHER COEFFICIENT IS EFFECTIVELY ZEROD,

CALL LTMSY (MAX,IAOQ,IBLlsNORM, INAMP,LIMOUT,MTYPE,LIM]1,LIM2)
IF (LIML) 60,50460

WRITE (6,500)

FORMAT (1HO,25X,23H A0 IS EFFECTIVELY ZERQ)

sTOP

IF (LIM2) 70,80,70

WRITE {6,501}

FORMAT (LHO,25X,23H Bl IS EFFECTIVELY ZERO)

sToP

BRANCH ACCORDING TO ARITHMETIC MODE.

70

IF [MODE) 17,18,18

BLOCK FLOATING POINT ARITHMETIC.

SUBROUTINE "“BOUND™ DETERMINES "[M™,

CALL
17

'Y

FILTERING SUBROUTINE "BLKDL",

CALL BOUND (MAX,T1AO,IBLyNURM,INAPP,LIMOUT, [V, TYPE)

CALL 8LKOL

(1AQ,IB1 HGRM,¥TYPE,INAMPoAO Bl yERy TOTEE)MEANEE, IM, TOTSQK,, AMSQK)
GO TO 300

FIXED POINT. BRANCH IF ZERO CORRELATION REQUIRED,

18
CALL

19

CALL

20

LOOK

[F (NCORR) 19,20,19

FILTERING SUBROUTINE "DIRL®”,

CALL CIRL

{TAO,IBL,NORMyMTYPE, INAMP,AO,B1,ER, TOTEEs MEANEE)
GO TO 300

FILTERING SUBRDUTINE ®"2CDIR1"™,

CALL ZCOIR1

(1AQ( IB1 NORMsMTYPE s INAMP ,AOQ 81 ,ER, TOTEE,MEANEE)
GO To 300

UP TARLE FORM.

SUBROUTINE “SETPSI"™ FILLS TABLE "PSI",.
SUBROUTIME “LIMPSI™ DETERMINES LIMITS OF SIGNAL AMPLITUDES,

16

NADDR =2
CALL SETPSI
(PSIyIAO,TAL,IA2,1RL,IB2,NORM, ICONST,LENGTH,NULL ,NERR,NADDR)
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EXEC (cont.)

TEST FOR NULL SCT IN TABLE. UF SO, RETURN,

IF (NULL} 30,40,30
40 MWRITE (64305}
305 FORMAT (1HO;25X,18H NULL SET IN TABLF)

sTop
30 IF (1B1l) 35,35,45
35 MBl=1

GO TO 46
45 Mil=-1

46 CALL LIMPST (MAX,PST,LENGYH, ICONST, INAMP,LIMOUT,MB1,NORM)
WRITE (643061 ICCNST

306 FORMAT {1H0,25X,35H RESCALING FACTOR FOR PSI VALUES = ,12)
IF (INAMP) 61,511,561 .

61 IF (LIMOUT) 71,51.,71

51 sSTOP

CALL FUILTERING SUBROUTINE "TA3.%™,

Tl CALL TABL (PSI,ICCNSTyNORM, INAMP,AOyBlyERy TOTEEyMEANFE)
GO0 70 300

SECCND ORODER. N
INITIALISE SIGNAL BOUNDS.

14 INAMP=MAX
[M=MAX

BRANCH ACCORDING TO FILTER FORM,
READy, WRITE AND CONVERT FILTER (GCFFICIENTS TQ FLOATING POINT,

IF (IMPNT} 89,90,90
89 READ (5,203} IAA,1AO0.IAL,([A2,1B1,1B2,NORM
203  FORMAT (7110}
ANORM=0DF LOAT {NORN}
AA=DFLOATLTAA) /ANDRM
WRITE (644121 TAA,NORM
412 FORMAT (1HO.20X,6H AA = L 110,34 / +110)
GO 70 91
90 READ (5,204} IAO0,IALl,1A2,1B1,182,NORM
204 FORMAT (6110}
ANORM=DFLOAT {NORHM)
91 WRITE (6,413) 1A0,NORM
WRITE (6.414) [A1,NORM
WRITE (64415) 1A2,NORM
WRITE (6+4416) 181,NORM
WRITE (6:417) [882,NORM

413 FORMAT (1HO,20X,6H A0 = ,110,3H / 21101} -
Al4 FORMAT (1lHO,20X,6H Al = ,[10,3H / ,I10) -
415 FNRYMAT (LHO,20X,6H A2 = 110,31t /7 4110}

416 FORMAT (1HO,20X.6H BL = 4I10+3H /7 o110}

417 FURMAT (1HOy20X+.6H B2 = ,110,3H / ,110)

AO=DFLOAT{1AQ)/ANORM
Al=DFLOAT(IALl) /ANORM
A2=DFLOAT(1A2)/ANORM
B1=DFLCAT(IBl)/ANORM
B2=DFLOAT({1B2)}/ANORM

RRANCH ACCORDING TO FILTER FORM.
THEN BRAMCH ON ARITHMETIC MODC AND CALL APPIOPRIATE FILTERING SUBRDUT[NE.

IF (IMPNT) 25426427
CANONIC FORM, -

25 IF (MODE)Y 28,29,29
28 CALL BLKC2 (MAX,I1AA, i20,1AL,1A2,1R1,IB2,NNRM,MTYPE, INAMP,
* AQyAL,A2,Bl,B2+ERyTOTEE,MLANEE, IMyTOTSQK,y AMSQK)
GO0 TO 300
29 CALL CAN2 (MAX IAA,TAO, 1AL, IA2,IRL, IB2,MORM,MTYPE, INAMP,
* AAJAQ AL A2, BIyB24ERTOTEE,MEANEE)
GO 70 300
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EXEC (cont.)

DIRECT FOPM, .

26 1F (MODE)} 38,39.39
38 CALL BLKD2 {MAX,I1A0,1A1,1A2,IR1,1B2,NORM,MTYPE, INAMP,
* AJyAlsA24B14B2+ERyTOTEE s MEANEE, IM,TOTSQK, AMSQK)
GO TO 300
39 CALL DIR2 (MAX,IAO,TALl,1A2,181,182NORMMTYPE, INAMP,
* AQyAL)A2,B1,8B2,ER,TOTEE +MEANEE)
GO TO 300 .

LOOK UP TADLE FORM. FIXED POINT ARITHMETIC ONLY.
SURRQUTINE ©SETPSIM FILLS THE LOOK UP TABLE "PSI",

27 NADDR=5 -
CALL SETPSI
* (PSI,1A0,1A1,1A2,18B1,182,NORM, ICONST,LENGTH,NULL sNERR,NADDR)

TEST FOR NULL SET IN TABLE, IF SO, RETURN,

IF (NULL) 37,40,37
37 WRITE (6,306) [CGNST
CALL TAB2
% (MAX,PSI,ICONST,MORM, INAMP,A0,Al1,A2,B1,B2,ER,TOTEE,MEANEE)

RE-ENTRY POINT FOR ALL FILTERING SUBROUTINES.
WRITE INPUT AMPLITUDE,.

300 MWRITE (6,301) INAMP .
301 FORMAT {1H0,25X,20H INPUT AMPLITUDE = ,13})

BRANCH ON ARITHMETIC MODE.
IF (MODE} 96,95,95
FIXED POINT ARITHMETIC. BRANCH ON FILTER ORDER,
95 IF {NORDER-1) $8,97,98
FIRST ORDER. WRITE OUTPUT AMPLITUDE,

97 MWRITE (6,302) LIMCUT
302 FIRMAT (1HO0y25X¢20H OUTPUT AMPLETUBE = ,i3) -
GO TO 98

BLOCK FLOATING POINT ARITHMETIC.
PRINT UPPER ROUNC OF SCALED OUTPUT.
PRINT MEAN SQUAREL RESCALING FACTOR "AMSQK™,

96 AMSQK=AMSQK/0.103 !
WRITE (6,303) IM
303 FORMAT (1HO,25X,2&6H BOUND OF SCALED OUTPUT = ,13)
WRITE (6,304) AMS(XK
304 FORMAT {1HO,10Xs33H MEAN SQUARED RESCALING FACTOR = ,D15.8)

"MEANEE" 1S THE MEAN VARIANCE OF THE ROUNDOFF ERPOR SEQUENCES.
SUBROUTINE “ERROR™ CALCULATES THE ERRDOR I[N "MEANEE".
PRINT RESULTS,

98 MEANEE=MEANEE/0.1D3
CALL ERRCOR (TOTEE,MEANEE, ERR)
WRITE (6,310} MEANEE.ERR
310 FORMAT (1HO0,10X,23H MEAN NOISE VARIANCE = ,D15.8,5H +/- ,09.2)

SUBROUTINE "THVAR"™ CALCULATES THE ERKNR VARIANCE ACCORDING TO THE SIMPLE MODEL
THIS MODEL DOES NOT APPLY TO THE ZERO CNRRELATICN FORM,

IF tNCCRR) 77,78,77
77 CALL THVAR
* (AOyA1,4A2,B1,4829AMSCKy ICONST,LENGTH, MERR, NORDER, [MPNT , MODE )
78 STOP
END
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SUBROLTINE DIRL
* (IAQ, IBL,NORM,MTYPE, INAMP,AQ0,8]1,ER, TOTEE,MEANEE)

FILTERING SURRMUTINE.
FIRST DRDER FILTER,
DIRECT FORM,

FIXED POINT ARITHMETIC.

OIMENSION AUML128)
REAL*8 ANM,AMP,MEAMEE,Y1TOTEE{100) +X,Y,AO,RL,TOTR,ER(1024}

UNMY IS THE LENGTH 0OF EACH RANCOM SEQUENCE.

UANMPM IS THE AMPLITUDE OF THE FLUATING POINT

RANDCM SEQUEMCE, BEFORE QUANTISATIONM,

SUBROUTINE "PRAND™ INITIALISES THE RANDOM NUMBER GENERATOR,

NM=1024

ANM=DFLOAT(AM)
AMP=DFLOAT (INAME )} +0.500
CALL PRAND {IUK,IVK,NUM}
VEANEE=0.000

Y1=0,000

I¥1=0

DO 101 RUNS. .
THE FIRST RUN [S TO ALLOW THE MEAN ERRCR TO REACH EQUILIBRIUM,
TIE VARIANCE RECORDED FOR THE FIRST RUN LS REJECTED.

DD 3 I=1,101
TOTR=0.0D0

FILTER A RANDCM SEQUENCE OF LENGTH "NM™,
DO 2 N=1,NM

SUBROUTINE "RANO™ RETURNS A RANDOM INTEGER "IX" AND THE
FLOATING PCINT EQUIVALENT 'X®,

THE PARALLEL FILTERING [N THE INTEGER AND FLOATING POINT
CHAMNELS FOLLOWS.

CALL RAND [IUK,IVKsNUM,IXAMPyINANKP X}
CALL PMUL (1A0,T1X, IW,NORM,MTYPE)

CALL PMUL (IBl,IYL,1VLI4NCRM,MTYPE)
I¥=IW-1V1l
¥=A0*X-B1*Y1
IYl=1y

Yi=Y

THE ROUNDOFF ERROR IS STORED 1IN ARRAY “ERY,

ER(N)=DFLOAT{IY)-Y
T10TR=TOTR+ER{N)
2 CONTINUE

1F THIS 1S THE FIRST RUNy COMMENCE SECOND- IMMEDIATELY.

1=t-1
IF (I1) 3,3,4

CALCULATE MEAN ERROR "TOTR™,
CALCULATE VARIANCE WITH RESPECT TO MEAN.
STORE VARIANCE IN ARRAY “TQTEE".

& TOTR=TGTR/ANM
TOTEELII }=0.0D0
DO 5 N=1,NH
Y=ER{NI-TATR
TOTERL I }=TOTEE( I} +#Y%Y
5 CONTINUE
TOTEE(IT)=TOTEE(I1)/7ANN
MEANEE=MEANEE+TOTEE(I])
3 CCMTINUE
RETURN
END
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SUBROUTINE ZCDIRL
# (1AO0y IB1,NORM MTYPE,INAMP AOQ,B14ER, TOTEE y MEANEE)}

FILTERING SURPOUTINE. -

FIRST ORDER FILTER.

DIRECT .FORYV,

FIXED POINT ARUTHMETLC,

MOOIFIES THEORETICAL MULTIPLIERS TJ GIVE UNCORRELATED ERROR SEQUENCE.

DIMENSION JX11024),JY(1025) ;NUM{128),JWI1024),JV{1024)

REAL®8 ANMyAMP MEAMEE,YL . TOTEE(L1UO0) 4 X4y Y.AQ,B1L,

MEANAQ MEANDL 4 RX,RYyCXy CY s EyUSLTALEAQLLO00),ERLIL100) 4H,V1,GAIN,
ERRAOLERRB1 TOTRL,ER(1024) +FRAD(1024)4ERARL(1024),ERI1024),
TOTEAO(LOD) y TNTFBL( 100, TOTEI(LOO)}, MERAO, MERBL y MERIN,
AQERR Bl ERR, INERR

* % 4 »

BNM® IS THE LENGTH OF EACH RANDDM SENQUENCE.

WAMP» 1S THE AMPLITUDE OF THE FLCATING POINT

RANCDM SEQUENCE, BEFORE QUANTISATION.

SUBFOUTIHNE "PRANC" INITIALISES THE RANOOM NUMBER GENERATOR,

NM=1024

ANM=DFLOAT (NM) -
AMP=DF LOAT{INAMP) +0.50D0
CALL PRAND (IUK, IVKsNuA)
HMEANAQ=0.000
MEANBL1=0,000
MEANEE=0,0D0
MERA0=0.000

MERB1=0.000

MERIN=0,0D0

Y1=0.000

1Y1=0

DO 101 RUNS,
THE FIRST RUN IS TO ALLOW THE MEAN ERRQOR TO REACH EQUILIBRIUM,
THE VARIAMCE RECORDED FOR THE FIRST RUN TS REJECTED,

DO 3 I=1,101
TOTR=0,0D0
TOTRA0=0.00D0
TOTR81=0.000
TOTRI=0.,000
RX=0.000
RY=0.000
CX=0,000
CY=0.000
JY(1)=1Y1

FILTER A RANDCM SEQUENCE OF LENGTH *AM©n,

COMPUTE CNRRELATION BETWEEN SIGNALS AND ERRORS AT MULTIPLIERS.
STORE INPUT SEQUENCE IN ARRAY "Jx@v,

STORE QUTPUT SEQUENCE [N ARRAY "Jyn. -7
STORE SEQUEMCE AT DUTPUT CF AQ [N ARRAY "JW",

STORE SEQUENCE AT OUTPUT OF Bl I ARRAY “jv+,

00 2 N=1.NM

SUBPOUTINE “RAND" RETURNS A RANDCM INTEGER “IX"™ AND THE
FLOATING POINT EQUIVALENT ®Xnh,

CALL RAMD (TUK,IVKy NUNMs IXsAMP, INAMP X}
CX=CX4DFLOATLIX*1X)
CYy=CY+DFLOATlIYl*]Y]1)
CALL PMUL (TAQ,IX,IW,NORM,MTYPE)
CALL PMUL (IBL,IYLl, IY1,NORM,MTYPE)
[Yy=lw-1Vvl
JX{NI=IX
JY(N+LY=]Y
JHIN)=1W
JVinNI=IV1
CE=0FLCAT(IW]~-A0*X
RX=RX+ X«
E=DFLOATLIVL)I-BL&DFLOATIIYL)
RY=RY+DF LOATLIY1)*E
Iyl=1y

2 CONTINUE
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ZCDIR! (cont.)

1=1-1
IF TH1S IS THE FIRST RU,y RESET "[I" TO 1.
THE ARRAY LOUCATIONS FILLED WILL BE QVERWRITTEN ON THE NEXT RUN,

IF LIL) 74744
7 11=1

DELTA IS THE RECUIRFO MODIFICATION YO THE COEFFICIENT VALUE.

THIS MODIF ICATION ENSURES 2ERQ CORRELATICN BETWEEN SIGNAL AND ERROR,
THE MCDIFIED VALUE OF “aA0" IS STOREND [N ARRAY “EAQ",

THE MODIFIED VALUE OF "Bl1" IS STORD IN ARRAY "EB1Y,

& DELTA=RX/CX
EAO(TI)=A0+DELTA
DELTA=RY/CY
EBLIIL)=BL+DELTA

THE *INFINITE® CHANNEL FILTERING 1S NOW PERFORMED USING THE
MODIFIED CCEFFICIENT VALUES.

DO 6 N=1,NM

W=EAOLIT }*DFLOAT (JX(N))
VI=EBL(IL)*Y]

Y=W-V1

Yl=Y

ARRAY “ER"™ STORES THF ROUNDDFF ERROR AT THE FILTER OUTPUT.

ARRAY "CRAO"™ STORES THE RCUNDOFF ERRCR COMMITTED AT AOQ.

ARRAY “ERB1™ STORES THE ROUNDUFF ERRCR COMMITTED AT Bl.

ARRAY "ERI“ STURES THE ROUNDOFF ERRNR AT THE [MNPUT TO THE POLE SECTION.

ER{N)=DFLOAT(JY(N+1))-Y
TOTR=TOTR+ER(N)
ERAQ(N)=DFLCAT (JWIN}I-W
TOTRAQ=TOTRAQ+ERAQ(NI)
ERBLIN)=0FLOAT(JVIN))-EBL{IT)I*DFLOATI{JY(N))
TOTRBL=TOTRBL +ERBLIN)
ERT(N)=ERAQ(N)-ERBLIN)
TOTRI=TOTRI+ERI{N)

6 CONTINUE

IF THIS IS THE FIRST RUN, COMMENCE SECOND AFTER RESETTING ACCUMULATORS.

11=1-1

IF (1§) 15,15,16
15 TATR=0.000

TOTRAO=0.000

TOTRB1=0,000

TOTRI=0. 000

GO 10 3

THE MEANS OF THE ERROR SEQUENCES ARE COMPUTEDN.
THE VARIANCES OF THE ERROR SFQUENCES ABJIUT THEIR MEANS ARE DETERMINED.
THESE VARIANCES ARE STCRED IN THEIR RESPECTIVE ARRAYS.

16 TOTR=TOTR/ANM
TOTRAU=TOTRACG/ANM
TOTRBL1=TOTRB1/ANM
TOTRI=TCTRI/ ANM
TOTEE{I!1=0.,0D0
TOTEAOLII)=0,0D0
TOTEBL(I1)=0.0D0
TQTEILI] 1 =0.000
00 5 N=1,NM
Y=ER(N)~-TOTR
TOTEELTI)=TOTEE(TL)+Y*Y
Y=ERAO(N)-TOTRAD
TOTEAOCI T )=TOTEAQ(II)¢+Y®Y
Y=FRA1(N)}-TOTRB1
TOTEBLIIIV=TCTEBL({IL}+Y*Y -
Y=ERI (N) -TOTRI
TOTELCID)=TOTET(IL }eYhY
S COGNTINUE
TOTECHLIT)=TOTEE(IT)/ANM
TOTEAQGUIII=TOTFAQ{(IT)/ANM
TOTEBLUIT)I=TOTFRLITT)/ANM
TOTELLIT}=TOTEI{IT)}/ANN
MEANAOG=MEANADHEAOLET)
MEAND L=MEANBLEERLUIT)
MEANEE=MLANEL +TOTEEL]
MERAO=MERAOSTOTEAOLTT
FERBL=MERBL+TOTIULAIIT
MERTH=MERIN+TOTFICII)
3 (CGNTINUE

I
)
' 137




[2XskalksEalalaRa N aN el

Oaona 000

ZCDIR]1 (cont.)

UMERAQ"™ 1S THE MEAM VARIANCE OF THE ERROR SEQUENCE CREATED AT AO.

"MERHBL" S THE MEZAH VARIANCE OF THF ERROR SEQUUONCE CREATED AT Al.
WMERIN® 1S THE MESAM VARTANCE OF THL EQUIVALENT INPUT ERROR SEQUENCE.

YMEANAQO" IS THE MEAN MODIFIED VALUCD OF AQ.

PMEANBL" IS THE MCAN MCDIFIED VALUE OF Bl.

UGAIN"™ IS THE MEAN SQUARED NOISE GAIN OF THE POLE SECTION.
SUBROUTINE "ERRURY CALCULATES THE ERRCTS IN THESE MEANS.
PRINT SESULTS-

MEANAQ=MEANAO/0.1D3
MEANB1=MEANG1/0.103
MERAO=MERAG/0.1D3
MERBL=MERB1/0.103
MERIN=MERIN/0.1D3
CALL ERROR (EAN,MEANAO,ERRAQ)
CALL ERROR (EBL+MEANBL,ERRBL)
CALL ERRNR (TNTEAG,MERAOyAQERR)
CALL ERROR (TOTEB1,MERRL¢BLERR)
CALL ERROR (TOTEI +MMERIN, INERR) .
GAIN=MEANEE /MERIHN
WRITE (6,200) HEAMAD, ERRAQ
200 FOURMAT (1HO,10X,30H MEAN EFFECTIVE VALUE OF A0 = ,D]5.8,
* SH +/- ,09.2)
WRITE {6,205} MEANRL,ERRB1
205 FORMAT (1HO,10X,30H MEAN EFFECTIVE VALUE OF Bl
* 5H +/~ ,09.2)
WRITE (6+210) MERAQ,AQERR
210 FORMAT (1HO, 10X,25H MEAN ERROR VARIANCE AT AO0 =
* D15,8,5H ¢/~ ,09.2)
WRITE (64220} MERDL,BLERR
220 FORMAT (1HO,10X,29H MEAN ERROR VARIANCE AT 81 = ,
* D15,8,5H ¢/~ ,09.2)
WRITF (64230) HMERIN,INERR
230 FORMAT (1HO,10X,40H MEAN EQUIVALENT INPUT ERROR VARIANCE =
% D15.8,50 +/- ,09.2)
WRITE {6+240) GAIN
240 FORMAT (1H0,10X,13H MEAN GAIN = ,D15.8)
RE TURN
END

»D15.8,

ERROR o ;

SUBRQUTINE ERRQOR (AMEAN,AM, ERR)

EVALUATES THE ERROR (ERR) IN THE MEAN (AM} FROM 100 RUNS (AMEAN)

REAL#%#8 TOTD,AMEAN(100),AM,DEV,ERR
SUM SQUARED DEVIATICN OF INDIVIDUAL VALUES FROM THE MEAM.

TOTD=0.000
pa 1 I=1,100
DEV={AMEAN{I})-AM) &%2
fOTO=TOTD+DEV

1 COUNTINUE
TOTD=DSQRTI(TCTD}
ERR=TOTD/0.103
RETURN
END
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SETPSI

\
SUBROUTINE SETPSI

* (PS1,1A0,1A1,1A2,1D1,1B2,NORM, ICONST,LENGTH,IM,JM,NADDR)

FILLS THE AKRAY "PSI™ WITH THE APPROPRIATE INTEGER VALUES.

THE FILTER COEFFICIENT DATA "IAQ",

ARE ENTERED.

THE SIGNAL WORDLENGTH “LENGTH"™ IS ALSD REQUIRED.

"IA[".

n 'AZ" '

ll‘Blll'

"IB2" AND TNORMT

MICONST" RETURNS THE SCALING FACTOR OF THE STORED PSI VALUES.
"IMn = 0 IS KETURNEDR, THE TABDLE ONLY CONTAINS Z2ER0S.
IF “gM® = 0 IS RETURNED, NO ROUMDOFF HAS OCCURREC IN FORMING
THE STORED PSI VALUES.
“NADDR" 1S THE MUMRER OF ACORESS LINES TD THE LOOK UP TABLE.

IF

UNADDP" EQUALS

2 FOR A FIRST CRDER FILTER.
NADOR" EQUAL 5 FOR A SECOND OROER FILTER.

INTEGER*4 PSI(32),ICOEFFI32),41P(5)

PSI(1)=0

TEST FOR FIRST OR SECGND ORDER.

FIRST ORDER.

30

=2
If (NADDR-1) 30,30,50

ICOEFF{2)=-18B1 -
ICOEFF({3)=1A0
ICOEFF(4)=1A0-18B1
GO YO 60

SET IDEAL TABLE "ICOEFF“.

SECOND ORDER., SET IDEAL TABLE “ICOEFF™.

50 DO 11 Jil=1,2

15
14
13
12
11
60

FIL

1s

PSI VALUES MUJST BE SCALED OOWN BY A FACTOR OF 2.

L

1P{l)=d1-1
DO 12 J2=1,2
p(21=42-1
DO 13 J3=1,2
IP13})=J3-1
DD 14 J4=1,2
1IP(4)=d4-1
DO 15 J45=1,2
1P{5)=J5~1

K=16%1P(1)+8%IP(21¢4%[P(3)+2%IP(4}¢1P(5)41
JICOEFFIK)=1P(L)%[AQ+IP(2)%JAL¢IP(3)*1A2-1P(4)*IBL-IP{5]1%*IB2

CONTINUE
CONTINUE
COMT INUE
CONTINUE
CONTINUE
MTYPE=0

MUL =2%% ( LENGTH-11}
MAX=MUL-1
ICONST=1
IM=0
LM=2%4NADDR

ARRAY ®pS|I™n,

DD 1 1=2,LM

M

M=1COEFFL{I)

CALL PMUL (MUL4M,MyNORM,MTYPE)

PST(I =M
M=1 ABS(M)
IM=[M+M

Y00 GREAT?
IF (M-MAX) 141,2

CONTINUE
GO TO 4

RESET ARRAY "pPS[v,

2 MUL=MUL/2

ICOMST=ICONST*2
IM=0
GO TO 3
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SETPSI (cont.)

C TEST FOR NULL SET IN TABLE.

C
C

C THIS

C

[2XaXaNal OO OOOO

GO0

OO0 Oa00 [aNalNal ano

[aN el el [aXalaNgl

[aXaEalal

4 IF (IM) 5,10,5

5 JM=0
00 6 1=2,LM
M=PSL{1)=NCRM/MUL
JM=JMe TARSIN-TICOEFF(]))
6 CONTINUE
10 RETURN
END

LIMPST
SUBROUTINE LIMPSI (MAX,PSI,LENGTH,ICUNST,1,Jd¢K,sNORM]

DETFRMIMES ™I" THE MAXIMUM ALLOWED INPUT AMPLITUCE,

DETERMINES “J" THE RESULTING OUTPUT AYPLITUDE,

"pSI" IS THE LOCK UP TARLE.

YLENGTH" 1S THE SIGNAL WORCLENGTH,

nMAX" [S THE MAXIMUM PERMITTED AMPLITUDE.

" ICONST" [S THE RESCALIMNG FACTOR FOR STORED PSU VALUES.

wgkn ENTERS INFORMATION OM THE SIGN OF THE FILTER POLE COEFFICIENT
K 1 INUICATES B NEGATIVF,

K -1 INDICATES 81 POSITIVE.

INTEGER*4 PSI(32]

SET UP INITIAL LCNDITIONS.
START WITH "I™ AND "J" AT THE HMALIMUV,

MINUS=~1
LML=LENGTH-1
TMUL=NORM/ 2
I=MAX+1
J={MAX+1—-[CONST) *K
REDUCE INPUT AMPLITUDE.

6 I=I-1
1F {15 3+5,3

INPUT AMPLITUDE IS ZERD, RETURN.

5 J=0
' RETURN

DETERMINE FILTER GUTPUT "M" 8Y CALLING SUBROUTIME “RES2".
3 CALL RES2 (14JsMePSI, LML, ICONST, IMULNORMyMINUS)
1S QUTPUT "“M" TCO GREAT?
IF (M~MAX) 4,4,6
DETERMINE FILTER OUTPUT “Mv,

10 CALL RES2 (1sdyMyPST,LML,ICONST, IMUL,NORM;MINUS}
4 IF (1ABSIJI-M) 11,8,9

THIS VALUE OF #gv COULD NOT BE ATTAINED.
REDUCE "J", IF "J" = 0, RETURM.

9 J=K&M
1F (4) 10,20,10

REDUCE "J" AND TRY AGAIN. IF WJy® = 0, RETURN,

8 J=J-K=*ICONST
IF tJ) 10,20,10

aM" IS NOW THE MAXIMUM TILTER QUTPUT,
SET MJ» = upyn,

11 J=M
20 RETURN
END
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TABI

SUBROUTINE TAB1 {PST,ICONST,NORM,INAMP,AQ,D1,ER,TOTEF,MEANEE)

FILTERING SUNROUTINE.
FIRST ORDER FILTER.

LOOK UP TABLE REALISATION.
FIXED POINT ARITHMETIC.
ROUNDING ONLY.

INTEGER®4 NUM{128),PS1(32)
REAL=8 ANM,AMP,MEANEE.Y1,TOTEE{100) sXyY.AOQsBL.TOTRyER(1024}

UNM" IS THE LENGTH OF EACH RANDOM SEQUENCE.

CAMPT IS THE AMPLITUDF OF THE FLOATING POINT

RANDOM SEQUENCE, BEFORE QUANTISATION.

SUBROUTINE “PRAND"™ INITIALISES THE RANCOM NUMRLR GENERATOR,

NM=1024%

ANM=DFLOAT (NM}

IMUL=NORM/ 2

t MI=LENG TH-1

MINUS=-1

AMP=0DFLNAT{ INAMP) +0.5D0

CALL PRAND (IUKsIVKyNUM}
MEANEE=0.,00D0

¥Y1=0.000 -
1Y1=0

00 101 RUNS.
THE FIRST RUN IS TO ALLOW THE MEAN ERROR YO REACH EQUILIBRIUM,
THE VARTANCE RECORDED FOR THE FIRST RUN IS REJECTED,

00 3 1=1,101
TOTR=0.0D0

FILTER A RANDOM SEQUENCE OF LENGTH "“NM",
DO 2 N=1,NM

SUBKOQUTINE “RAND"™ RETURNS A RANDOM INTEGER "[X" AND THE

FLOATING POINT EQUIVALENT nxXu,

THE PARALLEL FILTERING IN THE INTEGER AND FLOATIAG PQINT

CHANNELS FCLLOWS.

SURRQUTINE "“RES2"™ OETERMINES THE FILTER OUTPUT FRCM THE LOOK UP TABLE.

CALL RAND (TUK,TVKyNUMyIX,AMP,INAMP 4 X)

CALL RES2 (IXpIYLloIY,PSI,LMY1, 1CONST, 1MUL:NORM,MINUS]
Y=A0*X-B1%Yl

I1Yl=1Y

Yi=Y

THE ROUNDOFF ERROR IS STORED IN ARRAY "ER*™,

ER{N)=DFLOAT(1Y)-Y o
TOTR=TOTR+ER (N}
2 COUNTINUE

IF THIS 1S THE FIRST RUN, COMMENCE SECOND IMMEOIATELY.

CALCULATE MEAN ERROR “TQTR",
CALCULATE VARIANCE WITH PESPECT TO MEAN,
STORE VARIANCE IN ARRAY "TOTEE".

4 TOTR=TOTR/ANM
TOTEE(LI1)}=0.0n0
DO 5 N=1,NM
Y=ERIN)-TNTR
TOTEECIL)=TOTEE(II)eY3Y
S CONTINUE
TOTEGL1T1)=TOQTEE( 1) /ANM
MEAMEE=MEANFLE¢TOTEE(II]) -
3 CONTINUE -
RETURN -
END -
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RES2

SUBROUTINE RES2 (IXsIVYLyI1YyPSI,.LM1, ICONST, IMUL,NORH,MINUS)

FIRST ORDER FILTER.

LOOK UM TABLE FORM,.

FIXED POINT ARITHMETIC.

DEYERMINES FILTER QUTPUT "IY% GIVEN INPUTS ®[X"™ AND “IYL".
"PSI™ IS THE LOOK UP TARLE,

HLM1"™ IS THE SIGMAL WORDLENGTH MINUS GNE.

YICONST" IS THC RESCALING FACTOR.

"IMUL™ EQUALS NORN/2Z.

YMINUS" IS A NEGATIVE INTEGER.

INTEGER*4 PSI(32),1P(5)
INITIALISE.

1W=0
[RO=TX
Ist=1v1

LOOK UP ALL BUT THE LAST PSI VALUE.
00 10 L=1,LM]

"IP(1)" PRESENTS SERIAL BIT STREAM OF “IXx%,
“IP(2)" PRESENTS SERIAL BIY STREAM OF "[Yl"n,

IP{1)=1ABS(MOD(IRO,2)}
IP12)=1ABS{MOD(ISL,2))
1PP=1P(2)+2%1P (1)
IR0=1R0/2

1S1=1S51/72

IF (IX) 14242

IF (IP(L}I 24243
1R0=1R0-1

{F (LYLl] 445,95

[F (IPL2)) 5,546
1S1=[51-1

O NW e

SET ADDRESS OF REQUIRED PSI VALUE.
ADD PSI VALUE TO ACCUMULATOR.

5 K=iPP+]
IW=IWFPSIIK)
IF {(L—-LM1) 8,7,8
DIVIDE ACCUMULATOR BY 2 TRUNCATING.

8 CALL PMUL (INULyIW,IW,NORM,MINUS)
G0 10 10

LAST BUT CNE PSI VALUE.
WHEN THE ACCUMULATCR [S OIVIDED BY 2 A DIFFERENT FORM DF RQUMDOFF IS USED,
THE OVERALL EFFFCT IS THAT THE ACCUMULATOR VALUE IS ROUNDED.

T IFf (IW) 30,30,31

30 Id=1v/2
GO 7Q 10

31 IR=]ABS{MOD{IW,2))
H=IH/2¢IR

10 CONTINUE
ADDKESS FINAL PSI VALUE.

1PP=0

IF [IX) t1,12.12
L1 1PP=[PP+2
12 IF (1IYL) 134,414,164
13 [PP=1PP+1
14 K=[PP#]

SUBTRACT FROM THE ACCUMULATOR.
RESCALE AS REQUIRED TO FORM FILTER QUTPUT "IY",

IW=IW-PSTIK)
[y=Iw*ICCNST
RETURN

END
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BLKFT2

SUBROUTINE BLKFT2 (KO, IX, 1YL, ISCALsN,MTYPE)

DETERMIMES SCALING OF SIGNAL SAMPLES FOR BLOCK FLOATING PDINT ARITHMETIC.
FIKST ORDER FILTER.

WISCAL™ IS THE INPUT AMPLITUDE OF THE SIGNAL.

UNY IS THE AMPLITUDE TO WnICH OUTPUT SAMPLES MAY BE SCALLO uP.

MKO™ ENTERS THE POWER NF 2 OF THE SCALING FACTOR FOR THE PREVIOUS

FILTER CYCLE, AND RETURNS THE VALUE FOR THE CURRENT CYCLE.

K1=KO0
K=0

SCALE NEW INPUT BY PREVINUS SCALING FALTOR.
TEST TO DETERMINE WHETHER THIS [S TOO GREAT.

M=1ABSUIX)#{2%%K]1)
IF (M=ISCAL) 7.7,1

FIND MAXTMUM MAGNITUDES AT INPUT AND OUTPUT.
IF BOTH ZERO, RETURN.

7 IXsIXx(2%2Kl)
MAX2=TABS(1X)
MAX3=1ABSI{IYL)
IF (MAX2) 3,843

8 IF (MAX3) 3,2,3

DETERMINE REQUIRED CHANGE IN SCALING FACTOR;

3 L2=(2#%%K } *MAX2
L3={2%%xK)*NAX]
1F (L2-1SCAL) 9,94
9 IF (L3-N) 10,1044

10 K=K#}
GO0 70 23
6 K=K-1

DETERMIHE NEW SCALING FACTOR,

-SCALE SIGNAL SAMPLES APPROPRIATELY,

K0=K1 X

L=2¢2K

IX=1X*L

IYl=1Yl=L
2 RETURN

SIGNAL SAMPLES MUST RE SCALED DOUN.
DETERMINE NEW SCALING FACTGR,

1 MIX=TARS(IX)
5 L=(2=xK]}*MIX
IF {(L-ISCAL) 1141046

11 K=K+l
GO TO S5

6 K=K-1
KO=K

SCALE SIGNAL SAMPLES APPROPRIATELY.

MUL=24%K0

I X= [ X*¥MUL

IONOM=({2%2K1)

CALL PMUL (MUL,IYl,IY1l,IONCM,MTYPE}
RETURN

END
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BLKDI

SUBROUTINE BLKODL
¥ (TAQIBL/NORMyMTYPE s INAMP ;AQO+81 4ERy TATEELMEANEE, TM, TOTSUK, AMSQK )

FILTERING SURPOUTINE.

FIRST ORDER FILTER,.

DIRFCT FURM.

BLOCK FLOATIMG PGINT ARITHMETIC.

DIMENSTON NUN(128)
PEAL®8 ANM,AMP,MEANEE,Y1,TOTEE(100)+X,YyAOQ,81,TOTR,ER(1024),
* AMSQKAK, [OTSQK{100)

WNMM IS THE LENGTH 0OF EACH RANDOM SEQUEMCE,

wpMpe 1S THE A“PLITUDE OF THE FLOATING POINT

RANDOM SZQUEMCF, BEFORE QUANTISATION,.

SUBROQUTINE "PRAND" INITIALISES THE RANDOM NUMRER GENERATOR.

AM=1024

ANM=DFLOAT(NM])
AMP=DFLOAT L INAMP) +0.5D0

Call PRAND (LUK, [VK,NUM} -
MEANEE=0.00D0

AMSQK=0,0D0

K0=0

Y1=0.000

IY1=0

DC 101 RUNS.
THE FIRST RUN IS TO ALLOW THE MEAN ERROR Tu REACH EQUILIBRIUM,
THE VARIANCE RECORDED FOR THE FIRST RUN IS REJECTED.

DO 3 I=i,l01
TOTR=0.000
AK=0.000

FILTER A RANDOM SEQUENCE OF LENGTH “NM",
DO 2 N=1,NH

SUBROUTINE “RAND" RETURNS A RANCIOM INTEGER "“IX® AND THE
FLOATENG POINT EQUIVALENT ux,

THE PARALLEL FILTERING IN THE INTEGER AND FLOATING POINT
CHANNELS FCLLOWS.

CALLL RAND (TUK IVKNUM, 1XsAMP,INAMP,X)
SCALE SITNAL SAMPLES.

CALL BLKFT2 (KO IXsEYL, [MAMP, IM,NTYPE])
CALL PMUL (TAO+IXsTW,NORM,MTYPE)

CALL ©MuL (IBLs»1Y1l,1VL,NORHM,MTYPE}
Iv=lw-IVl

RESCALE FILTER OUTPUT,

MUL=NORM/(2%4KC}

CALL PMUL (MULyIVyIY,NORM,MTYPC)
Y=AQ*X-BLl*Y1l

1Yl=1vV

Yl=Y

THE ROUHDOFF ERROR [S STORED IN ARRAY mERM,

ER{N)=DFLQAT({lY)-Y

TOTR=TOTR+ER (M)

AK=AK+(1,000/(2,0D0**{2+K0)}}
2 CONTINUE

IF THIS IS THE FIRST RUN, COMMENCE SECOND IMMEDIATELY.

Il=1-1
IF (1X) 3,3,4

CALCULATE MEAN ERROR "TOTRY,
CALCULATE VARIANCE WITH RESPECT TO MEAN. -
STORE VARIANCE IN ARRAY “TQTVEE™N,

4 TOTR=TQTR/ZANM
TOTSOK(I 1) =AK/ANM
AMSQK=AMSOK ¢ TOTSQK (T 1)
TOTEE(11)=0.000
DO 5 N=1,NM
Y=ER{N)-TOTR
TOTEE(LI)=TOTEEL 11 ) +¥AY

5 CONTINUE
TOTECCIL)=TCTEEN 111/ ANM
MEANEE =MEANCE+TNTEECIT) 144

3 CONTINUE
RETURN
END




DIR2

SUBROUTINE DIR2 (MAX,1A0,141,1A2,1B1,1B82,NORMyMTYPE,INAMP,
¥ AO,Al,A2,81,B2+ER,TOTEE,MEANEE)

C
C FILTERING SUBROUTINE.
C DIRECT FORM,
C SECCND ORDER FILTER.
C FIXED POINT ARITHMETIC.
c
CIMENSTON NUMLL128)
REAL#*8 ANM,AMP,MEANEEWY],TOTEE(100) +X4Y,AD»BL,TOTR,ER(1024]),
% ALyAZ2+B29X1yX2,Y2
c
C “NM" IS THE LENGTH OF EACH RANDOM SEQUENCE,
C “AMP" IS THE AMPLITUOE OF THE FLOATING POINT
C RANDOM SCQUENCE, BEFORE QUANTISATION.
C SUBROUTINE “PRAND®" INITIALISES THE RANDOM NUMBER GENERATOR,
o

AN=1024
ANM=DFLOAT (NM;

T0 AMP=DFLOAT{INAMP)I+0.5D0
CALL PRAND (IUK,IVK.NUM)
MEANEE=0.000
Y1=0.000
¥2=Y1
X1l=Y1
X2=Y1
1Y1=0
Ive=1vY1l
1X1=1Y1
IX2=1Y1

00 101 RUNS.
THE FIRST RUN IS TO ALLOW THE HMEAN ERRCR TO REACH EQUILIBRIUM.
THE VARIANCE RECORDED FOR THE FIRST RUN IS REJECTED.

(g XaNaNaNal

b0 3 1=1,101
TaTR=0.000

FILTER A RANDOM SEQURNCE OF LENGTH "NM®~,

00 2 N=1,NM
SUBPOUTIME Y"RAND" RETURNS A RANDOM INTEGER “IX™ AND THE
FLOATING POINT EQUIVALENT wxnr,

THE PARALLEL FILTERING IN THE INTEGER AND FLOATING POINT
CHANNELS FCLLOWS,.

2 XskalskaXal [a ¥ e X o

CALL RAND (UK, IVKNUM, [X,AMP, [HAMP, X)
CALL PMUL (TAO+IX,TIW,NORNM,MIYPE)
CALL PMUL (TALyIX1le1WlgNURM,MTYPE)
CALL PMUL (TA2,1X2yIHW2,NCRM,MNTYPE)
CALL PMUL (181,IYL,IV]1,MCRM,MTYPE)
CALL PMUL (IB2,1Y2,172,NORMMTYPE]}
IY=IWs+¢IWleIW2-[VI-1V2
MAG=MAXO(TABS(IY)}, IABS(IVL))
IF (MAG-MAX) T1l,71,72
72 INAMP=INAMP-~]1
GO 70 70
Tl Y=A0#X+Al=X1#A2%X2-BleY]1-~B24Y2
IX2=1X1
IXl=1X
IY2=1Y1l
Ivi=1Y
X2=X1 .
X1=X
Y2=Y1
Yi=Y
C
C THE ROUNDOFF ERRQP IS STORED IN ARRAY MER",
C
ER{N)=0FLOAT(IY)-Y
TOTR=TOTR+ER (M)
2 CONTINUE
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DIR2 (cont.)

IF THIS IS THE FIRST RUM, COMMENCE SECCND IMHECIATELY.

I1=1-1
IF (I1) 34344

CALCULATE MEAN ERPOR "TOTR",

CALCULATE VARIANCE WITH RESPECT TC MEAN.

STORE VARIANCE IN ARRAY "“TOTEE".

4 TOTR=TCTR/ANM
TOTEE(1{)=0.0D0

DO S N=1,NM
Y=ERIN)-TOIR
TOTEE(IT}=TOTEE(I]) +Y%Y
CONT INUE
TOTEE(IT)=TCTEE(IT1/ANM
MEANCE=MEANEE+TOTEE(II)
CONT INUE

RETURN

END

v

»

LIMS]

SUBROUTINE LIMSL(MAXy1AQ, IBL,NORM,I4uyMIYPE,MyN)

LETERM{MES "I", THE MAXIMUM FILTER INPUT AMPLI TUDE,
DETERMINES "M, TFE MAXIMUM OUTPUT AT MULTIPLIER AQ.
DETERMINES "Jv, THE MAXIMUM FILYER NUYTPUT AMPLITUDE.
DETLRMIHES "N", THS MAXIMUM OQUTPUT AT MULTIPLIER 81,
"MAX"™ IS THE MAXIMUM ALLCWABLE SIGNAL AMPLITUDE,

J=MAK+2
[=J-1
IB=1ABS(181)
M=1

REDUCE IMPUT AMPLITUDE.
T MM=M

I=1-1
I1=-1

CALL PMULITAQ,[1yM,NORM,MTYPE)

IF (M) 11,1011
11 IF (MM-M) 9,7,9

FIND CORRESPONDING DUTPUT AMPLITUDE.

9 N=1

REDUCE QUTPUT AMPLITUDE.

3 Ni=N
J=J-1
Jd==J

CALL PMULLIR,JJ, Ny NORM, HTYPE)

IF (N) 13,10,13
13 IF (NN-N)} 3,2,3
2 K=JiNsl

MM=-N

IF (K-MM) 4,5,3

INPUT AMPLITUDE TOO HIGH,.

& Jd=J42
GO 10 7
5 IF ‘J‘MAX' a.fbpl'
8 J=J¢l
M==M
N=-N
10 RETURN
ENO
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CAN2

SUBROUTINE CAN2 (MAX,1AA,1AC,1AL,1A2,181, TR2,NORM,MTYPE, INAMP,
* AOWALsA2,81,882,ER, TOTEE,MEANEE)

FILTERING SUBRQUTINE.
SECOND ORDER FILTER.
CANOUNIC FORM,

FIXED POINT ARITHMETIC.

DIMENSION NUM(12R1)
REAL=8 ANM,AMP,MEANEE TOTEE(100)TOTR,ER{LO24) X gV eH WLl W2,
= AAZANOyALsA2,B1,4R2

UNM® IS THE LENGTH OF EACH RANDOM SEQUENCE.

WAMEY IS THE AYPLITUDE OF THE FLOATING POINT

RANDOM SEQUENCE, BEFORE QUANTISATICN.

SUBROUTINE “PRAND" INITIALISES THE RANDOM NUMBER GENERATOR,

AM=1024
ANM=DFLODAT(NM}
70 AMP=DFLOAT (INAMP}+0,500
CALL PRAND (1UKIVK NUN}
MEANEE=0.000
Wi=3.000
W2=w1 -
IWl=0
IW2=1Wl

DO 101 RUNS,
THE FIRST RUN IS TO ALLOW THE MEAN ERROR TO REACH EQUILIBRIUNM.
THE VARJANCE RECOFDED FOR THE FIRST RUN [S REJECTED.

DO 3 I=1,101
TOTR=0.000

FILTER A RANDCM SEQUENCE OF LENGTH ®AM",
DO 2 N=1,NM

SUBROUTINE "RANDY™ RETURNS A RANDOM INTEGER *IX" AND THE
FLOATING POINT EQUIVALENT “X®,

THE PARALLEL FILTERING [N THE INTEGER AND FLCATING POINT
CHANNELS FOLLOMWS.

CALL RAND {IUK,IVK,NUM,IXAMP,INANP,X)
CALL PMUL (TAALIX,IX;NORMNTYPE)

CALL PMUL (IBL.IWL,sIVL,NORM, MTYPE)
CALL PMUL (182,1IW2s1V2,NORM,MTYPE)}
IN=[X-1VL1-IV2

CALL PMUL (1AOQyIW,IUNORM,MTYPE)

CALL PMUL (IAL,IW1l,1Ul,NORM,MTYPE)
CALL PRUL (IA2,1W2,1U2,NORM,MTYPE)
1Y=1Uusrlul U2

CHECK THAT SAPPLES ARE WITHIN LIMITS.

MAG=MAXD LIARS (TN, [ABSUIVL), IABSCIY ), 1ABSLIUY, [ABS(IULY,
* 1ABS(IU2))
IF (MAG-MAX) T1471,72
72 INAMP=INAMP-1
60 1O 70
Tl W=AAXX-Blewl-B2%wW2
Y=AO*W+AL& WL +A2 W2
1W2=1W1
Iwl=1Iw
W2=wl
Wi=w

THE ROUNDQFF ERROR IS STORED IN ARRAY “ER™,
ER(NI=DFLOAT(IY)-Y

TOTR=TOTR+ER{N}
2 CONTINUE
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CAN2 (cont.)

1F THIS IS THE FIRST RUN, COMMENCE SECGND !MNEDIATEFY.

11=1-1
IF LI1) 3,344

CALCULATE MEAN ERROR "TOTR®,

CALCULATE VARIANCE WITH RESPECT TO MEAN.

STORE VARIANCE IN ARRAY "TOTEE".

4 TOTR=TOTR/ANM
TOTEE(IT1=0.000
D0 5 N=1,NM
Y=ER(N}-TOTR
TOTEECI[)=TOTEE{LY)+Y5Y
S CONTINUE
TOTEECIT1=TOTEEL [T )/ANM
MEANEE=MEANEE+TOQTEE(IL)
3 CONTINUE
RETURN
END .

BOUND )

SURROUTINE BOUND [MAX,IAOQ+IBL«NORM,I,J,KsMTYPE)

DETERMINES "K" THE MAXIMUM QUTPUT BETCRE RESCALING.
IF THE NUTPUT AMPLITUDE WITHOUT SCALING "™J" IS ECUAL TO "MAXY,
THELR "KY EQUALS "HAX",

I8=1ABS(181)

IF (J-MAX) 142,1
2 K=MAX

RETURM

FIND THE MINIMUM VALUE OF THE SCALING FACTOR “L™ SUCH THAT THE
PDSSIBLE SCALED QUTPUT EXCEEDS "MAX",

1 L=0
3 L=L+l

JI=Jx (2L}

IF (JJ-MAX) 3,4.,4
4  M=2%%(

FIND THE MAXIMUM INPUT SIGMAL WHICH CAN BE ACHIEVED BY THIS SCALING FACTOR.
AX+1

M
I1-M
(II-1) 64645

il

5 11
IF
DUTERMINE- CORRESPCNDING QUTPUT AT MULTIPLIER A0,

6 Ii=-11
CALL PMUL (TAO+II1,11,NORM,MTYPE)}
li=-11

DETERMINE MAXIMUM ALLOWABLE OUTPUT AT MULTIPLIER Bl.

K=MAX+]l
T K=K-1
IF {K-d1 9,948
8 KK=-K
CALL PMUL (IbsKK,KKyNORMyMTYPE)
M=[1-KK
IF {M-K} 9,9,7
9 RETURN
END
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TAB2

SUBROUTINE TAB2
% (MAX,PST,[CONST,NORM, INEVP, ADyALsA2,B1,B2,ER, TOTEE,MEANEE)

C
C FILTERING SUBRNOUTINE.
C SECCND QORDER FILTER,
C LDJOK UP TABLF REALISATION.
C FIXED POINT ARITHMETIC.
C ROUNDING ONLY.
c
INTEGER*4 NUMI128),PST{32)
REAL*B ANM,AMP,MEANEE+Y1,TOTEE(100) ¢X+1Y+A0»BLyTOTR,ER{1024),
* ALyA2¢/B2yX19X24Y2
c
C "NM"™ [S THE LENGTH OF EACH RANCCM SEQUENCE.
C "“AMP" [S THE AMPLITUDE OF THE FLOATING POINT
C RANOD! SEQUEMCE, REFORE QUANTISATION.
C SUBKFOUT INE "PRAND™ INITIALISES THE RANDOM NUNBER GENERATOR,
c

NM=1024
ANM=DFLOAT (NM)
IMUL=NORM/2 -
LML=LENGTH-1
MINUS=-1
T0 AMP=DFLOAT(INAMP)}+0.500
CALL PRAMND (TUK,IVK,NuM}
MEANEE=0.000 )

Y1=0.000
v2=Y1
X1=Y1
xX2=Y1
1YL=0
1v2=1Y1
IX1=1v1
IX2=1Y1
c .
C 00 101 RUNS.
C THE FIRST RUN IS TO ALLOW THE MEAN ERROR TO REACH EQUILIBRIUM,
C THE VARIAMCE RECORDED FOR THE FIRST RUN IS REJECTED,
C
DO 3 I=1,101
TOTR=0.000
C
C FILTER A RANDCM SECUENCE OF LENGTH "NM©w,
C
DO 2 N=1,NM
C
C SUBRRQUTINE "RAND"™ RETUPNS A RANDOM INTEGER "IX" ANO THE
C FLOATING PCINT EQUIVALEHT uxw,
C THE PARALLEL FILTERING IM THE IMTEGER AND FLDATING POINT
C CHANNELS FOLLOMS,.
C SUBRUUTINE “RESS™ DETERMINES THE FILTER QUTPUT FROM THE LOOK UP TABLE.
C .

CALL RAND {ITUK,IVK NUM,IX,AMP,INAMP,X)
CALL RESSUIXyIXLyIX2,1Y1,1Y2,1Y4PST4 LML, ICGNST,IMUL,NNRM,MINUS)

CHECK THAT SAMPLES ARE WITHIN LIMITS.

[z NaXal

IF (TABSUIY)I-NMAX) T1471.72
T2 INAMP=LHAMP-]
GO T3 70
71 Y=AO*X+AlsX14A24X2-Bl*Y1-B2%Y2
IX2=1X1
IX1=1X
IY2=1y1
Ivi=1y
X2=X1
X1=X
¥2=Y1
Y=Y
c
C THE RQUNDOFF ERROR IS STORED IN ARRAY "ERY,
[
ERINI=DFLOAT(IY)-Y
TOTR=TOTR+ER{N)
2 CONTINUE
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TAB2 (cont.)

IF THIS IS THE FIRST RUMN, COMMENCE SECOND IMMCODLATELY.

CALCULATE MEAN ERRQOR "TOTRY,
CALCULATE VARIANCE WITH PESPECT TO MEAN.
STORE VARIANCE IN ARRAY "TOTEE",

& TQAQTR=TOTR/ANM
TOTEE(I1)=0,0D0
DO 5 A=1,NM
Y=ER{N)-TOTR
TOTEC(I1)=TOTEC(LI )+ Y*Y
5 CONTINUE
TOTEE{IL)=TOTEE(LII)/ANM
MEANEE=MEANEE+TOTEE(I])
3 CONTINUE
" RETURN
END -

INTGRL

SUBROUTINE INTGRL (A,BybM,IN,V}

CALCULATES THE CONTNOUR INTEGRAL ARDUND THE UNIT CIRCLE OF
(1725P 1312871 *0B(25%-1)/{A(2)*A( 2% -1)22)

A{Z)= AL )% 2%aN+A(2)#2*¥*{N~]1)tasaseaasees tA(NE])

BLZY=BLY I*Z*>NER(2)*¥73%(N-1)taoesaevsoetD{Ntl)

N=ORDER OF POLYNOMIALS A AND B,

IN=OIMENSION OF A AMD B IN MAIN PROGRAM,

INTEGRAL IS RETURNED IN V.

SEE "ASTROM, JURY € AGNIEL",

REAL*8 A(IN),BUIN},AS{L1),V,AQ,ALFA,BETA
AD=A(1)

Vv=0,000

D0 10 K=14N

L=N+1-K

Ll=L#1
ALFA=A(LL)ZALL)
BETA=B(L1)/7A(}1)
V=V+BETAZB (L L)

DO 20 I=1,tL

M= +2-1
ASUI)=ACLT)~ALFAXA(M)
B{I)=B{I)~-BETA%A{M)

20 CONTINUE . .
DO 40 I=1,L e
ALI)=ASLT)

40 CONTIMUE

10 CONTINUE
V=V4BLL)*x+¢2/A(1)

V=V/AO
RE TURN
END
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C
C
C
c

C
c
C

RESS5

SUBROUTINE RESS

* {IXeIX1)IX29 1YLy 1Y241Y,PST LML, ICONST,IMUL,NDRM,MINUS)

SECOND QROER FILCER,

LOOK uUP TABLE FORM,

FIXLD POINT ARITHMETIC.

DETLPMIMNES FILTER QUTPUT "Iv" GIVEN INPUTS ®IX®,
wpS I [S THE LOOK UP TABLE.

WML IS THE SIGNAL WORDLENGTH MINUS ONE.
"ICOMSTY IS THE RESCALING FACTCR.

"IMULY EQUALS NORM/2,

PMINUS™ 1S A NEGATIVE IMTEGER.

INTEGER*4 PSI{32)4IP(5)
INITIALISE,

fu=0
TRO=IX
IR1=TX1
IR2=[X2
ISi=1Yl
182=1Y2

LOCK UP ALL BUT THE LAST PSI VALUE.
DO 10 L=1,LM1

“IP{1)" PRESENTS SERIAL RIT STREAM OF "[X",
nIp{21" PRESENTS SERIAL BIT STREAM NOF “IX)IM,
UIP(3)" PRESFNTS SERIAL BIT STRELM NF "[X2°,
TIP(4) PPESENTS SERIAL BIT STKREAM QF *lYL",
“IP(5)" PRESENTS SERIAL BIT STREAM OF “lya",

IPLL)=IABS{MCD(IRG,2)}
IP(2)1=1ABS(MCD{IRL,2))
IP{3)=IABS(MCD(IR2421)
IPL2)=TABS(MOD(ISL,2))
IPISI=TABS(MOD(1S52,2))
IPP=16%IP(1)#8%]P(2)#4xIP(3)+2%IP(4)+]PL5)
IRO=IRQ/2
IR1=[R1/2
IR2=[R2/2
1S1=18172
1s2=152/72
IF (IX) 14242
1 IF (1P(1)) 242.3
3 1RO=[RO-1
2 IF (IX1) 21,22422
21 IF (1Pl2)) 22422423
23 IRl=[R1-1
22 IF (1X2) 34,32,32
34 IF (IPI(3)) 32,32,33
33 IR2=IR2-1
32 1F (1YLl) 41,42,42
41 IF (IPL{4)) 642,42443
43 ISl=1S1-1
42 IF (1Y2) 5145,5
51 IF (IP(5)) 5,%5,53
53 1S52=]S2-1

SET ADDRESS OF REQUIRED PSI VALUE.
ADD PSI VALUE TO ACCUMULATOR.

5 K=[PP+l
Th=1TWe¢PS (K]}
IF {(L-LM1) 8,7,8
DIVIDE ACCUMULATCR BY 2 TRUNCATIMG.

8 CALL PMUL (IMUL,IW,IW,NORM,MINYS})
G0 TO 10
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RES5 (cont.)

c
C LAST BUT OMNE PSI VALUE.
C WHEN THE ACCUMULATOR IS DIVIDEO 8y 2 A DIFFERENT FORM OF ROUNDOFF IS USED,.
C THE DNVERALL EFFECY IS THAT THE ACCUMULATOR VALUE IS ROUNDED.
c
7 IF (IvW) 30,30,31

30 In=Iw/2
GO T0 10
31 IR=1ABS(MOD(IW,21})
fW=IW/2¢]R
10 CONTINUE
C
C ADDRESS FINAL PSI VALUE.
C
1PP=0
LF (IX) 11,12,12
11 1PP=IPP+16
12 IF (IX1) 13,14,14
13 [PP=[PP+8
14 IF (1X2) 15,146,186
15 IPP=IPP+4
16 IF (Ivl] 17,18,18
17 1PP=1PP+2 -
18 IF {1Y2) 19,20,20
19 1Pp=[PP+]
20 K=IPP+1l
C

C SUBTRACT FRCM THE ACCUMULATOR,
C RESCALE A5 REQUIRED TG FORM FILTER QUTPUT “lY",
C

fvu=1wW-PSI (K)

[Y=1IW*ICONST

RETURN

END

152




BLKFTS

SUBROUTINE BLKFTS5 (KO, IXeIX1s1X2,1Y1,1Y2, ISCALyNyMTYPE)
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DETFRMINES SCALING QF SIGNAL SAMPLES FOR BLNCK FLOATING POINT ARITHMETIC.
SECCND ORDER DIRECT FILTER.
CISCAL" IS THE INPUT AMPLITUDE OF THE SIGNAL.
“NY 1S THE AMPLITUNDE TO WHICH OUTPUT SAHPLES “MAY BE SCALED UP.
“KO" ENTERS THE POWER OF 2 OF THE SCALING FACTCR FOR THE PREVIQUS
FILTER CYCLE, AMND RETURNS THE VALUE FOR THE CURRENT CYCLE.
K1=K0
K=0

SCALE NEW INPUT B8Y PREVIOUS SCALING FATTOR,
TEST TO DETERMINE WHETHER THIS (S TOQ GREAT.

M=TABSUIXI*(2%451)
IF (M-ISCAL) 7,7,1

FINU MAXTMUM MAGNITUDES AT INPUT AND OQUTPUT.
IF BOTH 2ERO, RETURN,

T IX=IX*(2%xK1)} .
MAX2=MAXO(IABS{IX) ,TARS(IXL),1ARS{IX21)
MAX3=MAXO( IABS(IYL)JADSLIY2))

IF (MAX2) 3,8,3

8 IF (MAX3) 3,24)

DETERMINE REQUIRED CHANGE IN SCALING FACTOR.

3 L2=(2%¥K }¥MAX2
L3={2%%K )*¥MAX]
IF {L2-1ISCAL) 9,94
9 IF {L3-N) 10,10,4

10 K=Ke¢l
c0 TO 3
4 K=Kk-1

DETERMINE NEW SCALING FACTOR.
SCALE SIGNAL SAMPLES APPROPRIATELY.

KO=K1+K
L:Zl}n&l(
IX=1X%L
IXI=IX1%L
IX2=1X2*L
Ivi=1yl*t
IY2=1Y2%1
2 RETURN

SIGNAL SAMPLES MUST BE SCALED DOWN.
DETERMINE NEW SCALING FACTOR.

1 MIX=TABS(IX)
5 L={2%*K)»MIX
IF {(L-1SCAL) 11,411,6

11 K=K#l
GO TQ 5
6 K=K-1
KO=K
SCALE SIGNAL SAMPLES APPROPRIATELY.
VUL =2%%K0
I X=T1X=MUL

TONGM=(22¥K ]}

CALL PMUL {MUL 4 TX141X1,TONGMMTYPE)
CALL PMUL (MULIX24IX2, IONOMMTYPE)
CALL PMUL (MUL,IYLle 1YLy ICNCHY MTYPE]D
CALL PMUL (MUL,TY2,1Y2,IDNCHM,MTYPE)
RETURN

END
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BLKD2

SUBRDUTINE BLKD2 {(MAX,Y1A0,TALsIA2,I81,1F2,NORN,MTYPE, INAMP,
* A04AL,A2,B14B24ER,TOTFE,MEANEE, [MyTOTSOK, AMS0K)

FILTERING SUBROUT INE.

DIRECT FORM.

SECCMNC ORDER FILTER.

BLOCK FLOATING POINT ARITHMETIC.

DIMENSIGN hNUM(128)

REAL*8 ANM AMP,MEANEE,Y1o TOTEE(100) ,X¢Y o AO»B1,TOTR4ER(1024]),

® AL A2,82,X19X2)Y2,AK, TOTSQK (100}, AMSQK

UNMP IS THE LENGTH OF EACH RANDOM SEQUENCE.

WAMPY IS THE AMPLITUNE OF THE FLOATING POINT

RANDOM SEQUENCF, DEFGRE QUANTISATION.

SUBKRUUT INE "PRAND" INITIALISES THE RANDOM NUMBELR GENERATOR,.

NM=1024
ANM=DFLOAT{NM)

70  AMP=DFLOAT(INAMP; +0.500
CALL PRAND (1UL<LsIV<yNUM)
MEANEC=0,000
AMSOK=0.0D0 -
K0=0
Y1=0.000
¥2=vl}

Xil=v1
X2=Y1
IY¥1=0
1Y2=1Y1
IXi=1v1
IXx2=1Y1

D 101 RUNS.
THE FIRST RUN 1S TO ALLOW THE MFAN ERROR TO REACH ECQUILIBRIUM,
THE VARIANCE RECORDED FOR THE FIRST RUN IS REJECTED,

0o 3 [=1,101
TOTR=0.000
hK=0, 000

FILTER A RANDCM SEQUENCE OF LENGTH "hM",
DD 2 N=1,NM

SUBROUTIME MRAMD'™ RETURMS A RANDOM INTEGER “ix" AND THE
FLOATING POINT CQUIVAL ENT nxn,

THE PARALLEL FILTERING IN THE INTEGER AND FLOATING POINT
CHANNFELS FCLLOMWS.

CALL RAND (IUK,IVK NUM,IXsAMPy INAMP, X}
SCALE SIGNAL SAMPLES.

CALL BLKFTS (KO, IXs1X1,IX2,1Y1s1IY2y INAMP, IH MTYPE)
CALL P L (TAC, I X, IW,NORM,RTYPE)

CALL PMUL (IAL,IX1,1W1,HORNM,NTYPE)

CALL PMUL (TA2,1X2,1WH2,NCRM,MTYPE)

CALL PMUL (IBl,I1Yls1V1,MORM,MTYPE)

CALL PMUL {T182,1Y2,1V2,NORM,MTYPE)
IV=IWtIHLI+IW2-TV1-1V2 :

CHECK THAT SAMPLES ARE WITHIN LIMITS.

IF (TABS(IVI-IM) 71,71,72
72 INAMP=INAMP-]

GO TO 70
71 IF (1ABS{IVLI)-MAX) 74,774,173
73 IM=IM-1

INAMP=MAX

GO T0 70
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BLKD2 (cont.)

C
C RESCALE FILTER OUTPUT.
C ,
T4 HUL=NOPM/(2%%K0)
CALL PMUL (MUL, IV, IYNORMMTYPE)
Y=A0*X+A)# XL +A2%X2~-Bl*Y1-B2%Y2
IX2=1X1
IXL=1X
1¥2=1Y1
Ivl=1v
X2=X1
X1=X
Y2=Y1
Yl=Y
C 2
C THE ROUNDJFF ERRQR IS STORED IN ARRAY ®ERY,
C
ER(MN)=DFLOAT(IY)~Y
TOTR=TOTR+ER(N)
AK=AK*+(1s000/12,0D0%*(2%K0} )}
2 CONTINUE
C
C IF THIS IS THE FIRST RUN, COMMENCE StCOND IMMEOIATELY.
C
11=1-1 R
IF (11} 3,3,4
C
C CALCULATE MEAN ERROR "TOTRY™,
C CALCULATE VARIANCE wlTH RESPECT TQ MEAN.
C STORE VARIANCE IN ARRAY “TOTEE",
C
4 TOTR=TOTR/ANM
TOTSQK (I I ¥=AK/AMM
AASCK=AMSQK+TOTSQKIIT)
TOTEE(I1}=0,0D0
DO 5 N=1,NNM
Y=ER{N}-TOTR
TOTEELIL )=TOTEE({I]1)+VY%Y
5 CONTINLE .
TOTES(II)=TOTEE(I1)/ANM
MEANEE=MEANEE+TOTEE(IT])
3 CONTINUE
RETURN
END
VAR
SUBROUTIME VAR {MUL ,NORM,A-IUL,P4LIM,V,MTYPE}
C
C CALCULATES THE NOISE VARIANCE COMTRIBUTED BY THE MULTIPLIER
C (MUL/NORMY: "VYARM,
C ARRAY "P* HOLNS THE AMPLITUDE DISTRIAUTION FUNCTION FOR THE
C SIGNAL AT THE MULTIPLIER INPUT,
C “LIM" 15 THE NUMBER OF SIGNIFICANT ELEMENTS IN P,
C

DIMENSION P(128)
REAL%8 ANMUL,V, Al
v=0.000
DD 1 I=2,LIM
Il=1-1
Al=DFLOAT(I1}
CALL PHMUL (MUL,I1,1Y,NORM,MTYPE}
AT =Al*AMUL
AI=AI-DFLOAT{LY])
V=V+AT#AT*P (]}

1 COHTINUE
V=v*2.,000
RETURN
END -
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BLKFT3

SUBRROUTINE BLKFT3 (K0|lX.IY[:IYZ.[SCAL'NyMTYPE!

DETERMINES SCALING DF SICNAL SAMPLES FOR RLOCK FLOATING POINT ARITHMETIC.
SECOMD ORDEP CANONIC FILTER.

UISCAL" S THE INPUT AMPLITUDE OF THE SIGNAL.

wpe 1S THE AMPLITUNE TO WHICH QUTPUT SAMPLES MAY BC SCALED ur.

UKO" ENTERS THL POWFR OF 2 OF THE SCALING FACTOR FOR THE PPREVIOUS

FILYER CYCLE, AMD RETURNS THE VALUE FDOR THE CURRENT CYCLE.

K1=KO

K=0 3
SCALE NEW INPUT BY PREVIOUS SCALING FACTOR.
TEST TO DETERMINE WHETHER THIS 1S TOD GREAT.

M=TABS(IXI*{2%*K1)
1F (M=ISCAL) 7,7,1

FIND MAXTMUM MAGNITUDES AT INPUT AND OUTPUT.
1F ROTH ZERC, RETURN, )

T IXsIX#(2%%K1) -
MAX2=TABS(IX)
MAX3I=MAXOCUTABSCIYL ) [ABS(IY2))
IF {MAX2) 3,8,3 .

8 IF (MAX3) 3,2,3

DETERMINE REQUIRED CHANGE IN SCALING FACTUR.

3 L2=(2%*K)*MAX2
L3=(2*+K)*NAX3
IF {L2~1SCAL) 9,9,4
9 IF (L3-N) 1041044

10 K=K+l
€0 Y0 3
4 K=K-1

DETERMINE NEW SCALING FACTOR.
SCALE SIGNAYL SAMPLES APPROPRIATELY,.

KO=Kl1 #K

L=25%K

IX=IX*L

Irl=1Y1%L

1Y2=1Y2%L
2 RETURN

——

SIGHNAL SAMPLES MUST BE SCALED DOWN.
DETERMINE NEW SCALING FACTOR.

1 MIX=T1ABS(IX}
5 L=(2*xxKI*M[X

IF {L-ISCAL) t1l,11,6

11 K=K¢l
GO 10 5

6 K=K-1
K0=K

SCALE SIGNAL SAMPLES APPROPRIATELY.

MUL=2%*K0

I X=1 X=MUL

TONOM={ 2%%K1)

CALL PMUL [MUL,IY1l,1Y1l, ICNOMyMTYPE)
CALL PMUL (MULIY2,1Y2,10NOM,MTYPE)
RETURN

ENO
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BLKC2

SUBRNOUTINE BLKC2 (MAX,TAA,TAD,TAL,TA2,1B1,IB2,NORM,MTYPE, INAMP,
* AD ALy AZyBLlyB2,ERyTOTEESMEANEE, IMy TUTSOKy AMSQK)

FILTERING SUBROUTINE.

SECUND ORDER FILTER.

CANCNIC FORM,

BLOCK FLOATING POINT ARITHMETIC.

DIMENSION AUM(128)
REAL*8 ANM, AMP,MEANFE,TOTEEL100).TOTR,FRI1024) ,X,Y,WsWl,W2,
® AAJAQ.AL442,B1,82,AMSQK,TOTSOK{100),AK

“NM® 15 THE LENGTH OF EACH RANDCM SEQUFNCE.

PAMPM IS THE AMPLITUDE OF THE FLCATING POINT

RANDCGM SEQUENCE, BEFORE QUANTISATION,

SUBROUTINE "PRAND"™ INITIALISES THE RANDOM NUMBER GCENERATOR,

NM=1024
ANM=DFLOAT (NM)

70 AMP=DFLOAT(INAMP)+0,.5D0
CALL PRAND (1UK,IVK,NUM)
MEANFE=0.000
AMSQK=0, 000 °
K0=0
W1=0.000
W2=H1
IWl=0
IW2=1W1

DO 101 RUNS.
THE FIRST RUN 1S TO ALLOW THE MEAN ERROR TQ REACH EQUILIBRIUM,
THE VARIANCE RECORDED FOR THE FIRST RUN IS REJECTED,

DO 3 I=1,101

TOTR=0.000

AK=0.00G

FILTEx A RANDOM SEQUENCE OF LENGTH "nM“,
DO 2 N=1,NM

SUBKOUTINE "KAND"™ RETURNS A RANDOM [NTEGER "IX"™ AND THE
FLOATING POINT EQUIVALENT nXu,

THE PARALLEL FILTERIMG IN THE INTEGER AND FLOATING POINT
CHANNELS FCLLOWS.

CALL RAND (TUKy IVK,NUM, [Xo AMP, LilAMP X}
SCALE SIGMAL SAMPLES.

CALL BLKFT3 (KOs Xy IWL,1W2,INAMP,[M,MTYPE)
CALL PMUL (TAA.IX, IX,NORM,NTYPE}

CALL PMUL (1Bl,IW1,IV]1,NCRM,MTYPE}

CALL PMUL (IB2,1IW2,IV2,NCRMyMTYPE)
Id=1Xx-1vl-1iv2

CHECK THAT INTERMEDIATE QUTPUT IS WITHIN LIMIT,

IF (TABSUIWI-IMY 71,71,72

72  INARP=1NAMP-1
GO 10 70

71 CALL FNUL (I1AO.IW,JU,NORM,MTYPE)
CALL PMUL (IAl,IWl,I1Ul,NORM,MNTYPE])
CALL PMUL (TA2,IW2,1U2yNORMyMTYPE]
Iv=TUuslUl+IUL

CHECK THAT SAMPLES ARE WITHIN LIMITS.

MAG=MAXO(IABS(IVL),IABS{IV),TABS{IU),IABSIIUL),TABS{IU2})
IF {MAG-MAX]) Th,yT4,173
T3 IM=IM-1
I NAMP=MAX
GO YO 70

157




[aXal el

[N aXal (e Xaka]

[aNaNaNalal

BLKC2 (cont,)

RESCALE FILTER CUTPUT.

14

MUL=NORM/ (2%2KO}

CALL PMUL (MULyIV,1YNORM,MTYPE)
W=AA*X-0 1*W]1-B2*W2

Y=AQ®WE+AL*Wi +A2¢W2

IwW2=Iwl

IWl=1H

W2s=uWl

Wl=W

THE RCUNDOFF ERROR IS STORED IN ARRAY "ERY,

2

IF THIS IS THE FIRST RUM, COMMcNCE SECOND IMMEDIATELY.

CALCULATE MEAN ERROR “TOTRY,

ERINI=DFLOAT (Y )~Y
TOTR=TOTR+ER (N}
AK=AK+(1.000/(2,0D00%* (2%K0}})
CONT INUE

It=1~1
IF (I1) 3,3:4

CALCULATE VAPIANCE WITH RESPECT YO MEAN.
STORE VARIANCE IN ARRAY "TOTEE".

4

TOTR=TOTR/ANM
TOTSQK(TI)=AK/ANM
AMSQK=AMSOK+TOTSQKI(IT)
TOTEE(IT}1=0.000

DS 5 N=1,4NM
Y=ER(N)-TOTR
TOTEE(TII)=TOTEE(IT)+Y*Y
CONTINUE
TOTEE(LII)=TOTEE(TII)/ANM
MEANEE=MEANEE+TOTEEL LT
CCNT ENUE

RETURN

END
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PRAND

SUBROUTINE PRAND (I1,JJsNUM}
C
C SETS 128 RANDCM INTEGERS IN THE TABLE "NUM®,
C INITIALISES "II" AND "JJ" FOR USE IN SUBROUTINE "RAND"™,
C
DIMENS ION HUM(128)
Ii=t
JJ=0
DOt V=1,128
11=11%65539
IF (11} 2,3,3
11=114¢2147483647+1
JJ=J4J¥129¢1
IF (JJ) 44595
JI=JJ+2147483647+1
NUM(MI=11
CONT THNUE
RE TURN
END

w N

-

RAND

SUBROUTINE RAND {(KyJeNUMy T4 AMP, INAMP,X)

RETURNS RANDOM INTEGERS “I" UMIFORMLY DI STRIBUTED,.

SENANPT LIMITS THE A“PLITUDE QF "[".

nX" IS THE FLOATING POIMT EQUIVALENT OF "in,

WNUM®* [S THE TABLE OF RANDOM INTEGERS SET UP INITIALLY BY “PRANDY,

[N aNaNaNaNal

DIMENSION NUM{128)
REAL#*B X, EX,AMP

NETERMINE NEXT RANDOM INTEGER "4V,

Qaan

J=J¥129+1
IF (J} 4,5,5
4  J=Je2147483647+1

c
C USE LCW TSRDER 7 BITS OF "J" TO ADDRESS TABLE '“NUM®",
C RANDOM INTEGER "I"™ IS THEN READ FRG!HM "AUMY,
C

5 M=MOD{J,128)+1

I=MNUM{NM)

Cc
C DETERMINE NEWw RANCOM INTEGER "K"™ TO BE PLACED IN LOCATION OF "“NUM®,
c

K=K*65539

IF {K)} 2,3,3
2 K=K+2147483647+1
3 NUMIMI=K

C
C FORM FLOATING POINYT RANDOM NUMBER "X" FROM "[®,
C SCALE "X APPRUOPRIATELY.
C
X=DFLOAT(I}
X=X*0.4656612875N-9
X=(X-0.500)%2,000%AMP
C
C SET "I" TO THE BEST INTEGER APPROXIMATION TO "X%,
C

=X
EX=DFLOAT(1)
IF (EX-X-0.5D0) 10,12+11

11 I=1-1

GO TO 13
10 IF (EX-X#0.5D0) 14,12,13
14 I=1+1

GO 10 13

12 1F (1) 14,13,11
13 IF C(INAMP-1ABS(I)) 15,16,16
15 IF {I) 17+16,18

17 1=1+1
GO T0 16
18 [=1-1
c
C SET "X" EQUAL TQ wiw,
C
16 X=DFLOAT(1)
RETURN
END
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SUBROUTINE THVAR
% (AOs)ALeA2,D1+B2,SOKsICONST,LENGTH,JH,NORDER, IMPNT, MODE )

CALCULATES THE ERROR VARTANCE ACCORDING TO THE SIMPLE MODEL.
REAL#*8 A0 Al,A2,B1,R2,SOK,Al3),B131,CONST,SIGMA,AS,V,ZETALETA
SET UP ENTRY PARAMETERS FOR "INTGRL".
A{1)=1.0D0
Af2)=81
At3)=B2
BRANCH ON FILTER FORH,
IF (IMPNT) 1,2,2
CANGNIC FORM.
1 8(1)=A0
Bl2)=Al
B(31=A2 -
GO 10 10
DIRECT OR LOOK UP FORM,
2 Bl1)=0.0D0
B{2)=811)
B{3i=A(1)
SUBROUTINE "INTGRL" EVALUATES THE SQUARED NOISE GAIN "V* OF THE FILTER,

10 IN=NORDER+}
CALL INTGRL (A,B,NORDER,IN,V)

BRANCH ON FILTER FORM,
IF (IMPNT) 5,4,3
LOOK UP TABLE FORM.
3 CONST=DFLOAT(ICONST*ICONST)
TEST FOR "JM"=0
IF (M) 6,Ty6 ;
NO ROUNDOFF IN PSI VALUES.
T ETA=VACONST/1.201
WRITE (6,210)
210 FORMAT {110,10X,26H NO ROUNDGFF 1IN PST VALUES)
GO To 20
ROUNDOFF IN PSI VALUES.
6 SIGMA=0.000
00 12 4=1,LENGTH
AJ=DFLOATI(1-J)
SIGNA=SIGMA+2, 0D0**AJ
12 CONTINUE

ETA=(SIGMA+1,0D0)%CONST*®V/1,201
GO T0 20
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THVAR (cont.)

DIRECT FORM. BRANCH ACCORDING TO ARITHMETIC MODE.
4 1F (MODE)} 30:40,40

FIXED POINT. BRANCH ACCDRDING TO ORDER OF FILTER.
40 IF (MORDER-1) 35,35,45

FIRST ORODER.

35 ETA=2.0D0+%V/1-201
GO TO 20

SECCND ORDER.

45 ETA=5.0D0%Vv/1.201
GO T4 20

BLOCK FLOATING POINT ARITHMETIC. BRANCH ACCORDING TO FILICR ORDER.

3C IF (MAODE) 31,+31,41
FIRST ORDER.

31 ZETA=SOK*(2.0D0+B1%4371)
G3 TO 19

SECOND ORDER.

41 LETA=SQK*{5.000¢B1#C1+2.000%B2*%B2)
Ga TO 19

CANCNIC FORM. BRANCH ACCORDING TO ARITHMETIC MODE.
S IF (MODE) 32,42,42
FIXED POINT ARITHMETIC.

42 ETA=(1.,000+V1/4.000
GO 10 20

BLOCK FLOATING POINT ARITHMETIC.

32 ZETA=SQK#*{3.0D0+B1%R1+2.000%32+82)

ETA=(1.0D0+3.000%SQK+ZETA#V]I/1.201
GO 10 20
19 ETA={VxZETA+1.000}/1.2D1
20 WRITE (6,200) ETA
200 FORMAT (1HG,104,30H THEQRETI[CAL NQISE VARIANCE = ,D15.8)
RETURN
CND

161




[aXaN gl [ XaXgl OO ON

A0 ™

aaa

(2 XgNg]

2 XakalakaNaKaKaKal

[2KaXsl aoacoaa

VARAMP

VARAMP - MAIN PROGRAM.

PLOTS THE VARIAMNCE GF TiE ERRDR SEQUENCE AS A FUNCTION OF INPUT AMPLTITUDE.
SINGLE MULTIPLIER, :

A UNIFORM AMPLITUNE DISTRIBUTION POSITIVE INTEGER RAMP IS THE INPUT SEQUENCE.
ROUNDING ONLY.

DIMENSION A{127),B(127)
REAL*8 TOTLE AT AMUL,Y,ER
WRITE (6440C)
400 FORMAT{1H1,5X,46H PLOT OF ERROR VARIANCE AT A SINGLE MULTIPLIER)
MTYPE=0

READy WRITE AND CCNVERT MULTIPLIER VALUE TD FLOATING POINT,

READ (5,100} PUL,NORM

100 FORMAT (2110)
AMUL=DFLCAT{HUL)/DFLOAT (NORM)
TOTEE=0.0D0

win IS THE MAXIMUNM AMPLITUOE OF THE INTEGER RAMP.

00 1 I=1,127

A1=DFLDAT(I)

ALT)=SNGLIAL)

CALL PMUL (MULy1,1YyNORM,MTYPE)

Y=A12AMUL .
“ER® ]S THE RCUNCOFF ERROK. THIS IS THEN SQUARED AND ADDED TO THE
ACCUMULATING SQUARED DEVIATION “TOTEEY,

ER=DFLCATIIY)-Y
ER=ER*ER
TOTER=TOTEE+ER

“B{1)" IS THE VARIANCE AT THIS AMPLITUDE.
B(T)=SNGL(TOTEE/(ATI+0.500})
1 CONTINUE -
PLOT "B{I)" AS A FUNCTIGN GF "A(I)™,
CALL PLOT2 (A,B)
sTap
END
PMUL

SUBROUTINE PPMUL{ICOEFF,IDATA, [ANSNHORMMTYPE)

WIDATA" [S MULTIPLIED 8Y {ICOEFF/MORM)} AND THE ANSWER IS
APPKOXIMATED TO AN INTEGER.

UMTYPEY MEGATIVE INODICATES TRUNCATION.

WMTYPE"™ ZERQO INOICATES ROUNDING.

"MTYPE™ POSITIVE INDICATES SIGN MAGNITUDE TRUNCATION,
FCR ROUNDIMG IF EPROR = 172 MAGNITUDE IS DECREASED.
"{ANS" RETURNS ANSWER,

TANS=ICATA*ICOEFF
IR=MOD{TANS,)NORM)

IRCO INDICATES TANS<O

IR>0 INDICATES {ANS>O

MAGNITUDE OF ®[R" INCREASES WITH MAGNITUDE OF ERROR,
MAGNITUDE OF "IR" IS IN RANGE O TO (HORM-1).

JANS=1ANS/NCRM
IANS IS SIGN MAGNITUDE TRUNCATED RESULT.

IF {MTYPE) 10,20,30
10 1F (1R) 13,30,30
13 IANS=1ANS-1
30 RETURMN
20 IF {IR} 21,30,23
21 IF (IReNCRM/2) 13,30,30
23 IF (IR-NDIM/2) 30,130,25
25 T1ANS=1ANS+l
RETURN
END 162
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AMPMOD -~ MAIN PROCRAM,

NOISE VARIANCE PREOICTION BY SOLUTION COF SIMULTANEDUS EQUATIONS.

FIRST ORUCR FILTER, '
DIRECT FORM,

FIXED PNINT AR!THMETIC,

ASSUMES UNTFORM INPUT AMPLITUDE DISTRIBUTION.

ASSUMES SYMMETR)CAL INPUT SIGNAL.

APPROPRIATE FNR SYMMETRICAL FRRNOR PRCCESSES.

SOLVES LINFAR SIMULTANEQUS EQUATIONS TD FIND AMPLITUDE DISTRIBUTION OF OUTPUT
FILTER COEFFICIENTS AND SIGNAL WORDELENGTH REQUIRED AS DATA.

ALSD REQUIPES DATA ON TYPL OF ROUNDOFF YO BE USED.

"MTYPE" EQUAL TC 2ERO INDICATES RGUNDING.

“MTYPL™ POSITIVE INDICATES SIGN MAGNITUDE TRUNCATION.

GIMENSION 1CPI123),P0{1281,A(16384)
REAL*8 ANNRM.AQ,B1,VARAQO,VARB1,VAREQ
WRITE (6,400
400 FORMAT {1H1,20X.26H NOISE VARIANCE PREDICTICN)
WRITE 16,404}
406 FORMAT (1HO,20X,38H BY SCLUTION OF SIMULTANEOUS EQUATLONS)
WRITE (6,401)
401 FORMAT ( LHO, 20X, 40H FIRST ORDER. DIRECT, FIXED POIKT FILTER)

READ INTEGER FILTER COEFFICIENTS AND MORMALISING FACTOR (A POWER OF 2},
“IAQ" MUST BE POSITIVE. -
SUM OF MAGNITUDES QF “[AQ™ ANC "IBl®™ MUST BE LESS THAN ""NORM®,

READ (5,100) I1AO, [B1,NORM
100 FORMAT (3110}

READ SIGNAL DATA WORDLENGTH,
A POSITIVE [MNTEGER LESS THAN OR EQUAL TO &,

READ (5,101) LENGTH
101 FORMAT (110}

READ VALUE OF “MTYPE™ TO DEFINE ROUNOOFF PROCESS.

REAG (5, 101) MTYPE
IF (MTYPE) 9,10,9
9 MWRITE (6,402}
402 FORMAT (1HO,20Xy2&6H SIGN MAGNITUDE TRUNCATIGN)
GO TO 11
10 MWRITE (644C3)
403 FORMAT (1HO, 20X, 9H ROUNDING)
11 WRITE (6,300} [AQsNDRM
300 FORMAT (1H0,20X.6H A0 = ,110,3H 7 ,110)
WRITE (64301) TBLl,HORM
301 FORMAT (1HO,20X.6H 81 = ,I1043 /7 411010
WRITE (6,302) LENGTH ,
302 FORMAT (1HD,20X,26H SIGNAL DATA WORDLENGTH = ,12)

CONVERT COEFFICIENTS TQ FLOATING POLNT.

ANORM=CFLOAT (HOR4)
AO=DFLOATI 1AC) /ANGRM
B1=DFLOAT{IBLl)/ANORM

FIND MAXIMUM SIGNAL AMPLITUDE, *HAX", ALLOWED RY WORDLENGTH.
CALL “LINSL1" WHICH DETERMINES THF MAXIMUM ALLOWED INPUT AMPLITUDE
TO THE FILTER, AND THE CORRESPCNDING OQUTPUT AMPLITUDE.

MAX =22+ (LENGIH-1)-1
CALL LIMSL (MAX,1AQ,IB1 NORM,IMANP, LIMOQUT 4MTYPE,LIM1,LIM2)
WRITE (6,303) [NAMP
303 FORMAT (1HO0,25X,2CH INPUT AMPLITUDE = ,14)
WRITE (643041 LIMOUT
304 FORMAT (1HD,25X,20H DUTPUT AMPLITUDE
IF (LIML1) 60,70,46C
70 WRITE {64410)
410 FOPMAT (1HO+25X¢23H AQ IS EFFECTIVELY ZERQ}
sTae
60 IF (LIM2) 65,7565
T5 MWRITE (6,420)
420 FORMAT (1HO,25X,23H 81 IS EFFECTIVELY ZERQO}
STNP

v14)
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AMPMOD (cont.)

CALCULATE “CONST"™, THE PROBADILITY OF A GIVFN SIGNAL AT THE
FILTER INPUT. FILL ARRAY "PO™ WITH THIS VALUE.
CALL "VARY WHICH CALCULATLS THC NOISE VARIANCE AT MULTIPLIER AQ.

65 CONST=1,0F0/FLOATI2*INAMP+1)
INAMP=INAMP+1
00 1 [=1,IKANP
POL1)=CONST
1 CONTINUE
CALL VAR (TAG,NORMsAQ,PQy [NAMP,VARAQ,MNTYPE)

CALL "MULAR™ WHICH FILLS ARRAY "[QOP" WITH THE PRACTICAL VALUES
OF MULTIPLYING THE INPUT SIGNAL LEVELS BY (1AD/NORM).

CALL PULAR {1A0, [OP, INAMP,NORM,MTYPE)

ARRAY "pPQ" IS NOW SET TJ THE AMPLITUDE PROBAGRILITY FUNCTION
OF THE SIGNAL AT THE OUTPUT OF THE MULTIPLIER AQ.
1T IS INITIALISED TO 2eRC.

LIML=LIML¢L
00 2 1=1,LIMi
PO(11=0.0E0

2 CONTINUE
PO(1)=CONST
DO 3 1=2, INAMP
JK=10P(I)
IF (JK) 50,51,50 °

NON-ZERO SIGNAL AT OUTPUT OF AO.
50 JK=JK+1
POLIKI=PO(JIK}+CONST
GO 13 3

LERO SIGNAL AT OUTPUT OF AO.

51 PO(LY=PO(L}+2.0EQ0%CONST
3 CONTINUE

CALL “MULAR" WHICH FILLS ARRAY "I0P" WITH THE PRACTICAL RESULTS
OF MULTIPLYING THE OQUTPUT SIGNAL LEVELS B8Y (IB1/NORM).

L TMOUT=L I MCUT #1
CALL MULAR (IBl,ICP,LIMOUT.NORH,MIYPE)

SUBRQUT [NE "SETAY™ SETS UP THE MATRIX #A" WITH THE COEFFICIENTS
WHICH DEFINE THE SIMULTANEQUS EQUATICNS WHICH GOVERN THE
AMPLITUOE OISTRIBUTION OF THE OUTPUT SIGNAL.

CALL SETA (A,PO,10P,LIML,LIMOUT)

SURBRDUTINE "SIMQ™ SCLVES THE SIMULTANCCUS EQUATIONS,.,

ARRAY "A" EMTERS THE SQUANFE MATRIX OF VARIABLE CCEFFICIENTS.
ARRAY “P0" ENTERS THE CNLUMN VECTNR OF CONSTANTS

AND RETURNS TItE SCLUTICNS OF THE EQUATIONS.

CALL SIM0 (A, PO,LIMOUT,KS)
IF (KS) 54,5

EQUATIONS HAVE BEEN SOLVED.
SUBPOUTINE "VAR™ NOW CALCULATES THT VARIANCE OF THE NOISE
GENERATFD AT 81,

4 CALL VAR (IB1+NORMsB1,PO,LIMDUT,VARBL +MTYPE)

WVAREQ" IS THE EQUIVALENT INPUT NOISE VARIANCE, WHICH IS THEN
AMPLIFICD B8Y THE WILE-SECTION GAIM TO GIVE THE
PREDICTED UUTPUT MNOISE VARIANCE.

VAREQ=VARAO+VARB1
VAREQ=VAREQ/ (1.0N0-B14B1)
WRITE (%,202) VAREND
202 FORMAT (1110,2%X, 354 PREDICYFD DUTPUT NOISE VARIANCE = ,015.8)
GO T4 6

S TMULTANEQOUS EQUATIONS CANNOT BE SOLVED.

5 WRITE (6,203)
203 FORMAT (1H0,25X, 401 SIMULTANEQUS EQUATIONS CANNOT BE SOLVEO)
6 STOP
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SUBROUTINE SETA (A,8,181,LIML,N)

THIS SUNFOUTINE SETS UP THE STMULTANEDUS EQUATIONS.

“N" IS THE NUMBER OF VARIADLES.

“AM 1S CONSIDERED YU RE AN N*N SQUARE MATRIX IN WHICH

ROWS VARY MOST RAPIDLY AND COLUMMS MOST SLOWLY.

"B" IS A CCLUMN VECTOR NF LENGTH N. ’

"B" INITIALLY HCOLOS THE SIGMAL AMPLITUDE DISTRIBUTION FUNCTION
AT THE FILTER LOCP [INVUT.

"LIMIY IS THE NUMBER OF DIFFERECNT LEVELS AT THE LCOP INPUT,
START WITH EQUATIGN SUMMIHG PRUBABILITIES TN UNITY,

DIMENSION IBL1(128),A(16384),8(128)
ND=N*N
DO 2 1=1,ND
At11=0.0E0Q
2 COUTINUE
J=N+1
DN 1 [=2,N
AlLJ)=2.0E0
J=J +N
1 CONTINUE

NOW CONSIDER OTHER EQUATIONS.
CONSTDER ALL POSSIBLE [NPUTS TO MULTIPLIER IBL IN TURN,
SET UP MATRIX CULUMHS TN TURN,

1J=1

DO 3 K=1,4N
M=I81(K}
1T=(K-1}%N
IF (M) 4,54

N IS NOT ZERD. :
FIRSTLY CONSIDER ZERO INPUT,.

4 J=ITeM+l
A(J)=AtJ)-8(1)

NOW CONS!DER ALL GTHER INPUTS,
DO & L=2,LIM]

CONSIDER DIFFERENCE SIGNAL.
Li=L-1
ND=TABS(LI-M)
IF (ND) 9,8,9

9 J=IT¢ND¢]
AldI=A014)-BIL)

CONSIDER SUM SIGMAL.
8 J=IT+M4L
ALI) =ALI1-BLL)
6 CONTINUE .
GO TO 10
M IS ZERO.
5 DN 7 L=2,LIMl
J=ITHL
ACJ)=ALJ)=BLL)
7 CONTINUE
ADD 1 TO EACH ELEMENT OF MATRIX DIAGCNAL.

10 A(IJY=A{[J}*1.0E0
TJ=1Jehe]
3 CONTINUE

FINALLY SET 8 COLU4N VECTOR,
Bt1) = 1, ALL OTHERS = 0.

B(11=1.0E0

D3 11 I=2,N

8(1)=0.0E0
11 CONTINUE

RETURN

END
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SIMQ

SUSROUTINE SIMQ (A,B,N:KS)

SOLVES N SIMULTANEQUS EQUATIONS,

AN 1S CONSIDERED TN BE AN H*N SQUARE MATRIX HOLDING

VARIABLE CCEFFICIENTS,

"gr IS A COLUMN VECTOR NF LENGTH N HOLDING THE EQUATION CONSTANTS.
"R" RETURNS THE SOLUTIONS,.

THE MAXIMUM VALUE OF N IS 128.

DIMENSION AL16384),u(128)

FORWARD SOLUTION,
CONSIDER ALL VARIABLES (MATRIX COLUMNS) IN TURN,

KS=G

JJ=-N

DO 65 J=1,N
Jy=J+1

JJ POINTS TO MATRIX C1AGONAL.

JJd=JJ +N+1
RIGA=0.0E0
1T=JJ-J

SEARCH ROWS FOR MAXIMUM COEFFICIENT IN COLUHN,

D0 30 I=J.N

1J=1T¢1

1F (ABS(BIGA)-ABS(A(TJI)IY 20,30,30
20 BIGA=A{LI )

IMAX=1
30 CONTINUE

"BIGA™ 1S THE PIVCT. TEST FOR BIGA = 0.
IF SO SET KS = 1 AND RETURN TO CALLING PROGRAM AS
MATRIX HAS A ZERO COLUMN.

IF (BIGA) 40,35,40
35 KS=l
RETURN

SWAP ROW WITH PIVOT TO LEADING POSITION.

40  11=J+Nx%(J-2)
IT=1M4AX~d

SWAP ROW PATR COLUMN BY COLUMN.

DO 50 K=J,N
Il=11+N
[2=11¢IT
SAVE=A(I2]
AtI2)=A111)

DIVIDE VARIABLE OF LEADING ROW BY PIVOT.
RESULTING PIVOT [S UNITY,

AlLI1}=SAVE/BIGA
50 COMTINUE

ROWS 1N CNLUMN VECTOR B ARE ALSO SWAPPED.
CONSTANT IN LEADING ROW DIVIDED BY BIGA.

SAVE=B(IVMAX)
B{IMAX)=BLlJ])
B{J)=SAVE/BIGA

ELIMINATE VARIABLE J.
IF J = N GO TO BACK SOLUTION.

IF tJ=-N) 55,70,55
55 1QS=N#*{J-1)
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SIMQ (cont,)

CALCULATE NEW MATRIX.
CONSIDER APPROPRIATE ROWS OF PARTICULAR COLUMN.

DO 64 IX=JY)N
1XJ=1GS+1X
1T=J-1X

GO THROUGH APPROPRIATE COLUMNS.

DA 60 JIX=JYsN
IXIX=N:(JX=1}+1X
JIX=IXIX LT

NEW MATRIX ELEMENT FORMLD.

ALIXIXI=ALIXIXI-ACTIXI VXA LIIX)
60 CONTINUE

NEW ELEMENT IN COLUMN VECTOR FORMED.

BOIX)=B{IX}-BlJI*ALIXI)
64 CONTINUE
65 CONTINUE

BACK SOLUTICN,
STARTS WITH VARTABLE (N-1) AND WORKS BACK TO VARIABLE 1.

T0 NY=N-1
IT=N%*N

WORK UP THE ROWS FROM (N-11 TO 1.

DO 80 J=1,NY
IA=1T-J
IB=N=-J

IC=N .

WORK FRDY NTH. COLUMN TD MATRIX DIAGONAL.
MATRIX HAS UNIT DIAGOMNAL.
B(IB) WILL RETURN SOLUTIGN TO VARIABLE 18.

D0 90 X=1,J
BLIB)=801B)-A(TAY*B(IC)
TA=1A-N
IC=1C-1

90 CONTINUE

80 CONTINUE
RETURN
EMND

MULAR
SUBROUTINE MULAR {(MUL,MAR,LIM,NORM,MTYPE)

FILLS ARRAY "MAR™ WITH PRACTICAL RESULTS OF
NULTIPLYING 8Y (MUL/MORM),

“LIM® IS THE LENGTH OF ARRAY MAR,

"MTYPE"™ DLFINES THE ROUMNDOQfF PROCESS.

DIMENS ION MAR(128)
DO 1 I=1,LINM
J=1-1
CALL PMIIL (NUL,J,KNORH, RTYPE)
MAR(T) =K
1 CONTIHNUE
RETURN
END
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ZCMOD

ICMOD - MAIN PROGRAM.

NOISE VARIANCE PREDICTION BY SOLUTION OF STMULTANEQUS EQUATINONS.
MODIFIES THEORETICAL MULTIPLIERS TO GIVE UMCORRELATED ERROR SEQUENCES.
FIRST ORDER FILTER.

DIRECT FORM,

FIXED POINT ARITHMETIC.

ASSUMES UNIFORM [NPUT AMPLITUCE DISTRIBUTION,

ASSUMES SYMMETRICAL INPUT SIGNAL.

LPPEOPRIATE FOR SYMMETRICAL ERROR PROCESSES.

SOLVES LINEAR SIMULTANEQUS EQUATIONS TQ FINO AMPLITUDE DISTRIBUTION OF QUTPUT
FILTER COEFFICIENTS AND SIGMALL WORDLENGTH REQUIRED AS DATA.

ALSC REQUIRES DATA OM TYPE NF ROUNDIFF TN BE USED.

U"MYYPE" EQUAL TO ZER3J INDICATES RCUNDING.

WMTYPE" POSITIVE INDICATES SIGN MAGNITUDE TRUNCATION.

DIMENSION 10P(128),P0(128),A(16384)
REAL*B ANOkKM,A0,81,VARAO,VARDL,VAREQ,EAQ,EB]
WRITE (6,400)
400 FURMAT (1H1,20X,26H MNOISE VARIANCE PREDICTICN)
WRITE (64404)
404 FORMAT (1H0,20X,38H BY SOLUTION OF SIMULTANEQUS EQUATIONS)
WRITE (64401)
401 FORMAT (1HO,20X,40H FIRST ORDER, DIRECT, FIXED POINT FILTER)

READ INTEGER FILTER LGEFFICIENTS AND NORMALISING FACTOR (A POWER OF 2},
“IAO"™ MUST BE PNSITIVE. .
SUM OF MAGNITUDES DF "IAO" ANP “IBl1"™ MUST BE LESS THAN "NDRM",

READ (5,100) 1A0,IB1.NORM
100 FORMAT {3110)

READ SIGNAL DATA WORDLENGTH,
A PDSITive INTEGER LESS THAN OR EQUAL TO 8.

READ {5,101) LENGTH
101 FORMAT (110}

READ VALUE OF #MTYPE®" TD DEFINE RCUNOOFF PROCESS.

READ (5.101) MTYPE
IF {MTYPE) 9,10,9
9 WRITE (6,402}
402 FORMAT (1HO,20X,26H SIGN MAGMNITUDE TRUNCATION)
GO 111 11
10 WRITE (64403)
403 FORMAT (1H0,20X,+9H ROUNDING)
1t MWRITE (6,300) [AO0,NORM
300 FORMAT (LHO,20X46H AD = (110434 /7 4119)
WRITE (6,301) I81,NORM
201  FORMAT (1M0,20X,6K Bl = ,11043H /7 ,I10)
WRITE (6,4302) LENGTH
302 FORHAT (1HO,20X,26H SIGNAL DATA WORDLENGTH = ,12)

CONVERT COEFFICIENTS TO FLOATING POINT.

ANORM=DF LOAT {NCRM)
AO=NFLOAT(IAQ) /ANORM
B1=DFLOATUIBL)/ANCORM

FIND MAXIMUM SIGNAL AMPLITUOE, "MAX", ALLOWED BY WORDLENGTH,
CALL "LTIMS1"™ WHICH DETERMINES THE MAXTMUM ALLOWED INPUT AMPLITUDE
10 THE FILTER, AND THE CPRRESPONDING CUTPUT AMPLITUDE.

MAX=2%% [ LENGTH-11~-1
CALL LIMS1 (MAX(TAQO,IRL,NORM, INMANP, LIMNOUT MTYPE,LIM]L,LIM2)
WRITE (6,3031 INAMP
303 FORMAT (1HO,25%X,20H INPUT AMPLITUDE = ,14)
WRITE (64304) LINOUT
304 FORYAT (LHO,25X,2GH QUTPUT AMPLITUDE = ,I4)
If (LIMl) 60,70,60
70 WRITE {6,4410)
410 FURNAT (1H0,25X,23H A0 IS EFFECTIVELY ZERO)
STOP
60 IF (LIM2) 65475465
75 HWRITE (6,420)
420 FNORMAT (1HM0,25X,23H Bl IS EFFECTIVELY LERO)
STOP
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ZCMOD (cont.)

CALCULATE "CONST", THE PROBARBILITY OF A GIVEN SIGNAL AT THE
FILTER [NPUT. FILL ARRAY "PO"™ WITH THIS VALUE,

CALL "ZCVAR™ WHICH CALCULATES THE REQUIRED EFFECTIVE VALUE OF THE

MULTIPLIER TO GIVE AN ERRCOR SEGQUENCE WHICH HAS A ZFRO
CORRFLATION FACTOR WITH THE MULTIPLIER INPUT SIGNAL.
"ICVAR™ THEN CALCULATES THE VARIANCE OF THE ERROR SEQUENCE.

65 CONST=1,0€0/FLOAT(2%INAMP<])
INAMP=TNAMP+]
DO 1 I=1,INAMP
POCI}=CONST

1 CONTINUE

CALL ZCYAR{IAOQ,MORM,AQ0,PO,1NAMP,EAQ,VARAO,MTYPE)
WRITE (6,600) EAOQ

600 FORMAT (1HO0,25X,26H EFFECTIVE VALUE OF A0 IS ,D15.8)

CALL "NULAR" WHICH FILLS ARRAY "10P™ WITH THE PRACTICAL VALUES

OF MULTIPLYING THE INPUT SIGNAL LEVELS RBY (1AO/NCRM).
CALL MULAR (A0, I10P, INAMP,NORM,MTVPE)

ARRAY "p0O" IS NOW SET TD THE AMPLITUDE PRNOBABILITY FUNCTION
OF THE SIGNAL AT THE QUTPUT 0OF THE MULTIPLIER AOQ,.
IT IS INITIALISED TO ZERO.

LIMI=LINL+1
D0 2 I=1,L1IM]
PO(1}=0.0E0

2 CONTIMUE
POL1)=CONST
DO 3 1=2,INAMP
JK=10P{I)
IF (JK) 50,451,50

NON-ZERO SIGNAL AT QUTPUT OF AO.
50 JK=JK+1 ,
PO(JK) =PDI JK) +CONST
GO 10 3
ZERD SIGMAL AT DUTPUT OF AO.

51 PO(1}1=PO(1)+2.0E0*CONST
3  CONYINUE

CALL "MULAR™ WHICH FILLS ARRAY “INP" WITH THE PRACTICAL RESULTS

OF MULTIPLYING THE OUTPUT SIGNAL LEVELS BY (IBL1/NORM),

LIMOUT=LIMOUT+] i
CALL MULAR (181, 10P,LIMOUT,NORM,MTYPE)

SUBROUTINE "SETA" SFTS uP THE MATRIX "A" WITH THE COEFFICIENTS

WHICH DEFINE THE STMULTANEQUS EQUATIOMS WHICH GOVERN THE
AMPLITUDE DISTRIBUTION 0JF THE QUTPUT SIGNAL,

CALL SETA (A,PD,I0P,LIML,LIMOUT)

SUBROUTINE "SIMO"™ SDLVES THE SIMULTAMEDUS EQUATICNS.

ARRAY ™A' ENTERS THE SQUARE MATRIX OF VARIABLE CCEFFTCIENTS.
ARRAY "pn® ENTEHRS THE COLUMN VECTOR CF CONSTANTS

AND RETUKNS THE SOLUTIONS 0OF THE EQUATIONS.

CALL SIMQ (A,PO,LIMOUT,KS)
IF (KS) 554,5

EQUATIONS HAVE BEEN SOLVED.
SUBROUTIMNE "ZCVAR™ NOW CALCULATES THE EFFECTIVE VALUE OF Bl,
AND THE VARIANCE OF THE ZERQ CORRELATEC LRROR SEQUENCE.

4 CALL ZCVAR{IBL+NORM,BL4PO,LIMUUT+ERL,VARB]1,MTYPE)

WRITE (64+601) ER1L
601 FORMAT (1HO,25X,26H EFFECTIVE VALUE OF Bl IS +D15.8)
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ZCMOD (cont.)

TVAREQ™ IS THE EQUIVALENT INPUT NOISE VARIANCE, WHICH [S THEN
AMPLIFIED BY THE POLE-SECTION GAIN TO GIVE THE

PREDICTED CQUTPUT NOISE VARIAMCE,

THE EFFFCTIVE VALUE CF Bl, “EB1", IS USED,

VAREQ=VARAO+VARAL
VAREQ=VAREQ/(1.0D0-CBL*EBL)
WRITE (6,202} VAREQ
202 FORMAT (1H0,25X,35H PREDICTED OUTPUT NNISE VARIANCE = ,015.8)
GO YO &

SIMULTANEQUS EQUATIONS CANNAOT BE SCLVED.

5 WRITE (6,203}
203 FORMAT {1HO0,25X,30H SIMULTANEOUS EQUATIONS CANNOT BE SOLVED)
6 STOP
EHD

ZCVAR

SUBROUTINE ZCVAR{MUL +NORM,AMUL+P,LIMEFHUL,VARy MTYPE)

CALCULATES THE REQUIRED THEOQRETICAL NULTIPLIER VALUE TO GIVE AN ERROR
SEQUENCE WHICH HAS A ZERQO CORRELATION FACTOR WITH THE INPUT
SEQUENCE TO THE MULTIPLIER,
THEN CALCULATES THE VARIANCE OF THE MODIFIED ERRCR SEQUENCE.
ARRAY "pP* HOLDS THE AMPLITUDE DISTRIBUTION FUNCTION FOR THE
SiGriAl AT THE HULTIPLIER [NPUT,
YLIM™ IS THE NUMBER OF SIGNIFICANT E£LEMENTS IN P.
DIMENSION P{(128)
REAL*8 AMUL,VAR,EFMUL,AT,A,C,R,DELTA,ER(128)

FIRSTLY COMPUTE YEFMUL' THE EFFECTIVE VALUE OF "AMUL"™ TO GIVE
AN UNCORRELATED ERROR SEQUENCE.

C=0.000
R=0,000
DO 1 [=2,LIN
Ii=f-1 .
AI=DFLOAT (1) ;
C=C4OFLOATIIT1 x11 %P (I)
CALL PHUL (MUL,11,1Y,HORM,MTYPE)
A=AT=AMUL
ER{I)=DFLOAT(IY)=A
R=R+AT*ERITII*P(])
1 CONTINUF
DELTA=P/C
EFMUL =AMUL +DELTA

NOW COMPUTE THE VARIANCE OF THE MODIFIFD ERROR SEQUENCE.

VAR=0,000

DO 2 1=2,LIM
I=1-1
AL=DFLOATL(IL!

MODIFY THE FRROR VALUE,

R=F£R{T)

R=R-AT*=DELTA

VAR=VARs R&R2P(])
2 CONTINUE

VAR=VAR%2,0D0

RETURH

ENO -
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