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ABSTRACT

A new visco-elastic finite element method is developed
and applied to some of the processes in subduction zones.
The effects of phase changes are simulated by deriving
an equation of state for the mantle under mineralogical
equilibrium. Using the elastic parameters determined
from this equation, the stresses due to the contraction
of the descending slab as it changes phase at the olivine-
spinel transition are shown to be about 8 x lO8 N/mz.

The phase changes are also shown to play an important
role in the flexure and bending of the lithosphere from
the earth's surface to plunge at 45 - 60o into the
asthenosphere. The phase changes effectively reduce the
bulk modulus and so the lithosphere bends more easily.

The major bending is at 30 - 60 km depth where the stresses
due to bending extend the area of phase transitions so that
it extends throughout the thickness of the descending slab.
Phase changes and fracture combine to reduce the flexural
parameters of the lithosphere to that estimated from the
shape of the outer-rise. Thin plate theory, however, is
shown to be inapplicable to this region.

Tensional stresses aligned parallel to the dip of the

descending slab are shown to be necessary to maintain the

large negative gravity anomaly associated with subduction



zones., This applies in all subduction zones, and local
stresses must be responsible for the earthgquakes indicating
down dip compression in the upper part of the descending
slab.

The shear zone between two converging plates can be
adequately modelled in visco-elastic finite element analysis
by a row of elements whose viscosity is 2-3 orders of

magnitude lower than the surrounding rocks.
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CHAPTER 1

INTRODUCTION

The basic concept of plate tectonics (McKenzie and
Parker, 1967; Morgan, 1968: Le Pichon et al.,1973)is
that the lithosphere can be subdivided into a series of
plates which do not suffer major internal deformation.
The major tectonic activity in the earth occurs along
the boundaries of the plates. There are three main types
of plate boundary. Lithospheric plates are continuously
being created at active oceanic ridges which are referred
to as accretion boundaries, and, by lateral movement give
rise to the magnetic anomalies observed over the oceans
(Vine and Matthews, 1963). The plates slide past each
other along large transform faults (Wilson, 1965) which are
referred to as conservative boundaries, because lithosphere
is neither created nor destroyed along them. The lithos-
pheric plates are destroyed along consuming plate boundaries
(Isacks et al., 1968; Le Pichon et al., 1973). Subduction
zones are the most common form of consuming boundary
(McKenzie and Parker, 1967; Isacks et al., 1968) at which
a plate of oceanic lithosphere is recycled into the mantle
and is over ridden by another plate which may be oceanic

(island arcs) or continental (active continental margins).
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1.1 Morphology of subduction zones

The overridden or consumed plate sinks into the
asthenosphere as a relatively cold rigid body and it is
progressively heated until it loses its identity (Isacks
and Molnar, 1969, 1970; McKenzie and Parker, 1968; McKenzie,
1969). Most subduction zones now occur along the circum-
Pacific belt or in South East Asia, (Morgan, 1968:

Le Pichon, 1968). The morphology and some of the manifes-
tations of a typical subduction zone are shown in fig. 1.1.

The topography of the plate being consumed is similar
for most subduction zones. The outer rise (fig. 1l.1l) is
about 300 km wide and reaches about 700 m above the expected
"non-deformed" level of the ocean floor (Le Pichon et al.,
1973; wWatts and Talwani, 1974). The depth of the trench
varies but around the Pacific is typically 3 km below the
sea floor (Hayes and Ewing, 1970). Most trenches have
only thin sediments on their floor but some trenches are
nearly filled with sediments (eg. South Chile, Ewing et al.,
1969). The topography of the overriding plate is more
variable. Sometimes there are several ridges parallel to
the trench (Karig, 1970; Karig and Sharman, 1975) and some-
times a single volcanic arc occurs with a marginal sea behind.
In New Zealand, Chile and the eastern end of the Aleutian

trench the overriding platehas continental crust. The front



maqal
4200 1

free-air
gravity
-200-
———high heat flow——low heat flow ——«
Volcanic
L Trench Outer PRise
-——-""’—-,~ ’
cccr;m = 20501l -930579
OVERRIDING PLATE prism

OCEANIC LITHOSPHERE
1)

migration

Al

ASTHENOSPHERE

0 150 km

approx. horizontal scale
apprax. veetieal sl

T

1
0 80 km

Fig. 1.1 Schematic diagram of processes in a
subduction zone.



of the overriding plate is commonly extended by the
accretion of igneous rocks and sediment derived from the
consumed plate (Karig and Sharman, 1975). This forms an
accretionary prism (fig. 1.1).

The most direct evidence for the shape of the cool
sinking slab is the seismicity (Sykes, 1966; Isacks et al.,
1968). Nearly all intermediate and deep earthquakes (depths
» 60 km) are found near consuming plate boundaries. They
occur in a thin belt dipping at about 45° from below the
inside of the trench, under the overriding plate. This
belt of focii, the Benioff zone, (Gutenberg and Ritcher,
1954; Benioff, 1955) is only 20 to 40 km thick (Sykes, 1966;
Hamilton and Gale, 1968) and the shape of it may be mapped
with some accuracy (Stauder, 1973, 1975).

Earthquake mechanism studies based on earthquakes with
focii deeper than 60 km in the vicinity of subduction zones
(eg. Isacks and Molnar, 1971; Stauder, 1975) have shown
that the principal stresses in the sinking lithogpheric
slab are usually aligned parallel and perpendicular to the
Benioff zone, with either the compressional or tensional
axes pointing downdip. Whether the downdip principal axis
is compressional or tensional is dependent upon the
configuration of the subduction zone. Isacks and Molnar

(1969, 1971) showed (fig. 1.2) that if the slab is "suspended"
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in the asthenosphere tensional stresses predominate,
otherwise the forces are compressional because of the
resistance to sinking of the slab within the mesosphere.
Earthquakes shallower than 60 km, between the ocean trenches
and island arcs, indicate thrust faulting at angles of 5°
near the base of the trench, increasing to 20° or 30° at
depths of about 60 km (Stauder 1968, 1973, 1975; Le Pichon
et al., 1973). In many, but not all, trench regions the
fault plane solution for earthquakes with focii under the
trench and outer ridge indicate a horizontal tensional
stress resulting in normal faulting (eg. Abe, 1972; Fitch,
1970; Stauder, 1968, 1975). Other evidence for the tensional
character of the stress regime on the consumed plate is the
normal faulting in the seabed on the outside edge of the
trenches and up onto the outer riéec (eg. Ludwig et al.,1966).
That the dipping slab is cool is also suggested by
analyses of the distribution of seismic velocities and the
seismic wave absorption in these regions (Oliver and Isacks,
1967). The slab has been shown to have higher velocity and
lower absorption (figs. 1.2) than the surrounding astheno-
sphere, suggesting a cooler more rigid body (Davies and
McKenzie, 1969). The region above the Benioff zone has an
anomalously high seismic absorption suggesting a region of
high temperatures and possible partial melt (Fedotov, 1968;

Oliver and Isacks, 1967).



The gravity anomalies in the region of the outer rise
are positive and in agreement with the topographical high
being due to the flexure of the lithosphere as it is bent
to be subducted (Watts and Talwani, 1974). There is a large
negative Bouguer and isostatic gravity anomaly (about -100 mgal)
commonly beyond the trench (fig. 1.1) but always where the
projection of the Benioff zone at about 60 km meets the
earth's surface (Hatherton, 1969). This anomaly has
commonly been associated with the trench but in some areas
it is displaced by 200 to 300 km from the trench axis over
the overriding plate (eg. New Zealand).

Because of the lack of information from the subduction
zones themselves, the relative motion between the two plates
concerned nearly always has to be obtained indirectly from
the motion of each of the plates with respect to otheecrd
plates (Le Pichon, 1968; Morgan, 1968).1972). This gives
the rate of convergence of the two plates. The rate of
frontal accretion (Karig and Sharman, 1975) and formation
of marginal seas (fig. 1.3) needs to be added to the
convergence rate to give the rate of subduction. The
difference in the convergence rate and subduction rate is
usually small, but if some small plates are neglected in
the analysis the difference may be substantial. The rate
of convergence varies from 2.3 cm/yr for the Mariana Trench

to 9.5 cm/yr in Philippine Trench (Le Pichon et al.,1973). The
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Fig. 1.3 Diagram showing the relationship of con-
vergence rate (VC) and subduction rate (Vs)
when there is accretion and marginal sea
opening on the overriding plate.



direction of motion between the two plates is generally
not normal to the plate boundary but in our two dimensional

models this will of necessity be assumed.

1.2 Thermal evolution of subduction zones

The thermal structure in the vicinity of subduction
zones must be consistent with both the surface heat flow
measurements and the relative motions of the two converging
lithospheric plates. Heat flow measurements (eg. Uyeda
and Vacquier (1968) and McKenzie and Sclater (1968)) show
that the two most striking thermal manifestation of the
subduction process are a decrease of surface heat flow
from the trench towards the volcanic arc and a high heat
flow on the overriding plate within and behind the volcanic
arc (fig. 1.1). The low heat flow near the trench is
caused by the cooling of the overlying rocks by the cold
sinking slab. This may be accentuated by the cool wet
sediments in the accretionary prism on the consumed plate
being thrust down the upper part of the shear zone. The
high surface heat flow beyond the arc is typically more
than twice normal heat flow and occurs over a region almost
300 km wide. The excess heat probably originates by release
of shear strain energy at the top of the sinking slab but

it cannot rise to the surface by normal thermal conduction



alone (Hasebe et al., 1970). The presence of andesitic
volcanism suggests that some of the heat is carried upwards
by magma flow. Hasebe et al., (1970) have modelled this
fluid transport of heat.by increaéing the assumed thermal
conductivity of the rocks above the subduction zone by an
order of magnitude.

The temperature distribution in the downgoing lithos-
pheric plate has been studied by McKenzie (1969, 1970):
Minear and Toksbz (1970a, 1970b); Griggs (1972); Toksdz,
Minear and Julian (1971);: Toks®z, Sleep and Smith (1973)
with progressive improvement in the approximation.

These papers have treated the sinking lithosphere as a
rigid plate moving at a constant speed and dip into a
stationary asthenosphere. McKenzie (1969, 1970) solved the
steady state temperature distribution analytically by
assuming that the asthenosphere remained at a constant
temperature. He showed that the low temperatures in the
oceanic lithosphere persist to great depths in the sinking
slab for subduction rates of 8 - 10 cm/yr. and that in
the Tonga-Kermadec Trench area a temperature of about
680°C is reached at the depth of the deepest earthquakes
in spite of the varying subduction rate along the boundary.

Minear and Toksb4z (1970a) solved the problem of the
temperature distribution by a finite difference numerical

scheme. They included radioactive, adiabatic compression,



8.

phase changes, and shear strain heating in their analysis.
The inclusion of shear strain heating resulted in the
temperature distribution being asymmetric with the
temperatures in the upper surface of the slab being greater
than the surrounding asthenosphere in some of their models.
Two major criticisms of this paper resulted from doubts

as to the numerical accuracy of their calculations because

of the coarseness of their finite difference grid and time
interval and that the amount of heat produced by shear

strain heating is unknown and had to be assumed (Hanks and
Whitcomb, 1971; Luyendyk, 1971; McKenzie, 1971; Minear and
Toskdz, 1971la,b). They did show, however, that gravity

and heat flow measurements cannot be used to choose between
thermal models of the subducted slab because these fields

are less sensitive to variations in the model than to various
other sources. They indicated, However, that seismic delay
times may be sensitive to the temperature distribution within-
the slab.

Griggs (1972) approximated the thermal analysis by a one
dimensional finite difference scheme and showed that thermal
models of slabs sinking at appropriate angles and velocities
result in density distributions which give gravity anomalies
remarkably similar to those measured across the Tonga Trench

by Talwani et al. (1961).



Toksdz et al. (1971) and Toksbz et al. (1973) followed
the approach of Minear and Toks®tz (1970a) but they used a
finer finite difference grid and smaller time steps, and
assumed less shear strain heating. Toksbz et al. (1971)
treat in detail the effect of the temperature distribution
on the seismic delay times. Toksbz et al. (1973) used the
temperature field to determine the density and then a
finite element analysis to compute the stresses associated
with the cooler slab assuming visco-elastic steady state flow.
These studies show that the temperature in the descending
slab is lower than in the surrounding asthenosphere but
reaches thermal equilibrium after sinking for about 10 Myr.
The temperature distribution within the slab is dependent
on the amount and distribution of shear-strain heating which
is difficult to estimate. No allowance was made in any of
the analyses for possible flow of the asthenosphere due
either to induced density inhomogeneities as it is cooled,
or to viscous drag near the descending slab. This flow will
tend to increase the time required for a given thermal state

to be reached.

1.3 Stresses in subduction Zzones

The stresses and strains associated with the lithos-

phere bending and sinking into the asthenosphere at a
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subduction zone have been studied previously by several
distinct methods. The study of the direction of the

first arrivals and seismic moments of earthquakes has
placed limits on the order of the stress drop in the
source region and the directions of the principal stresses
(fig. 1.2).

The tensional stresses (fig. 1.2) causing shallow
earthquakes in the vicinity of and outside the trench have
variously been ascribed to the pull of the heavy slab as
it sinks in the asthenosphere (eg. Abe, 1972) or to
deformation stress due to the bending of the lithosphere
before it is subducted (eg. Stauder, 1968; Hanks, 1971;
Watts and Talwani, 1974). Sykes (1971) has pointed out
that all the large earthquakes outside trenches, which
give normal fault solutions have been preceded within
10 years by lafge earthquakes resulting from thrusting
in the shear zone (fig. 1.1). This may indicate that the
stresses are caused by the pulling mechanism. Both
mechanisms are likely to cause high tensional stresses
in the upper layers of the lithosphere and to contribute
to the earthquakes (Stauder, 1975). They are probably
complementary; the "pulling" almost certainly
contributing to the stresses which are "bending" the plate.

The absence of normal fault mechanisms outside some

subduction zones has been explained by Hanks (1971) by a
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superimposed large (several kilobar) compressional
horizontal stress.

The stress drop calculated for earthquakes near
subduction zones varies widely from a few bars to about
one kilobar (eg. Abe, 1972; Hanks, 1971; Linde and Sacks,
1972; Wyss, 1970). The differences are often ascribed to
the various assumptions as to the proportion of released
elastic energy which is dissipated by seismic waves. It
is unlikely, however, that the stress drop would be more
than 2.0 x 108 N/'m2 (2 kbar) for most earthgquakes.

Computation of the elastic bending of the lithosphere
has been successful in simulating the surface shape of the
plate being consumed. In these analyses the lithosphere
is approximated by a thin plate with non-viscous fluid above
and below (Walcott, 1970; Le Pichon et al., 1973; Watts and
Talwani, 1974). The elasticity is assumed constant through-
out the thickness of the plate. The effective thickness of
the lithosphere determined from these calculations is 25 to
50 km which is much smaller than the determinations by
other methods. Walcott (1970) suggested the use of visco-
elastic parameters in the analysis but considered that the
constraints are too poorly known to determine the parameters
relevant to these flexures. Even with thicknesses of only
25 to 50 km the stresses due to the bending of an elastic

lithosphere through 350 are several kilobars. These are
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tensional at the top surface of the plate and compressional
at the bottom. The strength of the rocks is much less than
this, invalidating the simple elastic analysis. Also, as
the plate is progressively subducted the bend migrates
backwards along it so that the stresses released by failure
or creep will tend to be replaced by stresses of opposite
sign as the bent part of the slab is re-straightened.

The thin plate analysis of the slab being subducted
also gives an estimate of the horizontal stress at the
boundary between the two lithospheric plates. By comparing
the topography outside ocean trenches with the deflections
computed for a thin plate Watts and Talwani (1974) showed
that these stresses may be as large as 13 kbar for some
arcs but negligible for others.

Other estimates of the horizontal stress between the
two plates may be made from the formation of magma at
depths of 100 - 120 km by shear strain heating at the
junction of the two plates. This magma results in the
andesitic volcanicity which is characteristic of these
areas of the earth (fig. 1l.l1). The values thus estimated
for the shear stress in the plane of the slip between the
plates is a few kilobars (eg. Hasebe et al., 1970; Toksbz
et al., 1973).

It has been suggested that the pull of the cool sinking

slab on the lithosphere before it is subducted contributes
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a large part of the driving force of plate tectonics
(McKenzie, 1969; Elsasser, 1971; Harper, 1975; Forsyth
and Uyeda, 1975). The stress estimated simply from the
negative buoyancy is of the order of several kilobars
(McKenzie, 1969; Turcotte and Schubert, 1971).

The method employed for computing the stresses within
and near the descending slab depends on estimating the
density distribution from the computed temperature dis-
tributions. Smith and Toksbz (1972) used the temperature
distributions of Toks®bz et al., (1971) and then applied an

electrostatic analog of the elastic stress problem. They

used temperature dependent elastic properties. Toksbz et al.,

(1973), and Neugebaur and Breitmayer (1975) used similar
temperature distributions and visco-elastic finite element
analyses to calculate the stresses due to the negative
buoyancy of the sinking slab. Sleep (1975) used a viscous
finite difference analysis to model the subduction below
the Aleutian Arc. The direction of principal stresses
given in these papers are consistent with earthquake
mechanism studies. The calculated deviatoric stresses are
about 0.5 kbar. The flow rates and directions predicted
(especially by Neugebaur and Breitmayer) are not consistent
with those assumed in the temperature analysis and so some
doubt is placed on the validity of the results. These

analyses have only accounted for the stresses induced in
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the slab by the negative buoyancy of the cold lithospheric
slab.

Despite the limitations of these analyses it is evident
that the viscosity of the asthenosphere plays an important
role in supporting the cold slab. If the viscosity is
too low the asthenosphere does not support the slab sufficiently
so that the slab tends to bend and distortional stresses
become great. To get agreement between his models and the
topography in the Aleutian area Sleep (1975) had to introduce
a low viscosity wedge in the vicinity of the accretionary
prism (fig. 1l.1). Neugebaur and Breitmayer (1975) showed'
that it is necessary to use a stress-dependent viscosity
to adequately model the asthenosphere and sinking slab.

They suggest a power law in which the viscosity is inversely

proportional to the square of the shear stress.

1.4 Sources of stress in the earth

There are several sources of stress within the earth
which need to be considered. They may be classified
according to the origin of the forces or displacements
which induce the stresses in the model. The stress dis-
tribution must also depend on the variations of the physical

properties throughout the model.
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The main subdivision of the forces acting on a model
are the body forces and boundary forces. Body forces act
throughout the model and are a result of the physical

properties and state of the body. The main body forces are:

(a) Gravitational body forces due to the density dis-

tribution throughout the model.

(b) Initial stresses (Jaeger and Cook (1969) call them

residual stresses) are related to the previous history of

the rocks, and include stresses present prior to the analysis.
These stresses are usually poorly known but may alter the
computed stresses and flow to a considerable extent. In
longer term visco-elastic analyses the effect of stresses
generated at any one time decrease with increasing time.

Thus the significance of the initial stresses decreases

with time and depending on the flow laws may be neglected.

(c) Stresses due to volume changes may be sub-classified

according to the cause of the volumetric change. These
can be due to changes in temperature, phase changes or loss
of mass by fluid extraction. 1In elastic analyses, these
stresses are treated as initial stresses or strains
(Zienkiewicz, 1971).

Boundary forces can be either implied by the
specification of displacements or added as explicit pressures

on the boundaries. Restrictions on the motion of any part
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of a model imply the addition of forces to impose the
restrictions. It is usual, but not essential, that the
added forces are normal to the direction of motion. One
type of boundary where this is not so is when it is desired
to impose some frictional forces to a boundary.

The most common explicit pressures applied to models
are those due to the sea and other hydrostatic stresses.
If only the lithosphere is considered in tﬂe model the
force due to the asthenosphere on.the base of the model
may be included as an explicit hydrostatic pressure.

To compute the stresses and strains in a model of
part of the earth several "tools" are required. These are
developed in Chapters 2 and 3. Mathematical expressions
suitable for use in computers for the physical properties
of thg earth required for the models are developed in
Chapter 2. In Chapter 3 finite element methods for computing
the stresses and strains in visco-elastic models are
developed and a method of computing the variation of

temperature with time described.



17.

CHAPTER 2

PHYSICAL PROPERTIES OF THE CRUST AND UPPER MANTLE

For this study the bulk physical properties, under
slowly varying conditions, of the oceanic crust and upper
mantle are required. These properties depend on temperature
and stress.

It is possible to estimate the elastic properties and
density as a function of depth from seismic wave velocities
and the mass and moment of inertia of the earth (Birch,
1952; Bullen, 1963; Clark and Ringwood, 1964). These
estimates, which are averages over large areas of the earth,
are useful for studying the response to small stresses and
strains when the rocks are close to their normal conditions.
However, these average properties do not show how the
properties vary as the rock is subjected to substantial
changes in temperature and pressure, as for example when
oceanic crust and upper mantle move downward in a subduction
zone. In addition the seismic wave velocities only indicate
the response of the rocks to high frequency elastic waves,

and so estimates of elastic parameters from them may not be

applicable to the response of rocks to slowly varying conditions.

o
For example, if the rocks are within)phase transition, a

change in pressure will cause a much larger change in volume

than that suggested by the seismic velocities.
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Many measurements have been made over the last century
of the properties of rocks and minerals (Clark, 1966) but
only recently have experimental temperatures and pressures
reached those existing in the lower crust and upper mantle.
Furthermore, many of the measurements have been made on
individual minerals rather than rocks. It will normally
be assumed that a bulk property of the rock is the weighted
mean of the properties of the constituent minerals. For a
nearly monominerallic rock it will be assumed equal to
that of the mineral.

The major units which will be considered are the mantle
and the oceanic crust. These are assumed to be compositional
divisions and their physical properties depend on the
pressure and temperature. In this chapter functions, for
each of the properties, are developed which are suitable
for use in a digital computer.

Another useful subdivision of the outer layers of the
earth is that of lithosphere, asthenosphere and mesosphere.
The lithosphere (O to about 80 km in the oceans and 110 km
under the continents (Walcott, 1970)) is not significantly
susceptible to creep, having an apparent Newtonian viscosity

23 25

of 1.0 x 10 Ns/'m2 (Walcott, 1970) or 1.0 x 10 Ns/’m2

(Watts and Cochran, 1974). Below the lithosphere, the

asthenosphere has a much lower viscosity. This has been

2Db

estimated as about 1,0 x 10 Ns/m2 (Haskell, 1935, 1937;
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McConnell, 1968). At a depth of about 350 km there is a
phase change in the rocks composing the mantle and this
probably causes an increase in the viscosity (Stoker and
Ashby, 1973). The mantle below this phase transition is
termed the mesosphere. The viscosities mentioned here
should be treated as approximate. It will be shown later
in the chapter that they are dependent not only on the
ambient pressure and temperature but also on the shear stress.
The pyrolite model for the mantle proposed by Ringwood
(1962a,b, 1966a,b), Green and Ringwood (1967) and Ringwood
(1969a) has now largely been accepted (Harris et al., 1972).
This model gives the chemical composition of the mantle as
being equivalent to 3 parts of dunite to 1 part of basalt.
The mineralogical composition depends on the pressure and
temperature (fig. 2.l1). At low pressures the mantle is
plagioclase peridotite (A in fig. 2.1). At about 15-20 km
the plagioclase reacts to form spinel and pyroxene, to give
spinel peridotite (B in fig. 2.1). This in turn changes to
garnet peridotite at about 70 km. (Ringwood, 1969%a). All
these rocks consist largely of olivine with the minor
constituents changing phase. At the start of the transition
zone (350-400 km) the olivine itself changes to a more dense
spinel crystal structure. At about 600-700 km the minerals
progressively change to more dense crystal structures in the

post-spinel phase.
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The olivine in this model has a composition of
85 - 95% forsterite and 5 - 15% fayalite. Because of the
widely assumed predominance of olivine in the mantle
there has been,in the past decade,a great emphasis in
experimental work on determining the high temperature,
high pressure properties of olivine (Chung, 1971; Schaltz
and Simmons, 1972) and the olivine-rich rocks - dunite and
peridotite (eg. Carter and Ave' Lallemant, 1970).

The oceanic crust is often divided into three layers
(eg. Shor et al., 1971). Layer 1 consists of sediments
typically less than 0.5 km thick but sometimes much thicker
near continental margins. Layer 2 consists of basalt about

1.5 km thick (Shor et al., 1971). The composition of

layer 3 is uncertain, possibilities being gabbro, amphibolite

or serpentinite; Cann (1974) favours gabbro with a thin
zone of amphibolite near the layer 2-layer 3 boundary. It
is here assumed, for the purposes of ascribing physical

properties, that layer 2 is basalt and layer 3 is gabbro.

2.1 Mechanical properties

In the analysis of tectonic processes the rheology of
parts of the crust and upper mantle have been described
variously as elastic (Watts and Cochran, 1974: wWatts and

Talwani, 1974), having Newtonian viscosity, (Haskel, 1935,
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1937; Turcotte and Oxburgh, 1969; Sleep, 1975) or as a
Maxwell substance (Walcott, 1970; Toskdz et al., 1973-
Neugebauer and Breitmayer, 1975). 1In laboratory exper%ments
on rock deformation a strongly time dependent primary

creep is observed (eg. Murrell and Chakravarty, 1973) but
this becomes negligible after a few months and can be
ignored in modelling tectonic processes.

The combination of changes in density during phase
transitions and instantaneous elastic effects may be
rheologically modelled (fig. 2.2) by a Maxwell and a
Kelvin element in series, which is a Bergers substance
(Jaeger and Cook, 1969). The Maxwell elastic element, Lm'
represents an instantaneous response to an applied stress,
o' » and the corresponding viscous element, Vm' represents
the steady state creep. The Kelvin element applies to a
region of phase transition; the elastic response, Lk’
describing the volumetric change and the viscous member,

the rate of reaction. At temperatures above 300°C the
phase changes we are concerned with are fast enough to be
studied in the laboratory and so the delay caused by Vk
can be ignored in the analysis of tectonic processes;

however, the apparent elastic parameters will differ from

those estimated from seismic velocities, which depend only

on L .
m
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Rheological model for rocks. The Maxwell
element (L, V,} avplies throughout the
pressure temperature range, but the Kelvin
element (ka Yk) applies only in areas of
phase transition.
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2.1.1 Equation of state for a two phase system

The equation of state for rocks has commonly been
determined by compressional experiments or by seismic
velocity determinations on single crystals or monominerallic
samples (Clark, 1966; Chung 1971, 1972; Anderson, 1972;
Ahrens, 1975). These have often been expressed in terms
of the Birch equation (Birch, 1952; Chung, Wang, and

Simmons, 1970):

P = (3Ko/2)(y7-y5)[l v 0.75(m -4)(y 2-1)] 2.1

where p is the pressure and y = ( f//: ). Ko' m and j:
are dependent upon temperature alone (Birch, 1952) and
correspond to the bulk modulus, first pressure derivative
of the bulk modulus and density, all at zero pressure.

This equation gives an excellent method of extra-
polating experimental data to the high pressures encountered
in the earth, provided that the same phases are present
under both sets of conditions (Chung, 1972). Its
application to the present problem has two major difficulties.
Firstly, it only applies where there are no phase changes,
and secondly, the derivatives of density with respect to
temperature and pressure are complicated expressions
involving the cube roots of the density. Further, to find

the standard density at a given temperature and pressure,
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it is necessary to evaluate Ko' m and /; for that
temperature and then to solve a 7th order polynomial for y.
The density of a phase within its stability field may

be approximated by a polynomial, F(P,T) such that

/’ = j: F(P,T) 2.2

where Jf is the density at room conditions. Normally
a second or third order expression for F is required to
give sufficient accuracy.

The density function of a single component system is
discontinuous at a phase boundary (Ricci, 1951). Rocks are
usually multicomponent systems and the-change from one
phase to another takes place over a transition zone within
which both phases exist. The actual variation of density
within the zone depends on the density and proportion of
each phase. The composition, density and proportion of
each phase continuously change throughout the zone.

Many changes considered as phase boundaries in
geophysics are in fact a combination of two or more
mineralogical phase boundaries (eg. Ringwood, 1969a,b) and
hence the density changes in the transition zone may be
complex. As a simplification it will be assumed that the
density function is continuous and has a simple analytical

form in the vicinity of the phase boundary. It will be .
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shown (Section 4.1) that in the study of reasonably large
scale tectonic processes the actual function used does not
alter the computed stresses and strains significantly.

If the proportion of each phase is assumed to be
dependent only on the distance from the centre of the

transition zone then we may define a variable, d, by

de k(a +bT+ cP) 2.3

where d = 0 describes the centre of the transition zone
in P, T space, a, b, c being constants and k a scaling
factor. B(d) is a function defined to describe the

relative proportions of each phase such that:

B(d)

1 for d <L O,

B (d) O for d >§o, 2.4

and B(-d) = 1 -B(d).

For two phases, the density function may be expressed as

S= [ F B(-d) +fF B(d) 25

where j? ' ﬂ are the densities of the two phases at room
conditions. Fl and F2 are functions describing how the

density of the individual phases change with pressure and

temperature.

If the proportion of the phases varies linearly across



25.

the transition zone then

0 d>1
B(d) ={0.5(1-4d) 1< d<1 2.6
1 d< -

and k in equation 2.3 is chosen so that d varies from -1

to +1 across the transition =zone.

An alternative continuous function suitable for B(d) is

B(d)= 0.5 —%rqr{1(d) 2.7

This has the advantage that not only the densiﬁy but also
the compressibility and thermal expansion are continuous
functions and so some numerical methods of stress analysis
which require iteration to a solution will be more stable.
The value of k will of course be different from that for
the linear function. The disadvantages of this function
are that it deviates a little from O or 1 outside the
transition zone and that the derivatives in the centre of
the transition zone are about twice those for the linear

function.

2.1.2 Equation of state for the mantle

The phase diagram for a pyrolite mantle is shown in
fig. 2.1. Most of the phase boundaries are fairly well

established from experimental work and have been taken from
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Wyllie (1971). However, the boundary between the spinel
garnet phase and the post-spinel phase is in dispute and

it is not certain whether the reaction is exothermic or
endothermic (Ringwood, 1972; Liu, 1975). The boundary is

at about 2.0 x 10lO N/'m2 and the change in phase increases
the density by about 8% (Anderson, 1967; Ringwood, 1969b).

I assume that this boundary has no slope in the phase diagram,
which implies that there is no heat of reaction and that the

boundary will be at a nearly constant depth of 600 km.

The density function for fig. 2.1 may be written:

PLOTIALL +(L-L) Bk (1 - £) Bl Bl-ds) E(BT)
£ B )EMT) {1+ 0088l {1~ 009 B(d)}

2.8

The five phase boundary functions, d, - 4

1 5, are:

d1 = k1 x (1800 + T -3.0 x 10—6 X P) for the plagioclase

peridotite-spinel peridotite transition

d2 = k2 x (964 + T -8.03 x 10_7 X P) for the spinel peridotite-

garnet peridotite transition

d3 = k3 X (2400 + T -3.0 x 10_7 x P) for the garnet peridotite-

spinel garnet transition

g =k, % (1500 - T + 9.0 x 10 8 x P) for the dry solidus and

[oF)
li

dS = k5 x (200.0 - 1.0 x 10“8 x P) for the spinel garnet-

. . . . 2
post spinel transition. T is in OC and P in N/m .
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The densities at room conditions of the plagioclase peridotite,
spinel peridotite, garnet peridotite and spinel garnet phases
(j: - _ﬁ ) have been evaluated from their mineralogical
composition as 3.24, 3.32, 3.38 and 3.66 Mg/'m3 respectively
(Green and Ringwood, 1963; Ringwood, 1969a,b). The term

{1 +0-08 B(Js)] allows for an increase of 8% in the
density at the spinel garnet - post spinel transition
(Ringwood, 1969b) while the final term, [] - 0.075(JL)] .
allows for a 9% reduction in the density on melting. The
effect on density of the compositional variations of the
minerals within a phase is generally small in comparison

with thg compressibility of the minerals and so is neglected
(Ahrens, 1973).

The peridotite phases all contain more than 55% olivine
(Green and Ringwood, 1963) so the variation of their densities
with pressure and temperature will be similar to that for
olivine. Hence FO(P,T) is taken to represent the
compressibility and thermal expansion effects for all three
peridotite phases. The bulk modulus , K, , and its

derivative with respect to pressure, m, of olivine

(Fa90 Folo) at zero pressure are
K, = 1.274 x 10" - 0.177 x 108 T
m = 5.16 (Chung, 1971).

Using these and the coefficients of thermal expansion at
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zero pressure given in section 2.2.1, the fractional change
in density, (ﬂ—f; )//: , was determined at points on a
grid in P and T over the stability field of the phases
by using the Birch equation (equation 2.1). A cubic
polynomial, Fo, was then fitted to the points. Similarly
using Chung's (1972) estimate for the values of Ko and m
for the spinel phase, a quadratic polynomial, Fs, was
determined. The coefficients for both polynomials are
given in Table 2.1.

When a linear function for the density variation
across the phase transitions is used (equation 2.6), k, to

1

k5 are 0.001, 0.0025, 0.00l11, 0.0014 and 0.0313 respectively.

If equation 2.7 is used then values of kl to k5 of 0.011,
0.0411, 0.0157, 0.0094 and 0.05 cause the functionsB(dn)

to change from 0.1 to 0.9 over the estimated ranges of

the transitions.

2.1.3 Equation of state for the oceanic crust

Assuming the oceanic crust to be chemically equivalent
to an alkali-poor olivine tholeiite, its phase diagram is
shown in fig. 2.3 (from Ringwood and Green, 1966). The
dry melting for basalts is taken from Cohen, Ito and Kennedy
(1967) and the densities of the solid phases are given by
Ringwood and Green. The value of 3.10 Mg/'m3 may be too high
for the gabbroic oceanic crust but if allowance is made for

about 5% pore space this would be reduced to a reasonable
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Table 2.1 EQUATION FOR THE DENSITY OF VARIOUS PHASES
AS A FUNCTION OF PRESSURE AND TEMPERATURE

The equation for the density of the phases (without

regard to phase changes) is given by

N
/) :/: (1 . i;’ ai PK\ le Io-mi )

i k 1 m olivine spinel gabbro eclogite
1 1 o 11 0.7983 0.5407 1.15 0.7695

2 0] 1 5 -2.9793 -2.6793 -1.4 -4.1965

3 2 ) 22 ~-1.4796 -0.4188 - 0.7063

4 1 1 16 8.3380 3.5937 - 7.7171

5 o 2 9  -3.9511 1.0101 8.0 4.7881

6 3 o) 33 3.2213 - - -

7 2 1 25 -3.0169 - - -

8 1 2 18 1.6102 - - -

9 o) 3 12 6.2758 - - -
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2.90 Mg/m3. The density changes across the solid phase
boundaries have been discussed by Wyllie (1971) and may

occur as two or three distinct steps. However, for

simplicity, it will be assumed that the density changes

gradually from 2.90 Mg/'m3 for the low pressures assemblage

to the density of eclogite of 3.40 Mg/m3. The phase

boundary will be taken as the mean of the gabbro-garnet granulite
and garnet granulite-eclogite boundaries.

Thus the density function for the oceanic crust becomes

P oLk Bed) +f B B 0.098)]  2-1L

where 2 = 2900
S = 3400
dl = kl x (1500 - 2.3 x lO-6 X P + T) refers

to the gabbro-eclogite phase transition and 2.12
d, = k, x (1080 - T + 1.2 x 10"/ x P) refers

to the solidus. Fg and Fe are functions describing the
change of the density of the low pressure assemblage and
eclogite respectively with pressure and temperature.

For the linear variation of density across the phase
boundary, k., and k2 are 0.00067 and 0.002 respectively.

1

If equation 2.7 is used, k1 and k2 are 0.013 and 0.011.

Since the stability zone for gabbro is small, the

compressibility and coefficient of thermal expansion will
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not vary much over its field and so F_ may be approximated by

g9

Fg = 1.0+ 1.15 x 1o'1lp - (1.4 x 10

5 9

T + 8.0 x 10 T2)

2.13

The pressure term is the mean compressibility for gabbro
given by Birch (1966). The temperature terms are determined
in section 2.2.1.

The effect of pressure and temperature on the density
of eclogite is more difficult to estimate. Green and
Ringwood (1967) indicate that as the pressure is increased
at a given temperature so the ratio of garnet to pyroxene
is increased. If the mineral proportions remain constant,
the density function may be estimated from measurements
on the individual minerals. When the mineralogy varies
with P and T there is an additional cause for the change
in volume. However, the lack of measurements on eclogites
forces this effect to be neglected even though it may be
substantial. The bulk modulus and its first pressure
derivative at zero pressure were determined to be 1.38 x lOll
and 5.0 respectively by averaging the values for pyroxenes
and garnets (Birch, 1966). The variation of K with temper-
ature at zero pressure is unknown but for nearly all
substances it decreases as the temperature increases

Birch (1952). It was assumed that

11

K, = 1.38 x 1001 - 0.2 x 10° x T 2.14
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These values were used in the Birch equation of state,
in a similar manner as the equivalent properties for the
mantle, to determine Fe as a quadratic polynomial in
pressure and temperature. The coefficients are given in table

2.1.

2.1.4 Elastic properties

Isothermal elastic properties are required but these
are usually only a few percent different from the adiabatic
properties (Birch, 1952). Unless otherwise stated I assume
that these are equal.

The isothermal compressibility /? , is defined as

:
o (36,

Assuming the density functions established in the previous

2.15

sections (2.1.2 and 2.1.3) for the mantle and the oceanic
crust the compressibility and bulk modulus can be directly
determined.

In the analysis of elastic or visco-elastic processes
two elastic parameters are required. Equation 2.15 gives
&_ . The other parameter cannot be determined from the
equation of state. Since the equation of state given here

describes the density in a state of mineralogical equilibrium

it incorporates the elastic constants relevant to both the
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instantaneous response, Lige and phase change, Lk' of fig.2.2.
The two elastic parameters associated with Lm may be
determined from a study of seismic velocities. Compressional
velocity, Vp (Birch, 1961) and shear velocity Vg (Christensen,
1968) of rocks have been shown to be nearly linear with
density for a given mean atomic weight. For the same
chemical composition this linearity should hold to a good
approximation.

The mean atomic weight of the mantle and basalt are

about 21 and 22 respectively (Chung, 1971; Christensen,

1968). These give

Y
p

\'/
s

3.16 ﬁ -2206.0

1.63 - 880.0

for the mantle and
Vv
P

v
S

3.16 © -3000.0

1.63 f -1280.0 2.16

for the oceanic crust.

From these the instantaneous Young's modulus, Em,

and Poisson's ratio, \)m, may be determined as
2
VNV, =% (R-2)/(R-1), where R = (Vo)

2
and Em = 2 Vg (1 +‘vm).
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For two sources of elasticity acting in series it may

be shown that

1= 14+ 1

Ep Em Ex
and

Vr_ Uny W

Eqp Ey Eg

Eliminating Eyx and substituting /'Sr = 3 ( [ - zx)T)/ET

gives

v, - 3(—\)»-.-\)»0 + Vo En B 2.17
Emfl + 6(Op V)

The value of \%Q will depend on the type of phase
change represented by the Kelvin element in the rheological
model. If it is simply a change in the crystal lattice,
the change in volume may be by equal strain in all
directions indicating OK equal to -1. If recrystallization
takes place then the new crystals are likely to grow
preferentially in the direction of the least compressive
stress and ), may take any value between -1.0 and 0.5.

It will be shown in section 4.1 that }) has a much smaller
effect than r3 on the stresses produced in a model and it

is usually sufficient to take Vr = V., .
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2.1.5 Viscosity

Haskell (1935, 1937) showed that a uniform kinematic
viscosity of 2.6 x lO21 Stokes is required to account for
the rate of isostatic adjustment of Fennoscannia. This is
equivalent to a dynamic viscosity of about 1.0 x 1021 Ns/mz.

Since then viscosities of the upper mantle between
1.0 x 1O19 and 1.0 x lO21 Ns/m2 have been used successfully
in modelling some processes which occur in the earth
(Knopoff, 1964; Christoffel and Calhaem, 1973; Harper, 1975).

The main difficulties in measuring the creep behaviour
of rocks in the laboratory are (1) different creep mechanisms
predominate under different conditions and (2) natural
strains are very slow in comparison with laboratory rates.
If, however, the fabric and the dislocation patterns in the
samples deformed at higher rates are similar to those in
naturally deformed rocks, then it is likely that the creep
mechanism is the same (Ave' Lallemant and Carter, 1970).
Stocker and Ashby (1973) summarized seven steady state
creep mechanisms of which five could be important in rocks
for conditions thought to prevail at depth. The flow law
for all these can be approximated by the empirical relation-

ship employed by Weertman (1970):

€= A ) D, exp(-&/RT) - 2:18
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FCF) is a function of the shear stress, ‘{ , usually

expressed as a power:

f(1)- 4" ny 1.0 2.19

Do is a diffusion constant which is dependent upon the
elastic modulii and temperature. This will vary slightly

with conditions but the uncertainty in the other parameters
makes éhe variations unimportant and they will be neglected.

Q is an activation energy which is pressure dependent.

However, its variation is closely linked to the variation of

the melting temperature with pressure (Carter and Ave' Lallemant,
1970) so that if we replace the exponential term by

exp ( ~4 T /T ) the new variable, i‘, may be taken as

constant under a wide range of pressures.

a) Viscosity of the mantle

For olivines and olivine rich rocks deformed dry most
determinations of Q are in the range 100-130 Kcal/mole
(Table 2.2).

Some confusion has been evident in the use of TMxthe
melting temperature. In most papers dealing with the
experimental results, the value of the dry melting temper-
ature of pure olivine given by Davis and England (1964) is
used. However, the mantle is probably pyrolite and not pure

olivine; Neugebauer and Breitmayer (1975), for instance, have

used the dry melting temperature of pyrolite but have failed to



Tab

le 2.2 CREEP LAWS

DRY ROCKS

AUTHOR Q q
A 120 28.7
B 106 26.4
C 96 23.0
D 111 -

WET ROCKS

AUTHOR Q a
A 80 -
A 80 -
D 54 -

AUTHOR

o Ql Ol

FOR POSSIBLE MANTLE MATERIAL

2100
2100
2170

Carter and Ave'

15
15

15

15
15
15

Kirby and Raleigh (1973)
Carter (1975)

A
B Raleigh and Kirby (1970)
C
D

Ty
1410
1410
1316
1410

Tm
1010
1010
1010

Lallemant (1970)

Activation energy given by above authors

q

42.8
39.3
37.9
39.6

39.8
39.8
26.8

factor to be used with the melting temperature EM

experimental pressure (Kb)

power law for shear stress

37.

SAMPLE

-1
ab

SAMPLE
b

a

a

T melting point of pyrolite at conditions of experiment

M

q factor to be used with TM

Sam

a

b

ples

Dunite

Lhertzolite

¢ Empirical relation

(g = q TM/E‘M)
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correct q accordingly.
I use the melting temperature of pyrolite but correct
d so that the experimental creep rates are predicted by

the expressions - that is

q = q Ty/Ty 2.20
where the bar represents the published values and the
unbarred variables those used in this paper. TM and TM
are evaluated at the pressure of the experiments. The
results are shown in table 2.2. This indicates that, in —
spite of the difficulties in applying a theory derived for
pure substances to complex rocks, the values of g calculated
from various results are about the same. I assume a value
of 40.0 for dry mantle.

n is dependent upon the flow mechanisms contributing
to the creep and the crystal structure, particularly if
dislocation creep mechanisms are important. Kohlstedt
and Goetze (1974) have shown that -FC() is not a simple
power law for olivine but Neugebauer and Breitmayer (1975),
using the same data, have shown that it may be approximated
by power laws of n = 3 and n = 5 depending on the shear
stress,‘{ . Also using the same creep data, g = 40.0 and
T = 1316°K (the melting temperature of pyrolite at

M

atmospheric pressure) the following creep laws may be obtained:

1.6 x /o_'s exp (-#o0.0 Tn/T) ~1”3 £ 1.0x10¥

e
1]

and 5
= 3.2, 107 3% exp(—uo.oTN/T) £ > 1.0x10¥

-
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There may be a range of conditions in which flow is
linearly dependent on the shear stress, (n = 1), but this
_would be at very low shear stresses and so the flow would
be very small and may be neglected. The transition stress
has been estimated as 1.5 x 105 Nymz by Weertman (1970)
and 0.7 x iOS N/'m2 by Stocker and Ashby (1973).

At pressures above about 30.0 x lO8 N/mz, the hydrous
minerals are no longer stable (Green, 1973) and it is thus
likely that there is a small amount of free water in the
mantle. This would have a marked effect on the creep so
that the laws determined from the experiments on "wet"
dunite (Carter and Ave' Lallemant, 1970; Carter, 1975) may
be more appropriate. Correcting for the melting point of
"wet" pyrolite (Section 2.2.5) the revised expression of

Carter (1975) becomes

: 2.1
€ 13x 107 exp(-26.8 /T ) F 2.21

At hydrostatic pressures so great that the olivine is
changed to spinel structures, these flow relations are
invalidated because of thé change in the crystal parameters
(Stocker and Ashby, 1973). Because of the closer packing
of the atoms, the creep strength is likely to be increased
considerably. An arbitrary increase of 3 orders of

magnitude in the viscosity will be applied at the phase boundary.
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The apparent viscosity is defined as
4

VA v .

For the above creep laws the viscosity, M, in Ns/m2 is

-2
/" = 2J.:o“"exp(40.07~/’f)‘f P< 3.0, IO? "fé I-Oxlogw

/v‘: /.0,‘/oslexp(zfo.oT,,/T)f‘4 P< 3.0¢,07 f)/.()x,os/ >2.22

. vy d3)
s 10x10" exp(26.9 To)7) /033(’ Py 10,9 )

where Bﬁds>is the function giving the proportion of spinel .

phase present (Section 2.1.2). P and 1 are in N/'m2 and T in °K.

b) Viscosity of the oceanic crust

Murrell and Chakravarty (1973) measured transient
creep in granodiorite and dolerite. If their assumption
of Andrade creep is correct, their measurements suggest a

viscosity of

S 1S exp(53Ta/T) {"'Y

-1.5

and S 6.0 eXP(UZTF/T) vl

for dolerite and granodiorite respectively. These are not
well determined but in the absence of any better measure-
ments the first of these estimates will be applied to
oceanic crust.

Because of computational difficulties the viscosities
of all rocks will be limited to the range

1§ 45

" < o< 10* Ns/mv
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The lower limit reduces the chances of instabilities
propagating in the model. If the viscosity is as great at
45

10 Ns/'m2 no significant viscous flow can occur over periods

much larger than those for which the models are studied.
2.1.6 Fracture and failure criteria

The Griffith's theory of brittle fracture (Murrell,
1964, 1965; Jaeger and Cook, 1969; Edmond and Murrell, 1973)
has been applied to rocks. The initial theory has been
extended to include the effects of high confining pressures
{McClintock and walsh, 1962: Murrell, 1964, 1965). I define
a dimensionless variable, F, which indicates how close the
stress in a rock is to causing brittle fracture. F becomes
less negative as failure is approachéd and is positive if
failure is predicted for a given state of stress. Pore
fluid pressure has been neglected but is'important in the
failure of rocks. Its neglect gives an overestimate of the
stress required for failure to occur. Following Serviée and
Douglas (1973) three stress regimes exist.

a) If 3P + R » O where P and R are the maximum and minimum

principal stresses respectively (tension positive)
F =P/ -1
where T is the tensile strength equal to about 0.5 x 108 N/'m2

for igneous rocks (Brace, 1961).
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b) If 3P + R £ 0 and the compressive stress across
the shear direction is not great enough to close any

microcracks then
2,2
F = (P-R)° /T + 8 (P+R) /T

c¢) If the microcracks are closed then
F = (P+R) /T + o (P-R)/T - [ /T

where oA =2 1.356 and (3 = 0.02T are determined from
values of 1.09 and -4.19T for the coefficient of friction
and the compressive stress required to close the microcracks
respectively (Murrell, 1965).

Whether these equations can be applied at great depths
in the earth is not clear but they do give an indication
of thé'relative likelihood of failure.

The Griffiths theory also gives the direction of
failure but we will generally ignore this and simply lower
the viscosity of any failed finite element thus treating
the failure point more as a yield point than as brittle

failure. This 1is purely a computational convenience.

2.2 Thermal properties

2.2.1 Coefficient of thermal expansion

A plot (fig. 2.4) of experimental measurements of the

thermal expansion of minerals (Skinner, 1966) indicates
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Fig. 2.4 Percent -clune expansion of several minerals
on heating from 20%C. (extracted from
Skinner, 19€6).
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that above 400°C their volume increases linearly with
temperature but below 400°C they expand as T2. The
expansion of rocks, at zero pressure, were estimated by
ave raging the values of their constituent minerals
(Tables 2.3 and 2.4). These values were used to determine
the density, at zero pressure, for use in the Birch equation
(Sections 2.1.2 and 2.1.3) and thus in establishing
expressions for the density as a function of pressure and
temperature.

Once the density functions were established (Section 2.1)
they were in turn used to determine the coefficients of
thermal expansion as a function of pressure and temperature.

By definition
I B} >
ol f’(éT

Using equations 2.8 and 2.11 for the density of the

p

mantle and oceanic crust respectively gives thermal expansion
coefficients which allow for the additional expansion during

a phase change.

2.2,2 Thermal capacity

According to Debye the heat capacity at constant volume,

c of a crystalline so0lid at temperature °K is given by

Xo
9 R x* e™ s 2.24
Cv *

V'




Table 2.3 THERMAL EXPANSION COEFFICIENTS FOR MINERALS

AND ROCKS

Mineral a x lO5 b x lo8 C X 105
Olivine (FaloFo9O) 2.15 3.65 3.66
Amphibole 1.99 2.68 3.13
Pyroxene 1.70 2,28 3.07
Plagioclase 1.20 1.20 1.98
Garnet (Pyrope) 1.64 3.06 2.77

Rock ax lO5 b x 108 Cc X lO5
Basalt 1.38 l.61 2.37
Gabbro 1.40 1.65 2.37
Amphibolite 1.77 2.27 2.81
Eclogite 1.67 - 2.73 2.90

The coefficient of thermal expansion o is given by

a+bT T < 400°C

-

A

ol = c T > 400°%

where T is the temperature in oC.



Téble 2.4 MINERALOGICAL COMPOSITION OF VARIOUS ROCKS*

basalt gabbro amphibolite eclogite

Olivine 3 7 - -
Amphibole - 3 71 -
Pyroxene 29 20 - 45
Plagioclase 62 65 27 -
Garnet - - - 55

* Extracted from Barth (1952)

45,
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where R is the gas constant, X, is T7T/& and Q) is the
Debye Temperature. For olivines of molecular weight
21.00 Chung (1971) gives @ = 727°k.

The specific heat at constant pressure, Cp, is related

to CV by

2.25

where K is the bulk modulus, &K is the coefficient of
thermal expansion, T is the temperature in °K and /D is

the density. Kelley (1960) has published tables of specific
heat at constant pressure and expresses the variation with

T by empirical equations of the form
2
Cp =a + bT + c/T

Values of a, b, and ¢ for several minerals are given
in Table 2.5. Combining those for forsterite and fayalite

(assuming zero excess heat capacity of mixing) gives
C, = 1033.84 + 0.19434T - 0.2419 x 108 /2 2.26

for Falo Fogo' The value given by 2.26 is compared with
theoretical values obtained by numerical integration of
2.24 and 2.25 using observed values of K, o and /9 for
olivine at zero pressure is shown in fig. 2.5B.

At high temperatures, the gradients of the experimental

and theoretical curves differ by a factor of 3.6. This

implies that there must be an error of this order in either



Table 2.5

Mineral

Fayalite*
Forsterite*

Olivine (FaloF°9o)

Amphibole (Magnesian)*
Pyroxenes

Diopside*
Clinoenstatite*
Mean

Plagioclase
Albite*
Anorthite*
Orthoclase*
Mean

Quartz*

Rocks

Basalt
Gabbro
Amphibolite

Cp =a + bT + c/T

where T is the temperature in

750.08
1065. 37
1033.84

1023.24

1022.05
1023.66
1022.85

985.07
969.43
960.10
971.53

781.76

989.35
988.56
1008.99

o

K.

SPECIFIC HEAT AT CONSTANT PRESSURE
FOR MINERALS AND ROCKS

0.19230
0.19457
0.19434

0.22683

0.15156
0.19764
0.17460

0.22192
0.20617
0.19403
0.20737

0.57134

0.19684
0.20013
0.22147

c x 1078

~0.13765
-0.25348
-0.24190

-0.24476

-0.30428
-0.26186
-0.28307

~-0.23968
-0.25417
-0.25656
-0.25014

-0.18812

-0.26004
-0.25630
-0.24642

* These values taken from Kelley (1960) and the others

calculated from them.
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the thermal expansion coefficient, bulk modulus, density
or CV. The Debye theory, however, is formulated for pure
substances of relatively simple structure so that it may
not be directly applicable to olivine solid solutions.
Hence the experimentally determined value (equation 2.26)
is used for the computations.

The heat capacity, Cp, for other relevant rocks were
obtained from the values for their constituent minerals
(fig. 2.5). Because these are all within about 5% of
each other, the value for gabbro is used for the whole
oceanic crust.

The effect of pressure on Cp has not been determined
for rocks but for most substances it is very small (Birch,

1952). Hence Cp will be assumed to be invariant with pressure.

2.2.3 Latent heat of phase changes

The Clausius-Clapeyron equation for the latent heat

of a phase change is

P
L= AV. T, ;’,‘—T 2.27

where AV is the change in specific volume due to the phase
change, T the temperature and g% the gradient of the phase
boundary. This equation applies to a sharp phase boundary.

Where the phase changes take place over a range of

temperatures (for a given pressure) the validity of the
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expression is less certain.

It is assumed that at constant pressure: (1) the total
latent heat in going from one phase to the other is that
calculated for a sharp boundary; (2) the latent heat
involved in part of the phase transition is proportional to
the change in density, and (3) the latent heat can be
simulated as an apparent increase in the specific heat ,Acr’

such that

where H is the enthalpy.
With these assumptions the apparent increase in the thermal

capacity at constant pressure ( ACr' ) is given by

sy = <B§@r(d))9 [Av.'r. %I;:l 2.28

B(d) describes the proportion of the phases (Section 2.1.1).
AV should be the change in volume at the conditions of

the phase change (expressed as a sharp boundary) but as

(BB(J)
?T

in taking the slowly changing AV at the conditions of

) is zero outside the transition zone, the error
'P

P and T existing in the rock may be neglected.
If the densities of the phases are /; "o(P, T) )f, F (P)T)

and the centre of the phase transition is aP+ bT +¢c =0

then ,
ACh = - Lh Lk (P %NBBBTH)) 2:29
r L1 F Ko P
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2.2.4 Thermal conductivity

Schaltz and Simmons (1972) measured the thermal
conductivity (kc) of olivines and gave the following
expressions (converted to S.I. units) which they consider

applicable to the upper mantle. If

kc = kL + kR 2.30

and kL is the conduction due to lattice vibrations and kR
is the conduction due to radiant energy propagated through

the crystal, then 2
-b 4
IZ?X 10 VT) f

maximum of - 2.31
(0.074! +5.01x 10°%T)

kL

H

0 7L< 500

2.3, 073 (T—:’oo) T 2500

T is the temperature in oK. These are used for the mantle.
The values of the conductivity of three samples of
diabase at temperatures up to 400°C tabulated by Clark
(1966) are all within the range 2.09 - 2.34 J/m s °C.
The mean and standard deviations are 2.14 -~ .08 J/m s °c
but the trend with respect to temperature is different for
each of the three samples. Based on these determinations,
a constant lattice conductivity of 2.1 J/m s °c is assumed

for the oceanic crust. By a similar argument to that
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presented by Schaltz and Simmons (1972), a minimum lattice
conductivity for these crystalline rocks can be related to

their compressional velocity and density by:

L~
KL: /'27x Il)—_b fo :

The radiative conductivity for these rocks is unknown
but will only become significant as the crust is heated
in the descending subduction zone. The expression given
for olivine by Schaltz and Simmons (equation 3.32) is used
where needed.

Hence the thermal conductivities used for oceanic crust

are
kc = kL + kR

where: . 2.1
kL = maximum of 129, m‘b V}/9y3 2.33
Ky = 0 TS50, s

2.3, .0‘3 (T— 5’00) T7500

2.2.5 Melting temperature

The melting temperature of a rock is dependent on the
amount of water present. Melting curves for dry and
hydrous conditions for materials which may constitute the
upper mantle are shown in fig. 2.6. The melting of basic

rocks with less than about 1.0% HZO depends upon the
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Fig.. 2.6 Wet and dry melting temperatures for
possible mantle materials.

(1) Peridotite {(Ito and Kennedy, 1967)
(2) Lherzolite nodule (Kushiro et al.,1968)
(3) Pyrolite III (Green and Ringwood, 1970)

(4) Pyrolite - 4C% nlivine &% HZO (Green, 1973)

(5) Pyrolite - 40¥ olivine 2% HZO (Green,1973)
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stability of the amphibole phases (Green, 1973). 1If
these hydrous minerals are stable then the water may be

used in converting pyroxene to amphibole so that PH20<K PTotal'

If, However, the amphiboles are unstable then the water is

in the fluid phases with P =P

H20 Total® Hence in curve 5

in fig. 3.6 the solidus below about 3.0 x 109 N/'m2 follows
the stability field of amphiboles.
Adopting the melting temperature of pyrolite with

0.2% water (curve 5 - fig. 3.6) gives

= 1306.0 + 87034, P - ).657,,,-' TP P<29,,,7 2.35
n?s (7200 + /. 26x /0‘7 T) ?22-7“0‘7

for mantle ﬁaterial. TM is in °K and P in N/mz.

The melting temperature probably increases rapidly
across the oliviqe—spinel and spinel-post spinel phase
transitions (e.g. Uffen, 1952). However, the other properties
which are related to the melting temperature - in particular
the viscosity - will also vary suddenly at these dis-
continuities. Consequently the complexity in trying to
allow for these changes is not warranted.

For the oceanic crust, the melting curves given in

fig. 2.7 for basalt and eclogite apply. The curve for

8 2 .
Pﬂzoé 3.0 x 10 N/m" gives
2
_/’1: 13/5.0"8-5‘;( /o"_,P +5/.0,.lo-,6 (P P<3-oxw%’
T 2 10670 + 1. 25107 P P% 3.0¢,¥  2.36

where T is in °K and P in N/mz.
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Fig. 2.7 Wet and dry melting curves for basalt

(1) Dry basalt (Cohen et al., 1967)
(2) Wet basalt (Ycder and Tilley, 1962)
(3) Used in this thesis
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2,2.6 Heat production

The heat generated by radioactive decay is one of the
most difficult parameters to estimate. Macdonald (1965)
gave an average value for several rock types (Table 2.6).
Generally the more acidic the rock, the higher the heat
production, and so granites and granodiorites produce more
radiogenic heat than basalts and peridotites.

One useful check on the heat production in a model
earth is the computation of the temperature profile in
steady state conditions. This fixes limits on the radio-
genic heat production.

Other heat sources within the earth's outer layers are
mechanical and chemical changes. The most important of
these is latent heat of fusion and the free energy of some.
phase changes (Section 2.2.3). Heating of the rocks due to
viscous flow (Section 3.1) has generally been ignored but

may also be important.

2.3 Variation of temperature with depth

Because of the continual movement of the crust and
mantle dictated by the theory of plate tectonics steady
state thermal conduction conditions seldom exist in the
earth. In the old ocean basins these conditions may be

approximated in the lithosphere which is older than about
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Table 2.6 AVERAGE RADIOGENIC HEAT PRODUCTION
FOR VARIOUS ROCKS*

x 10-8cal/g yr X lO_12 J/kg s

Granite 810 1080
Intermediate 340 480
Basalt 119 160
Eclogite

Low Uranium 8.1 10.8

High Uranium 34.0 45,0
Peridotite 0.91 1.21
Dunite 0.19 .25
Chondritic Meteors 3.94 5.25

* From Macdonald (1965)
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100 M. yr. (Sclater and Francheteau, 1970). There is
probably some convection in the asthenosphere and so the
thermal gradients below the base of the lithosphere will
be lower than those for a conduction model.

Fig. 2.8 shows a steady state conduction geotherm
compared with some previously published estimates of the
variation of temperature with depth under ocean basins.
This geotherm was constructed assuming that the heat lost
at the surface is 0.046 mvmz ( 1.1 /“cal/bmzs, Sclater
and Francheteau, 1970), and that the thickness of the
lithosphere is stabilized by the instability of the
amphibole phases with pressure at 93 km and about 1000°c.
These constraints and the use of the conductivities given
in section 2.2.4 place limits on the heat sources within

the lithosphere. Assuming 1.6 x lO_lO W/kg for oceanic crust and

a constant value for the lithospheric mantle of 0.65 x 1610
W/kg meets the previously assumed conditions. This heat
generation density is compared with that used by Clark and
Ringwood (1964) and Sclater and Francheteau (1970) in fig.2.9.
The radiogenic heat sources are consgsistent with the pyrolite
composition of the lithosphere.

The lithosphere is formed from the asthenosphere at
the spreading ridges suggesting that their bulk composition

should be similar. If, however, the density of radiogenic

heat sources estimated here for the lithosphere continue



wy

400
600
0 1000 2000
Temperature °C
Fig. 2.8 Geotherms for a stable oceanic basin.

Previously published curves are

(a) Ringwood (1969a)

(b-d) MacDonald (1965)
(e) Clark and Ringwood (1964)
(f£) Turcotte and Oxburgh (1969)

Solid line is a conductive geotherm
calculated using the properties in this
chapter and radiogenic heat sources as in
fig. 2.9. The convective cgeotherm is
arbitrary but causes the olivine spinel
transition to start at 325 km.
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Fig. 2.9 Solid line shows the radiogenic heat sources
assumed for computing the conductive geotherm
in fig. 2.8. Dashed line is the distribution
used by Clark and Ringwood (1964) and Sclater
and Francheteau (1970).
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through the asthenosphere all the heat lost at the surface
of the earth would be generated in the upper 250 km. This is
independent of the method of heat transfer - conduction or
convection.

For the purpose of the conduction model the radiogenic

10 W/kg for the asthenosphere

heat was reduced to 0.1 x 10
and mesosphere. The temperatures on the conduction geotherm
(fig. 2.8) are probably too high at depths greater than
200 km. In this model the start of the olivine-spinel
transition is at about 410 km. This is in the lower part of
the range estimated from seismic velocities (Tokstz et al.,
1967; Julian and Anderson, 1968).

An alternative geotherm was constructed by assuming
a linear variation of temperature with depth from the base
of the lithosphere to intersect the beginning of the
olivine-spinel transition at 325 km. This is an upper
limit for the transition. This geotherm is arbitrary but
the gradient of l.4°/km is within a reasonable range for
heat transfer by convection to be important in the astheno-

sphere.

2.4 Vvariation of physical properties with depth

The variation of various physical properties of the

earth as a function of depth using the expressions in this
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chapter and these temperature profiles are shown in

figs. 2.10 and 2.11. The solid lines refer to temperatures
given by the conductive geotherm and the dashed to the
convective geotherm.

The density profiles (fig. 2.10) are within about 1%
of that of Clark and Ringwood (1964). The velocities
plotted are simply related to the density by a linear
function (equations 2.16) and so the effect of partial melt
in reducing the velocities in the low velocity zone is
ignored. They are, however, in general agreement with
seismically determined velocities (e.g. Toskbtz et al., 1967
Julian and Anderson, 1968). The large increase in thermal
conductivity with depth is due both to the radiative
conduction increasing with temperature and to the lattice
conduction increasing with density and compressional wave
velocity (equation 2.31). The effect of the olivine to
spinel phase change on the conductivity is uncertain,
however, and may reduce the radiative heat transfer, thus
altering the curve below 400 km substantially.

In fig. 2.11 the specific heats contain the effects
of the latent heat of phase change (section 2.2.3). This
has a much larger effect on Cp than Cv' At constant volume
the temperature change tends to take place along the phase
boundary (causing much larger changes in pressure) whereas

at constant pressure, the phase change has to run. "i.c
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The curves for Young's modulus and the coefficient of
thermal expansion also show the effects of the phase
changes. The linear variation of the proportion of phases
within the phase transition were used (equation 2.6). In
the vicinity of the phase change the effective Young's
modulus is decreased by nearly an order of magnitude

and the coefficient of thermal expansion increased by a
factor of 3.

The viscosity is plotted for four different shear
stresses, ranging from 1.0 x lO5 N/'m2 (1 bar) to 1.0 x lO8
N/mz. The decrease in viscosity at the base of the lithos-
phere increases as the shear stress decreases. The effect
of the arbitrary increase of viscosity by 103 on crossing
the olivine-spinel transition is also evident.

The initial conditions for the models of processes in
subduction zones are assumed to be given by these temper-

ature profiles, the stresses being assumed hydrostatic and

equal to the weight of the overlying rocks.

2.5 Summary

In this chapter expressions for the evaluation of the
physical properties of mantle and oceanic crust by computer
have been developed. Most of the properties are dependent

upon pressure and temperature. Figure 2.12 shows the



Fig. 2.12 Properties of the pyrolitic model of the
mantle is a function of pressure and
temperature.

(a)
(8)
©
(n)
(E)
(F)
(c)

(H)

Density in Mg/'m3 contour interval
0.05 Mg/m~.

-Log (ccefficient of thermal expansion
in oC—l) contour interval 0.2.

-Log (compressibility in mz/N)
contour interval 0.2

Log (Young's modulus in N/mz)
contour interval 0.2

Specific heat at constantovolume.
Contour interval 100 J/kg C.

Specific heat at constang pressure.,
Contour interval 100J/kg C.

Log (visgositg iq'Ns/mz) shear stress =
1.0 x 107 N/m“ contour interval 1.0.

Poisson's ratio (the Poisson's ratio
corresponding to the phase transition
Vk was assumed to be -1.0). The
contours were too close to draw in the
hatched area. Contour interval O.1l.
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resulting properties of mantle for temperatures between

1
0] N/,m2

300°K and 3500°K and pressures up to 3.0 x 10
equivalent to a depth of about 800 km.

All the properties show the effect of phase changes.
Equation 2.7, which gives a non-linear variation of phases
across the transition, was used in compiling the diagrams.

The phase boundaries increase the coefficient of
thermal expansion by a factor of 3 (fig. 2.12B)and decrease
the bulk modulus and Young's modulus by an order of magnitude
(figs. 2.12C and D). The specific heat at constant volume
is less affected by the phase changes than that at constant
pressure (figs. 2.12E and 2.12F). Heating the rock at
constant volume within a transition zone causes little
change in the proportions of the phases. At constant
pressure the phase changes must run and the specific heat
is increased by about 100 J/kgoc.

The viscosity (fig. 2.12G) is plotted for a shear stress
of 1.0 x lO6 N/mz. The shape of the contours remain similar
for higher stresses but their positions change.

The Poisson ratio contours (fig. 2.12H) were determined
using a value of the Poisson ratio associated with the

phase changes, V of -1.0. This assumes that the changes

kl

of volume associated with the phase transitions are caused

by equal linear variations in all directions. This is an
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extreme case. For other values of Vx , the contours are
of a similar shape but the extremes of the values within
the transition zones are not as great. The hatched areas
on this diagram are regions where the contours were too
close to draw. The minimum values approach that of UK .
The expressions in this chapter are incorporated into

the FORTRAN subroutine PROPS (page 170 ).
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CHAPTER 3

FINITE ELEMENT ANALYSIS

Finite element analysis is a method of solving partial
differential equations with complicated boundary conditions.
It is allied to finite difference analysis but is more
versatile because each small part of the field over which
the equations are to be solved can be given a separate
shape function so that more complicated problems may be
evaluated. A comprehensive description of the method is
given by Zienkiewicz (1971).

The method has been used largely to solve engineering
problems but has also been applied to geological studies.

It has been used in elastic analysis by Bott and Dean (1972),
Service and Douglas (1973), Bridwell (1974) and Bridwell

and Swolfs (1974). The solution of viscous problems in

earth sciences using finite element techniques has mainly
centred upon studies of folding in contrasting layers

(e.g. Stephansson and Berner, 1971). The interpretation

of steady state heat flow data near Lake Geneva has been
modelled using finite element techniques by Lee and Henyey
(1974). A visco-elastic analysis of stresses in a subduction

zone has been made by Neugebauer and Breitmayer (1975).
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3.1 Visco-elastic finite element analysis

In finite element analysis the model is subdivided
into a finite number of small parts called elements.
These are interconnected through common points called
nodes. The analysis is based on defining the value of a
variable throughout each element in turn based only on its
value at the nodes contained in the element.

In elastic or visco-elastic analysis the basic
variable is displacement. It is required from the analysis
to determine first the displacements of the nodes and from
these the displacements, strains and stresses throughout
each element, I will consider only two-dimensional analyses
using triangular elements in which the displacements are
assumed to vary linearly over the elements and are specified
by the six components of displacement of the nodes at the .
corners (fig. 3.1). The displacements ( § ) at the nodes

can be mapped into strains ( € ) within the element by

¢ - [B]ls
For these simple elements
[B] | bi 0 b) (0] bm o
3.1
t
é = { E‘,, s 67 ) é"j} 3

and ¢" = {5 s siosf s osr)



Geometry of an Element and Displacements
X

(x 5 'q‘.)

Typical Finite Element Net

NININ
AN

/

Fig. 3.1 The displacement of an element and a
typical finite element net.
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The superscript ¥ denotes the transpose of the vector or
matrix. The elements of [B] ., b and ¢, are cyclic

permutations of

b, = 1} “Im

c;, = J(M—XJ',

* and Y Dbeing the coordinates of the nodes and A is the
area.

Since the displacements are assumed to vary linearly
over the element the strains (being the derivative of
displacement) are constant.

If the relationship between stress and strain is known,
for the material of each element, the energy change within
each element may be found as a function of the nodal
displacements. By concentrating the body and boundary
forces also onto the nodes the work done, over the whole
system, may be determined as a function of the nodal
displacements. This is minimized by differentiating with
respect to each nodal displacement in turn. Together with
the equilibrium equations for the body as a whole these form
a set of simultaneous equations in the nodal displacements.
Once the equations are solved the strain and stress within
each element may be determined.

One method of solving visco-elastic problems by finite
element analysis has been described by Zienkiewicz (1971).

This method requires iteration for each time step to
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determine initial strain conditions to be applied to the

model. Carpenter (1972) has formulated a technique

incorporating a Runga-Kutta method which allows the

estimation of error and increases in the time step.

This reduces the amount of computing required. These

techniques are applicable to any rheological properties

provided the deformations are small. If, however, the

rheology is limited to a Maxwell substance then it is

possible to solve directly for the displacements of the

rocks and the stress after a given time interval. A new

formulation along this line is given here.

Treating the solution of visco-elastic flow problems

as an energy minimization problem, the energies to be

minimized are those due to stress and strain and the move-

ment of the applied forces.

The total energy, W, is

(LY

Q

where

is

€ is

1 is

§ is

and f is

the

the

the

the

the

+

TR AR 3.2

i €
stress vector at any p01nt,{q,,§7,%3’@” o% o;}

strain vector at the point,lkxﬁ 97,%;.6w,@3,§,}
final strain vector after a time interval,
displacement of the point,

force acting at the point.

.t
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It is assumed that the rocks behave as a Maxwell
substance in that on applying a constant stress ( gf )
they instantaneously deform elastically and then flow at
a constant rate (Jaeger and Cook, 1969). The viscous
deformation, however, is assumed to conserve volume and
hence only the deviatoric stresses cause flow. It is
assumed, in keeping with the Maxwell substance, that the
stress causing the viscous flow is equal to that causing
the elastic deformation and that the total strain is the
sum of that due to the two modes of deformation.

Hence the equation of flow is

¢ - [Py +lelg

where é is the rate of deformation, G is the
instantaneous stress and [D] and [@] are matrices,
assumed constant, relating the deformation to the stresses.
If we assume that during a time step the rate of

creep is constant, [ then

217¢ + &l - ¢ . 3.3

The general solution of

—[ﬁ]g’ 3.4
e_Lm]}Cf (Daniel and Moore,1970)

1

is

g
g
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where o: is the stress at the start of the interval and

the exponential term is defined by

-fAlt . ,
§ = [I] - t[ﬂ] + ff‘[ﬂ]z_ ?!fa[ﬂ]3+.“.

where [I] is the unit matrix.

Now for an isotropic material with Young's modulus E,

Poigson's ratio, v , and viscosity, M,

Q1 = # <35,°7,1>
3.5
E 2(1-v) 29
[D] S 2(14V) < 1-2v -2 12

(Housner and Vreeland, 1966)

where the diamond brackets <a,b,c> define a matrix which

is

[a b b o o o ]
<a,b,c? = b a b o) ) o
b b A O 0 o
o} o Q c o o
o o ) ) c R)

| o o o o < C

Comparing 3.3 and 3.4

[A] = [D]LQ]



Substituting 3.5 gives

[A]

<
T = 2M014V)

where

It can easily be shown that

1 (
[A]" = F 435,75,
and  [A]" = g < h, 05D
So that e—mt= [I]—-"{%[H]—’;’_(:{‘:)Z[H]%--- }

= [T] —«T(i—e'“%)lﬁ] )

The solution of 3.3 is
¥ 1
o = {lz1-1(i-e *)[A]}g.’, e (1-e ) 0]c

The work per unit volume, w , in the time interval

0<t< T is given by

-
w=[9jtéon‘

9 >~
.
- g a

! {T— TTLAT + T [RI(1- ¢~
v S frrn]- ol0i-e

) o
) ¢
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Putting c = %:7 where q is the strain,

after time T

w is the work per unit volume done in the body during
the time interval T. 1In the general 3-dimensional case
the matrices ( [D] and [AJ ) are 6 x 6 and the vectors

g} , 7 and 5? have six elements.

Applying the assumption of plain strain, the elements
in Q which indicate movement or shear into the third
dimension ( q} ’ ’l,} ’ )7‘,? ) and the components of a
which represent shear stresses into the third dimension
( 0;3, , o;y) are all zero. Hence ¢ and q, are reduced
to 4 and 3 element vectors respectively. The corresponding
rows and columns of the matrices may also be deleted.

If we further assume simple triangular elements with
nodes only at the corners, the displacements are linear and
the stresses and strains uniform throughout each element.

If further the body forces (assumed constant) are considered

to act at the nodes then the total work done, W , is

W= 2w v §F

where Z denotes the summation over all the elements in

the model, D; is the area of the ith element assumed to
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be of unit thickness, § , is the displacement vector
of all the nodes and 'f is the vector containing the
forces acting at the nodes.

Defining matrix EB] to map the nodal displacements

into strains (equation 3.1) gives

1 = [B] §

and

-
1

-
]

W = ZA?[B}T{‘I]-f[l— —f}(f—e'r)]iﬁ]}g’., 3.7

b

vogm t{1-T0-eTNDIE S L st

To find the displacements, § , so as to minimize
the energy we differentiate with respect to each element

of § in turn and equate to zero. This gives

£

Z ol i -1I- T G- e ) Al @

t g 1 -F y 3-8
+ 2] F[1-FC-eT)JIDI[BI§ + F = o

The visco-elastic displacements for one step may be
obtained by the simultaneous solution of the matrix
equation 3.8 and the stress at the end of the interval
(or start of the next interval) for each element is given

by substitution in 3.6

I
-7

5 I
o flT - sG-e T )lall o+ (- )R] § 3.0
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It has been assumed that the elastic and viscous
properties are constant throughout the time interval.

They may, however, be changed between one interval and

the next.

The heat generated by viscous flow is given by

T L.
HY = Afog’ €, dt

where év is the rate of the viscous component of the strain.

From 3.3
¢, = Lelg

and so

T t
HY = Afo g [Qlo dt .

Substituting 3.6 and integrating gives

Hv= %(;—,{T[(Sl‘Sz)L*(SL'S;)Li-(53—5,)14-65,}]

RICGPIRIL SR R NS Vs
3.10
+ 4 (U —\/)):Sn ( 2.7,—77») + 51(2)7”—77') - S}(I?lf-l?z') + 5'73 SH-:”
where S; is the &0 component of o

4. is the ith component of the final strain
3

T
%(1-e )

LT/“F

V.8

)

If the stresses are not changing much then an estimate

\V/ "ﬂﬁT (1 - &

of the heat generated by the viscous flow in one element is

Nl

H" = AT o_,thQ] o where O:n is a mean stress
v\ Pt
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during the interval.
From this

T

[(O;Jm- OJML) * (‘Zw;" 6:41)L* (0:«;‘ 01,,..)11-6 GJZ ]

my

HY =

T~
>
15

20

For a viscosity of 1.0 x 10 Ns/'m2 and a shear stress

of about 1.0 x 108 N/'m2 (1 kbar) the rate of viscous

4 W/'m3 or 3.0 x 10-8 wW/kg,

heating would be about 1.0 x 10
about 60 times greater than the radiogenic heating of
basalt (table 2.7). For a stress of 5.0 x lO6 N/'m2 (50 bar)
the heat generated is about twice the average radiogenic
heat supply per unit volume in the mantle.

The first test of the visco-elastic formulation is that

for a zero time step the analysis becomes equivalent to an

elastic analysis. With T = O equations 3.8 and 3.9 reduce

to
ZZ ( t t -
BB g + ALBYIDILBIS) « F = 0
and 5 = o +[D][B]§ respectively.
These are the equivalent elastic equations (Zienkiewicz,
1971).

Secondly, Zienkiewicz (1971) used the analytical
analysis (Lee et al., 1959) of the stresses due to a
suddenly applied internal pressure in an externally

reinforced visco-elastic cylinder (fig. 3.2) to illustrate



-0.3p

Fig.

3.2

Test of finite element visco-elastic program.
A steel shell (elements marked with s) is
lined with a visco-elastic material and an
internal pressure, P, applied zt zero time.
The properties are

visco-elastic steel

mategial 7
Young's modulus 10 ix1lo
Poisson's ratio 1/3 5 da
Viscosity % x 10 00

Dots show tangential stress computed by
the finite element program and the lines
the analytical solution of Lee et al. (1959)
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the use of finite element analysis. This same analysis
has been performed with the new formulation but with time
steps 10 times greater than those used by Zienkiewicz
(0.1 time units). Very good agreement between the

analytical and finite element results was obtained (fig. 3.2).
3.2 Finite element analysis of transient heat flow problems

It is generally easier and quicker to solve heat flow
problems using finite difference rather than finite element
techniques, but when the heat flow problem is part of a
larger integrated finite element problem it is convenient
to use finite elements. This allows the use of the same
nodes and elements as may be used in the visco-elastic
solution.

Following Zienkiewicz (1971, p.335) the problem reduces

to the solution of the differential equation,

[HI® «fc]&® +Q =0 3.11

where is the temperature at the nodes,

SO Sy

is the rate of heat input from mechanical and
radiogenic sources,

[¢c] is a function of the heat capacity and geometry,
and [Pﬂ igs a function of the geometry and conductivities

of the materials.
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When using triangular elements the temperature is
approximated by a linear function over the element. From

Zienkiewicz the values of [C] and [H] for such elements

are:
4 L L
[ _ !igflg Z T
cl = 3 L4
0 u 3.12
1 L 4
u s Z
K r t cheve.C- . 1
and [H] = i by +(, bLbJKLc& bmb; 1,.¢;
bibj+eyc; b;’ b cf bjbm ¢y lm
bb tc: . +
| O Cim bjb tC ¢ byt c,}'J 3.13

The b's and c's are obtained by cyclic permutations of

by = Y, - Y.
C .

r 5 Xm- Xy

The subscripts referring to the vertices of the elements,
and A 1is the area
CP is the specific heat
S is the density
and K 1is the thermal conductivity which is assumed
to be isotropic.
If it is assumed that the temperature varies linearly

with time during each time step then the change in temper-
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ature A during the interval Af is given by

{140 » 5 L1} 8% = -2LH1Y, + 4 8 314

N

~~

is the temperature at the nodes at the start of the

interval.

The steady state heat flow problem can similarly be

solved from

[Hl4 = ¢ 3.15

where &s is the steady state temperature of the nodes and

1

AV %

is the rate of heat generation associated with each node.

Alternatively the subroutine for transient heat flow

may be used by setting Cp = O so that from 3.14

but
1

sO

I\

[H] 28 = -2LH] ¥, +21

[1H] g5

f?} = é}\o +‘£AJ\

Hence the steady state temperature distribution may

be found by incrementing the initial temperature dis-

tribution by half the computed increment when [C] = O.

3.3

Boundary conditions

The two previous sections have presented methods of

forming sets of simultaneous equations

(¥ ol
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which may be solved for, § , the displacements in the
case of visco-elastic analysis and the temperature increment
for heat flow problems.

However, in both cases there are always constraints
on some of the variables in § and these need to be
applied before the equations are solved. 1In general this
requires the substitution of a new equation for one of those

in the original set or else a modification to the original

equation.

(a) Fixed Points

This is the most common type of boundary. If the
variable Si' must take a fixed value Ci (commonly zero)
in the solution then it is a simple procedure to replace

the ith equation in 3.17 by

In visco-elastic solutions this allows points to be
held on vertical or horizontal lines or to be forced to
move at a fixed velocity. 1In the transient heat flow
solution it allows for the fixing of some temperatures
where there are "infinite" heat sinks or sources (e.g. on

the top or bottom of the model).

(b) Constant heat flux boundary

The equations assembled as described in the previous

sections contain the assumption that no heat flux crosses
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the boundary. If, in fact, there is a heat flux across the
boundary it may be allowed for by adding the heat per unit
time crossing the boundary to the nearest node and so

increment bi by this amount. It is in fact an addition to

the heat sources in equation 3.11l.

(c) Boundaries with applied hydrostatic forces

If the boundary between two boundary nodes i, and j is
not held on a vertical or horizontal line by undetermined
forces but isconstrained by a hydrostatic pressure then
this is equivalent to applying additional forces at the
two nodes.

If in fig. 3.3 the hydrostatic pressure on the boundary
is assumed to vary linearly along the boundary between
nodes i and j and if it is Pi and Pj at the nodes the
equivalent forces on the nodes which allow for the hydro-

static pressure on this part of the boundary are

e L(R/3 « Ple)

ﬁ;* : L(7?/6 + F}/3)

where L is the distance between the nodes i and j.

The x and y components of these forces are
Fio= 8y (PR3 «P/8)

x

a pu
an lj'l: :Ax(f)"/3+?j‘/6)

where Mx and Ay are the x and y components of L .
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Fig. 2.3 A boundary under hydrostatic pressure.
The shaded boundary (k,i,j,k) of the
model is under hvdrostatic pressure
P(x). The equivalent nodal forces on
node;, i, for the pressure on edge ij

is F%J.
i
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These are to be added into the appropriate elements of the
matrix b in 3.17.

However, if the pressure on the boundary varies
during the interval because of the displacements of nodes
i and j then matrix [M] in 3.17 should also be adjusted
by the derivatives of each F with respect to the four
appropriate displacements.

The four components of the forces are:

Fle B (4 )Ry 2P )

gF s Fyy ot m GG x) (P + Bile)
/ji’. . V4 . ( 1A 0/ )
Jioo Feo= ;- v, ) (Tile + 13/3

y
o5 0 By G- ) (Rife 2 Thi3)

Assuming 5 = 5;!,'. = Sﬁ_ .

. Where
x).

9 is the acceleration of gravity and ‘g' is an equivalent
density, and the other derivatives of P.l and Pj are 0O, then

the derivatives of the components of the forces are

ofr, L ¥ - Lgp (Y, -y;) \

"

I

BX': 510,
§f3¢ §fﬁ& = i ( éiﬁi + EIE; ) = 0
LN 37& 1 3
LW ¥ ) Lo (0F L ¥R\ o L Ly - ¥ 3.18
1( x; x;) l( ;3: * g;:) 5 (G- %35
_I.. 3': F = 3 -
(3 A - e(y,-9)
L 4 3y ) o Ty Ty
2( v; W:) 3 b
and L [ ¥Fy Yy, P, 7
(5E e 35 - - (5 %) /
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The components of the forces are added to vector 9
and the 16 elements in the matrix [M] corresponding to the

appropriate displacemeﬁts are adjusted by the derivatives

in 3.18.

(d) Nodes forced to move in a given direction not parallel
to an axis

The constraint of a node, I, to move at a given angle,
@ , to the x-axis (fig. 3.4) implies the addition of an
unknown force, g , acting on the node. If this force is
assumed to act normal to the imposed movement then its

components in the direction of the axes are

G«= G sin @

and Gy G cos O .

The components of the displacement of the node are

related by

Sy = 8 Tan 6 | 3.19

If &« and & are the i ang jth unknowrs in vector §
. .th .th . .
of equation 3.17 the i and j equations of the matrix

gset are

N
and hZ:' Miw Sk = by ¢ Gy 3.21



Fig.

3.4

Node, I, is forced to move at angle 8
from the horizental. The force causing
the restriction, G, is applied normal to
this direction and has components Gx
and Gy.
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Since § is unknown its components need to be eliminated.
Substituting x = G.J tan® in 3.20, dividing by tan @

and subtracting from 3.21 gives a new equation

N
E: (Mff"’* "M [tan 8 )Sg = = bi/tand + b, 3.22

The constraint on I is imposed by replacing the two

equations 3.20 and 3.21 in 3.17 by 3.19 and 3.22.

3.4 The integrated finite element system

The integration of the visco-elastic and heat flow
analyses depends upon their interdependence. The mechanical
system is generally considered as isothermal and the heat
equations as isovolumetric. So during the mechanical
solution heat is being added to the system and the change
in temperature resulting from the subsequent thermal
solution causes additional stresses.

The heat added to the system during the isothermal
visco-elastic step is in two parts. The first is due to
adiabatic compression or expansion of the rocks and the
other the loss of mechanical energy by viscous flow.

The adiabatic heating in the ith element is

a —



where Ti is the mean temperature of the element
o is the thermal expansion coefficient
4A; is the area

and %R is the change in pressure.

80.

The heat gained from the loss of mechanical energy

by viscous flow HY , is given by equation 3.10.

During the isovolumetric thermal solution (note we

need to use CV not Cp) the change in the initial stress

for the next mechanical analysis is given by
- 3(1-2V;) ||

where §T is the change in temperature
E£{ 1is Young's modulus
o&; 1is the coefficient of thermal expansion

and J, 1is Poisson's ratio.
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CHAPTER 4
STRESSES DUE TO PHASE CHANGES

IN THE DESCENDING LITHOSPHERE

Bridgeman (1945) suggested that polymorphic transitions
in the earth could cause earthquakes. This could be either
by the catastrophic running of the transition and the
associated volume change (Evison, 1967) or by the
catastrophic release of stress by fracture after a
critical stress has been built up slowly by gradual progress
of a transition. Ringwood (1969b) suggested that the changes
in phase as the lithosphere descends in a subduction 2zone
may cause large stresses and be responsible for the inter-
mediate and deep seismicity. There are two causes for
such stresses. Firstly, since the slab is cooler, the
phase changes occur at a different depth in the slab than
in the surrounding asthenosphere and so the increased
density across the transition causes an increase in the
negative buoyancy (e.g. Toskbz et al., 1973). Secondly,
the rock contracts as it changes phase producing local
stresses.

Previously, the stresses associated with the sinking
slab have been studied considering only the forces due to
the negative buoyancy of the slab in the asthenosphere

(e.g. Toskdz et al., 1973; Neugebauer and Breitmayer, 1975;
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Sleep, 1975). These analyses started from an estimate

of the temperature distribution and calculated the
negative buoyancy as a function of depth and temperature.
Viscous (Sleep, 1975) or visco-elastic (Toskbz et al.,
1973; Neugebauer and Breitmayer, 1975) analyses were

then performed to deduce the stresses associated with the
process.

It is not clear in these analyses how the additional
buoyancy due to the elevation of the phase boundaries are
included, it being simply stated that the effect is
approximately equivalent to multiplying the thermal
contraction effect by 1.5 (Neugebauer and Breitmayer, 1975).
The maximum stresses calculated from the analyses of the
buoyancy effect are 0.5 x lO8 N/'m2 (500 bar) and are
aligned with one principal axis down the dip of the slab.

Recently Sung and Burns (1976) have suggested that
the rate of the olivine-spinel transformation is slow in
the cool interior of the slab so that the phase transition
may be depressed rather than elevated. This depends on
the temperature and hence the rate of subduction. If the
transition is depressed (so that the centre of the slab
contains metastable-olivine) then a positive buoyancy
effect of similar magnitude to the negative buoyancy effect
of a raised phase boundary would be exerted on the slab.

When nucleation of the reaction does take place the reaction
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is likely to run catastrophically. I assume,however;that
equilibrium conditions are maintained throughout the model.

No account has yet been taken of any stresses due to
the differential contraction at the phase boundaries. To
gain an estimate of these effects an analysis of the
stresses due to the lowering of a slab of mantle 100 km
wide and 200 km long through the asthenosphere to intersect
the garnet peridotite-spinel garnet phase boundary (fig.2.1)
was performed. s

The top of the slab was assumed to be initially at
100 km depth. The temperature of the outer edge of the
model was assumed to be that of a reasonable oceanic
geotherm (section 2.3). A linear decrease in temperature
in the slab was assumed so that the axis of symmetry was
500°C cooler than the outer edge (fig. 4.l1). This lateral
gradient is approximately that calculated in most thermal
models of subduction zones (e.g. Toskoz et al., 1973). The
initial densities were computed from equation 2.8 using
these temperatures and the pressures expected at the appropriate
depth in the mantle. The rheology of the slab was assumed to
be either elastic or visco-elastic with elastic properties
computed from Chapter 2.1.

The model was supported on its outside by the hydrostatic
pressure of the asthenosphere. The bottom was lowered through

the mantle at 4.0 cm/yr. with time steps of 10,000 yrs.
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This boundary condition resulted in the additional body
forces due to the model being more dense than the standard
asthenosphere being supported by the base of the model
thus producing compressional stresses near the bottom of
the model. Since the model is symmetrical about the
central vertical plane no movement of material was allowed
through this plane and only half the slab was studied.
Isothermal, elastic or visco-elastic finite element
analysés were used, the nodes being progressively moved

at each time step.

The incremental nature of the analyses was important
for the elastic as well as the visco-elastic analyses
since the elastic properties changed with pressure
(section 2.1). The properties used for each time increment
were determined from the conditions at the start of the

step and assume mineralogical equilibrium.

4.1 Results

The stress distribution near the phase boundary for
various models are shown in figs. 4.2, 4.3 and 4.4. The
plotted stresses are the principal stresses in the model
minus the hydrostatic pressure applied to the boundaries
for the appropriate depth. Bars on the ends of the stresses

indicate that they are tensional with respect to the ambient



km
317 3 \ ;
-."- .
,\\ -..*. + * N NN\ Q +-¢.\X\\o-,
] 2 N N\ X k! |
2 I *N\\ \ 3 I # %x\\ \
[ e NNy [ 7 x%x\\\ & [ 7%\ \\»

[ 2\ [ 7xx\Q\ [ 7+%\\N
lzm\\ [17x\N)| {1 e-v00 N

Py
~
&
-
—
e
—
symmetry
—t—
—F
~
1
X
e
m—
symmetry

plane of symmetry
Sy
~
N
—
/‘
—
=
// -t
~ o
/
7 /
I
-+
-+
e
plane of

plane of

v o |

\‘ \ -.
\\\30* / ’ - [ Ij I ’
\\\~\\++}\ tart P

-

510
V= -1.0 v, =0.0 VeV,
| } - scales —
0 25 50 km 0 10x109N/m2

Fig. 4.2 Stress distribution calculated from an
elastic analysis of the differential
contraction at the garnet peridotite-
spinel garnet phase boundary. The
length of the lines represent the
deviation of the principal stresses
from the hydrostatic stress applied at
the edges of the mogel. Stresses smaller
than 1.0 x 10° N /m“ are not plotted. The .
three models show the effect of varying Vkﬂ
Contours of the percentage of spinel phase
to olivine are also shown.



. P-‘-\ . .
depih -
288 . ' \
\ ‘ o
? . e [ \i%\‘\s é\ 1
1« \\\5. J 4 » v N . W1
]+ NN INEERREN . VY
]’*\\\\\‘_ -y - ||}
_E]/“\\\\ ‘E‘ll"{‘”“‘\\\ E».,\--'Il
1IERS RN N | PO o P
; ,f/'\\\\ ‘5\,\\,\~l~+i‘ E\\’[v.-;.*ll
ol e c 1
A AEERANN IO AL BN
f -y _ $n vt ] ] 'lw’/*’
) i \\'
_&.\.\.q‘\ l/,O%O\X%’(/ }[l’]‘%[,ll
N sy NE
AN WU | VRN N RRRUANE
Y R
N--C‘:’\*-v’\“tﬁ ‘_/_ L
'_ /4:1024
4LE0 ;
/-r=10/‘5
I } 1 scales d 9 2
0 25 50 kin 0 10107 N/m

Fig. 4.3 Effect of viscesity on the stress dis-
- tribution caleulated from a visco-elastic
analysis. Vp = 0.0 in all 3 models.
Contours of the rercentage of spinel phase
to olivine are also shown.



depth

285
! o+ e < v
! SAN I/fa\\'\
| S NN W 177+« x\\
J 2 xn N\ [ 77« e\ ]
J7-x\vV L) 17~ ]
J2-v\ 1\ [ 1 | !
CEHEe-o VL Eies vt
IO I KR
‘6\\\\*+ll sl ~ - ,,l,
_g_\-\\x-f-f’ HEREARRR
a++xx%%/I n+*$$¢]/,
INEE TN E fotnt k[ |
| [ #2521 fARr 2t |
V745 L]/ #nns
}fl//#~ ﬂ+{//%x~
475 .
} } i scales —
0 25 50 km 0 10x109 N/m?2

Fig. 4.4 The small effect on the stress distribution
) related to the choice of a linear (A) or
’ non-linear (B) variation of the proportlon
of the phases 1n the transition zone

(/_10x104mm,vk 0.0).



85.

hydrostatic pressure. The maximum stresses near the phase
boundary in all the models are about 7 x lO8 N/'m2 (7 kbar)
and consequently about 15 times the maximum computed in
models considering only the body forces due to the increased
density in the slab (Sleep, 1975; Toskdz et al.,1973).

In figs. 4.2 and 4.3 contours of the proportion of the
olivine-spinel phase are also shown. The stresses caused

by the phase change are sufficiently large to alter the

depth range of the phase transition so that it is not the
same in all models. Although the details of the stress
distributions are different the overall pattern is the same
with large vertical tensional stresses in the centre of the
slab and compressional stresses at the edges. The horizontal
components of the stresses are about equal to the hydrostatic
stresses applied to the boundaries.

The physical properties used in the various models for
figs. 4.2 to 4.4 were chosen so as to show the effect of
changing the Poisson's ratio related to the phase change
( V¢ ), the viscosity (), and the assumption as to how
the density varies across phase transition.

Elastic analyses were used for the first three models
(fig. 4.2). The bulk modulus was determined from the equation
of state but the Poisson's ratio corresponding to the phase
change (U, in section 2.1) was given values of -1.0, 0.0
and the value which would be determined from the seismic

velocities, Un (about 0.26). As \), increases the depth
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range over which the phase change takes place decreases.
The phase change is completed in the centre of the slab
80 km shallower for VY, = U, than V¢ =-1.0. 1In all cases

the steady state thickness of the transition zone (about

110 km) is extended to over 140 km by the stresses induced

by the reduction in volume as the phase change proceeds.

The maximum stress also decreases as Vg increases. It

is 8.22, 7.67 and 5.48 x 108 N/m2 for Yx = -1.0, 0.0 and

Jm respectively.

The effect of adding viscous relaxation to the stresses
is shown in fig. 4.3. With uniform viscosities higher than
1.0 x lO25 Ns/’m2 the stresses are much the same as those
for an elastic model (fig. 4.2b). With viscosities less
than about 1.0 x lO23 the slab flowed outward at the bottom
under its excess weight with respect to the warmer
asthenospheric model used to compute the hydrostatic forces
on its edges. At these viscosities the stresses caused by
the phase change were nearly completely dissipated by
creep and only those due to the excess density remained.

The stresses for viscosities between these limits were
intermediate, the tensional and excessively large compressional
stresses decreasing with the viscosity.

Fig. 4.4 shows that the assumption as to how the density

varies across the transition zone has only minor effects on

the computed stresses. The proportion of each phase was
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assumed to vary linearly with distance from the mean position
of the phase boundary (equation 2.6) for fig. 4.4a and to
vary non-linearly (equation 2.7) for fig. 4.4b. The

stress patterns are nearly the same in both models.

4.2 Limitations of the model and conclusions

This model has several limitations on its applic-
ability to the sinking slab in a subduction zone. These

may be summarized as follows:

a) The slab as it sinks into the asthenosphere is
not symmetrical but the temperature distribution is
asymmetrical with high thermal gradients on the top side
and more gentle ones on the lower side (e.g. Toskdz et al.,
1973).

b) The sinking slab is seldom vertical. A test run on
a sloping model, however, showed little difference in the
stresses computed from that for a vertical slab. One of
the principal stresses was still large and parallel to the
edge of the slab. The assumption of symmetry, however, is
further invalidated by the dip of the slab.

c) The width of the slab is assumed to be 100 km. This
is probably too great so that the thermal gradients used

are probably more applicable to the underside of the slab

than the topside.
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d) Uniform viscosity was used throughout the model.
Since the viscosity has a large effect on the stresses
(fig. 4.3) this is very important. The viscosity of the
outside of the slab at the depths of the transition zone

23

are probably less than 1.0 x 10 Ns/mz. The inside of

the slab at SOOOC lower temperature would have a viscosity
greater than 1.0 x lO25 Ns/mz. The shear stress dependence

of the viscosity would also greatly affect the computed

stresses.

e) I have assumed that mineralogical equilibrium is
maintained. If Sung and Burns (l1976) are correct in
asserting that the phase change may not run in the centre
of the slab because of the low temperature and high
nucleation energy then the stress pattern will &@éﬁﬂg"g;d
the phase change will run catastrophically. Residual stresses
will still be present in the vicinity of the phase transition
because of the change in volume.

f) An isothermal analysis was used. The temperature
rise in the slab as it descends over the range in which the
model sank is about 250°C (Toskbz et al., 1973). This meant
that the phase changes occurred too shallow in our models.
More importantly the latent heat and the effect of the

phase transition on the coefficient of thermal expansion

(section 2.2.1) could modify the stresses.
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g) No account has been made of possible failure and

the subsequent stress release and deformation.

In spite of these limitations some things are clear
from the models. It is certain that as the descending
slab changes phase there is an increase in density and
consequently a decrease in volume. This must a priori
cause stresses in the surrounding rocks. The models show
that these stresses are probably 10 to 15 times greater
than those previously computed in the slab considering
only its negative buoyancy in the asthenosphere. The
stresses are relatively tensional in the cooler centre
of the slab and compressional near the edges. They are
approximately aligned to the edges of the slab.

The stresses are sufficiently large that they alter
the equilibrium of the phases for a given depth and so if
they are released the phase transition will run to change
the density to that relevant to the new mean stress. If
the initial release of stress was caused by failure and
the resulting phase change ran catastrophically, then a
volume change seismic radiation pattern would be super-
imposed upon the dislocation pattern. Evison (1967)
presented some evidence that for large earthquakes
(magnitude 8 and above) there may be such a radiation
pattern. Randall and Knopoff (1970) indicate that the

radiation pattern for deep earthquakes dSc compatible
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with phase transformations and Gilbert and Dziewonski
(1975) observed precursor volume changes for two deep
focus earthquakes.

In our model we had the simple case of starting with
an unstressed, uniform material all in one phase. If the
starting conditions had straddled a phase boundary then
some of the stresses induced due to the relative contraction
of some of the initially unstressed rocks near the phase
boundary would not have been dissipated as the material
became of uniform phase. This could be very important
where the starting material is not chemically homogeneous
so that the phase transitions do not occur at the same
depths. This is relevant to the crust-mantle boundary
where the changes in density of adjacent parts of the

crust and mantle will vary and cause large shearing stresses.
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CHAPTER 5

BENDING THE OCEANIC LITHOSPHERE

The subduction of the oceanic lithosphere requires
that it be bent from the earth's surface to dip at 30°
to 70o into the asthenosphere (fig. 1l.1). The surface
expressions of this large deformation are the trench where
the two plates abut and the outer rise. The bottom of
the trench is typically 3.0 km below the normal oceanic
depth (Hayes and Ewing, 1970). The sea floor slopes up
from the trench at about 5° onto the outer rise. This
rise is about 700 m above the isostatic level of the ocean
floor and extends to about 400 km from the trench (Le Pichon
et al., 1973). There is a positive gravity anomaly over the
rise which is consistent with the topography being simply
due to flexure of the lithosphere (Watts and Talwani, 1974).
The deformation of the oceanic lithosphere in these
regions has usually been modelled by comparing the surface
topography to the deformation predicted for a semi-infinite
uniform plate. The boundary conditions have been a load
along the free edge and no displacements at infinite
distances into the plate. The analyses have assumed the
plate to be sandwiched between non-viscous ocean on top
and asthenosphere beneath (Lliboutry, 1969; Walcott, 1970;

Hanks, 1971; Watts and Talwani, 1974). The thin plate theory
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used in these previous analyses assume that the plate
is uniform, that the gradients of the deflections are
small, and that the shearing stresses in the plane of the
plate can be neglected (Hausner and Vreeland, 1966). The
boundary conditions used assumes that there is no bending
at the free-edge of the plate. These criteria are not
strictly correct for this part of the lithosphere. The
effective elasticity varies as a result of phase changes
and the viscosity decreases with depth (Chapter 2).
Although the lithosphere is about 75 to 100 km thick and
the deflections studied are about 10 km, to model the
shape of the topography adequately an "equivalent thickness"
of 27 km (Watts and Talwani, 1974) to 50 km (Le Pichon et al.,
1973) needs to be used. Even with such a thin "equivalent
thickness", the stresses computed to exist in the model are
sufficient to cause tensional failure in the crust (Le Pichon
et al., 1973).

In this chapter I apply beam theory for composite beams
to show the effect of the variable elasticity, fracture,
and viscosity in reducing the flexurall parameters for an
80 - 100 km thick beam to those estimated using the theory

of thin beams.

5.1 Elastic bending of a uniform plate

Analytical solutions for the displacements of a thin
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transversely loaded plate have been given by Hetenyi (1946),
Walcott (1970) and Le Pichon et al., (1973).

Following the notation used by Le Pichon et al., (1973)
we define a rectangular coordinate system in which the
origin is on the intersection of the free edge of the plate
and the neutral fibre (fig. 5.1). The y axis is horizontal
parallel to the free edge, the z axis points vertically
downward and the x axis points along the undeformed neutral
fibre and is positive in the plate as in fig. 5.1. If the
plate is sandwiched between two fluids and the deformation
is assumed to be cylindrical (uniform in the y direction),
then the differential equation relating the vertical dis-
placement of the neutral fibre, «w , and the distance from

the free edge, x, is given by Le Pichon et al., (1973) as

D yxv Sa:x'“ thw = P 5.1
where D is the flexural rigidity

S is a horizontal force applied on the free edge

ods (- R

Ai ) /11 are the density of the overlying (water)

and underlying (asthenosphere) fluids
q is the gravitational acceleration

and P is a transversely applied external stress
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For a uniform elastic plate, the flexural rigidity D

is given by

E T3

D N —————————

T2 (1-v?)
where 1 is the thickness of the plate.

If we define variables [J and P such that

,£=Lk/5/7« = o f(T

where o is the flexural parameter (Walcott, 1970), and

>

cos 23 S/Zkll )

then the general solution of equation 5.1 is

% .
- ISIAP

X sin
ws= Ae (,os<% caspr¢)+}4’e'¢s /3(;05(}0“/3*’)')

This is a damped harmonic wave. A, a ., ¢ and ?l
are constants determined by the boundary conditions.
If the vertical load, P , is applied only at x = O

then the solution reduces to
- Sing x
w= Ae 2 005(27603/3"‘?) 5.2

If in addition there is no horizontal force at x = O,

(s = 0)

-

w: Ae (‘asa 5.3

RIR

(Le Pichon et al., 1973). Fig. 5.2 shows the variations

of the topography according to equation 5.3 for A = 10.0 km
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and various values of the flexural parameter, o .

The flexural rigidity, D, of the oceanic lithosphere
has been estimated to be in the range 1.7 - 2.0 x lO23 N/'m2
by comparing the topography with computed curves of this
type (Walcott, 1970; Hanks, 1971; Watts and Cochran, 1974;
Watts et al., 1975). This is equivalent to a flexural

parameter of 100-120 km and %4 an equivalent thickness of

the lithosphere, T,

12(1-v¥) D
b E

where T =

of 27 to 50 km.

The stress due to the bending, O , is given by

U

Gy = -uEBg-‘;-Z,.

where UK is the distance from the centre of the plate
(fig. 5.1). The stresses for W= 13.5 km for the various
flexurad parameters are also shown in fig. 5.2. These
are computed using E = 1.0 x lOll N/'m2 and are those which
the theory would predict to occur at the surface of a
27 km thick lithosphere.

If the tensile strength of the oceanic crust is 0.5 x
108 N/mz, then it will fracture near the top of the outer rise
for all these models. This would then reduce the flexurad

rigidity and invalidate the analysis. The shape of

the outer rise may be modelled by simple thin plate
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theory but the bending stresses are strongly influenced
by failure near the surface and creep near the base of
the lithosphere. Variation of elastic properties within

the lithosphere are also important.
5.2 Elastic bending of a transversely non-uniform plate

The differential equations relevant to the analysis
of a transversely loaded beam in plane stress and to the

cylindrical bending of thin plates (fig. 5.1) are

4
EI égioﬂl' = 1(7) 5.4
and

] _ 1 3t
v BT 53e = 2(x) 5.5

respectively (Hausner and Vreeland, 1966).

where

&

is the displacement in the z direction

9 is the externally applied transverse stress

V is Poisson's ratio

I is the second moment of the cross-section of
the beam

I' is the second moment of unit length of the

plate (T3/12)

and | is the thickness of the plate.
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These equations differ simply by a factor of 1/(1-vU%) .

The theory of the bending of beams may, therefore, be

used to determine the parameters related to the cylindrical

bending of the lithosphere even if E and V vary with depth.
The variation of properties with depth can be accounted

for by the methods used for composite beams. The width

of the beam, b, (fig. 5.3) is transformed to g

by b= Evb (Hausner and Vreeland, 1966).

where E is the Young's modulus at the given depth and £  an
arbitrary value of Young's modulus for the transformed beam.
If Ié is the second moment of the transformed cross-
section the differential equation becomes
EL; Yw . 9
I-ut  Jx* !
the Poisson's ratio, VvV , being assumed constant.

The bending stress in the plate is given by

PR AR
Ox = ~u £ 5
where u’ is the distance from the centre of gravity ( %;)

of the section of the transformed section (fig. 5.3).
Thus, if the properties of the lithosphere vary only
with depth, the results of previous analyses may be used

with the flexural rigidity, D, given by

T

!
r A

e
|
m
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Fig. 5.3 Transformation of a beam of variable
Young's modulus to an equivalent beam
of variable cross-section. The neutral
axis changes in the transformation.
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Since this is an elastic analysis no allowance is
made for creep in the lower lithosphere. This will reduce
the "effective" flexural rigidity.

Using the elastic properties of the oceanic lithosphere
determined in Chapter 2, the flexural rigidity was computed
for various depths to the base of the lithosphere (fig. 5.4).
These properties allow for the volume change as the stress
changes in the phase transitions. This reduces the Young's
modulus in these regions by an order of magnitude. The
flexural rigidity for a uniform Young's modulus of

1.0 x 10ll N/’m2 is also shown for comparison.

RS

QAW
Using equation 5.3, the maximum curvature g;;’wkx
of the plate is given by
Yw 2A % Gr
— = — € Sin 5.6
AX o A .

This maximum curvature occurs 80-100 km from the origin

but stresses much greater than the tensile strength of

the crust and upper mantle occur near the top of the outer
rise (fig. 5.2). The tensional fracturing of the rock
dissipates the stress stored in it and also reduces its
Young's modulus under tension. Hence the flexural parameter
of the lithosphere should change as the depth of fracture
increases with increasing curvature. The maximum curvature
given by equation 5.6 was used to determine the maximum

depth of the fracture assuming various thicknesses for the
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Fig. 5.4 Flexural rigidity as a function of various

thicknesses of the lithosphere. The
elastic parameters used are given in
Chapter 2 and include decreasing the
Young's modulus in the region of phase
transitions. The flexural rigidity ff{

a uniform Young's modulus of 1.0 x 10
N/'m2 is shown for comparison. If the top
of the lithosphere is fractured then the
flexural rigidity is lowered.
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lithosphere. The fractured portion was then assigned a
zero Young's modulus and the apparent flexural rigidity
(fig. 5.4), flexural parameter and depth to the centre of
gravity of the transformed beam (fig. 5.5) were computed.

The maximum depth of fracture was 15 km and coincided
with the top of the plagioclase-spinel phase transition.
At this depth the effective Young's modulus and hence the
computed stresses are reduced by an order of magnitude by
the ability of the rock to change phase. The plagioclase-
spinel phase transition stabilizesl the depth of the
fracture not only for various assumed thicknesses of the
lithosphere but also for the curvature required for
maximum fracture due to bending to occur.

The flexural parameter of 100-120 km estimated from
the shape of the outer rise and the flexure around seamounts
is equivalent to a lithospheric thickness of 65 to 85 km
if the upper 15 km of the lithosphere is fractured. The
substantial increase in flexural rigidity on increasing
the thickness of the lithosphere from 80 to 100 km is due
to the decrease in the amount of fracture and the bottom
of the spinel-garnet transition being reached. However,
at these depths the viscosity is decreasing and will
effectively off-set the increase in flexural rigidity

computed for an elastic model.
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Failure of the top 15 km of the lithosphere may
reduce the flexural parameter in the vicinity of subduction
zones by 40 km but this can hardly be the case for the less
extreme flexures calculated for oceanic islands (Walcott,
1970; wWatts and Cochran, 1974; Watts et al., 1975). Viscous
flow may be important to shallower depths in these regions
because the times involved are much greater than the
5 M yr during which the lithosphere is in the region of
the outer rise and trench (Walcott, 1970). These smaller
flexures are caused by locally increasing the vertical
load on the lithosphere so that transverse compression
may be important if the stability of some of the phases
are affected. This additional compressive effect is
neglected in the theory. The mass of the sea-mount is
assumed to cause a bending moment on the lithosphere
and thus a flexure. The pressure is also increased below
the sea-mount, however, and so compression takes place
depending on the magnitude of the load and bulk modulus
of the lithosphere. 1If phase changes can take place this
compression may become significant so that the flexure
of the sea-bed is increased and thus the estimate of

flexural rigidity obtained from such studies is decreased.

5.3 Stress distribution for a given visco-elastic flow

It is possible to compute the flexure of a visco-elastic
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plate in a similar manner to that of an elastic plate
(e.g. Walcott, 1970). The behaviour of the oceanic
lithosphere in the vicinity of a subduction zone,
however, is different from that of a simply loaded plate
in that the flexure moves along the lithosphere at the
rate of subduction. Thestress at any point ( Ao , A )

in the plate is therefore dependent not only on the
strain at that point but also on the strain at points
outside it (*x 2%, , K ).

Iterative finite difference methods may be developed
to allow for this progression of the flexure and stresses.
These entail varying the effective flexural rigidity along
the plate depending upon the current stress and strain in
each cross-section. This, however, is far beyond the
limits of the assumptions made in classical beam theory
and the analysis is better carried out by finite element
methods. Even so, it will be shown in the next chapter
(section 6.4) that the results are very dependent upon
the assumed boundary conditions. If the shape of the
deformation is assumed then the stress distribution may
be estimated along the plate to show the effect of creep
and failure. This is only an order of magnitude calculation
since the assumptions are recognised to be an over-
simplification of the process.

It is assumed (1) that the strain is simply due to

W e
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the bending of the plate, (2) that if failure occurs the
bending stress is reduced to zero and (3) that the stress
distant from the trench is zero. The analysis is only
approximate, the main errors arising from the neglect of
the effect of failure on the adjacent rock and of
slippage parallel to the plate similar to that which
occurs when a pack of cards is bent.

Two different assumptions were made as to the effect
of failure on Young's modulus. The first (Type 1) assumed
that Young's modulus was unchanged by failure and the other
(Type 2) that rock which had fractured could not sustain
tension. 1Its Young's modulus in tension was set equal to
zero.

The strain is assumed to be simply due to the bending
of the plate so that the change in strain between two

sections, N-1 and n , »x apart (fig. 5.6) is given by

a€) = (-9 wy - (Y- 92,) W

(X}

where W  ig the curvature of the plate
Y is the depth from the top of the plate

and Y, is the depth of the neutral axis.

If the plate is moving around the flexure with a

velocity V, = -~ O%X/pT then the stress in section N is
y x

P e

j = o1

Ouly) = Ely) aety) ar(l-e 7 ) v o2 (y)e



~

Fig. 5.6 Geometry for calculating the stress in
a predetermined progression of a bend
in a plate.
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where E£ is the Young's modulus, 4 =,”/E , and /' is

the viscosity.

0" (4 ) may be specified for given discrete depths or fibres

in the plate. This stress must be added to the hydrostatic

pressure for depth, ﬂ , before applying the fracture

criteria (section 2.1.6). The fracture criteria used

assumed zero pore fluid pressure and so gave an upper

limit to the stress required for fracture to occur. If

fracture is computed to occur the stress is set equal to zero.
The location of the neutral fibre ( g°) for each section

needs to be found by iteration. An effective Young's modulus,

E*, is defined by
Ex = o'/¢

where 0’ is the computed stress and ¢ is the strain computed
from the curvature and the latest estimate of the position
of the neutral fibre, g° . E* is then used to compute a
new transformed section as in section 5.2 and a new centre
of gravity or neutral fibre.
The results of applying this analysis to a 100 km thick
plate, with viscosity and Young's modulus dependent only
upon depth is shown in fig. 5.7. The assumed deflections,
w ., were again given by equation 5.3 with A = 10 km and
of = 100 km giving a typical shape for the outer rise

(Le Pichon et al., 1973). The velocity was assumed to be
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8 cm/yr. The distance interval ( Ax ) between sections
was 5 km and the stresses and strains were calculated for
depth intervals of 0.5 km through the plate. Zero stress
was assumed at 500 km from the free edge of the plate.

In fig. 5.7 the stress distributions at various
distances from the trench are shown for combinations of
elastic and visco-elastic analyses with and without
fracture. Compressional stresses are shaded and those
above 2.5 x lO9 N/'m2 (25 kbar) are not drawn.

In the elastic analysis with no fracture the stresses
are dependent only upon the curvature, or relative strain,
the distance from the neutral axis and the Young's modulus.
The stresses are large and vary rapidly as the flexure is
approached to above 25 kbar over most of the thickness of
the lithosphere. At O km the curvature is zero and so the
stresses are dissipated as the plate is re-straightened.
In all sections the reduction of stress due to the lowering
of Young's modulus by phase changes is evident.

If fracture occurs in the upper part of the plate the
large tensions are reduced as the strain increases. Both
methods of modelling failure were used. 1In type 1, if
fracture occurred then the stress was set equal to zero
but could immediately begin to increase again as the rock
was further strained. 1In type 2,the fracture was assumed

to also prevent the rock from sustaining tensional stresses.
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As the overall gtrain decreases between 75 - O km
compressional stresses are established in the top of the
plate. The spiked nature of the stresses in the upper
part of the plate for fracture type 1 are due to the
gradual build up of stresses until they are suddenly
relieved by fracture. At 25 km for fracture of type 2 the
plate was fractured throughout so that the stresses at
distance O km are probably in great error. The stresses
in the lower part of the plate are reduced from the model
with no fracture because the neutral fibre is lowered by
the reduction of the stresses near the top of the plate.

The visco-elastic analysis with no fracture shows
that the major effect of the creep is in the lower 40 km
of the plate. No stresses are established below 60 km.
The stresses in the top 60 km differ from those in the
elastic-no fracture model because the neutral fibre is
raised by the smallness of the effective Young's modulus
in the lower part of the plate. The plate is effectively
thinned by the creep.

The visco-elastic models with fracture shows how both
stress relief mechanisms may complement each other to reduce
the stresses throughout the plate. The largest stresses
are at O and 25 km where the tensional stresses relieved
by failure have been replaced by compressional stresses

which need to be greater in magnitude for failure to occur.



106.

It must be re-emphasised that this analysis is an over-
simplification of the processes involved in the flexure in
the vicinity of subduction zones but the effects shown are
probably of the correct order of magnitude, though if the
rocks contain significant amounts of fluids the stresses

at which fracture will occur will be of much lower magnitude.

5.4 Conclusions

These models are all over-simplifications since it is
recognised that thin plate theory cannot be applied to this
tectonic process because the limitations assumed in the
theory are not met. They do illustrate several points, and
probably give results of the correct order of magnitude.

Phase transitions play an important role in the flexure
of the lithosphere because they lower the effective Young's
modulus. They alter the flexural rigidity of the lithosphere
for any assumed thickness to about that of a uniform plate

11

with Young's modulus of 1.0 x 10 N/mz. The Young's modulus

11 N/mz. As far as thin

of the mantle is about 1.5 x 10
plate theory can be applied to the outer rise and trench
the flexural rigidity and flexural parameter are strongly
affected by failure in the top of the lithosphere. 1If

simple flexure was occurring in this region, the maximum

depth at which failure would be induced by the bending
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stresses would be 15 km. This corresponds to the top of
the plagioclase-spinel phase transition.

The progression of the bend along the lithosphere as
it is subducted has the effect of inducing opposite stresses
as the plate is re-straightened, to any which have been
dissipated by creep or failure. Hence, although the
simple flexure theory would predict no residual stress
once the lithosphere had completed passing around the
bend, there is a large compressive stress near the base
of the trench as a result of the previous tensional fracture
between the outer rise and the trench.

The results of these calculations indicates that creep
does effectively reduce the thickness of the lithosphere.
The viscosities used may have been too low by as much as
two orders of magnitude but this would have had little
effect on the results. Only the mantle below the bottom
of the spinel to garnet transition (80 km) needs to creep
significantly to reduce the flexural parameters and stresses
to those predicted here.

Although in the past, the theory of thin plates has
been used to successfully model the shape of the outer rise,
the significance of the model is obscure. The lithosphere
does not act as a thin plate and the analysis is invalidated
by the highly variable properties, fracture and creep. The

stresses are not simply related to the curvature of the plate.
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The large horizontal compressive stresses proposed
for some subduction zones (Hanks, 1971; Watts and Talwani,
1974) could be a function of the analysis rather than the
state of stress in the earth. The major assumption made
in the previous analyses that has not yet been emphasised
is that there is no moment acting on the free edge of the
plate. Since the lithospheric plate continues down the
subduction zone this assumption is unlikely to apply.

The profiles which apparently require large horizontal
compressive stresses could simply be ones in which the
sinking slab is causing a larger bending moment at the

assumed origin.
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CHAPTER 6

FINITE ELEMENT ANALYSIS OF THE STRESSES
IN THE SUBDUCTING PLATE

The two main difficulties in applying finite element
analysis to the subducting plate are the reduction of
the problem to one which can be solved with the computer
resources available and the specification of the boundary
conditions.

Previous applications of finite element analyses to
this problem have treated the whole subduction zone and
used rather coarse nets and predetermined temperature
distributions to solve for the equilibrium stresses
(Toksbz et al. 1973, Neugebaur and Breitmayer, 1975).

The finite difference grid used by Sleep (1975) was also
rather coarse (25 km2 grid). All these analyses have
shown that, although the stresses in the asthenosphere

are small, the viscosity of the asthenosphere is important
in providing support for the slab.

An attempt to analyse the whole region with a net
fine enough to show the stresses due to the bending of
the lithosphere and to phase changes, would result in the
computer resources required making the problem unsolvable.
In the previous chapter it was shown that the low viscosity

below 60 km reduces the stresses by at least two orders of
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magnitude for the bending of the lithosphere. It was
therefore decided to try to model only the top 70 km of
the lithosphere as it is subducted. It was planned to
start with lithosphere in its equilibrium state and to
progressively allow it to bend and sink into the astheno-
sphere. The boundary conditions are critical to the
analysis and three separate sets of conditions have been
used. Each model required several hours of computing time.
None have been really successful but the computing require-
ments made it impossible to attempt further models. 1In
spite of the limitations of these models, some interesting
conclusions may be made about the stresses in the bending
and descending lithosphere.

The physical properties used in the analyses were
determined at the start of each time step from the
expressions given in Chapter 2. Because of the assumption
of zero pore fluid pressure the failure criteria in
section 2.1.6 required that the ratio of the maximum to
minimum principal stresses should be about 7:1 for failure
to occur if all the cracks were closed. An additional
failure criteria that the deviatoric stresses do not
exceed 1.0 x lO9 N/'m2 was also included. This is arbitrary
but the reduced maximum differential stress may be
considered as being due to the presence of pore fluids.

The viscosity of an element was reduced by a factor
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of about 150 for each successive time step for which
failure was estimated to occur. If the stress in an
element which had previously failed was such that no
further failure would occur the viscosity was increased
by the same factor until it reached that computed from
the creep laws. This gradual change in viscosity was
necessary to reduce instabilities in the analyses due to
large fluctuations in the viscosities and stresses.

! Also to reduce the likelihood of instabilities in
the solution, the viscosity was assumed to be greater than
5.0 x 102(]l Ns/'m2 throughout the model. This is rather high
compared to the values given for the asthenosphere but it

gives a decay time for the stresses of about 30 yrs. The

time steps used were between 50 and 12,500 yrs.

6.1 First Model

The first model began as a flat lying lithospheric
plate 70 km thick with the end curved through 45° (fig. 6.1).
The top of the model was assumed to be under 5 km of water.
The top 7 km was assﬁmed to be oceanic crust and the rest
mantle with properties determined from Chapter 2. The
initial temperature and pressure in the elements corresponded

to the geotherm determined in section 2.3.
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6.1.1 Boundary conditions

The boundary conditions applied to the model (fig. 6.1)

were:

(1) The base was subjected to hydrostatic stresses
calculated for the normal oceanic lithosphere and
asthenosphere (section 2.3).

(2) The end that was curved by 45° from the vertical was
forced to move downward with a vertical velocity
component of 5.66 cm/yr corresponding to a subduction
rate of 8 cm/yr for a dip of the descending slab of 45°,

(3) As part of the top of the model became lower than 8 km,

the hydrostatic pressure on it due to the sea was
gradually increased so that it equalled the hydro-
static pressure of the normal oceanic section when
the top became deeper than 11 km. That is the
pressure, P, on the top of the model at depth X km

was given by

7
where Pw is the pressure due to the water (lvOCxu 10 "X)

PL is the pressure in the oceanic section

1 X £ 8 km
and £ =4 (11 - X)/3 8 L x < 11 km
0 X > 11 km
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(4) The end of the lithosphere distant from the sub-
duction zone was held on a vertical line. The
displacements and velocities determined in the
analysis were therefore relative to the oceanic
plate.

The initial finite element net and boundary conditions
and the net after 2 M yr. subduction are shown in Fig. 6.1.

The thermal boundary conditions were more difficult
to ascribe. The sea-floor was held at 0°C. The heat
flux which would normally be passing through the lower
surface due to thermal conduction in a steady state
oceanic environment was incorporated (section 2.3). There
remained two major problems. Firstly, only part of the
earth is being modelled and the thermal interaction between
this part of the earth and its surroundings is important.
Secondly, what should be done about the contentious shear
strain heating on the upper surface of the lithosphere as
it is subducted (Minear and Tosk®éz, 1970a and b; Griggs,
1972). The final choice built both these effects into a
convenient though arbitrary addition to the heat flux across
the top and bottom surfaces of the model deeper than 8 Xkm.
This heat flux was calculated according to the formula

q = k(T-To) /D

where k is an assumed thermal conductivity of 3.0 J/msoc,T

svhduchot shb
is the temperature of the surface¢ of the ~3'."., To is the
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dq,r'H-. in the adjacent undisbirbed  mantle |
expected temperature 6+'H@fshﬁﬁgki (given by the conductive

geotherm in Fig. 2.8) and D is an arbitrary distance over
which it is assumed that the temperature gradient is
constant. D was given a value of 3 km for the top surface
and 30 km for the lower surface. The larger value for

the lower surface was intended to compensate, in part,

for the lithosphere below 70 km which is probably also
subducted.

Using this formula had two advantages. The temperature
in the descending lithospheric slab does not rise above
that in the surrounding asthenosphere as it does in the
model of Minear and Tosk®z (1970). The shear zone is
probably only about 3 km wide so the heating given by
this arbitrary expression is probably of the right order
of magnitude.

No heat flux was allowed across the ends of the model.
The end being subducted was intended to represent a
truncation of the subducted slab and the heat flow along
the slab is much smaller than that across it (Griggs, 1972).
This is different from the finite difference analyses of
the thermal regimes of Minear and Tosk®z (1970) and
Tosk®éz et al. (1971, 1973) who considered the end of the
slab to be in contact with the asthenosphere.

The heat sources incorporated in the model were, (1)

the heat flux across the boundaries described above, (2)
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adiabatic heating and (3) radiogenic heating. The latent
heat was incorporated by appropriate modifications to

the physical properties (section 2.2.3). Heating due to
creep within the model was not incorporated in this first

model.

6.1.2 The Analysis

The model was stepped through time with the nodes
being shifted after each increment. The physical properties
were calculated for each time step depending on the stress
and temperature of the elements at the start of the step.
Visco-elastic and thermal analyses were alternated. The
changes in stress due to the temperature change during each
iso-volumetric thermal analysis were added at the end of
each step (section 3.4). The time-steps for this model

varied from 50 to 5,000 yr.

6.1.3 Results

The results after 1 M yr and 2 M yr are shown in
fig. 6.2. It can be seen that the choice of boundary
conditions for the curved end of the model was unfortunate.
The part of the model which was initially curved (Fig. 6.1)
did not straighten but pulled the rest of the model down

with an induced bending moment. The sag in the plate between
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a and b (Fig. 6.2) is caused by this bending moment and

the low viscous resistance that the asthenosphere exerts on the
sinking slab being neglected because of the hydrostatic stress
boundary conditions.

In spite of these limitations the model is useful in
illustrating some points. The model shows that (1) large
stresses are induced in the slab wherever it is bent, (2)
one of the principal stresses is nearly always parallel to
the sides of the slab, and (3) down-dip tensional stresses
may be transmitted into the lithosphere under the ocean
basins but are concentrated at depths where spinel .
peridotite is the stable phase (30-50 km). In the surface
layers (the plagioclase peridotite field and the oceanic
crust), tensional stresses tend to be dissipated by failure
and at depths corresponding to phase changes the bulk
modulus is smaller thus reducing the stresses. In the
vicinity of the trench and outer rise in this model the
tensional stresses induced by the downward pull of the
slab reduce the compressional stresses which would exist
due to the flexure of the lithosphere. This again emphasises
the danger of assuming simple flexure in this region (Chapter 5).

By the time the oceanic crﬁst is subducted to about
100 km its temperature has increased to 500 to 600°C (Fig. 6.2B).
By the time it has reached 150 km its temperature is about

900°C near the melting temperature of wet basalt (Fig. 2.7).
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The viscosity which depends on the ratio of temperature
and melting temperature is also reduced in the crust at
these depths (Fig. 6.2B).

Because the sagging of the slab between a and b in
Fig. 6.2 was becoming more pronounced as the analysis
proceeded, this model was abandoned and a model with

different boundary conditions attempted.

6.2 Second Model

The boundary conditions for the second model were
similar to the first apart from three major changes. The
model was initially flat without the initial curve of Fig. 6.1.
The end of the lithosphere distant from the induced subduction
was moved at a constant speed of 8 cm/yr towards the sub-
duction zone (Fig. 6.3). The subduction process was induced
into the model by forcing the lower corner node (a in Fig. 6.3)
to move at 60° to the horizontal. As other basal nodes
passed the distance O km they were forced to move towards
the previous basal node (Fig. 6.3). This criterion was
introduced to minimize the sagging that occurred in the
previous model. The rest of the base of the model was again
supported by hydrostatic stresses.

The time steps for the model were 12,500 yrs which gave

increments of 1 km to the end of the model being pushed.
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Fig. 6.3 Finite element net in second and third model after 1 M yr. subduction.
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This is a reasonable upper limit to the time step that
could be taken without causing instabilities in the model.

The thermal analysis was similar to the first model
but heating due to creep within the model was also
incorporated.

The stresses in this model became more compressive
as the analysis proceeded until after 2 M yr the stresses
were large enough for a state of phase change, and
correspondingly reduced bulk modulus, to exist throughout
most of the model. There are two possible causes for
this failure of the model. Both are again functions of
the boundary condition.

The first is a result of the hydrostatic pressure
applied to the end of the model being subducted. This
pressure was assumed to be equal to that on the top and
bottom of the lithosphere for the given depth. This was
a reasonable choice at the time of the analysis because
the stress in the descending slab was shown by Isacks and
Molnar (1971) to have either the least or greatest principal
stress aligned down-dip in the slab (Fig. 1.2). A neutral,
no stress, condition appeared to be a reasonable first
approximation. However, it is shown in Chapter 7 that the
stress in the top of the slab must be tensional down-dip
to maintain the observed gravity anomaly. The density

inhomogeneities which give rise to the gravity anomaly
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were incorporated in the model by applying the full lithos-
pheric pressure only after the top of the slab had reached
11 km depth. Hence, there should have been a downward
pull on the end of the lithosphere and an inconsistency
was built into the boundary conditions.

The second possible cause for the failure of the model
after 2 M yr was the application of the boundary condition
in which some of the basal nodes were forced to follow
each other down the subduction zone (Fig. 6.3). This
was equivalent to applying pressure on the boundary. The
horizontal component of this implied pressure was com-
pressional towards the non-subducted lithosphere. This
was not only effectively compressing the lithosphere but
was also applying a bending moment to it.

The results of the analysis at 1 M yr and 2 M yr
(Figs. 6.4 and 6.5) show that these effects were significant
in inhibiting the subduction of the plate so that it became
more dense rather than sink into the asthenosphere. The
stress in the lithosphere outside the vicinity of the sub-
duction zone gradually became more compressive. At 2 M yr
the stresses had increased sufficiently so that phase change
conditions, and hence a reduced bulk modulus, existed
throughout most of the model.

Most of the displacement forced on the end distant from

the subduction was dissipated by the compression of the non-
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sea level

_%Okm

Fig. 6.5 Second model. The outline of the second
model after 1 M yr. and 2 M yr. subduction.
Although the end distant from that shown
moved by 80 km this end only moved by
about 25 km. The outer rise became more
pronounced.
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subducted plate. Between 1 M yr and 2 M yr although the
end of the model distant from the subduction zone was
forced to move 80 km the other end of the model only sank
into the asthenosphere by an average of about 25 km
(Fig. 6.5). The model was thus abandoned.

This model does emphasise two things. Firstly, the
results are very dependent upon the boundary conditions
used and simplifications may cause errors because some
major effect may be ignored. Secondly, the pull of the
lithospheric slab is important in controlling the subduction

process.

6.3 Third Model

The conditions and net of the previous model at 1 M yr
were used as the initial conditions for this model. Two
changes were made in the analysis from 1 M yr to 2 M yr.
The cooler convective geotherm (sections 2.3) was used and
the hydrostatic pressure applied on the end of the model
being subducted was reduced by 2.0 x 108 N/mz. This is
equivalent to applying a tensional pull of this magnitude
to the end and is about the size of the stresses estimated
to be in the upper part of the slab to maintain the gravity
anomaly (Chapter 7).

This model again became unstable at 2 M yr. The reduced
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pressure on the end had had the effect of reducing the
stresses in the lithosphere but they were still significantly
compressive.

At 2 M yr the restriction on the basal nodes which
were being forced to follow each other (ab in Fig. 6.6)
was lifted. Hydrostatic boundary conditions were then
applied to all the base of the model. As a result of this
the compressive stresses in the lithosphere were relaxed.
Although there was variation of stress through the lithos-
phere the equilibrium equations and the hydrostatic boundary
conditions now ensured that the mean stress in any section
was about zero.

The effect of this relaxation on the shape of the model
is shown in Fig. 6.6. The stress on the end of the model

being subducted was further reduced to 4.0 x 108

N/'m2

below the ambient pressure and an elastic analysis performed
starting from the previous conditions. The resulting shape
of the sinking slab is also shown in Fig. 6.6.

The visco-elastic analysis was continued. The boundary
conditions applied were now similar to model 1 (section 6.1)
but instead of forcing the end to sink with a given vertical
velocity the reduced pressure on the end of the model was
used to induce the subduction process. The rest of the

boundary was assumed to experience hydrostatic pressure

calculated for an oceanic environment. The rate of descent
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of the subducted plate under these conditions was far too
high (about 1 m/yr). Time steps of 1000 and 2500 years
were used. The high rate of descent resulted in the
viscous relaxations of stresses during descent not being
fully incorporated. The temperatures in the centre of

the slab were too low for a given depth because of the high
thermal time constant for the problem.

The stresses, phase transition, temperature and
viscosity distributions in the model when it reached to a
depth of 240 km under these conditions is shown in Fig. 6.7.

The high rate of descent of the slab was probably
caused by the lack of viscous drag on the model. Since
the boundaries were assumed to be under hydrostatic pressure
was implied that they were held by a non-viscous fluid. Even
the relatively low viscosity of the asthenosphere would have
a marked effect on the dynamics of the plate (Neugebaur and
Breitmeyer, 1975). Hence the model was insufficiently well
specified for the analysis to continue.

The final conditions do emphasise some points. In this
model the bending of the lithosphere occurs not only in the
vicinity of the outer-rise but also down into the subducted
part of the plate. Phase changes affect the stresses here
by allowing some of the lithosphere to deform more readily
than other parts. The stregsses in the oceanic crust as it

is transformed to eclogite are large and no consistent trends

it
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can be seen. Isolated elements changed phase and caused
large local stresses which in turn indicated failure.
This reduced the viscosity of the elements. The net is
not fine enough to give the strucﬁure of this phase change
and the apparently random stresses are probably a function
of this net coarseness. The viscosities shown in fig. 6.7
are those computed before adjustment for fracture.

Because of the high rate of descent of the slab the
temperatures are too low and viscosities too high. The
lowering of the viscosity of the oceanic crust as it is

heated is evident.

6.4 The shape of the outer rise

The flexural deformation of the lithosphere before it
is subducted has been discussed in Chapter 5. The shape
of the outer rise has been shown to vary between subduction
zones but it is commonly about 300 km wide and 700 m high
(Le Pichon et al., 1973; Watts and Talwani, 1974). Fig. 6.8
shows various shapes of the top of these three models for
various times in their analysis. This may be compared with
that used in Chapter 5 as a typical curve (equations 5.3
with A = 10 km and o = 100 kms).

As shown by Watts and Talwani (1974) horizontal com-

pression in the lithosphere causes the flexure in the



Fig. 6.8
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Shape of outer-rise given for the various
models. Reference curve R given by
equation 5.3 and represents a typical
observed topography (Le .Pichon et al. 1973).
The curves with boundary conditions which
imply no net horizontal forces (first
nodel and third medel at 2.1 M yr*)are the
only ones which arproximate this shape.
Curves marked with an acterisk in the
third model are those for which the
constraint on ab (fig. 6.6) is removed.
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vicinity of the outer rise to become higher and of shorter
wavelength. Only those models in which there is no
horizontal constraint at the end being subducted (first
model and third model at 2.1 M yr) approached the shape
given by the above equation. The second model and third
model at 2 M yr had flexures of 2-3 km, about three times
that observed. The shape of the outer rise in a model is
sensitive to the boundary conditions and together with the
dynamics may provide a good check on future models as to
how well the boundary conditions apply to the process.

In all the diagrams of stress in this chapter (Figs. 6.2,
6.4 and 6.7) the bending, shown by tension in the top and
compression in the base of the slab, extends down the sub;
duction zone and does not end at 10 km depth as assumed in
the flexural analyses so there is a substantial bending
moment on the slab, at this depth, which contributes to the
flexure in the region of the outer rise.

Phase transitions do reduce the bending stresses in the
vicinity of the outer rise but where the major bending takes
place at 30-60 km down the subduction zone the stresses
cause the area of phase change to increase. This results
in the major bending occurring while the bulk modulus is
reduced throughout the thickness of the lithosphere. The

stresses are stabilized by the phase change.
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6.5 Changes for Future Models

The choice of a finite element net and boundary
conditions for a finite element visco-elastic and thermal
model is difficult. It is not easy to see a priori what
the effect of either one of these is until the analysis
has begun or is near completion.

The effects of the choice of boundary conditions is
illustrated in the three models presented here. At the
time that the analyses were begun the boundary conditions
seemed reasonable but as the analyses progressed the effects
of the choice became evident. Eventually the dynamics and
stresses were dominated by the arbitrary boundary conditions
applied to the model.

Similarly the choice of the finite element net had its
disadvantages. The oceanic crust was modelled by two rows
of small elements (e.g. Fig. 6.1). These were 3-4 km thick.
With time steps of 12,500 yrs for the visco-elastic analysis
the end of the model distant from the induced subduction
moved 1 km/time step and so instabilities were induced in
the models. These instabilities were particularly noticed
as the hydrostatic stress was applied to the top of the
crust as it was subducted and as the crust changed phase
from basalt-gabbro to eclogite. The effect of the oceanic

crust on the stresses in the mantle seems small even in the



|
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vicinity of the phase change but this may be due to the
instabilities just described or to the inadequate description
of a 7 km thick crust by the net. Hence the chosen net fell
between the coarseness required for stability of the visco-
elastic analysis and the fineness required to determine

the detail of stress due to the junction of the crust and
the mantle. This region should be studied in some detail
since high stresses result from applying a uniform external
pressure to a model with non-uniform properties.

These models have shown that the difficulty in allowing
for the crust in modelling the subduction process as a whole
makes its inclusion in the model unwarranted. By the time
the crust has been subducted 50-100 km its viscosity has
been reduced so that any stresses built up must decay rapidly.

The failure of the first and final models was due to the
lack of viscous drag on the boundaries. This was predicted
from the analyses of Tokstz et al. (1973) and Neugebaur and
Breitmayer (1975) but the effect of the resistance must be
greater than anticipated. Either a more extensive model with
more constraint on the boundaries or a way of applying
boundary conditions incorporating these resistive stresses

needs to be developed for further models.

6.6 Conclusions and discussion

Finite element analysis of the visco-elastic flow and

thermal regime in subduction zones has shown that the stresses
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within the oceanic plate as it is subducted are mainly due
to distortions and phase change. The gravitational body
forces cause stresses of lower magnitude but they are more
uniform and persistent in direction across the slab. The
downward pull of the sinking slab can be transmitted to a
horizontal tension in the oceanic lithosphere thus applying
a force to contribute to the plate motions (e.g. fig. 6.2).

The oceanic crust is near its melting temperature at
100 - 150 km and so may rise to form the andesite volcanicity
in the island arcs and contribute to the high heat flow.

In these models it is assumed that the temperatures 3 km
above the top of the descending slab are those in a uniform
oceanic region., They may be maintained at this temperature
by the upward movement of magma and shear strain heating in
the shear zone. The heat supplied by shear strain in this
region is probably minimal because of the low effective
viscosity due to fracture and the probable high water content
supplied from the oceanic crust which has failed in tension
in the outer rise allowing water to percolate to depth.

The shape of the outer rise in the models varies depend-
ing on the boundary conditions. The largest causes for
variation are compressive stresses in the oceanic lithosphere
due to the boundary conditions and the bending moment imparted
by the slab as it sinks into the asthenosphere. Increases

in both of these cause an increase in the amplitude and
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decrease in the width of the computed outer rise. The

shape of the outer rise is probably one of the best checks
on the applicability of the physical properties and boundary
conditions used in modelling subduction zones.

Phase transitions play an important role in the bending
of the lithosphere. The area of phase transition is extended
by the bending stresses. Most of the bending occurs where
the phase transitions extend nearly right through the
lithosphere. This reduces the effective bulk modulus and

flexural rigidity by an order of magnitude.
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CHAPTER 7

STRESSES ASSOCIATED WITH THE

NEGATIVE GRAVITY ANOMALY

One of the most consistent manifestations of subduction
zones and island arcs is the large negative gravity anomaly
(fig. 1.1). This is often associated with the inner-side
of the trench but may be as much as 300 km in from the
trench. Hatherton (1969) has shown that the negative
isostatic anomalies are situated where the projection of
the Benioff zone determined from intermediate depth
earthquakes cuts the earth's surface.

The continuity of the negative isostatic anomalies
along the subduction zones suggests that they are probably
also persistent in time. This in turn implies that they
must be maintained by tectonic forces, which are probably
due to the geometry and the dynamics of the subduction
process. They would otherwise decrease with time because
of the isostatic restoring forces.

Gravity anomalies are a function of the density dis-
tribution within the earth. In the vicinity of subduction
zones there are two major causes of positive gravity
anomalies. Firstly, the positive anomaly over the outer
rise can best be accounted for by flexure of the lithosphere

(Watts and Talwani, 1974). Secondly, the lithospheric slab
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as it sinks into the asthenosphere is cooler and hence
more dense than its surroundings. This causes a broad
positive gravity anomaly throughout the region of the
subduction zone (Hatherton, 1969: Minear and Tosk®z, 1970;
Griggs, 1972; watts and Talwani, 1974). The negative
gravity anomaly considered here is superimposed on these
positive anomalies so that only an approximate shape for
it can be determined.

-Two settings for the anomaly are studied. The first is
in the North Island of New Zealand where the negative
anomaly is over the continent and 250 to 300 km from the
Hikurangi Trench (fig. 7.1). The second is a cross-section
of the Tonga Trench where the free-air gravity anomaly is

over the trench.

7.1 Negative gravity anomaly on a continent

Hatherton (1970) has given two interpretations of the
negative anomaly over the North Island of New Zealand. One
associates the mass deficiency with the shallow seismicity
and the other associates it with a thickening of the
continental crust. Fig. 7.1 gives a new interpretation of
the gravity anomaly similar to the second of these but with
the crustal thickening closely related to the top of the

subducted plate. The continental and oceanic crust were
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assumed to have densities of 2.7 and 2.9 Mg/m3 respectively.
The density of the mantle is assumed to be 3.3 Mg/'m3 for
the gravity model. The upper surface of the subducted
plate was estimated by joining the bottom of the trench to
the top of the Benioff zone determined by Hamilton and Gale
(1968). The base of the continental crust was chosen to
be consistent with the gravity anomalies.

A finite element analysis of the stresses required to
maintain these density inhomogeneities was performed. The

properties used in the models were:-

Pugm®y  EmmY) Vs /m’)

continental crust 2.7 0.5 x lOll 0.25 0.5 x 1024
oceanic crust 2.9 1.0 x lOll 0.26 1.0 x lO30
shear zone 2.7 0.5 x lOll 0.25 0.5 x 1019

The properties assigned to the mantle were determined from
the expressions given in Chapter 2. The concentration of the
relative motion between the two plates to the shear zone was
modelled by the low viscosity in this region.

The finite element net used is shown in fig. 7.2.
Initial stresses equal to the weight of overlying rock were
applied and an elastic analysis performed. The relative
motion between the plates was neglected. The boundary
conditions for the elastic analysis assumed that the ends
of the model were constrained to move only vertically. The

part of the base of the model corresponding to the truncation
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of the subducted lithosphere ( pg in fig. 7.2) was held at
a fixed depth. The rest of the base was supported by a
hydrostatic pressure equivalent to that expected under

the oceanic plate.

The stress distribution due to an elastic analysis is
shown in fig. 7.3. The stresses plotted in fig. 7.3A are
the difference between the actual principal stresses and the
hydrostatic stresses computed for the oceanic plate. Stresses
less than 5.0 x lO6 N/'m2 are not plotted. Nearly vertical
tensional stresses are required in the descending slab to
maintain the negative gravity anomaly. The stresses near
the truncation of the descending slab (pg) are about
2.2 x lO8 N/mz. The tendency of the model to adjust
isostatically is evident in the other stresses. The stresses
in the under-riding plate are caused by a bending moment
induced by the boundary condition on the end mn. (fig. 7.3).
Tn the continental plate tensional stresses radiate out from
the descending slab.

The state of stress in the continental crust is best
considered in relation, not to stresses computed for the
oceanic lithosphere, but to a hydrostatic stress distribution
given by a uniform density of 2.7 Mg/'m3 (fig. 7.3B). Two
different stress regimes are evident in the continental crust.
Between the trench and the coast the stresses are horizontal

8

and tensional with a maximum magnitude of about 1.0 x 10 N/mz.
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In the vicinity of the gravity low the stresses in this
elastic model are compressional with respect to the simple
hydrostatic model and arch around the anomalously deep
crust-mantle boundary.

A visco-elastic analysis with similar physical properties
and boundary conditions was performed. This reduces the
effect of the boundary conditions applied at the ends of
the model. The time steps were 1000 yrs and the analysis
was continued until the change in stress during one time
step was less than 5.0 x lO7 N/'m2 in all the elements.

The resulting stress pattern is similar to that of the
elastic model but the stresses in the continental crust
were larger and horizontal (fig. 7.4). Those in the base
of the lithosphere were much smaller because of the viscous
relaxation.

These analyses suggest that the negative gravity anomaly
is maintained by the tensional stresses in the descending
slab and that as a result of the lateral density
inhomogeneities horizontal tensions and compressions may
be maintained within the lithosphere.

No account, however, has been taken of the motion of
the plates. The ends of the model should be converging
towards each other at a rate of about 5 cm/yr (Le Pichon et al.,
1973). The vertical velocity of the part of the base of the

model representing the truncation of the subducted slab
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(pg in fig. 7.2) is not known. It is commonly assumed
that the subducted plate is in steady state flow with
respect to the overriding plate so that the shape of the
boundary between the plates does not change and that the
subducted plate simply follows itself around the bend.
However, the Pacific Ocean is getting smaller and so the
subduction zones on either side of it are approaching each
other so this cannot be entirely correct.

Visco-elastic analyses were carried out with this part
of the base of the model (pg in fig. 7.2) moving downward

with vertical velocities, V of 2.5, 3.7 and 5.0 cm/yr.

Py ’
The stresses were adjusted between each time step but the
nodes were not moved. Steady state conditions were not
reached after 1 M yr. but the stress patterns were only
changing slowly.

The stresses at 1.1 M yr. are shown in fig. 7.5. The
largest stresses are in the subducted oceanic crust but this
had been assigned a viscosity of 1.0 x 1030 Ns/m2 and so was
effectively acting as an elastic layer. Variations of V%z
have little effect on the computed stress pattern (fig. 7.5).
Tensional stresses are present in the continental crust in
the region of the volcanic zone and horizontal compressions
near the surface between the negative gravity anomaly and
the coast. These stresses are opposite to those computed

in the previous models which neglected the relative motion

of the plates.
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The stresses computed for the crustal rocks are so
large that failure would have occurred. Moreover, in the
volcanic region the temperatures are higher than normal and
the viscosity of the rocks are probably quite low. The

viscosity of the oceanic and continental crust were reduced

to 0.5 x lO22 Ns/mz. The shear zone viscosity was reduced
to 0.5 x 1018 Ns/mz. The upper limit of the viscosity of
the mantle was reduced from 1043 Ns/m2 to 5.0 x 1022 Ns/m2

and steady state stresses re-computed. These were similar
for values of \#1 of 2.5, 3.7 and 5.0 cm/yr. The stresses
and flow pattern for \$i= 3.7 cm/yr are shown in fig. 7.6.
The stresses are all much smaller because of the reduced
viscosities.

The stresses in the oceanic crust and shear zone near
the thickened continental crust causing the negative gravity
anomaly are hydrostatic (the principal stresses are equal)
but at a lower stress level than that expected for a model
in isostatic equilibrium. It is this area of low stress
which is causing the horizontal tensions of about 0.5 x 109
N/m2 in the mantle right across the model at a depth of 35 to
60 km. These stresses are effectively pulling the two plates
together. These are present even for sz= 2.5 cm/yr for
which one may have expected regional compression.

The tensions in the subducted plate below the gravity

anomaly are directly related to the reduction in the body



*Teopou ay3z 3O
saaed snotaea Jo A3TD0T92A 8ATIRT2I 93
SMOUS (D) °*Spua 9yl Uo sIieq 9A®Y SOSS2UAYS
TBeuOISuUd], .nE\mE L°C 30 A3Tsusp wIiojTun e
07 O9AT3ETSI UMOUS 9IB 3SNID TRIUS3UTIUOD
i : 3Yy3 UT Sassa13s oyl (8) ul °Ssuesdo
2yl Ispun Ss213S OT3E3SO0apAY a9yl 03
@ATIRIOI SOSSaI}S ayj smoys (Y) wexbetp
doj oyl -ak/ud £°¢ bd 10 XA3T1DOT24A
jusossp 8yl puwr xk/wo ¢ 9 03 pounsse
ST @3eX 9ousbisauod a3yl -stsiteue
DT3SET5-00STA ® Aq pa3indwod pueleayz
MBN ‘PuUBTSI Y3IION =Yyl JOo AJTUIDTA .
ay3 ut 219ydsoyiTT Syl UT sassai1ls§ 9°L °bTd

& F \\WRNHW“WMRWMHWJ\\A\hﬂ\xﬁ\\A\\A\\J\\\\\W\\“
T e

\\ e

JA/w20°g

77 W\\W\\\A\xm\vu«“w\\ 0

h - - -

~ o et e

o e e e e

- - e -




136.

forces due to the increased thickness of the continental
crust.

The flow of the continental crust, although an order of
magnitude less than the subduction rate, does alter with ka
As \%2 decreases from 5 cm/yr to 2.5 cm/yr the rate of change
in surface topography in the volcanic region changes from a
downward velocity of about 0.5 cm/yr to an upward velocity of
the same magnitude. These, however, are not reliable as the
tensional stresses in the crust in the volcanic region are
about 0.5 x lO8 N/'m2 for all values of \kz and so normal
faulting would occur.

The stress pattern predicted here for the continental

crust fits in well with the known tectonics of this region

of New Zealand. The volcanic region is bounded by normal
faults and the horizontal tensions would facilitate the upward
movement of magma. The crustal stresses between the volcanic
region and the coast are more complicated. Some horizontal
compression is present. The Huiarau Range has a mean
elevation of about 1.5 km and is a Mesozoic basement high
(New Zealand Geological Survey, 1972). East of this range
there is a substantial thickness of Tertiary sedimentary
rocks. The computed stress pattern in the region between

the Huiarau Range and the coast is suggestive of a downward
flexure in the crust with compressional stresses near the

surface and complementary tensional stresses in the base.
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The tensional horizontal stresses between the coast and
the trench correspond to an area in which normal faulting
is common. Houtz et al., (1967) also report some folding
in this region. They show that the basement is irregular.
The continental plate in the model is being stretched
at about 25% the convergence rate. About half this is due
to extension of the crust off the coast and the rest to
extension on the coastal side of the volcanic zone. Karig
(1970a,b) has suggested that the Taupo Volcanic zone and
its extension to the north, the Lau-Havre Trough, are
extensional back arc features and this analysis would tend

to confirm this.

7.2 Gravity anomaly over the trench

Talwani et al., (1961) have interpreted gravity readings
across the Tonga Trench in terms of the crustal structure of
the trench and the Tonga Ridge. Their gravity profile is
at about 22°S latitude and lies nearly east-west across
the centre of the Tonga Trench. Using seismic refraction
sections previously determined by Raitt et al., (1955) they
showed that the gravity readings are consistent with a
crustal thickness of at least 20 km under the Tonga Ridge
and about 6 km under the adjacent Pacific Ocean.

Griggs (1972) used the same data to show that the gravity
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may be interpreted in terms of a dense sinking lithospheric
slab, dipping at 45° to 53° from the trench under the
Tonga Ridge, and the effect of the bathymetric low in the
trench. These interpretations of the gravity data are not
mutually exclusive. The model presented by Talwani et al.,
(1961) has a shape on the crust-mantle boundary consistent
with both the subduction of the Pacific plate and approximate
isostatic equilibrium between the ocean and the Tonga Ridge.
Griggs took no account of the variation of elevation and
crustal structure on either side of the trench; he used
a symmetric model given by reflecting the oceanic side
about the trench axis. Thus the upper parts of both
models are in approximate isostatic equilibrium away from
the immediate vicinity of the trench. Fig. 7.7 shows the
model used in this study and the gravity anomalies calculated
for it assuming densities of 2.8, 2.9 and 3.3 Mg/'m3 for the
Tonga Ridge, oceanic crust and mantle respectively. These
anomalies are of the same order as those which Griggs
attributed to the trench. If we assume similar gravity
effect of the sinking slab as Griggs did, then this model
should be consistent with the total free-air gravity anomaly.
The finite element grid used is shown in Fig. 7.8. The
sinking slab in this model dips at about 45° - 50° from the
trench. This is the main difference between this model and

the previous one in which the downward bend in the subducted
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plate occurred about 250 km from the trench.

The properties of the mantle and oceanic crust were
assumed to be those used in the previous model and the
crust under the Tonga Ridge was assumed equivalent to the
continental North Island of New Zealand for the purposes
of ascribing physical properties. 1Its density, however,
was increased to 2.8 Mg/m3.

The results of elastic and visco-elastic analyses
without accounting for the relative motions of the plates
are shown in Fig. 7.9. The nodes on the base representing
the truncation of the subduction zone were held at constant
depth and the ends held vertical. As with the previous
model the elastic analysis shows the strong influence of
the boundary conditions on the ends. In both models, however,
vertical tensions of about 2.5 x lO8 N/'m2 are required in
the top of the subducted lithosphere to maintain the density
inhomogeneity causing the gravity anomaly. The lower
viscosity at the base of the lithosphere reduces the stresses
below 60 km outside the immediate vicinity of the subduction
zone.

The visco-elastic analysis allowing for the relative
motion between the plates was performed with time increments
of lOOO.yrs. The rate of convergence for the middle of the
Tonga Trench is about 8 cm/yr (Le Pichon et al., 1973). A

vertical velocity component of the part of the base of the
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model representing the truncation of the subducted plate
(V}i ) of 6.33 cm/yr was assumed giving a dip of the slab
o
of about 50°.
The viscosity of the crust was assumed to be 1.0 x
25 2 . _
10 Ns/m~. This was also taken to be the upper limit
for the viscosity of the mantle. A lower limit of the
. . . . 21 2
viscosity of the lithospheric mantle of 1.0 x 10 Ns /m
. . 19 2
and the viscosity of the shear zone of 1.0 x 100~ Ns/m
were also assumed. The temperature and viscosity dis-
tribution are shown in Fig. 7.10. The mantle viscosities
were computed for a shear stress of 5.0 x lO7 Nn/mz. The
equilibrium stress pattern is shown in Fig. 7.11. The
stresses plotted are the difference between the calculated
stresses and the hydrostatic stress in the oceanic plate.
The tensional downdip stresses are again evident but only
in the mantle. The shear zone and subducted oceanic crust
exhibit compressional downdip stresses as a result of the
shearing between the two plates. The stresses in the
immediate vicinity of the trench are large and incoherent
as the topography and shearing have greater or lesser
influence on the individual elements. Horizontal com-
pressive stresses are calculated to extend right across
the region at a depth of about 50 km. These are calculated

to be about 8 x lO8 N/'m2 and would have a marked effect

on the flexure of the outer-rise. Tensional stresses
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decreasing away from the trench shown in the region of
the island arc would influence the back arc spreading

in this region (Karig, 1970; Sclater et al., 1972).

7.3 Discussion and conclusions

The technique, used in this chapter, of adjusting
the stresses and not moving the nodes in the finite element
net has been used in the past (e.g. Toskdz et al., 1973;
Neugebaur and Breitmayer, 1975). It has proved useful in
visco-elastic analyses as it prevents the net from becoming
too distorted. However, it can be seen from the stress
distributions calculated in this chapter that the total
distortional stresses are not determined by the scheme.
The stresses due to the bending of the lithosphere are
not evident in figs. 7.5, 7.6 or 7.11. The stresses
calculated here are only those due to the density in-
homogeneities and boundary constraints. Those due to the
bending of the lithosphere must be superimposed upon them.
The large negative free air and isostatic gravity
anomalies present in the vicinity of all subduction zones
can only be maintained by vertical tensions of about
2.5 x lO8 N/h? in the top of the sinking slab. These
tensions are aligned approximately parallel to the slab

and must result from the downward pull of the dense slab.
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Earthquake mechanism studies suggest that if the
subduction rate is high then the stresses being relieved
by the earthquakes have the principal stress of greatest
compression aligned down the dip of the Benioff zone.
Isacks and Molnar (1969, 1971) and many others have
suggested that this results from resistive forces on the
base of the sinking slab being propagated up the slab to
produce a down-dip compressional regime. This is also the
conclusion reached from finite element analyses of the
body forces in the region of subduction zones by Toskbdz
et al., (1973) who showed that their calculated stresses
are consistent with the earthquake mechanisms if the
parameters of their analyses are chosen correctly.

One of the regions studied in this chapter, the Tonga
Trench, has a high subduction rate and compressional down-
dip earthquake mechanisms (Isacks and Molnar, 1971) and
yet it has been shown that tensional down-dip stresses are
required to maintain the gravity anomalies. With a mean
density contrast of 0.06 M§7m3, between the slab and the
surrounding asthenosphere, estimated by Toskbz et al., (1973),
the downward stress of 2.5 x lO8 N/'m2 is equivalent to the
body forces of a slab about 400 km long if friction is
ignored. The Benioff zone in the Tonga Trench region is
much longer than this, about 700 km, but compressional down-

dip earthquakes occur as shallow as 100 km (Isacks and
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Molnar, 1971).

This again suggests that the earthquakes are not caused
by the overall stress regime in the slab but by variations
caused by differential volume changes between parts of the
descending slab or distortion of the slab.

The effectiveness of the downdip tensions calculated
here as driving mechanisms for plates depends largely on
the variation of properties within the lithosphere and
the depths at which the lateral density inhomogeneities
exist. 1In the first set of models where the gravity anomaly
was caused by the thickening of the continental crust the
stresses distant from the subduction zone are tensional
in the spinel peridotite stability field and compressional
in and just below the oceanic crust. The tensional stresses
are larger than the compressional stresses and the shallower
stresses are more likely to be reduced by failure. In these
regions the tensional stresses due to the density in-

homogeneity may contribute to the dynamics of the plates.
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CHAPTER 8

CONCLUSIONS AND DISCUSSION

Finite element analysis is useful in examining the
stress and strain within parts of the earth during tectonic
processes. The visco-elastic analysis developed in this
thesis is particularly suited to these studies because
variations in flow within the earth are generally slow so
that long time steps may be taken without contravening the
assumption of uniform creep within a time interval.

Phase changes and the stresses caused by them can be
modelled adequately by developing an equation relating
density to pressure and temperature. The differentials
of this equation with respect to pressure and temperature
give the bulk modulus and coefficient of thermal expansion
respectively. These physical proeperities apply if mineralogical
equilibrium is maintained. This is generally a valid
assumption if temperatures are relatively high and water or
another catalyst is present. This is the first known attempt
to model phase changes in this way and to determine the
stress pattern they cause.

The analyses presented here show three major effects
in the stresses associated with subduction zones.

Firstly, it has been shown that phase changes in the

descending slab cause large stresses as a result of the



145,

rélative contraction of part of the slab. The stresses so
caused are an order of magnitude greater than any which are
caused as a result of the body forces associated with the
higher density of the slab with respect to the asthenosphere.
Secondly, the phase changes in the oceanic lithosphere
reduce the flexural parameter from that calculated using
elastic properties given by the compressibility of minerals.
If fracture occurs this further reduces the flexural
parameter but the analysis of the flexure becomes difficult
and beyond the scope of simple beam theory. The stresses
within the bent part of the lithosphere in the region of

the trench and outer rise are reduced by viscous creep,

and fracture. As the curvature is reduced and the plate
re-straightened near the base of the trench the stresses
previously relieved by these non-elastic processes are
replaced by stresses of opposite sign so that residual
stresses due to bending must be present after the beam is
straightened. This is in contrast to the results of any
simple analysis based on elastic beam theory. The stresses
in areas of phase transition are dn order of magnitude less
than those expected for a uniform material because the
ability of the rock to change phase effectively reduces its
bulk modulus.

The flexure of the outer rise only accounts for a bend

of about 50. A more difficult problem is the 30 - 60o bend
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when the top of the descending slab has reached 30 - 70 km.
This study has shown that this bend may be enhanced by

the stresses being stabilized by the extension of the
areas of phase transition.

Thirdly, it has been shown that the maintenance of
the negative gravity anomaly in the vicinity of the trench
requires that the top of the sinking slab must be in
tension. The down-dip tensional stresses required are
2 - 4 x lO8 N/'m2 and correspond to the density inhomogeneity
of a descending slab of about 400 km. This analysis applies
to all subduction zones whatever the source mechanisms of
the earthquakes.

It has been observed (e.g. Isacks and Molnar, 1971)
that if the convergence rate is high then the earthquake
source mechanisms indicate that the down-dip principal
stress is compressional in the focal region (Fig. 1.2).
Such earthquakes occur in the Tonga region at 100 km depth.
Possible causes for compressional stresses in this region
are distortional stresses and stresses due to phase change.
The stresses due to the re-straightening of the lithosphere
would be compressional near the top and tensional near the
centre and base of the lithosphere. At fast convergence
rates the top of the slab will remain cool and may fail by
brittle fracture. For slow convergence rates the stress

would be relieved by creep in a warmed upper part of the
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descending slab. The gabbro or basalt—-eclogite phase
transition could also cause compressional stresses in
the top of the mantle at depths of 50 - 120 km.

The contrast in earthquake mechanisms between regions
of slow and high convergence is probably related to the
variation of the thermal regime and hence the temperatures
and depth that various phase transitions occur within the
slab. The temperatures also play an important role in
determining the viscosity in the slab and the dissipation
of stress by creep.

It has been shown that the olivine-spinel transition
causes tensional stresses in the centre of the slab and
compressional stresses on the outside. If the subduction
rate is slow the outer compressional stresses may be
dissipated by creep whereas the inner tensional stresses
are in the region of highest viscosity and strength and may
be dissipated by brittle failure or accelerated creep
(Griggs 1972). For higher subduction rates the outer parts
of the subducted plate may be viscous enough for the
stresses to build up until failure occurs.

Any distortion of the downgoing slab also causes large
stresses approximately parallel to the sides of the slab.
chh flexure of the Benioff zone has been demonstrated by
Hamilton and Gale (1968) and Isacks and Molnar (1971).

The relative motions and density inhomogeneities in
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areas of subduction zones result in stresses in the over-
riding plate in the vicinity of the volcanic arc. Tensional
stresses in this location will contribute to the ease of
migration of the magma and to back arc extension.

Throughout this thesis the inhomogeneity of the
composition of the mantle with depth has been ignored.
It is difficult to see what the effect of the depleted
dunite layer at the top of the mantle, for instance, may
have on the stresses. The density changes at phase transitions
and the compressibility of the various layers will differ
causing local stresses as the slab is subducted.

The other assumption that has been made throughout
this thesis is that of plane strain. No movement of
material has been allowed into or out of a slab of unit
thickness. With subduction zones in which the movement is
commonly oblique to the structure this may have a profound
effect on the stresses. The plane strain assumption,
together with the neglect of the curvature of the earth,
results in tensional stresses normal to the plane of the
analysis as the rocks are subducted. The compression has
to be anisotropic with zero strain normal to the model.
This maximizes the strain in the plane of the model. An
analysis in which the stress normal to the plane is the mean
of the principal stresses may be more appropriate for the
study of large movements in the earth even though it is

physically less rigorous.
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APPENDIX I

Numerical Technigques

In finite element visco-elastic analysis the main
considerations in the programming of an electronic digital
computer is the storage and time required to cbtain the
solution of a given problem. The main storage problems
arise as the number of nodes increases since the array
space required is about proportional to the square of the
number of nodes. The time restrictions become critical as
the number of nodes and the number of time steps required
increase.

Apart from the standard finite element techniques some
effort has been put into the reduction of these two factors
so that bigger (more node) problems can be solved for longer
term deformations.

Two aspects of the savings made will be discussed here
and other less important considerations will become evident

in the comments on the computer listings in appendix 2.

Al.l1 Storage of the stiffness matrix

Each time step of the visco-elastic analysis requires

the solution of equation 3.8 which may be re-written

[k]1§ = -F() Al.l
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where [K] is called the stiffness matrix. The total
dimensions of [K] are 2n x2n where n is the number of
nodes but if the nodes are judiciously ordered the
matrix becomes banded. It is symmetric. These facts
have been used, in the past, to reduce the storage require-
ments of the stiffness matrix (e.g. Zienkiewiez, 1971).
However, even for the best choice of the order of the
nodes the band width of [K] is above 20 for most realistic
models and the band itself is sparsely populated. One
common method of solution of the equations is to store
half the band of the matrix and solve the equations by
Cholesky decomposition. The use of this scheme requires
that the stiffness matrix be stored in double precision on
an I.B.M, computer. Large amounts of store are still required.
By solving the equation by the Seidal-Gauss iteration
method it is sufficient to use single precision for the
stiffness matrix and double precision forthe F(@) . Only
the non-zero terms of the stiffness matrix need to be stored.
The scheme finally adopted in the visco-elastic program is
that at the start of the program indexing matrices are set
up which give the position in the array AT. which will
contain each possible element of [K] . The only elements
of [K] which can have a non-zero value are those for which
both the row and column are connected by an element. The

diagonal terms of [K] are stored separately in array AND3 .,
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Another advantage of this scheme is that the band
width is no longer used so the nodes may be ordered in any
convenient way. Alteration of the finite element net
becomes trivial compared to when the band width is important
when even a small alteration to the net usually requires re-
numbering most of the nodes.

Storing only the non-zero terms in the matrix has
another advantage in that the time in solving the equations
by the Seidal-Gauss method is reduced. This arises from
not needing to access and multiply the zero terms in the
matrix. This approximately halved the time for a solution
of the equations from that when half the band width of the

matrix was stored.

Al.2 Solution of the equations

The equations represented by equation Al.l are positive
definite, symmetric, sparse and may be banded. There are
several schemes for solving such equations but most of
them require at least half the band width (together with
the zeros within it) to be stored. Further, if the solution
of one set of equations is likely to be similar to a previous
set it is useful to use one solution as a first approximation
to the next. Hence a Seidal-Gauss iteration scheme was
chosen. The positive definite property of the equations is
sufficient condition for the solution to converge but in

initial tests the convergence was slow. An over relaxation
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factor of 1.8 was found to improve the convergence rate.
The solution was still approached slowly and monotonically.
The introduction of a "jump" in the estimates of the solution
after each twelve iterations seemed to give satisfactory
convergence. The "jump" was applied if the last change
in a variable was in the same direction as the total
change during the previous six iterations. This "jump"
could make the system divergent so it is progressively
reduced each time it is used in a solution.

It is applied by changing the estimate of the variable
by an amount proportional to the change in its value during

the previous six iterations, i.e.

g:: S;-‘-F(S;'S:s) é:l,N

where gi is the current estimate of the variable
§Lbis the estimate of the variable six iterations
previously
and f is a factor which begins at 3 and is decreased
each time it is used. The sum effect of the
over relaxation factor and the "jump" reduced the number
of iterations required for convergence by a factor of
about three.
It was also found advantageous to work both up and

. . . . .t
down the matrices in solving the equations so as the i h
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estimate of S} is

L - -
& ° S, + /.8(4}- -Ef K“,\Sk )/Kn
For each iteration we solve for } running from 1 to N and
then N backwards to 1.
This technique is programmed in SUBROQUTINE RSEID

(page 173 ).
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APPENDIX II

Computer Programs

A2.1 Introduction to structure of the programs

The finite element visco-elastic analysis of large
models requires large computer resources so it is important
to organise the structure of the programs so that the
analyses may be continued if the computing is interrupted.
It is also convenient to have the results in a form which
can be used by further programs for X-Y plotter display.
Because of this the computing was organised as a series of
programs each performing various tasks. The general flow
diagram is shown in fig. A2.1.

In general the results of one program are passed to
the next by storing much of the COMMON COMl in a permanent
disc file. This is read and written to on route %8 The

variables and arrays passed from program to program are

STRESS - the stresses in each element

uv the latest displacements of the nodes

X, Y co-ordinates of the nodes

TOTI ME sum of time increments

DT IM last time increment

HEATM mechanical heat assigned to the nodes since the

last thermal solution



INPUT

Surtface thermal
gradient

Heat generation in
the mantle

From CONDEPTH

Information forFE naf
(nodes, elements,
coces for boundary

condition )

[From CONDEPTH

Time step. boundary
velocity, finish  time

From INITIAL or
previous run of
SLOPE

[From CONDEPTH _ |3— | PLOTx
PLOT®2
CONTOUR
Extremes of area 1

tc be plotted
Maximum length of
plot

Code for type of
plot l

U:rcm SLOPE ]

13\

S ———

/

8

PROGRAM

CONDEPTH

Computes temperature
and properties as a
functicn c¢f depth

INITIAL

for FE. analysis

Sets mtial condnhond

T ]

[————————¢8

SLOPE
Finite element
visco-elastic and
transient heat tlow
analysis

Draw diagrams of
results on xy-plotter

1|Working file

———-—-—>2FWorklng file

\

OUTPUT

Pressure as a
tfunction of depth

Temperature ,
pressure and densit
as a tunction ot
depth

J

| Table of physical

T
N

properties as @
function of depth

Error and checking
output

inttiatized common
biock /COM1i/

]

B

Error and monitoring
proaression of the
analysis

\6

8

Updated common
block /COM1/

- g|Check and prompt
output

xy-plotter output
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HTIM time since last thermal solution

FMASS gravitational body forces on nodes

TEMP temperature of nodes

BREAK code for failure of nodes - the viscosity

is reduced depending on the magnitude of BREAK(I)
VD total distance moved by forced nodes
HEAT heat input which remains uniform during the
analysis (radiogenic, normal heat flux)
I1,J3J,MM nodes associated with each element
TP type of material for each element

normally TP 1 mantle

TP 2 oceanic crust

but others may be dictated according to
variations of SUBROUTINE PROPS

TS nodes on the surface of the model specified
in a clockwise order

NONODE number of nodes

NOEL number of elements
N2 122 X: NONODE
Iw total number of surface nodes

IWl-IW5 pointers for array TS specifying changes in the
type of boundary conditions for SUBROUTINES SOLVE and
TEMPGR

DY the velocity of part of the boundary.
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Six programs are listed in this Appendix. The first,
CONDEPTH, gives standard conditions in the oceanic basins
(Chapter 2) and writes tables of the variation of density,
pressure and temperature with depth for use in the other
programs. INITIAL sets up the information listed above in
COM1l and so initializes fileX8 for the program SLOPE.

Many variations of INITIAL may be made depending on the
easiest way to specify one particular finite element grid.
That presented was used for Model 2 of Chapter 6. The visco-
elastic program SLOPE presented here was used in Chapter 6.
It reads the initialized data from INITIAL or intermediate
data written at the end of each time step and performs

finite element visco-elastic and transient thermal analyses
alternately. The other three programs are used to display

the results in various forms on a X-Y plotter.

A2.2 PROGRAM CONDEPTH

This initial program calculates variation of properties
and temperature of the oceanic basin as a function of depth.
The program presented gives results for a conducting model
and iterates to give the variation of temperature, pressure
and density with depth for a given distribution of heat
sources. The program can easily be changed to give these
as a function of a given temperature distribution. The

only input (route #5) is the surface heat flux (W/mz) and
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the assumed radiogenic heat sources at the top of the
mantle and the base of the lithosphere. The variation
between these is assumed linear. The heat sources in the

oceanic crust and asthenosphere are assumed to be 1.6 x 1610

W/kg and 0.11 x 10_lO W/kg respectively.

The line printer output (route % 6) gives a tabulation
of the variation of various properties with depth. Two
files are output on routes %3 and % 4. Route # 3 contains
pressure as a function of depth and route 4, pressure,

density and temperature as a function of depth. All are

tabulated at 0.5 km intervals.
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Coantdddakdndkdadtodybdaitdascpinaroticroniuascinvbhkbdsibnstanvbssnbndronthkbdnd
C A PROGRAM TOC CALCULAYLD ToF VARTATION NF PROPERTIES WITH DFEPTH *
C THIS PROUGRAK ASSIMES STELRY STZYL YUFP~AL (CAPRCTION .
C THE RADIGENTIC HEAT SOUEtES AYE &SSUNED Y0 AF 2 *
C 1o 6E=10W/KG FOP THE DCEAMIC CPUST  AMT OWJl1L-10WSRA FIIR TWE ASTHEMNSPDHERE
C THE KREAT SOURCES 1t THE PANTLE AR[ L5500 TN VARQY L1*#ARLY WITH DLPTH ]
C THE UPPER ANC LNWFR VALUIES AMND TRY SHORFACT FFAY FLiIX APF PEAD IN *
322SR EFEY FER IS RIS I NSNS FE NI N P R N L S R R S S R N E R N R P 2SI 2 Y
COMMAK JHE/TI1603)DERSITIGCNIPEESTIADOYFH,AMIN TEXM,BETN,DENN,
1 CViCP VP VS CUNDN (TN GV ISN, Xy SHT AR, DTy ¥DPRES . |
REAL HT(1E0M DTLLIACC), DT ,SC(15) “NPRFS
Cridrxxopmwa X=DFEPTH [NTERVAL DFDPTH= (=] )nX XX s 405 psd R0 rakinrte s v e dntni ko bbubgsd
X=5C0.C
AR=6370.0F¢3
Cornsvnesttkx INPUT ROUYF # H xR RR SRR S A RL v LA P AR LU EE I P RALAE N S AR LS T O Ao NS RN
Cosdax SHEAT=SURFACE HEAT FLUX (W/MxM) (CONDUCTIVITY ASSUMED TN BF 2.1 W/MC) #%%
Casrexnesz ST],ST2 RADIDCEMIC HEAY SOMIFCES AT TNP AND ROYTNHM NF LI THLSHERE »éx=s
Crxwebssex THE VARTATINN IS ASSUMED T RBE [ JNFAR #wdovnsreshslodbabdbdantsaxghnds
C asxaxede INITIALIZE TEYPLPATUKE AND DLRESSUFE fxs2idndichmpztaviiugddsxvntssk
NO 2 1=1,1600
T(11=12C0,
2 PRESIT1=0.0
REACI5,5) SHEAT
WRITE(6,5) SHEAT
G=SHEAT/2.1
RFAD(5,5) ST1,ST2
ARTTELG,T) STL,ST2
T FORMAT({* HFAT AT T(OP QF MANTLE "'wFl4.5,/4" AT ROTTOM DF *,
1 *LITHCSPHERE® yE14.5)
S5 FORMAT(F10.5])
Cemkxsx MAXIMUM NUMBER QF TTERATINNS USUALLY 1T ONLY PFQUIPES ABIUT 10 *sdssksvs
21 DO 920 II=1,30
Cxx=kx SUPFATE VALUES *®tkxskkktkbdke ikt tdhknbhkx by shr gt vkt hnkkrphbdrkds
IA=11
TL11=273.8
PRES (1)=5000.0%9.8*1030.,0
DENS(1)=2800.0
“0T7=0.0
VDPRES=0,0
DN=0.0
oNnT=0.0
CONNPN=2,1
DENN=DENSI(1)
GRADN=G
HTY{1)=GRACN*CONDN
nn  9C0 IM=2,1£00

I=1M
CHEEt kKt b bk AR Y i kb X SX e R U N A ke R AR AB gAY e d ke kR kb x b KL r kRt hdk &
C GRADL GPADN ARE THE TWHEPMAL GRADIENTS L
C SQ HEAT SOURCES OCEANIC CRPUST 1.,4E-10 W/KG L E
C ASTHENDNSPHERE M 11E=-10 W/KC Ax
C LITHQSPHEP [C MANTLE LIMEAR VAPTATICN FRPM ST1 TO ST2 *%x
C HT HEAY FLUX AT I1°'TH DEPTH %
Cht ekl A At AR R R AR LR AR R L SRFE AR AR I DL D A AR PR R RS R A XA AR TR IR T ER IR ARk

CCrL=DENN

CCAPL=CCANDN
GRADL=GRADN
SQ=1.6E-10
TFL{l .GT. 14) 52=0.11€-10
TF(1 «GTel4 JANDGT LLT. 200) SQ=ST2+(200.-1}/186.,0%(ST1=-ST?2}
(ot X 1 3 1 0] GET PROPEPTIFS # bkt t xapke Rk r et ek A Ak R T N e X XN AR R R R A
IF(] JLE41%) CALL CCRUST -
IF{l AT, 14) CALL MANTLE
A=X/TAR=-{1-11%Xx)
GRAUN={CCNIL*GPANL =X¥045%5Q% (1 ,0-A) *{DENN+DENL)I/{CONDN*{1,.0-2.0%A
1))
HT (11 =GRACN=CCRNM
T1=TUI-1)¢0.%%x= (GRADN+GRACL)
OT=T1-T{I) ‘
890 T(I1)=T}
Craakisrs TEST T MAKE SURF ALL HEAY FLUX AT SURFACE MOT FOFMER ARDVE | ®#3sesxs
891 IF(T]1 LT, TUI-1}) GOTO 90%
MDT=AMAXL LARSICT ), MIT)
ang CUNTINUL
905 CCONTINUE
Cre*nvpuxes CHECK FOR CONVERGONCE *rtndf tsmbddeddtudkandedsrnekr eyttt nbrddd
IF A¥PT o T Qe1.4ND, MDPRES.LF. 1.0F44) GGTY 9
Ctszeday LINEPRINTE2 CUTPNT OF VARTIATIDN NP PROPERTIES WITH DEPTH #evadstonrsiks
920 CCNTINUE
9 COHTINUE
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ARITC (4,530} &
Q0 FOKMATIY (COUNVERGFD AFTIR 1,16, TTERPATIONSS)
494 SHaSHEAT/ G, 1844
WRITE (64950) SHEAT St
WP ITE (Aa4G5) HT(TU]
495 FOFMATI/ % HEAT INPUT AT BOTTINP= 1, Fla,k, *JOULFS/MCTEE SN0 )
490 FORMAT{' HEAT LOST AT SUPFACE *,Flh.a,' JCULES/VETYE SQUARE O0R *,
1 Elasq,® CALS/SQ THY)
L5 FCOMATULIHL, /7" FIXFD SURFACE TEMPEPATUCE =Y,F15,4,' DEGREES/PETRE
1 *+/»' HFAT SOUPCE JOWLES/VILDGRAMME/SEC? 4 /4% OCEANIC CRUST *.
| Fl4aoby /o* MANTLE MAVEPTAL ' Flé&,4)
WRITE (644700
470 FORMAT{' DEPTH TEMP PEMSITY PRESSURF  YCUNGS AND RULK MCH ¢,
1 * POISCNS?®,
1 *2A7 THERMAL EXP CONCUCT  MELY TEMD (P (v LOG VIS vp ws ¢
2 2 "nT FLUX*)
Iv=1
DN 500 I=1.1M
J=1 -
TF(T .LE.14) CALL CCRIIST
IF{l .GV, 14) CALL MANTLE
[F(MOD(I-1410) JHELO) GOTO S00
NDX=X*(J-1)*0,001
vP=\VP /1000.0
VS=VS/1C00.0
DLVIS=ALCGL1O0{(VISN)
WRITF (644801 DXy TLJ),NENS{I) sPRESTJ) ¢FNyBETN, ANUN, TFXH4CONDN, TMN,
1 CPeCV DLVIS Py VS, HTLT)
“B80 FORMATIFS,14277.1+3E10a34F643¢F10.34F6¢2+F8.2,2F6,1
1 +v3F6.2,F10,.4)
500 CCATINUE
Cxrkwmiex FILES QUTPUY FAR TMPUT TO CTHER PRNAGRAVS *xmdxkistizrdisdddonsnsshbpns
Crxkiukey ROUTE 43 PRESSURE INLY AS FUNCTINN NF DEPTH xtwxixanir sxdanvhsshetnokks
Chudaxmess ROYTF #6 TEMPERATURE,PPFSSUPF AND DENSITY 4S FUNCTYIOM 0OF DFRTH %axst&k
WREITF{4,600) ToPRES,DENS
WPITE13,600) PRES
6G0 FCRMATI20A4)
9999 STOP 2
END

SUBROUT INE DCRUST
Caxd:xxx NCEAMIC CPUST PPOPERTIES ®ExArsdmkkdktradhdwdsaradretadbdrrArdhwdnirhixnhk
COMMON /NE/T(1600) y0ENSLI1600) 4PRES{IA00) ,ENGJANUMN,TEXN,BETHyDENM,
1 CVaCP VP, VS, CONDN, TMN GV ISR, Xy SHIEARMDT, MOPRE S, I
REAL*8 34,B88,BE.EA,EBRL,ECHED,FE
REAL MDT,MDPRES
EPQES=0.0
IFII LEQ.}) GOTO 10
J=1-1
PN=PRES (J) ¢ {DENS(JI+PENSCI))*0,5%X*0 .8
DPRES=ON-PRES{])

17 FU=0RESL] )4NPRES
"NPRES=AY XL (ARSLDP27S )y MDPRES)
TE#=T(1)

DTE¥M=TEM~300,0

IAES{I)=FN

BA=1.15¢-11

BB=-1,4E~5

BE=R, 0E-9

FA=0.,7635479424D-11
ER=-0.4196515938D-4
EC=-0.,7063370539DN=22
EN=0.7717123769N~]5
EE=0.47R9135055D-0R

FO= 1o CNO*RAZPNERACNTEMRESXNTEMENTEM
FE=1.0DO+CAXPNSERRCTEFMeECRPNSONSEN AP SDTEMIFEDTEMNTEM
€6=29C0.0

RE=34CN.0

ALLI=Hile2 ,Q*NF*DTEM
AL?=FRvEN2TNE22EEADTEM

BiilsBA

NEZ2={ A2 FCAPNEFDEDTEM
N1=0.COCHG6{15CNN=2,3F—£ =Dl $+OTE)
D2=9,C02%{10RVN-DTEN L 22— T=PN)
F1SAHAXTIC OV AMIMLITD.5-D1,1,0))
F2=pMAXI(O0N AMTH](N.5-N2¢ o))
NEP1=0.,00009%2 ,AE~6

NFT1=-0,00069

NTP2==NNN2%1,2FE~-7

NETZ2=0.,002

I (Flet]l,C-F1) .07, N,N001) nAT0 602
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CFPi=0,0
DFTL=0.0
600 IF(F25([,0-F2) AT. 0,C0011 GITH 700
DFP2=0.0
DFY2=0.,0
700 CONTINUE

DF1=(RGXFG*(1.0-F1 )¢RE+FE*F})

DENN=NE1*(1.0-CeGYeF2)

REIN= (U (RFEL#{ 1, D-FL)-FGINFPLI+RE®(RE2*FL4FFRDFP2IIEL1,0~0,CI9%F2
1 V-PEL*(.09¢DFP2

BETHN=RETN/DENN

TEXN= (RGE(AL 1*(1 ,0~F1)-FOINFTLII+REC «{AL2*F 14FEXDFTI))I*(1,0~0,0G%F2
1 1-NF1%0.0%*DFT2

TEXA==TEXN/DEMN

viP=3,15+#DENN-3CNO0,0

VS=1. ¢3%NENN-1280,0

R={VP/V5) *%x2

ANUM= IR-2,0)1%0.,5/(R-1,0}

AHUN=AMIN]I( 0,495, ANUN)

EN=3.0/RETN*{]1.0-2.0*%ANUN)

A=]1.28BE-62VPEDENN®*20,6K7

BS=2.1

CCNDN=AMAX 1 (A, BS)

DENSUT)=DENN

TF(TE® .GT. 500,0) CONDN=CONDN#2,3E-3%({TFM-500,0)
THA=10hT7.0+1.2E-7%PN

IF (PN LY. 3.0E+B) TMN=1315.,0-B,5E-T*PNe5,0E~16*PNEFN
SH=10.0E+5

VISN=ALGG (145452 J0*THMN/TEM=1,5=AL OG(SH)
VISN=ANINL(100.0,VISN)

VISN=£YAX1{0.,0014VISN)

VISN=EXP(VISN)
CP=9R8,.,56+0.,20012%TEV-C,2503F+R/ (TEVXTEM)
CP=CP-{FPERFE-PG*FRI/(FERFE+RCG*FG )+ (PN-15C0.0/2.3E=-5)*DFT]
1 -0.05/7(0.G1*0F1 )1+ (PN+1080.071.,2E-T)*NFT?2
CV=CP-TEXN*TEXN*TENM/(DENNXRETN)

RETURN

END

SUPRNUTINE MANTLE
Cxnnkkaedkxn CALCULATES MANTLEFE PPOPFRTIFES ¥dwdbkemrkXnt bt r oAt hhrhkbadxgpddhk
COMMOMN ZHE/ZTUL16D0) NENSI L1001 4PFESI160C) yFMsANUNZTEXNZRETNJNERN,
1 CVeCP VP ¥SyCOMDNyTMNVISNy X9 SHEAR,MDT, MOPRES, ]
REAL MDT,“NPRES
J=1-1
PMN=PFES(J)¢{DENS{JY+DENSI]I)) 20,5%X*0,8
DPRES=PN-PRES(])
MNPRES=AVAXL (ARS(DPRES },MDPRES])
TEVM=TLT)
DTEM=TEM-273.0
PRESUI)I=FN
RHO0=3240.0
FH1=R80.0
RH(O2=60.0
KkHN3=3060.0
RHC4=3170,0
SA= 0,54071217470-11
SRAz=-0,26792R?A86D~C4
SC=-0.41R7A5890°9N-22
D= V. 3593745755D-15
SF=0,10101334626D-08
A= 0,7982656082ND~11
B=-0,2579225991D-04
C==0.1479570252N-21
= 0.833R005037D-15
F==0.39511n57525N~-08
R= (,3221268166D-32
S=-0.3016%2364120-25
Y= 0,161C151893Nn-1#
2= 0.6275R813522D-~12
F=

1 7*DYEVY)
ALOD=N+PAx(DeSe PMYNTFEVX{D 0%Ca28Y#D 43 ,N47240TEM)
BEQ=ASDIEMY(DNeYENTI M) 4 PNE( 20C #3003 PHEIXSINTEM)
SF=1.0N0*SABPMHEGRINTFV IS PNSPNESDYDHN*NTEM¢SEENTEMADTEM
SA{ O=SReSEPNe 2, OLHCRSESDTEN
SHEN=SA42,00N04SC =0 SPANTEM
NlzL )1I*ILRIDENTC*~IGO,0E-H*PN)

1220, 0029%(96ANRTEN=-A0,3F-A%PN)
DA=0L.0DL1*{2401.0¢NTFP=30,0E-RePN)
Go=0.001420150CH+9 UF -FAEN-[T V)




10C

2C2

300

400

500

10

2C

l6l.

D5=N.03123212C0. 0~ 1. 0E- 42PN}
Fl1=AMAKL (U0, AMINLI0.S=-D1,1.0))
F2=AMAFI{Q.0,APINL(0.5~D2,41.0))

FIzA NI C.0, AN INILNG.5=D3, 1.0
Fa=a“%ax] {00447 INLID.5=14,1.0))
FO=AYAX1(0.0¢AFINLI{0.5=-D%1aN)}

G3=1.0-F2

NFP1=3,0F-9

nEr2=80,3E-8%0,1025

NFr3=0,6011430,0F-8

NEP4G==,N014%S,0E-F

NFP5=90.,0213E~-8

DFT1==-0,001

NFT2:-0,0025

DFT3=-0,0011

DFT4=0,0014

IF(F1*{]1.0-F1) .GTe 0.0001) 6GNTO 100

DFP1=0Q.0

CFT1=0.0 -

IF (F24(1,0-F2' ,G7. 0,0001) GCTO 202

DFP2=0.0

GFT2=0|°

IF(F3%(].0-F3) .GT., J.0001) GGTO 300

DFP3=0.0

DFT3=0.0

1FtF4*(1,0-F4) ,CT, 0.D001) GNTD 400

DFP4=0,0

DFT4=0.0

IF (FS*(l.0=-FS) LGY, 0.0001} GOTP S00

NFPS=0.3

CONTINUE

E1=RHOC¢RHN]1%FI 4RHN2#F 2

D1=E]1=G3*F +RH{JI=FI2SF
NEHN=0N12T1.040,032F5)%{1,0-0,0225%F4&]}

OENS( 1V=DELNN

DF1=RHOL%0DFPL +RIIO2=DFP2

DOI=NC 1#G3%F-E1#DFP3%F+E 1*G3*AF0+PHN3XNF P34 SF+RUN3&FI¢SBEO
RETH=NN12 (1 ,040.08%F5)34(1,0-0,0225*F4}+D1*[1-0.0225%F4j*0,0R%*DFPS
1 -Ca0225*01%{)1.0+0.CB%FS)*NDFPy

BETN=BETN/DENN

DEY=RKQL*NFT1+RHAO2*DFT2

DNI=NE1*G3%F-E 1 *NFT3%F¢F1#0IFALO*RHAILDF T3 SF4RUNA*EARSALD
TEXN=FDLI®{1 40, 08=F5)%(]1,0-0.0225*F%)=0,0225%D1=DFT4*(]1,0+0,08%F5)
TEXN==TLXN/DLNN
CP=1C033,R440.19434=TEM=0,241QC +8/( TEVM*TEN)
R1=RHC1+RHNO

R2=R14RHN2

R3I=RHD3=SF

Re=DELN/1] +0~-0,0225xF¢)

RX=P44C,C745

CO=CP-DFT120HN]/ (F=oHNQxF [ 1%{300,0F-24PN=-1527)/300,0F=8=NFT2%RH2
1 J{F3R1*R21%{ RO AE-R*PN-691.0) /80, IF--NFT3I%(P 3R 2eF )}/ (RAAR2%F )%
1 (30,6E~-R=PN=2127)1730.0F=R=NFTL*x[RA~R4) /{RX*R4)*(]1773+9,0E-R*PN)
1 /9.0E-R

CV=OP=TF /RETN®TE XN.TEXN/DENN

UYP==2236.0¢3,164NENN

VS=1,63%CENN-BR0.0

R=(VP/VSYI%x2

ANUN=Q . 5*{R~-2)/(R=1)

EN=3,Q/RETHN®{]1.0~-2,0%ANIN)

A= 1.,2F9F -62yPxNIEIIN®2N, 667

C=10/{0.GT4145,01E-4%TEM)

CAINCN=AMAXL(A4CI

IF (TEY,.GT, S30.0) CONDN=CNNDHN$2, 3D1F=3* [ TEM=50G0,0)
SH=10.0F+¢5

IF (PN LLT. 3,C5+49) GOTN 10

TMN=2920 s0+1.26E~-T%PN
VISN=ALCG(1REC]3) 4268 THMN/TENM=]1 1 2ALNGISH)¢A,909%F]3
GATe 20

TMA=1 216040, T03F-R%PHN~],ASTE~]72DNEDN
VISL=ALCGI?.1E+14) ¢4 0, 06 TMN/TFV=-2,0% 211G (SH)

TEISH .6T. 1.,0F¢a)

1 VISH=ALCOG(1 4 1E+31 )44 ORI/ TFM =4 ,0*ALNCISH)
CONTINUE

VISH=CXPLAMINL(100.0AMAXYLIYO0,0,YVISN)Y)

RETURN

END
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A2.3 PROGRAM INITIAL

The variables which are passed in file ¥ 8 between
various programs need to be initialized. This is done
in this program. The nodes and element specifications
may be read in or generated or a combination of these can
be used. The program listed reads in some of the nodes
and elements and generates the rest by using the repetitive
nature of the grid in the model. The initial stress,
temperatures and densities are assigned by interpolation
of the values passed from CONDEPTH route % 4.

Some checking is done on the net to ensure that no
elements have zero area (error in net specification).
The total area is printed. The body forces due to the
gravitational forces are entered in FMASS by the SUBROUTINE
MASS.

If all checks are satisfactory the initialized values

of data are passed through route % 8 to further programs.
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CoedBn TRt s FEARh SR STA S b2 SRk AC S R KO P I ORARTBASI LSO G L LTI SR ERREORS KA kN

C PONGRAM YO INTLAL EZE A& FIMITE FLEVLNT DATA *
C THIS 1S CNE EXAYOLE MAMY VARIANTS MAry AF 2ANE DEPEHNING DM THF [ASIEST =
[ WAY TN SEECIFY Tof PRABLEM UNCEFR CONSINCRATION -
CANXRA SR ARSH RN B ORLXINRSXFOUABT AL IR APRE RS EAL T REI IR XAt A AN ISR L AP EAZOIIA TR ELT S

CNYPIN JCOPLZAPEADLE343) D81 2,A  A¥ 1A 4A ) BI3,6)1+PHSLLIROD,
1 DTEMP( 9901, SPREFST6,1900) ,APR{LACN),STLA),
2 STRESSH{4,19001,BVLIOR0I X{SID), Y{ G990}, TNTIVE NTIM,HNFATH(990),
3 hTIMFPMASSEL180) , TEMP Q9D ), BREAX (19051 VD, HEAT (990},
4 TICL9N01,4JJELC0N I MM 1900), TRLLAGO) , TSI 2400,
5 NORNDEZMCEL H2e IW g TWL s TW2 o IW3 [ ¥4 IWE,DYNOLAK)yFIRST,FRACT,NFW
REAL®A Ay YoPHS  STRESS 4Dy AKX DRy DT I (ARF 8,ST 4B, ¥
REALY S TOTIMEHT M
INTEGER*2 11 4JJeMV,CONSTR,TFIXsTP,TS
LOGICAL FIRST,FRACT NFHW
INTEGER+2 LEN
NIVENSICA TUTPUTI15968)
REAL*8 QUTPUT
EQUIVALENCE (OUTPUT(1),STRESS(1))
REAL®8 SAREA -
DIMEMSION ILESS,JLIS) MLES) R
DIMEMNSICN SPRES{1600),SNDENS{1600),STEMP(1600)
DIMENSION IT8(150)
CALL TIMELO)
Chwovrxsniksh PEAD [N STANDAPC CCNNITIONS AT INTERVALS DF SO0M ¥rkaxssssdorerkadk
REAC14y4) STEMP,SPRES, SDENS
4 FORMAT(20A4)
HTIM=0,0
1DY™=Q
FIRST=,TRUE,.
Crs st etnnekb { AN CO-0RDINATES OF FIRST 33 NONES #e4t et ks ssrskhaixsdr ki nagdn
REAND(SySIIXTIIYsY(T)eI=1,33)
CrvecxsxxPEAD [N NODES CORPFSPCNDING TN FIRSYT 42 ELEMENTS xksansxsridasrdkdarihre
REAGUSy £)CTIC ) 3alI ) M {]) 0=k 16)
READ(Syn) CITLL) JJ(T)MM(]),I=17,442)
5 FORMAT(16F5,0)
6 FCRMAT(1515)
Coavkt ki xk SET CODE FOR TYPE NF RNCK * stk kishppthbhkabkrhgbrnkn xovkbkbhkkshbkktkk
DO 7 I=1,164
7 TP{1)=2
DO 8 I=17,42
8 TP(I)=1
CradaxxwxxPROPAGATE NET TO 969 MJCES AND 1680 DCLEMENTS sxisdsstrssddnibbbrdnsdnsrs
N 9 1=234,969
X(I)=Xx{1-24)
Y{Il=Y{1-24)+30.0
9 CIONTINUE
0N L10 I=43,1680
I1(1)=1111-62)¢20
JILTI=J0J11-42)424
MA{TI=MM(]-4201424
TP{I)=TP(]-642)
110 CONTINUE
NCNUDE=969
N2 =NONODE=*2
NOEL=1680
Cremkencshpmurs CALCULATE WHICH NODFS ARE ON ROUMDARIFS AMD EMTER IN TS *s&xkixs
Do 11 I=1,81
15011=29¢9-((~-11%12 .,
11 CONTINUE
DN 12 I=1i+8
TSUI1+R1)=9=-1]
12 CANTINUE
N 13 I=1440
J={I-11%244+9
M=(]-1)%&+89
TSiMe])=J¢]
TS(Me2)=J+4
TSiMe3)=+13
TS(M+4)=0¢16
13 CCATINUE
DY 14 1=1,8
151249+ )=NONODE-B¢I
14 COLTINUE
Crécasdkavie SET POINTERS FOR CORNERS (OF NFT IN APRAY TS #ithsasanpddadisnrhingw
1Wl=8al
142=893
1W4=249
IWw=2517 )
Corexzd SET TUMPEPATURE CF MONES AS FUNCTINN OF CEPTH f3ttkacsdkdsbribipdnsdtkadn
pno221 1=1,NONODE
X5=X{1141060.0
ASPX{ XSy STEMPyAA)
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TEMPL{1)=A
2?21 CCNYINYE
Crmaweresns (ONVERT COORNDINATES TO METIRS ANN INITIALYIZE HE AT ARRAYS rcwessa.
b 100 1=1,H0M9DF !
X{N=x{1:81600.0
Y{1)=Y({1}#1000.0
HEATM([)=0,0
HEAT(11=0.0
100 CUMTINUE
Cexgxseskr CHECK FOR COINCINENT TLEMENTS(ANY QCPLATED T ACCINENT) *essmaxsidirvs
"D 90 I=1,NNEL
UVIETi=XEET0T e xX I Jdaiiayexi Ml s/3,0
FAASSEI =ty (LICI)hev {QJ(Td ey iv™{])))/3,0
a0 CONTINUF
MzNOEL-]
00 95 I=],M
K=i+l
NG a5 J=K,NOEL
TFLA3STUVITI-UVIEYY)Y oGT,. 1G.0) GOTO 6S
IF(ARSCFMASSITI=-FYASS(JI) 6T, 10.0) GOTC 95
WRITE(H Q&) Toda TTUIN JICT Do MA(T ) TTCS e dLl )M ) -
96 FORMAT(' ELEMENTS THFE SAME',/,8]6)
95 CONTINUE
Crxssxstasxas IN[TIALI2ZE DISPLACEMENT ARRAY, ,TIMES ECT. *xkdindkbkpikosbdutasad khihds
DO 101 I=1,4N2
uviii=6.0
101 CrNTINUE
TCTIME=0,0
vD=0,.,0
NFwW=, TRUE,
N2 =NINTDE®R2
103 FCRNMAT(J4,Fi2.1)
Thi=Tw2
Ctxaxx INTERPOLATE FOR INTITIAL STRFSS AMD DEMNSITY FROM ARPAYS SPRES,SOENS **%xs
NC 230 1=1,NOEL
XS={X (T ILI I XUt I ) e X{MMIT)D}/3,0D0
A=PX{XSySPRES,AA)
IF{XS «LT. 5000.0)A=XS%1030.0%9,8
STRESS(1,1)==A
STRESS{2,1)==A
STRESS(3,10==A
STRESS(4+1)=0,0
A=DX{XS,SDENS, AA)
BREAK(TI)=A
230 CONTINUE
FIRST=.TRUE.
CHwkraky CHECK CRDER 0OF TI(I},JJ(T}sMMUT) SN PCSITIVE AREA bl xddskswrsihxvsdns
Cxexs¥xs COMPUTE GPAVITAYIONAL BONY FORCES #dsikdkingietvakhexxyaXaaktanmppkpedky
CaLL PASS
Cx»ks HEAT FLUX AT 7C KM IN COMOLCTICN MODEL AFCED TO BASE IN ARRAY FEAT =»se%s
00 &G0 K=2, IWl
[=7TS{K-1)
J=TS(K)
YS=DARS (D.S5*(Y(IV=-Y{Ii)*0,0254)
HEAT(1)=HCAT(IY+YS
HEAT(JI=HEATIO)eYS
400 CONTINUE
Coxes CALCHULATE TOTAL ARFA AS CHECX *>xssxRADINCENIC HEAT ADDED TN HFAT*&&kkxhdtgs
3.REA=C,NNO
NC 300 r¢=1,N0EL
KI=111(K}
KJ=dJ (K}
KM=MM({K)
AREA=0 5% ( (X AK]I)-XIKM)I=E(Y{KII=Y(KM))={X(KI}-XTKkM)}={Y(K])=YIK"))]}
SAREA=SAREA®AREA
XY= X{KI) ex(¥J)eX{XM)}/3,0-5000,0
SQ=0, 11E~-1G
IF{XM LT, 100.00+3) SQ=0,KF~-10
IF (XM (L7 7.0E+3) SO=1,6E-10
SH=ARPLA%SOHAREAK(X Y/ 3,0
HEAT{KI ) =HFATIX])+SH
NEAV(KJI=HEAT(LJ) ¢ SH
HE BT EKMY=rEAT(KM) aSH
200 CGATINJE
WHITE(E, 199) SARFA
199 FORMAT(' TNTAL AREA "L, E23.1%)
Credsdesd SAVE ESULTS FOR RUNNING IN FINITE FLEMFNT PROGRAM Ssassvdstxtdur kdetie
LEN=22000
CALL TIME(L,1)
CALL WRITEL(DUTPYTLL) oLEM, 1,1 oR56000)
CALL WRITEINUTENTL4N0] 3. LFENy 101, 8, £6030)
CALL w2 LIEITUTRUTIAROOL ) s LENW Lo T2 R LA20D)
LEE=31744
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CALL WRITE(NDTPUT (12001 4LFlylel 4340060000
2FWIND A
WRITE(A,10) k4
10 FORMAT(! »RITE COMPLETE I¥4*,16)

CALL TIML(1,1)
STCp

6000 CONTINUE
wRITE f6,e6001)

A00L FORMATIY WRITE ERPCR4+ 444404342430 4244000)
STOP 22222
END

SUBROQUTINE MASS
Coreard CHECKS FAR ZERN AREL (N[SS-SPECIFIEN) ELEMENTSG russvaassdserdinbedsrsbesd
Crsxdv CALCULATES GRAVITATICONAL 8B0OTY FORCES #ntrvkigaridsrtgakasdurdtiigenyy
COMMIN JCOMIZAPTANU3,3) 4DRI3L6Y 4AK(E40) JBI3,6),°11S{1780),
1 DTEMP{9GQ) SPRNPS {4, 1900),APR(1AD0CQ),ST(3},
2 STRESS(441900) 4UVIIGB0) 4 X(992),Y(99D) , TCTIVE, DT IM, HFATM{990),
3 HYIM, FMASS[198D), TEMR{ACN) (FREAVM I 1R0N) 4 VO L,HEAT(990)
& TIU1920), 434192003 ,M"( 1900}, TPLI300),TSE260),
5 NOMIODE JMOFLeM2 e TWoTWl o TW2, 1WA THG, TWS,LY,NO(A)e FIRST,FRACT NEW
PEAL®B X, Y RHS,STRESS 4Ny AK4OB4DT[%,ARFA,ST4A,,VD
REAL*=8 TOTIME,HTIM
INTEGER*2 T143JJeMMCONSTR,TFIX,,TP,TS
LOGICAL FIPST,FPACT,NEW
REAL*AR DAREA,DY1,DY2,CY3,DX]1,MLX2,DX3
CO 10 T=1,4N2
10 F#ASS(1)=0,000
15 FRACT=,TRUE,.
DD 20 K=1,MNEL
16 KI=II1{K?
KJ=JJ(K)
KM=MM (K}
ARFA=IXIKI)=X{KME DALY (KJI)=Y(KNY)=(X{KII=A(KMY)R{Y(KT)-Y{KM}])
IF [AREA .GT, 0.0N0) GOYD 17
IF (AREA LT, 0,0D0) GATD 13
WRAITE(6e12) K KIoKJeKV
12 FORMAT(® ARFEA OF ELEMENT *,[6,' WITH NADES* 4316, IS ZFRO')
FRACT=,FALSE.
G010 20
13 11(KI=KY
JIKE=KT
GCTO 16
17 CCNTINUE
AREA= AREA%*0,500
NEN=BPEAKIK)*AREA29,8/3,00D0
FMASS (24K T-1)=FMaSS5(22KI~1V¢DEN
EAASS (28K I=1)=FMASS({2%KJ-1)+DEN
FMASS[ 2¢nM=])=FMASS(2%K-1)+DEN
20 CCANTINUE
C »xxkkkxda STCPS PROGRAM IF ANY ZERC AREA ELEVMENTS FOUND sxrbkexdrdbnakbdw
1€ {.NQY, FRACT) STOP &
RETURN
END
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A2.4 PROGRAM SLOPE

The visco-elastic heat flow program SLOPE was used
for model 3 in section 6.3. The resources required for
the solution required the analysis be made in several
runs of the program, data being stored on route ¥ 8
between each time step.

Route % 8 data and the pressure table (route ¥ 3
from CONDEPTH) were read together with the time step,
velocity of part of the boundary (DY) and time at which it
was desired to stop the analysis for intermediate or
final plotting.

The indexing for the array storage was performed at
the start of the program and that for the visco-elastic
analysis and heat flow analysis stored in temporary
sequential files on routes W1 and %2 respectively.
Visco-elastic ana heat flow analyses were performed
alternately and the results output to % 8 after each time
step so that any interruption to the program caused the
least possible recomputing.

Much of the computing was done in subroutines and is

described by comments in the listings.
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AN SR d kTR LRSS 3B AR AAARANSL FH X SAFAP I SATLESIA ARG R KNS FEADTEB b LU b b GOI TR RO EERE
[+ PRIOGPA TC PERFCRM FINITE FLLMENT VISCO-ILASTIC ANMALYSIS WITH TRANSIEMT
C THERRAL ARNALYSES YO ALLOW FAP CHARNGES TN TEMERATURE,

CHLRARSI PV RAF AR AT T ARXS ARV R AN ARSI RTENL B AL LA B I I3V 7 QO h b ek r e d bR unssa kR b Fek
COrrar Z7SEINZ THD(I780) s IND (240000 ISP, ISDUNM, AMNDI(1940), ATL24000)
INTEGFR =22 INC, 4NN
COMMAN ZCCFL/ARFACIZ ) WDRI3,h) AKI Ay A) s R(3.6),2HS({1980),

L DTEMPIG90)+SPRABS{H41ANDJ) LAPLILIGUD) ST,
2 STRESS(4,1930) VIR X(990 ), Y{SIC) ,TATINF ,DTIMHEATM(950),
3 HTIM,FMASSTLI9R0Q) ,TCHP(9G0) BRPEARN (1900} VDL HEAT(QA0},
& 1101900),3J01G00) (1900}, TPLLCCN)},T1S(2601),
S NONODF G NOEL M2 IW s IRT, IWZ, IW2, TWa , TWS,NIY 4 HNLH) o FIRSTFPACT,NEW
REAL®B XoeYyPHSySTRESS sUsAKJEBWDTIMARFASY B,VD

RFAL®8 TOTIMF,HTIM

INTEGER®2 [14JJ)PVMCCRSTRH,TFIXyTP, TS

LOGICAL FIRST.FPACT,NFh

REAL®8 HA¢GA+GRyGCyHR ¢GXeN14N2¢03,S51¢52:453484,4,0DS1,052,083,

1 D54, SM

REAL=R OUTPUT{15G68)

EQUIVALENCE(NUTPUT(1),STRESS(L)])

INTEGER=22 LEN

INTEGER*2 I TF4P(Q90),INDTI1S90),JNNT(240C0)

EQUIVALENCE (ITEMP(1),SPROPSEINILUINDTOIN,AT(LLY,

1 (OEDTCLY y INDTL1I981) o {ISPTUNDT (24901 ) )

CALL TIME(OD)

Cranddx REAL INITIAL NUTPUT FROM PROGRAM CINITIALD OR sxddhbakknmthdukdddhagikks

Cwa»xxwe INTERMFOIATE NUTPYUT FROM THIS PROARAM FRLCM ROIITEUR*xtxsspketunnxkbhbodkh
LEN=32000
CALL READ(DUTPUTIYI)ZLFN,1,1,8,R6000)

CALL READINUTLIT(4001) ,LEN,1,[+8,66000)
CALL F-ACIDUTPUT (2001 ),LEN,1,1,8,8£&000)
LEN=31744
CAIL RELD{NUTPUTI12C01),LEN,1,1,+8,4R6000)
REWIND 8 .

15 FORMATIFl4,6)

Cxxmax READ TIME STEP (YEARS) VELOC!TY NF MOVING BJUNCARPY (CM/YR) *kdxdsyddbskin
READ(S 4151 TIMM, DY ,FIMNT M
DTIM=3.,155815D4T*T[ UM
NY=2v/3,1558150+7/100.0
NW1=0

Cexksxs READ PRESSIRE AS FUMCTION OF DEPTH FRONM PROGRANM CCONDFDTHY rusksdgrpaakny

Cankhkkk ROUTEH] ddddbkkktthe s Antrhns kR ndrnkt e bbbk hbir kb kb art kdh Ak abdrente ik
REAN{3,4) APR

4 FORMATI(20A4)
0C 220 1=1,NONCDE
OTEMP (11}=0.0
220 CONTINUE
A=TOTIME/3,155815E+7
SH=NDY43.155815€E+7
WRITE(6,209) A, TIMM,SG
2093 FOAVAT(® trrxxnkxxxSTAPT TIME=1,F14,2,'YFARSY,/,
1 * INCREVENT *,Fl4.,2+% YEARS®,/% FORCED MCVEMENT *,F12.8,
1 * METRFS/YEAR?®)
NEW=, FALSE,
Cxxexax SET P {NDNEXING FILES FOR SMNLVE AND TENPGR kkkkakkkbhhbkwtkkhrdskakndksns
401 15P=0
15PT=0
CALL TIMF(1,1)
nn 159 I=1,NGNCDE
150 ITEMP{1)=0
00 160 1=1,NCGNCDE
NO 161 J=1,NOEL
TFUITLD) NEel JANDLJJLA) NELTAND VMUY JNELTIGATN 151
ITEMPIIT(U))=]
ITEMPIII(J))=]
ITEMP (MM{J))a]
161 CCNTINUE
ITF¥P(I1=0
1§P=15P+1
JNDLLISPI=2%]
DO 162 J=1.NONGDE
IF (ITE"P(J) JENLO VGOTO 162
1SP=1SP+1
1SPT=15PT+1
JNETLISPT Y=Y
JHUDTI SP)=2%0-1
I1SP=15P+}
JNCLISP)Y=2%)
ITEMP L) =0
162 CONTINUE
INCT{T)=18PT
IND{22*1~1)=1SP
isr=1spi1
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JND{)SPY=2%1~-1
1P=2
{F (1 oGT 11IP=INDI2¢]=~21¢2
JP=1SP-1P+]
MpP=JSP-1
DO 163 j=1p,MP
JHDLI+UR ) =gNDL J)
163 CONTIMUF
ISP=MP+ 4P
IND(2#]1)=1SP
160 CLCATINUE
Cr-axwmak L YMAER OF NUN-ZERD TCRMS FOw VISCATLASTIC AND THERMAL »¥nerseissdd xvksndk
Crurgstasszpangd EOUATIONS St kil syt ik sxdi vt AR AU oINS RS UBENAUREIARCUBEREREEX
NRITE{%,1703 ISP, ISPT
17C FNRMATLY KUMRER = PGSSTRLE TERMS ¢ ,21R)
CemzasaxSTARS [HDEX FOP THEFMAL AMALYSIS IM FILF #] saxxiskvksnsxadtcesbnasbhdaist
Crrxxnxxx STORE [KNDEX FOP VISCr=FLASTIC AMALYSIS IN FIlLE 42 extsrsaxassnsddkghhidyg
LEN=32000
CALL WRITE(INDIL},LENs1y1.+2,£€EC00) R
LEN=16964
CALL WRITE(INDU160CL)LENs141,24%600C)
REWIND 2
LEM=32000
CALL WRITEUINDT(IV.LEN,141,1,66000)
LEN=]19Q64
CALL WRITEUINDY{16001)4LFNel,1,1,£6000)
REWIND 1
Cxskkx RFTURN TO S0l AT END OF EACH TIME STED ssfsxiraxsssksdstihthdhbnssbbtittisd
501 CONTINUE
$6=0.0
Cxutikr CLACULATE PPCPERTIES FNR THIS TIVE STEP #xdksstdednibrdt ebad eyt nirhendysk
CALL PROGPS
Cemaxakrsr RECALL FILE ¢#2 Sk kshtndhddtdsad st ddaassatddxhhrkbedi kentbettehbkerhkevh
LEN=32000
CALL READ(IND(1),LEN,1,!42,E6000)
LEN=16964
CALL READUIMD{16001)4LENs]1,1,2,E£6000)
REWINL 2
NEw=,FALSE.
Cra¥mx2x [NJTTALIZE RHS WITH GRAVITATIONAL BODY FORCES IN FMASS &nstddksaatdsizes
CO 720 1=1.N2
T20 RHSUT)=FMASS(T)
Crxxxx FPRM AND SOLVE VISCN-ELASTIC FQUATIONS #kkmitdd akbdpddrikditbhhabechibsks
CALL SOLVE
DSMAX:O-C
KVM=0.0
Chrsxkvd UDDATE STPESSES IN ELEMENTS Xbkdrakidddphomdhkhhk stk sr Rttt st anthadus
D AN0 K=1,NDEL
E1=SPRNPS (1,K)}
AN1=SPRNPS(2,+K]
VIS=5PRUPS{54K)
TEX=SPROPS{6,K)
GA=F15(140~ANL}/C{1.0+ANY)%{]1,0=-2,0%AN]1]))
GR=GA*AN1/(1.0-£N1)
GC=0.5%{GA-G8)
F=DTIM2CGC/VIS
GX=DFN2(F)
I=11(K)
J=JJ(K)
M=MMIK)
CALL FCRMPTI(R,XyY,T,JsVeAREA)
ND1I=BU T, L} *UV( 2% T =1 )¢ R(1,3)3UVI2n J=1)+A(1,5)5lIV(2*%M1=-1)
D2=B{2:21=UVI2* 11 +BL 2,4 2UVI22J {2, AV *1 VL 22M)
D3=R(2+2)*UV{2%T-1148B(11)20V(2%])¢312,6)8IV(2%J-1)
1 #BELe3)5UVIZAI ) ¢R( 2,61 IVIRk M1} ¢ L] ,5)%V{2%M]
S1=STRFSS(14K]
S2=STRESS{2,4K)
SI=STRESS(3,K1}
S4=STRESS (4 K}
HA=GX5GA
HR=GX*GB
GX=F%(X/73.0
STRESSI1yKI=S1-OX2(2,0N04S]1=82-S3}+HA*DL+KR*D2
STRESOU2,K)=S2-0X412.0DD*S?=S1~5 1) eiReDN]apA*D2
STRESS{3eK}=5T-0LY2{2.,0D0%S53-S1~S2) +HRA(N14D2)
STPESK( g M 4=S%~-32GYsS4 405D 3Ix{HA-HRY
Crwnxa CALCULATE ACTARFTIC MLAT FNP FACH FLFAENT a2savetaxtedfttiattdstnttcdntvag
NO=(STRESSET Rk )=S1#STWESS(Z2)K)-SP2ESTHERSI34KI=S3) /2D
As(TREP LT« VEMPOIISTEMP(MY) /3,0
HIF==ASDPuTEXe AREA
Coxs v FING AXTHUN CUHAGE T STRESS VAR MIWNTTNRING 34 krasox kvt rsssbabhtdsnd
Crkoavu VISCHD-FLASTIC ANALYSIS €304 ad0 uardnkandp0agterddidedaderdatotesavrditaten
SMAX=DARGIGTIESS (Y v b=SY I #PARSISTRESAU2,¥ ) =532 ¢ ANSHSTRESS (A, k)-8
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1 37 +DABRSISTRESS(4.K)1=S4)
TF(NSMAX JCTLSMAXY HNYC 750
KS=K
NSMAX=5MAY
S1Kk=S1
52k=82
SIK=S13
S4K=S4%
pPS=np
NAK=(X{1)eX U1 +XIM}N/3,0
750 COATINUE
Crrtsnsenx CALCULATE VISCOUS HEATING #xsvdtiobddkbhdthanddadbhh st knddi ks tihsns
U=NFN2(F)
IFIF 6T, 0.01) Vv=1,0-2¥%Ut[FN2(2,0%F)
IF{F JLfe Cu01) V=FaF*{]1,0/3,0-F*(0.,25-F/720.011
TAU=VIS/CGC
ZI1sDTIM/{ e OVISHELISI=S2)=*2+(52-S3)*¥2 ¢ (ST -S) ) w2+ 554254
DS1+{2%51-52~-53)/TAU/3.0-(GA=N1+GBxN2) /DTIM
DS2=(2%S2-S51=S2) /TANN/ 3., C-(CA®N2+GRENY Y /DT IM
DS3=(2%S3-S1=-S2)/TAU/2.0-(D1+D212GB/DTIM
DS12=S4/TA)~CC*¥NA/CT IV
22==NTIM= (1 =) % {NS1=(2%S]1-52-53}+DNS2=(2:-52-51-53)+NS32
1 (2%83-51-52)1+€,02*DS512%S4})/(3,0*nC)H
Z3=TAURDTIM/ (5, 0=GCI2V*{ (LS]1-DS2)#»24(DS2-DS3)%%2
1 #{NS2-NS1)*%2+46+DS12%DS12)
HV=AREA+{Z1422+4Z3)
Coxdskkeax TCTAL MECHANICAL FEAT INPUT T0O ARRAY HEATM 28nAss4xynRsddiitinnssihin
HTM=(HTM+1iV]/Z.0
REATMIT )I=FEATHh{ 1) ¢HTM
HEATM( J;=REATM[J]} ¢HTM
HECATM(MI=HEATM(M) ¢HTM
800 CCATINLE
WRITE(6,RO1IKSsDSMAXy STRESS{) ¢KS) s STKySTRPESS{2¢KS)eS?2Ky
1 STRESS(3,KS)sS3K,STRESS{4,KS) 4S4K TP(KS} 4DPS,SPROPS{5,KS),
2 RREAK(KS),DXK
801 FORMAT(®* STFESS CHANGE' g 16¢E14,54/"' NEW OLD* /744 (2E144507 )0
1 1644F14,5)
NEW=,FALSE,
Crxxrks [NCREMENT TIME AND MOVE NODES S#stsxthth e dxxkdsaapthhkaxketdbrddnkhbghks
TOTIME=TCTIME+CTIM
DO S11 I=1,NCNCDE
XUT)=XU L) +1Ivi2%]~1)
511 YU))=Y{I)+UVI2%])
HTIM=HTI“+DOTIM
Cxesxkxd ADD ADNCITIONAL HEAT FLIIX TOQ 1JPPER SIPTACE #%®¥vxk iy hagrirgtddksdngwtihdrk
Crmpxdn SEE SECTICN 6.1 FNp EXPLANAT NN saskkkddskdbbhkshdthratidsAldadbdrhidbhady
IT=0
A=31,0E+3
IN=1
JN=1uWl-1
510 D0 512 I=IN,JN
J=TS(I)
K=TS{1+1}
R=DTIM=NSCRT (IX(J)=-X{K))2=24{YL))=Y(K))**2)
H1=3, 0% {FNTFMPIX{J))-TEMP{J)}/A
RZ=3, 02t FNTEMP{X(K))-TEMP(KI))/A
HEATN(J)I=FEATH{ J) ¢R&(F1/3,04H2/6.0)
HEATM({K )= HEATMIK )} #R* [H]1/6,0¢H2/3,.0)
512 CONTINUE ’
IF{IT LEQ.1) GCTN 513
1T=]
IN=1W2
JN=1¥3-1
A=3,0E+3
cCOTO 510
513 CONTINUE
Codpvstx THERMAL SOLUTINN *9sinddbkktbhabbdakd yehshrb bk dndrruibnkhhandnohahddnbtrs
CALL TEMPGR
CALL TI®E{L]1,1)
S16 A=TOTIME/3,155815C+7
AwWl=Niel+]
Vi=vh +HTIM*DY
WRTTE (G ALSINNLyA,VD
615 FOARMATIY ITFRV . T4, AT ', F12.44° YEARS', * SURDUCTION FXTENDS ',
1 Y710 2 Fla.0y"' NETRESY)
Corkstx STORE REULTS AT END OF THIS 1IME STEP (M FILE #8 stkxxrssksddadkrarddoeks
LEP=32000
CALL SRITELONTPITUI) oUEHy1,]14+8,R60C0)
CALN WRITHINUTOUT(4DN] )4l FN, 1, o5y £6000)
CALL WRITE(OUTPUT(ANGY ), LENy Ly ] A, R2CO0}
LEN:=31746
CALL WRITEIDUTRPUT(12000] «1FHslal¥,56000)
RFUIND R
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Coasods TEST FOR EMD DOF PUN %o lbkastAd+ k2 shRCAL IO AA 2R ¢X N xpanckhy - b unohRRY XA g
iFlA 61, FINTIMY STOP 20
Cos s RETURN FOR NEXT TIME STEP sttt ossdtrsdAsdndenegudincsentisint ot hkere
6010 501
£000 COCRTINUE
WRITF 16,6£001)
GCOYL FORMAT(®Y FEAD WRITE FRROR{I+e+stesst)
STCP 2222
: END

SURROUT INE PROPS
COMMNK /COMYIZAPEACDI343) 4DRI346) AKIA 6 4P {346),RHS(1980),
1 DTE¥P(990),SPRPNPSIEA, 1900),APFI16C0),5T(),
2 STRESS(4,190U}UV(LOF5) 4X(020), Y(QQC) o TCTIMELDTIM,HEATM{O990),
3 HTIMFMESS{LI2FN) , TENP{930) ,RARFAK(19CO) VD ,HEAT(QS]),
4 11019001 ,J301SC0),HM{19001),TRIL13GA),TSL2£0),
S HCNQODEGNCEL o N2 3 1w o IWL o TWZ g ITW3 o Tih g IWS oIV o ND{E)y FIRSTLFRACT,NEW
REAL*E Xy YoPHS,STRESS 1 DeAK MR DTIM,AREA,ST4R, VN
REAL*B TOTIME.HTIV
THTEGER®2 1T odJyPFMyCONSTR,TFIX TP, TS
LOGICAL FIRST,FPACT NEW
REAL®E DFN
REAL*8 BRl1,B24B34R%4,R5
REAL*P A1,A2,A3,A4,A5,A6,A7,A8,A9
PREAL*S PABR.BEEAZEByEC,EDyEE4S]1452,53
Cwrxxkx CGNSTANTS FOR QCEANTC CRUST >tk xsrsdbkuhkXxasddbrvikgxchubsbddhkbddhrdhk
DATA PAGRRAFE,FA,ERyECH,ENIEE/1,150-11.-1,6N=5,-8.0Nn=-9,
1 0eT76£95494240-714-0.419551593RD~4,-0,70632370539D-22,
1 0.7717.123599D-1540.47RB1359550-8/
CATA RHCOLPHD14PHD2,RHN3/3240,0, 8Co0960.C+3A6C.0/
CATA RG,RF/2900.0+434C0.07
Casseix COMSTANTS FOR MANTLE *kr dkabkwkxskkakbkpkibxkdorbadakibrninhtdadnnhkhgnd
DATA Al A2¢A3, 84, A5, Ab4,AT,AR,A9/+0.7T9R26%6CRD~-11,
1 =0.29763259910-04,-0,1479570252N=-21,++0.,93380050RTN~-15,
1 -0,3951C575250~C9,¢0,2221268166D-324+-0.2016923432D-25,
1 +0.1610151893C-1R, +0,6275233522D-12/
DATYA Bl,R2,R3,B4,R5/¢C.5607121747D0-11,-0,2679282¢6R6D=04,
1 -0.,41A7858999C-22,+40,3593745755D-15,0.101013362¢6D-08/7
07 2000 I=1,NDEL
DPN=~ (STRESS(LyT)+STRESS(2,1)+STRESS(3,11)}/3,.D0
TEM={TEMPLIT(I))+TEMPIJI(I ) eTEMP(MA(T))) /2,0
DTEM=TEM=-300.0
S1=DSQRTIN,25NCE{ STRESS( 1,1 1-CSTPESS{2,T111%%x24+STRESS(6,]}%%2)
S2=( STRESS(1, IV +STRES3(2,111/2.0D0
S3=STRESS(3,1)
Cxadxesx MAXIMIUM SHEAR STRESS FOR CALCULATION OF VISCOSITY *xkedtsxtskues
SH={DMAX1 (S14#52,S2-51,S3)1-NMINI(S1+S2452-S1,53)11/2.,0D0
S IN==-DPN=-SH
Svax==PNeSH .
Cravbkxan TEST FOR FRACTURE &kt rdddkhk st d st L 00 RA R LA KKAUKSA K ARRRARARPRE PRSP E
T=C.5E+8
IF (SH .LT. 10.,0E+8) GCT2 111
FAIL=1.0
GNTO 444
111 TF(3,0%SMAX+SHIN LT, 0.,0) GOTO 222
FATL=SMAX/T-1.0

GOTC 444

222 IF (SMAX .L7T. =-4.10%T)GOTQ 333 .
FATL=((SHAX=SMIM)/T) %2+ 8, 0% ( SMIN¢SMAX) /T
GOTD 444

333 CCNTINUE
FATL=(2.356%SHAX-0,356*%SMTNY/T-0,02
444 CONTINUE

pMN=0PN

FN=AMAX1(1000.0+PN)

SH=AMAX1(100.0,SH)

Cesnxkre TP(1})=1 MANTLF TP{1)}=2 NCEANIC CPUST &etrktaskXxs¥rstadrakssht g
1IF 1TP(IY LEQ. 2) CNTO 200
C totkenxn MANTLE MATEPJAL PRPCPFRTIFS%kEktutdn

F2loQtPNe{Al¢PNZ {AI+AL*PH) ) eDTEML (AP LLUGeATEPN) ¢DTFME{AS
1 AB*PNeAI2DTEM))

ALO=A24PONS{ AL L ILDPNICNITEMS (2, N¥AS 20 AHSPA 3, O%AO*)TEM)
HEO=ALPOTEM~LA4+ARSNTEM ] ePNE 20A 3¢ e AALRPNE I*ATEDTEMY
SF=]4,0D0+HT1 2P sR2*¥NTEMIRIECHIPNS HAYONTNTEVERSEDTEMEDTEM
SALO=R2+R4%PM+2,0D0*A5*0TIM

SHFC=P142,0DNCHR3I*PAN+R4GEDTEMN

NP1=N. GO} RODINTEN=-I00,DE-R¢PN)
(22000255 {4 NTFM=RO,IF-AEPN)
D320,CI11* {2601 JNTHEM=N0 0 -8»PN)

Pa=G, 0014 (15CCt 9, OE-R¢PMN=-NTEM)
D5=0,0313%(200.0-1.00-8»PN)
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FLrAMAX1IC 0 APIHIE0.E-NL 1,0}
F2EARAYL{O.0, AMINDIN.5-D2,1.0)0)
FI=AMAX110.0,A%IN1LD.5-13,1.0))
FL=AMAXI(Q.0,AIHLLID.5=D4%,]1,0) )
FS=AAX1{Ce0. AMIN1(0,5-D5,41.0))
(3=1.,G~F3

NFP1=3.CE-9

DFP2=RO.3L-8%0.0025
DEPA=0.0011230.0£-8
NFP&=-N,0014%3,0E~-8
CFP5=0.,0313€~-8

DFT1=-0,001

NFY?=-0,0C25

DFT2=-0,0011

DFT4=0.CUL4

Ceénsx TEST FOR PHASE TRPAMSITIDNS SR etk mxntt dn et kb kbd ks 2R Eaaer e Rk kARt S ARRARAS

1a00

202

aco

400

500

10

2C

200

[F{F1%{],0-F1} .GT, 0.0001) GOTN 100
NFP120.0

CFT1=0.0

1F (F2%(1,0-F2) .GV, C,.,0001) GOTDX 202
NFP2=0.0

DFT2=0.,0

1FIF3%(1,0-F3) .GT, 0.0001) GCTO 300
DFP3=0.0

DFT3=0.0

IF{Fo*{1,0-F4) .GT., 0,0001) GET(} 400
DFP4=0.0

DFT4=0.0

IF (FS=(1.,0-F5* .GT. 0,0001) GCTO 500
NFP5=0,C

CANTINUE

EI=RHM-RHN]=F ] +RNO2%F2
N1=E15G2»F+PHNIxF 35 SF

NDEAN=CI®{1.0+0.08%F5)2(1.0-0.09%F4%)

DE1=R1Q1%NFP) +RHN2*DFP2

DN1=NEL1*G3*F=-E] *NFPREF+F ) *G3*BED+RF HDIENFPA4SF +RHNI*F 3+ SREQ

BETH=DD 1% (1.040,08%FT5)%(1,0-0,09%F4)+D1*{1-0.09%F4)*0,0B%NFPS
1 -0.,05*D1#11.0¢0.CB*FS5)*NFP4

BETN=UHETAN/DENN
BE1=PHD]XDFT] ¢RHO2*NFT2

DD1=DNE1=G3%F=E1lXDFTI*F+E | *GI*ALQ+PHDI*DF T I2SF4RHNIXFAXSALO

TEXN=DD1#* (1 ¢0.0R¥FS5)2{]1,0-0.00%F4)}=-0,092D1*CFT4%{1.0+0,08%F5)

TFXN==TEXN/DENN

CP=1033.,84%0,19434*TEM=0,2419F +8/{TEM®YEM)

R1=PHOL +RHQOO
R2=R1+RHO2

R3I=PRHCI*SF

RG=NEFN/(1.,0-0,09%F4)

RX=P4x0Q,91]

CP=rP=DFTIERHNL/ (F*RHOD*R] )% (300.0FE-R*PN=~1527) /300,07 ~R-DF T2+ 9HN2
1 7i1FeR]1=R21=(BO,IE-A¥PN=69]1.0)/80.3E-8-NFT3=[RA-PPXF }/{FP3A+R2%F}%
1 (30.0F=8%PN=21271/30,0E-8-DF T4 {RX-R4) /{PX*RG)*=(1T73+49,0)F-3%PN)
1 /9.0E£-8

VP==2206.C¢3, 1 &£*NDENN

V5=1.63*DENN-RRO.O

IF (PN LT, 3.0E+Q) GCTO 10

TMN=220,041,26E-T¢PN

VISN=ALCGLLaBE+L13) 424 BETHN/TEM=] , 1 2ALOGISH) ¢6,909%F3
GOTO 20

TMN=1314,C4+R, TC3FE=-PRPN=] ,65TE-1TAPNaDPN

VISN=ALCGI2 1E014) 440, 0%TMN/TFM=-2,0%ALOG(SH)

IF{SH GT. 1.0E+81
1 VISN=ALOG(141E+31)+40 ,0ATMN/TEM=4,0%4LCGI SH)

CONTINUE

RS=140/{0.0T74145,01lE~4%TEN)

GOTO 10GCO

CCNTINUE

CmwannesaICEANIC CRUST WATFPIAL PROPERTIESHa%stsss

Chasy

FO=1,0DOCHA*PN ¢RBECTEMRERDTAMITEM

FRF=l o QNQALAPMNeEPAPTEMGECHPNADNIEDSPNeNTEMEESDTFMENTEN
AL1=R3¢2,0%RE=*NTEM

ALZ=ERVEDSPNE2¢EE*DTEM

Bel=44A

PE2=FA2*ECLOPNAFDENTEM
N1z0,00069*11500,0-2,3E-6*PH+DTEM)
220.002%¥11C80.0-NTEMe 1, 2F=-T%PN)
FL1=AMAYILO.0,AMINLTID5-N]1,1,00)
FZ=2IMAXLL0.0eAMTMIL0L.5-02y1,01))

NFEL1=0,002692.30-6

NFET1=-0.C0049

NFEZ2==G,002%1.,2FE~7

DFYZ2=0,007
wawr TEQT FOR PHASE TRANSITIOMNS 4046 rhA st tad dxdaahks xAX XN YR YNSRIt RRE IR



00

70C

1000

IF (F1*(1.0~F1}) GT. 0.00G1) GOTO 600
DFP1=0.0

NDFT1=0.0

IF(F24#{1.0-F2} .GT. 0.,00011 GCTO 700
DFP2=0.0

DFT2=0.0

CONTINUE

DEL1={RG*FCE(1,0-F1 )+RE*FE"F1)
DEPN=DE1*(1.0-0,09%F2)

172.

RET={ROSIBLL*{1.0-Fl}=FReDFP] jaRES(REPAFL4FEXNIPL)IS{).0-0,09%F?

I V-DNE1#0.09%NFP2
BETN=BETA/DEAN

TEXMN=(RCH{ALLI®| 14 0=FLl)~-FG¥DFTL)+REC(AL2*FL14FEXDFT])I* (1.0-0,.N9%F2

1 )-NE1%*0,09%DFT2

TEXM=~TEXN/DENN

VP=3.16*DENN-3000.0

VS=1.A3=DENN-1280.,0

TMN=1C67.C+1.2E-T&PN

IF (0N olTe 3.0548) T¥N=1315,0-A.5E-1%5PMe S, JE~16¥PNePY
VISN=ALNG(1,5) 453 ;0% TMA/TEM=] . S®ALOGISH)
(P=2GAK,.5640. 2003 2% TFM=Cu 2503E ¢ 8/ {TEMETEM)
CP=CP-~(PESFE-PC¥FGI/{REXFESRCaFG )2 (PH=-15C0,0/2.3E-6)%DFT]
1 -C.09/10,91*DEL)*(PM+1080,0/1 .2 F-T}%DFT2

BS=2.1

CCATINIE )

CovntdssCCMMCA PROPERTIESkxknkkas

1101

1102

10C1

VISN=AMIN]I{100,0,VISN)
VISN=ANMAX1{50.0,VISN)}

IF(DTIM LT, 3.1E+7) GCTO 1102
FFEFALL .LT. 0.,0) GOTN 1101
WREAW (1 ,=BREAK(T})+2

CONTINUE
TF{OREANITY GTL0) ARFAK(II=RREAK(T)-1
CAONTINUE .

A=1,2PRE-6*VP*DENNCkQ £6T

CONN=AMAX1{BS,A)

IF (TEM ,GYe 500,0) COND=CCND+2,301E-3*(TEM=500,0)
R=(VP/VS)#*2

ANUL=0,5%(R=-2)/(P-1)
E1=2,0%(1,0-2.C*ANUL) /BETN
CV=CP-TEM*TEXN*TFXN/ (DENN#*BLTN}

VISN={5C. 0%*BREAK(I)+(10,0-RREBK(T})*VISNI/10.0
VISN=AMAXL1(50. 0 AMIN1{100,0,VISNIY}
VIS=EXP(VISN)} .

SPROPS(1.1)=E1

SPRPOPS L2, [)=ANUL

SPROPS(3,1)=CCAD

SPROPS( 4, 1V=CVEDERN

Chbkndxkhxhpireegkbkbabbdrbbkbkhthd b kr hkxkahashhkarkhdkhkahhyukn axbkkkhkkkkkgkkkkak
(@ 2 I EEEIE T 222 X220 ER SRR IR R AT R R AR 2R SRR RSP 212 23 2R ¥R eIy I8 223

R

OO OO0

EMOVE THF CCMMENTS FROM THE START 0OF THES STATEMENTS FOR USING
SURQUY INE IN THE PLCYTING PRAGRAMS

TEST=(Flo(Fl-1)¢F2s{F2-1)+F2%(F3-]1)+F4*(Fa-121%100.0
TFITPUI} oNE. 1ITEST=(FL1*(FLl-1)+F2%{FZ-1))*100.0
SPRNOS{3,1)=TEST

SPRNPS5 (4, I 1=DENN

>

THIS

[ FEAXIE LRSI I AL LI LIS RIS E 23 LIR EEA RSS2 REREEI ARSI RS R R RSS2 R LR AN ]
(M ESELLL LI L AR EAA IR A2 AL A RIS AR R R ARt Al Sl ARt sl il sl sdi ettt Rt R st ity

SPENPSI5,1)=VIS
SPROVZSIK,])=TEXN

2600 CONTINUE

RETURN
EMD
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SURROUT IMF RSETDIUVL,N)

Cesnetes SOLVFS N FQUATIONS BY SETLAL-GAUSS JTFRATINNS wirdxsas e et exsbodtrbrsge
Cosnxean ANSAERS IN UV] *tadddidge isd it tet it s8¢0 0dXe etk s dadidndennadokkd

C s2x

10
102

120

440

540

Canws

&10

Coenx

1820

411
401

410
402
%00

DIMENSION UVLL1)Y
CCPMPPN /SEILZINDC(LIARD ), INU( 240001, ISP, ISCUMAHNILL19RC),AT(250C0)
IMTEGER *2 IMD,JND
COMMIN /COML/ZARFA,D(D 3),PHI3e AN AV (6060 BL1,6),FHS11980),
DTEAP(200) o SPENPS{A,1900) APR{TALDY)STL2Y,

STRFTS{ 3, 19001 41IVi1960) « X(SAN),Y(9AN) (TCTIME AT MG HEAT (200},
HTIM,FFMASS(19R0),TEMP{990), RUFAY {1920}, VD,H(AT(GQD),
[1(1900),JJL1G00),MM{1900),TP{1900),75¢82h010,

NONAGZoNOFL «N2o TWo TWl s TW2, THI i WhaIWS DY ND(S) ¢FTRSTFRACT,NEW
REAL®*8 XoYoRHSySTRESS ¢CeAK,CRyNT IMy AREA,ST,R,VD
REAL®E TOTINE ,HTIN

INTEGER*Z T1.JdJy¥¥, CORSTR,TFIX, TP, TS
LAGICAL FIPST,FRACTY MFW
sx22RRAYS FOP ADPDITIONAL NVER-PELAXATION skesscenkaddysibedds bdbd kbnddkbhd
REAL+4 2(19R0),112(19801}

REAL®R F1,SUM,DND,RBR,FSMALL,FDC,A

LOGICAL CHAN

ISVv=0

F1=2.0D0

ITER=0

DD 10 1=1,N

u2tiy=uvitl)

KP=0

DO 440 I=1.N

Su4=0.000

JP=KP+1

KO=TND({1})

DO 820 IP=JP,KP

SUNM=SUM+ATLIP ) =UVILINDIIP))

BB=(PHS{TI-SUM)Z/AND3ILT )

(8 1=rA-yvli()

UVI(I)=1.8D0%RR-0,RDO%xHYV1(])

CONTINUE

JP=IND(N)+]

DO 5640 J=1,N

[=Ne+l-J

SU¥=0,.000

KP=JpP~-1

JP=1

IF(T 6Tl )3P=IND(I-1)+1

D0 52C 1P=4P,KP

SUN=SUMEATIIPI=UVI(JINDLLIP) )

BY=(PHS{T1}-SUM)/ANC3 (]}

ZUT1=20 1 +RR=-UVLLT)

UVLI(T I=1,800*RB=-0.,8D032UVIL{T)

CCNTINUF

[TEF=ITER+1

IF (MOD(ITER,6) oNF. 0) GOTN 102

FSMALL =0.0D0
dakwak COMVEHGENCE TESTS #2addaakthishb ks Seug ARSI AL ane Rkt Ak kAR REaaRRkknddds
DO 610 TI=1.N

FD=0.000

PB=ARS(UVILLIY)

oDND=ABSLZ (I

IF (DND LY. 0.05) GOTG 610
IF{BB LT. 0.051 GOTN 610
FD=NDD/PB

IF (FN LY. FSMALLY 6OTN 610
FSFALL=FC

ISr=1

CINTINUE

1 (ITER .GT. 4000) GOTN 410
JF (FSMALL LT, 1.,0E=~4) GOTN 411
CHAN= [MOCCITER,12) LENL.O!
== APDITICNAL RELAXATICM AFTER 12 ITFRATIONS #&t ket kdka Rk phtngenbbos kohan &
DO 1R20 I=14N

A=yvitii=y2ery

u2(1r=uvlitr)

If (CHAN) GOTO 1820

IF (A%Z2(1) .GT. 1.0D~6) UVI{TI=UVIIT)+ARF]

CONTINUE

IFf (MI7. CHAN) 6DOTN 102

Fi=(F1-1,0)/1.05¢1.0

G0OTN 192

WRITE{G6,401) ITER

FORMATILITH CONVERGED AFTER ol6e12A ITEPATIQOMS )

¢OTO 590

WRITE(A,4021 ITEP,FSMALLLUVIETISMY, 1SN

FORMATL® NCT CCNVERGED' ¢ib692F12460164712:442(1642F12.41)

SN=0.0

[ I R FUN SR
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Cemetineesx CUTPUY TO PINTIOR RUMNIMNG NDF VISTON=FL2STIC SALUTINN sxixrdassnaixises

DD 516 1=1¢N
TFEARSIUVILITINY LL7, ST) GOTO 510
Ji=!
SD=AASIUVILTI))

510 CONTILUE
WRITELA,S21) JT,UVIEJIT)

521 FNRMAT(Y MAXIMUM CHANGE FDOP VARIADLE ' ,13,E12.4)
PETUPN
END

FUNCT ICN VISDix)
Cxspubaf(IRMS ACRAY DERPENDENT ON PROPEPTIFS FDU VISCN-FLASTIC AMALYS[S #dmsskkiss
Cwexazx AND MA0ODIFIES FHS NF FOUATLIONMS FOE8 INITIAL STPFESS AND PROPECTIFStvxrssiss
Cervxx (JF ELEVMINTS twittrbkruprsdrgbbhenr tokirirdr gukevdtihhkiteskkoriernbhkgt kgt
COUMOM /COML/AFFE W NE30Z) s0PU 3,8 g AKTE6) 4 RUT,6),RHS(1980),
1 DVTEMPLG90),SPRUIPS{5s 16001, A2R(1A0OY,ST(2Y,
2 STRESS (4419000 ,UV(1980) 4 al990),¥YI0Q)),TCTIME,DTIM.UEATM(9901},
3 HTIYW, FMASS{LISRO) (TEMOUSNAGY RREAS L L100) 4, VDLHEAT(I90)
G T1(29900,00(1900),MM(1u0J),TP({1S5001,TS(260),
S NOWMODE ¢NOELyN2o Twol Wl g TW29Th3gTg, TWS,DY4NO{A),FIRST, FRACT,NEW
REAL*R X, Y PHSSTRESS N K4PRGLTIM,AREA,SY4R,VD
REAL*R TOTIMEHTIWM
INTEGER*2 TI,JJeMVMCCMNSTR,TFIX4TP,TS
LOGICAL FIPST,CPACT,NEW
REALHB GA3GRyGCsSXeSY e ST oSKY s FA, FHyFsGXeCZyHA,
1 S1,52+53,H6GS3
Rt alL*3 Bl,P2,R3,R4,R5,R6
Cakxaxax INCRFASE SPFEM Y USFING SIMPLE VARPTALRES HOT ARRAY ELEMENTS Sxsiiihtds
ENUIVALENCT (RLoR31e1)1,182,B811,3)),(834B(1,5)1},
1 [24,80242)14(B548(244))0(B64R(2,6))
EL=SPRIPS{1,K)
ANUI=SPRGPS (24K}
VIS=5PROPS({5,K]}
I=11(K}
J=JJtK)
Mz=PMEK)
Credbassr FARM VISCO-ELASTIC PROAPERTY MLTRIX =xsdsucxgagkadkakbhekrnewshssy
GA=FL»(1.0-2NUL1)/ ({1 .0+ANUL)*{1,0-2.0%ANU1)})
fB=GA®ANUL/11is0-ANULY)
GC=CaS5*E1/(1.04ANI1L)
F=D11#&nC/VIS
GZ=2., O*DFNIF)
Dils1)=GA®G2
C(2+2)=GA%C2
Dl1s2)=CR%GZ
N{2s11=0GR20G2
0(3,2)=0C%C2
CALL FOPMBRTIHyXeYoelodyMyAPEA)
Crradrsaxty MODIFY RHS FOR INITIAL STRESS AND VISCOSITY #dkhbsdkhtimkemphtxaxsss
SX=STRESS{1,K}*AREA
SY=STKFSS(?2,K) *AREA
S2=STRESS{3,K)*APEA
SXY=STRFSS(4,K)*AREA
F=Gl%0C,500*%F
S1=SX-F2[2+SX~-5Y-S2)/3,0
$2=SY-Fa(22SY-$X-57)/3.0
HGS3=SXY®(1.0~F)
PHS(2¢] -1} =PHS(2+]1-1)~-(RAL%S) +B6=HGST)
RHSE2*T )=RuiS(2%1 )1 -(R42524+41:,5S3I%RY)
RHS (22 1~-101=ReS(240-11-(A2+S] +HGS3I*B5)
RHSI2%J)=PHS{22 ) ~(nhe S ¢NRS3%R2)
RHS{2=M =] )=CN3{2% 4= )= (B AxSL+HA53%16)
RHS{Z*=M)=RHS{2%M ) ~[R6*S2+HCS3*RT)
vl sn=545
RETURN
END
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SURRQUT INE FORMAT IR, YeYyledy¥ e AREAD

Ceramamsm= FHEY R MATH )X wWii{CH MADS DISPLALECMENTS JNTD STRATNG 2rissranssstpuncue
DIMFENSTOH HEZ,86),X{10.Y(1)
REAL®S BaAREA e Xy Yo Rlg X2 X3,Y1,V2,Y3

2 X1 =xX{([)
X2 =X{J}
X3= X%}
Yl= Y{I)
Y2= YtJ}
Yiz YIX}

AREA= (X1 ~X3)r{yY2-Y3)}-{X2-X31#%{Y1~Y})
30 Blly1V=(¥2-Y3) /4REA

A{ly3t={Y3-Y1}/AREA

B{145i={Y1~-Y2)/AREA

B(2,2)1=(X3=-X2)/AREA

Bl244)=(X1~X3)/AREA

R{2¢6)={X2=X1)/LPEA

803,11=8(2,2)

R(3v2,=ell'l'

Bl3,3)=8{2,%)

B{1,41=B{1,3}

B(3¢5)=812,06)

B(3,5)=8L1,5)

Bl(l,21=0

Bi{ly4})=0

Blleb)=0

Bl2,1)=0

B8(2+3)=0

B(245)1=0

ARTCA=AREA/2.0D0

RE TURN

ENOD

SUBROUTINE TEMPRR
Crembkerrx THERMAL SOLUTION Sdbetadhkpkkk kbt h bk kxR e b kL 2 R kXX A ASE L RRL KA AN
COMMON JCOPLZAFEA I3 +43)4DF(3¢5) s AKIAG A6 )P L396),RHS113B0),
1 DTEMP(990),SPRUPS(6,1900) APRI14CO) ST,
2 STURSS(4,1900),1IVILI80),X(950)e YISGAC) . TCTIMEDYIM,HEATM{ 390},
3 HYIM,FMASS(1980),TE*P({990) ,RVEAKI19001,VE,HEAT (990U,
4 11{1900),JJ(1500),MM( 19001, TP{19COITS(2601),
5 NCNODE ¢ NCEL oN2 o IWoTWL o TH2 IWA, TWa, IWSs DY NN(ED) o FIRST,FRACTyNEW
REALZR XeYoRH3,STRESS 4Dy AKX NHLDT IN,AREA,ST, R, VD
REAL*8 TOTIME,FTIM
INTEGER®2 T14JdeMVN ,CONSTR,TFIX,TPTS
LNGICAL FIRSTLFRACT NFU
COMMIN /SFICZIND(LSBO}JMND(256000), 15P, ISDUM,AND3(10R0) AT(24000}
INTEGER*2 [ND,.UND
TNTECER*2 LEN -
Cexekkx RESTARE INDEX INFNOMATICN FOR THEPRP™AL AMALYSIS FPNM FILE #] #xskerdwnnex
LEM=322000
CaLL REAC(INC(LY LEN,1,141y£6000}
LEKN=16964
CALL READCINMD{16001) yLEN,LyI41+66G00}
REWIND 1
Consnkx [NITIALIZE ARRAYS wxmkmt e whdhd RS dr I 44 ARt d i n b a kA KRR e R ARG R R pAR U A
DO 171 I=1, ISP
AT{]11=0.0
171 CANTINUE
IF(HTIY,,EQ. N) HTIM=1,0
Crvksrwnkad PHS= HEAT IMPUT/UNIT TIME swxkkanterdddbhbadiddbhdhnkbntsbrdbnbhkhbady
npo 10 1=1,NONNDE
RHS (1 1=2,0={FEAT( I} +HEATM(T)/HTIN)
AND3(1)=0.0
10 CCONTINDE
Cosnnxisa FORM THE THERMAL EQUATIOMNS dtsrixsssssttrtohnkdbubhthbbbbddadnbbbpbdpukss
DY 100 K=1,NOEL
1P=11(K)
JP=JJ(K)
MP=MM(KY
CONN=z SPRAPSIT 3,K}
Covdtanvek (V=SPECIFIC HEAY ZUNIT VOLUVE Shos st s kANR Y Anidhkdk ks pa R raas s av ks bR
CV=SPRIPE{4,¥])
Bi=Y(JP)~YIMP)
Bl=y{vp)=-y({1IP)
Ru=Y( [P} =YIJP)
Cl=XIMPY=X(JP)
Cl=x{1P)=-xUMP)
CRM=X(JP)=-X1T1R)
AREA=N.SH N ]ACI-B)*CT)
Fr0,25%CCHRD/AREA
(D=2, N%ARFASCYI(HT IM2E,0)
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210

220
100
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CON=0,5%CD

FI1=f=(RI*R{eCLACT)
Fly=Es{QRIvBleC 20 Y)
EINzFe(plaMe12(H)
FLISFriRI*RJ+CI*CI)
FAM=FR [P &PV eCJ*(H)
FHrzFa{npryVsMECH)
TI=TEMDUIP)IAF[JeTFMD{ JPIRC] 1e TEMP I MP)RF]M
TASTEFP(IOIAETICTERPIIP)=FAJeTEMPLINP ) eFgM
TM=TEMD(IPIAFIMeTENMP(JPISEIMO TEMP(MP)EEMY
RaS(IP)=PHSLIP|=-2.0%T]
RHS{IPI=PIHS{JPI=-2.,0+TJ

BHS (MP}=RUS(ItP) -2, C*xTM
ANCILIR)Y=ANDYI(TIP)¢FET#CD

AND3L 12)=ANNI[(JP +FJJeCO
ANDA(MP)=AND3(MO) 4FMMCD

Kl =1

TF{IP (GTLLIKI=TNN(IP=1)¢1

Ki=1nD(1P)

DO 200 I=KI.KL

TFLUNDITY JEQe JPY ATUM)I=ATY(1VeF{ JeCD
TFLUNDLL)Y CEQ. MP) ATUI)=ATHI)4FIMeCOD
CONTINUE

Ki=1

IFUJP GT.1IKI=IND(JP=-1}¢]

KL=THRD(JP)

DN 210 I=K1,KL

TF{JIND(I) oEQs IPY) AT(I}=AT({I)e¢FiJ+COD
IFCIND(T) oEQs MP)Y AT(I)=AT{1)e¢FIMeCOD
CCATINUE

Ki=1

[F(MP GT.1)KI=THN(MP=-1)+]

KL=IMO(¥P)

DO 220 I=KI,KL

IF{INDIIY JEQ.IP) AT{I1I1=AT(I)eF]IMsCOD
IFLINCIT) oEQedP) ATII)=AT{I)4FIM+COD
CONTINUE

CONTINUE

Chkksaxt FIXED TEMPERATURE ALMNG SEA-BED 2XXBad 3 g dh kst bk kxR SRt nan ARty

240

230

DO 230 JN=TW3.IH4
I=TSUJN)

KI=1

IFUY .GTel) KI=IND{I-1)+1
KL=INC(])

DO 240 L=KI.KL
AT(Li=0.C
CCATINYE
RHS(I)=0.0
AND2(I)=1.0
CCNTINUE

CHxmkinn SPLVE EQATIOMS 45 kkd kXt bddo aakakd ki bpddk ke ARt kR s Rnk v oraR st kbt

CALL RSFIDIDTEMP,NCNGDE)
HTIM=0,0

Crezxxsz CALCULATF AND APPLY THFERMAL STHESSES Athsrsswidkkripsniat bttt bidnbk ol

11

DO 11 T=1,NOEL
DYMEAN={OTEMP{TII(I)})+DTEMPIJILT) ) +DTYEMP(VM(IIV)/3.0
E1=SPRIPS{1.1)

ANUL=SPRCPS (2, 1)

TEX=SPROPS(A, 11}
OSTe=EL*TFX*LCTMFAN/(1,.,0-2.0*AMUL) /3.0
STRFSS(1,11=STRESS(1,11~-DSTR
STRESS{2,I)=STRESS(2,1}-DSTR
STRESS(3,11=5TRESS(3,1)=-DSTR

COMTINUE

Ceswean REIMITIALIZE MECANIJCAL HEAT SOUPCES AND INCREMENT TEMPERATURES

500

DN 500 I=1,NCNONE
HEATM([)1=0.,0
TEAPLI)=TEMP (I )+DTEMP( )
RETURN

6CQ0 STOP 68

END
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SURRDUTINE S0LVE
wex SET wuv AND SDLVE VISCO-FLASTIC EQUATITNS &4adisd st utacnensnbhnd shuxn ks
COMBON /SETD/IFDULSAN s JND(24000 3, 1SP IS, AMDA(199D),2Y(24050)
IMTEGER*2 URD,y JND
COMMIR JCTHI/ARFA DI, 2).CEU, 4) ALAL )P (3, 4),MISL1I80),
DTEAPLI0) ,SPPOBS (A, 15001, APRLLAON) 5T,

STUESS{4, 19001 4 v 1920} 4 A(9CN ), Y1990 (TCIINE NT( M, HEATH(920),
HT I, FMASS TLIQR]), TENDIIOL) RZEAY {1200, VI),HFAT19G0),
11{1900),03{1600) M ({12001, TPI1C00)+TS{?2n0},

HOMIDEFGNOLL o N2 e TWe [N g IW2 9 IWI I na s iwS¢4NYNO(K)FIRST ,FRACTJNER
REAL®P Xy ¥V RHS,STEESS »CyAY CH,OT [M, AREA,ST,B,VD
REAL®S TOTIMF YL M

INTEGER?*2 1T1eJ )™M CrMSTH,TEIX,TP 4TS

LOGICAL FIRST,FRACT NFW
REAL =28 PLyP 24PNy XS YSDFLNFLPX
CONTINUF

J=INDIN2)
adw JERNIZE ARWAYS Mokttt dd s kxhE s vk A ARSI AR IS AR g U kR ke d kb e ®
DO 10 I=1,J

ATL1)=0,0

CONTINUE

DO 20 T=1,N2

AND3(I1=0.0

CONTINYE

N{1,3)=0.0D00

D(2,3)=0.0D0

D(3,11=0.000

D[32,2)=0.0D0D

DN 100 K=1,NOEL

IP=11(K}

JP=JJ(K)

HP=MM{K}

SG=v1S0(K)

DO 350 1IP=1,3

0D 350 JJP=1.6
DE(TLIP,JuPI=0LTIP, 113RL1,JIPIAC{ 1T, 2)*P12,35P)+DLT]P,3) %R 3,0JP)
CONTINUE

DO 351 1IP=1,6

DO 351 JJ4P=1,11P

AK(TIPy JUPI=AREA>(R( 1, TIP)*DR{1,JJP}+B(2,1IP}*DR(2,44P) ¢
1 BU3,11™MI*CR(3,44P))

AKLJJID, ITP)=AKITIF,JJP)

CINTINUE

No(l)=2#1pP-1

NAL2) =2*IP

NO{31=2%JjP~-1

NO{4)=2%J4pP

NO(S5) =2%MP=-1

NO (6} =2%MpP

DO 400 [IK=1,6

KT=RO(T1K)

K1=1

IFIFT ANELLIKI=INDIKT~11+]

KL=TMDIKT)

DN 410 JJK=146

IF(JIE JEC.TIK) GOTN 410

[C Ry

JR=NTG{JIK)

DN 420 Lik=K[,KL

MK=L LK

IFLJNDOLLK) LEG.JKIGOTO 421
CONTINUF

WRITE(6H90G9) KoKT K] KLyMK,yJK

FOFMAT(®* NOT FCUND ',616)

AT (MK b=AT (MK ) #AKT{ TN, JIK)

CONTINYE

AND3IKTI=ANDIIKT) $AK{ i 1K, [IK)

CONTINUE

CONTINGE .
w2t APPLY ROUNNARY CANDITINNG kdtkadadkswdd ket vk nt dhksshhvh bkt onnkhbkhhE
sxaxdt PUT (IN HYNRCSTATIC PRESSIRE Ae IR kP 022 AASEREaet ke F kAR 0L kAT Q kR C&¥
1T=0

1TE=1

[TL=1w3~1

nn 706 I1=1TD,ITL

J=TS(1}

K=TS{1+1)

YS=Y{K)=-Y(J)

XS=XTKki-X{J}
dhe P],02 PPESSURE AT DEPTHS OF J,K NODES Sskdrsutusnsbyarindtnnasotbddrviant
PL=PXIXIJY, APR,NDFLD)

PR2PXLK(¥Y  APR,TFY

s REDUCEF PRESSURET N FND DIF PN 6526 up 0t vy b ¢ 2P b kAXAARmR 24+ XL XX QXA R &
1Pl JLTe IR LOR. K LOT, [W2) GUIN 69])
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P1=Pi-4,CE¢R
Pr=p2-4.0E+R
561 CONTIMNUE
NELD=PDRAXIIDELD,F}
PHN=P1/3,0¢P2/5,0
PHS{2% 1~} )=RHS (22 -1 )+YS52PN
RHS{28J)=0HS{29J)~ASEPN
PN=P1/A,04P2/3.0
RHS(2:K=1)=PHS25K=])+Y¥S$=PN
RHS{ 22K =RHS[ 24K J=XS*PN
F=CFLC=YS/3.v
NGIY)=2%J~]
NOL2)=2%)
RN{3) =2&K~]
NO{4)=2%K
AK{1ly1)=F
AK1Y,2) ==-DFLD"LS/6.0
Akl1le3)=F/2
A¥(1,4)={2%P1¢DP2)/6,.0
AK(2¢1)=AK(1,2)
AK (2, 2)=0.0
AK(2+3)=-(P1+42.04P2}/6.0
A¥(2¢4)=0,0
A¥ (3. 1)=AK11,3)
AK(3,2)=AK(24+3) =
AK{343)=F
AK (3, 4)==DFLD*XS/6.0
AK(441)=AK(]1+4)
AK( 4y 2)=AK[244)
AK{4,3)1=AK(3,4)
AK{4,4)=0,0
DO 710 [IK=14%
KT=NOCIIK}
KI=1
IF(KT LGT1IKI=IND{KT=-1}¢1
KL=IND(KT)
DO 72C JJK=1,4
IFIJIKLEOLTIXK 0P, AK(IIK,JJK) .EQ.C.0) GOTO 720
JK=NOLJIK)D
D0 730 LLK=KI,KL
MK=LLK ¢
TE(INDOLLK) JEQ.JKIGOTO T31
730 CONTINUE
731 AT{MK )=AT(MKI=-AK{TIK,JJKI
720 CCATINUE
ANC(KT)=ANDIIKT)=AK(TIK,I]IK)
710 LONTINUE
7CC CONTINUE
75C CONTINUE .
Cuskkkax HYNROSTATIC PRESSURE ON ENDS AND BASE MNNW FMTEREN *xxsktskxhixxsdsadddks
C*evexae PUUT ON HYDROSTAIC PRESSUPE (OF SEA ?rsssddksnpssdsxbhbkthspdukidbbphnks
ITL=TW4-1
A=1030,0%9.8
FIPST=, TRUF,
DU 760 I1=1w3e1TL
J=TS(1)
K=TS5(1+1)
P1=X(J) %A
P2=X{K)xA
IFUYL{J) LT, 8000.,0 .OR, +NNT, FIRST) FIRST=.FALSF.
IFL.NQT,. FIRST) GOTN 751
Ckanxkxx [NCREASE PRESSURE AS SURFACE NODES SIAK FPOM 8KM TO ]11KM fsrikdstdbxkas
F=011CGN0.G-%(.11)/3C00.0
F=OMAX1{O0,DCOCMINLLL.ODO,F})
Pl=F2Ple¢{],0~-YI*DX(X{J}sAPR,DFLD)
F=(11C00,0=-X(K)}/3000.0
F=CPAXLIO.0N0DOMINILL,ODOWF))
P2=FapP24{ 1, 0-F)*PX(X(K) s LPRyDFLD)
751 CCONTINUE
IF (X(J)} .LTa 0.0) P1=0.0
IFIX(K) +LTe 0.0) P2=0,0
XS=X{)) =K}
vYS=Y(K)=-Y(J)
PRN=P1/3,0P2/5.0
PHSIZ2 1=1 )=PHS (2= )=-1)+PN*YS
RASI27 )= S (20 J) +PMNEXS
PMN=P1/6.04P2/3.0
PHS(Z2K~11=2RNS(2=K=1) ¢ FN*YS
RHS{ /2K )= RUS{ 2¥K ) +PN*XS
760 CONTINUF
1=1S{Iwir )
FLNTAY JGT, 110Nn0.N) IWI=IWIed
00 366G I=1ly1nl
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ty{Jd) .6F, ~1,0! GTD 3C00
Ceantxe EORCE RNCDRS CN PaASE WITH YOG,0 TN FOLICw FACH NTHED tscaprsstrscdazyssecsh
{vevoes DUIWM SHENUCTIAN JNMF 2ottt o et ARk §L e sl g r AR SN AS AN CARFU T T EL ARSI A SN RU W
Cesssrt COPNER FLRCER 16 MOVE WiTH UI0 ()F /0 DFGREES ~wbacthrgylssssonsnststasdbs
TANTU= = (YL E-XLKVIZ{ YL Q)=-Y(K))
IF (1 LfQ, Iwl) TANTH=DSORT(2,000)
PFETANTS (LT. 1.0) GOTCQ 2900
IP=1N0(2*J=-21¢1
IXK=IP+]
IL=INDL 2%0-1)
JP=1Il¢]
JL=IND(2*))
Jr=1L ¢2
D0 31C0 Ix=IK,IL
ATUIK)=AT{IK)}-AT(JK)/TANTH
AT{JX }=0.0
JK=JK ¢1
3100 CONTINUE
ATUIP J=AT{IPY-ANDZ(243)/TANTH
AND2(2%J-1)=ANC3(2*J-11-AT(JP)/TANTH
LTUUP )=1.0/TANTH
AND3(2%3)=1,0
RHS(2%J=1)=0HS (2% -1 }-RHS(2%J} /TANTH
RHS(2%J)=0.0
GOTC 3000
29C0 JP=1ND{2%J-2)¢l
JK=JP¢1
JL=1NO(2*J-11
IP=JL+1
IK=1P+1
IL=INCl2%*])
NO 3101 IK=IK,IL
AV UI¥ I=AT(IK D)= ATUJX)I*TANTH
ATIJK)=0,40
JK=JK+1
3101 CONVINUE
ATUIP)=AT(IP)=-AND3I(2*J-1 ) *TANTH
AND3( 2% J)=AMD3(2%J)-AT(JP)*=TANTH
AT{JIP)=TANTH
AND3{ 2% J-1)=1,C
RHS{?2¢J))=RHS({2=J) -RHS{ 2% J~11*TANTH
RPHS(2%J3~1)=0,0
30C0 CONYINUE
Cxexkx FORCE END TO MOVE WITH HORIZONTAL VELOCITY NF DY Y/VR =dxmakrdxsxuxsdthkg
DA R0Q0 JIN=I1RK4,Iu
[=7StJH)
N=2*]
AMD3{N}=1.0
RHS{N)=-DY*DTIM/3,155158E+7
KI=INDIN=-1)¢1
KL=INDIN)
DO 805 J=KI KL
AT(JI=0.0
805 CCGNTINUE
8O0 CONTINIE
CALL RSEIDIUV,N2)
RETURN
END
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FYNCTION +HTEMPIHA)
Cansea CALCULATES NOFMAL THERRKRAL GRANIFRY 3t st nNsaunnidbthrsssnbdnrnsh g2t avha
REAL®E Hb
X=HL/120Q.0
IFIX «GTe 100,00 G6GATO 10 .
Crxvuxtas L{(NDUCTIVE GENTHERMN 8t 8%4sxidxankn X 2933V 0anboasipdrsbstatatdtdsdastd
FUTFMP=1T6,9644¢X* (15,85 X*(N.12ROG-X$( L, 5t W -T=-X2[0,165176-5
1 =x¥(D.21222E=8-X2{0,1066256F-11=X20,52222E=-1S)0) )
RETURN
Consans CONMVECTIVE GLOTHERM osasbedsanittdtnitdrbngzonunarshoonsrddotneatsttdddy
10 FMIFEMP=1150,041,4%X
RETURN
END

NDOURL E PRECISITN FUMCTINN DEN(X)
TuPLICIT REAL %8 (A~-H,0-2)
Cosbaxsd EVALUATE (1/X=1/7X%f 2% [-FXP(=X1)) *oadtnirbshrkanakux kv arksseAndvn
C %xxdxextesr CARE NEEQS TO BC TAKEN FOP SHALL VALUES NF Xtsxrtkskknkshddnisvobik
IF tX .67, 0,0C0N1) GNIN 20
NDFEMF=0,.5DN%(1,NC0-X/3.0N0*(1.0D0-X/6,0D0=(1,510~X/S,U0*%%1.0N0
1 =X/6.CND0%(1,0N0-X/7.0C0))) 1}
RETUKN
20 NFN=1.0C0/X={1.,0N0~1,0CO/%X*(1,0"0=-DEXP{~X))})
RETURN
END

DOUBLE PRECISION FUNCTION DEN2(X)
IMPLICIT FEAL*AR(A-+,N-2)
Codkekxkds EFVALUATE {(1-EXD{=Y})}/X 2t ss? o Rk d XD Ao RS bn R R b aR bRk N ekl k¥
Cexexsxd CAPE NEEDS T A TAKEN FAR SMALL VALUES 0OF ¥ seskdkstdsxkstnkidshbhhhokn
IFIX «GT. 0.00001) 6GOTC 30
DFN2={1.070-X/2.0DC*{1,0N0~-X/3,000%{1,CENC~X/4,000%(1.0D0
1 =X/5.0C0*(1.000-X/6.0TC*{1.0D0-X/T7.0D0)}1) 1)
RETURN
30 DEN2=(1.0CO-NEXPI-X))/X
RETURN
END

DOUBLE PRECISION FUNCTICN PXIX,AP,NP]
Coexanx [NTEPPOLATF PFESSURE AND PRESSURE APANIENT (NP} ENR 2tvxkhknrhabiyatpkys
Cxaxxxat DNEPTH X EPDNM VAL”ES IN APRAY AP ndr ki dddhdadhdsfans it hpntodbgibtavgeld
REAL®S XyNP ¢ XSyDX
CIMENSICN APL])
XS=X/1200.,0-5.0C
NX=XS54%2,0
DX=NX*¥D,5
NX=MXé]1
IF{XS +LT,.0.0) GOTD RO
PX=(API{NX)%2(0,5-XS+DX) +tAP[AX+1 )% (XS~-DX})*2.0
NP={AP{NX+1}-AP{NX})/500,0
RETURN
8J NP=1030,0%S,8
PX=Xt0P
RETURN
END
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A2.5 PROGRAM PLOT%1

This program reads the data stored in file X8
and plots various parameters of the elements on a X-Y plotter.

The input is

Route % 8 output from SLOPE
Route % 3 pressure variation with depth (CONDEPTH)
Route X5 Y and X boundaries of the plot in Xkm.
and a code as to what is to be plotted.
The Y and X extremes of the plot are read one per
line followed by the maximum length of the plot ( pmx )
in FI2,..4 format.
The two codes IPLOT and K are read in2I2 format.
Valid values of IPLOT and the variable or symbol plotted

at the centre of each element are

1 number of element

2 spare

3 cross at centre of element

4 only the finite element net

5 principal stresses

6 lines of likely failure

7 principal stresses - standard pressure
8 flow lines (at nodes)

9 log viscosity
10 break (state of failure of element)

11 phase transition function
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if k = O the finite element net is also drawn.
This program also used SUBROUTINES PROPS (with the
marked comments removed) and PX from PROGRAM SOLVE

(pages 170 and 178 ).
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CEEPSAAINEts Tl A AIURSEAXKTAETACLOSS I Fr 42 AP PXBRIUL SN TR ANPUI N KA abdkhretbnbinnd kA
Cooxasewpks DLEOGRAN T PLOT AIA4TRS AN SYMRALS AT THFE CENTER NF [2CH [CLEMENT 28
Corseamagap [N A SOUFCINIEN PARY MNF A U} fE3a3nsAeewdvitnattaubtossdantdrgnrsaun
CHRARd 2B dUO St AR 0L A0 dur A4 B ALT BV I F IR RE AL AL AN O RV FBAKNGENFABNAERETHSE IR AR AT RS K
COMMAN JCTMIZARFLADIA ) y0R[3,6)a AK{6+5) " 13,61 PHS{178C]),
DTEMPLOAD) o SPRPNUS{H, 19N, APTL1ACO),ST(),
STRESSI4,190U)» VIIOT0) 42 {2901, YIOO0) s TITIMF 4DTIM,HEATH{QOS0),
HTI*, FUASSEIA8D) , TEMPI99D) s KRFAK (19001 ,VCHEAT{990),
TT101970),J3(1800),%( 19020, TP(1900),TSLZ60),
NENODE yROEL g N2 e [TW g TW] g TW2 3, IWT o TWay MR, Y HN{6)y FIRST,FRACT,NEW
BEALTE Xy YoRHS(STRESS oD AKPRNTIMGAFEAST,A,VN
RCAL*R IRV INE,HY W
INTEGER®2 T1,J0 MM CONSTR,TFIX,TP, TS
LOGICAL FIRST,FRACT,MEW
REAL=R CUTPUT{]15048)
EQUIVALENCELDRUTPUTIT) ,STRESS(L))
LOGICAL NET MOTFIR
INTEGER =2 LViS(1900)
DIMENSTION ALPRLLIQCC)H, XX{2),YY(2),1YMI1G0C)
INTEGER TYPE(101
REAL*8 TCT
CALL PLTXMX(50,01
Cotopex INDUT PESULTS OF FINITYE ELEYENT PROGPAY DN RNOUTE 48 *&kokd=kdrdrsdbsbakt
LEN=320G0
CALL REAT(OUTPUTILIV),LEN, 1,1,8,866000)
CALL READ(QUTPUT(4J01) LEN,1,1+84E£000)
CALL READ{OUTPUTIBO001)sLEN,1,148,£6000)
LEN=31744
CALL RFEAD(OUTPUTIL1Z001)4LEN,1,+1,8,465000)
REWIND 8
TAT=TOTIME/3.155815F+7
Ceksx INPUT VAFJATINMN OF PRESSURE WITH DEPTH 3t Aatwdtax ke hnkt s FAFXRERRAKKEIAARS
READI3,4 ) APR
4 FORMATI20A4) .
Crxbxxexk FING EXTREMES OF NET %kd dgkkk kbt kit xdhkatodikndd b S hadawbdnbhkrybbshrs
YMIN=Y(1)
YMAX=Y(1)
XMIN=X{1)
XMAX=X(1)
DN 52 1=1,MONCODE
XLl=x{1}
Yi=v{I)
XMAX=AMAX]1{ X1y XMAX])
XMIN=AVINLEX1y XMIN)
YMAX=AMAX1(Y]l,YMAX)
YHMIM= AMINLICYL,YHIN)
52 CONTINUE
YMHIN=YMIN/100C.0
YMAX=YMAX/1000.0
XMIN=XMIN/1000.0
XMAX=XMAX/1000,0
Chxpkrhnbk PRINT EXTREMES NF NFET IN KM aXistgbktansodhbethkhkrbhxbkdhdrarhhhbhkhs
WRITEF(HyS51) YMIN,YMAX,XMIN,XMAX
S1 FORMAT(® v AND X PXTPEMES*,4F1l2.2)
Cexmzxs FEAD LINITS OF REQUIRED PLCT IMN KM ARD MAXI™MUM | FNTH OF PLOT a&dsddakike
Cexexx [N INCHES THF HEIGHT NOF PLOT IS ASSUMED TN BE 9 TNCHES 2tssdderiwtrkdnn
REACIS,15) YMINGYHAX XMINyXMAXyPMX
15 FARMAT(F12.4)
YMIN=YNIN¥1000,0
YMAX=YMAX®%1000.,0
XHMAX=XMAX®1000,0
AMIN=XMIN%1000,0
CHxxng kdkd CA{CULATE SCALING FACTNRS #tsdkxt 3xosahh ki kkddhtdokkkxbhhaakdnkbioktk
XSCALE=9,0/{XMAX-XMIN}
XMAXA=XNMAX®0,5/XSCALE
YSCALE=PMX/{YMAX=YMIN])
IFIYSCALE oGT XSCALE)YSCALE=XSCALE
YMINA=YVIN-3,0/YSCALE
IP=0
(t‘*gni SCALE Cn_anINATES TD ‘NCHFS ON PLnT [ERZT 2 33T T UAR R LRSS 23 2 R ARSI R 7% 3
N0 300 I=1,NONODE
XUIV =X VAXA=XUT )V 2XSCALE
YE1Y=0Y{l)=-YMINA)XYSCALE
300 CONTINUE
AMAX= (XMAXA-XMIN)*XSCALE
YHAX={¥YVAX=-YMINA)BYSCALE
YMIN= (YMIMN-YMINA)SYSCALE

NS W N e
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CAIN=0.0
310 FORMATL212)
rexvasvaksk RFAC PLCCT CONF AMD v (FOARPMAT(212)) évsdadradnsantanidaar nlgaoesskn
Coavwxnn K=n THE FINITE CLEMEMT NPT IS LT DRAWN THES 16 MNAST COMMLN VALUR #s»ras

Codgzanes PLOIT COBE AS FOLLOWS e
Crs=ssxn ) ANJMEFR OF FLEMENY . .
CAazankss 2 SDARE .
(as¥knas 3 CROSS AT CENTER OF ELEMENT (USEN FOF CHECKING MET SPRECIFICATION) u#
Crvwrsss 4 KET CNLY . b
CHeoasne 5 DRINCIPAL STRESSES o
Cevaswsx ¢ LINIS OF LIKELY FAILURE aw
Ceenxsxsx ? PRINCIPAL STRESSE3 - HYRENSTATIC PRESSURE **
Comesans A& FLOW LINFS AS ARFOWS AT FACH NONE we
Casvsxas Q |G VISCOSTY AS MIMAER **
Chungkte 1) HRFAK (A NUMBER INQICATING HOW OFTEN THL FLEMEMT HAS FAILED) x
Craaukss |1 PHASE RNUNDAFIES o
Ceanxke: ]2 DENSITY bk

Craxsnszeransano R cuddat i dcdN s s skl X3RO CRAF AN RLEEYACB LI LARLKXSAR KR P CARI SRS E R UN RS
READ(S5,310: IPLOT,K
NET=K LEQ.C

Cexxx¥x [ AREL THE PLOT #4522 4nhr bk nt xv dad bt kdndiuisn s kv keankt ikt b ikt
CALL PSY"MB3(1.540a.14-0e159°' TIMF = *4,90.,0,8)
CALL PFRYPR2 (1254209 -0415,T0OT,50,04'F5.,2 **,0,0!
GOTCIG51099204930yG40,950.96049704980,+°6C+5550926,9971,1PLOTY
WRITE (6+900) IPLOT

Q00 FORMAT(' ERRORP IN [PLOT =v,18)

STGP

910 CALL PSYMR{1.0+0.1¢-0.15+* NUMRBEF 0OF ELEMENTS®,90,0,19)
GOTD 1000

920 CALL PSYMB(1.0,0.09-Cal5," SPARE '+90.0419)
G0YD 1000

©30 CALL PSYMB(1.0:+0.0,-0.15+" CPOSS AT CENTER NF ELEMENT *,50.0,29%}
GOTO 1000

940 CALL pPSYMB({1.040.0,-0.15," NET NNLY',5C.0,101
GOTN 1000

950 CALL PSYMB(1.0y0.04-0e154°* PRINCIPAL STRESSES®,490.N,19)
6O0TC 1000

950 CALL PSYMB(1,090.0¢-0a154* LINES GF LIKELY FATLURE?,90.0,24)
GNTO 1000

G700 CALL PSYMP(1a0404G9-0a15¢* PRINCIPAL STEESSES - STANNPAPD STATE?
1 +90.0,36)
60TD 10C0

980 CALL PSYMPR(1.0,40.1+-0,154" FLOW LINES *+90.0.12}
GATC 190CO

990 CALIL. PSYYB(1.095409=-0s15," LOG VISCOSITY IN FLEMENTS *,90.0427)
GNTZ 1006

965 CALL PSYMB(140+5.04~0.15,' RQEAKS *,90.C,+8)
GCTC 1000

996 CALL PSYMP({1.0+5,0e-0.154* PHASE HOUNCARTES '+90.0.1R1)
GOTD 1000

@97 CALL PSYMB{1.0+5.,0¢-0.15," DENS1ITY ¢,30,0411)

1000 CONTINUE

Cuxwkk & DRAw BOUNGARY OF THE MONEL %xkXx skt 3 d st dRofhknsrdxnxrkaprxukmrkxxhdkkkkiis

Twv=] w=1
DO 50 JN=1, WM
KN=JN

IFLYETSIUMND) LT, YMAX)GOTO 60
50 CONTINUE
60 DO 70 JN=KN,[WM
KN=JN
TF{XCTSCANDIDYLLT . XMAXIGNTN 80
TC CONTINUE
80 CONTINUE
D0 100 JN=KN, [WM
I=TS(JIN)
J=TS{IN+1}
IFLYLI).GTe YMAXIGOTD 100
IFCY(1) LT, YO IM) GOTO 100
TFIX(I) JLTe XMINIGOTP 100
IFIX(I) +GT. XMAX) GOTT 100
TE{Y(J) .GT. YHMAX) GNTO 1CO
IF(Y(4) oLT. YMIN) GOTCLIO0
IFEX0J) LT XMIMNIGNTO 100
[FIY{J) .GT. XMAX)IGNTN 100
CALL PEAUPIVII) XTI
CALL PERDMEY{JY}, XTI
100 CONTIRUF
IF LIPLOT JGTL41G0TO 150
CALL PELEMUIPLOT (TP YMAX, YMIH, XMAX XM MFT,STCALF)
CALL PLTEND
sTce
150 COATIRNE
I (IPLOT LEQ.8) GOTO 1500
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RTE{13=0
NTF(2)=0
NTF(31=C
Creumrwid CLLCULAYE PROAPFRTIES, ZEIUSITY(PHASE IRARSITICMNS FCY, swvwrbappcticdd bxuk
CALL PAgpS
IF {1PLOT .EQ,10) GNTO 160C
00 200 1=1.NQOEL
ViS=S5PRAPS[G,1)
LVISUIY=ALOGIQ(VIS)
IF(IOLET LFQ. 10) LVISITI=BEEAK(]])
TFUIPLAT (JTO.1LILVISEIN=5PR0FESI3,1)
I (LVIS(LIY .GE.Q7ILVIStII=15C0
1 (IPLAT JGTe 9) GOTEC 200
YM=DMIMIIYCTECT )}, YLOJL TN )Y {MaiY )}
IF (YM ,GT. YMAXY GNnTQ 200
IF (DMIMLEYLTIUD oYt atl,vdMa I )) LY. YMINIFOTA 200
IF (OPAXTIXUTTIUR I, XUJJ0T ) XIM T ) )) 6T . XPAXINOTN 230
TRF(DMINIOXOI IO Y o XU e x (T4 . LT XMINIGOTO 200
STR=0.5E+8
Cowdkxrx CALCULATE LIXKELY HCOD CF FATIUPRPE AND THE ANGLF »dshasanksdddtndsarkbnks
FMASSUTI=FATL{T,IP,RETA,RL4FRACT,(5TR)
SH=DSORTHI(STRESSTL, [1=-STRESS{2y11)4%24C,25+STRESS{4,1)%%2)
SP={STRESS{) 1) #SYPESS(2,11)/72.0
Ctt#*tt*t;l#ttI‘lnatﬁtntv#ﬁl*tttt!‘ttt’vf‘ﬂttﬁt*t*iit't!l.ill'*lttttttt&t*tttt‘tttt
C CHARGE ARRAY STRESS SN THAT: L L]
C STRESS(1leMI=MAXIMUN PRPINCIPAL STRESS
C STRESS{2Z,M)I=VINIMUM PRINCIPAL STRESS
C STRESS{3,MI=ANLE RETWEEN MINIMJY PRIMCIPAL STRESS AND X AXIS
C STRESS( 4,7} =ANLE RETLEEN “MINIMUM STRESS AND FRACTIRF DIRECTICN
C FMASS(M)=A NIMBER WHASF SIZF DEPENNS NN THE LIYFLY HNOD NF FATLURE
C‘t#tt#t*t*t*ttyﬁt!’*ttﬁ‘\.t":g*****ttt‘.'«gtttttrtﬁt'ttt::tzll*kltttsﬁt.li*ttu.‘ﬁttti
STPESS(1, I)=SHeSD
STRESS{241)=5D-SH
STRESS( 3, 1)=BETA
STRESS(4,1)=81
TPLI)=IP
NTFUIP)=NTF(IP}+]
IYM{] )=~}
IF {(FRACT) TYM(I1)=R
FMASS{I 1=ATAN(O.OL»FMASSITI})*0,5/ATAN(1.C)+1,0
200 CCONTINUE
IF (IFLOT LT, 9) GOTO 20!
1p=2
CHzxbkts PLOT NUMBERS AT CENTFR NF ELFMENTS #kd kb arrx ik ¥Rk sanss A3 kot Rk gt ER
CALL PELEMOIP4LVIS,YMAX, YMINIXMAX 4 XYINyNET,0.1)
CALL PLTEND
STOP 11
201 CCNTINUE
WRITE(6.T40) (T NTF{1),1=1,3)
740 FORMAT(* TYPF OF INCIPIENT FAILURE®'y/,"' TYPF NO OF ELEMENTS®
1 +/,1218))
IF (I1PLOT +EQ. 3} STOP
1210 S1=0.0
S2=0.0
00 1220 I=1.MOEL
¥M=DMINIEYCTELT N, YEIICT D) YEMME] D))
IFtYY GT. YMAX) GOTN 1220
IF (DMINVIYCITOID) D, YOJIUL I, YUNMLTY) (LT, YMINIGOTO 1220
TE (NMAXLUXCTITCE M) o XU I ) o XUMM{T 1) 1.GT. X4AX)IONTG 1220
TF(PHINTOXCITET D)o XCJUETN Do XIMMITI))LLTe XMINIGATO 1220
IF LIPLOT .NE. 7) GOT 215
Crtsakss FIND STIMDARD PRESSURF FNP Tie NEDTH OF FACH Ef EMFNT AND ADD TO *akf:kkk
Castakxs TAL PRINCIPAL STPESSES 2 kdAR ar as ¢ Ad RGN EKI K VA AADRE SRR SR PAN LA RARRRT R
XM= (X CTICTIr ) axX (St XIMMET ) D/{3,0*XSCALE)
YP= XMAXA= XM
A=DX{ XM, hPR, DUM)
[FIXY LT ,5000.0)8=10R0.0%9.REXM
STRESS(1,1)=STRESS{1,1)¢A
STRESS (2, 11=STRPFSS( 2,1 1¢a
Coxtakkx FINDN MAXTMUM STZ2F OF VARTAALF TO AF PLUTTED astswhbyubkhnddtdbrdhnhuhhdy
215 A=DNMAXIICARSISTRESSUL 11 DARSISTERESS(2,11))
S1=AvAX1{S1,4}
S2=AMAY 1l S2,F¥ASSL1))
1220 “GNTINUE
Corssake  YRITE MAXTMUM S[2F UF VARTAFRI £S AND COMPUTE SCALE OF SYYHAOLS SN skkstax
Covxox THE BIGHLFST IS Do ITNCHES tesenbntkhshatxgAukokhkdbirdskynagaiitunnismrln
WRITELS,1230) S1.S°?
1230 FOPMAT(Y KANGE NF VALUES (OF STRESS 15 '410N12,.,4¢" AKN NF ¢
1y 'FAILURE *410N12,4)
51=0.6/S51
52=0.5782
IF (IPLCGT LF0. &) S1=S2
TaT1=1,0/5}%
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CALL PSYMALE2 . 040, 14=0,.1%.¢ SCALR OF SYPRCLS ?,90.0,10)
Catl PSYMR{T.U95.04=0s)%¢" HARIT/ZINCH IR FUTE KR ]
CALL PFRRNVARI2.06249:=0,19,T11,9N,0,4° T7.4 %402}
CALL PELFMUICIOT, Py YHMAX YT, XMaX e AN NFT4S1)
Catl PLIEND
SIoe
1500 CCNTINUE
Crasmdrx PLLT FLOWw VFCTORS AS AVRCOWS SHOwING VFEFLOCITIES OF FACH NNNE stxcsvidsssns
R=0.0
0C 1510 1=1,NCNODE
IFIY{l] .GT, ¥MaAX} GOTD 1512
IFIY (D) LY. YMIN) GOTO 1510
JFIX{T) LT, XMIN)IGOTE 1510
IF{X{I] «GTa XMAX) GUTO 1510
A=SQRT(UV (25 Je#2¢lV(22]~-1)%%2])
R=AMAX1(A,R)
1510 CONTINUE
C#;"it LLRGEST ARRICW 0.5 INCHES A RIS FRER ISR FEI SRS FRI SIS RS S SR L RERLEEILS ST E
IF (OTEX WLT. CuOCOLYNTYIM-(,0001
S1=0.5/F
TOT=S1aDTIM/2,155815E+7
TuT=1.0/70T
CALL OSYMP({2.0¢Q0.19-0s15," VELCCITY GIVE' BY ',50,0,.9)
CALL #FPMBO {2 ,0,2,5¢~0415:TOT+C0.0:'E2,4 %*7,0,0)
CALL PSYMR{2,0,6,54=0,1%,¢% (METRES/YFAR)/INCH ¢,90,0,20)
DO 1520 1=1,NCNNDE
IF (Y(1) 46T, YMAX) GOTN 1520
FTFLY{I) LT. YMIN) GOTC 1520
IFIX(T) LT, XMIN} CGOTO 1520
IFIX{I) 4CTo XMAXIGOTOD 1520
Yyi{l)=v(r1)}
XX{11=X(1)
cate PSYMELYY{Ll),.XX{1)y-0.02,0,0.0,-1)
Yr{2)=YY(1)+UVI2%]}xS]
XX(2¥=XX{1]=-tiv{2%[=-11%51
R=S1I*SORTIUV(2¥ [ )1 xa241IV(2%]=]1) %% ?)
IF (R «LT7. 0.03) GOTD 1520
R=R/3.9
CALL PAPROWIYYoXXe291vRv0,0.0)
1520 CNONTINUE
CALL PLTEND
sTae
1600 CONTINUE
Cexkdens PLT CENSJTY *2k 3ttt Ao hkdnkntr AR LSRR RS kAL 4S s ARSI R AN ERLLAREBETRG%
DO 1610 1=1,NOEL
TP(I1=SPROPS(4,11/10,0¢0,.5
1610 CCNTINUE
CALL PTLEM{UIPLNT TPy YMAXZYMIN, XHAX ¢ XMINGJNET,L,SCALE)
CALL PLYEND
sToep
6000 WRITE(6,6100)
£100 FORMAT(' PEAD EPROR?)
END
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SURRPUTING PRFLEMITCODE o8 Ly YA Y MM YMAX (NMTIHHET,SCALF
CRESROBURERE KAV F PRI G0 LT @ AAURXLAIYE PR L ALK P I RAZL LT AXREFI LY ARN CELE DRIt FILER ARG

C

C SUBRUUTINE TN PLEOT NUMRERS (Ck SY“PPLS AY THE CFENTER OF EACK ELEMENT
C IN A GIVEN AREA OF A FIHITE ELEENT GRID
C

c".'l"‘.“**.‘.’t.*'?‘Fﬁ’:ﬂ#ﬂ.t?!gtﬁ&‘***‘ﬁ"“@.*u*"’?*‘*a“‘t?"‘ﬁ“..’*’ﬁﬂ
THTEGER*2 LL(])
LOGICAL ANFT,ALL
CRY PN JCDOMYZAPEA DI 3, 3) ORI3L6) sAKIEL6) 4713 46) 4PHS{1980),
DTEMPUQAG ) o SPRODCS (A, 1990, APR{I6001,S5TL ),
STPESSU4 41900} s UVILCRA) ¢ X130, V(0 ,TITIMF,NTIM,HEATM(350),
HT M, FMASSIL1IRDY L TEMP(ILD I LARREAN L ISNNY VN HEATI990) ,
11019300 1001900 ) (1200 ),TP{190G0), TS (2600,
NENINE GHOEL N2 e TWa WLy IW29Tad o4, IRSsNY NI{E)y FIRST ,FPACT ,NEW
REALXB Yy Y, RHS STFESSyCyAKZ NP CTIM,AQEA,ST4B,yVD
PEAL~*8 INTIMF,HTI M
INTEGER%22 T JJ oM MeCONSTR, TRIX, TP, TS
LOGICAL FIRST, FPACT,NEW
DN 300 M=]1,NOEL
I=11{M)
NFENNIN.}
K=NMN{ )
I (NMVAXIAY(T)y VI JY,YIK)} JATa YHAX) GOTC 300
IF (DMINDLUY(T)aYUJY,,Y(R)) JLTa YMINY GOTC 300
IFIDMAXLIXUT )y X{J) o XUK)) JGT. XBAKLY GNTO 300
IF (DMINLEX{ID X{JD)y XIK)) JLT4 XMIN} GCTC 200
XK=X{K)
XI=xX{I)
XJ=X{J)
YK=Y {K)
Yi=v(I)
YJ=v( J)
XMFAN={ XTeXJ+XK)} /2,0
YMEAI=(YI4Y.I+YK)/3,0
IF («NTT. MET) GOTC 611
CALL PENUIPLY]IXI)
CALL PENDNUYJ, XJ)
402 CALL PENDN(YKXK)
CALL PERDN(Y1.X1)
611 GUTO(SU1+613,614,615,616+6174618),ICMNDE
WRITE{5,550) ICODE
550 FORMATIL® ERRNR IN ICOCE=',110," PERMISSYRLE RAMNGE 1 YOO 7°¢)

MW N

sTop
613 YMERII=SYMEAN=-O,1
NBV=LLIM}

IF{MBY EC,01GATN 300
1F{HBV GT, 99% ) GOTO 614
CALl PFHEMRR(YMEAN ¢ XMEAM,-0,054NARV0.0,'13 **,0.0)
S0TcC 300

614 CONTINUE
CALL PSYMB(YMEAN , XMFAN,0es1¢340.0,-1)
GOTC 300

601 CONTINUL
YMEAN=YMEAN-O, 2
NBV=M
CALL PFNMBRYMEAN ) XMEAN,=N,08,MNBV,0.0,'15 %*,0,0})
GQTC 300

€15 CONTINUE

Chur ek b b kb et L bR Sk P RO R AT R r L AR kR e AR AR B AR AR dr AP kb et AR TR el bk gk
r =x=rxxP|OT7 SYMAR{JL NEPENDING NN [ L{T) AT CFNTER DF FLEMENTShxxzssdbthdbdohkkiR

NRV=LL(M)
IF (MAV LT,0) GNRTN ICO
CALL PSYVR{YMEAN, XMEAN.0.1yNRV,0,0,4-
GOTG 300

STRESS HAS BFEEN CHAMGED SO THAT.sevnee

C
C
C STPESS(1.M)=PAXTMM STRESS
c STRESSL2yM)=MININMUM STPESS
C STRFSS(3.,M)= ANGLE AFTWEEN ¥ AXTS AND MINIMUM STUESS

c STRESS (44M)= LNGLE RETWFEN MINIMUM STRFSS AMD THE EXPECTED FRACTURE
c

c

C

c

C

LLIM)= TYPF NF FRACTURY
FMASSIMI= LIKELY »OOD OF FRACTURE

T RRA AN ES AL PR KD CH R CART AR KRR SR NI kAN da o R eI RS st pwd b AN sah s anrhhd e bt i bk tnbh s hakaXk
616 CONTINHE
618 (CNTINUE
C s kse kAT LD O] Pp;”CIpﬁL STPESSES EF AT Y EEN SR IR N TR LIRSS I AR L RS ETEIS FYR T 28]
=CTRESS (3, M=l .570R
SN=SINILS)
CS=C0S(CS)
=STRESSU14M)I/2.0¢SCALE



502

501

503

617
C *v2x

C *max

SWN -

(S,

Craske

186.

P=GIRESST{ZeMM) /2. 0%SCALE
X1=XMEAN-R&CS

X2=XMEANS PFSN

X3=YMEFAHRXCS

X4=XMEAN=PaSN

Y1I=YMEAN®RE SN

Y2=YMEAN+P*CS

Y3=YMNEAN~-R#*SN

Y4=YMEAN-DPECS

iF{ARSIR) LLY, (.,025) GNTEY 501
TE{STRESS(I oM} oRT, 0,0F GGTC %02
CaLl PENIP(Y)1yX1)

CALL PENMDMIY3ZX3)

GOTD 501

CALL PSYMBIY1+X14040342+0-04-1)
CALL PSYYFUY3,4X340.03+4240,09=21}
IF (ABS(P) LLT. 0.C%) GOTD 3CO
TF(STRESS(24M) GT. 0.0) ~GTD 502
CALL PEMUP(Y2,X2)

CALL PENDN{Y4,Xo)

GOTC 300

CALL PSYMREY2,X2:0.039290.99-1)
CALL PSYMHBIVYG.X4,0.0392,00.09-2)
G070 200

CONTINUE

PLOT LINES NF LIKELY FAILURF S2staaxd @ dndds ann g dx ARy kbt aanRtsarndhikbegd
R=FHASS{M)*S{ALE*0,5
B1=STRESS{3,M)=STRESS{ 4, M)
cs=Ccnsel)

SN=SINIB1)

X1=XMLAN-R2CS

Y1=YHEAN+R* SN

X3=XMEAN#R=(S

Y3=YMEAN-R®SN
81=S12FSS(34M)+5TRESS(4,M)
cs=cos(sl)

SN=SIN(R]l)

X2=XMEAN=-R%*CS

Y2=YMEAN+R%SN

Xa=XHEAN+R*XCS

Y4=YMEAN~R#* SN

CALL PENUPIY1,X1)

CALL PENDN(Y3,X3)

CALL PENUP({YZ2,X2)

CALL PENCNI(Y4, X&)

GGTC 300

CONTINUE

QRETURN

END

CUNCTICN FATLUIITPyARG,RL,Y2,T)
*x CALCULATE FAILURE CRITERIA AMD ANGLE CF FATLURF ®wxrsxakdbstdbibkidvsd
REAL®8 SXoSY»SXYeSHySDeSZySTAX,SMIN
LOSTICAL Y2
COrMON /COMLIZARFANI3,3)NR{3,E1,AK(6:H) 4813:6),FPHS{1980),
DTEMP(970),SPRUPS (64190001 ,APR(1600),STL2),
STRFSS{4419CU) ,UV(1GS80) «X(COD),Y(990) 4,TCTIME,NT M, HEATM(990]),
HT M FMASS11980),TEMP(O9GD ), PPFAY ( 15N0),VC,HEAT(990),
F101900) +JJ01900) " 1MU19001 ., TPL1I900Y.TS(260),
NCHONE yNIOICL o H2 s TW e TWL gy TW2, IW3 3T Wa s [ WS DY NO{6! yFIRSTSFRACT,NEW
REAL*R XyYoRHS,STRESSyCy AK O, AT, AREA,ST,R,VD
PEAL®A TOTIME,HTIM
INTEGER*2 TTeJJo MMy CONSTE,,TFIX4TP, TS
LOGICAL FIRST,FRACT, NEW
COMMCHNIPRC/ELyANDILDENCONDy SN4CV, VIS, TEXL,NETALSG
SX=STRESS{1,1) .
SY=STRESS{2,1)
S7=STPFSSt3,11
SXY=STRFSS{4,1)
SH=DSORT({SX-SY)%%2%(, 254 SX7*SXY)
SD=tSA+SY)/2.0
SMIN=NMINLI{SD-5H,57)
SMLAX=NNAX]1(SD+SH,S2)
ANG=0.5%2DAT AN212,000=5XY, 5X-5Y)1+1,57CR
Rl=0,0C
Y2={SZ «EQ. SMIN Or, S7 Lf0. SMAX)
T-{(3,045MAX+SMIMY 1 T, 0.0V ~OTO 20
PURF TYENSTIOMAL FATLUPE ke vtk dnkakk A bl &b iandAdhund sk uSAdiddatddchnad
A=SMAX/T
FATL=15.0vA%{A-1)
17P=1
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RETURN
IFESMAX i T, —4.,1947) GOTN 3D

Creabayd APFE!] CRACK FAILURD 239 m233 0t ot ai ki b a Mt X eRu vt iyt ad b RS abttashaLins

SH=DSNRTL4, 05N ¥SN=S1 xS}

W (SO +Lfes 1.0 £AND,SY LT.1.0Y SD=1.C
Pl=0,5*LATAN2UEN,SH)
FATL={(SMAX=-SYIN)/T)%»24R,08(SVINeSMAX /T
1TP=2

PETURN

30 A1=SMIN/T
Cravnenke CLOSEFD CRACK FAILUKYL s¥aesdristovtyershbpgbsbbbhbnbsssddkbigebsnibbocanas

Le{ao ) I+A}IA2245,0%(A)l~4,]19)
A=ABS(A/(2,356%4.19¢0.356%4140.02))
C=(a,192T/SHAX I =%2

A={({A-11%C+])
FATL=((2.354%5MAX-0,356%SMIN)/T-0.02)%A
Bl=Cs5%ATAMN{D91744)

17TP=3

RETURN

END
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A2.6 PROGRAM PLOT#2

This program is similar to PROGRAM PLOT# 1 but the
stresses, viscosity etc. are smoothed to give mean values
at the nodes. This is important in finite element analysis
where there is much bending of the grid since this tends
to distort the stresses but the mean is a much nearer
approximation to the correct solution. The input is the
same as PLOT % 1 but IPLOT can only take the values of
5,6,7,8,9,10,11. K is not read and the net not drawn.

This program also uses SUBROUTINES PROPS and PX.

(pages 170 and 178 Y.
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Ct#llt. tn.t-’t,-:fg—-)ncu"‘!i RSP RPEAINTFEFIFEREFEAELNFSEIE RIS N3 AR AL AR RN DA SN L F S F'EY
Coetwss PLIGERAM PLOTH2 T PINT L-SULTS OF FTLITE LT PEDGRAVY frt=snttintbbndd
Crwemss THIS PROGRAM SUMNDTrS THI PESIHLYS AYND PINTS STRESSES 0T, AT THE NODFS >
Clllﬂﬁr'-t-l.i EagEa ARSI L * LY FA AR KIPA SV PR A IS rA R R YAARRN L AN XD TN EATIES RO ETL S
COFMON JOIVPUI/ZAREL oy U3, 3B DT A 3 KL re k) 4R {40 ,RPHSTLAR0Y,
1 DYF4PLAGC) (SPRIPSLA,190N) ,APRLLALG1ST (),
2 STRESS(4,190010VLEIOHD) XIGGO), Y{GAC) , TOTIME NTEM,HEATNM(I990]),
3 HYIMGEVMASSTLIGRD )4 TEMP(QQ)) ,PENSIL1O00) VL FEAT(3Q0),
4 T1{160CYH,uJd(1S00),M*“([191N),TPI1360),TS(260),
5 HONNDE JNOEL 2 M2y IWy JWL o T2, TW3, T IWS DY HO(6),FIRST,,FRACT(NEY
PEAL®XR Xy Yo PHS STRISS ¢DoAX DB yDTINVyAVFL4SToHRyVD
REAL®H TOTIYEWHYIM
INTEGER®2 [ToJJe MM CORSTP,TFIX,TP,TS
LOGICAL FIPST.FRACT,MNEW
REAL =8 QUTPUT(155K81)
PTAL*R U¥X[AG0) ,UMN{CGQ) USHIQA0 )
REAL%B SXyS9eSWeSVe5245H
FQUIVALENCE(NUTPUT{ 1), STRESSI(L))
LOGICAL NET,NOTFIR
INTEGER #2 LVIS{19CO0)
CIVENSICN AAPRI19CO},XX(2),YY(2),1¥Y¥(1900)
INTEGER %2 JYM,NTFL3)
INTEGER TYPEIL10)
REAL*B TCT
CALL PLTXMX{100.0)
S6G=0.0 '
Ceaxuk RFAD PRESSURE DIPTH TARLE #edhb kbbb vaktdr bbb asbddhd 4ol kb aqrrhrdahtpdnk
READ( 3,4 APR
3 FORFMATI(F12.5)
& FORMAT{20A4)
Coxxxx PFAD RESULTS OF FIMITE FLEMENT ANALYSIS *dkmasxxsbkkki st AXdaavhd kbinkbkris
LEN=32000
CALL PEAC(NUYPUTIL) 4LEN,1,1+8,66000)
CALL READ{OUTPUT(4001),LEN,1,1,8,EL6000)
CALL REACICUTPUT(8001)LEN,1,148,66000)
LEN=31744
CALL PEAD(OUTPUT{12001),LEN+1+41,48,850C0)
REWINC R
TOT=TYCTIME/3,155815E¢7
CHtx%x FINQ EXTREMES 0OF NET #xthkehhbhbpkhkhkedhrgpdhghpprdhbroksdd ik ahmpdrkhbhenhk
YMIN=Y(1)
YvaxX=Y({1l)
XMIN=X(1)
XMAX=X{1)
nDe 5G 1=1,NIONODE
x1=X(I)
Yi=v(1}
XMAX=AMAX1{X]1y XMAX)
XMIN=AMINL (X1 ,XMIN)
YMAX=AMAXL(YL,YMAX)
YVMIN=AVINL(Y1,YMIN])
50 CCNTINUF
YMIN=YMIN/1C00.0
YMAX=YNAX/1000.0
XMIN=XMIN/1C00.0
XMAX=XMAX/1000.0
Cxtxwx WOITE FXTYREMES NF THf NFT (KM} kadkk-dbtadddeddadsk-rafkadnrgtdeunhdhbhhetrak
WPITE(GsS51) YMIN,YMAX, XMIN.XMAX
S1 FNRVMAT (' ¥ AND X FXTREMES?,4F12,2)
Chx®s READ THE AREA OF THE NET WHICH IS TQ BE PLOTTFN (KM} AND THE LFMGTH *»ixss
Ct=x2% IF THE PLOT {PHX) [N INCHES #sowskdsixakirthntkabhxhrbndbixkhrdodekxskksRiok
REAC(S5415) YNIM YYAXXMIH JXMAX,PMX
15 FLRMAT(FI2.4)
YMIN=YMIN#®*1000,.,0
YMAX=YVMAX*]1000.0
XMAX=XMAX#1000.,0
XMIN=XMIN®1000,0
Ceaxsax COMPUTE SCALING FACTDOKS feddevipkbkbadddptddaddsuatnaspnrdhkihbkhbakrvhbxhrik
XSCALE=G, 0/ { XMAX-~XMIN}
XMAXA=XMAX+0.5/XSCALE
YSCALE="MX/({YMAX~-YVIN]
TH{YSCALF JGT XSCALE)YSCALE=XSCALE
YMINA=zYNMIK=3.0/YSCALE
1?=0
npN 390 1=1,NGNNDE
X{I)=1XPMAXA=Y (D)) =XSCALE
YOI ={Y({I)-YMINAIxYSCALE
300 CONTINRE
XArr= ([ XMAXA-X"IN)IAXSCALE
YHAX= (YMAX-YMILAYH#YSCALE
YMIN= (YMIMN-YMIHA)SYSCALE
XMIN=0.5
J10 HOUMATLIS)
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CARBLE FRIDIBCEU P IAG RS IBAEF AR IR CA ARG AR AN A 2E R I SR F4R S A TS g AR NCIERD AR EINAEY

C PEAD PLNIT TYPE (FORMATLIS)) san
C 5 PRIMNCIPAL STTREASES *
c T PRINCIVAL STRESSFS-STANDAREG PPESSURE e
C g FLIW LINES . "Ew
[ 9 vISCNS]TY ke
C 1C DENSITY Ty
C 11 PHASE TRANSITIONS res

CORYR 2 wRas i ¢ dHAC R AL AR YL RssdHGAI AN RANE AR SR ARSEAL CEUOFERANRENLAEUCRARERERAS

REAN(S, 3100 [PLOT
CALL PSYNHE{]1.540e10=-NalBe? TIMF = ¢,50,C.8)
CALL PFAMFR{145¢24Ce-0a154TNT,50.09'F8.8 4¢,0.0)
GUOTN(910,9204930e940,950,960,970,980,990,965,996,9971, iPLOT
“RITE(6,9N0) IPLOT

QC0 FORMATI(' ERROR IN JPLCY =',1R)
sTOP

10 CONTINUE

920 CUNTINUE

930 CONTINUE

G40 CONTINUE -

960 CONTINUE
WRITE(6,:961) IPLAOT

961 FORMATLY TRIS VALUE OF TPLOT NOT VALID FNR THIS VERSION®*,161}
STQP

G50 CALL PSYMR{1,0,0.Cy~0.154* PRINLIPAL STPFS5E5,490,0419)
~OTC 1000

970 CALL PSYMRI1.043.Cv-0.15,' PRINCIPAL STRESSES - STANDARD STATE?
1 +90.0,36)
607N 1000

980 CALL PSYMA{1,0+10.1,-0.15," FLFW LINFS *,50.0,12)
GCTO 1000

990 CALL PSYMA(1.0+540v-0e15¢¢ LOG VISCOSITY IN ELEMEMTS ¢,90.0,27)
GOTO 1CCQ

G95 CALL PSYMR(1.0¢540¢=0e15s* NDENSITY/10.0 '¢50.0,14)
6OTR 10CC

996 CALL PSYMBU1.040419y-0.15+* PHASE RBCUNCARIES !,90.0,17)

1C00 CONTINUE

Chtsaxxxx DRAW QUTLINE OF THE MOCEL RY FOLLOWIAG ARQOUND NOPES IN TS #skkksxeddans

TWk=Tu=1
DO 50 JN=1,1wM
KN=JN

TF(Y{TS(JN}) LY. YMAXIGOTO 60
S0 CONTINUE
60 CO 70 JN=KN,IuWM
KN=0k
TFIX{TS{UNY},iTe XMAX)GOTD 80
7N CCNTINNE
80 CCNTIANUE
DN 100 JR=KN, WM
I=TSUJINY
J=TS(JIN+1)
IF(YL1) AT, YMAXIGOTO 100
TEEY(IY .1 T. YMINY GOTO 100
[F{xX{I LT, XMINIGRTC 100
IF(X(I) «GT, XMAX] ~ROTO 100
1FIYLJ) .GT. YMAX) GOTO 100
IFLY{J? LT YMIN) GITOLOO
IF(XUdY LLT. XMINIGATO 100
IFIXtJ) oGTe XMAXIGNTO 100
CALL PEMUPIY(TYeX(T)}
CALL PENDNIY(JI,,X(J})
1C0 CONTINUE
IF {(IPLOY FQ.8) GGTO 1500 .
NTF{1}=0
NTF(21=0
NTF{31=0
Cetrkuax GIrT THF PROPERTIFS [REMEMALR Tt REMOVE CPUMENT (S FRNYM “exbmxtthrkkdash
Chexxht SLZROUTIMNE PROPS #>s 2l At AS kS 4 kXTI ER SRS AR LA KA IRLE BB hx b AR AR AR Ao h b add b dhkRn
CALL PPCPS
Crevxasatkes SHMENTH CATA FPOM FLEMENTS TC NODES #hsagsitevsusbahtakbpmstesnkiahs
NG 700 I=1,NONMDE
IF tYy{l) GY. YiAXY GOTN 700
IFIY(LI) 1T, YVMIN} GOYC 700
[FIYLT) LT, XMIMICOTD 700
TFIXII) 6Y. XMAX) GOYQ 700
Svis=C. 0
SX=N.C
S=0,.,0
SW=0, 0
SP=0,0
Sh=0.9
Sy=0.0
§7=0,0
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0} 680 J=1,MNCEL

KI=11(J)

KJd=J42 (I}

KK=Mm{ ]}

IF (K1 NE., 1 JAND, KJ JhZ, | LAND,
XM= (X {KI)eX IV J)eX(K¥I)/3,0-Xt])
Y¥={Y(KI)eYIK B oY {NKK}) /D, 0-Y(T)
X1=X{KI}-xUI)

X2=26%)1=-X{1)

X3=X{KK)=X(12?

Y1=Y{(KI)~Y(])

Y2:=¥{(KJ)=Yil)

YI=viK¥)=YLT)
XT=X1#{Y2-Y3)4X2*(Y3-YLI+X3x(Y]~-Y2})
YT=YI®{Y24YR)eY2*YI+XL#{X2¢X2)sX2%X3
W=ARSUATAMP(XT YT) I /SORTIXVEXVeYMEYH)
SX=5X+wsSTOFSS(1,4)

SY=SY#WSTRESS (24 J}

VIS=SPROPS(5,J)

SZ=S7+WxSTFESS(3,J)

S=S+WrSTRESS{4,J)

SVIS=SVIS+WeVIS

SW=SWih

SP=SP+WwA SPROPS(3,4J)

SO=SD+WESPROPS (4, J)

CONTINUE

IFISW EQ.0.,0) GOTG 700

SX=SX/SW

SY=SY/SW

SZ=S7/5W¢1.0E-4

S2=5/54¢+1.,0E-4
SH=DSORT{{SX-SY)*#2%x0,25D0+52*S2)

UsSH{I)=SH

UMY (1 )=(SX+SY)*0,54+SH

UMN(I i=(SX¢SY)%0,5-SH

USHIT 1=0.5*DATANZ2I2.0#57 ¢ SX=-SY}+1,.5708

IF (IPLCT «FQe9) LVIS{I)=0,5¢NL.AG(SVIS/SW)
IF (IPLOT oEQa. 12) LVIS{I)=0,5+5H*%1,0F-6
IF (TFLOT ,EQ, L1) LVIS(1)=0,5+SP/SW

IF (IPLCT 4EQe 10) LVIS(I)=20.5+#S51/S%~-3000.0
CONTINUE

DN 200 1=1,NONCDE

STRESS(1.1d=UMX(T)

STRESSI2, 1V=UMNI )

STREZSI{3,1)=USKHLT)

Kk JhE. [ GOTO 660

CONTINUE
WRITE NUMBERS sasesessss IF SYMROLS GOTN 201 ®&¥dxkazisssdubbieriidxdhir
IF (I1PLCT LLT.9 ) GOTO 201
N0 2222 I=141W
J=TS(1)
LVIS(J}=-1000.0
CONTINUE
Ip=2

CALL PNODEUIPLVIS»YMAXy YMIN)XMAX W XMINGNET,0,.1)
CALL PLTEND

STCP 10

CONTINUE

S1=0.0

$2=0.0

D0 1220 I=1,NONODE

YM=Y(T)

IFLYM .GT. YMAX) GCTN 1220
IF(Y(T) LT, YMIN) GOTO 1220
[FIX{I) «GT+ XMAX} GOTN 1220
IFEX{1) LT, XMIN) GNTC 1220
IF (IPLOT .MNF. 7) GOTN 1220

Crowkesxd AMD STANDARD PRESSURE IF IPLNT=7 ¥kt dooxissntd ¢ kpbhkasandrhnrbpodrhhs

1220

XM=X{1)/XSCALE

XM= XMAXA-XM

A=DX{ XM, APR 1 0P)
STEESSE Ly 1)=STREGSI1,104A
STPFSSU2+1)1=STRFSS(2,11¢A
CONTI NUE

Crawnnd & REMOVE BMMINCARPY MORES FROM THE PLAOT o2 &XXyxassdfdnaxendhy edrsenphdnds

nni 1222
J=18(1)
STRESS(1+J1=0.0
STRESS{2,J1=0.0
STRESSU3,41=0.0

I=1.1Iw

CONTINUE

NN 1221 [=1.NGNIDE

IF (YU1) JLTe YMINIGOTO 1221
TFIYET) 6T, fMAXQGOTO 1221
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TRORUIY ST YMINYSZOQTO 1221
IFEXETY G, XMAX) C0ITH 1221
215 A=CMAXLICARSISTRESSIL 1)) GAASISTRESS(2:1)))
Sl=AMAXL( G114 A)
1221 COATIALE
WPITE{6,1230) SI
1230 FORMAT({* RANGE 3¢ VALUES OF STRESS 1S ',1PD12,.4%)
S1=1,0/51
- T0T=1,9/81
Croawxnn PRINT SCALE GF SYMROLS CF PLOT HEADING # w2 hd et rosvint bzt aebdngdw st tdkss
CALL PSYMPU/ZeUeGale=Celly ' STALT DF SYMHPLS *,90.001R8)
CALL PSYMPU240+540+=0.15¢" UNTISZINCH  *,00.0,14)
CALL PEMNMER (24092451 -0415%,3707,90.0,* F2.4 %*4,0,0)
l— AN h PI_’JT STDESS[-§ AREA XX BELEX IR AR I C A SRR IS SN KTy p AR KRFFRE R e r b ko Rk el
CALL PNNDELIPLD TP YHAX , YMINXMAX s XMINGNIT,S511)
CALL PLTEND
sTOP
1500 CONTINUE
Cxtaskk PLNT FLCW LINES AT NGDES #2802 ntssh s s dd 0t ek ki aned ek dirabr gt Xy ¥
P=Q,0
DN 1510 1=1,NONODE
IFlYIT) ,GT. YMAXY GONTN 1510
TFIYLE) LT. Y UMY} GOTO 1510
TFIX{I) LT, XMIN)}GOTDO 1510 .
TFIX(I) .GT., XMAX) ROTO 1510
A=SQRTI{UV(2*] }*%24+UVv(2%]~11%%2)
R=ANAXL1(A,R)
1510 CONTINUE
IF (DTIM .LT., C.CCO1l) DTIM=0,0C01
S1=0,5/7
TOT=S1*DTIM/3,1558152+7
TOT=1.0/70T
CALL PSYVB{24D490els-0e15,% VFLCCITY GIVEN BY '490,0,19)
CALL PFRMBR{2.0¢9245¢=0.15+sT07490a04'E244 *',0.0G)
CALL PSYYB(240¢%e5s-0a15,' (METRES/YEAR}/ZINCH ',90.0,420)
DN 1520 1=1,NONDDE
IF (Y{I} .GT. YMAX]) GOTO 1520
ITFIVY(I) JLTe. YVMIN) GOTO 1520
TF{XUIY LT, XMIN) GNTD 1520
IFIX(]) «6T. XMAX)IGQTO 1520
YY(l)r=y(1l)
XXt11=x(1)
CALL PSYMBIYY(L),XX{11,-04029y0,060,~11)
YY(2)=yYY{1})enVI2=]1)*%S]
Xx€2)=XX{1)-Uv(2=]-1)%S1
R=S1+SORT(UV(2*T )=¥2+JV(2a]~])ex2)
IF (R JLT, 0.03) GOTO 1520
R=0/3,0
CALL PAPRCWIYY 4 XX9Z2elvPs0,0.0)
1520 CUONTINUE
CALL PLTEMND
stop
6UCO WRITE(6,6100)
¢10C FORMAT (' RFAD ERROR?)
END
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SUPRDUTINE FNOTRUICODE L e YMAX YHING XMAX, XHINGMFT o SCAL F)
c-ll‘lvlﬂt-ntti‘tfﬁﬁ AR AR LLEET S XSO ENALAVELL L)Y LD X WIREEF AT TEISS O S d AR RR SR o
Cessws PLOTS DATA AND SMIOTRED DATA AT THF MANDFS N A FINITF FLEMEANT NFT /*eisns
Cosame THTI SUARIUTIAE 1S SIVMILAR TG0 PELEY IN UG 8] QUT SYMUGES AGF PLOTTFD sex
Cradnt AT THE NODFS AMO NOT AT THE CrNTFRP 0OF THES ELEVMERTS #8astcasasroxtssnetngan
(Lo o0 L2 0PE AP XIJAMRDLRARRBERL S EREAV UL NAV R AR P S SR W AR LA XIS ARARE S 4RI REFUE S bRk

INTFGE®22 LLL1)

LRGICAL MET.ALL

COMMAN JCCMIZAREAZC(3s31 4RI 0) 4 AK{AH1 N3+ 6),RHS(1980),

1 NDTENPLY?20) s SPPDOPSTA,1900),/PRI160CI,STL3),

2 STRESS (e lAN0)HVIIA0) 4 XECSOha Y(GI0) 4 TRTIME ,DTINHFATV{G99),
3 HTIMFMASS(1980) yTE™P(920)yTENST{19300)y VI W HEATI990),

o TT01900),JJ0150001,MU(]1CQ0)T10(]12C0).TS(1260),

S NCONNDEJNOFLaN2y Ty Iwlo Iy IWA,TWa, TWS,NYnID{ &) FIRST,FRACT,NEW

REALER Xy YoRUHS, STRESS 444K CBWNTINM,ACEA,ST,R,VC

REAL=8 TNTJME,KTIM

TNTEGER*2 F14JJyMVLCCNSTR,TFIXTP,TS

LOGICAL FIRST,FRACT,NEW
Cttt:t:t.tt*t#tv#tﬁ’t**nttt-*nnttt#ttttlttl*tt.‘l;"tttatyt-tul.t=-‘t‘ttt“‘tl kW

C STRESS HAS BEEN CHANGEL SC THAT .eseesns *
C ]
C STRESS(1,M)=MAXIMUM STPESS .
[o STRESS{2,M)=MINIMUM STRESS *
C STKESS {3,M)= ANGLE RETWEEN X AXIS AND MIMIMUM STRESS *»
C STRESS (44M)= ANGLF RFTWEEN MINIMUM STRESS AND THE EXPECTED FRACTWRE *
C a
C LL{M)= TYPE NF FRACTURF »
C FMASS(M}= LIKFLTIKCOD OF FRACTYURFE *

(R L Lt L L L L R Ty T T SR o B E P e PR T T F g yprpy

NI 300  M=1,NONIDE
IF (YtM) CT. YMAX) GCTO 300
IF (YIM) JLT. vHIN} GOTO 300
TRIX{M) .GT« XMAX) GGYO 300
IF (Xiv) LT« XMiK) 6GOTN 300
XMEAN=X (M)
YMEAN=Y (M)
IF («NOT. NET) GOTC 611
CALL PENUP(YI,XI)
CALL PENDCNIYJyXJ)

402 CALL PENDN{YK,yXK)
CALL PENDN(YI, X1}

€11 GNTAL6ENL6124614,615+6164617,618), ICCRE
WRITE(64550) TCODE

550 FORFAT(Y EPPUR [N JCODE=*,110+' PEPMISSTRLE RANGE 1 TA 7))
5TNP

613 YMEFAM=YMEAN-0.2
NBv=LLIM)
IFINABY oLT.-999,0] 6GNTC 300
IF(NBV (T, 999} GOTO €l4
CALL PFAMPPIYMEAM)XMEZN,-0e1NAV,0.0,'13 *',0,.0)
GOTO 300

614 CONTINUE
CALL PSYME[YMEAN,XYEAN,0.1+4340.0y~1}
GNTo 300

601 CONTINUE
Y4EAH=YMEAN-0,2
NB V=M
CALL PFNMEBER(YMEAN, XMEAN,-0.08,NIV,Q0.0,'15 *',0.0)

615 COGNTINUE

C *=eesx4PLNT SYMROL DEPCHNNING ON LLIM) AT CEMTER NF FLFMFNTS#esrexs

NAV=LLIM)
= (NMAV (LE.O) GOTC 300
CALL PSYMR{YMEAN, XMEAN,0,1,N0V,0,0,-1)
GGTN 300

616 COMTINUE

618 CONTINUE

C aewxxa30| 0T PRINCIPAL STRESSES A¥O0X At ko kd A s ub A Addd dREkstahihakoutnorktaky

CS=STRESS{3+¥)-1.5708
Sh=SIN(CS)
C5=CNSICS)
L= CIRESSI)M)/2.0%SCALF
P=STRESS(2yM1/2,07SCALE
X1=xMEAN-Rs(CS
X2=XMETAN+P &SN
X3=XMEANSR#CS
X4=XMLAN-bx SN
Y1=YMLCAMtF#SN
Y2=YMEAN¢P*{S
Y3=YMFAn=-RASN
Y4=YMUFAL-P¥CS
TELANSIR) (LT, 09,0251 6170 31
[FISTPERS(1,M) GYe 0.0) GOTD 502
CALl PEROPLY', X1)
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CALL RIHDMNIY3,X3)
GNTO 501

502 CALL PSY"R(Y1,4X1,0s0342,049,~1)
CALL PSYMB{Y33X%X240.03:42:0.Gu~2)

501 IF (AE3{P) «LT. 2.C5} COTO 3C0
IF(STRESS{2,™) AT, 2.0 GCTf 5032
CALL PENUPLY2,X2)
CALL PENCNIY& X4)
50T0 300

503 CALL PSYNRIY2,7Y2¢Ne03,210.00-11}
CALL PSYMR{Y&4X4,0,07,2,0,0¢-2)
GOTN 330

617 CONTINUE

C #*sxxPGT LINES OF LIKFLY FATLUCE A haanteus iyt 0 ko kAN AR CRE AR oAttt ogns

R=FMASS(M)%*SCALE~G.S
Pl=STRESS(3,M)~-STAFSS{4,M)
CsS=CNS(Bl)
SN=SIN(RL)
X1 =)XMEAN=-PX(CS
Y1=YMEAN®R2SN
X3=XMEANSRXCS
Y3=Y IEAN=-R%SN
B1=STRESS{3,MI+STRESS{ 4y M)
€S=COStel)
SN=SIN{R1)
X2=XMEAN=-R2(S
Y2=YMEANSRRSN
X4=XMEAN+R%CS
Y4=YMEAN-R%SN
CALL PENUPIYI,X1}
CALL PENDM{Y3,X3})
CALL PENUP(YZ24X2)
CALL PENDNIYL, X&)
601N 2300

300 CCATINJE
RETURN
END
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A2.7 PROGRAM CONTOUR

This program draws contour maps of the variation

of various variables over the finite element net. The
extremes of the plot are read in as for PLOT® 1 but
the codes are read as IPLOT and IFIRST (212).

valid values of IPLOT are

1 Maximum and minimum stresses (not generally used)
2 Log viscosity

3 Shear stresses

4 Temperature

5 Failure criteria

6 Density

The first run should have IFIRST = O thereafter IFIRST = 1.
The program returns for further codes after the
completion of the contour drawing. The program is stopped

by entering a letter for IPLOT.
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c;n-t't'tt*ﬁtlt.u-n«‘$-$tﬂ*=tﬁhwqhn:.z:n-cn-vﬁtt.tgthtxntn;-‘Ahnﬂlvtntt'&tisﬁttﬁ

C L PROGRAM TO CONMTAUR FINTYE ELEMENTY FFSULTS TN THE £~Y PLATTEP %
C LAPUT FRCY THE FF PROPAM IS TheMiGH CHANNEL 4R %
C INPUT OF VARTAT (N NF PRESSURF WITH DEPI1it CN CHANNEL 43 [ 1)
C LCONTETIL DATA THRQUGH CHANNEL 15 &

ctalt$itstctt:tlsftn*tllu*twn:ﬂn#é5ttt.rﬁ1t=tin-gt-ut-intnn1$a'ﬁ&tﬁ".‘..;;..m.t
DIMENSINN UDEMNS{OAC) JUSH{QGN) 41N aa0) ,UNXIS90 VIS (H4gn )
COPNAN FCOMYZAPEA,CI343),DHET S) s AV LA ETyBI3y A1, YHS{1980)
1 OTEMP(9S0) 4 4PPOPSI6,1900) APR(1ED2Y,5T(2),
2 STRESS{4,1300)UVIEI9A0Y XSG, Y{UAC) 4y TOTIMC (DII#,HFATN(930),
3 WTIM,FYASSILIAR0) , TEVP QA ), PREAF {19D) ), VP, HEATI9ND),
& T10199D) 4 JJ01Q00) MM 130N), TP{1U0N)},TS5(260),
5 NENADE yNCEL o N2 TWo TH L Tw2 TWA T Way [HS DY NG{L)FIPST,FRACT,NEW
REAL®B XY PHS, STRESS Ny AKX DB DT IV, AREA,ST4B,VD
REAL*8 TOTIMF,HTIM
INTEGER*2 Il JJsMVCONSTR,TAIX,TP,TS
LOGICAL FIPST,,FRPACT,NEW
RFEAL®*8 OUTPHT(15968)
EQUIVALENCE{QUTPUT{1),STRZSS (1}
LOGICAL NET,NOTFIR
INTEGER *2 LVIS(1900}
DIMENSIGN AAPRI1GCO)XX(2),YY(2),1YMI{1900)
INTEGER #*2 1YMyNTF(3)
REAL*] TOT
CALL PLTXMX{50,0)
Ce%%xk READ RESULTS 0NF FINITE ELEMENT PPORRAM stkdibiRkubaxkbrthhdrunoihkuxrkadsk
LEN=328C0
CALL READ(AUTPHT(1),LEN,1,148,860C0)
CALL PEAD(NUTPUT L4001 }4LENy 141084 E£4000)
CALL READ(ONITPUTIAROO0Y ) 4LEN,] 1 44,866000)
LEN=31744
CaLlL PEAC(QUTPUT(12001),LEN,L1,1,8, L6000}
PEWIND 8
TOT=TOTIME/3,155815F+7
ctt*t** R[AD ppESSURE DEPTH TABLE kg ARI R R R R R kok ke kAR K AR AR N kA PR Ry
FEAD(3,4)APR
4 FCORMATI20A4)
Caxksksx FIND EXTREMES OF FINITE ELEMENT NET stdddkkhdbhtthidktdprhhvkukdtkkpkhbhd
YMIN=Y{])
YVAX=YI(1)
XMIN=X{1)
XMAX=X{1)}
DO 52 1=1,NCNODE
X1=x{1)
Yi=Yt1}
XMAY=AMAX1{X],XMAX)
XMIN=ANIRI(X1 o, XMIN)
TMAX=AMAXL (Y1, YMAX])
YHMIN=AMINI{Y]l,YMIN)
52 CONTINUE
YMIN=YMIN/1000.0
YMAX=zY1AX/1000.0
XMIKN=XMIN/1000,0
XMAX=XNMAX/1000.,0
Chsdsxw WRITE EXTPEMES NF MET (KM} #dxkkdsednbhddl dkdknr daXtkhxhdt kb ddhtinthbhded
WRITE(6,51) YMIN,YVAX,XVINXVAX
51 FORMATUL' Y AND X EXTPENMFS' 4F12,2)
Crxx=®t GEAD PLOT LIMITS (KM) AND MAXTMUM LENGTE NF PLNT {JNCHES) *kékkskxdddkaks
READISy1%) YMIN, YMAXyXMINy Xt'AX ,PMX
15 FORMATIF12.4)
YMINsYVIAN*1000.,0
YMAX=YVAX*]1C00.0
XMAX=X"AX%1000,0
XHIN=XMIK*1000,0
Cxsxx¥r CALCUJLATE THE SCALES I R TS PR RS P E RIS E LT AT TS RS RS EESRELE Y FE S L S ]
YSCALF=7.0/{XMAX=-XMIN)
AMARA=XVAX 0, 5/XSCALE
YSCALE=PHX/(YHAX-YNINY}
ITFIYSCALE T XSCALSIYSCALE=XSCALE
YMINA=YMIN=-3,0/YSCALF
1p=0
Cxssxa SCALF X AND ¥ TN INCHES ON PLCT fémtdabdndbnpdd srtadnnhndidrdhbciphnbikdd
DI 309 1=1:NNNDAE
YU =tXraxa=X{1))*XSCALL
YOIY=(Y(1)-YMINA}*YSCALLE '
300 CONTINIE
X1AX= { XMAXRA=XMIMNIAXSCALE
YMA L= (YMAX~-YMIMNA)*YSCALE
YUIN={YMIK=-Y¥INADAYSCALE
XMIN=Ce 5
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CraktnSradtat syl dn AR R tad st At dd ur b R e s R TR T R A b L kSR N RO g e PR EN AR IR RGO G

2 ¥s¥aXaNalalaRaNaReNalal

£ 1]
RETURHS HERC AFTER £ACH PLCT TO END PROGPAY TYPE INVALID IPLOT {(f.lie AAR) L]
VALUES CF [PLCY *xa
T #aX I MUY ARD MINTHUM STRESSES INNT OFTEM USeEnd : ELd

2 L0OG vISCcOSITy L L

2 SHEA®R STPRESS [T

4 TEMPERATURE - 1 2]

S FAILURE CRITERIA %%

6 DENSITY 'zl

1]

[EIRST = 0 FOR FIRST CONTNUP MAD (DIHFR THAM TEMPEPATURE)D Ll

N R L Y Y T T L T P R T 2 I

3C9 REACIS5,210) IPIOT.IFIRSY

310 FORMATL3I2)
GATO (7114920,930+3404+550,760),1FLOT
WRITE(6,901) IPLGT

901 FOPMATI! ERRDAF IN IPLOT =',110)
GavTNn 309

911 CALL PSYMBI1,0:0e1+=0a15,° MAXIMUM AN MEN]JMUM STRESSES'!,90.0,29)
GGTO 1000

920 CALL PSYMB{1.0940e1¢=-0s15+* LCS VISCOSITIES *,90.,0,17}
670 1900

930 CALL PSY"B{1a0+40419y~0e154' SHEAR STRESSES',90.,0,15:
6GOTH 1000

940 CALL PS3YMB{1a0¢0ely~0e15,' TEMPERATIIRFS',5C.0,13)
GNTO 1000

950 CALL PSYMB(1.04041¢-7.154' FAILURE CPITEPTA®,90.,0,17)
G0TC 1000

960 CALL PSYMR{1.09¢0.1+4=-0.15+" NENSITY',90.C48)

1000 COMNTINUE
CALL PSYMR[1,540419-0415," TIME=',90.0+6)
CALL PEMMRR{14551a5+=-0.15:T17,90,0,4' MR, E #'.0,.0)

Crxxxesds PP AW BOUNCARY DF MRLEL 203 mxusrmrdds it aitxsex sk adabbest bk kkkbokho s dkrd i

[wM=1W-1
NO 50 JN=1,1wM
KN=JN

IFCY(TSUINDY) LT YMAX)IGOTO 60
50 CONTINUE
60 DO 70 JA=KN, 1wV
KN=JM
TFIX{TSUIND ) LT, XMAX)IGOTD BO
70 CONYINUE ’
80 CUNTINUIE
LN 1C0 JN=KN, WM
I=7TS0JN)
J=TSUIN+1)
IFIY(I).GT. YMAX)GATO 100
TFLYLI) LT, YMIN]) 6070 100
IF(X(I) .tT. XMINIGOTO 100
TFIXUE) «CTe XMAX) GOTO 100
IF{Y{J) oGT, YMAX) GOTH 100
IF(Y(d) «LT. YMIN) GOTQL100
TFIX(J) LLT, XMINIGOTO 100
IFIX(J) «GT. XMAX)IGOTC 100
CALL PERUPIY(I)oX(I))
CALL PENDN(YUJ) o X(4))
100 CONTINUE
TIFLIPLAT JER.4) GOTO 860
IXx=1

CHsxxsxsx IF DROPERTIES AND SMOOTHIN ALREACY DONE JUMP TO 750 #sksstdsbrsantatsss

IFLIFIPST LNF.Q) GATO 750
DN 20 [=1,NCNODE
USH{T)=-1.0E+60

UMY (1 )=-1.0E+60O

UMNIT )==-1.0F+60
UVISII}=-1.0CE+60
UDENS{]1=-1,.0E+6C

20 CONTINUE

Crawdi>  CALCULATE PPOPERTIFES St# ¥t 2 eddudns t ¢t ek aRARAEREi o kiRt bbhinEadhhkX

CALL FRCPS
DY 7G0 I=1.NCNCDE

Cossnkss SUONITH DATA FROM FLEMENTS TR THE MNDES sekbdsssikhbbdsbakas skt adadttesn

IF (Y (1) .GT., YMAX) GOTO 700
TFIVOTY LT, YMINY) GOTC 700
IFIXUL) 8 Ta XMINIGOTN 700
IFIXUT) «GTa XMAX) GOTQ TOO
SVIS=0.0

$X=0.0

$=0.0

Sw=0.0

SP=0.0

S0=0.0
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57=0.0

S2=0.0

B0 6RO J= 1 NOEL

Ki=11tJ)

Ka=JJtJ)

KK=MM{ ]

IF (K] JHF. 1 LAND, KJI k7. [ JAMD, K¥ KE, 1) GOT] 680
AMZIALKT) ¢XIK T eX(KK))}/3,0-X11)

Yhz (YAKTI4YikJ)eY(KK) ) 73,0-YI])
X1=X{KI)=-X{T}

X2=X{KJ)=-XI17)

X3A=XInK)=X{1)

Y1=Y{(KI)=Y(I)

¥Y2=-v{KJ)1=Y({1])

Y3=YI(KKI=YLT])
XT=X15{Y2-Y3)eX2%(¥vA-Y1)+xI%(¥V1~-¥2)
YT=Y12{Y2¢Y3)aYP2Y3eX1¥{¥24X3)#X2¢X3
W= ABS {ATAN2(XT 4T ) I/SQRTIXMEX " eViinY*])
SX=SX+WxSTRESS(1,J}

SY=SY +WrSTRESS(2,4 4}

VIS=SPRCPS{S4+J)

S2=S2 +W=STRESS{3,J)

S=SeWBSTRESS (4,40

SVIS=5VIS+wkvIS

SH=SHW+W

SP=SP+W*SPRNPS (3, J4)
SD=SD+W=HREAK(J)

CONTINUE

[F(SW EC.0.0) GNTC 700

SX=SX/SHW

SY=SY/SW

S¢=SZ/5Ww+1.0E-4

SI=S/S5W+1,0F-4
SH=DSQRTUISX-SY)*=2%0,25D00¢52%S2)
USH{T1)=SH

UMX(T )= SXeSY)*0,5+SH

UMNLET 1={SX+SY)*0,5-SH
UVIS{I}=ALOGIO(SVIS/SH)
UDEMS(11=SD/SW

TO0 CAONTIAUE
75C CNUTINUE

Caxxdrkas CHINSE WHAT IS TN BE COMTINIREL sttty iaafkb bbbkt ks xe ko biagesd
760 GOTC(910+500,800+860,A51,855),4 IPLCT

GNTO 900

Coxrurass O\ NT YAXIMUM AND MINIMUM STPESS CONTCQURS (NNT MUCH USE) #eidkkyspxixks
913 AMA=-1,0E+60

400

AM[=-AMA

BMA=AMA

BMI=AMI

DO 400 1=1.NONODE

TFIY(I1 AT, YMAX DR, UMX(I} LT, -1.0E+30) »OTN 400
IE AY(11 (LT, YMIN) ROTP 400

IF (X{1) GT. XMAXIGNTN 400

1F(X(I) +LT. XMIN) GOTC 400
AMA=AMAXT(AMALUMXTT))
AMI=AMINLLAY I UMXIET))
BMA=AYANIIBMA,UMNTT) )
RET=ANMINL (RN UMNTT Y

CCNTINUE

NE=AMAX 1L AMA-AM] 4 RMA-RNVT)

He=25

[C=A1CGLOIDG/NCY

Cl=10.0#%+IC

WPITF (A e10) AMA ART RYA0M T C I TOTLITY

410 FORMATIY MAXTHMUM STRESS IN RAMGE' yE1L.b,' TC "yFlb4e69/y

1
2

VMINIMUM STRESS [N RANGE OF ', Fl4cbhe?' TO ' Elé.b,e/
¢ CORTUUR 1NHTLCRVAL IS *sEl4.A

3 o/t AT TIME=',712,3,°' YEACLS 7ZONE 'J16)

1

Al=AMAX1{0.1E=-50D, RS AMAY)

A?2=AMARY{CaYE=SD, LUSTANMTD)

A3z AMAX LI Ca LF-50, ABRSLRMADY

A=A MAXLIINLLF=-S0,A0SIANMT))

Li=A1G10(A D)

12=ALCG101A2)

L3=ALGG1IN(AY)

La=A1 06 10(AM

LV=MAXOILY 1241 3,01 4)

ARLV=10,0%¥%ILV

WPITT (S 711) ALV

FOQMATIEY SIPLSSES PLDTTEN /74 "POINTS LABELLID A1)/ ' F10.4)
1p=1

CALL CONTIrREY ¢ ¥ o MOEL JRCHONE [ d e MMM, T ALY, [P, YMAX, YMIN,
FMA Xy XMIM)
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1P=-1
CALL CONTOR (XY NOELGNINODE G T4 0, ¥VYUNK Ly ALV, TP, YIAX, YMIGI,
1 XMAX, XMIMG
GOTN 710
5C0 COMTINUE
Ceés i DRAW CONTNURS OF VISCOSITY sdassdn b bxd v aat ot rsransnsublsugshissantar
WRITE(%,600) TCT
60C FOOMAT(! DRAW CONTCURS NIF LG VISCOStUIY!
1 ¢ AT TIME #,F13,3,¢ YEARS ')
CALL DRAWCHUVIS o NCNUGDE ¢MOELy 1y Sy MMy X 3 g YMAX o YING AMAX, XMTM, [ XX)
670 710
800 CANTINUE
Crsxtres P AW (CNTOQURS GF SHEAR STOFSS #2234 832tk ASSRdkk eIk danddmkdintnkhd
WRITE{G,850) TOT
850 TCRMAT(Y TRAW SHEAR STRESS CCONTIRS AT TIWE =9,F12,3,
1 ' YEARS ')
CALL DRAWCHUSHeNINCGDE ¢ NOEL g [ 19 J)oMMe Xy Yy YMAX o YMIN, XMAX ) XMIN, [ XX)
607N 710
851 CONTINUE
Coxxasas CONTOUR LIKELYHOOD (3JF FAILURE 98%ras0tdudnhhdrdhabbrhbsbtuhkhdhhkas kb bk
ND RS2 [=1,NONODE .
IF (USHIT) .LT. -1,0E+30) GOTO BS?2
SI=(MX{]II+#UMN{IN}/2,0
USHUT)=FATL2(T1 s IP,ANG Bl 4 BY , STRUTTY) yU¥X (T yUMNIT}¢SZ40.0)
852 CONTINUE
WPITEL6,8541TOT
854 FORMAT(® DRAW CONTCQURS NF THE LIXELYHNGD OF FATLURE®,
1 v TIME= *,F13,3,' YEARS!)
CALL DRAWCIUSH NCNCREJNCEL, 1T o JJ ot ™o Xo Yo YMAX Y I INy XMAX, XMIN, I XX)
G370 710
855 CONTINUE
Chkrkxixkx ORAW COMTOURS OF DEMNSTTY sk dknkrdrkhshbkhh gt dhrannnkbshhddhsdd ks bR
WPITE(&y 856} TOT
856 FURMAT(® DRAW CONTONPS OF DEASITY AT TIME!,F13,3,' YEARS?)
CaAbl NRAWCIUDENS  NONDDE«NDEL o TT o JJ oYM e XaY s YVAX Y MIAZXVAX p XUIN, IXYX)
GNTO 710
860 CCNTINUE
C PLCY TEMPERATURES
Coexknx PLOT TEMPERATURE CNONTNURS sk kxkkddsddndhtkdnbhadr A g dshdhkrnhbdabiayk
WRITE(6,070)70T
870 FORMAT(* L[RAY CONTDURS QOF TEMPERATURES TIME =?,F13,3.,' YEARSY)
CALL DRAWC(TEMP ¢MONOGDE sNOELy IT4d 0y MMy XY y YMAX YMIN X MAX e XMIN, 1Y
710 CONTINUE
CALL PLTEND
6IT0 309
S0C CONTINUE
WRITE(G8101
R10 FORMAT(' NC PLNT WHAT CID YOU RUN THIS FCRY)
6aTNn 309
6000 WRITE(6,6100)
6100 FORMAT(®* READ ERRQOR®)
END
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SUPPOUTINE URAWCIUVISyNONONT JACE Ly i Lo dJaM VKoYV MAR, YHM TN, YHAX,
1 XMINGND)
Céskanna SETS P AR MY S AND SCALLIMC FNR CONTNUR DRAVING NF VARTABLFE [N UVISss&*n
DIMEMSTIOY UVISII) eIl (1) 3t} (TdeXxtL),Y (1)
REAL®S X,Y, 0D
INTEGER®2 I1,JJeV¥
GAX=~1.0E+60
GMIN=-GMAX
LNQ=0
DO 600 I=1,NNNSNE
Crexzx F1}D EXTEMES OF VARIAPLE 30t d 0N vt dud bt bk araukan bt e sy nas kb ldke
IF (YU]) o6Te YMAX NP, UVIS(]) iTc ~1.0E£+20} GOTO 60C
ITFIYLTI] LT, YMINIGOTO &65
IFIX(I) GTe XMAX IGATT 500
LEIX{ 1) LT, XMIN) GOTO 4069
GMAX=AMAX I {GMAX,UIVISITY)
GMIN=AMINI{GMIN,UVISLI))
LNC=LNT+1
600 CONTINUE
1F (LNO .GT. O) GQTO 620
WRITE(6,4670)
670 FORMAT(' 20NE NOT QEPPESEMTED [N AREA')
RETURN
680 CONTINUE
DG=GMAX-GMIN
NC=10
IF {ADRSIDG) JGT, 1,0E=-30) GOTO 700
WRITE(6,£G0) GMINSCGeGVMAX
690 FORMAY(* VARIARLE IS COMSTANT IN THE FIELD DG=,2€12,.4)
RETURN
7CC CCNYINUE
c.jt.iit F[ND 'LICEI anTn“R lNTEP.VhL Axak ARkt XN TR EAKE bkt R AV A TA XL R R Rk Rkt g
IC=ALCG10(DG/NC)
ClI=10,0%*IC
NC=DG/CI
Cresens OFFEP THIS CINTOUR INTERVAL..as OFPLY C T ACCEPT NQ AL TERNATIVE %kekein
Cerexxds  CONTOUF INTFRVAL YOU wISH TO BE USED 2%vktosksksdrksskxtenvbbbt hknkkkd
WRITEU6,705) NC,C1
READIS5,7C6) CCIY
IF (CC1 .GT.G.C) C1=CC1
705 FNPMAT(I16+* CCNTURS WITH INTERVAL 0OF * E14.24/9" FHNTER NDIFFERENT ¢
1 ¢ INTERVAL DR 0°)
TC6 FOPMAT(F12.2)
GMAX=AVAX11O0.1E-50,ARS (GMAX]})
CMIN= 4 MAX1I{ 0., 1E-50sARS(GMIN) )
Lv=ALOG10(GMAX)
L=ALNGLO(GMIN)
LV=MAXO(L,LV)
ALV=10,0%2LV
Coundns CALCULATE SCALING TO LABEL SCME NF THC MDOFES WIFH VALUES oOF bbbl d
Cxxxs* THE FUNCTION caevweee THE CONTNIRS ARE NOT LARFLLEDN kkdkiakapbthtikkbhuns
WRITEL64+650) ALV
650 FIRMAT( /" POIMNTS LABELLED WITH GUI3i/'4E10.4)
DC=1.0+1e5%NZ
Cxxkikd HEAD THE PLOT 2kttt idhrbh kot t bbbkt ekt ARy h
CALL PSYHMBIDC,0614=-0e15." CONTOUR INTERVAL®,90,0,17)
ND=CI
CALL PFAMBR(DC9245¢9-0,15400,90.0+"Elet »°,0.01)
NC=CC+0.5
CALL PSYMP(DCyOals~0alSs* MAXIMUM MINIMUM 0,
1 90.0,36)}
NnN=GMAX
CALL PFNMBRINDC,)1e59-0415,0D79040¢'Fl .6 *',0.0)
DD=GMIN
CALL PFNMPRR[DCy%459=-0415¢DD9 3040, 'Elat *7,0,0)
IP=NZ-1
cr*tt*;taa URAH CUNTOURS ArEARAXKR kXA REB kRN bt dd dmk kR F ek kY ke ke bk
CALL CONTOR(IX Yo NUEL o NONDDEy 110 Jd e MMy UVIS C I ALV 1P, YMAX, YMIN,
1 XMAXyXMIN)
RETURN
E€ND
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SURRAUT IWE CONTAE (X Yo NOFL P00 E e 3 Lo a Wy G O T LV IRy M Ko VIR,
TOXMAX, XMT Y

Crexte DRAWS COMTOURS NF G W ITH CONTOUR INTIPVLL CT NVER FIFIN SPECIFIFC A Al
Codeda Y YYAL YMHMIN KIVAR  XMIN 8220k nbkadaaat ndt thesddTar sz ansans el sl tpoduunry

10
2C

25

a0
4qg

BIMENSTION YUL) o VEL) o I 80D o dJ 01 haMN{1),0{1) o CXIL101,2),(YI101,2)
AEAL*3 A,Y.DG .
INTEGER ¢2 [1,J0eWV

REAL LV

1 OGICAL*]1 NCME(990)

LOGICAL FCUND

AQ0=C1

D0 Y I =1,NCNOCF

TFLYLD) AT, YVAX .0Re GII) LT, =-1,0F+30)70NTND 1
[ELY?T1} LT YMINIGOTO 1

IFIXUI) JLTe X¥MINIGOTO ]

TFIX(TI) .GTe XMAX) GOTO 1

DOME( TY=FALSE.

ADD=AMINL (ACD,G(1))

CONTINUE

IA=~ADD/CI

ADC=CI%(1A+]1)

DO 1000 1G=1,NOEL

[=111%Q)

J=J4014Q)

M=MMIIQ)

YM=OMAXLIY{T),¥Y(J),yY{M))
GUM=AMINLIGIT),GLJI ), GIM))

1FIYM (5GTa YMAX OR, OM LT, ~1.0F¢30) GETC 1000
[F(DMINLIIYIT ) YNy 7 (M) (LT, YYINIGQTO 1GCO
FTFLOMAXIAA{T e X(J) yX{P)) JOTs X%AX)GROTN 1000
TRLOMINIEXIT )y XCJD o X(M)) LLT, XMINIGTTG 100C
1C={R{1}+£DOY/C1]

JC=(6(J) +ADD) /C Y

MC={G(M)+ADDY/CI

MAXC=MAXOLIT JCy MC)

MINC=MINO(ICsJCosMC)¢]

NC=MAXC-MINC+1

JFINC .LT,.1) GCTQ 150

IFINC +GTe 100} NC=100

FCUND=,FBALSE,

IF(IC «£EQ.JC) GATO 20

KX=MAXO(1C,JC)

4I=MINOIIC,JC)¢]

Jk=2

IF{KX NFe MAXC «NR, MI ,NE. MINC} GDTO S
JK=]

FOUND=4 TRUE

IFC M1 +GT. KXY GI}TO 20

NO 10 IM=M],KX

CG=IM* 1=ADD

L=IVM=NINC+1

IF (L «5"7.,100) G0OTC 10
F=lC6-GLI I Z{GLII-GLIN i
CXIL$JEI=XCD)+FE2xIXITI=XLJY)
CYLLsJdK)=Y(J)+Fx{Y{I)=Y(J))

CONTINUE

IF{JC +EQ.MC) GOTO 40

KX=MAXOU(JC M)

MIsMINO(JC,MC )+

JK=?

IF {(KXeNEJMAXC of1Re MI (NEJMINC OR.FOUNCIGCTD 25
JKk=1

FOUND=, TRUE,

IF(M] JGT.KX) GOTD 40

DY 30 IM=MI,KX

CG=TM=sC I-ADD

L=IN=-MINCe]

[FIL +GT. 100) GOTO 30
F={CG=GIMIIZ(GLII=G(M))

CY Ly JKI=X (M) eF (Y LS)=X{M})
CYLLyJKI=Y{M)+F2(Y(J)-Y(M])

CONTINDE

1R, JFCLICIGOTO &0

KX=MAXO{MC,IC}

MI=MIND (MC, 1IC ) e

JK =1

1F (FOUNMD)Y J¥=2

ITIME .GT, KX) A0OTO 60

N 50 Te=M] KX

(.C= IM*C [=ALD

La[V-NMIMCe]

FIL «GTe 1001 SOT0H S0
=HLG-GLIPYZiniMY-GITY)

.
H
-
F
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CXELga =T eed Xl -X111)
FY(L o JKi=Y (1) eFn{yY{)=v(T}})
50 COMNTIMUE
6C (OCNTINUE
IK=1
0O 100 lx=},NC
CALL PENNPICYITIH «JK) ,CHLIK,,IX))
jr=13-0K
CALL PENDNICYUIN  JKY,Cet 1W, 4K ) )
103 CONTINUE
150 CONTINUE
CRrehdd b Ao bt Id AR AR UL CAC AR R R AL NI RTL KT AR P IR R B I RAE LT SR K TRP AT HL R RAETRER S

C A
C THESF SYATEMENTS WITH CrMMENT *C* LAREL SOME NF THE MONES WITH THE %
C VALUES OF THE FUNCTICNseeoossseas COHNTOURS ARFE NOT LABELLED v

CRRThE AR r At A AR AL R LT A YN E IV AR R P AR AN AR KRR IR RN E Rt ke SR P IR IR I Fag At AR kg
C 150 IF (DCNECL)) GOYOD 210
XA=X{1)+1P%0,1
YY=Y(I1-0.2
DG=G(1) /LY
[F (MODILT,5) LEQ.O)
LCALL PREMARIYY ¢ XX9=0e0590640e04'F5,2 *%,0.0)
NDONEC 1) = TRUE, )
210 IF (DONE(J)) GOTO 220
XX=X{J)elP20,.]
YY=Y{J)-0.,2
DG=G{J)/LV
IF (MCD(J,51 FJ.0)
1 CALL PFNMRR(IYYo¢XXy=0s05¢DGy0s0,*FS5,2 **,40,01}
DONEL{J)=.TRUF,
220 IF (DCNE{¥)) GOTO 230
AX=XU{VM)+1P=D,1
YY=y{v)-0,2
DG=G(M¥) /L ¥V
IF (NOD(M,S) LEQ.O)
1 CALL PFAMARIYY XX ¢=0e0%¢0G4CeQy'F5,2 29,0.01
NONF{M)=.TRUE.
220 CONTIMYyC
10C0 CONTINUE
RETURN
END

aEzXsskakeEnlzsiasKaEalzsEs ks Re KN aRaNalal o

FUNCTYINN FAIL2II, ITP,ANG,RL,YZ-T,5XySYeSZ,8XY)
Coxixakzr CALCIHATES FATLUPE CPITERPIA #kxsdudprddrdksddnthtidisunwkbtdnkdbdIchntdky

REAL*R SX¢eSYySXY SHySDS7 4 SUAX,SMIN

LNGICAL Y2

COMMON JCOMYI/AREA,D(343),NBLA,61,AK(6,6) R 13,6),PHS(19801),
1 DTFMP{G901,SPRIPS(&6,1900)1,APS (1600),ST( 22,
2 STRESS(4,120001,11v{1920),X{990), 7{000),TATIME,DTIM , HEATM(GA0]),
3 HTIM,EMASS{LIOBRD) «TOAPL9QN) , 2RFAK{ 1900} 4VD,HEAT(920},
4 11019000 ,4001S00),MN{19720),TPL1900),TS{260),
S NCHODEWNDELeNZy Ty IW] oI0n2,IW2, W&, DY NUOT&)yFIRST, FFACT,NEW
REAL®8 Xe Y PHSySTHFESS yDeAK,DRyDTIM¢APEA,STHB,VD

REAL #B TCTIVF,KHTIM

INTEGER®2 J1adJyMYCrNSTR,TFIX,TP,TS

LOGICAL FIRST,FRACT4NEW
CGMMON/PRO/ZEL ¢ ANUL DENSCCNDSCoCV VIS, TEX,AFTA,SG
SH=NSOSRTL(SX=SY)}®x=2+0,25+5XY*SXY)

SD=(SX+SY)/2.0

SMIN=DMINL(SD-SH,S2)

SUAX=D"AX]1({SND#SH,SZ)

ANG=0 s 5EDATAN2 (2 .,0DO2SXY, SX~SY)+1,5708

R1=0.,0

¥YZ=(S1 .EN, SHIN ,0R. S7 +EQ. SMAYX)

IF1(3,0°5MAXESMIN) LT, J.0) ROTD 20

A=SMAX/T

FAIL2=16.0%A%*1A-1)

[Te=1]

RET{IRN

20 [F{SMAX 1T, =4,19»T) GNfO 30

SN=NSOR T4, O=S0% SN SHR SH)

IF (SH JLTs 1.0 JANDGSH ,LT.1.01 SD=1,0

B1=0s RS2 DATAN2{SDSH)
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