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ABSTRACT

An experimental investigation of the g~lvanomagnetic

effects in a particular A7 structure material and a
theoretical study of the symmetry properties of the

transport tensors are presented.

FPor the exnerimental study, arsenic-antimony alloy
sinzle crystals have been grown at the minimum melting
point composition (25.5 at.%As) where the solidus and
liquidus touch on the phase diagram. Dislocation etch
pit studies have been made on the (111) cleavage faces.
Measurements have been made between 1.5K and 300K of the
twelve components that define the low-field magnetoresist-
ivity tensor and of the orientation dependence of the

tensor comnonents q1(B1,32,0), q1(B1,0,B3) and

921(B1 ,0,B3). A least-mean-squares fit to the data has
been used to obtain the model parameters for a two band,
multivalley, ellipsoidal Fermi surface. The alloy model
parameters are compared and contrasted with those of

the parent elements. The alloy is semimetallic.

In the theoretical work, the forms of the magnetic
field dependent transport tensors are established for all
32 crystallogravhic point groups. A formulation of
galvanomasnetic and thermomagnetic effects based on the
separation of the tensor components into "even" and "oda"
functions of the apnlied magnetic field is given. It is
shown that the Umkehr effect is a notural result of the

anisotrony of crystals.
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CHAPTER ONE

L

GENERAL INTRODUCTION

Measurement of the gelvanomagnetic effects has 1onglbeen
a valuable method for obtaining information about the ﬁ%fion
of charge carriers in erystals unﬁer the influence of electrie
and magnetic fields. The elementsl group V semimetals bismuth,
antimony and arsenic have always been among the first m~terials,
nparticularly bismuth, in which new experimental studies of
transnort effects have been carried out. JTow field galvano-
magnetic data on these semimetals have been (following Abeles
and Meiboom 1956) successfully internreted using multivalley
ellipsoidal Fermi surface models by several workersinthe tield,
Similar studies have been c~rried out on certain Bi-Sb alloys
(see Goldsmid 1970 and references therein). The present
concern is to extend these low field galvenomagnetic studies
to arsenic-antimony alloy single crystals grown at the
minimum meltin~ point compnsition (25.5 at.% As) where the
solidus and liquidus touch on the nhase diagram (fisure 6.1) .
A condensed discussion of the exnerimental results and their

significance is given in chapter 6.

However, while the low field g=lvanomagnetic measurements
of As(25.5 at.4)-Sb slloy single crystals (hereafter referred
the 2s-Sb alloy or the alloy) were in progress, there were

two immortsant publications in the field (Fuchser et al (1970)
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and Aubrey (1971) which developed s compact expression for the
magnetoconductivity tensor which is not restricted to the

low field condition. Purthermore Aubrey (1971) derived
explicit expressions for each comnonent of Oij(ﬁ) in terms

of carrier densities and mobilities for the tilted

multivalley ellipsoidzl model of the group V semimetels which
are valid over the .classicel range of magnetic fields. This
formulation, in fact, provides a theory for the so called
intermediate field region in which galvanommagnetic dnta have
not previously been interpreted completely. Galvenomarnetic
measurements in this region (Seunders and Samengen 1972,
Jacobson 1973, Akgdz and Saunders 1974, Samengen et al

1974) are more practical and esster experimentally, capable of
providing more and comnrehensive dats and of wider appliceation
than measurements of low field tensor components. In fact,the
anisotrony of the malveanomrrmetic effects is most pronouncedin
this region. With this develovment a new dimension has been

added to the arer of zalvonomagnetic effect studies.

During our investigrtions of this new area , some basic
questions have come to notice:
is Pﬂ(ﬁ) a tensor?; how does the crysta)l symmetry restrict
its fo;m?: how do we define magnetoresistance and Hall
effect now?; what is the Umkehr effect?eccccccse
A large part of this thesis (section (3.5) aof chapter 3,
chapter 4 and chapter 5) has been devoted to answering these

and related questions.



A few remarks about notation may be found useful.
A vector is denoted by a letterlwitﬁ an arrow attached to it
such as (B,E,...). A two-headed arrow sign is attached to
tensors such as (?,ﬁ,'ﬁ, e.e), but transition is resdily made
to the suffix notertion. Subscrints denote cartesian
comnonents of vectors (or tensors) and run form 1 to 3 unless
otherwise stated. Throughout the text, the Einstein summation

convention 1is used.




CHAPTER TWO

SYMMETRY IN THE A7 STRUCTURE

2.1 INTRODUCTION

The relatively low symmetry of the A7 structure hés a
dominating influence on the elegtronic properties of the
group V semimetals. There have been a variety of
descriptions of this structure in the literature: different
workers have used different definitions of such parameters
as the primitive lattice translation vectors, axial systems,
indices of planes and directions, and unit cells. As a
result it can be difficult to relate the results of one

worker with those of another.

In this chapter the more commonly used crystallographic
conventions are collected and comvared and the appropriate
transformations from one to another are presented. One
problem has been the choice of a particular convention
on which to base this study. For reasons which will be
dealt with in the course of this chapter, a right-handed
crystallographic orthogonal set has been shown to be the
most convenient axial set (both in resl and reciprocal space)
for use as a frame of reference for the A7 structure. The
major purpose of this chapter is to give a complete
description of the A7 structure on this bhasis. One
particular difficulty discussed is the classification of the

A7 structure into a crystal system.



‘The point symmetries of the Brillouin gone appropriate
to the A7 structure are listed. These symmetry points
display the possible location of the Permi surface pockets
in the Brillouin zone.

2.2 THE RHOMBOHEDRAL SPACE LATTICE AND THE A7 STRUCTURE

Arsenic, antimony, bismuth and bismuth-antimony and
arsenic-antimony solid solutions crystallize in the A7
structure (arsenic structure) which belongs to the point
group 3Im (Dad)._ The A7 structure, which is based on a
rhombohedral space lattice, is obtained by associatiné a
basis of two atoms with each lattice point. The most
symmetricel point group in each crystal system is called
holosymmetric; 3m is a holosymmetric point group.

This poiht group consists of the following symmetry operations:

Symmetry operation Description of the operation
E the identity:
+ - 2n _2n
03, 03 rotations of +T- and 5

about the trigonal axis;

351- dézv 0}3 three two-fold rotations about
axes perpendicular to trigonal
axis;

I the inversion;



S¢» Sg rotntions of -K/3 and +%/3 about
the trigonal axis, followed by
inversion.

% 9 %3 three reflection planes containing

the z-axis, which make 120°:angles
with respect to each other, and are
each perpendicular tome -of . the two-
t;ld axes (Céii-dai; i =1,2, and
3).

Positive rotations are defined as anticlockwise. Thus the
symmetry elements of the A7 structure comprise 3 diad

(binary) axes normal to three mirror planes, mutually

oriented at 120°, which intersect in an inversion triad

(trigonal) axis.

Each lattice site of the rhombohedral space lattice
has the point group symmetry Im. There are three
primitive translation vectors of equal magnitude and
usually denoted by a = |3i| = I Ezl = |E§| . : The
angle between any 31 (1 =1, 2, 3) is called the
rhombohedral angle : the restrictions 1mposed'by the

requirement of rhombohedral symmetry are
a120°, =60°, #90°, #109° 28' . (2.1)

The two restrictions & #60° and @ #109° 28' do not
appear in any of the commonly used textbooks of solid state
physics. The following seven space groups possess the

rhombohedral space lattice:
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R3(c}), RI(s), R32(D]) R3e(cS,), KIm(03y), R3m(c3,),

R3e(DS,) .

Two of these space groups R3c and R3c are nonsymmorphic,
that is they have nonprimitive translations such as glide
DPlanes or screw axes. However, the space group R3m of
interest here is symmorphic. Pigure (2.1l) shows the
rhombohedral space lattice in which primitive rhombohedral

and hexagonal unit cells are drawn.

The origin can be placed either at a lattice point or
_at an atomic site_(both have been used in the literature);
this choice makes no difference to unit cell volume or to

the directions of lattice translation vectors Ei but it
does, of course, translate their origin along the threefold
axis. Pigure (2.2) shows the same hexagonal and primitive
rhombohedral unit cells constructed when the origin is taken
at an atomic site. However, in the present work (following
the International Tables for X-Ray Crystallography) a
lattice point (which is an inversion centre) is chosen as the
origin. It must be emphasized that in the A7 structure there
is another inversion centre which is the centre of the
primitive rhombohedral (prh) and face-centred rhombohedral
(fer) unit cells in real space - this corresponds to the T

point of the first Brillouin zone in the reciprocal space.



Four types of axial system can be used to describe
crystals having the A7 structure and their various physical
properties. Each axial set is associated with a unit cell

in the following way:

(1) The crystallographic orthogonal set—sWigner-Seitz
unit cell. .

(1ii) Rhombohedral axes —eprimitive rhombohedral unit cell.

(iii)Hexagonal axes—ehexagonal unit cell.

(iv) Pace-centred cubic orthogonal axial set —eface-centred

rhombohedral unit cell.

We now proceeed to define them in turn and study their
relationships.

(1) A crystallogranhic orthogonal axial set is
defined in the A7 structure in the following way: the
g-axis coincides with the three-fold (trigonal) axis, the x-
axis with one of the three two-fold (binary) axes, which
are each perpendicular to one of the three mirror planes, and
the y-axis (bisectrix) completes the orthogonal set. It is
often convenient and necessary, from both experimental
and theoretical points of view, to specify a (+x, +y, +8)
right handed set. A lattice point is taken as the origin,
see figures (2.1), (2.2), (2.3), (2.4) and (2.5). In
figure (2.5), the positive direction of the primitive



translation vectors are chosen outwards from the origin;
the Ki are shown projected onto the xy plane and their
projections are labelled [Eiprh ]proj' The +z direction

is defined along (&, + 3, + 43). Three options obtain for
choice of the y-axis, namely along each of the directions
[aiprh ]proj‘ i%prh ]proj is taken and the +y direction

is defined along this projection outwards from the origin.
The +x completes the right handed orthogonal axial set.

In the orientation of the crystals used here, +y and -y
directions have been identified in two ways firstly from the
symmetry shown on the Lsue-back reflection pictures, secondly

from the orienta?ion of the triangular etch pits on the xy

plane; these experimental techniques will be explained in
detail in a later chapter.

The Wigner-Seitz unit cell is the smallest cell which
can be constructed from the plane perpendicular bisectors of
vectors from the origin to other lattice points. This is
the smallest volume from which the entire crystal can be
reproduced by translation through the primitive translation
vectors. This unit cell automatically displays the point
symmetry of the crystal and because of this property it is
called the symmetrical unit cell. TPigure (2.6) shows a
drawing of the Wigner-Seitz cell of the A7 structure and
includes the (+x, +y, +3) orthogonal crystallographic right
handed set and also -éii. It is bounded from above and
below by the plane perpendicular bisectors of the primitive
translation vectors & &, & &5, & ®3; the other sides
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which are normal to the xy plane are detegmined by the plane
perpendicular bisectors of the vectors :(31 - Eé),

(& - 33), +(3, -'33). These sides intersect the xy plane
in a hexagon, see the inner cross section of figure (2.5).
The centre I' is a lattice point and has the full 3m point
group symmetry.

The primitive translation vectors in the rhombohedral
space lattice can be written in the crystallographic

orthogonsl axial system as follows

3& = i; st - %59 + r3,

.52 = 89 + r%,

T, B e - 3oy + . (2.2)

where %, ¥, Z are unit vectors along the crystallographic

X, Yy, 2 axes, and s = a3 cos8f¢ and r = a 8ing ; 6 is the
angle between 31 and its projection on the xy plane. The
relationships between '32prh (or in short notation Eé),

8, and r are shown in figure (2.3). The parameters s, r, and
¢ are listed in table (2.1) with the pertinent crystal

structure parameters of the A7 structure semimetals.

(11) The primitive rhombohedral unit cell is a
parallelepiped with edges 3&.'32, ;5 (the primitive translation
vectors). This unit cell is shown in figure (2.1) when a
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lattice point is chosen as the origin and in figure (2.2)
when an atomic site is the origin. There are two atoms

per prh unit cell located at the positions 3ur2 and

(3r - 3ur)® along the trigonal axis. The length of the

body diagonel of the prh unit cell is 3r = | (%, + &, + &y)| .
The distance along the body diagonal from the origin

to the nearest atom in the cell is 3ur and the shorter distance
along z-axis between adjacent atoms is6ur. When O = 60%;
the value u = % corresponds to the face centred cubic
structure. The position of any atom in the A7 structure
relative to the origin is

. R(p) = f{n + (2p.- 3) ur? (2.3 ...

where p = 1 or 2 and

- - -

tn = nlal + nzaz + n3.53 ) (2 04)
T’n is a general vector in rhombohedral space. When Nys Ngy
and n, take integer values ?n becomes a rhombohedral lattice
vector. If the indices of a direction are defined as the
components of a vector in real space, then they can be
designated as [n:l n, n3]prh where ni(i =1,2,3)
represent a direction referred to the primitive translation
vectors '81 and thus are related directly to the prh unit cell.
By combining equations (2.2), (2.3), and (2.4), the position

vector can be written in the crystallographic axial set as

-R.(’) 34 (nl - n3) X+ %a(-nl + an - n3)§ + {(n1+n2+n3) +
+ 3(2p—3)u}r2 . (2.5)
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The following relationships between r,s and the prh unit

cell parameters hold

r=a2as8ing = M,
Vi

8= acoss = 2V2(1 - coso) | 2.6)
73 (

Thus, the ratio -E- is related to the prh angle OL by

r _ ¥YQ + 2 cosod ] (2.7)
8 v2(l-cosoe)

When this ratio takes certain_speclal values, the rhombohedral _ _

space lattice transforms to one of the space lattices below:

1) % =v2, a-= 60° Pace-centred cubic space lattice.
2) £ - é, oL= 90° Simple cubic lattice.
3) § = EJ\&_' , 0= 109° 28' Body-centred cubic space lattice.

These three cases correspond to the restrictions on the
rhombohedral space lattice given in equation (2.1). The
rhombohedral space lattice, which the A7 structure is based
upon, lies in the range §>\ﬂ' and ‘oz <60° (see table
(2.1) for the values of ;s: and oL of the A7 structure
semimetals). The volume of the prh unit cell is given by

the scalar triple product of the primitive translation vectors

7



- 13 -

V3 2. .
Von =& - (B A2y =t r (2.8)
Referred to the prh axes, the indices of a direction will
be designated by [nl n, n3]prh and the Miller indices of

a plane or parallel planes by (hkf) A set of equivalent

prh’
directions and a form of planes will be designated by

<:n1 n, nj> prh and {hkl}prh respectively. The directions
[lll]prh' [IzI]prh’ and [IOI]prh correspond to the +2

(+ trigonal), +y (+ bisectrix) and +x (+ binary) directions

respectively; (111) is the cleavage plane.

prh

(i1i1) The International Tables for X-Ray Crystallography

give hexagonal axes as an alternative to prh axes for R3m
crystals. These axes have often been referred to by workers
measuring the lattice parameters of A7 structure crystals.
They can be oriented in two different ways relative to the
primitive translation vectors 31. These so-called "obverse"
and "reverse" settings are shown in figure (2.1) as

(31 hex’ 32 hex’ 3hex) end (Ei hex’ ;é hex’ Ehex)
respectively. In this work the "obverse" orientation is
adopted. The ahex - axis coincides with the z-axis;

%) yex and '32 nex 2Xes are at an angle of 120° to each
other in the xy plane (see figure 2.1). The hexagonal

unit cell, which is constructed from &, , —, &5 y.» and
Chex Dases vectors, is triply primitive and contains six
atoms. The hexagonal unit cell edge vectors are expressed

in the crystallographic orthogonal set as
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8 pex = ’% sk - '3’ sy
-5-2 hex * l;si+%s§ ’
€iex = 3 TS (2.9)
The volume of the unit cell is given by
Vhex = 1 hex® (82 hex\ Chex) = Vpm" '2f£3 o°r .

(2.10)

The relations between the hexagonal and the prh unit cell

parameters are

% nex| - |-5-2 hexl = 3s = aVZ(l-c;;&i, |
S hex = 3r =ay3(l+ 2c080 ) . (2.11)

To index the cryst~llographic planes =2nd directions
of the A7 structure crystals referred to the hexagonal
unit cell, either a three or four sxes may be used. The
fourth-axis shown in figure (2.5) in the xy plane and
coincides with the(—x)direction. Thus, it is given by

-53 hex ° ‘(31 hex * a»2 hex) = = V3 s . (2.12)

Referred to the trree hexagonal axes, a direction, a set

of equivalent directions, a plane and a form of equivalent
planes will be represented by [n1 n, n3 ]hex’

<n1 n, n3> hext (MXL)paer ond {hk“hex respectively.
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The Miller-Bravais (four-axis) indices for planes (hkif)
are obtained from the three-axis indices when the condition
h+k+1=01i1is imposed. The indices of a direction
referred to the four-axis (four-index) hexagonal system

can not be easily obtained from the three-axis En1,n2 n3]hex
indices (for discussion, see Bloss 1971). This has not
been pointed out in the literature for R3m crystals and
incorrect four-axis (four-index) directionzl indices have
been used (for example, by Doershel 1972 and Windmiller
1966). However, if the four-axis (four-index) directional
indices are represented by [uvtw] such that t = -(u+v),

then the three-axis directional indices [n1 n, n3]hex are

obtained fr;;_the following equations:

n1=2u+v,n2=u+27,n3ﬂw

or
u = %-(Zn1 - na), V= %(an - n1), t = =(u + v),
W = n3.

(2.13)

For example, the direction [101]hex referred to the
three-axis hexagonal axes corresponds to %[2113] direction
referred to the four-axis (four-index) hexagonal axes. The
four-axis (four-index) directional indices have the advantage
over the three-axis (three-index) indices that similar

directions have similar indices.

T Not to be confused with the atomic position parameter
u in equation (2.5)
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(iv) The yz and xz cross-sections of the face-
centred rhombohedral (fer) unit cell are shown in figures
(2.3) and (2.4) respectively. In figure (2.5) the fer
unit cell.translations"ii for Bare shown projected onto
the xy plane and their projections are labelled [ai fcr]pioj
To be consistent with the other unit cell settings the
projection [32 fcr]proj is taken in the -y direction, see
figure (2.3). The 31 pep are expressed in the crystall-

ographic orthogonal set as

3i for ™ -V3 8% + 8§ + r2,

8 fer_ " _Tgfi_f_f?? L
-8..3 for = ﬁ Bi + Bi + rao (2.14)

The fer unit cell contains eight atoms and the volume of

the cell is given by

Veer = YVorn ® 81 for ° (&, fer/\ah gor) =

6 V3 s°r. (2.15)

The body diagonals of the fcr and prh unit cells are the
same. The relation between the prh unit cell parameters

and the fer unit cell parameters is given by
-a.:l for ‘ =V 492 + 1'2 = a\[(3 ~ 2cos0). (2.16)

The axial angle afcr between any two .31 for (1 =1, 2, 3)

is related to the prh angle OL by
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2cos QL - 1
cos chr = -%ﬂmjl . (2.17)

Referred to the fer unit cell, the interplansr angles and
angles between directions in the A7 structure materials
have been calculated by Salkovitz (1956), Vickers (1957)
and Bacon et al (1964). Tor the indices referred to this
cell, the convention that will be adopted here is the same
as that for the prh and hexagonal unit cells with a
subscript fer. The directions [lll]fcr’ %[IZI]fcr’ and
%[IOI] pop COrrespond to the +z, +y, and +x directions

respectively.

‘The reason that many workers in the field have pr—xosér_l
to use the face-centred cubic (fcc) cartesian axes is that

there is a close relationship between the space lattice of

the A7 structure and the fece space lattice (see Talicov and

Golin 1965). The primitive translation vectors 31 are

expressed in this cartesian axial set as

31 = ao {O, 1,1} )
4 = a, {1,e,1} ,
g = a {1, 1, e} . (2.18)

where { }| 1indicates rectsngular coordinates. The

parameter € is related to the prh angle QL by

cos & = (z: . (2.19)
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and e = O corresponds to O= 60° (which is the fcc lattice)
so that ¢ is a messure of the distortion of the lattice

from fcec. The parameter 8, is related toe and a by

a8, = — . | (2.20)

All these parameters have been calculated and are

collected in table (2.1)

2.2.1 Relationships between Miller indices referred to

various axial sets

__Each unit cell considered above may be convenient for

studying different properties of the A7 structure crystals,
80 it is often necessary to know how the Miller indices

of planes and the indices of directions alter when the
choice of the unit cell is altered. To this end, we will
give the matrices representing the transformations of the
Miller indices of planes and the indices of directions
from one unit cell to the other and vice versa. The
Miller indices of planes will be denoted by a column
matrix in a round bracket with a subscript specifying the
unit cell under consideration (i.e. prh, hex, fer). The
following matrix equations represent the transformations

of the Miller indices of planes:

1) The transformation from the prh unit cell to the

hexagonal unit cell is
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1 I o0 h h
111 L prh L hex

and the reverse transformation equation is

2 1 1 h h
% T 11 X - X (2.22)
121 L hex prh

2) The transformation from the prh unit cell to the fer
unit cell is

I 11 h
1 = (2-23)
111 J L

prh fer

and the reverse transformation equation is

0 1 1 h
3 1 0 1 k = | x (2.24)
110 £ fer £ rh

3) The transformation from the fer unit cell to the

hexagonal one 1is

T 10 h h
% 1 I Kk = | X (2.25)
2 2 2 l fer L hex



- 20 -

and the reverse transformation is

¥ 2 1 h h
% 2 7 1 X = X (2.26)
2 4 1 £ ex J or

The indices of a direction will be designated by a
column matrix in a square bracket with a subscript svecifying

the unit cell. The matrix equation that transforms the

indices of a direction

1) from the prh unit cell to the hexagonal unit cell is

_____ > T 1\ [nl] nJ o
3 11 2 n, - n, (2.27)
l 1 1 n n
! 3. prh L 3.hex

and the reverse transformation is

[ .
l 0 1 n, n
11 n, = n, (2.28)
o T 1 n n
L 3Jnex L 3-prh

2) from the prh unit cell to the fer one is

- - . -
0 1 1 ny ny
% 1 0 1 n, - n, (2.29)
1 1 O n n
L %.prh L 3Ifcr
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and the reverse transformation is

T 11 [, | 1| |
1 T 1 n, = n, (2.30)
11 7T

.n3. fer Ln3d prh

3) from the fer unit cell to the hexagonal unit cell is

T 2 2 n, | n, ]
1 1 1 n n
3 for | 3hex

I o 2 nﬂ 'nl-]
% 1 T 2 n, = n, (2.32)
0 1 2 n n
! 3. hex L 3_ fer

where the three-axis hexagonal basis is referred to for

the hexagonal indices and the usual matrix multiplication

is used throughout.

2.3 WHICH CRYSTAL SYSTEM DOES THE A7 STRUCTURE BELONG TO?

There are problems associated with the classification
of materials belonging to 3m point group into a crystal
system. The 32 point groups have been collected into sets
called crystal systems according to the highest-ranking
rotation axis which they contain. In this classification
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crystals with one triad (3 or 3) axis are said to belong

to the trigonal system and those with one hexad (6 or 8)
axis to the hexagonal system. Many crystallographers group
these two systems into an all-inclusive hexagonal system
because a crystal with a single principal axis either 3 or
3 may have either a hexagonal or rhombohedral lattice.
Other authors subdivide into hexagonal and rhombohedral
sub-systems; the basis of this classification rests on
lattice type rather than on the minimal symmetry. zThe
point is that some crystals belonging to the 3m point group
are built on a primitive rhombohedral space lattice for
which a primitive rhombohedral unit ce11 can always be

chosen, while other crystall belonging to the same point
group are built on a hexagonal space lattice for which a
hexagonal cell must be chosen as the primitive cell. As
can be seen from figure (2.7), crystals belonging %o space
groups R3m (Dsd) and R3c (Dsd) have a rhombohedral space
lattice while those in F3lm (Dld), P3Te (D d)' Piml (D3d)’
P3cl (ng) have a hexagonal one. The symmetry of.the
lattice points of these two space lattices is different,
namely 3m for rhombohedral, and 6/mmm for hexagonal.

The space group for the A7 structure (arsenic structure)

isogonal with point group 3m is Rim.

To study the symmetry of electronic wave functions
in the A7 structure the symmetry of the Brillouin zone
(which i8 directly related to the rhombohedral space lattice)
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is usually considered. The suggestion that any crystal with
a 3~fold or a 6-fold axis is referred to a hexagonal system
and a multiple unit cell be taken for rhombohedral crystals,
which seems to be suppérted by many crystallographers
including among others Buerger (1971), Azaroff (1968), is
not practical in the theory of the Br;llouin zones and in
the study of electronic properties of A7 structure crystals.
We leave this controversial problem (i.e. into which crystal
gystem uld the A7 structure be classified?) to crystallo-

graphers and go on further to study the symmetry of the
reciprocal lattice of the A7 structure.

2.4 THE RECIPROCAL SPACE LATT™ICE

The primitive reciprocal lattice translations 3; are
defined in terms of the primitive rhombohedral translations
by the following equations:

- B A 3&
bi = 2n  _3

> -5

or bi . aJ = 2“513 (2.33)

where i, j, k =1, 2, 3 and ‘13 is the Kronecker delta. The
periodic repetition of 3; generates the reciprocal space
lattice. A right handed orthogonal set (which coincides
with the crystallographic orthogonal set defined in section
2.2) will be represented in reciprocal space by Ky~ ky-,
and k- axes with unit vectors %, ¥, and 2 along these
axes. By using the equations (2.2) and (2.33) the primitive

reciprocal translations'ii are expressed in this orthogonal



set as
> 2n A 2T A 2r A
b = X - =y +5=12
1 V3 s 3s Ir
b, = Ar s 285
3s 3r
> 2n A 2K A 2 A
b = X ~—=y+=13 (2.34)
3 V3 s 3s ir

where s and r have been defined in section (2.2),
The angle B (the primitive reciprocal rhombohedral angle)
between any two'ﬁi is given by

2 2
cos B = _125_:_2251 (2.35)
(8€ + 4r°)

and this angle is related to the prh angle O by

cos § w=--S08% . (2.36)

(1 + cosax )

The restrictions imposed on the prh angle O. by the
rhombohedral snece lattice are also impored on the
primitive reciprocal rhombohedrrl angle 8 by the reciprocal
lattice. The lengths of the primitive reciprocal lattice
translations are equal to each other and they are related

to the prh unit cell paremeters by
— ->» -
AR EEE

_ 2=n \/1 + Cos 0t . (2.37)
= Ta il - 005a§ (1 + 2 Cosol)
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A general vector in reciprocal space is given by

when h, k and f are integers, the vector § becomes a
reciprocal lattice vector such that its head and tail
coincide with recinrocal space lattice points. In reciprocal
space a direction and a plane will be denoted by
[hkﬂ]* and (nxf)" respectively{ both refer to primitive
reciprocal translations. The direction [hkﬂ]* is

perpendicular to the plane (hk[) with the same

orh
indices. Thus Miller indices of a crystallographic plane
can be defined as the comnonents of a vector in reciprocal

space. By using the equations (2.34) and (2.38), ¢

becomes
G = —2;-58— (h=f)% + %—'s-‘- (-h+2x=-£)¥ + -%% (h+kx+ L) 2
= kxi': + kyj'r + k2, (2.39)

Falicov and Golin (1965) have started from the fcc
cartesian axial set in resl sp=ce (equation 2.18) and have

expressed the primitive reciprocal lattice translations as
by = b, {-(1+.),1,1},
By = b {1,-(1+e).1},

By=b, {1,1,-0+ e)} (2.40)
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where bo is related to ¢ and a by

2
v o2nyefe2 . (2.42)

° a ( 92 - e +2)

The parameters b,8, b, eard the volume of the first Brillouin
zone (VBZ = (2u)3/vprh) for the group V semimetals have been
calculated and are collected in table (2.2). A comparison
between the equation (2.2) and (2.34) shows that the reciprocal
lattice to the rhombohedral space lattice is itself
rhombohedral. Thus, the unit cells that we have studied in
section (2.3) ean also be associated with the reciprocal
lattice. However, in reciprocal space we will only study the
symmetrical properties of the first Brillouin zone (i.e. the

symmetrical unit cell in reciprocal space).

2.5 SYLLETRY OF TWE BRILIOUIMN JOME IM THE A7 STRUCTURE

In reciprocel snace, a symmetrical unit cell can be
constructed by constructing the nlane perpendicular
bisectors of the vectors connecting the origin (which is a
reciprocnl lattice noint) to all reciprocal lattice points
and then by taking the smallest volume about the origin
enclosed by these intersecting planes. The zone constructed
in this way is known as the first 3Brillouin zone. To
label the irreducible renresentations of symmetry noints
uniquely, it is convenient to restrict the wave vector i
to the first Brillouin zone. In this convention ¥ is
called the reduced wave vector and the Brillouin zone the
reduced zone (from now on we will use the expression the

Brillouin zone instead of the first Brillouin zone).
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Figure (2.8) shows the Brillouin zone apnropriate to the
A7 structure crystals. Although the geometrical shape of
this Brillouin zone has been presented by many authors (see
for example: Mase 1953 , Jones 1960, Cohen 1961), there
has been a tendency for sm~ll errors to creep in which have
been proliferated throughout the literature. The boundary
planes above and below are the planes normal to and
bisectors of the vectors :(3i + 3é + 35). These two faces
are regular hexagons and are parallel to the trigonal plane.
The six foursided faces (rectangles) are determined by the
plane perpendicular bisectors of the vectors i(%i + 3é),
i(ﬁi +'35), ;(3é +'33). The remaining inclined six-sided
faces (irregular hex~gons) are the_plane perpendiéulé;
bisectors of the vectors + 3&, + sé, + 33. A simple
description of the shape of this zone can be given in the
following way: it is constructed from two types of sides,
long and short (eighteen of each). The lensth of the
long and short sides are equal to the sides of the rectangles.

The sides of the regular hexagons are long.

At absolute zero the energy states of a crystal will
be filled with electrons - in accord with the Tauli exclusion
princinle - up to an energy level (called the Fermi level)
such that all electrons in the system are accounted for.
That surface in reciprocal space separating the full from the
empty states is celled the Fermi surface. Tlectrons well
inside the Permi surfsce cannot be excited thermally or by

electric or masmetic fields because the states within the
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appropriate energy range are -~lready occupied. Only the
electrons near the Permi surface can be excited and hence

electron transport is mainly due to these electrons.

It is well known that in the band structure of a solid,
the energy %, as a function of the wave vector'i, has the
point group symmetry of the crystal (Jones 1960), a result which

may be expressed as
E(R;k) = E(K) (2.42)

th

where Ri is the 1" point group operation.

In addition time reversal symmetry imposes a centre of

inversion

B(k) = E(<k). (2.43)

BEquations (2.42) and (2.43) imply that, whether the full
symmetry of the crystal has an inversion element or not,
the energy E, as a function of the wave vector'i possesses
inversion symmetry. Thus, constant energy surfaces in
general, and the Permi surface in particular have the

symmetry of one of the following Laue groups:

2 222 4 422 2
I, a0 =25, L, 255,73, 3=
6 622 2y A2
m* mmm' m-? m>m°

A Laue group is a point group which contains the inversion

"I" as an elemert. The associated Laue group of the 21
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remaining point groups may be obtained by taking the direct
product of the point zroup under consideration and the
inversion group 01; for example, the point group D3d(§ %)
is the direct product of D3 and ci i.e.

Dyg = D3 ® C4 (2.44)

where Schoenflies symbols are used for the point groups.

Due to this, in group theory, Laue groups are called

inversion groups.

Following the recent works by Jan (1972) and Cracknell
(1973) we give a procedure to identify the space group of
B(k) in crystals. If the space group of a crystal is known,

the space group fof its constant;énergy surfé;;'ﬁ(ijuiﬁ_
genersl and its Fermi surface in particular can be found by
three steps: firstly, find the associated symmorphic space
group of the space group of the crystal (this can be found
by using the International Tables for X-ray Crystallography
1952); secondly, if the inversion "I" is not an element of
this symmorphic space group, add "I" to it as shown in
equation (2.44) for the point groups; thirdly, find the
space group of the associated reciprocal lattice of this
final space 7roup. Twenty four possible Fermi surface sym-
metries have been found and listed by Jan (1972). In fact,
these correspond to 24 space groups which are the symmorphic
space groups associated with the 11 Laue groups. The point
group 3m of the A7 structure is a Laue group itself. When
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3m 1is associated with a hexagonal space lattice, the
symmetry of the Fermi surface is either P31m or P3ml
devending on the relationship between the basis E& and the
mirror planes (see figure 2.7a and b). On the other hang,
if 3m is associated with the rhombohedral space lattice
(which is the case for the A7 structure crystals), the
symmetry of the Fermi surface is R3m (or ng).

For multivalley constant-energy surfr~ces, the formalism
given in the preceding paragraph may not be the most
convenient way of studying the symmetry properties of such

surfaces. It may be more convenient to consider the point

group symmetry of the individual pockets on their own. For
the particular case of the A7 structure of interest here,
points of high symmetry on the surface and inside the
Brillouin zone (firure 2.8) are given in tables (2.3) and
(2.4) respectively; in tables (2.5) and (2.6), resnectively
are given the symmetry of the lines on the surface and inside
of the Brillouinr zone. We follow the notation used by Cohen
(1961) for the symmetry points and lines of the Rrillouin
zone. In addition, we introduce some more points and lines
of snpecial symmetry and label only one twelfth (in volume)

of the Brillouin zone which is named the "basic section"

of the zone. The whole Brillouin zone is obtained from this
basic section by the symmetry operations of the point group
3Im. The point symmetries and their elements are listed in
the third columns of tables (2.3) and (2.4). Referred to the
right-handed crystallographic orthogonal set which is
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uniquely represented in reciprocal space by (+kx, +ky,

+kz), we give for the first time the coordinates of the
symmetry points in the second columns of tables (2.3) and (2.4)
In the second columns of tables (2.5) and (2.6), we list the
special lines; for exampnle, in table (2.5), (T,¥) represents

a line on the surface of the Brillouin 2zone with T and W

its end points. The point Q in the first column of table

(2.5) represents a point anywhere on the line (T,W).

Referred to the same (+kx, +k

y
of the points (which nre located arbitrarily on the

’ +kz) set, the coordinates

corresponding line) are given in the third columns of tables
(2.5) and (2.6).

To explain the contents of tables (2.3) to 2.6) ,

the following notes can be considered:

(i) Por the point symmetries we use the International
symbols, and for their associated elements Schoenflies

symbols are used.

(11) The range of the values of the variables kys ko, and

y’
kz are calculated to be

IA

2
kx K = — (4 +;;r)

ky| <

2
n
(4 +f§fﬁ

it
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where numerical values of s and r, for the A7 structure

semimetals, are given in table (2.1).

(111) The relative setting of the associated symmetry
elements of the symmetry points are referred to figure (2.9).

(iv) The multiplicity factors, which are listed in the last
columns of the tables, represent the number of equivalent sym-
metry points (which are obtained by applying 3m symmetry
elements about I') in the first Brillouin zone.

(v) The symmetry points, which are equivalent as far as
“the consfant:eﬂé;éi_éiizgéoias—aré concerneﬁ, are grouped—
together and the associated multiplicity factor is

calculated by considering the total number of these points

in the first Brillouin zone.

(vi) The Fermi surface pockets can be centred on any of the
symmetry points of the Brillouin zone. The number of the
pockets can be determined by the multiplicity factors (as

an example, for antimony, see Palicov and Lin 1966).

To summarize, it may be said that tables (2.3) to (2.6)
revresent the symmetry of the Fermi surface of the A7
structure and display, the conditions imposed on the Permi

surface by the crystal symmetry.



TABLE (2,1):

the group V semimetals. |3, |,

%

Room temperature crystal structure parameters of
h’ and u for As,
S8b, and Bi are taken from Schiferl and Barrett (1969).

As(25.5 at %)

Parameter Bi Sb As =-SHb
1% |=a 4, 7458 4.5067 4,132 4.418
% rn= @ 57.23 57.11 54,126 56,2
u 0.23389 0.23349 0.22707 0.232 +
|a1 hex] 4, 5460 4,3084 3.7598 4,1618
[Cpex | 11.862 11.2740 10, 5475 11,1222
r 3.9541 3. 7580 3.5158 3. 7074
s 2,6245 2,4875 2.1707 2,4028
r/s 1. 5066 1.5107 1.6197 1.5429
f 8 56.43 56. 50 58,31 57.05
. __5;;;__ - 70. 7608 60,4136 43,0403 55,6105
&, eerl 6.5716 6.2348 5.5866 6.0695
@, 87.53 87.42 84.60 86. 58
¢ .41739 .43543 .88288 .57205
a 3.2185 3.0456 2,4784 2,8960

Units: 31(1 = 1,2,3), '31 hax(i = 1,2), Ehe‘, r,s, 3; fcr(i = 1,2,3),

a,, in Angstrdms;

“prh’ & @gor

vprh’ in (3)3; u and ¢ are constants,

, in decimal degrees;

+ estimated by assuming a linear change of u throughout As-Sb
solid solutions,



TABLE (2.2):

Room temperature reciprocal lattice

parameters of the group V semimetals,

As(25.5 at, %

Parameter Bi Sb As -Sb
B, = 1.6816 1.7738 2,0195 1.8325
B 110. 56 110. 60 111,68 110. 94
b, 1.1112 1.1761 1.3367 1.2361
Vaz 3.5054 4,1059 5.7632 4.4605

sz’

1;t(1 = 1,2,3), b, in fngstrims;

in (x)-3; B, in decimal degrees,



TABLE (2,3):

Points of high symmetry on the surface of the

Brillouin gzone, The coordinates of the points are
referred to the right handed orthogonal set

(+k‘. +ky, +k') and the origin is at T,

Point coordinates Point symmetry Multiplicity
and the factor
assoclated
elements

T (0, 0, & 3m:E C=, C!, C!.C!
' 3 21 "22723 1
+
I 8% %1 %2 %a3
2r n_ 2,

L (0,35 37 mEC'g Iy 3
X (-5, % 28y 250 14 3
/38 38 3r m 22 d2

K £ ¢, ££,0) 2:EC' ]
A1 e T tmo L
P 6
2n
K' ( =-£ —fl" r =Ey 2. ¢'
&/3s ! 68 3r 22 ‘
W (—Z-¢ Ey 2:gc¢' 1
3/3s 2’3- 2’ r ) 23
4 6
2n .
W' (f5, 55t 35 2B C'y
x x .
U (27= T 6. 2. =) m:E %42 A
) ] >
u' (m f2 6—'fi 3r) n:E 0, 6
Z (0. 3. 2. ") m:E Cdz p
-
N o, & T 1, 0) m:E %41
.3 2n . s
N' (0,—;51: -3—1,) m:E %41 6
z 1: .
N" ( m'fl, 1.z'fl,o) m:E 04, )
2
£, =6+ D2, 8 20D g, = 2-D% £, = 2D,

- X 2_ T
£3 = 37 Vés-f, + 3t



TABLE (2.4): Symmetry points inside the Brillouin zonme,

The coordinates of the points are referred
to the right handed orthogonal (+kx, +ky, +kz) set.

Point Coordinates Point symmetry and Multiplicity
the associated elements ‘factor
Am ¢ + o ' '
r (0,0,0) 3m:E 03 Cc 210 zzc 23
1
I si c,, 0,, 0
6 dl d2 a3
H (O,ky kz) m: E 0&1 - 6 )
G (k ,ky,k') 1: E 12




TABLE (2.5):

Lines of symmetry on the surface of the Brillouin
gone (see figure 2.8). The coordinates of the points,
which are located between the end points of the
indicated lines, are referred to the right handed
orthogonal (+k!, +ky, +k') set, '

Point symmetry

Point Location Coordinates and the Multiplicity
Line associated factor
elements
®
Q (T,W) (k:,»/sk‘, ) 2: EC'yy 6
M (T,U) (/Eky,ky. f ) m: B &,
6
T
M' (T,2) (o, ky, ;) m: B %41
2r x
Y (W', L) . (kx’ 38’ '5:) 2: E 0'21 6
RO @LED (kg k) mE%
6
R' (z, N') (o, ky’ k.) m: E cdl
v (X,K') _, k_, 25 2: EC 6
' x’ "y’ 3r ) 22
S (u,X) (/sky, ky’ k.) m: E %42
6
s! (x, u') (./iky. ky, k,) m: E oy,




TABLE (2.6):

Lines of symmetry inside the Brillouin zone (see

figure 2.8), The coordinates of the points, which
are located between the end points of the :l:ndi.cated
lines, are referred to the right handed orthogonal

(-l-kx, +ky, +k’) set,

Point symmetry and

Point loi:::on Coordinates thee::;: :::ted Mul:izt::ity
A (r,T (0,0,k ) 3m: E CF o, } )
(1 =1,2,3)

b (T',K) (k‘,./:'ak:.o) 2 : E,C), 6

A (NI (/Bky_,ky.%! k) miEo, _ 6

A (F,L) 0k, -;—tky) m:Eoy, 6

b (T,2) (o,ky,%;-;ky) m:Eoy, 6

F (I',N) (O.ky,o) m:E %41

F' (I',N") (ﬂky,ky,O) m: E %32 °

8,2
£2-2-(;)



FIGURE (2.1): Theobverse" (d"“ Aopex ,Eh“ ) and “reverse"

(@ hex s ¥2hewhex ) S0ttings of the hexagonal unit cell and
the primitive rhombohedral unit cell (d, .3, ,8,) drawn n
the rhombohedral space lattice. The common origin of the
unit cells is a lattice point. The (+x,+y,+z) right handed
crystallographic orthogonal set relative to the unit cell
axes is shown. The prh angle q is also shown.



FIGURE (2.2):

Chex
2
Q
'
TR § ’
s
VARIE
: ‘l\ I'{‘
H "N\ +
L b
1312 1 '
] [] LI |
A o e
1 3 .'L._ \
A Zhex
R A e
3,ihex

The prh unit cell and the two

equivalent hexngon=l unit cells of

the A7 strunture; heavy dots renresent
atomic sites. The commonr oriegin of

the unit cells in an atomic site. Notice
that r is the origin of the unit cells
shown in fisure (2.1). The (+Xx,+y,+2)
set is also indicated..



FIGIRE (2.3):

(+y, +2) Cross-section of the A7 structure.
Ponr mit cell cross sections are shown.

(i.e. prh, hex, fer, and Vizner-Seitz unit
cells). Circles represent the positions of the
atoms and dots are the rhombohedresl lettice
points.,



FIGURE

(2.4): (+x, +2) Cross-section of the A7

structure. f is an alterr~tive inversion
centre point to the point r .
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FIGURE (2.5): xy cross-section of the A7 structure.
The cross - section of the hexagonal unit cell and
the projection of the other cells on the xy plane
are shown.
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FIMURE (2.6): 'Tigner-Seitz unit cell for the A7

structure. The right handed crystall-
ographic orthonmonal (+x, +y, +2) set is
shovm. The primitive rhombohedral angle
X is also indicated.



PICURE 2.7 (a,b,c): Space sroups isogonal with noint
groupn §m(h3d). The sppropriate
primitive tr-nslations and mirror
planes =2re shown. 03 is the
common 3-fold rotational axis.
Motice while it is possible to
construct a primitive hexagonal
unit cell in ceses (a) and (b),
this is not possible in case (¢).




The Brillouin zone for the A7 structure
showing special points and lines of

symmetry. The"basic section™ of the zone

is shown underne~th; specisl points and

lines of symmetry inside this section are
indicated. Point G, inside the basic
section, is a zeneral point with no symmetry.



IFME (2.9): kx ky crnss section of the Brillouin zone.

The two-fold rotation=al axes ~nd mirror
nlanes with their notntion ~re indicated.
The shnaded area is the cross section of
the basic section of the Brillouin 2zone.
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CHAPTER THREE

S S e e TR

SPACE~TIME SYMMETRY RESTRICTIONS ON THE FORM OF

TRANSPORT TENSORS

3.1 INTRODUCTION

In section two of this chapter the basic transformation
properties of tensors are reviewed and in section three an
outline of tensor calculus is given. It is hoped that
these two sections will serve as a guide and source of
reference to the rest of the work presented in this thesis

in which tensors are emnloyed throughout.

In section four classicel and group theoretical methods
are used to study the limitations of crystal symmetry on
the forms of tensors. An alternative formula to that of
Bhagavantam's is given. FMurthermore to find the precise
forms of tensors a new apvroach is suggested - the

Projection operator method.

In the last section (section five) the field dependent
tensor transformation law in conjunction with Onsager
reciprocity relstions is used to establish the forms of
transport tensors. PFor this purpose a set of generating
syimetry elements for each 11 enantiomorphous voint groups

are derived and listed.
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The forms taken by the magnetic field dependent
magnetoresistivity and magnetothermoelectric power tensors
are tabulated in the so-called "dot notation". Each

tensor component is divided into "even" and "odd" parts

with respect to the magnetic induction B. TPurthermore it

is shown that the Umkehr effect (which is usually thought to
be an anomalous effect) can occur inlany component of tﬁe
field dependent transport tensors which contains both

"even" and "odd" parts in B and to be a direct result of the

anisotropy of the crystal.

3.2 TENSORS IN CRYSTALS

A tensor of rank n has 3" components which transforms

under coordinate transformations as

T1;jk...n = Rip qu Rere+ Ry Tpar...u (3.1)

where Rip' R;.» ... are the components of the transformation

Ja
matrix which is a direction cosine matrix itself; T

r...u
and lek...n are the original and transformed tensoiq
components respectively. According to this definition a
tensor of zero rank is a scalar and a tensor of first rank
is 8 vector. To make the tensor concept clear, let us
consider a vector A which is a first renk tensor itself.

In a given
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reference frame the vector A is determined uniquely by
a set three components Ay (1=1, 2, 3). If a new
coordinate system is introduced the same vector X is
determined by a set of components Bi’ these new
components are related in a definite way <to the

old. It is the law of transformation of components of
a vector that is the essence of the vector idea, and

the same is true of tensors. Since tensors are physical
quantities or physical properties that are independent
of the choice of the reference frames they form an

ideal tool for the study of natural laws.

In solid state physics, most of the physical
properties of single crystals depend on the direction
in which they are measured. Therefore, physical properties
of single crystals must be regarded as anisotropic, or at
least potentially anisotropic. A great simplification
occurs when the equations representing physical properties
are written in tensor form. Tensors also facilitate the
transformation of equations from one set of coordinates
to another. Here orthogonal transformations in
Cartesian space and therefore Cartesian tensors are only
considered. A physical property of a crystal is defined
by a relationship between two or more measurable quantities
associated with the crystal. These measurable quantities
are fields induced in matter by external causes and are
called physical tensors. Typical examples are current

density T and electric field intensity ¥ which are first
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rank tensors. The linear relationship between these
physical tensors (ohm's law) defines the property tensor
Pij' Let us show that Pij transforms like a second rank
tensor: In a given cartesian coordinate system, in

suffix notation, the vectors Ei and J;j are related by

If these vectors transform to a primed coordinate system

as

%, = Ry, (3.3

then Ep = Ry Pyydy = Ryy Ryy™ pyy Jp =

= Ryy Ryy Pyy Jn = Fon Tp (3.5)

Here Rm1 and an are the components of a 3x3 transform-
ation matrix and (i, j, m, n = 1, 2, 3). From
equations (3.2) and (3.5) we can conclude that Pij

transforms as a tensor of second rank.

3.2.1 Polar and Axial tensors.

There are some tensors which obey the transformation
law. » 6
L 4
ijk...n ® * Rip qu er °e* Rnu qur...u (3.6)
where the negsative sign is taken for transformations

which change right-hended coordinate axes into left-
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handed and vice versa, and the positive sign for
transformations which do not change the hand of axes.

A transformation which does change the hand of axes

can slways be considered to be a combination of a
rotation of the axes and a reversal of their sense, i.e.
rotation followed by a reflection or inversion.

Tensors which transform according toiequation (3.6) are
called axial tensors (or pseudotensors) while a true i
tensor, which transform according to equation (3.1l), is
referred to as a polar tensor. To prevent the description
of polar and axial tensors from becoming too abstract,

let us take ‘the mammetic induction vector B which can

“be considered as a prototype axial vector (a first rank

tensor). Vector B cannot only be represented by a line
of a certain length drawn in a certain direction, but
also a sense of rotation is associated with the direction
of it. When an electric current circulates in a coil,

a magnetic induction 3 1s produced along the axis of

the coil, the direction of B is 80lely determined by

the sense of the circulating current in the coil. On the
other hand a polar vector (e.g- electric current density
vector J or electric field strength i) can be represented

unambigously by a directed arrow.
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3.2.2 Intrinsic symmetry of tensors.

A tensor Tijk...n is said to be symmetric in the

indices 1 and j, if Tijk...n = Tjik. Similarly, a

een’
tensor is antisymmetric with respect to a pair of its
indices, say 1 and j, if an interchange of these indices
merely changes the sign of the Fensor components,

i.e. Ti4ke..n = ~Tyik...ne - Symeetry and
antisymmetry are preserved under coordinate transform-
ations. The property of a tensor being symmetric or
antisymmetric is referred to as the intrinsic symmetry
of the tensor. This intrinsic symmetry is something
inherent to the physical property tensor and persists
irrespective of the symmetry of the crystal under

consideration.

As an example, let us consider transport tensors
which are the main concern of this work. It is well
known that the intrinsic symmetry of transport tensors
are the Onsager reciprocity relations (see Onsager 193la
and b) which are due to the principle of microscopic
reversibility. This principle may most concisely
expressed by quoting Casimir (1945):

"...that the fundamental equations governing the
motion of individual particles are symmetric
with respect to past and future, or,
mathematically speaking, that they are

invariant under a transformation (t)=~e{~t)."
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Although, in principle, the intrinsic symmetry of
transport tensors (i.e. Onsager reciprocity relations)
and thus the principle of microscopic reversibility

is a result of time reversal symmetry (see Fumi 1952b),
it is derived from the principles of irreversible
thermodynamics which is beyond the scope of this work.

3.3 TENSOR_CALCULUS

The simplicity and elegance which tensors bring to
the study of the.physical_properties_of single crystals
leads us to outline the language of tensors which is

called tensor calculus,

3.3.1. Tensor addition

Tensor addition is defined only for tensors of equal
rank. Two tensors are added by simply adding their
corresponding components. It could be extended to
include three or more tensors. This addition operation
is commutative and associative. A useful application of
tensor addition (or subtraction) operation is that any
tensor of rank two say Tij may be expressed as the sum

a)
of a symmetric Tigs) and an antisymmetric ng tensor,

i.e.

Ty = ng) + mﬁ‘;) . (3.7
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The symmetric Tig) and antisymmetric Tiﬁ) parts

respectively are given by
o« F(my 1) (3.8)

and Tgﬁ) = %('l‘iJ - Tji) . (3.9)

3.3.2 Tensor products

(1) Outer product
The simplest example of outer product of tensors is

the product of two tensors Ap and Bq of rank one (i.e.

- -two-vectofs—x—and—ﬁ-)—,- defined-as:- —+- — -~ - —

qu = Aqu (pyaq=1, 2, 3). (3.10)

The nine products in equation (3.10) which are convenient-

ly written in a square array as

B 4By AB 1 h2 3
ABy  ApBy  AyBy or | Ty Tpop Tpy | (3.11)
A3By  A3Bp  A3B 731 T2 Ta3

Note that AB # BX. To see that in equation (3.10) Thq
is a tensor of second rank, consider its transformation

rule

T‘i:j = ‘i ﬂJ = (Rip Ap) (R:,q Bq) -

= - .12
Rip R;Iq ‘p Bq Rip R:)q qu (3.12)
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which is equivalent to equation (3.1) for rank two.
Similarly the nine products in equation (3.12) can
conveniently be written in a square array as
LB 4B LE; 1 T2 T3
KB, KBy KpBy |or [ Ty Ty Tpy [(3.13)
KB KB, A3E, T T2 T3
Another example is the outer product of two second
rank tensors Spq and va. Bach tensor has nine
components so that it is possible to form 81 products

as

- Q- -8 M. - 3:18)

On transformation of the orthogonal axes equation (3.14)

transforms as

Si5 Tan =

= (Ryp Ryq Spg) (Ryy Ry Tyw) =

= Ryp Ryo Ryo Rpo Sp0 Moy =

= Rip Ryg Ruy Ruy Qpguw - (3.15)

From their transformation rule it is clearly seen that

Q4 4mn

the 81 componented quantity (i.e. Q ) is a fourth

pPqQvw
rank tensor. The extension of the above argument to

tensors of rank other than two is obvious. Generally
the outer product of two tensors of rank m and n gives

a tensor of rank (m+n). In the literature, for the
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outer product of tensors, the names: dyadic product,
exterior product, ordered product can frequently be

encountered.

(i1) 1Inner product (single contraction).

The inner product of two tensors is obtained from
the exterior product by putting equal two neighbouring
indices belonging to each of the tensors respectively,
and by summing over the resulting "dummy" index.

Inner product is indicated by inserting a dot between
the symbols of the tensors. An obvious example to

this type of product is the well known dot product of

two vectors X and B z;iicﬁ_are first rank tensors) i.e.
A'E = AB, (3.16)

which is a scalar.
To give more examples, let T be a second rank tensor and

X ve a vector, then

TeA = y4dy. | (3.17)

The quantities Tij‘j are components of a vector. 1In

the same fashion

A.T = A:’Tji. (3.18)

It can easily be shown that the dot products
'.l'.,x and AT " are the same only if T is
symmetric. If both'g and T are second rank tensors,

then their inner product S.T is also a second rank

tensor whose components are
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b

Qy = ST = 854 Ty. (3.19)

If C is a third rank tensor and 7 is second rank, the
components of the resultant third rank tensor produced

by single contraction are

Thus, in general, the single contraction of an nth

th

rank
tensor with an m”" rank tensor is an (n+m-2)th rank
tensor. The "." implies that the repeated indices are
those which are at the right of the sequence for the
left-hand tensor and at the left of the sequence for

the _right_—hand_ tensor, i.e. if.'i'. is an nt_h

th

gank tgngor

and‘g is anm rank tensor, the (n+m-2)th rank tensor .Q.,

in suffix notation is siven by

Qpyor'pu*'w = T8= Tij...rs...ssu...w - (3.22)

As in the case of the outer product, different names have
also been used for the inner product. These are interior
product, dot product and contracted product. If X and

B are two vectors and‘i is a second rank tensor, an

operation which 1s usually called double product is

given by
A0B = (A.DD.B = A-(TB). (3.22)

Equation (3.22) which is a scalar quantity is written in

suffix notation as

I-"f"-B. = AiTi,’BJ' (3-23)
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A.T.B is equal to B<T-A when © is a symmetric second
rank tensor for which Tij = Tji’ Similar typesof
expressions to equation (3.22) are frequently used in
solid state physics, particularly to represent ellipsoidal

constant energy surfaces.

It is very important to note that the dot product
operation (the inner product or single contraction) can
be represented by matrix multiplication; this is certainly
true for first and second rank tensors. Let us show this

by examples. Equation (3.17) can be written in matrix

notation as

53 T2 T3 4
PeA = Try Too Toy |- | 4 (3.24)
Typ T32 T3 Ay

where the components of the second rank tensor T are
regarded as the comnonents of a 3 by 3 square matrix
and the components of the vector L are written as a
column matrix. Equation (3.18) may be worked out in a
similar manner, except that now the vector A must be

written as row matrix in order to nerform the multiplication;

T, T2 P43
Al = (Ay Ay Aq) - Toy Top Toy . (3.25}

Ty1 T32 Ti3
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By writing the second rank tensors S ana T as 3 by 3

square matrices equation (3.19) becomes

$11 812 833 Ty T Ty3
Q=58:T=l Sy Sy 33 |.| Tz Taz To3 (3.26)
531 832 Si3 Ty P32 Tay

Similarly, equation (3.23) can be written in matrix

notation as

57 T2 T3 By

A+T:B = (A) Ay Aq) - Ty Tos Toy || Bo (3.27)

- 1 T2 T33/ \ B3

Matrix representation of tensor products (i.e. inner
product) involving higher than second rank tensors has
found to be complicated and therefore left beyond the
scope of this work. Thus these types of tensor products
will have to be written in suffix notation only. On the
other hand, tensors up to second rank can clearly be repres-
ented by matrices. Referred to an orthogonal set of

axes, a scalar (zero rank tensor) has one component and
thus can be thought of as a 1x1 matrix, a vector (first
rank tensor) has three components which can be represented
by a 3x! column matrix or 1x3 row matrix, and a second
rank tensor has nine components which can be displayed

as a 3x3 square matrix. Furthermore, the transformation
rule for the first and second rank tensors can also be

represented by matrices.
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Suffix notation Matrix notation
Vectors Ai= RiJAJ A = RA
Second rank ’ ’ %
tensors T135R1pR 34 pq T =RIR

Here primes represent the transformed tensors and Rt

is the transpose of the transformation 3x3 matrix.

In fact, the above mentioned matrix renresentation

of tensors are the only resemblance between tensors and

"~ matrices. PFor example, a third rank tensor has 27

components and these would require a 3x3x3 cubical array
for proper systematic displsy. Although customarily
higher order tensors have usually been disnlayed in array
form, this is merely for display purposes and

for tensor products and transformationsmatrix algebra cannot

be applied properly.

(iii) Doudble inner prodnct (doudble contraction).

The double contraction operation of nth

th

rank tensor

with an m“® rank tensor § is a (m+n—4)th rank tensor

T
Q@ written as

q= TS (3.28)

In suffix notation equation (3.28) becomes

j...otu...w* T1j...0pq Spat...w (3.29)
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where the dublication of the indices p and q implies

double summation. If both E'and E'are second rank
tensors, then 7:8 is a scalar given by Tij 313 . It ¥

is a third rank tensor and B is second rank, then the

doudble contraction gives a vector whose components are

If the tensors to be combined are of high rank, triple

contractions can also be defined.

3.3.3 Some proverties of symmetric second rank tensors.

If T is a tensor of rank two and its components are
such that Tij - Tai then T is a symmetric secon@ rank
tensor. The importance attached to a symmetric second
rank tensor is that a lot of physical properties are
represented by this tensor. Referred to an orthogonal
triad a symmetric second rank tensor can at most have
8ix number of independent components. There is always
some orientation of these orthogonal axes such that the
components of the symmetric second rank tensor Tij will
all be zero for ixj. The orthogonal set of axes in which
this is true are usually called the principal axes of the
tensor. One of the consequences of this is that any
symmetric second rank tensor may be characterized by a
maximum of three quantities, i.e. the components along
the principal axes of the tensor. In other words a symmetric

second rank tensor can always be transformed to a
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diagonal form for a certain orthogonal set of axes.

It is also possible to describe a symmetric second
rank tensor geometrically. This is called the
representation quadric. It is a property of a quadric
that it possesses three mutually perpendicular axes
which are called principal axes. These axes turn out

to be the same as the principal axes of a symmetric second

rank tensor. In genernl, the reoresentation quadric is

defined as

Referred to--the principal- axes; equation (3.31) becomes -

T“ x'z + Tzzxg + T33x§ =1, (3-32)

A tensor inverse to a second rank tensor in general
and to a symmetric second rank tensor in particular can
always be defined. The procedure of finding this inverse
tensor is the same as that of finding the inverse of a
3x3 matrix. The directions of the principal axes of both

a symmetric second rank tensor and its inverse coincide.
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3.4 EFFPECT OF CRYSTAL SYMMETRY ON THE FORMS OF THE
TENSORS REPRESTINTING MACROSCOPIC PHYSICAL
PROPERTIES OF CRYSTALS.

The relationships between the symmetry of crystals and
their macroscopic physical properties have been a sudbject
of study for a long time. In all suéh studies, many of
the physical properties of crystals have been expressed
by relations between tensors. Such tensor relations are
called "constitutive equations". Here, in this section,
the use of symmetry to simnlify the forms of tensors
describing various physical properties of crystals will be

outlined. In addition, the use of group theoretical

methods to find the number of independent components of
tensors and their precise identification will be

generalized.

3.4.1 Neumann's prineiple

Neumann's principle which states that a bulk physical
property of a crystsl must possess at least the point
group symmetry of the crystal. The first implication of
this principle is that any given physical property may
possess a higher symmetry than that possessed by the
crystal. The second implication is that under any
symmetry transformation of coordinates appropriate to the
point szroup of the crystal, all components of the tensor

renresenting a physical property are unchanged.
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Mathematically spenking, this second imnlication of
Neumann's principle is that the transformed tensor shall
be indistinguishable from the orisginal and consequently
the primes may be removed from the tensor transformation
equations (3.1) and (3.6). Por example, when R represents
a symmetry element of the crystal point group, equation
(3.1) for a polar tensor T of any rank must be replaced by

Tijk...n = RipR;]qur"'Rnu qur...u (3.33)

An axial tensor T of any rank, however, transforms

according to

o ““Ti‘jkt.'.'n“‘ “‘Rip‘RJq ernﬁir ‘qur.'.“.'ii o (3.34)

which is the unprimed form of equation (3.6).

3.4.2 Crystal symmetry restrictions - CLAS3ICAL METHODS

Equations (3.33) and (3.34) can be considered as
the mathematical expressions for Neumann's principle.
The classical way of studying the effect of crystal
symnetry to simplify the forms of tensors describing wvarious
properties of crystals is the direct use of the tensor
transformation equation (3.33) for polar tensors and (3.34)
for axial tensors. The procedure can be stated as follows:
the symmetry elements of the point zroup of the crystal
are successively applied to the tensor equation and each
time it is demanded that the equations should remain
invariant. As a result, some of the tensor components

may vanish and relations between the others may be



- 5] -

established. Various examples of the use of this method
can be found in the classical books of Nye (1960) and
Bhagavantam (1966).

However, iﬁ order to secure the maximum simplification
inlthe form of a tensor all the symmetry elements of the
point group need not be used. A set of generating elements
for each of the 32 crystallographic point groups may be
used instead. To this end, a set of generating elements
for each point group have been listed by Birss (1966),

' (see column 8 of table 3 in his book, pp. 36-38).
The number of the generating elements for a point group

is considerably less thﬁi_%hat of the syﬁhéfry éiements

of the point zroup. For example for thepoint group 3m
this number is 3 out of 12 symmetry elements. These are:
I, Cg and 0;1 . The members of a set of
generating elementz of a point group are not unique, dbut

they must satisfy the following two conditions:

(a) any sort of multiplication between the generating
elements should not yield a symmetry element which is
already a member of the set, and

(b) all the symmetry elements of the point group should
be obtained (or generated) from the generating set by
multiplication.

There is, however, another classical method to simplify
the forms of tensors. This is the so called "direct

inspection method" devised by Pumi (1952a). The basis
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for this method is that orthogonal coordinate products
transform like the components of a tensor.
Mathematically thi;smeans that the tensor transformation

equation

can be replaced by

Xy xJ = Rip qu xp xq (3.36)

which is the transformation equation for the coordinate
products. In equation (3.36) Xy s X and X3 stand

for the orthogonal set. Thus, the transformation law

for a second rank polar tensor (equation 3.35) turns out

to be the same as the transformation law for the products

of coordinates (equ~tion 3.35). This method seems to be
practical only when orthogonal coordinates do not transform
into linear combinations of themselves under crystal symmetry
operations. Therefore, application of this method to
trigonal and hexagonal point groups need special

consideration.

To conclude, it may be said that the safest and most
systematic classicerl way of studying the effect of crystal
symmetry on the forms of tensors is the use of Neumann's
principle (equations 3.33 and 3.35) in conjunction with the
generating elements for each of the 32 crystallographic point
groups.
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3.4.3. Crystal symmetry restrictions - GROUP THEORETICAL
METHODS .

1) Number of independent non-zero components

Bhagavantam and Suryanaraysna (1949) have described a
group theoretical method (hereafter will be called
Bhagavantam's method) of determining the number of
independent non-zero components of tensors representing
various physical properties of crystals in each of the 32
crystallographic point groups. This number (ni) can be
obtained by (for more details, see, Bhagavantam 1966 p.83).

_l‘%i :_%_§hj Xj(R) xi(R)' _ o (3-37)

Here g is the total number of symmetry elements of the
point group under consideration, hﬁ is the number of
elements in the 3 class, X1(R) is the character relative
to the symmetry operation R in the particular irreducible
representation and XS(R) is the character of the symmetry
element R in the tensor representation. In Bhagavantom's
method, it is assumed that all tensors transform like the
total sy'metric irreducible representation; therefore, the

value of xi(R) is taken to be equal to 1 for all R.
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The value of xj(n) is calculated in two steps: firstly, a
character equation aponropriate to the tensor under
consideration is obt~ined (see, Bhagavantam 1966, tables

VII (a, b, ¢) pp. 88-90); secondly, this character equation

is evaluated for each R of the point group under consideration.
The character enuation covers properties such as the nature

of the tensor (polar or axial) and its intrinsic symmetry.
Thus Bhagavantam's method is alsb called the character method.
It has been extensively used to calculate the number of
independent non-zero components of various physical tensors

in a recent book by Wooster (1973). It has also been
successfully used by Sﬂmengen (1971) and Samengen and Saunders
- -—(1972b)- who have calculated -the-number—of—independent -
non-zero comnonents of the low field galvanomagnetic and

thermomagnetic tensors for the A7 structure materials.

To calculate the number of independent non-zero
components of tensors, a group theoretical method
alternative to that of Bhagavantam's has been described by
Jahn (1937, 1949). This method avoid the character

calculations.
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It consists of finding first the exnlicit form of the
tensor renresentation under consideration for the full
group of all symmetry operations and then obtaining the
form for the individual point groups by reducing this
renresentation. At nresent, we will not give a full
descrintion of this method becsuse it is, in general,
based on the renresentation theory which we have not

inecluded in this work.

Before riving s gener=slization of Bhagavantam's method,
let us describe the contents of tables (3.1) and (3.2)

which will be freoguently referred to in the examples.

Notes to table (3.1)

(1) In general, the use of matrices to represent symmetry
operations is s common nractice in group theory. The set of
gsymmetry elements of the crystallographic point groups can

be renresented by matrices. Here as an example the matrix
form of the 12 symmetry operations of the point group 3m are
listed.

(i1) The craracter of a symmetry element is defined as the
trace of its matrix, that is, the sum of the diagonal elements
of the matrix.

(1iii) The matrices are referred to » right hended orthogonal
set: x/bé1, Y/ %aqs qﬂbg. Anticlockwise rotations are tak:so
as nositive. The passive convention is adonted, that is,
matrix oper~tors move the coordinate axes and leave the

points (or bodies) fixed.
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elements (see section 2.2 for their description) of
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TABLE (3.2): GCharacter table for point group 3m (D3d).

% o le %y lon
)
Dy 203, 30 22 I 2] 0 30y
3 c 6 ¢
23 a3
A g 1 1 1 1 1
Ayg 1 -1 1 1 -1
Eg -1 o 2 -1 o)
A1u 1 1 -1 -1 -1
Ay, 1 -1 -1 -1 1
E, -1 0 =2 - 1 - ~0--

Notes to table o2)

(1)

The symbol in the upver

left-hand corner of the table

identifies the particular point group (here point group

D3d). The snecial aymbols used are those first suggested

by Mulliken (1933).

A or B denote always one dimensional

representations, E two dimensional, F three dimensional.

The two dimensional symbol E should not be confused with

the identity operation E.

(11)

The symbol A denotes the irreducible representation

which is symmetric under the main symmetry operations

about the principal axis; here cg or C3. Subscripts on

the basic symbols are identified as follows:
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1 = Symmetric under 0&1 (i = 1,2,3) operations
2 = antisymmetric under 051 operations

g (gerade) = symmetric under an I(inversion)
operation

u (ungerade) = antisymmetric under an I(inversion)
operation.

Polar tensors transforms like Atg and axial tensors like

A

1u
(1i1) The symmetry elements of 3m are grouped in 6 classes.
This grouping is brsed on the fact th=t all the symmetry
operations in the class have the same char-cter (or trace)
and are related by similarity transformations. By a class
" we mean all the symmetry operations of a point group which
obey the relation

r-1 C; R=20y (3.38)

where ci is a chosen symmetry operation and R runs over all
the symmetry operations of the particular point group.

(iv) Here we shall mot attempt to explain how to
construct the character tables for the crystsllographic
point groups. This rather svecialized technique, which is
beyond the scope of this work, involves a number of
theorems on the remresentation theory. Portunately,

all the character tebles we are likely to require are
already exist in the literature. They can be found in most
of the books on apnlied group theory (see, for example,
Pinkham 1964 pp. 323-30; Hall 1969 pp. 343-54; Bradley and
Cracknell 1972 pp. 57=60).
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e now give a generalized form of equation (3.37) as
1 r ;
n =1 % my Xy {xwp |7 (3.39)

Here g and hy have the same meanings as in equation (3.37),
xi(Rﬁ) is the character of the ith irreducible representation
corresponding to the jth class, X(Rj) is the trace of the
Rjth symmetry element in the Jth class, and r is the rank

of the tensor under consideration. If we know the nature

of the tensor (i.e. polar or axial), the value of xi(gj)

can be directly obtrined from the character table: a polar

tensor transforms like a totally symmetric one dimensional

irreducible representation (A'g in table 3.2) and an axial

tensor transforms like a one dimensional, antisymmetric
under an improper rotation, irreducible representation
(A4 in table 3.2). X(Rj) is obtained from the matrix
representation table (table 3.1) and is the trace of the yth
matrix. TLet us explain this method by examples. In all
these examples, the number of independent non-zero
comnonents of certzin tensors 2are going to be calculated
for the point group 3m of major interest here.

Example one. Consider the thermoelectric power tensor
ﬂi;), a second rank polar tensor. Let us calculate the
number of independent non-zero components of this tensor.
Because of its polar nature it transforms like A1g. Thus
xi(nj)—--xA1 (Rj) = 1 for all j (J runs from 1 to 6,
i.e., the number of classes in point group 3m.
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Prom table (3.2)
g = 12;
hy = 1, hy =2, hy = 3,
hy = 1, hg = 2, hg = 3. (3.40)

From table (3.1), the traces of the matrix operations

are

X(R1) = 3, X(Rz) = 0, X(R3) =l‘ -1,

X(R4) ==3, XCRs) = 0, x(Rs) = 1 (3.41)

where Ry, = E, R, = C3 or 03, Ry = Oy or Cpy or Cypy,

Ry = I, Rg = Sgor S5, Rg =0, or Gy, or Opy.

Substitution of all the above values into equation (3.39)
yields

ny = f% { ny X, (Ry) [X(R] 2 +myX (Ry) [X(RY]? +
+ hy X3 (Ry) [X(R3)]% X, (R,) [X(R,)] 24
+ hg X (Rg) [X(R5)1? + ng X, (R,) [X(Re)]?} =
cs{ MM @@ () @24 3) (D (124

L (1) () D24 (1) @% 4 ) (1) (NP} =2
(3.42).

where the symbol i should be replaced by A1g + Thus the
number of independent non-zero components of the
thermoelectric power tensor for 3m symmetry is two - a very

well known result.
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(1)
Example two. Consider the low field Nernst tensor “11k ’
471

an axial third rank tensor. It transforms like A1u‘
Thus the values of xi(nj) are obtained from table (3.2) as

X (Ry) = Xy(Ry) = X,(Ry) = 1,

Xi (R4)= xi(RS) = xi(RG) = =1 (3-43)

where i should be replaced by A1u'

The rest of the parameters take the same values as in
example one with the exception of r, the rank of the tensor,

which is 3.

Substitution of the values into equation (3.39) yields

n = {h1xi(R1) [X(Ry)]13 + nyX, (R,) [X(R,)]3 +

+

hyX, (Ry) [X(R9)]3 + m, X, (R,) [X(R]3 +

+

hoX, (Rg) [X(R5)]3 + mgX (Rg) [X(RE)]? } (i—ehyy)

5 {32 (O3 BN =13 (=1 (-3

+

(2)(=1)(0)3 + (3)(-1)(1)3 } = 4. (3.44)

(1)

Thus the number of independent components of aijk1
for 3m symmetry is 4. Stimengen and Saunders (1972b)

have obt=ined the same number by using Bhagavantam's method.

For physical reasons some tensors possess intrinsic
symmetry (see, section 3.2.2). However this property, is not
included in equation (3.39). Partly following Lyubarskii
(1960) p. 168 and Bhagavantam (1966) p. 97, a formula to
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include the intrinsic symmetry of tensors is given by
1 1 n
TR > thi(nj)ng T @ xE) x@ .. x@) |-
(3.45)

Here Np is the order of the permutation P, m,(n,..., p)
are the cycle lengths of the permutations, x(ﬂ?) is the
trace of a new matrix which is obtained by taking the mth
power of the Jth matrix. The minus sign is taken when the
relevant permutation changes the sign of the tensor under
consideration. Now let us explain how to use equation

(3.45) with an examvle.

Example three. Consider the low field Hall effect tensor

P§3%1, a third rank axiasl tensor. It is antisymmetric

with respect to its indices i and J, that is, ijk1 =

-jik1. Thus the permutation group consists of the two
permutations ( N, =2)

18% (1) (2) (3) me1, n=1, pe
2nd 42y (3) ne=2, nei . (3.46)

In the first permutation there are 3 cycles (1), (2), (3)
and each cycle length is 1 (m=1, n=1, p=1).

In the second permutation there are two cycles (12) and (3),
the length of the first cycle is two (m=2) and the second
is one (n=1); in the first cyecle, interchange of the

indices 1,2 changes the sign of the tensor; thus for this
case the minus sign in equation (3.45) should be used.
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If these values of Nﬁ. m, n and p are used, equation (3.45)

becomes

n

]
%E hyX, (R,) {E X(R;) X(R,) X(R,)

2
X(Ry%) x(RJ)} -

Ri= N> Ri->

1§43 2
%: hy X,(R) 3 {x (Ry) - X(R,®) x(nj)} .

(3.47)
Now in this equation, with the exception of K(RJZ), all the
values of the parameters can be found exactly the same
way as those of examples one and two.
Let us calculate the value of x(njz) by giving an example.
- ——~Consider the matrix operatton"cé1, thE‘value"of—foi} is -1
) is 3.

Here we have obtained the number 3 by taking the square of

the matrix 651.

(see, table 3.1 and equation 3.41) and that of X(Rj

The result, namely the number of independent non-zero

1)
components of pijk y I8
1

n = g5 {00 3 [33-3) ] + @2(1) ] [(0)~(2)(0)]
+ (3 [0 0] + (D[22 G)-» ]

+ (2)(-n3[3-(2 (] «(3)¢-1) (D3]} -

= 2. (3.48)

Thus there are two independent low field Hall coefficiensts

for the A7 structure materials, a well-known result.

We conclude this section by pointing out that the method
which we have described here is simple, systematic »nd more

genera]l then that of Bhagrventam.
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2) Porms of tensors - the nrojection operator

UIp to this stage we have calculeted the number of
inderendent .non-z%ero components of tensors only. In
other words we do not know which are the zero (or non-zero)
components and what are the relationshivns between the

non-zero tensor components. To find the forms of these

tensors, in addition to the above calculations, one of the
classical methods need to be used. Apparently group
theory has been used only by Pumi (1952b) to tackle

this second stage. Although there is complete agreement
between his results and ours, his method seems complicated.
Especially in his paner a crucial step, the-.construction B
of bases, does not seem clear (at least it seems so to
the present author). However, his paper has always been
a helpful source during the progress of this particular

subject.

Here we susgest a novel approach to find the precise
forms of tensors. An operator (which will be called the
projection oper~tor, because it has a similar structure to
that of the projection operator which is used in quantum
mechanics to project out basis functions (see, for example,
Tinkham 1964 pp. 4N-42, Palicov 1966 pp. 57-58)),
approprinte to each erystallographic voint group is
constructed. This is done by using the character table

and the matrix form of the symmetry operations of the point
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group under consideration.

This projection operator can be written

i _ 1
B _g.§ X (Ry) By. (3.49)

Here g and xi(nj) are the same symbols as in eguation

(3.39), the index j runs over all the symmetry operations

of the point group. Classes are not involved. Let us

construct the projection operator for the point group 3m.

To achieve this end, the followinz ingredients are needed.

(2) the character table (table 3.2),

(b) the nature of the tensor (polar or axial),

(¢) the twelve symmetry operations of the point
group m (see, table 3.1).

For (b), let us reconsider example one, the thermoelectricl

power tensor ai; .y 8 second rank polar tensor which :
|

transforms like A,,. Thus, from table (3.2), ]i(Rj) =1

for all RJ(J=1,2.3. cee 5 12) and g = 12,

We now write the projection operator (equation 3.49) for

3m symmetry as

i 1 + - ” ’
Pop == "TZ' { E+C3+O3+C‘21+022+023’

* I+S;+Sg+ ad1+ 062 + GdS} (3050)

where 1—.A1g.

Already in section (3.4.2) we have mentioned that Cartesian
coordinate products transform like the components of a
tensor (equation 3.36).

If the tensor components are denoted by the coordinate

products that are their indices, the unsimplified form of
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the thermoelectrio power tensor can be written as

XX Xy X3
“i‘j’ - yx oy yz |, (3.51)

2X gy 3%

Now we apply ?pe projection opérntor, that is, equation
3.50, to all the éﬁmponents of this ‘tensor (equation

3.51). The oﬁefqﬁpr is applied to each tensor component
separately. Let ;.13 see the effect of g; on the xx
component. To find this, we need to know how the Cartesian
coordinates x, y, z transform under the symmetry operations

of the point group. PFor this purpose, transformed form of

the x, y, 2 coordinates under the point group ki symmetry_
operations are listed in table (3.3).



TABLE 3.3): TPransformation of x,y,z in point group D3d('§m).
(+J;/ﬁ'21 ,+y//%1 or projection of 32 on the xy plane,

+z//c';//e:1 +8p48,) 7/ [111] ).

Point group Transformed form of
symmetry

operation x y Z
E x Yy z
C':; —=X+ \gy - J—g-x--y z
0'21 x -y -2 -
Con -%x- =y - ‘%-xw;-y -z
Cy 3 --x+J—§- %m%y -2
I -X -y -2
SE =X+ J—g - J—Zx-p;y -3
Sg %x— J—Z ‘%x-p%y -2

a1 X y 2

az 7%+ % %"'%” ?

1
a3 20 2 = x 2




T "53; (xy) = pg'pcxz‘)‘.pgp@;o ."pg‘p@;).pg;,(z‘ﬂ:rgp‘(;y)—;o.“

- €6 -

By using table (3.3), the effect ot'P%

becomes

P on the xx component

Pip(xxﬁ 132{12+(-%I+J—2Y)2 + (-%X-gﬂz + X2 4

8n? s Geeln? 4 (o (0edxeB?

+(-%x—
+(% - 2y)2 + (-x)(-x)+(%x+igy)2 +(%x¥4§y)2 }-

= %(xz"'yz) )

similarly
i 1/.2.,2
Pop (yy) = E(x +¥°)

Ptp (22) = 22

(3.52)
Here attention should be paid to the order of the
multiplication of the x,y,z coordinates. For examvle,
e B2 L 12 L By 3,2
( X+ 2y) i : y J%yx + 4y
but * %12 - J%xy(or -ngx) + %yz. (3.53)

A tensor component which is operated on will be called the
original tensor component and the projected out component or
a linear combination of components will be called the

resultant component.

We interpret the operations in equation (3.52) as follows:
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(1) If the projection operator operating on an original
component projects out zero, we say that this original
component vanishes. Thus the application of the projection
operator on a tensor component has the property of yielding
zero unless the tensor component being operated on is a

non-zero component itself.

(11) If the result is not zero, we say that the original
component does not vanish. The linear relationships

between the projected out components are taken to be the

same relationships between the corresponding original

components. For example in equation (3.52), the projection
-—operator—has—been—projected—out—%(xzwyg)--from—both—the—(xx)m—---—
and (yy) original components. Therefore we take XX=yy.

Thus we then identify the two independent non-zero components

of the thermoelectric power tensor as xx(=yy) and zz. Hence

the final form of the temsor (equation 3.51) becomes

trivial.

This projection operator approach may be mathematically
formulated and generalized as follows:
Let U1(x,y,z), Uz(x,y,z),...., Un(x,y,z) represent the
original tensor components where n is the rank of the
tensor and let £1(x,y,z), £,(x,y,2), ... represent the

resultant components.

th

It Pip Uk(x,y,z)-o, we say that the original k™ component

(k = 1'2’3,000’ n) is zZero.
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If Pzp Uk(x!y'z) = f1(x,y,2) We take Uk(x,y,Z)=Uﬁ(x,y,z)

ng Uﬁ(x,y,z) = f1(x,y,z) where k,¥ = 1,2,3...n and
ke¥

or if ng Uk(x,y,z) = fz(x,y,z) We take

P%p Uﬁ(xvaz) = -5f2(x'Y!z) Uk(x.y.z)=-5UlE(x,y,z) .

(3.54)

In the related field we could not find a theorem to

account for this case - probably there is not one.

The intrinsic symmetry (if any) of tensors, however,
is not contained in eqﬁétion (3.50). We have found it
convenient to impose this extra condition on the non-zero
components of the tensor obtained by the projection operator
approach. To explain this and take the opportunity to give
another example of using the projection operator, let us
reconsider example three - the low field Hall effect temsor.
It transforms like A, (1-—A1u). The projection operator

for this tensor is

i 1 + - ¢ ’ ’ + -
Fop = 12{3*03*°3+°21*°zz+°z3‘1'35‘55' Gh1~ Tz~ O3 } °

(3.55)

Again the components of Pj(.;})H are denoted by the coordinate
products that are their indices. For example the two
components PS:: and 1;; are denoted by x3 and xyz
respectively. The nrojection operator (equation 3.55)

operatine on the original tensor comnonents yields
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Pip (x3) - } (x3-xy°-yxy-y°x) (a)
Fop (%) = (-x'rxy®aymyeyx) (®)
Pl (xyz) = } (xyz-yxz) (c)
op 2
Pl (xyz) = j-(xs:r-srvx) (d)
op 2 !
Pci>p (yxy) = -:: (-x+xy?eyxyey®x)’ (e)
PL (yxz) = } (yxz-xy2) (£)
op 5 \YX2=xy
P‘i,p (¥°x) = % (-x3exy+yxy+yPx) (g)
Pl (yzx) = 1 (yzx-xazy) (h)
op ™ 2
P —(zxy) % (oxy=zyx)—" — —— (Y T
Pop (zyx) = 3 (
op (7yx) = 2 ZXY=ZYX) (&)
Ptp projects out zero from the rest of tensor components,
1.e. XyX Xzx xzy xzz x22 yx2 y3 yzy yzz yz2 zx2 zzx
2y’ 2%y zxz zys z°. (3.56)
Prom (c¢) and (f) XYZ = =yXZ \
n  (a) " (n) Xzy = -y2zX | (3.57)
") " (Y ZXY = -2yX
fron (a), (b), (e) and (g)  x= -xy’= -yxy= -y x!.
Thus we have identified four independent comnonents. 1In

fact these can be considered the independent components of

(1)
13k,
symmetry.

(low field Wernst tensor) which has no intrinsic

As we have slready mentioned in example three,
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(1)
£l Ik,
J, L.e. 1Jk1 = —jik1. Application of this condition to

is antisymmetric with respect to its indices i and

the equalities in equation (3.57) yields

Xyz = -yxXz
XZY = =ZXy = ZYX = =yzX
yzx
ZXYy = =X2yY = =2yX = yZX
3 2 2
X" = =Xy© = «yxy = ~y°x = O. (3.58)

(1)

Hence the precise form of pi1k follows - there are two
S |

(1)
independent comnonents: xyz-‘!|23 and yzx-—fpyy o

To make sure that this projection operator method holds
generally, we have found the precise forms of some other —
tensors of different rank and kind; in every case a
complete agreement between these forms and those

obtained by classicnl methods have been reached.
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3.5 SPACE-TIME SYMMETRY RESTRICTIONS ON THE FORM OF
TRANSPORT TENSORS. '

The purvose of this section is to establish the
form of transport tensors for each of the 32
erystallographic point groups. 'Here we assume that the
time (or time-reversal) symmetry restrictions are
given; as we have already mentioned in section (3.2.2),
the time-reversal symmetry restrictions are embodied in

the Onsager reciprocity relations:

______ pij(ﬁ) = pji(—i_)_ - B (3 59)
KglB) = Ty (B _
my(B) = 1o (-B). (3.60)

Therefore, we shall be concerned with the space (or

‘spatial) symmetry restrictions only.

3.5.1 Constant and field dependent tensors.

If the components are functions of the applied
fields, the tensor is called a.field dependent tensor.
According to this definition all the tensors which
have been described in the previous sections of this
chapter should accurately be classified as constant
tensors. However, the megnetoresistivity tensor 913(3)
which is a function of the magnetic field is a field
dependent tensor, although the low field expansion

coefficients of Pij(ﬁ) are constant tensors.
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3.5.2 The transformation law for field dependent tensors.

Here we follow closely the formalism given by
Grabner and Swanson (1962) and write the transformation
law for field dependent tensors as: all the components of
a field dependent tensor must be invariant under the
symmetry operations of a point group of a crystal applied
to both the components of the tensor and their arguments.
This may be regarded as an extension of Veumann's
vrinciple to the field dependent tensors. The phenomeno-
logical coefficients (or transport tensors): tﬁj(ﬁ),

aij(i), nij(ﬁ), Fi1(§) and their inverses are magnetic
_ .. _field dependent _second.rank polar _tensors. The field _ __.

dependent transformation law for Pi.,(ﬁ) is
Py j(IRIRy B s[RI Ry Bys IR | Ry B YeRy Ry Ay (By By, Bq)

(3.61)

where |R| 1is the determinant of the 3x3 matrix representing
a symmetry operation of the crystal point group. The

same transformation equation apnlies to the other transport
tensors and their inverses. Since the masnetic induction

is an axial vector, its components transform as

B; = [R] Ry 4By (3.62)
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3.5.3 Crystal symmetrv restrictions on the form of the

transnort tensors - the magnetoresistivity tensor

pij(f) .

Since a centre of inversion leaves (3.62) invariant,
it may be added to the existing snace symmetry. Therefore,
we need consider only those | point groups involving
prover rotations alone: the symmetry restrictions reduce
to those imposed. by the enantiomorphous groups, which
are obtained from the space ~roup by renlacement of every
translation by the identity and every improper rotation by
its proper counterpart. The symmetry elements of the

__ . __enantiomorphous point groups sare listed in Table (3.4).. .. __ _

As a reference frame a right handed orthogonal axial set

is chosen, adjusted to each of the 32 point groups by
taking the z-axis along the rotgtion axis or rotation-
inversion axis of highest orde; (an exception is the pair

of cubic point sroups 23 and %3 for which the z-axis is

taken along a twofold axis). In this choice of an

(x,y,2z) orthogonal axiel set we follow Nye (1960) page

282 (he writes X410 Xo) x3) except that we take the first

setting of the monoclinic point sroups 2, m, 2/m given

in the International Tables for X-ray frystallography
(1952) . The symmetry elements, which are represented as

3x3 unitary mnatrices referred to these axial sets are
subscripted x,y,z (with the usunl exception of the
trigonal and hexsgonal point groups in which z//c3 or Cg,

x//C'21, y completes the orthogonal right handed set -

for Laue group 6/mmm the y axis is parallel to 0"21) in
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the convention adopted by Bradléy and Cracknell (1972);

m = X,¥,2; J =1,2,3,4; p = a;b,c,d,e,f. For

rotations we use the passive convention, that is bodies
(here crystals) are fixed, the axes are rotated -
anticlockwise and clockwise rotations are represented by +
and - superscripts respectively. It is not always
necessary to use all the symmetry elements of the
enantiomorphous group to secure maximum simplification of
the transport tensors: a set of generating elements
suffices. Previously, Birss (1966) has listed the generating
elements for constant tensors. Here in table (3.4) we
list the generating elements required to find the effect
of spatial symﬁetry on the magn;tic fielé de;endent
transport tensors; to find these generating elements, the
following rules have been used in sequence:

(1) The identity element E is neglected because it brings
no simplification.

(1i) Those symmetry elements thet leave the magnetic
induction or one of its components invariant are chosen;
the only exception to this rule. is that we add the

element 031 (which, when applied, yields interrelations
betveen tensor components) to the generating elements

of the cubiec point groups.

(1ii) Any two perpendicular two-fold axes require a third
perpendicular to both of them. Therefore, when there are
three mutually perpendicular two-fold symmetry elements
successive apnlication of any two of them will give the

result of the third: we are able to nesglect any one.
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(iv) Por n-fold rotations where n>r (r is the rank of
the tensor under consideration =2 for transport tensors),
apnlication of one symmetry element for which n>r is
enough (Hermann 1934). PFor example, the point group Ce
contains four rotations (namely c;, 02) about the z-axis
for which n>2 which are consistent with (ii). Therefore,

we need choose one only; our choice is c; (see Table 3.4).

As these rules sugzest, it is nossible to make several
different choices for 2 complete set of the generating
elements provided that the number of them stays the same.

) Multiplication of two or more generating elements in a

_ _—__.__8et does not_yield a member of thet_particular_set.
By successive multiplication of the generating elements in
a particular set, by themselves or with each other, it is
possible to obtain all the elements of the associated

enantiomorphous point zroup.

The spatial symnetry restricted forms of pi;](-ﬁ) have
been constructed by systematic substitution into equation
(3.61) and (3.62) of the generating elements (in their
matrix representation) taken in turn followed by application
of the Onsager relation (3.59). The comnonents of %J(i)’
obtained when the magnetic field is directed along the x,y
and z axes (we write 1,2,3 for x,y,z resvectively) in turn,
are listed for all 32 crystalloarsnhic point groups in
Table (3.5). Each tensor component is senarated into "even"
and "odd" parts in the magnetic induction B. The

theoretical and practicel consequences of this separation will
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be discussed in the next chapter. Now let us find the
form taken by pij(-ﬁ) in the point zroup 3m.
From table (3.4):
the enantiomorphous point group is 32 (or D3),
the senerating elements are c; and cé1.
Mote that the rest of the symmetry elements of the

enantiomorphous point sroup 32(D3) may be obtained by
multiplication as

+ At At + !

+ o = - + ot U '

The matrix forms of Cg and dga"_are_éi;éﬁ“in table (3.1).
Substitution of c; into equation (3.62) yields

1 3 /1 Ak}
2 2 O B, =381 + 382
S0 B O S |
5 -3 0 B, |= 231 582 (3.64)
o o0 1 B, By

Sinilarly C,, ylelds

1 0o o B, B,
0 -1 0 By |=| -B, | (3.65)
0 0 -1 33 -33

Pirst, let us find the effect of C; on the form of
Pij(0,0,33) [or in short 913(33)] °

From equation (3.64) By—=B; under c; operation.

Using this and the matrix form of Cg in equation (3.61),

f
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the following nine equalities for p, ,(B,) are obtained.
13873

Pq(B3)=Ry1Req A4 (B3)+Ry4Ry5 (B3R oRy 4 By (By) +
+ RygRyp Bp(B3) =

= %p11(]33)-£i q2(33)-£2921(33)+%922(33) . (a)
Similarly
3 3 1
Ppo(By)=3 4 (B3)+2 §2(By)+L2 0y, (3)43 Ryp(By) (®)
f33(B3) = Py3(By) ()
R2(3)=8 8 (3)- 26, (By)+1 8 ,(3y)- D ny(ny) (a)
of) =8 81 (8)-2 8,58y + 18,(3)-Ba(3)) (e)
f3(B3)=-3 §3(8y) + B 5(py) (£)
931(33) = "% 931(33) + £3932(B3) (g)
y(8y) = - 838y - 1308 (h)
J3 1
f2(By) = -—:Z R1(By) - 3 Fp(By). (1)
From equation (f) and (h) . q3(B3)-923(B3)=0
Prom equation (g) and (i) 931(33)=P32(B3)=0

Prom equetions (a), (b), (d), and (e)
Q|2(B3) = - 921(]33) (3.66)
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The effect of C; on Pij(B1) am_i &3(32) brings no
simplifieation. '

Wow let us find the effect of 0;1 on the form of piJ(Bl)
Prom equation (3.65) B,—B, under the over=tion Cé1.
Again using (B1—oB1) and the m2trix form of 0;1 in
equation (3.61), the followins nine equalities are

obtained.

P1(B) = Aa(B)

922(31) = P22(B1) , No simplification. (3.68)
f3(Bp) = R3(Bp) )

Ra(By) = -Rp(B)) & RBp(By) =0

P1(By) = =Ry(B) L By(By) =0

913(31) = ‘913(31) oo "13(31) = 0

P3(B) = -8,(B) p§1(31) =0

R4(By) =0,(B,)

23* ™ 23 both contain "even' (3.69)
0. (B.) (B.) and "odd" terms.

12(By) = Rp(B,

1
Now we consider the effect of Cp4 on P“(Bz).
Prom equation (3.65) (Bz---Bz); using this and the matrix
form of 0;1 in equation (3.61), another nine equalities

can be obtained as



- 79 -

Pra(=B3) = P(By) [ 211 mevenn in B,. (3.70)
P33(-By) = R3(By)

A2(=By) = =A,(By)

Prq(=By) = =%,(B,) all "oda" in B,. (3.71)
q3('32) s - q3(32)

Py4(=By) = =R (B)) }

B3(=B) = R3(B))
_ both are "even" in B,. (3:72)

Pinally, let us find the effect of Cp, on R 4(By) -
From equation (3.65) By—~-By; using this and the matrix
form of Cp, in equation (3.61) ylelds

f1(-By) = §,(By)
922(-33) = p22(33) all "even" in Bj. (3.73)
933(-]33) = 933(33)
A2(=B3) = -0 ,(B,y)
921("]33) = _321(33) both fodd" in B3. (3.74)

From equations (3.66) and (3.74)

2(By) = =By (B,), (3.75)
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Now the form of QJ(B1) can be written from equations
(3.68) and (3.69); the form of 013(132) from equations
(3.70), (3.71) and (3.72): and that of 913(33) from
equations (3.67), (3.73) and (3.75).

The final forms of p:lJ(B1)' P”(Bz) and 913(133) can be
obtained by application of the Onsager relation (equation
3.59) to equations (3.67) to (3.75) and are given in table
(3.5). The dot notation used is that of Nye (1960) who has
given a large number of those physical properties which can
be represented by constant tensors. We list — in addition
to the form of pij('ﬁ) — interrelations between the tensor
components which occur in the tetragonal and cubic

point groups. These relations come out in the application
of the generating elements; in the cubic point groups
application of the symmetry element 0'51 alone yields the

relations.

For the point groups (422. 4mm, 42m, 4/mmm) there is
an alternative setting of the x and y axes, i.e. x//GZa//[“O]
and y//cz.b// [110]; Pij('ﬁ) takes the same form for both the

orizinal and this new orthogonal set.

In general, it is always possible for any crystal to
define orthogonal axial sets other than the conventional
crystallographic axes. To obtain the reconstructed form
of Pij(-B.), it is necessary only to find the symmetry
elements of the new axes themselves and then look for the

enantiomorphous point group with ‘the same symmetry in
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table (3.5). The new form that Pij(-ﬁ) takes is then that

of this lower symmetry point sgroup. A practical use of this
general result is that, when the components of pij(i)

are to be measured in a sample obtainable in a specifiec
direction other than one of the conventional crystallographic
axes, the anpropriate form of Pij('ﬁ) and its non-zero
comnonents can readily be found —a useful guide to the

experimentalist. The procedure is best clarified by

examples.

(1) For the cubic point groups 23 and %3, another
right handed orthogonal axial set — with the z(3)-axis taken
in the 031// [111] direction and an arbitrary cholce of X
and y axes — can also be chosen, the form of Pij(-ﬁ) is
then the same as that for the enantiomorphous group 3;
in table (3.5) we have ziven the form of Pij(f) referred to
this second axial set.

(i1) Por the other cubic groups 432, 43m and % 3 %.
a second axizl set that can be chosen as x//Coy// [170] ,
y//[112], 2//63,//[111]; the appropriate form of £ 4(¥)
(now identical to that for the point group 32; inspection of
the symmetry elements given in table (3.4) for the point
group 432 shows that the elements of 32 are contained in
them) is also given in table (3.5). This form of Pij('ﬁ)
is of interest to us because the llmkehr effect can in

principle be observed in a suitable sample having this
configuration; this point will be discussed in chapter 5.
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In general to measure n commonent t.!”(B1 ,B?,B3) in

the nomenclature of Table (3.5) one would cut a rectangular
parallelepiped sample, pass a éurrent along the long
direction j and measure the voltage developed in the i
direction; the magnetic field can be applied along any
direction 1, 2 or 3 or if the orientation dependence is
required the magnetic field can be taken stepwise around

a plane (see Akg;z and Saunders 1974 for a specific example).
The magnetothermal conductivity tensor Kij(ﬁ) takes the same
form as Pij('ﬁ) and to obtain the components a similar

experimental configuration can be used.

3:574<- Crystal symmetry restrictions on the forms of_the-

transport tensors - the magnetothermoelectric power
tensor “131_1'

Although G&J(ﬁ) and qj(i) are second rank magnetic
field dependent tensors, they differ in that the Onsager
relations relate a component of '13(3) to another component
of the same tensor (equation 3.59); for 013(5), the
Onsager relations relate a comnonent of qij(i) to a component
of “ij(ﬁ) (see equation 3.60) and do not impose any
restrictions on the form of 013(3). Thus, with the
exception of the restrictions imnosed by the Onsager
relation (equation 3.59), the forms taken by Gij(ﬁ) can be
obtained by using the same procedure as the one described
for lﬁj(ﬁ) in the previous section. The relation (equation

3.60) can only be used to find the form of n“(i) when the



- 83 -

form of dij(ﬁ) is known and vice versa.

In table (3.6), we give the forms taken by aij(ib
for each 32 crystallographic point groups. Here the full
forms o "even" and "odd" parts of qij(ﬁ) are given,
whereas in table (3.5) half of the "even" and "odd" parts.
are given only. This is because the "even" and "odd" parts
of pij('ﬁ) are symmetric and entisymmetric in the indices
i and j respectively; but this is not so for 013(5).

3.5.5 The Umkehr %“ffect.

One clear and direct result can be obtained from

tables (3.5) and (3.6) - a phenomenological explanation
. of the so-called Umkehr effect which is usnally thought
to be an anomalous effect. Experimentally the existence of
this effect in aij('ﬁ) has been well established: for
certain crystallogranhic directions in bismuth a different
magnetothermoelectric voltage has been mezsured by
reversing the sense of the applied magnetic field (see,
for example, Graneisen and Gielessen 1936; Smith et al
1964; Gitsu et 21 1970; Michenaud et 21 1970 Samengen and
Saunders 1972a). Inspection of tobles (3.5) and (3.6)
shows that the Umkehr effect is to be expected in any
comnonent of &J(ﬁ) or alj(ﬁ) which contains both "even"
and "odd" terms. Due to the Onsager relations (equation

3.59), the diagonal components of pij('ﬁ) and Kij('ﬁ) must
be "even" functions of'fé thus only the off-diagonal
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components can contain both "even" and "odd" terms. But for
aij(ﬁ) and uij(i) there is no such restriction: "even"
and "odd" terms can exist in the diagonal components as
well. In fact the observation of an Umkehr effect in a
diagonal component aii(B1) seems to be the origin of

the concept of the lmkehr effect as an anomalous

phenomenon. We conclude that the Umkehr effect can appear
in any component of the masnetic field denendent transvort
tensors which contains both "even" and "odd" terms and

it is a natural result of the anisotropy of ecrystals.



TABLE(3.4 ): GENERATING SYMMETRY ELEMENTS FOR THE MAGNETIC FIELD
DEPENDENT TRANSPORT TENSORS

Point groups

Enantiomorphous Symmetry elements Generating

(International point group of the enantio- elements
symbol) morphous point
group
1,1 1(01) E no element
2,m,2/m 2(02) E CZ: sz
222 ,mm2 , mmm 222(1)2) E szcz‘czy chch
z + +
4,4,6/m 4(C,) E 07,C,, CusC2g
+ +
422,4mm,42m, 422(D,) E 07,C24Cox C42C24C2x
4 /romm c2yc2a02b
3 + +
3,3 3(03) E 0-5 C3
a + Fo
32, 3m, 3m- 32(D3) E 05051 3 51
6,6,6/m 6(C,) E cicic cte
»7 6 6 32 32
= 4.+ +
622 ,6mm,6m2, 622(!)6) E 030302 0302051
] 1]
6/ mmm cucu
23 + +
23’m 3 23(T) E szCEj c22c2xc31
Im232 . ot
1&32.43111,m 3 o 432(0) E szcij szczx
+ +
C'chzp Cana1




TABLE(3.5):

SPACE-TIME SYMMETRY RESTRICTED FORMS OF THE

MAGNETORESISTIVITY TENSOR Pi j(f) IN THE 32

CRYSTALLOGRAPHIC POINT ‘GROUPS,

KEY TO NOTATION

zero component

(1,1)

EVEN
°

ODD

e non-gero component 915(31) = e o |+ . ©
e——e equal components. e
All even parts and odd parts o o . e o
are symmetric and 911(32) = o ol + .
antisymmetric about their o
leading diagonals
respectively, ¢ & ¢ - ®
pij(BS) = e o |+ Y}
°
T @m0 T T T (222, w2, mam)
EVEN OoDD EVEN oDD
e o . . @ o . .
pij(nl)' s .| + pij(nl)= e .| + e
(] . ®
e o . . ) e . °
pij(32)= o .|+ ° pij(Bz)- e .| +
° .
6 . . ® . °
913(33)- e . |+ 911(33)- o .| +
e ®




(4,%,4/m)

(422,4mm,42m, 4/mmm)

. EVEN oDD
e o
pij(Bl) = o .| +
°
e o
pij(Bz) = e .| +
°
. . °
P, (B,) = .\\\‘ o
153
°
When B

L " Bz = 33, the following

interrelations between tensor
components hold:

EVEN
P11(By) = pyp(By)
p33(31) = p33(32)

ODD
P13B,) = pyq(B,)

Pp3(B) = -p13(B,)

EVEN oDD

[ .
913(31)' o .|+ . o
| .

] -]
1“11(32)' o .|+

[ ]

\; . . ®

911(33)- |+ .

op_

When B B a“BB,_thequllowing

r- P2

interrelations between teasor
components hold:

EVEN

911(31) = 922(32)

pa2(B)) = py1(B,)

p33(By) = py3(B,)

Pa3(By) = =p;5(B,)







(23, % 3) (432,43m, % 3 ﬁ)
EVEN oDD EVEN oDD
[ ] . . [ ] . . . . .
pij(Bl)= o .| + ® pij(B )= ]+ R
° ‘\\\a .
[ [ ] . . . . ®
py(By)= o .|+ py 4 (B, Q\\\Q\\\; + .o
[ .
® . ® . . . o
pij(B )= e .| + 'pij(B3)= .\\\b ] o+ .
[} [

When Bl=32=33, the following
interrelations between tensor

components hold:
EVEN

Py2(By) =

(B)) =

p33(32) - p11(33)

P33 P11(By) = pyy(By)

obD
Pa3(By) =

Referred to the orthogonal sxisl set:

z//C§1//[111],x and y arbitrary,
the form of pij(f) is

EVEN oDD
o o e o
pij(B )= o o + °
°
o o o o o
pij(Bz)= e ol + °
°
. °
pij(B )= .\\\' , +

When BI=BZ=B3, the following

interrelations between tensor
components hold:

EVEN. -

pll(Bl) = 922(32) = p33(33)

Pa2(B)) = by (By) = oy (By)

Referred to the orthogonal axial set:

x//C b//[110],}’//[112] Z/IC //[111],
the form of pij(f) is

EVEN oDD
°
pij(31)= o o + . @
° . o o
pij(B )= o o +
.. . ®
pij(B )= .\\\' . + .




TABLE ( 3.6 ): SPATIAL SYMMETRY RESTRICTED FORMS OF THE
MAGNETOTHERMOELECTRIC POWER TENSOR @ j(i) IN THE
32 CRYSTALLOGRAPHIC POINT GROUPS.

KEY TO NOTATION (1,1)
EVEN oDD
zero component o o o e o o
e non-zero component a j(Bl)= o o o] +le e o
—e equal components e o o o o o
0—e@ components numerically e e o e o o
equal, but opposite in sign. "1j(32)" o o o + | e o °
e o o e o o
e o o e o o
aij(B3)= e e o] +|e o o
e o o e o o
(2,m,2/m) (222,mm2 , mmm)
EVEN ODD EVEN ODD
e o °
= [} [ - + . . [} = o o .
aij(Bl) ai (31) +
° o o . ] °
e o ° °
aij(Bz)- e o + . @ Haij(Bz)- . o .| +
@ e o ) ®
o o o o ° °
aij(B3)= ° +| e . aij(B3)- . e .| +| e
o ° ®




(4,54,4/m) (422,4mm,42m, 4 /mom)
EVEN oDD EVEN oDD
e o °
“13(31)' e o .| +|. “11(31)' . e |+
° e o ® ®
e o o ®
aij(32)= e o | +1|. aij(32)= . e .| +
° o o ° °
aij(n3)= >< 0+ >< . u“(B:,)- \ .+ /
) ® e
When B.=B _=B,, the following When B.=B 833, the following

17273
interrelations between tensor

components hold:

EVEN
all(BI)
azz(Bl) =

@33(B)) =
@5(B) =
°21(Bl) =

0DD

@y3(By) = -a

@3,(B)) =

@3(B) = @

a31(31) =

a,,(B,)
all(Bz)
a33(32)
-a21(32)
~a,,(B,)

13(32)
-031(32)
23(Bz)
032(32)

172
interrelations between tensor
components hold:

EVEN

all(nl) = “22(32)

azz(Bl) = “11(32)

033(31) = a33(32)

obD

ay3(By) = -@,4(B,)
°32(Bl) = -031(32)







o b= 2
(432,43m,; 3 E)

aij(Bl)- . e

aij(32)= . e

aij(33)= . o

oDD
+ .
° °
+ L]
o o .
®
+ o

When B =32=B3, the following

1

interrelations between tensor

components hold:
EVEN

all(Bl) o “22(32) = q

@y5(By) = ay,(B,)

a33(Bl) = all(Bz)

oop
@y3(By) =
032(31)

a31(32)
1372

43(B,)

= ay,(By)
= azz(Ba)

= 012(33)
= q . .(B,) =

ODbD

EVEN
o . .
“11(31)- . e\\\; +
a; y(B))= \\) +
aij(B3)= T\\\o .+
°
When 31=32=33, the following

relations between inter-tensor

components hold:
EVEN
“11(31) = 022(52) = a33(33)
@y,(By) = a,,(B,) = 011(33)

|eom
. a23(31) = -a13(32) = au(B3

S

Referred to the orthogonal axial set:
z//C;1//[111],x and y arbitrary,
the form of aij(f) is

Referred to the orthogonal axial set:
x//C,, /11130 ,y//(112], 2//C3 //1111],

EVEN oDD
e o o e o o
aij(31)= e e o+ [0 o o
e o o o o o
e o o e o o
aij(32)= o o o|+| 0 o e
o o o o o o

aij(33)= >< + ><

the form of aij('f) is
EVEN oDD
e . . °
aij(31)= . e o + o e
. © e o o
[ . . [ ] ©
aij(32)= . o o) + | e
° 'Y

aij

. ®
(33)- \ +
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CHAPTER FOUR

A FORMULATION OF TRANSPORT TENSORS IN ANISOTROPIC MEDIA:
GATLVANOMAGNETIC AND THERMOMAGNETIC EFFLCTS.

4.1 INTRODUCTION

The space-time symmetry restricted forms of the
magnetic field dependent transport tensors tabulated in
chapter three have revealed that a unique nomenclature
for transport tensors in anisotropic media is needed.

In this chapter a formulation of transport tensors based
on the separation of the tensor components into "even"
and "odd" functions of the applied magnetic field is
given. ﬁomenclaturg»fgp the galvanomagnetic and

thermomagnetic effects in general and Hall effect in

particular are critically reviewed. It is shown that

the Hall effect be represented by the "odd" part of pij(i)
and the magnetoresistance by the "even" part. It is urged
that this definition is genersl, simple and practical.
Purthermore it 1s also shown that in the low field case

the description of the magnetoresistance and Hall effect

is in accord with the "odd" and "even" terminology.

The definition of the electrical conductivity or
its inverse electrical resistivity based on expressing
Joule heating in terms of Oij or pj_j is discussed.
Moreover, this discussion is extended to the case when a

magnetic field is applied to the medium.
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4.2 TRANSPORT TENSORS.
CASE (1) : NO MAGNETIC INDUCTION, i.e. B = O.

In this case, the phenomenological linear equations

in the presence of electric and thermal currents are
E, =
= n - '
Yy 13 J’J KiJ VjT (4.2)

(o
Here p&j)is the electrical resistivity tensor, Kij is
the thermal conductivity tensor, 0&3 is the thermoelectric
power tensor which represents the Seebech effect, rij

is the Peltier tensor which represents the Peltier effect,

T is the electric current density, UT 1is the
temperature gradient, ¢ is the heat current density
and ¥ is the electric field intensity®. Experimental
measurements are usually made with the electric current
density and temperature gradient as controlled variables.
When there are no temperature gradients, equation (4.l1)

reduces to Ohm's law

By = Fij JJ, (4.3)

and equation (4.2) in the abserce of electric current gives

Fourier's law

‘Ii 2 - Kij V:,To (404)

* Strictly'i'is an electromotive force. Tor electrons it
is given by E; = 'T%T 3 (¢—jo]®») where ¢ is the chemical
potential, ¢ is the electrostatic potential and |e| is

the magnitude of the electron charge.
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In the absence of a magnetic induction, the Onsager

reciprocity relations for transport tensors are

pij - p:’1 , (4.5)
K - K,
iJ ji

and gy o= MOy (4.6)

where T is absolute temperature.

The same reciprocal relations hold for the tensors which
are inverse to those given in equations (4.5) and (4.6).
Prom relations (4.3), (4.4) and (4.5) the electrical
resistivity tensor pij and its inverse the electrical
conductivity tensor 013 the thermal conductivity
tensor Kid and its inverse-the thermal resistivity - --
tensor 'ij are symmetric second rank constant tensors;
thus their geometrical representation (i.e., quadric
representation) is possible. The Onssger relation (4.6)
between 'id and 0&j is sometimes'called the first
Kelvin relation. Note that Ty and 0[13 possess no
intrinsic symmetry; they are second rank constant tensors.
The vector and tensor quantities which appear in equations
(4.1) and (4.2) are polar. The spatial symmetry restricted
forms of these second rank constant polar tensors are

well known, see for example, Nye (1960) and Bhagavantam (1966) .
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At this stage we would like to open a discussion
on the definition of the electrical registivity or its
inverse electrical conductivity in anisotropic media.
Although equation (4.3), Ohm's law, provides the usual
definition of the electrical resistivity or its inverse
electrical conductivity tensor, recently Wannier (1972)
has defined conductivity as the number with which E2
is to be multiplied to get the power dissipation per unit

volume, i.e.,

Q= j-ﬁ = O'Ezo (4.7)
In addition, we find in some books that the quantity

of heat evolved per unit time and volume (L.e., power
dissipation per unit volume) in a homogeneous conductor

has been expressed in terms of the electrical resistivity
tensor or its inverse the electrical conductivity tensor,
see for example, Landau and Lifshitz (1960) p.93,

Fye (1960) p.205, Mason (1966) p.217. Here we shall
comment on these definitions and try to find the conditions
for which Joule heating can correctly be expressed in

terms of pij or 0'13 in anisotropic media.

The rate of Joule heating of a conductor is expressed
by the scalar product of the current density veector T

and the electric field intensity vector E

Q=7 B. (4.8)
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When T and ¥ are parallel to each other, which is
true in isotropic and homogeneous cubic crystals,

equation (4.8) becomes
Q=318 0F - sz. (4.9)

The difficulty in expressing Q in terms of ‘P. and T

or O and E arises when the vectors J end B do not
coincide. In general, this is the case in anisotropic
media. Without loss of generality, let us consider a

monoclinic erystal with point group 2(C,).

If the 2-fold axis coincides with 2z -direction (czz)the
form taken by the electrical-resistivity tensor—ﬂ&a is -

IR PR
pi;j = \ (4.10)
12 B2 ©
0 o0 Py
o-ij takes the same form.

Now if we cut a sample from this crystal in a rectangular
parallelepiped geometry, application of an electric field
to this sample may be described by the following three

gtates:

State 1, transient state.. Immediately after application
of a potential difference across the sample ends, the state

of the sample is:

+ n F L 2 J
R' ~ ¥(2)
3 ¥ ii
*C x{1)
—

(11lustration 4.1)
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This state lasts a very short time, the y-directed
applied electric field and the boundaries of the sample

force the current to flow straight down (y-direction)

the sample.

This situation gives rise to a transverse voltage

difference along x-direction and hence the steady state 2

is reached.,

State 2, steady state.

z
9 Y
+ 4+ + + + 4+ + + | $
- —— _+‘_L--_-.__ - - -
4}
X

(illustration 4.2)

In this case E,, E, and J(-Jz) are the measurable
quantities, they are related by E, = .912 J and B, = PzzJ .
The quantity of heat evolved per unit time and volume

can be expressed as

Qg = J.E = I .(-2d + B = 7B, -

-0, 3% - 7 EE, + oézEzz' (4.11)
Here i and 3 are the unit vectors along x and y directions
respectively, the subscript E has been inserted on Q to
denote that the electric field intensity vector is not
along the sample (y-direction) and may be resolved

into components along x and y directions. It is

interesting to note that 0}2, an off diagonal component
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of O yocontributes to Joule heating.

In addition, if this sample is electrically shorted
out across the x-direction, a current will then flow in

this direction. We describe this state as follows:

State transverse shorting (steady state).
1—
+ 2t z i
‘ :ﬂf ::3 2 Y
[ i {
e
' —i} X

(11lustration 4.3)

Por this gtate”J1, Jz and E(-Ez) are--the measurable

quantities (although when an ammeter inserted in the

loop & current say I1 will be registered, to find the
current density J1 may prove practically very difficult;

to our knowledge these type of measurements have not

been reported). They are related by Ep= f, J, + p22 Jpe

Joule heating can be expressed as

Q7 = JB = (J1i + J23)- (2)) = JoF =
5 2
=0,.E° = 5 SO U |
22 P2 3435+ B I, (4.12)

where the subscript J on Q shows that the current density is
not along the sample (y-direction) and may be resolved into
components along x ﬁnd y directions. WNotice that in
equation (4.12) , an off-disgonal comnonent of Pij ,
contributes to Joule heating; this is contrary to state 2
in which there is no contribution from the off diagonal

o)
components of 1y °
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From the preceding discussion we deduce the following
results: |
(1) It seems that the Joule heating (QE) obtained from
state 2 is not equal to the Joule heating (QJ) obtained
from state 3; but this needs to be shown experimentally.
(11) In‘state 2, using the results of equation (4.11),
Joule heating in a crystal with no symmetry (i.e. triclinic)

can be written as

where p 18 the electrical resistivity along the long

2
direction of the sample. Note that Qp is not equal to UE.
(111) In state 3, using the result of equation (4.12), o

Joule heating, in general, can be written as

=3B =3 Py, =G £, (4.14)
where O 1s the electrical conductivity along the samplebs
long direction. Here again note that QJ is not equal
to PJZ.

(iv) Prom the results (i), (ii) and (iii), it appears that
an expression for Joule heating in terms of P&a or Oij

depends on the shape of the sample and experimental set up.

Our conclusion is that in anisotropic media the quantity
of heat evolved per unit time and volume cannot be expressed
uniquely in terms of electrical resistivity tensor pij
or its inverse electrical conductivity tensor olj H
therefore we sugrest that Joule heating should not be taken
as a basis for the definition of the electrical resistivity
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tensor F&j or its inverse electrical conductivity tensor 013-
Later we shall extend this discussion to case (2), i.e.,

when an external magnetic induction B is applied to the

crystal.

4.3. TRANSPORT "ENSORS |
CASE (2) : A UNIPORM B IS PRESENT, i.e. B =By, By,By)-

In this case, the phenomenological linear transport

equations (equations 4.1 and 4.2) become

E, = 913(5) Jy+ ot”(ﬁ) vyT (4.15)
9 = uij('ﬁ)Jj - xid('ﬁ) uer . (4.16)
Here Pij(g), dij(g)’ “i;j(-ﬁ) and Kij(-ﬁ) are the

magnetoresistivity, the magnetothermoelectric power, the
magnetopeltier and the magnetothermal conductivity tensors
respectively. These magnetic field dependent transport
tensors actually are functions of the components of B referred
to the same cartesian axial set as that which the subscripts

i and J refer to and should therefore more correctly be written
in the form Fﬁj(31'32'33) etc. In the presence of a magnetic
induction B the Onsager reciprocity relations, equations (4.5)
and (4.6), will have to be replaced by

pij(g) = Pji(-ﬁ)

xu(ﬁ) = Kji('ﬁ) (4.17)

and "13(5) =7 ozji(.ﬁ). (4.18)



- 94 -

Equation (4.18) is now the form taken by the Kelvin relation
(cf. equation 4.6). '

Over the years various names have been assigned to
the magnetic field dependent transport tensors. Harman
et al (1965) have used the term "galvano-thermomagnetic®
to describe these tensors. A similar term "thermogalvano-
magnetic" has been used by Kleiner (1966). Classifications
of transport effects based on the isothermal and
adiabatic experimental conditions have been given by
Callen (1948), Pieschi et al. (1954), Blatt (1968) and
others and usually apply for cubic crystals or better
the so-called isotropic case—only. Fﬁrthermofeviié_
effects have frequently been described by considering the
low-field expansion coefficients alone, i.e., a Taylor
series expansion up to second order terms in magnetic field
components. Here we follow the usual way and divide the
magnetic field dependent transport tensors into two main
groups: galvanomagnetic effects and thermomagnetic effects.
The components of the magnetoresistivity tensor ‘ij(i)
represent the galvanomagnetic effects. The rest of the
transport tensors aij(i)' uij(ﬁ) and Kij(ﬁ) represent
the thermomagnetic effects. The low field expansion
coefficients can be treated as a special case of these
effects. In the following we shall give a description

of these effects in anisotropic media.
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4.3.1 Galvanomagnetic effects:

We consider the d.c. galvanomagnetic effects in
isothermal conditions. In genersl, measurement of all
the cpmponents of the magnetoresistivity tensor Pij(ﬁ)
as a function of magnetic field strength and temperature
provide sufficient experimental data to describe the
galvanomagnetic effects of a particular crystal under

consideration.

We write @_J('ﬁ) as a sum of "even" and "odd" functions

of the applied magnetic induction B:

e v dd .
D) = (D) 4 BB (4.19)
where aa aa
ev even 0 0
ByB) = Fy(B); £y(B) = - f,(-B). (4.20)

The same tensor Pu(i) can also be written as the sum of symmetrie

(s) and antisymmetric (a) parts with respect to the indices

i and j as
By = pi;Z%) . pi;Zi) (4.21)
where
(a)
BB - BB, 450D - - AulD. (4.22)

Now, by using the above relations together with the Onsager
reciprocity relation (4.17), we shall simply show that the
symmetric part of ﬁj(i) is an "even" function of B
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and the antisymmetric part is an "odd" function of B.

eve% . odd
Let us first express pij( ) and Pij(ﬁ) in terms of
A4 (8.

da
By® = A;D + 4,(B) (4.19)
dd
BB = By (B + Fy(-B) (4.23)

By using equations (4.17) and (4.20), equation (4.23) becomes

ad
OB = O - B (B (4.24)

Addition and subtraction, respectively, of equation (4.24)
from equation (4.19) leads to~

o B -3 [p”(i;) . pij(-i)] (4.25)

By® =4 4B - py-»)| - (4.26)
Similarly

p,4(-B) - pﬁ;%-n) . Pi?%-m. (4.27)

Application of the Onsager's relation (equation 4.17) and
equations (4.22) to the right hand side of equation (4.27)
yields

-Pij(-n) = Pj(.;z'ﬁ) - Pi?z'ﬁ). (4.28)

Again addition and subtraction respectively of equation (4.28)
from equation (4.21) yields
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(8)

piz(g) = ,1, [pij(ﬁ) + piﬂ(.ﬁ)] (4.29)
(a) 1

pi;) (B) = 3 [pij(g) - pij(.'ﬁ) . (4.30)

Prom equations (4.25) and (4.29)
eve% (8)

and from equations (4.26) and (4.30)

aa )
pzj(i) = pﬁ(i) . (4.32)

Thus the symmetrical part of Pij(ﬁ) is an even function of B
and the antisymmetrical part is an odd function of B.

However, in general, the symmetric and antisymmetric parts
of a field dependent second rank tensor need not be even
and odd functions of B respectively. Indeed this is the
case for the magnetothermoelectric power tensor Ol-i J(3) .

Later, in the description of aij(i) we shall explicitly show ,

in anisotropic media, that equalities (4.31) and (4.32) for
o, J(ﬁ) do not necessarily hold.

Pollowing the above introductory remarks, we will define
the magnetoresistance as the part of 913(3) which is "even"
function of B and Hell effect as the part of Pij(ﬁ) which
18 "odd" function of B (first definition). This definition was
probably first suggested by Casimir (1945). Unfortunately,
throughout this vast subject there have been few followers of
this definition. Logan and Marcus (1952) and Grabner (1960),

in their Fall effect measurements of germanium crystals,
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have adopted it and so hes Jan (1957), in his review
article. later, Harman and Fonig (1967) in their multibdand
formulation of the galvanothermomagnetic effects have found
it convenient to split each transport tensor entry into

"even" and"odd"™ contributions.

On the other hand, several workerg in the study of the
galvanomagnetic effects (see, for example, Herring 1955 ,
Landau and Lifshitz 1960 p. 97, Shtrikman and Thomas, 1965,
Bhagavantam 1966 p. 198, Lifshitz et al. 1973 p. 168) have
defined the magnetoresistance as the symmetric part of Fij(ﬁ)
and Hall effect as the antisymmetric part of Pi:,(ﬁ);
this we 8hall refer to as the second definition. Beer (1963)

p. 71, Hurd (1974) and some of the followers of the second
definition have described the magnetoresistance and Hall

effect by using both the first and second definitions. In

fact, because of the equalities (4.31) and (4.32) the two
definitions turn out to be the ssme. However, for the following

two reasons we prefer to use the first one:

1) Application of the symmetric and antisymmetric
terminology tothe other transport tensors for which equalities
(4.31) and (4.32) do not hold can make the description of

these tensors complicated.

2) Experimentally a component of pkj(ﬁ) which is
the sum of even and odd functions of B can be measured by
using the same sample and merely reversing the sign of 3.
On the other hand measurement of the symmetric and

antisymmetric parts of the same component of Pi,,('ﬁ) (without
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making use of the property of pi J(ﬁ)being even and odd functions
of 'ﬁ) may require two samples. As an example, consider
the tensor component P23(B1) in point group m. To
obtain the symmetric and antisymmetric parts of 923(31)

the following equations may be used:

( ) - -

PosCBy) = 3 [Pos(By) + Pyp(8) (4.33)

P,4(B,) .% fp23(31) - 932(131)J (4.34)
Thus, to measure P23(B1) and %2(31) two differently

oriented (z-cut and y-cut) samples are required. On the
other hand, insﬁe_ction of eqﬁation_s _(4.25) and (;1:.22) shows
that "even" and "odd" parts of 923(131) can be obtained from

one sample (z-cut).

Kao and Katz (1958) have adopted another definition
for the Hall and magnetoresistance effects (third definition).

If the measured field (fmeas) is normal to J , they call

the dependence Eﬁeas (3,3) a Hall effect; if itnea's is parallel
to I, then imeas (3,3) is called the magnetoresistar;c‘:ree. In
this definition the off-diagonal even components Pij(%) (1#3)
are automatically included in the Hall effect. These authors
list a number of special configurations for which the crystal
symmetry may impose "even" or "odd" parity on the Hall effect.
Since this definition considers é;?%) (i#3) to be

part of the Hall effect, it can be a source of various Hall

effects (which we shall describe later in this section).
We thus believe that this definition is not practical and
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and can make the issue complicated and hence should be

avoided.

For completion, it is useful to define the magnetoresistance
and Hall effects by considering the low field expansion
coefficients. These coefficients are obtained from the
Jones-Zener expansion of the magnetoresistivity tensor

(which is usually carried out up to second order in magnetic

field components):

o), (1) (2)
o (B = A4 i B, * PLiti B B, *oeee (4:39)
This series expansion is equivelent to a Taylor series with

the coefficients given by (see Puchser et al. 1970)

ey~ () (i
k1 aBkN '1°3=o
where 1,},k,kyy .0.-. ky = 1,2,3.
Hartman (1969) has given
w8 <1 (4.37)

as a low-field expansion condition such that the magnitude
of each term in equation (3.36) be less than one. Here 11
is the mobility tensor and ¥ is the antisymmetric second
rank tensor form of the magnetic induction vector B.

In equation (4.35) the coefficients are constant tensors:

(0) (o)
pij = F31 (second rank symmetric polar tensor)
(1) 1)

F&Jk1 = - 31k, (third rank axial tensor, antisymmetric
with respect to 1 and j indices)
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(2) p(2) (Pourth rank symmetric
Pi;]k1k2 = 7 ji(all permutatiens of k‘ and kz) - polar tensor).

(4.38)
In the low field case the Hall effect and the magnetoresistance
can be and olften are repres(ezn)ted by the components of the
tensors Pi;]k.' and P:I.;jk1k2 respectively.
This definition is in accord with the "first definition".
To show this, let us consider the "even" and "odd" parity
of the electric field components Ej with respect to the
magnetic field

- Eiodd _
=[p§;)+ pﬁé By * piﬂl)ﬁkznlﬂ‘_a_h."]_ T (4.9)
Here
Ef " - [ Pi;)+ ﬁ‘)‘ﬂ‘z Bk1Bk2 +] Ny (4.40)
and godd -[ 1'3)1:131:1 +...]JJ . (4.41)

Equations (4.40) and (4.41) can be taken as the defining
equations of the low-field magnetoresistance and Hall effects

respectively. Throughout the text, for brevity pi:] or

o
Pioj is used in place of Pj(.J)'

W ONVERRITS
Q““\“sﬁ‘- [

2 2MAY “\975
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%

In the section (4.2) on transport tensors in the ~bsence
of a magnetic induction (i.e. case {), we have opened a
discussion on the definition of the electrical resistivity
or its reciprocal electrical conductivity based on the

expression of Joule heating in terms of F&J or oij
There we arrived at a conclusion that in anisotropic media
Joule heating (E-ﬁ) cannot be expressed uniquely in terms of
@J or its reciprocal Oij and hence it should not be
teken as a basis for the definition of Fij or OiJ - Now

we are going to extend this discussion to casse (2), i.e.,

when an external magnetic induction B is applied to the crystal.

_In addition to the above definitions of the magnetoresistance.

and Hell effect (first, second and third definitions), some

workers have given a description of these effects in terns

of Joule heating; see for example Landau and Lifshitz (1960)
p. 97, Bhagavantam (1966) p. 198, Shtrikman and Thomas (1965),
Pantulu and Sudarshan (1970) and Lifshitz et al. (1973) p.l68.
According to this description, the Joule heat evolved in a
conductor is determined only by the symmetric part of the

magnetoresistivity tensor, i.e.

(s)
Q = joﬁ = JiEi = Ji pi:(ﬁ) JJ . (4.42)

The lossless, antisymmetric part Fi;zﬁ) describes the Hall
effect. Again this desceription needs to be critically exemined.
To this end, let us consider the snme erystal which was

studied as an example in case (1), i.e. a monoclinic crystel

with point group 2(02). For this symmetry the form taken
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by p;4 is given in eruation (4.10) and the farm of pij(i)

is civen in table (3.5). Por the sake of simplicity we will
consult the illustrative figures (illustration 4.2) and
illustration 4.3) given for state 2 and state 3 of case (1).
Now consider state 2 (see illustration 4.2 in case (1)). If

we apply a magnetic induction along (3;311), in general,

the longitudinal E2 and transverse E1 fields will be effected.
In addition an electric field E3 across the z-direction may
be developed. In this case E,, E2,E3 and J(=J2) are the
measurable quantities and they are related by

even even
The gquantity of heat evolved per unit time and volume can

then be expressed as

~.

Qg = 7€ =73, (B + B,] - Bjk) =
even
= JE, = p22(131)J
even
[ 2(31)E1 + 0.2(31)E2 + 0.3(3 )E3] EZ. (4 44)

Here k is the unit vector along the z-direction and QE’ 1, 3
and J(=J2) have the same meanings as in the equation (4.11)
Fg;?g1) is a field dependent tensor component and 0:|2(B1)9
0é2(31), 0é3(B1) are the magnetoconductivity tensor components.
Notice that in this set up longitudinal "even" components

of pij(i) contribute to Qg only. On the other hand differers
- eVQ%
components of OiJ(B) 1.e. "even" diagonal O;(B),
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even odd
"even" off-diagonal Oij(i) (i=3) and "odd" ij(ﬁ)

components contribute to QE' "It is obvious that when B is
in another direction a different form of equation (4.44) will
result. For the set-up described by equation (4.44),
inspection of this equation shows that Joule heating in
general for a crystal with no symmetry (i.e. point group 1(01))

can be written as

eve

Qp = TE = lck(%) Je = By Oi'a(ﬁ) B, - (4.45)

Next consider state 3 (see illustration 4.3 in case (1)).

Since application of a magnetic induction ﬁ'along the x-direction
(f.e. B = B41) may develop a potential difference across |

the z-direction, we short-out the sample across both the x-

and z-directions. For this set-up, Jq, J,, J3 and E(=E2) are

the measurable quantities and they are related by

ven dd
E(=By) = B, (BT, + By(B)T, + Ba(B)T5.  (4.46)

As we have mentioned in case (1), although a current in the
loop in the x- or z-directions can easily be measured, to find
the current density J’1 or J3 may be difficult. Joule heating

for this case can be expressed as

Qg = 3.B. = (J 1+ J23 + I46). (ED) =
= J2E = 2?31) E =

even even odd
= £(B)T,J, + Pzz(B )J2 + 923(31) Jp Iy

(4.47)
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even -

Note that 052(31) of C_{ 3(3? contributes to Qy only.

But different components of qj('ﬁ) are contributing to
odd

Qys3 the appearance of a Hall effect temm ‘%3(31) in

equation (4.47) deserves attention. Here it is worth
mentioning a point which could well be related to state 3;
it is the well known Corbino disc geometry in which the Hall
field is totally shorted and an enhancement in the
magnetoresistance has been experimentally observed (see Weiss
1969 and references therein). By inspection, equation (4.47)
can be generalized to 2 no symmetry crystal (i.e. point group
1(C4)) as

- even

¢ =FF. O, (Bl R4y, (4.48)

In case (2), from the preceeding discussion we can
deduce:- the following results which are similar to those in

case (1):

1) Qg seems not equal to Qy but this needs to be proved
experimentally.
2) Again, an expression for Joule heating depends

strongly on the shape of the sa2mple and the exnerimental set-up.

Thus, we again arrive at a similar conclusion that in
anisotropic media the quantity of heat evolved per unit time
and volume cannot be expressed unigquely in terms of . qd(ﬁ)
or its inverse qd(ﬁ): therefore it should not be taken
as a basis for the description of the magnetoresistance and

Hall effect.
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() MAGNETORESISTANCE

The magnetoresistance effect is the change in the
electrical resistivity in the presence of a magnetic
induction B. Mollowing a remark made by Pippard (1965) that
the magnetoresistance could be proved positive, Wannier (1972)
has proved a theorem under rather general assumptions that
the magneto conductivity of a metal is a monotonically

non-increasing function of the magnitude of B.

We have already defined the magnetoresistance as the part

of the magnetoresistivity tensor 9&3(3) which is an "even®
eve

. function of B, i.e. pij?i). This can be divided into two
parts: diagonal components and off-diagonal components. The
) N e - .__even
diagonal part can further be divided into two parts p..(B,)

even even 11
and pii(Bk) (i=k). In the literature 911(31) is often called
the longitudinal magnetoresistance and Szi?Bk) (i#k) the
transverse magnetoresistance. The off-diagonal components
¢ eve?ﬁ) { eve? a
o pij , 1.e. phj Bk) (i=3), will be just called even off-
diagonal components. Later, in a separate section we shall
show that the co-existence of "even" off-diagonal components
with "odd" (Hall effect)components is the main cause of the
Umkehr effect in Fﬁj(ﬁ). It is obvious that the zero field

even
resistivity tensor components are contained in F&J(ﬁ) and
they can always be obtained by putting B=0. 1In addition to
evenw

the measurements of the components of pij?B) as a function
of 5; nmeasurements of the tensor components as a funection
of magnetic field direction (angular dependence) are and

have always been very valuable as a source of information
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about the shape of the constant energy surfaces of conductors.
Recently, polar dg?a in Bi and certa2in Bi-Sb alloys by
Jacobson (1973),.§g As(25.5 at. %) - Sb alloy by

Akgdz and Saunde:é.(1974) and Bi by Stimengen et al (1974)
have been usedzééﬁgémpute the band model par-meters of

these materials.

(ii) HALL EFFECT

We have already defined the Fall effect as the part
of Q_J(ﬁ) which is an "odd" function of B, ;_.q._qud(ﬁ) .
In any configuration of the sample the Hall field vanishes when
B equals zero. Hall elfect measurements are usually made by
employing samples in a rectangular parallelepined geometry.
A uniform constant current is maintained through the long
direction of the sample. When an external magnetic field is
applied to the sample, in general, a potential difference
perpendicular to the current direction develops. Part of
this voltage which changes sign on reversal of the sign of
B 1s called the Hall field. Notice that in this configuration
current direction is always normal to the Hall field, but
we have no condition for'ﬁ; it can be applied to any direction
although in table (3.5) we have assumed that 3'15 along each of
the orthogonal crystallographic directions taken in turn. The
components of the "odd" part of &3(3) (see table 3.5) are
then calculated by using this measured field.
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If we recall ecuation (4.41), the linear relationship
between Bk1J3 and Egdd allows us to find the low field
Hall coefficients (which are the components of a third rank
axial antisymmetric tensor). Thus the low field Hall effect
of a particular material is represented by the components of
pigllz which are constants themselves.

In general for the classical range of magnetic fields equation
(4.41) does not hold. Again by using the "even" and "odd"
parity of the measured electric field components Ei with
respect to the magnetic field, we can write

even odd

. L
=[q:}'%’)’ R q;(i)] 1. (4.49)

As we have already stated, the "odd" part of (4.49) represents
the Hall effect. In anisotropic media, at a constant

-l

magnetic field B = By » qud(io) can be considered as

the local zgradient of the did versus B curve.

The defining equation can be written as

aa apom(li)
o [ d
gj (Bo) -(3;_) aﬁ -i = —B.O ’ (4.50)

Basically this definition is the tensor form of that given
by Hurd (1972).

In the literature, over the years some of the components
of F{iep)- have been named as if a new Hall effect had

been found. Next, and more important, several workers in the
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studies of the galvanomagnetic.effects have considered the
"off-diagonal even" componentsvof the magnetoresistance

as part of the Hall effect; as an example we can think

of the third definition. This mixing of the "even" and
"odd" components of ‘ij(i) has been and still is a
main source of names for the Hall effect. A full review of
various Hall phenomena observed in crystals up to 1963 has
been given inthe monograph by Beer (1963). Here we shall list
the names of the various Hall effects which have appeared

up to now in the literature and comment on them.

1) Conventional Hall effect.
In this case, for a sample in a parallelepiped geometry,
a transverse field E is develoned under the conditions such

that ﬁ. B and 3' are mutually perpendicular, where T is

along the long direction of the sample. Thisis true for isotropic

crystals; it is also true in cubic crystals nrovided that
3} 3'and'§' are along the orthogonal crystallographic axes
and also in some other point groups when 'ﬁ, '3 and ﬁ' are
in certain special directions. The generalization of this
definition to low symmetry crystals may open a way to

complication.

2) Quadratic Hell effect or Even Hall effect or Transverse
even effect.
The "off-diagonal even" components (which we have alrcady
mentioned in the description of the magnetoresistance) have
frequently been considered as the part of the Hall effect,

contrary to the first and second definitions. Measurements
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eve
involving any component of Fij(%) (i%j) can in principal

cause the appearance of this effect. Different names have been
assigned to these components by different workers in the

field such as : quadratic Hall effect by Kohler (1934) and
Shoenberg (1935); even Hall effect by Baranskii et al. (1971),
Douglas and Datars (1973); a rather reasonable name "transverse
even field" or "transverse even effect" has been adopted by
Kachinskii (1961), Klauder and Xunzler (1961), Hurd (1972,
1974), Chiang and Shevchenko (1974). PFor the same effect,

the name "transverse ohmic field" has also been used (see for
example, Connell and Marcus 1957). As it has been pointed out
by Meson et al. (1953), this even voltage is the largest source

of distortion in Hall effect devices. It can only be removed

by choosing the correct crystal configuration.

3) Trapsverse Hall effect (TH-field) and Longitudinal Hall
effect (IH-field).

Grabner (1960), in his Hall effect measurements in n-type
germanium has adonted such conventions as transverse Hall
field (TH-field) and longitudinal Hall field (IH-field).

The measured Hall field (which is an "odd" function of B)
perpendicular to B and T (L.e. in the direction of 'ﬁA})
has been called the Transverse Hall effect. Note that in this
case B is not necessarily normal to J. The measured Hall
field perpendicular to J and BAT (i.e. in the direction oi
FA(BAT) or in another word the measured field in the plane
of B and ¥) nas been called ILongitudinel Hall effect.

Actually, with the above conventions, Grabner's measurements
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odd
can be represented by one of the components of p1 ;j(i)

depending on the particular orientation of his samples.

It is important to notice that Grabner's Hall effect
definition (as we have mentioned early) is in accord with
the first definition. In fact, he has measured some of the

"odd" part of the magnetoresistivity tensor.

4) ZLongitudinal magnetic field Hall phenomena.

In a parallelepiped sample geometry, this name has been
used for a transverse potential difference developed normal
to J when the magnetic induction B is set parallel to 3.
Garcia-Moliner (1959) has predicted that quch a_gq}eptial B
difference één dévelop eveQ-in a cubic crystal when the current
density T is set up along a direction with no symmetry.
Hattori (1968) has observed "a transverse voltage in a
longitudinal magnetic field"” in bismuth. In fact, he has
measured nggbz); a component of the Hall effect in this

A7 structure material.

5) Planar Hal R
Apparently, Goldberg and Davis (1954) in germanium

crystals first observed an electric field perpendicular to
current direction in the current-maznetic field plane and for
this field they have used the name "planar Rall field"; since
then in the literature this effect has been known as the planar
Hall effect. PFor the same field the name "pseudo Hall effect"
has also been used by Koech (1955). Very recently Hurd

(1974) has dropped the word "Hall" and defined the planar

effect in the following way: in anisotropic media, with ¥ and
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B established in isothermal conditions, the planar effect is the
appearance along a direction perpendicular to 3’, and coplanar
with 3 and B, of an electric field which is an "even"

function of B. Prom the above definitions it is clear that

this effect is tle}segeamement of the "off-diagonal even"
components of P“(i) (1 3J) as a function of magnetic field
direction when a constant B is rotated in the plane determined
by the 1*1 ana jth directions. For example, if T/'1 (x- direction
and B/ 2(y-direction), P,,(B,, By, 0)
the planar effect.

According to the first definition, this effect is a part of the

magnetoresistance, since it is an "even" function of B.

represents
B = const.

From the aboie descriptions of the various Hall effects
the following results can be deduced:

(I) It appears that most of the Hall effect names have
arisen by consideration of the "off-diagonal even" components
as though they were part of the Hall effect.

(II) The Quadratic Hall efrectesg.g be represented by the
"off-diagonal even" components £ J(i) (1)) when B is taken
along the crystallographic directions.

(III) Polar measurements of the "off-diagonal even® components
P:l:‘('g)l (i%j) as a function of magnetic field direction when
a constant -f is rotated in the plane determined by the :I.th and
Jth directions can cover the planar Hall effect.

(IV) fhe other Hall effects described aboveéaan either be
represented by the individual components of 'Pi J(i) or
their dependence on the magnetic field direction when a

constant B 18 rotated in a specified crystallographic plane.
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(V) Prom the results (I), (II), (III), (IV) and in the
light of the first definition we can conclude that the effects
2 and 5 belong to the magnetoresistance; 1, 3, 4 belong to
the Hall effect. Therefore, it is best not to consider them
as individual effects.

(VI) Once again, in the study of the galvanomagnetiec
effects we suggest that workers follow the first definition —
evq% odd
pi;)( ) — magnetoresistance, Pij(i) ——+Hall effect —

it is simple, most general and oractical.
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4.3.2. TRERMOMAGNETIC EFFECTS

Thermoelectric effects and thermal conductivity in the
presence of magnetic field are frequently called the
thermomagnetic'é??ggts. As we have already stated in an
earlier section thé.thermomagnetic effects are represented
by the magnetic field dependent tensors 01“(5), ll:ij('ﬁ)
and Kij(i). ltij'(i;) and aij(‘ﬁ) are related by the Kelvin
relation (see equation 4.18). Here, a somewhat detailed
description of the magnetothermoelectric power tensor
Oaj(f) together with a brief description of the other two

tensors will be given.

The second rank magnetothermoelectric power tensor
did(f) can be expressed as a sum of "even" and "odd"

functions of the applied magnetic induction B

d
o (B - ogyd 043 (4.52)
dad dd
where G (B) = Ay (B) ; X (B) = -0,EB).  (4.52)

The same tensor can also be written as the sum of symmetric
(s) and antisymmetric (a) parts' with respect to the indices
i and j:

“13(3) - aigli) + df"i‘;(i) (4.53)

- )
O IR T e D

By using the above equations (4.51) to (4.54) we will
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(s) even
explicitly show that “13(3) is not equal to “13(3) and

(a) odd
aﬁj(i) is not equal to Oaj(ﬁ). Let us first express

" od
aq;?%) and aqj( ) in terms of O&j(fﬁ)-

- eve odd
oy = &5(H .+ P (4.51)
eve dd
(B = A (D) + dyy( D). (4.55)

By making use of equalities (4.52), equation (4.55) becomes

even_, odd
oy 4(-B) = @, () - a,(®. (4.56)

Addition and subtraction respectively, of equation (4.56)
from equation (4.51) leads to

even -
o, (B =5 f"“‘m +oz”(-‘ﬁ)7‘ (4.57)
odd - 1
aij(i) - _;,:2136) -aij(-ﬁ). (4.59)
Equation (4.53) can be also written as
(s) (a) .
@, (B = oy B + oy (H). (4.59)

Use of the relations (see equations 4.54) in the right hand
side of equation (4.59) yields

(s) (a)
ozji(‘ﬁ) .aij("ﬁ) -oz:j(ﬁ) . (4.60)

Addition and subtraction respectively, of equation (4.60)
from equation (4.53) yields



- 116 -

(s)
(a) 1
@3B =3 [aia(i) B o‘:li(iﬁ)} ' (4.62)

By comparing respectively equations (4.57) and (4.58) with
equations (4.61) and (4.62) it can, in general, be shown
that the following inequalities hold:

&I:?i) =t o(c:;(ﬁ) : - (4.63)
odd (a)

3). .6
o, @ - 0y 4(B) (4.64)

Thesé inequalities are crucial equations in that they put

an end to use of the symmetric and antisymmetric terminology
in description of transport tensors. For Pij(i) the
restrictions imposed by the Onsager relation (see equations
4.17) demand an equality sign instead of an inequality sign
(see equations 4.31 and 4.32). This is the reason why we
needed to list only the half parts of Pe;?%) and P:;?i)

in table (3.5). But for ayy(5) and &:J(i) the full forms
were given in table (3.6).

Experimentally, "ever and "o0dd"™ parts can be measured by merely
reversing the sense of the magnetic induction B (see equations
4.57 and 4.58). On the contrary, this need not hold for the
symmetric (s) and antisymmetric (a) parts. As an example
consider the tensor component Ol23(31) for the point group
3n. To obtain the symmetric and antisymmetric parts of
0,4(By) the following equations may be used:
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(8)

a23(B1) = %[&23 (31) + a32(31)] (4.65)
(a) )

OL:3(B1) - é[a23(31) -a32(31)] . (4.66)

That is, O£23(B1) and 0132(]31) need to be measured. For this
two differently oriented (z - cut and y - cut) samples are
required. On the other hand, inspection of equations (4.57)
and (4.58) shows that "even" and""odd" parts of 0123(31) can bg
obtained from one sample (z-cut). This is a very important
practical reason for using the "even" and "o0dd" terminology

in describing field dependent transport tensors in general
228 %5® 1n partioular. mis rurther ewphasises that the

"even" and "odd" nomenclature for the description of transport

tensors is superior to the symmetric and antisymmetric

terminology.

We now define the magneto-Seebeck effect as the part of
0413('5) which is an "even" function of B and Nernst effect
which is an "odd" function of B. Apparently Steele and Babiskin
(1955) in the measurement of the thermomagnetic effects in
bismuth were the first to separate certain components of a”(i)
into "even" and "odd" parts. Later, Harman and Honig (1967)
in their multiband formulation of the galvanothermomagnetic
effects have found it convenient to split each transport tensor
into "even" and "odd" parts. In fact they use "Seebeck coeffic-
ient" for "even" components and "Nernst coefficient" for "odd"
components of 0‘13(3) . :eart from these two suggestions the
above description ( 051;?3) ~———» Magneto-Seebeck effect;
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odd
(3) - Nernst effect) has not, to our lmowledge,

been given before. Now the magneto-Seebeck effect and

Nernst effect will separately be described.

(1) MAGNETO-SEEBECK EFFECT

eve
Following closely the description of iJ(%) the "even"

part 01'0&3(3), i.e. the magneto-Seebeck effect, can be
divided into two parts: diagonal components and off-diagonal
components. The diagonal part can further be divided into

even
two parts ‘xii(Bi) longitudinal magneto-Seebeck effect and

even

aii(Bk) (1i#k) transverse magneto-Seebeck effect. The
even

off-diagonal even components ﬁ!iﬂ(nk) (1#3) <for which we

have no special name will be just called "off-diagonal even"

components of O J(B)

(11) NERNST EFFECT

The "odd" part of the magnetothermoelectric power tensor,
i.e. o:g(B) represents the Nernst effect. Due to the absence
of a relation like Onsager's reciprocity (see equation 4.17)
in the magnetothermoelectric power O&j(i), the diagonal
components of & J(B) in general can exist. This, as it will
be shown later, has been the origin of the so-called
"Umkehreffect" which is usually considered to be an anomalous

effect.

Por completion, it is useful to interpret the definition of
the magneto-Seebeck and Nernst effects by considering the low-

field expansion coefficients. These coefficients are usually
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obtained from a power series expansion of “13(3) with
respect to the magnetic field components:

(o) (1) (2)
°‘13(3) -ai.‘l + a13k13k1 + a13k1k23k13k2 + seee (4.67)

The coefficients (which are constant tensors) of this series

are given by

(N) Sa, . (B

aijk‘lkZ"'kN = (1 .Ti.ﬂ__ (4.68)
N! o0 e
(h) =),

where 1, J, k1! k2’ secee kN =1, 2, 3;

ég?’ (second rank polar tensor)

) TI ) o
(o] (third rank axial tensor)
13k,

(2)
a’i;]k1k2 (fourth rank polar tensor, it is symmetric only with

respect to the indices k, and k2)°

The effect of spatial symmetry on these constant tensors and
thus the number of independent components and their identification
have been studied and liste§ by Bhavagantam (1966), Pinchuk (1967
and Smith et al (1967). A detailed study of these low field
tensors in bismuth (A7 structure, point group 3m) has been
given by s{'imengen and Saunders (1972a). In this low-field case
Nernst effect and the Magneto-Seebeck effect can be represented

(1) (2)
by the components of O'-“k1 and a.“k1k2 respectively provided

that the power series expansion (see equation 4.67) is carried
out to second order terms only. In fact, Bhagavantam (1966)
has used the name Nernst effect for a“k1 and the term

(2)
magnetothermoelectric power for 0’-131:11:2 .
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To show that this description is in accord with the general
definition, let us consider the "even" and "odd" parity
of the thermoelectric field components Ei with respect
to the magnetic field.
even odd

1
[ (0) (1) (2)
aij + %3k13k1 + aijk.'kznk.'Bkz +....] le'
(4.69)
Here (0) (2)
even [ + a&dk1k23k1nk2 +ooo ] P (4.70)
and E{M [ éijk bere ]vjm . (4.71)

Equations (4.70) and (4.71) can be taken as the defining
equations for the low-field magneto-Seebeck and Nernst
effects respectively. Note that the linear relationship
between B V4T and E2% allows us to find the low-
field Nernst coefficients (which are the components of a
third rank axial antisymmetric tensor). Thus the low-
field Nernst effect of a particular material is represented
by the components of di;l)c which are constant themselves.
In general, for an arbitrary value of magnetic field,
equation (4.71) does not hold. Again by using the "even"
and "odd" parity of the measured thermoelectric field
components E; with respect to the applied magnetic field,

Ei can be written as

even odd

(&ERD .+ ay® | e (4.72)
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As we have noted before, the "odd" part of (4.72) represents
the Nernst effect. We now follow closely the definition of &
Hall coefficient for an arbitrary magnetic field strength
(see equation 4.50); in anisotropic media for a constant
magnetic field 3;50,&2‘;(30) can be considered as a local

gradient of Egdd versus B curve. The defining equation of

this Nernst coefficient is

B&d'd('ﬁ)
% ,(8) - ('6;'!) 4 53 (4.73)

o

In the literature, considerable theoretical work has
been employed in the expression of the components of 0‘13-(3)
in terms of mobilitiées and carrier densities. Once again, the
well known bé.nd structure of bismuth with its large magneto-
Seebeck and Nernst effect lead to this materiai being the firsi
to be studied. Ir; strong and low field limits, expressions for
the components of d”(f) for the diffusion thermopower have
been given by Harman et al (1965). Korendblit (1969), for the
same limits, has given expressions for the phonon drag case.
Samengen and Saunders (1972a), for the classical range of
magnetic fields, have given general and explicit expressions
for some of the components of O’—”('i) for diffusion case; in fact
for the first time, they have obtained a complete set of model
parameters (mobilities and carrier densities) by analysing
experimental results of O"zz(i) for bismuth at liquid nitrogen
temperatures.
In the next chapter, the form of ai;](-ﬁ) for intrinsic and p-type
(Sn-doped) bismuth will be obtained for the diffusion and phonon

drag cases. Measurements of the components of a’i;j(-ﬁ) are, in
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general, more difficult than those of Fﬁj(ﬁ). This is because
of the experimental difficulties involved in attaining
isothermal conditions in the presence of a temperature
gradient along the sample. Smith et al (1967) have discussed
the difficulties of measuring the thermomagnetic coefficients
in isothermal and adiabatic conditions.

The rest of the magnetic field dependent transport tensors
Kij(ﬁ) and ﬂij(ﬁ) can similarly be described. They can be

expressed as the sum of "even" and "odd" parts in B:

dd
K, = x:;ﬂ) . xi,(i) (4.74)
dd
and m () - :f::’(‘i) . n::,(i). (4.75)

Here K:;%%) and :I;%ﬁ) are called magnetothermal

odd
conductance and magnetopeltier effect respectively; Kij(ﬁ)

odd
represents the Righi-Leduc effect and ﬂid(i»the Ettinghausen
effect.
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CHAPTER FIVE

THE EFFECT OF CONSTANT ENERGY SURFACE MODELS AND SOME BASIC
TRANSPORT THEORY ASSUMPTIONS ON THE FORM OF TRANSPORT TENSORS.

5.1 Introduction

Simplifications inherent in band structure models
and assumptions employed in solution of the Boltzmann
transport equation can restrict the forme of pij(f) or
Gij('ﬁ). In this chapter the forms of pij(ﬁ) and aij(i)
c¢btained from transport theory are compared to the pheno-
menological forms established in chaepter three (see section
3.5). As an example, the well-established band structure of
bismuth is considered throughout. It is shown that the
forms taken by aﬁj(i) for the phonon-drag and cerrier
diffusion cases differ; the appropriate components that
need to be measured to separate the two contributions are

given.

From band structure considerations, an explanation of
the appearance of the Umkehr effect in certain components
of Pij(i) and a”('f) is given; here, in addition to the
symmetry restrictions implicit to the band structure (ie. the
Permi surface) model of bismuth, those arising from the wells
known constant energy surface near the band extrema of

n-germanium are also considered.
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5.2 CONSTANT ENZRGY SURFACE SYMMETRY RESTRICTIONS ON THE
FORM OF THE MAGNETORESISTIVITY TENSOR.

A second way of reaching the form of pij(f) is through
the microscopic theory of electron transport. This is
usually achieved by solution of the linearized Boltzmann
transport equation in the relaxation time approximation.
In principle when all the restrictions imposed by the band
structure symmetry are included in such a calculation,
the form obtained for Pij('ﬁ) shodd be identical to that
found from the phenomenological approach in section (3.5)-
However, to facilitate an analytical solution to the
Boltz;ﬁ_ann_éauation z;ecourse”is o_ften made for -séngc_t_mductors
or semimetals to representation of the constant energy
surfaces in the vicinity of the symmetry releted band
extrema by simple models such as spheres or ellipsoids.

But transport theory based on the multivalley ellipsoidal
energy dependence of crystal momentum can yield results o_f
higher symmetry than the phenomenological theory — the
symmetry of the constant energy surface model determines
the form of pij('ﬁ). The simplest example is the spherical

Termi surface model of a metal with the relaxation time

independent of velocity; here the "even" parts of pm(‘B)

are independent of the magnetic field and are simply the
zero field resis{tiveity: the magnetoresistance vanishes (see
however Allgaier 1973 for a discussion of the special

agsumptions inherent in this simplest transport model).
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The phenomenological form of 013(3) appropriate to
the A7 structure (point group 3m), in suffix notation, is:

EVEN
P4(By) O 0
f 4(B4,0,0) ={ O Pra(By)  Fo3(By) |+
0 Py3(By)  Ry4(By)
oD
0 0 0
+{ O 0 LT .
0 -f,3(B,) 0
EVEN
B AL IS Y
913(0’32’°)= 0 922(32) 923(32) +
0 R3(By)  R3(By)
0DD

* 912(32) 0 0
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EVEN
%4(B3) 0O 0
f4(0,0,8y) = |0 P(By) O ’
0 0 933(133)
oDD
0 A2(B3) 0
> -912(33) 0 0
o . 0 0 (5.1)

where the "even" and "odd" parts represent the magnetoresistance
_and Hall effect-respectively. -Aubrey (1971) has- derived
explicitly each of the components of 013(3) in terms of

carrier densities and mobilities for the tilted

ellipsoidal model of the group V semimetals. Inspection

of his equations clearly shows that the form taken by

Oid(ﬁ) and therefore Pij('ﬁ) is the same as that obtained

by the phenomenological approach (equation 5.1).

The way in which the constant energy surface symmetry
assumptions can restrict the form of Pij.('ﬁ) can be seen by
consideration of Fermi surface models used for bismuth. In
the first quantitative work relating the galvanomagnetic
effects of bismuth to the band structure, Abeles and
Meiboom (1956) used a non-tilted ellipsoidal model for the
electron Fermi surface - a model which reduces the form
of Pij('ﬁ) to that of the higher symmetry enantiomorphous
point group 622 (see table 3.4). The components
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P;;fg1) , ngfrl}z) and P:;?Bz) which depend upon the tilt
angle of the ellipsoids must then vanish. Another example,
which finds direct experimental verification, occurs when
bismuth is doped with sufficient acceptors to depress the
Fermi level below the conduction band edge into the L-point
gap (a review of the effects of doping on semimetals is
given by Saunders =and Akggz 1973). At sufficiently low
temperatures the only carriers present in concentrations
high enough to affect Dij('ﬁ) are holes in the ellipsoid of
revolution centred at the T point. As a result of this
symmetry restriction on the band structure, Pij('ﬁ) acquires
the form corresponding to that for the point group 422.
Gitsu et al (1969) have shown that in tin-doped bismuth

933(31) = P33(Bz) which is one of the interrelations
between the tensor components predicted beneath the form

of pij(ﬁ) for the point ~roup 422 in table (3.5).

In general the form of 913(3) can be arrived at by
consideration of the symmetry of the points in the Brillouin

zone where the band extrema lie.
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5.3 THE EFFECT OF CONSTANT ENERGY SURFACE MODELS ON THE

FORM OF al,ffl - THE DIFFUSION AND FHONON DRAG
THERMOPOWERS .

While the phenomenological forms of aij(ﬁ)"given in
table (3.6) are strictly true, assumptions made in
application of transport theory in the multivalley constant
energy surface model can result in a higher apparent
symmetry than that of the point group and the form of

aij(f) is altered accordingly. The forms of aij(ﬁ)
predicted from the theories of phonon drag and diffusion

thermopower can differ and their study should allow

gseparation of the two éontributions. From solu;i;n of"

the Boltzmann transport equation in the relaxation time
approximation, Samengen and Saunders (1972a) have obtained

a general equation for the diffusion contribution to aij(f).

For a two-band model with electrons (e) and holes (h).

ags® = o { Gy (B B, + Gy (D) 7y ) (5.2)

where Pe an& Ph, the partial Seebeck coefficients of elect-
rons and holes respectively are scalar quantities (see
Saunders and gkta 1968) . de’e(ﬁ) and ij’h(ﬁ) represent
the partial electron and hole conductivities. Aubrey
(1971) has given the prerequisite expressions for Oij(i)
and therefore pik('ﬁ) for the group V semimetals. Now
equation (5.2) can be used to obtain the forms of aij(ﬁ)

when carrier diffusion is the dominant transport mechanism.
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However, at low temperatures phonon dreg can make a
large contribution to the thermopower of semimetals
this is probably true for bismuth. Korenblit (1969),
using anisotropic partial Seebeck tensor arising from
phonon drag effects, has obtained a general expression for
u&j(f). We write, in a slightly different notation, his

expression as

o (B) = Py (B { ; 0:11 o(B) “11: et zr: G:xj,h(-ﬁ) “ﬁk,n}

(5.3)

where 1 and r run over the number of electron and hole
ellipsoids respectively, OEJ e(B) and Or (B) are the 1P
electron and rth hole valley macnetoconductivities respectively

th th
and %k,e anddgk'h are the 1

phonon drag thermoelectric power tensors respectively. Tor

electron and r’" hole valley

bismuth equation (5.3) becomes

0 (B)= 0y (B) { i: G:z;] B o k,e * qnj,h(-ﬁ) “ﬂc,h}

(5.4)

where in Koreublit's notation the hole phonon drsg thermo-
electric power tensor “jk h in the crystallographic axis

?
reference frame is

a‘.’
N1 0 0

en=| 0 %y O (5.5)

0 0 0’33
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and that for electrons is

%k,e= 0 %y %3 (5.6a)

'J‘;( 22~ %)

IT,III
ij’e =

139+ %)

1
'5"52

Here the upper sign refers to the second (II) and the lower

sign to the third (III) ellipsoid. The ellipsoids are

numbered in an anticlockwise rotational order about the

[11ﬂ direction. Now by using equation (5.4) we obtain

the form of the phonon drag magnetothermoelectric power

tensor for bismuth when an arbitrary magnetic field -

B1, 32 or 33 is applied parallel to crystallographic axes

X,¥, or z taken in turn.

To achieve this end, we

(1) express the components of pnm('ﬁ) in terms of Ol',m(-ﬁ),

(11) use Aubrey's (1971) exvressions to find the componentsof
.3 q q II I%) and Op, n(®) in terms of the carrier
mobilities and densities and

I,11,III
(111) obtain the electron ajk,e and hole ajk h
phonon drag thermoelectric power components from

equations (5.6) and (5.5).
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when the summation implieit in equation (5.4) has been

carried out, the result obtained written out in full

suffix notation is

EVEN
(3 0

%3(By) =| 0 %yp(By)
0 %(By)
11(B2) 0

%3(B) = 0 %p(By)
0 a,(By)
F1(83) o

(B 5| 0 %y(By
0 0

0
%3(3y)

%3(3,)

o

%4(B,)

% 3(By)

0

%3(3;)

0DD
%1(B) 0 0

0 %y(By) G3(By)

0 %,(By) %5(8,)

0 %,(By) 9,(B,
+ "21(32) o] 0
4.(3) 0o 0O
0 G,(By)) 0O
+ -u12(133) 0 0

o) 0 o)

(5.7

Thus the form of & J(-f) obtained for the phonon drag

thermoelectric power is identical to the phenomenological

form given (for the point zroup 3m) in table (3.6).

Yow we consider 311(B1) in particular; from equations (5.4)

and (5.7)

%,(By) = 3:7?31) +

aodd
11(

B,).

(5.9)
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B2

Here eve?B ) = Cq + G35
(o + cSBE%

o2¥8,) « —2 5 3 (5.9)

(04 + c531

where
= P10y *3Y G og iy 1+305) (07 143055)

+ %“‘22'"11) (850-01) + Fhp3(@35-053)

c=§(a'-a')uu+§(uu--§)(a'-‘)
2 ™ 7'%227%11) Bab23 11#337 7y, 1 (%327 %3) -

: d
Jow 07,43y, a11)(3u11u33 e )+ 4g(dy1+3%2) »

1
G4 = Pq+3vyq43(Hy43i2)

= 10443003 )
G5 = glMy1+3Vy9) (3Rgqagigr ) -

Here uij and viJ are the electron and hole mobility tensors

respectively and de=‘ﬁ1(“22ﬂ33 -u§3). Note that for

bismuth v11= 99 and v23=0.

Now let us consider a11(B1) for the diffusion thermoelectric
power. By putting

GEZ = °Q1 = Pg

Gy = B3 =0

u§3 = Py (5.11)

(5.10)

H
n
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equation (5.4) reduces to equation (5.3). By using either
equation (5.3) or substituting (5.19) and (5.11) into (5.9),
it cen easily be seen that Cy becomes zero and therefore
g.?;i(B.') is zero (in agreement with the findings of

Sl';.mengen and Saunders (1972a)). There is a marked difference

between the two contributions: in the phonon drag case

eve odd
aq(B) = atB) + 83 , (5.8)
while in the diffusion case

eve odd

_Thus_ the two effects..(phonon drag and diffusion). can be
geparated in principle by measurements of 0-11(+B1) and

e, ,{-B,).

Hansen and ielsen (1974) have pointed out that the low
field coefficient 0-1:1 gshould be a direct measure of the
phonon drag thermopower due to electrons in bismuth.

In the low field expansion of Cij(ﬁ) (see ec(x;;ation 4.67)
the phenomenological theory predicts that q”-1 is an
independent non-zero component (Samengen and Saunders 1972b).

This low field component is given by

1) da, . (B,) Co
‘411 = Slﬁh ! = c =
B=0 4

a
3 (d o 3 -, ) (G @
o7 (Bp-y ) Ky giar gIygkay ™ Ty ) (Baa- %3) (549
By q+3V, 4+ %(“11+3“22)

Use of the equalities (5.10) and (5.11) verifies that
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“S:: = 0 for the diffusion contribution.

We shall now show that a further relationship, namely
odd od

d
G33(B1) = - a22(31) (5-14)

exists for the diffusion but not for the phonon drag
contribution. PFrom equation (5.2)

033(B,) '
%2(By) = —11351_1—'{ %2,6(B1) g + Gop n(By) Pyl

~0,5(B,)

DL

+

{932,608 P, + O3 (3)) B} (5.15)

where _21_"_ 92_2(_3_1) 053( B1_)__ -. %2(31) 02_3(31) .

Now using Aubrey's (1971) equations (91i) it can be seen

that 053(31), G&2(31) and I% are even functions of B1}
Therefore the first term on the LHS of equation (5.15) is

even with respect to B1.

e Gy (B,) a aa
- d 0
%a(By) = '%' : {2,008y Bg+ Gz (3)) By}
Odg even even
’-02%31) {032,e(31) Pet O3y n(By) Ph}

)
(5.16)

where we have separated the magnetoconductivity tensor

components into "even" and "odd" parts.

Again from equation (5.2)
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- 0,,(B,)
2\ 1

0p5(B,)
+—5, {3,608 Pq + 033 5(5)) By }.

(5.17)

The second term on the LHS of equation (5.17) is even with
respect to B1.

Thus eve

odd - 2?31) odd odd ,
%33(By) = Bi ,ﬁ53.e(31) P + Op3,n(By) By |
gdd(B y
- 2 even even
*'—3'_'1_0 {023,3(31) Pe + Op3 n(By) Ph} y

1
- —- = (5419
Again using Aubrey's (1971) equations (9i) in conjunction
with the "even" and "odd" terminology, it can be seen that

the following equalities hold:

0dd 0dd
0o3(By) = = 03,(3,) )
even even
%3(31) = 032(31)
Ogdd odd
h3,e(B)= = 035 o(By) > (5.19)
odd dd
even ven
B
05 o(B)=  932,e(B)
even even
Gan(B)= G (B =0 -
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Substitution of equalities (5.19) into equations (5.17)
and (5.18) shows that

odd odd
a33(B1) = - a22(B1) . (5-20)

Thus the final form of aij(ﬁ) for the diffusion thermo-
electric power is obtained when the equalities (5.12) and
(5.20) are used in equstion (5.7). We can conclude that
the phonon drag and diffusion contributions can be separated
by measuring the diagonal components of 8:3(31). Recent
measurements of 0%1(33) and 053(B1) (Ther and Goldsmid
(1974)) have indicated that the phonon drag contribution at
very high f{g}ds persigts_gp to well_abgve T7K .
Another example of this senaration of the contributions
to the thermopower can be seen in bismuth acceptor doped so
that the Fermi level lies in the I-point gap (Saunders
and Akggz 1973) - the only carriers present at moderately
low temperatures would be holes in an ellipsoid of revolution
centred at T point of the Brillouin zone. The drag

thermonower is then given by

@ J('15) = pik('ﬁ)

e, 1 (B) “‘mj.hi (5.21)

where the drag thermopower tensor amj,h turns out to be
that given by equation (5.5).
Thus

%1(3)) = A4(3y) i"11;h<31)‘;1"“’u ‘

In a similar way all the components of ﬂij(ﬁ) can be obtained
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with the result:

EVEW 01))))
(Magneto-Seebeck effect) (Nernst effect)
+
%1 0 0 O 0 0
+
%4 (B)={ 0 %, o0 + 0 00 (5.22)
+
0 0 033 0 0 0O

The forms of aiJ(BZ) and 013(33) are identical to dij(B1).
Hence, as Korenblit (1969) has noted for a substance with

a single valley, the drag thermopowers is independent of
magnetic field and the Yernst effect is zero. The diffusion
contribution obtained from equation (5.2) written_for the

case of carriers in a single valley as
%3(B = 7, (B G (B By (5.23)

and its form is

EVEN ond
(Magneto-Seebeck effect) (Nernst effect)

P, 0 O 0 N 0
dlj(B1)= 0 P, O + 0O 0 O (5.24)
0 0 P 0O 0O

The form of GiJ(BZ) and 033(33) are identical to
013(31). Thus the diffusion thermopower is independent of
both avnlied magnetic field and crystallographic directions.
We can conclude from this particular example that 1if
equations (5.2) and (5.4) do describe respectively the drag
and diffusion thermopowers correctly, that is if the use
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of @9 ,h and Ph in equations (5.21) and (5.23) respectively
is strictly correct — a proposal not yet put thoroughly

to the test — then a comparison between me~surements in
p-type (dingle carrisr) bismuth of a”(Bk) and 0.33(31()
(kx=1,2,3) should allow separation of the two thermopower

contributions.

Explicit expressions for all components of Gij(f),
when B is directed along each of the crystallographic
axes (x,y, and z), have been found by following the
procedure used to obtain the equations (5.9), (5.15) and
(5.17). The final expressions are extensive and need not

be given here. To analyse polar data, expressions for

a4(B, ’32,'0’)"; ay 4(By» 0, B,) and "1—3(0' By, By) need to
be derived; these are also very lengthy and are best

employed in computer calculations.

5.4 The UMKEHR EFFECT ;[_N_pij_C)_.

From space-time symmetry, we have already shown in
chapter three (section 3.5.5)that the Umkehr effect can

occur in certain off-diagonal components of the
magnetoresistivity tensor. In this section we shall show
thet the same result can be obtained from band structure
considerations. Over the years the occurrence of the
Umkehr effect in pij(-B.) has been a subject of some debate
(see, Casimir and Gerritsen 1941; Jan 1957 for a review

and references).
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5.4.1. The A7 structure semimetals

To show that the Umkehr effect can occur in pij(ib,
let us consider the case of 923(31) for the A7 structure
(3m point group) semimetals. In measurements of this
component, the odd and even parts can readily be seperated
by reversing the direction of the magnetic field from along
the +x direction (+B1) to the -x direction (—B1). Then with
the current along the +z direction the potential difference

V developed in the y-direction is

v2(31) = veven(B1) + vOdd(B1)

V,(-B,)= VeVEN(E,) - vOIN(E) " (5.25)

the phenomenological approach (Table 3s) tells us that
V5(B,) and V,(-B,) should not be equal because 923(31) is
not identicel to Pé3(-B1). The question now is whether or
not the difference is measurable. We can answer this by
inserting known band model parameters into expressions for
923(iB1) and thus calculeting the exnected magnitude of
the Umkehr effect in bismuth. PFollowing the methods of
Aubrey (1971) and Saunders and Samengen (1972), we write

(3,) 5.26
P23(%By) = ‘ﬂf(ﬂ}rg:,(n ) = Gy43(B,) 04(-B,) (5-26)

where
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0o2(By) = Bapay + $(3Ry4 + Byylay + 3vy,aq,

633(31) = "33(3-1 + 232) + 3V33a3’
0yy(B,)= (lyaF o8 "
23(°By)= (Mp3+ = Bylay - ["'23i G a3+ 57

8

t 3vyqv33Bqay

and
a; = ne (1 + -%e; B12)-'

d 1.
a2=ne[l+1(3u11u33+ e)B]'
4 _p-h— 1

a3 = ne (1 + v11v33_B'12)',
a_ = k(@ - K
e = P11iF2l33 = Fay

Using the band and mobility parameters (carrier density N =
=3n = 4.4 x 1023m'3, electron mobilities in m2V~) g1,

u.”=68, Boo = 1.6, Byy = 38, Hpy = -4.3, hole mobilities:

Vyq = 12, V33 = 2.]) obtained for bismuth at 77K by

Saunders and Samenpen 1972, we calculate that, at B, equal

to 0.57, Ry3(+By) = 18.8 x 107 Qm and p23(-31)d; -4.9 x

10~7 Qn. Thus 923(31) = 6.9 X 10"7Rm and 23(3 ) =

1.9 x 1077 Qm:  the Umkehr effect in Pyy(B,) s

substantial for bismuth at 77K. Inspection of equation

(5.26) shows that the existence of even terms in 923(31)

depends on the presence of the tilt of the electron Fermi

surface ellipsoids: if there were no tilt, there would be no

Umkehr effect in 923(31)
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5.4.2 n-type Germenium

The co-existence of even and odd terms in pij(ﬁ),
which gives rise to the Umkehr effect, is by no means
restricted to the A7 structure semimetals. It can, for
example, occur in cubic crystals. This can be illustrated
by considering n-type germanium (point group % 3 é).
Consider the axial set comprisihg
x//Coy// [lTO] y v// [11"5] R z//C;1// ] (see Table 3.5),
which can be taken as the ellipsoidal axis system: The
constant energy surfaces near each minima can be well-
approximated by a set of four ellipsoids of revolution
centred at the L points.

The next task is to find the form of pij('ﬁ) in this
axial set by solution of the linearized Boltzmann
transport equation for this band structure model. Fuchser
et al (1970) have solved the problem in the relaxation
time apnroximation for an arbitrarily oriented electron

ellipsoidel constant energy surfage and have obtained
(%) = <182 p(a.aa )'i*'f'sE %& (i1 lae. (5.27)
@y %% 14

Here @ ({ = 1,2,3) are inverse effective mass tensor

2 .
components, E is the energy ( = %; k.8.k) and £, is the
)

equilibrium distribution function. A minus sign has been
included in front of this equation, the necessity of which

has been confirmed by private communication with
J.M. Sybert. In the axial set under consideration we have

for n-type germanium
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axis 1 (x - axis //[sT0] //GZb/./u.H//a,//m:
axis 2 (y - axis //[1VZ]//uyp(=ty )/ /05(=0y)//mp(=m})
axis 3 (z - axis //[m] -//031+//u33//a3//m;-

Thus in the absence of intervalley scattering

oij(ﬁ’)= Z Gij(i)---;—hs-geﬂ(t! a,)H[g2 -ngZ [(uij)"1-’ﬁ] "
(5.28)

Where the ellipsoids of revolution are numbered in an
anticlockwise order around the [boﬂ axes. To find

the total O&j(ﬁ), the contributions from carriers in each
ellipsoid are ohtained by application of the following

_transformations to the mobility tensors and then summing

over all valleys

II IT. I
Myts RiRygpge Wy = RipRecfie
III IIT, III I IV, IV I
M3m Rip Ry igr Wy = RipRyglkpy  (5:29)

where RI is a wnit matrix,
SN =

0 3%

RIII = [ o _1 22 ana &I ] & g

3 3 * + 3
o B * 5

Here the upper sign is for the second (IY) ellipsoid and

Wi

the lower sign for the fourth (IV) ellipsoid. The form
obtained of 05_3(3), and thus of its inverse 913(3), is
identical to that in equation (5.1). Therefore, the off-
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diagonal component 92 3( B1,) contains both ‘even” and “odd”.
terms: in principle, an Umkehr effect is to be exnected in
an n-type germanium sample with current along plq and
magnetic field B, directed along [1Tb]-— when the sense

of B1 is reversed, a different voltage should be obtained

in the [11.5] direction. This prediction agrees with that of the
phenomenological form given in table ( 3.5).

To conclude, the Umkehr effect is to be expected in
any off-diagonal component of the magnetoresistivity tensor
which contains both "even" and "odd" terms: it is directly
related to the anisotropy of the constant energy surface

of the crystal under consideration.

5.5 THE UMKERR EFFECT IN & ,(B).

From spatial symmetry arguments, we have already shown
in section (3.5.5) that the Umkehr effect can occur in
any component of 013(3) which contains both "even" and "odd"
terms. We have also pointed out that this effect is well-
established experimentally in bismuth. Here we shall
explain briefly the appearance of the Umkehr effect in
aij(ﬁ) by considering the Fermi surface of bismuth.

By inspection of the expanded form of equation (5.2)
Samengen and Saunders (1972a) determined for the group V
semimetals which components of 013(3) contain both "even"
and "odd" parts and therefore should exhibit the Umkehr

effect. This oresent work does not agree with those
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predictions. We have shown that when the band structure
of bismuth is included amalytic~lly certain "even" and
"odd" parts vanish. Inspection of the form (equation 5.7)
shows which components of aij(ﬁ) should show the effect.
Note that for those experimental configurations with B
directed along one of the crystallographic axes, x,y or z,
the Umkehr effect can occur only when B is along the
x-axis, that is in all the non-zero components of « j(B ).
Uher and Goldsmid have recently observed the Umkehr
effect in d33(B1) which confirms the previous observation
of the effect by Steele and Babiskin (1955).

odd
Since (B ) is zero for the diffusion contribution, an

exception to this is that an Umkehr effect is to be exvected
in the phonon drag contribution but not in the diffusion
contribution to 051(31)

Agzain we conclude that the appearance of the Umkehr
effect in certain components of & J(ﬁ) is directly related
to the anisotropy of the constant energy surface of the

crystal under consideration.



- 145 -

CHAPTER SIX

L _—

MAGNETORESISTIVITY TENSOR OF ARSENIC (25.5 at.%)- ANTIMOWY
ALIOY SINGLE CRYSTALS

6.1 INTRODUCTION

In this chapter we discuss the experimental work carried
out on the magnetoresistivity tensor of As(25.5 at.%$)-Sdb
alloy single crystals which set the work in progress. The

perameters of this material for the first time.

The contents of this chapter (except section 6.4) have
already been published (see Akggz and Saunders 1971,
Akgoz et ol 1972, Akgoz and Saunders 1974).
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6.2 GROWTH AND DISLOCATION ETCH PITS OF ARSENIC
(25.5 at %) - ANTIMONY SINGLE CRYSTALS.

6.2.1 Crystal growth

A continuous series of so0lid solutions with the A7
structure is formed between arsenic and antimony; the
lattice constant a, the rhombohedral angle @& and the unit
cell volume incre~se almost line=rly with composition
(Quensel et al. 1937, Trzebiatowski and Bryjak 1938). PFor
solid solution systems in general the solidus and liquidus
are separated on the phase diagram: the ligquid and solid
phases—in-equilibrium at- a—given temperature do—not-have
the same composition and severe problems arise on single
crystal growth-——a variety of crystalline imperfections can
result, includinz, on a gross scale, concentration gradients
along the boule or dendritic or cell-like structure
containing excess concentration of one component due to
constitutional supercooling. Goldsmid (1970) in his review
of the bismuth-antimony alloys has emphasised how difficult
it is to grow homogeneous crystals of those alloys. In the
arsenic-antimony system there is a feature of the phase
diagram (figure 6.1) which can be used to svoid these
problems: a minimum melting point at which the solidus and
liquidus touch and so the liquid and solid phases in
equilibrium have the same composition (25.5 at.%As).
Several studies have been made of the temperature-composition
dependence of the liquidus and solidus on the arsenic-

antimony phase diagram by thermal, microscopic, X-ray and
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chemical analysis techniques (Parravano and de Cesaris 1912,
Mansuri 1928, Shih and Peretti 1956, Skinner 1965). The
position of the minimum melting point on the liquidus was
found to be 25.5 at.% and 612°C by Mansuri (1928) and

between 22 and 29 at.%As and 61260 by Shih and Peretti (1956).
The more recent and extensive work of Skinner (1965) confirms
that the minimum melting temperature is 61200; we follow
Skinner and take the corresponding composition as 25.5 at.# As.

Single crystals of arsenic (25.5 at.%, 17.4 wt.%) -
antimony alloys were grown from 99.9999% purity elements by a
modified Bridgman technique. Evacuatgq_(lq'4torr), 16mm
internal dismeter, quartz growth tubes with thick walls
(1.6 mm), on account of the substantial vapour pressure of
arsenic, were employed. Use of a single pointed end on the
growth tube proved as satisfactory as employment of a
constricted tube for single seed selection. A 20 mm length of
3 mm quartz rod was fused to the end of the growth tube as .
a spacer, because direct contact with the steel support roadused
in the furnace destroyed the temperature gradient at the tip,
in which case several longitudinal crystals grew. To reduce
oxidation, the arsenic was bought in sublimed form in
evacuated tubes containing a suitable quantity for one run.
The arsenic was weighed and transferred immediately to the
growth tube (containing the antimony) and put under vacuum
at once. Heating to 350°G under vacuum for 3h distilled
off any volatile oxide present; the zrowth tube was then

sealed off. TPigure (6.2) shows the growth furnace (for more
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details, see Jeavons and Saunders 1968 and Jeavons 1969). A
series of experiments showed that the best crystals were
obtained by maintaining the temperature gradient at

10°G/cm near the freezing interface and using a crystal growth

rate of 2mmh~1.

Arsenic and antimony single crystals tend to grow with
the z-axis nearly normal to the growth direction; but the z-axis
of the alloy crystals is directed randomly between 50° and 75°
with respect to the growth axis. As a rule, A7 structure
crystals cleave readily to expose (111) faces; the arsenic-
antimony alloys are no exception. The crystals show a perfect
cleavage on the (111) face. Unlike arsenic, the alloy does
not oxidise markedly on prolonged exposure to the air, and
cleaved surfaces retain their shiny appearance. Debye-Scherrer
powder photographs of this 25.5 at.% alloy show that the
vprimitive rhombohedral lesttice parémeter a is equal to 4.418 z
0.001 & and a is equal to 562 12 ¥ 3,

6.2.2 Dislocation etch pit studies

Cleaved (111) faces of the crystals have been etched and
examined microscopically. Seversl potential etching reagents
were examined; an etch composed of three parts hydrofluoric
acid (40%), five perts concentrated nitric acid, three parts
glacial acetic acid and a few drops of bromine, aged for one
month in an enclosed container, was the most successful.

After immersion of the crystal for one to two seconds, followed
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by washing in distilled water, this etch produced pits on

the (111) cleavage plane which were much better defined thani
usual in metal alloys. The pits are triangular with

slightly rounded corners and have pyramidal bottoms, (figures
6.3 and 6.4). The pit sides are parallel to the <1071)
directions and, in consequence, to one of the slip line
systems (figure 6.3). Akggz and Saunders (1971), by using
several techniques, have established that the above etch

does reveal the sites of emergence of dislocations on the (111)
cleavage face of the alloy. Most of the crystals have etch
pit counts of between 104 and 105 per square cm; the best

crystals have counts as low as 103 per square cm.

Specimens were indented using a Vickers microhardness
tester and then etched. Wo new etch pits were evident. It ocen
be concluded that at room temperature arsenic-antimony alloys
are brittle and that the dislocation mobility is essentisally

Zero.

To relate the etch pit structure with possible
dislocations, it is necessary to consider the permissible
Burgers vectors and dislocation reactions for the A7 crystal
structure. A standard (111) projection, including those
directions particularly relevant to dislocation studies, is
shown in figure (6.5). DParameters associated with dislocations
most likely to occur are collected in table (6.1). The self-
energy of a dislocation line is proportional to the square of

Burgers vector (b) which is presented in taflle (64) both for the
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A7 structure in general and for the arsenic-antimony alloy
having a rhombohedral sngle & equal to 56° 12 in particular.
The sense of the angle that the Burgers vector makes with the
ﬁ11] direction can be found from the stereogravhic
projection in figure (6.5) and the magnitude of this angle
from table (6.1). The Frank stability rule can now be used

to determine which dislocations are most likely to be stable;
dislocations of large D can lower their energies by
spontaneous dissociation: a dislocation 3; will dissociate
into two dislocations ?2 and ?3, if b12 > (1:)22 + b32), that is
if 'b.z .?3 > 0. Therefore, the lowest energy dislocation should

have a Burgers vector equal to the smallest Bravais lattice

vector; other small values oflg'can also lead to stable
dislocations. These criteria evidence that dislocations with

Burgers vectors {101», {100> orQT1) are stable in the A7

structure.

Several distinct types of pyramidal etch pits have been
observed in the arsenic-antimony alloy (figure 6.4).
Symmetrical pits occur together with asymmetrical pits in
which the projected apex is deflected, either towards a base
or a corner of the etch pit triangle. These pit types can now
be related to the permissible stable dislocations. The
symmetrical (S) pits are probably formed by dissolution along
dislocation lines parallel to the trigonal axis: these may well
be edge dislocations with one of the (to{) as Burgers vector.
A dislocation parallel to a {1}0) direction mekes an angle
of 18% with the [111] direction (figure 6.5). Dissolution
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along this dislocation line would produce pits with the
projected apex deflected towards one of the corners of the
etch pit triangle (an example can be seen inside the circle
labelled C in figure 6.4). Detailed measurements of the etch
pit dimensions have been made to assess the angle to which the
apex deflection corresponds. Etch pit depthas (about 2 to 4 um)
have been measured by focusing the microscope at the surface
and then at the apex, and finding the lens traverse distance.
This cannot be done with great accuracy. The angle is
estimated as 20° + 5°, in reasonable agreement with the
postulate that this particular pit type arises from
dislocations lying pa::!.'g]_.lel to 110> directions. For such

a direction an edge dislocation with Burgers vector <107)
would be stable.

The commonest type of asymmetrical etch pit has a
projected apex deflected towards a base of the triangle
(labelled (Ba) in figure 6.4). Pit dimension measurements
show that the associated dislocation makes an angle of 30° +
5° with the [111] direction. This angle and the sense of the
apex deflection, suggest that this type of pit arises from
dissolution along dislocations parallel to 100> directions
which would make an angle of 33° with the [111] direction
(table 6.1).

The general results obtained also hold for other A7

structure materials.
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6.2.3 Orientation of the erystals.

To orient the A7 structure crystals in general and the
As-Sb alloy in particular, the +y and -y directions need to
be determined subsequent to and consistent with an
arbitrary choice of a +z direction along the trigonal axis.
To achieve_tﬁia end, we have used the following two techniques:
(1) ZLaue ﬁack—reflection photographs.

The process involved in aligning a crystal of an'A7 stivetire’ _
material rests upon the fact that this structure is closely
relateé to a.simple cubic structure from which it can be
obtained by apnlying two independent, small distortion
(Falicov and Golin—1965, Windmiller-1966);:—the normels-to the-
{100},.. plenes exhibit pseudo-fourfold symmetry and the
normals to the {711}f°r planes pseudo-threefold symmetry.
Referred to the primitive rhombohedral unit cell, these
pseudo-axes are the normals to the {O”Hlprh and {100} ., planes
respectively. Hence the quadrant in the mirror plane formed
by the +y and -z axes (end the -y and +z axes) contains a
pseudo-fourfold axis and that formed by the +y and +2z axes
(and the -y and -z axes) contains a pseudo-threefold. When a
back reflection photograph is taken with <the X-ray beam
incident along a bisectrix axis onto a crystal with its
clesvage plane horizontal, a pattern with mirror symmetry is
obtained; the photograph also shows a spot corresponding to the
pseudo-threefold reflection. An example for bismuth is to be
found in the publication of Rrown et al (1968) (figure 3) and
another is given here for the As-Sb alloy (figure 6.6). If the
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+z direction is chosen to be the outward normal to a cleavage
surface, then the +y direction is determined since the
pseudo-threefold reflection must be in the +y+z (or the -y-2z)
quadrant. Laue photographs taken of the arsenic-antimony
alloy with the x-ray beam along the pseudo-threefold (figmwe 6.9 .
and along the pseudo-fourfold (figure 6.8) are given here to
show the pseudo-symmetry. The angles between the pseudo-axes

and the +y axis are listed in tadle (6.2).

(11) Orientation of the triangular etch pits on (111) plene.

Using technique (i), we have determined the orientation
of the triaqgglar etch pits with respect to the +x and +y
axis on the (111) plane: a vector drawn from the pit centre
normel to a pit side points along the +y axis, when the out-
ward normal from the cleaved surface is taken & the +3 directim
(an example is shown in figure 6.3). Once this is known the
crystals can be orientated by a simple visual inspection
after cleaving and etching; first the +z axis is defined, the
+y axis is then found from the etch pits, and finally a +x

axis completes a right handed orthogonal set.

6.2.4 Conversely oriented etch pits in the A7 structure
gemimetals.

Apparent discrepancies in the orientation of the trimgular
etch pits have been mentioned by Brown et al (1968) and Akggs
and Saunders (1971). Using the etching reagents quoted in the
literature, we have examined the orientation of etech pits on

single crystals of Bi, As, Sb, As(25.5 at.%)-Sb and an
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Sb-(2 at.%)Ge alloy. Crystals were first aligned by using
Laue back-reflection photographs (technique (i)) and etched
using the reagents listed in table (6.3), and the pits —on
that cleavage face with the previously defind +z axis
emerging from it — were examined. TFor a particular etchant
on a given material, the pits consistently had a definite
orientation. In all cases the sides of the etch pits were
parallel to the bihary directions and pits on the -z cleavage
face (-2 axis emerging from the face) were inverted with
respect to those on the +zface, as required by the inversion
axis of the 3m point group. However, table (6.3) shows that

!;ﬁq different etchapts on a given materisl, two distigqt and

opposite orientations of triangular pits can be found; in some
cases the pits were such that the +y axis pointed outwards from
the pit centre normal to a base of the triangle (type A), and
in others the +y axis pointed outwards through an apex of the
triangle (type B). It should be noticed that even when a
particular etch is used on different materials, the pits
produced on each do not necessarily have the same orientation;
for instance the bromine etch of Shetty snd Taylor (1968)
produces pits on arsenic with the oprposite orientation to those

it produces on antimony and the arsenic-antimony alloy.

These findings account for the apperent discrepanéies
in the orientation of etch pits found by different workers
and previously suggested (Brown et al 1968, Akggz and Saunders
1971) to be due to incorrect definitions or identification of
axes. In particular it explains the difference in the
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orientation of the pits obtained by Shetty snd Taylor (1968)
and Calvert and Taylor (1972), from those found by Pace‘et al
(1970) on arsenic and antimony and by Akggz and Saunders (1971)
on the As-Sb alloy. Also accnunted for are the differences

in orientation between the pit orientations on Bi (Tovell

and Wernick 1959, Brown et al 1968). Since the etch pit
orientation depends on the reagents used, extreme care must be
taken if etch pits are to be employed for assignment of the
sense of the y-direction in the A7 structure crystais. Hexesgonal
type pits have been reported on arsenic (Jeavons and Saunders
1968) and on bismuth (Prawley and Childs 1970); these might
represent an intermediate form between the two triangular
extremes. The further question of whether all the reagents
used give etch pits that mark the points of emergence of all
dislocation types on the cleaved surfaces has not yet been

resolved.

6.3 GALVANOMAGI'ETIC EFFECTS OF ARSZNIC (25.5 at.%)-

ANTIMOMY ALLOY SINGLE CRYSTAILS.

The neture of the band structure of the arsenic-anfimony
alloys has been the subject of some controversy. On the basis
of measurements of electrical resistivity a2s a function of
temperature, Saunders et al. (1965) first reported that these
alloys show metallic (rather than semiconducting) behaviour
throughout the whole composition range. But Ohyama (1965,
1966) presented electrical resistivity results which show the
negative temperature coefficient typical of semiconductors; he

stated that alloys in the composition range 9 to 40 at.% As are
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narrow gap semiconductofs above about 240K. This composition
range closely parallels that (5 to 40 at.#Sb: Jain 1959) over
which the bismuth antimony alloys are semiconducting, yet

the band overlap of bismuth is only 0.0385eV (Smith et al.
1964) while those of antimony and arsenic are 0.20eV
(Windmiller 1966) and 0.37eV (Priestley et al. 1967)
respectively. Thus the band overlap change required to
produce a semiconductor by alloying antimony with arsenic

is much greater than that for bismuth with antimony.

To resolve the problem, Saito and Meezawa (1970) have

measured the electrical resistivity and the magnetic suscept-

_ibility of—alloys containing up to 21 at.% As. All samples
show a positive temperature coefficient of electrical
resistivity. The megnetic susceptibility parallel (X, )
and perpendicular (X;) to the trigonal axis of the alloys
as a function of temperature is very similar to that of
antimony itself. This evidence for retention of .
semimetallic behaviour as antimony is alloyed with arsenic
finds further confirmation in that the extremal cross-
sectional areas of the Fermi surface, measured by the de
Haas-van Alphen effect, do not change with increasing arsenic
concentration up to 3 at.%4: the band overlap does not

alter appreciabdbly over this composition range.

]
Although we consider thet Saito and Maezawa (1970) have
now provided substantial confirmation of the original finding

t
(Saunders et al 1965) that the arsenic-antimony alloys| are
|
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semimetallic, one aim at the onset of this work was to test
that finding further, using this particulsr As-Sb alloy
single crystals.

Reported here are systematic measurements, made at
selected temperatures between 1.5 and 300K, of the low field
isothermal magnetoresistivitr tensor components and the
angular dependence of certain components of the field _
dependent tensor on As(25.5 at.%)-Sb alloy single crystals.
Results are interpreted using 2 two-carrier, multivalley band
model to obtain the carrier densities and mobilities and their
temperature dependences and the tilt angle of the Fermi surface
péckets. Tﬂééé-alioy médei“paféﬁetefé_é;;-ihen coﬁ;;;;a_;nd

contrasted with those of the parent elements.

6.3.1 Experimental procedure end results.

T™wo distinct approaches have been made to measurement of
the magnetoresistivity tensor Pij(-f). These are first to
obtain the low field tensor components snd second to messure
the angular dependence of certain of the magnetic field

dependent tensor components for a constant magnetic field.

The low field technique has been used previously in
several studies of the group V semimetals; perticularly relev-
ant here is the work on antimony (6kt3 and Saunders 1967) and

arsenic (Jeavons and Saunders 1969).
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We have already written the low field expansion of
pij(f) up to second order in B (see chapter 4, equations
(4.35) and (4.36)). Por §m point groug symmetry, there are
2 indepent components of P s 2 of li (usually denoted as
2) 1] Jk
R:I.;)k) and 8 of &Jk1k2 (usually denoted in shortened
notation as Ai;]) .

Using equations (4.35) and (4.21), lh('ﬁ) in the low

field expansion can be written as

0DD EVEN
a (or antisymmetric ) _ . lor symmetricls)) ___
0 RiaBy -RyyB, oy B dp@ Fy@
 AB =] -RpaBy 0 RogBy | o [ dp B &8 o (B
‘ RyuB2 Ryy® 0 QB 6@ A8

(6.3a)

where

3 2. 2
BB =By ¢ ay4B] o 80085 + 4585 + 20,3,8
) 2 2 2
B2(B) = foe A0oBY + 40435 « K38y - 20y BBy

2
B3® = A3v a3,05% + By 45558
Ba(B) = 4y B - 44085 + 2048;3,
A3 = 28,33, + 20438,

A2(B) = 24y,B,B3 + (hyq-Ly9)ByBy. (6.1p)
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Equations (6.1b) have been given by Juretschke (1955) but are
repeated here with corrected signs for A14 and A41 in
agreement with Okada (1955a). The form of these equations
enables one to obtain readily, using

ni - pij(i)J,‘]' (6.2)

the experimental configurations required for measurement of a

particular tensor component.

To measure these twelve low field tensor components, sets
of three single crystal, parallelopiped (about 2.0 x 0.2 x 0.2
cm) specimens, oriented along the x, y and z_ axes, have been used.
Crystals were aligned using the symmetry shown on Laue back-
reflection photographs (and the sense of the y-axis checked
by etch pit orientation) as described in section (6.2.3).
‘Samples were spark-cut from these oriented crystals. The four-
probe configuration usual for galvanomagnetic effect
measurements was employed. Voltage probes were copper wire
(37 gauge) soldered to the sample with a solder consisting of a
eutectic mixture of Bi and Cd (melting point ~-140°C) which
does not become superconducting above 0.8K. The sample
current was about 0.5 Ampere. PFor temperature measurements
copper-constantan (above 77K) and Au/Fe - Oromel (for low
temperatures) thermocouples were attached to each end of the
sample. We have noticed that thermocouples not electrically
insulated from the sample can give rise to stray voltages;
thus the thermocouples were electrically insulated from the

sample by using very thin mica plates. Magnetic fields up to
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about 8 kG (0.87) were provided by a water-cooled
electromagnet. Measurements of low field tensor components
between 77K and room temperature were made by experinenial
techniques similar to those described by Jeavons and Saunders
(1969), Jeavons (1969) and Samengen (1971). A standard
liquid helium cryostat was employed for lower temperature

measurements.

Sets of low field magnetoresistivity tensor components
measured at selected temperatures between 1.5K and 300K
(room temperature (-300K), nitrogen (77K), pumped nitrogen
(-50K), helium (4.2K) and pumped helium (-1 5K)) are given in

tables (6.4a, .4b) together with the magnetoconductivity

tensor components obtained from

Pi:'m Uak(i) = 51k- (6.3)

The apprapriate relationships are given in the correet sign
convention in Appendix I as equations (AI.4). The anisotropies
of resistivity snd the Hall coefficients are quite marked:
f4/B3 - 1.6, Ryp3/Ry3 = 5. In the alloy #, 1s lerger then
§3, behaviour which resembles that of antimony ( lg 1/ g3 - 1.3)
rather than that of arsenic ( 11/d§3 e 0.8). On the other hand
the anisotropy ratio of the Hall coefficients (R123/R231)

is more like that of arsenic ( ~6) than that of antimony
(~1.1). Negative signs of Ryp3 and Ryqyy are found for all
three materials. The magnetoresistivity components Aid for
the alloy are much smaller than those of the parent elements:

this is a consequence of lower carrier mobilities in the alloy.

The signs of A,y and Aqq are both positive in agreement with
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those in arsenic and antimony for the same choice of sign and
axial conventions: this finding implies that the tilt angles
of #he electron and hole ellipsoids have the same sense as in

the parent elements, as the computations eonfirm.

The temperature dependences of the zero field resistivity
components ¢f1 and lg3 are compared in Pigure (6.9) with jthose
of similar compogﬁions measured by Saunders et al. (1965) and
by Saito and Maeéawa (1970); the resistivity of the present
samples is much lower than those in the earlier work. The
positive temperature coefficients of q1 and i§3 over the
whole temperature range show that the arsenic (25.5 at.%) -

antimony alloy has metellic behaviour between 1.5 and 300K
in direct contradiction to the findings of Ohyama (1966).

The low field megnetoconductivity components show very
weak temperature dependences at low temperatures. Above about
60K, the U 4 obey aporoximately T04, the 0;,,,7707 and the
8;4,77 12 (figure 6.10).

The magnetoconductivity tensor components qj('ﬁ) have
themselves been directly relsted (Aubrey 1971) to the band
model parameters and to obtain these parameters measurements
have also been made of certain P“(f) . To ensure that
sufficient data points are available to enable extraction of a
complete set of model parameters, measurements have been made
of the angular dependence of certain P“(f) in a constant
magnetic field taken right round the xy and xs planes of 10°
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intervals. Results obtained at 4.2K, 77K and 300K for
n|1(-B1,Bz,O). n‘1(B1,0.B3) and 921(31 ,033) are shown in
Pigures (6.11a), (6.11b) and (6.12) respectively. The results
were obtained on the same x-cut specimens as those used for the
low field components so that a direct comparison between the
model parameters could be made under identical physical
conditions. The specimens used for galvanomagnetic measurements
have been examined by electron microﬁrobe analysis: the
composition along each specimen length has been found to be

the same within the experimental error (<+ 0.5% composition

change) of the probe.

6.3.2 Computation

In the absence of any theoretical band structure calculat-
ions for the arsenic-antimony alloys, interpretation of <the
galvanomagnetic effects must rest on certain assumptions
concerning the nature of the Fermi surface. It is now"
established (see Dresselhaus 1971 for a review) that the
electron Fermi surfaces of arsenic and antimony each consist
of three, approximately ellipsoidal pockets centred on the L
points in the Brillouin zone. The six hole pockets in
antimony are located near the T point, each has mirror symmetry
but is rather more warped than the electron pockets. The
single hole surface of arsenic may be thought of as six

warped pockets near the T point joined by six thin necks
(Lin and Palicov 1966). Analysis of the galvanomagnetic
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effects in antimony (5kt3 end Saunders 1967, Bresler and
Red'ko 1972) and srsenic (Tesvons and Saunders 1969) has
been based on the sssumption that the electron and hole
pockets are ellipsoids. As the gererasl form, including

sign and anisotropy, of the measured low field components
of the magnetoresistivity tensor of the alloy (tadles k6.4a)
and 6.4b) resembles those of the parent elements, it is
reasonable to assume that the carriers in the alloy are also

contained in two sets of tilted ellipsoids.

With the assumption that the electron () and hole (P)
densities are equsl (N = P), there are nine band model"
parameters-};r this model of the Fermi surface. The
equations which relate the band model parsmeters to the low
field magnetoconductivity tensor components was first derived
in nrinciple from the Boltzmann transport enurstion by Abeles
and Heiboom (195€) and by Drabble and Wolfe (1956). The
appropriate forms for the two band, tilted ellinsoidal model
are given in S.I. unites in Appendix I, equetion (AI.1),
(AI.2) and (AI.3). A least-mean-squeres fit procedure (Jeavons
and Saunders 1969, Saunders and Stmengen 1972) has been used
to provide the best fit of model parameters to the measured
low field magnetoresistivity tensor components by a programme
which include equations (AI.t1 - AI.4) in Appendix I. A copy
of the computer programme is given in Appendix ITII. The
solution obtained for the computed model parameters are given
in table (6.5a). The model parsmeters at different temperat-

ures show a satisfying self-consistency which attests to the
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choice of a reasonable model.

A further test is to use the polar deta for the g (%)
shown in Pigures (6.11) and (6.12) to obtain the model
parameters and then compare them with those found from the
low field components. Using the two band tilted ellipsoidal
Permi surface model, Audbrey (1971) has obtained explicit
expressions for the magnetoconductivity tensor Oij(f) ’
valid over the classical range of magnetic fields. These
equations have been extended here to analyse the data taken
when the magnetic field is in the xy, yz, end xz planes;
the resultant equations are given in Appendix II. To transform
the measured magnetoresistivity tensor components to the
magnetoconductivity tensor components the following relations
have been used:

By 4(By B,0) = g_zzt(B, .BZ.OLIJ:&( BysBy .0)-62(31 .33.0) Gé(lq .BZL,O)

|9 5(B482.0)|

%1(31 00033) = 022(31 +0+53) (31 '0’233-53_2(31 ’O'E)LUZ3(B1 ’0’33)
|9 4(B4,0.33)

921.(31 ,O,BQ.M(BL’O’BJQ)L'“}#% 0 933) 523(31 0 ’33)
|G 4(B4:0,8,)]

(6.4)

where |qJ(n1 .nz,o)l and |q3(31 ,0.33)| are the determinents of
the magnetoconductivity tensor when 33 = 0 and Bz =0
respectively. Using these trensformations and the expressions

for (h('n.) given in Appendix II, a minimization procedure (sim-
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ilar to thatadopted for solution of the low field components)
has been used to obtain best fit solutions for the model
parameters from the data in Pigures (6.11) and (6.12) for
R1(BysB,,0), #4(By,0,B;) and @, (B,,0,B,) taken all together
at a given temperature. The solutions obtained at 4.2K
7TK and 300K are given in table (6.5b). There is good sgreememt
between the model parameters obtained by both methods. This
confirms that the expressions for Oij(ﬁ) derived by Aubrey
(1971) for the general cese of group V semimetals apply
directly to this arsenic-antimony alloy. The polar plots
have been measured-and therefore the complete set of model
pargmeters obtained — on one sgmple alone, a gregt advantgge

esnecially for alloys.

6.3.3 Discussion of the model parameters

The results in table (6.5) present, for the first thes far
an arsenic-antimony alloy, details of the carrier densities,
mobilities and the tilt angle of the Permi surface pockets.
Physical insight into these d~ta can be gained by a
comparison of the model parameters of the alloy with those
of the parent elements (table 6.6). As in the elements,
the holes occupy pockets of large tilt angle and the electrons
those of smaller tilt and the tilt angles have a negative semse.
The tilt angles of the electron ellipsoids are much the seme
in all three materisls (table 6.6). In the parent elements the
electron ellipsoids are highly elongated, and the components of
the electron mobility tensor reflect this. In all three

materials u2 is at least an order of magnitude smaller than




- 166 -

either By OF Hg. The hole pocket tilt of the alloy lies

between those of arsenic and antimony, and is closer to that

in the latter.

The alloy Fermi surface probably bears a marked similarity
to that of antimony. A useful parameter for comparison between
the alloy and the elements is the relative proportion of the
Brillouin zone filled by carriers. This is equivalent to the
retio of the Fermi surface volume V}s to that Vg, of the
Brillouin zone. This ratio is equal to N/ZNv where N is the
carrier density per band and Nv is the number of unit cells
in unit volume. Values of N/2N§, and thus of Vrs/sz,
calculated at room temperature ere 1.27 x 10~3, 1.78 x 10~
and 4.65 x 1073 for antimony, the alloy and arsenic respectively '
The size of the Fermi surface in relation to the Brillouin

zone volume of the alloy is much closer to that of antimony

than arsenic.

The temperature dependence of the electron and hole
mobility components is shown in figure (6.13). At low
temperatures the mobilities are essentially independent of

temperature above about 60K vary at p=0-4,

The temperature
dependence of the mdbility is quite different from that in the
elements (T'1'7 for arsenic, Jeavons and Saunders 1969;

7~1+5  for antimony, Okti end Saunders 1967). The mobility in
this so0lid solution seems to be dominated by the disordered
atomic array of lattice sites occupied at random by the two
different atom types which scatters more efficiently than the

lattice vidbrations or carrier-carrier interections.
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The carrier density is almost independent of temperature
(table 6.5). And although this alloy lies in the middle of
the composition range over which the arsenic-antimony
alloys were said by Ohyama (1966) to be semiconductors, the
carrier density is greater than that of antimony itself
(table 6.6). This finding and the positive temperature coeff-
icient of electrical resistivity (figure 6.9) demonstrate
that this alloy is semimetallic.

6.4 ELECTRON AND HOLE TILT ANGLES IN THE A7 STRUCTURE
SEMIMETALS .

It is now known that the electron pockets of As,-Sb and -
Bi are centred at the "L" points of the Brillouin zone and are
tilted with respect to the trigonal plane. The hole pockets
of As and Sb are located at the so-called "H" points in the
mirror planes and are also tilted with respect to the
trigonal plane. Brown et al (1968) have unambigously
described the sign of the electron Permi surface tilt angle
in Bi. Here we follow their description and generalize it so
that it includes the Permi surface tilt angles of As and Sb
and the As-Sb alloy. To achieve this end:
(1) We refer to the crystallographic right-handed
orthogonal axial set (see, section 2.2 and figures 2.1 to
2.9);
(11) we assume that all the Termi surface pockets are

ellipsoidal;
(111) we take M//G /M //u/f// + x (+binsry) direction

and the other two sxes of the ellipsoids in the mirror plane.
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So fer sll the reported theoretical and experimental work
does agree that the cross sections of the ellipsoids in the
mirror planes are ‘highly eanisotropic, the long axes of the
ellipses (heavy wass direction) are usually denoted by
m;,e (oxr m;,hj’ WQ shall use this common observed feature

to describe the tilt of the FPermi ellipsoids in As, Sb, Bi
and the As-8Sb alloy.

We now define the tilt sngle as the smeller sngle
between the "’"y and m;.e (or m;.h) directions. Of course, the
hole ellipsoid of Bi is not tilted and so it is excluded from
this definition. All the tilt angles will be measured from
‘the +ky' direction. A positive tilt angle is then defined
when m;,e (oxr m;’h) is opened towards Tl direction and
negative when m;. e (or "!;'h) is moved towards TI'X direction
in the Brillouin zone. According to this definition, the
electron tilt angle of Bi is positive, and the electron and
hole tilt angles of Sb, As and the alloy are negative.

Armed with a firm description of the tilt angles, we
shall now show how to introduce them into the gaslvanomagnetic
equations. The key equation (see, Herring and Vogt 1956) is

ﬁ- _emt.'._ = 01 .8 (6-5)

where § is the mobility tensor,¥ is the relaxation time temser,
W is the effective mass tensor and & is the inverse |
effective mass tensor (8 = (‘)'1). A1l the tensors in
equation (6.5) are second rank polar. EPEquation (6.5) is
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defined only when all the tensors refer to the same point

in the Brillouin zone. The symmetry of this point restricts
the form of these tensors. Since equation (6.5) relates the
mobilities to the effective masses via the relaxation time, it
may be called the bridge equation, i.e,, results obtained
from the galvanomagnetic measurements can be related to the

fundamental parameters via equation (6.5).

Let us see how the tilt angle enters into the mobility
equations expressed in the crystallographic orthogonal set.
Por this we use the passive convention and employ clockwise
and anticlockwise rotations. Rotation of sn ellipsoid axes
about the binary (+x) direction (which is parallel to the
1 axis of the ellipsoid) is represented by

1 o 0
R = 0O cos@ +sing (6.6)

0 +8in® cos@

where the upper sign is for clockwise rotations and the lower
sign for anticlockwise rotations, ® is the tilt angle and its
range is 0°< 0 <90°, It is convenient to insert the sign

of the tilt angle into the transformation matrix R (equation
6.6) so that @ takes positive values only.

Example 1: the principal electron ellipsoid of bismuth. The
tilt angle is positive. We need to employ a clockwise rotation,
that is the upper sign in equation (6.6) is used. The modbility

tensor components transform as
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*

where Rj, and R;] q 2re obtained from equation (6.6) and

*
7}

Pq Thus

Byq = By

I122 = K, cosze + I‘»3 sin29

r
u33 = |.|.2 sinze + u3 cosze (6.8)

1
u23 = '2' (“2- 3) Binza *

The #1lt angle is given by (Hartmann 1969)

2
tan 20 = ——en23 (6.9)
“‘22 - u33)

where ll»23<0 and (“22 - u33)< 0.

Exmaple 2: the principal electron ellipsoids afis,Sbeani the alloy.
The tilt angles are negative, that is, the lower sign in
equation (6.6) is used. The mobility tensor components

transform as

T
Ryq = Wy

L

()

N
(]

Ho cosze + ll3sin29

By !inze + ll3cosze + (6.10)

)
W
w

|

Hyq = % (u3 - B,) 8in20 .
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The tilt angle can be obtained by

)
trn2@ = —=2d (6.11)
(u33'u22)

where u23>0 and (u33 - u22)>0.
Exemple 3: the principal hole ellipsoids of AsAb and the alloy.

The tilt angles g,gg negative. The hole pability tensor

components transform as
it = Vg

Voo = vzcoszo + V3ing0

~

v33 = vzsinze + v3cosze

Vo3 = %(v3 - Vp) sin29 . | (6.12)
The tilt angle can be obtained by
2 v,
tan20 = ——2d . (6.13)
(V33 = V22)

The difficulty srises when 45°<|@]< 90°, thet is, for the
hole tilt angle of arsenic; |O}= 50°. Por this case
V23>0, but (V33 - V55)<0 therefore equetion (6.13) yields
the complimentary tilt angle with a negative sign. This
difficulty mey be ‘removed by rewriting equations (6.13) as

2v
tan2® = = 23 and 9= J =9 - (6.14)
(V33 = Va2)
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Thus when 45°< |@| < 90° equation (6.14) is used instead of
equation (6.9) or (6.11) or (6.13).

Let us examine the elements of equation (6.5) in more

detail.

¥ is symmetric (essentially this is due to the Onsager
reciprocity relations, in fact we have shown that partial Ui
or V is also symmetric in the A7 structure semimetals) so it
can be geometrically represented by an ellipsoid (or rather
a quadric) and is diagonal when it is referred to its
principal axes.

" (or its inverse @) is symmetric by definition. It is
obtained from the expansion of the carrier energy B(k) about

-l: in the viecinity of a minimum or maximum as

2
B(%) = %b"""""‘"""" (6.15)

or in suffix notation

. 2
E(k) = ;ﬁ? ki aij kd. (i,J = 1,2,3)0 (6016)

Thus the principal axes of W and @ coincides (see, section
3.3.3).

T is the relaxation time tensor which can be considered

in the following three separate situations
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case 1: ¥ is a scalar. For this case, the principal axes

of 'ﬁ?.‘d and § coincide.

case 2: a) T is symmetric and diagonal in the same orthogonal
set as M or % . Again the principel axes of ™ and T
coincide. This is the case considered by Herring and Vogt (1956) .
6kt1';. and Saunders (1967), Jeavons and Saunders (1969) and
Hartman (1969).

b) T is symmetric., but not diagonal in the same
orthogonal set as w ori. This can only happen when
®o = @339 i.e. for an ellipsoid of revolution which is not

necessarily correct so we exclude this particular case.

case 3: % is not symmetric. That is the only restriction to
the form of T is from the symmetry of the point L. Equation

(6.5), for this case, becomes

u.” 0 0 t" 0 0 a." 0 0

O Bap Ka3|.a ef® T2 T23|.[0 Gy O

0 Hp3 K33 0 Y32 %33 0 0 83,
(6.17)

Thus T23 %2 _;‘é (6.18)
T2 %3 '

A similar condition to that in equetion (6.18) eppropriate to

the band structure of 312Te3 was first given by Korenblit
(1961) and later supported by Hubner (1967), Puscher et al

(1970) and Ashworth et al (1971).
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Case 3 automatically implies that tilt angles of the mobility
and the mass ellipgoids can be different. In orther words,
the tilt angle cglgulated from the galvanomagnetic data does
not necessarily eggal to that obtained from the measured
effective mass tengor components. As an example, consider
the tilt angle of the hole pockets in Sb. Okth and Saunders
(1967) and Kechin (1968) from the low field galvanomagnetic
data obtain -24°, while Windmiller (1966) and Ishizawa (1968)
from the AHvA effect messure -37° (a -13° difference).
Purthermore, Falicov and Lin (1966), from the pseudopotential
approach, calculate -49°. fMhis discrepancy has usually been
attributed to the deviations from the ellipsoidal shape and
to the nature of the different experimental techniques, but
it may not be all that: we propose(by considering case 3)
that the tilt angle obtained from the galvanomagnetic effects
corresponds to the mobility ellipsoid and that of measuredfrom
the dHvA effect corresponds to the mass ellipsoid. We have
used the hole effective mass tensor components of Datars and
Vanderkooy (1964) together with the hole mobility tensor
components (at 77K) of Oktu and Saunders (1967) expressed

(by a 13° clockwise rotation) in the principal mass ellipsoid
axes and calculated the nonsymmetric relaxation time tensor
components. They are listed in the following table. Those
given by Oktu and Saunders (1967), by considering case 2(a),

are also included.
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T4 T2z  T33 T23 t32
Okt and Saunders (1967) 9.1 8.9 6.1

This work 9. 14.12 5.8 1.23 22.6

——

Y In units of 10 Vsec.

Purthermore we have collected, in table (6.7), the smallest
and largest reported electron and hole tilt angles of As,

Sb and Bi. The varintion of the reported tilt angles over a
wide range may be taken as an evidence that ¥ is nonsymmetric . .
i.e. the principal axes of the mobility (or rather

conductivity) and mass ellipsoids do not coincide.




TABLE (6.1): Poassible dislocations in the A7 crystael

structure in general and in the 25.5 at.%# arsenic-antimony

alloy in particular.

Burgers No. of Angle between
vector equivalent |-.|2 and
(%) Burgers b 1]
vectors.

o7 6 4a291n2-g-. 0.88a% 90°

¢100) 6 a2 33°

Qi) 6 a2(1+4sin 2)=1. 88a° 520

2"
{10) 6 49,2<:os2 % =3.1 a2 18°
411 2 3a2(1+4coaz-%) =6.3422  0°

FABLE (6.2): Angles between pseudo-axes and +y axis in

the A7 structure semimetals.

Pseudo-threefold: angle Pseudo-fourfold:

Material between [T2T)pr, and angle between ZT]
the normal to (010)1‘7__h and the normal to
(101)
As 17.167° 31.717°
Sb 18.317° 33.496°
Bi 18.366° 33,578°

A8(25.5 at.%)-Sb 17.984° 32.933°




TABLE (6.3) : Details of etching and orientation of the pits obtained.

Orientation
Material ETCHING REAGENT of
Composition Ref Pits
108 “2odine in methanol t1). Type B
Arsenic CH,COOH, HF, HNO,, HC1, Br, " Type B
(24 : 1 : 2 : 1 : 1)
CH3COOH, HF, HNO3 (2, Type A
(L : 2 : 1)
FH3COOH, HF, HNOa, Brzl ‘3k Type A
(3 : 3 : 5 : 1)
Antimony CHscOOH, HF, HNOa, HC1, 822 (4) Type A
(24 : 1 : 2 : 1 : 1)
CH3COOH, HF, HNOa, Brz esx Type A
(28 : 4 :+ 5 : 3)
=" -1 1% iodine in methanol ' (6) Type B
Bismuth
338 HNO3 in water (7} Type A
CH.COORBR, HF, HNO
3 3
A
Arsenic (3 : 3 : 5) and a few (e Type
(25.5atd) drops of bromine
-Antimony
Alloy
CH3CB°B' HF, HNOs, !!Cl, Brz (‘) TY" A
24 : 1 :+ 2 ¢+ 1 1)
Antimony- | CH_COOH, HF, HNO,, Br Type A
(2ats) ’ (3 :3:5 : 1) : “ T
Germanium
Alloy
(1) Shetty and Taylor (1968). (5) Kosevich (1961).
(2)Jeavons and Saunders(1968). (6) Lovell and Wernick (1959).
{3) Wernick etal (1958), (7) Brown et al (1968).

.(6) Akgdz et a (1972). (8) Akgbdz and Saunders(1971).
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Table

(6.5a)

Computed model parameters (from the low field data) for As(25.5at.%) - Sb,

Temp, Carrier Electrons Holes
(K) Density
(N=P) Ky Hy M, ep vy vy Vq 6,
300 6.4 74 1.1 57| <159 o.5 12.5] -34°
77 6.2 10.1 1.6 9.6 -7° |11.0 o.8 22.0 | -34°
50 6.15 4.2 1.9 12.9 |-6.5°|13.7 0.8 24.5 | -35°
4,2 6.1 15.5 2.1 14.1 |-6.8°|15.4 1.0 26.3 | -34°
1.5 6.1 15.6 2.1 14.2 |-6.8°|15.5 1.1 26.4 | -33°
Units: N, lozsm-3; ys Vg0 10" 2 -13-1; ep’%' degrees,

Table { 6.5b)

Model parameters computed from the angular dependence of pn(Bl,Bz,O),
Py1(B;,0,B,) and p, (B,,0,B,) at B = [B] = 0.7 Tesla,

Temp Carrier Electrons Holes

(K) Density

(N=P) My My M3 | & | V1 Y2 V3 | &

300 6.50 7.0 1.0 5.6 |-7.4°] 5.8 0.6 12.6]|-34°
77 6.25 11.0 1.4 10.2 |-7.5°]10.9 0.8 22.0]-33°
4,2 6.0 15.3 2,0 14.5 -7 [15.0 0.9 26.5]|-32°

Units are the same

as in table(6.5a).
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TABLE (6.7): Range of the reported electron and hole tilt

angles in As, Sb, Bi and the As-Sb alloy. The smallest

and largest (in magnitude) revorted values are listed only.

Material

electron tilt angle

hole tilt angle

theoretical
As

experimental

theoretical
Sb

experimental

) theoretical
Bi

experimental

As (25.5 at.%)Sp

experimental

-8%a)
-4%(1) to -8%(c)

-7%Ce)
-2.8(£) to -8%(g)

+3.5°0) to +10°(3)
+4.3%(k) to +8°(4)

~7°(m)

-46°(a)
-50%Cc) to -53°(d)

-49%(e)
-24%(h) to -37°(¢)

-34%(m)

(a) Lin and Falicov (196¢) (h)

(b) Datars and Vanderkooy (1966). (i)

(¢) Jeavons and Saunders (1969). (3)
(@) Priestley et al (1967). (x)
(e) Palicov and Lin (1966). ()
(£) Windmiller (1966). (m)

(g) Kechin (1968).

Oktu and Saunders(1967).
Perreira (1968).
Golin (1968).

Smith et el (1964).
Gregers-Hansen (1971).
This work and Akggz
and Saunders (1974).
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FIGURE(8.2): Crystal growth furnace.
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FIGURES (6.1la) and (6.11b):

Magnetoresistance voltage increment AV1 (in microvolts)
which is related to (a) p11(B1 ,Bz,o) and (b) p11(B1 ,0,B
by

3)

(Vo + AV1 )

= P4(B)J,

where Vo is the voltage without an applied magnetic field

end J 1 is the current density and have values of:

>
n

, = 10190.3 x 1077v, Jy = 21.7 x 10% an2 at 4.2x

<
"

, = 10785.6 x 107V, Jy = 214 x 104 an~2 at 77X
V, = 17364.5 x 10”7V, J, = 20.4 x 104 Am~? at 300K

d4 (= 0.8 x 10'2m) is the distance between the potential
probes. |I-B.| = 0.7 Tesla and is tsken round

(a) the xy and

(b) the xz planes at 10° intervals.

FIGURE (6.12):
The Hall voltage Vz (in microvolts) which is related to

the tensor component fy4(B, ,0,33) by
\'4

2
The current density J 1 takes the same values as in Fig.(B.ﬂ) .
|B| = 0.7 Tesla and is taken round the xz plane at 10°
intervals. The distance d, (= 20.3 x 10 'm) 1s that between
the Hall potential probes.
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APPENDIX I

The model parameters are related to the low field conductivity

tensor components by the following equations:

gero field conductivity components:

2

- 2 2 2
9, e (ul + Chty + Sepa) + gPe (v1 +Cp vy + 8 v3)

cgaﬂ Ne (S By + C ;13)+Pe(sh vy + Cp v) (Al.1)

low field Hall conductivity components:

2
0193 = -Ne p}(c “2 + 8 p3) + Pe v (Ch 2 + 8 f;?

Op3p = (Be){-pys- TR “2 +C, ua)} + (pe){vovy + v (sh v, + Cp 2, )}

Low field magnetoconductivity tensor components can be written

as the sum of electron and hole parts:

(s,,) = (8, ,) + (s

total electron 1j)hole

i) i)

The electron contribution terms are:

2 -2

nmn- (- %Ne){sezpz(ul-ua)z+ cezu3(u1-u2)z+ 3c, p.l(u2 u3) }

2 2 2
ul(uz "'3)

2 2, 2 2 2, 2
12 = (- %Ne){Sse Mo (hy Hi, H+ 3c, ua(ul +i, * C,
+ 2“1P2“3}

2 2 2 2
Mg + 8g7H3) (C Tkyky + 8 71 H3)

13 = (- #e)luy +C

31 = (= #e) (Sezuz + Cezua) {Moy + 1y (Sezp.2 + Cezu3)]




( xi v

wn
)

2 2 2 2
4 = C ) (8 5y + ¢ 2y [uycc fuy + 8 %u,))

2, 2 2
833 (-Ne) C, Se “1(”2 - p3)

2

= 2
Sl4 B %Ne Ceseul(MZ_“3) (-“1 + Ce Ho + se p‘3)

2]
J

2 2
41 = %Ne CoSeluamhg) {Hohg = 1 (8 "y + C "1y) ]} (Al.3)

The hole contribution parts can be obtained by replacing Hys N,
Ce’ Se by Vi P, Ch’ Sh respectively. My and vy are positive quantities
which are expressed in the principal ellipsoidal axis system, Ce = Ccos %1,
Ch = Cos q’, Se = gin ql, Sh = gin ev where eu and ev are the tilt angles
of the electron and hole pockets respectively, N (= P) is the total
electron (or hole) carrier density and e = Ie, is the electronic charge,

The following relations between the measured low field resistivity
tensor components and the low field conductivity tensor components are

obtained by solving equation(g.3). Apart from notational differences, they

are the same as those given by Okada (1955b).

2
° - L AL = ool T123_
11 o 13 T 0 2 o 3
911 | (011) (011)
2
o - L A = i %
33 o 31 0o 2 o o 2
%33 (034) 11(%33)
9123 Sy 9123 %231
Riog3 = - (o° )2 A44 - "o o + 2 (o° )200
1 “11"-332 11’7 933
o 0 [o}
Ra3y = -0231/(d; &3 A3 =- Sy/lay
2 2
Ay =- Sy/ld) Ay == Sig/loy)
2
5 03 Sy
A = = - A z - . (Al.4)
12 89 T o%o %1 )
LA AN Gy %33
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APPENDIX II

On the basis of Aubrey's expressions (7) and (8), the following

magnetoconductivity tensor components o, j(Bl’BZ’O) have been derived

B = (8,,8,,0)

_ 2 2
011(31,32,0) = (p.u + d B, )u1 + (|.111+3p22+4de31 )(U2 + u3)

2
+(v11+dB )W1+

2
4By (vy 3V, 44, B E) (W, + W)

= 2 1 2

022(131,32,0) = ("22 + deBz )u1 + 7 (3u11+u.22+4de32 )(u2 + U3)
2 1 2

+ (v22 + dhnz )w1 + g (3vn+v22+4dh132 )(w2 + w3)

033(31,32,0) = u”(U1 +U, + Us) + v33(w1 +W, + w3)

012(B1sBy0) = (uyquysB, + A ByB)IU) + {8, - & by up3(~/3 By+B))+d BB, U,
+ {-ge - %“11“23('/3 Bl+32) + delsle}U3
+ (-vuv2332+dhnlnz)w1+{gh-gvnvzs(ﬁnl-nz)+th132 M,
+ (8= v11v93(~/3B)-By 44,88, M,

o,.(B,,B,,0) = B,U +{§ —k_B.+ +( +3d—°')3}u
13\ 712722 H11H33%2% 2 H23 “KeP1T §'H11M33 hy, 202
-3 + Kk B+ +3—de-)n}u —Vy V22 8, W
{= =5 Mgy + k Byt Z(u) kg5 ny, o 2037 MI33Ce VY

/3 1 3

- {37 vas~ KBy 5 (v11Vast Vi1 )B, W,
/3 1 3

+ {- 37 va3~ kyBy- 7(vypvast vli B, W,



Ty3(B

where

(xvi)

d, d,
12B510) = (uyy - “113 DU+ {= iy, 4(3puu33 ™ =B 1+ KBy U,
+ {~- % - l(3 + 25 )B k B,}J U
B Ho3™ 315H M3 17 e 2} U3
+ (v, + fh BOW, + {- ¢ 13 dh )B -k, B,} W
237 v, 17 Vot 7'9V11Vv3at iy h 24 *2
d
+ {- év23 4(.'.'!\/11 33 11)B+k 2} W3
( All.1)
d = pyy (ootian = Hool) & = vy, (v v..2)
e _ H11 ‘Hagka3z T Ma3 h© 22¥33 T~ V23
_7a _/3
8, = % (Hy17Mp0) & = 2(V11 7 Va2)
k, = fg(“11“33' e ) ky r=')%("11"33' 2 > T
e M1 Y11
(All.2)

B1 = BCOs¢,32 = BSing where B = IE] and ¢ is the rotation angle

taken round the xy plane (the sense of rotation is taken from +x

direction towards +y direction)

de 2

e 2,~-1
U, = ne (1 + m B,” + u11u3332 )

11

2
1

d
= 1 e
U2 ne {1 + 4(3p.11p.33+ p‘11)15

1 de 2
U, = mefl + 2(3u; 0345+ EIl)Bl

1
+ 2 (F11Ma3

X B2

1
+ 2 (B gt

2
sz +

23
2 H11H33”

3d

+—2)

H11

3 e
- '_(F Haa= — )B
2~ 2°M110337

3d,
—)
M1
d,

(AIL.3)

182}

“1 - )B Bz]
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where n is the number of carriers per ellipsoid.

PR PY W3 are obtained from equ=tions (All.3) by replacing uy
by Wi, "ij by Vij and de by dh. The remaining tensor
comnonents 051(31,32,0), 051(31,32,0), and 032(B1,Bz,0) can be
obtained from the Onsager relation qj(ﬁ) = Oji(-'ﬁ) . The
magnetoconductivity tensor components (Jij(B1 ,0,B3) in the

xz nlene, and (13(0,32,33) in the yz plane can be obtained

in a similar way.

The transformation eouations from the ellipsoidal axis

system to the cry=t~llographic system for the mobilities are:

By =y Rt I _
Koy = uzcosz% + ""331“2% Voo = vzcoszav + v3sin29v
Hyy = uzsinzeh + U-3coszeu V33 = v2sinzev + V3coszev
Moy = B(Ky-Hy)sin2gy Voy = #(V,-V3)sin2e,

(AII.4)
where By and vy fre the diagonal comnonents of the mobility
ténsors in the ellipsoidal axis sytenm, uij and ‘&J are the
electron and hole mohility tensor components expressed in
the crystallographic axial system. The tilt angles Gu

(electran tilt) and @, (hole tilt) are given hy

2v23
tan26, = - V..)

tan 20, =
B (V22 33

(ATT.5)

0
Mere tilt angles take negrtive velues, i.e. -90°<q‘(°'9v)<°
(tor a general descrintinn of the tilt angles in the A7

strmeture semimetals, see section 6.4).
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APPENDIX III

C sexx#MOBILITY CALCULATIONS FRCM LOW FIELD DATA *%x
DIMENSION X{9) o SMAX(9) o SMIN(9) oSTEP(9),ELI{12),HOL12},
1S(12),C0(12)92€12)yME(12)9M(12),Q(12),SUMI2),H(9),
2PU9) s TIL(2)oU(L)ET(L1),HT(1)
INTEGER IsJeKoLoMoN
REAL Qo SMALL
1 FORMAT (9€8.1)
2 FORMAT(20X, ' INITIAL SOLUTIONS FITYED 9,7/,
120Xy "MEASURED COEFFICIENTS'4/22(6(EL12.491X)y/))

4 FORMAT(20Xs*RATIOES='/(216F12.3/)}))

5 FORMAT (20X, "SUM 2',2F15.5/77/77/7)

6 FORMAT(20X,°MEASURED COEFFICIENTS COIK)=",/,2(6(EL2.491X}s/))

9 FORMAT(20X¢ ELEC.TILT IN DEGo="9yFB8e297920X,*HOLE TILY IN DEG.='

14F8.27)

10 FORMAT (20X, *CALCULATED COEFFICIENTS Z2(K)='9/92(6(E1l2.491X)5/))
59 FORMAT (20X " SOLUTIONS 9/ 93E126394X9F8c393F12.394XoFBo39E12.3,4/7)
80 FORMAT(20X*STEPS=94/,9E12.3,/)

100 FORMAT(/4X,"ELECTR CONTR'5X,"HOLE CONTR®,5X,*TOTAL COEFF*®°)

' 101 FORMAT (12F5.1)

102 FORMAT (8E10.1)

103 FORMAT{/1Xy3E15.4)

106 FORMAY(/40X,*CHECK: S(10)=°yE12.4/) o .

105 FORMAT{20X,*MOBILITIES IN THE PRINC COORD AXES SYSTEM ARE:"'//

15Xy "MULPRIME 95Xy "MU2PRIME "95X ¢ *MUIPRIME® 45Xy
2 MUSPRIME® ¢S X9 "NULPRIME® ¢S5 X "NU2PRIME? 5X, * NUSPRIME?,
35X9 "NU4PRIME*/1Xe8EL13.3/)
106 FORMAT(20X°SUM 2',2F15.5/)
107 FORMAT(91°,10X, *MOBILITIES IN THE ELLIPSOIDAL AXES SYSTEM ARE:*
L/7/78Xo°MUL? g 10X 9" MU2% 9 LOXy "MU3*o5Xy *SINIET) *yS5Xo°NU1*,10Xy *NU2C,
210X o 'NU39 o SX ot SINIHT) " 94Xg *N=PC/1X¢3E13.3¢yFT7e203E13.3¢FTe2:E13.3/)
108 FORMAT(?19%,2X, *bxkksxks MINIMIZATION STARTS tsttkshkgsi//)
50 READ (551,END=99) (X(I)e1=1,9)
READIS,1)(STEP(I),1I=1,9)
READ (54101) (WiK)K=1,12)
READ (5:1) (SMAX(I),1=1,9)
READ (5.1) (SMIN(I),I=1,9)
READ (55102) (CO(K)}oK=1,12)
SMALL=0.0001
HK=0,0
0oa 7 1I=1,9

T H{I)=1
SUM(1)=0.0
SUM(2)=0.0
DO 16 L=1,10
DO 19 M=1,100
00 13 I=1,9
SUM{2)=0.0
XCI)=XAI)+HK*STEP(I)
IF(X(I)-GT.SMAX(I)) GO TO 15
IFIX(I)LTSMIN(I)) GO TO 15
CALL ELMA (XoZeSyELHOL,U)
DO 18 K=l,12
QIK)=COI(K)/Z2LK)
SUM{2)=SUM(2 )+ (WIK)*(Q(K)=1.0) =2

18 CONTINUE
IF (HK.EQ.1.,0) GO TO 77
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(xix)
WRITE (6,108)
WRITE (6¢59) (X{K)¢K=1,9)
WRITE (6¢80) (STEP(K) K=1,9)
WRITE (6910) (2(K)K=1,12)
WRITE (6,2) (CO(K)sK=1,12)
WRITE (6+4) (Q(K)oK=1,12)
WNRITE (645) (SUM(K) K=1,2)
CONT INUE
IF (HK.EQo0.0} SUM(1)=SUM(2)
HK= l o0
IF (SUM(L)-SUM{2)) 15,14,14
IF (H(1)-37) 21,21,22
X{I)=X{1)=STEP(])
STEP(I)=-STEPII)
H{I)=H(I)+1
GO0’ ' 10 13
XCI)=X(I)-STEP(I)
STEP(I)==0.91%STEP(I)
H{I)=1
GB8 TO 13
IF (SUM{2)-SMALL)} 16,1620
SUM(1)=5UM(2)
CONT INUE
CONTINUE
WRITE (6459) (X(K)yK=1,9)
WRITE (6,80) (STEP(K)¢K=1y9)
WRITE (6910) {(Z{K)yK=1,y12)
WRITE (646) (CO(K) K=1,12)
WRITE (6494) (Q(K)yK=1,12)
WRITE (695) (SUM(I),]I=1,2)
CONT INUE
ET(1)=({180.0/3.1416)%ATANIX(4)/(SQRT{1.0-X{4)%%2)))
HTI1)=(180.0/3.1416)%ATANIX(8)/7(SQRT(1.0-X{8)%%2)))
WRITE (64107) (X(1)41=1,9)
WRITE (699) ETHHT
WRITE (64,10) (Z(K),K=1,12)
WRITE (646) (CO(K)oyK=1,12)
WRITE (694) (Q{K),K=1,12)
WRITE (6,106) (SUMtI},I=1,2)
WRITE (6,100)
WRITE(691C3) (ELLI) HGL(T) ,S(1),1I=1,12)
WRITE (69104) U
Pl(Ll)=X(1)
SESQ=X(4)**%2
CESQ=1.0-X {4 J%%x2
PI2)=X(2)%CESQ+X(3)%*SESQ
P(3)=X(2)%SFSQ+X{3)*CESQ
Pl4a)=X(4)*SQRT(CESQI*(X(2)=-X(3))
TILI1)=(90.0/3.1416)%ATAN{2.0%P(4)/(P(2)-P(3)))
P(5)=X{(5)
SHSQ=X(8)%*%*2
CHSQ=1.0-X(8 })%x%x2
PL6Y=X16)%CHSQ+X{T)I*SHSQ
PIT)=X(6)%SHSQ+X(7)*CHSQ
P{RI=X(8)*SQRT(CHSQ)I*IX(6)-X(T))
TIL(2)=(90.0/3.1416)%ATAN(2.0%P(8)/7(PL(6)~P(T)))
WRITE (64105) (P(1)eI=1,8)
WRITE (6,49) TIL
GO 10 S50
sTop
END




(xx)

SUBROUTINE ELMA (A¢Z,S,EL HOL,U)
DIMENSION A(9),ELI12),HOLEL2),2012),S¢C12),UL1)
Q=1.6

SESQ=A{4)*%*2

CESQ=1.0-SESQ

SHSQ=A(8) %%2

CHSQ=1.0-SHSQ

X1=CESQ%*A(2) +SESQ*A(3)

Y1=CHSQ*A(6) +SHSQ*A{(T)

X2=SESQ*A(2)

X3=CESQ*A(3)

X=X2+X3

Y2=SHSQ*A(6)

Y3=CHSQ*A(7)

Y=Y24Y3

A23=A(2)*A(3)

AST=A(6)%A(T)
X4=CESQ*SESQ%(A(2)-A(3) )*%2
Y4=CHSQ*SHSQ*(A(6)~A(T) )%%2

XS=At14)*SQRT (CESQ)*(A(2)-A(3))
Y5=A{8)%SQRT{CHSQ)%(A(6)-A(T))

G=A(9)%Q

EL(1)=0.5%Gx{A{1)+X]l)
HOLI1)=0.5%Gx{A(5)+Y]l)

SCL)=ELLL)+HOL (1)

EL(2)=G%X

HOL(2) =GxY

S(2)=EL(2)+HOL (2)

EL(3)=-1,0%G%{A(1)*%=X1)
HOL{3)=G*(A(5)%Y]l)

S(3)=EL(3)+HOL(3)
EL(4)==0.5%G*(A23¢A(1)%X)

HOL{4)=0,.5%G%( A6T+A(5)xY)
S(4)=EL(4)+HOL(4)
ELIS5)=0.125%G%{X2% (AlL)=A(3) 1 %22+X3%*(A(1)-A{2))%%2
1+3.0%A({1)%X4) .
HOL(S)=0,125%Gx(Y2%(A(S)-A(T7) ) *%x2+Y3%(A(5)~-A(6))%*%2
1¢3.,0%A(5)%Y4)

S(S)I=EL(5)+HOL(5)
EL(6)=0.125%G*(3,0%X22(A(1)%x%24A(3)2%2)+3,0%X3
L (A(1)2%2+A(2)%%2) +A(1)*X6+2,0%A(]1)%A23)
HOL(6)=0,125%G*{3,0%Y2%(A(S5)%%2+A(T)*%2)+3,0%Y3
LE{A(S) %52+ A(6) %2 ) +A(S ) 2Y442.0%A(5)*A6T)
S(6)=EL(6)+HCL (6)
ELI(T7)=0.5*G={(A{1)+X1)*A(1)%X]1)
HOLET)I=0.5%G%{ (A(S)+YL)*ALS5)%Y])
S{T)I=EL(T)+HCL(T)
ELU(B)=0,5%G*{X*(A23+A(1)%X))
HOL{8)=0.5*G2(Y®{A6T+A(S)*Y))
S{8)=EL(8)+HOL(8)

ELI9)==0.5%G%({ X®A(1)%X1)

HOL{9) ==0.5%G* (Y*A(5)%Y]l)
S(9)=EL(9)+HOL (9)

EL(10)=G*( ALl 1)%X4)

HOL(10)=G*A(5)*Y4

S(10)=EL(10)+HOL(10)
EL{LL1)=025%Gx{ALL)*XS%(-A(1)+X]1))
HOL(LLl )=0.25%G*{A(S5)%Y5%(=-A(5)eY]1))
S(11)=EL(LlL1)+HOL(11)




(xxi)

FL(12)=0.25%G*(X5%(A23-A(1)%X))
HOL(12)=20.25%G*(YS*(A6T-A(5)%Y))
S(12)=EL(12)¢HOL(12)
U(1)=0.5%(-S(6)43.0%5(5)-2.0%5(9))
Z(1)=1.0/5(1)

2{2)=1.0/512)

Z{3)=S513)/7(S{1)%%2)

LL4)=S(4)/7(S5(1)%5(2))

Z(5)=S(5)/7(S(1)%%2)
Z(6)=S(6)/S(1)*%2-5(4)%+2/(S(L)%*2%5(2))
Z7)=S{T7)/75(1)%%2-S(3)2%2/(S(1)sS(1)*S(1))
2(8)=5S(8)/S(2)#%2-S{4)*%£2/(S{1)%5(2)*%2)
Z(9)=S{9)/7(S(L)%S(2))-0.5%¥S(3)2S(4)/(S{1)**2%5(2))
Z(10)=S5(10)/S(2)*%2

ZU11)=S(11)/S(1)*=%2
Z{12)=S(12)/(S(1)*S(2))

RETURN

END




(xxii)
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