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Abstract 

I n this thesis work is described that arose out of a study 

of harmonic Riemannian manifolds. A d e f i n i t i o n of harmonicity 

is given and from t h i s i t i s shown how the Ledger conditions on 

the curvature of a harmonic manifold may be derived i n principle 

and the f i r s t four are w r i t t e n down. The f i r s t three Ledger 

conditions are put in t o local co-ordinate form and simpler 

conditions are derived, the most important being the super-Einstein 

condition. The idea of the Schur property is also introduced. The 

mean-value work of Gray and Willmore i s described and extended as 

far as the r ^ term under some simplifying conditions. Finally 

there i s an investigation of the extent to which the compact 

classical simple Lie groups with bi-invariant metrics can satisfy 

Ledger's f i r s t three conditions. 
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Introduction 

The work contained i n this thesis arose out of a study of 

Riemannian harmonic manifolds. These were o r i g i n a l l y considered by 

Ruse f i f t y years ago to be manifolds i n which there exist solutions 

of Laplace's equation on a neighbourhood of each point which were 

functions only of the r a d i a l distance from that point. Since then 
4 

the only examples found of harmonic manifolds are the rank one 

symmetric spaces. This has led to the so-called fundamental 

conjecture of the subject: a Riemannian harmonic manifold is a 

rank one symmetric space. The resolution of this conjecture s t i l l 

seems far o f f and awaits either a new approach to harmonicity or 

new examples of Riemannian manifolds which can easily be tested 

for harmonicity i n the hope of finding a counterexample. 

I n Chapter 1 we define harmonicity using the determinant of 

the metric tensor i n normal co-ordinates. The f i r s t four Ledger 

conditions for harmonicity are derived, as are similar conditions 

derived by using the trace of the metric tensor and the trace of 

i t s inverse. I t is noted that these conditions come from matrix 

d i f f e r e n t i a l equations which have similar properties and are 

worthy of investigation i n t h e i r own r i g h t . 

Chapter 2 contains a description of the f i r s t three Ledger 

conditions i n local co-ordinates. The second and t h i r d are rather 

complicated, so at the expense of losing some information simpler 

2-tensor conditions are derived. This leads i n the case of the 

second condition to the notion of a super-Einstein space. 

Harmonic spaces are super-Einstein but the reverse need not be 

true. Also we introduce the idea of the Schur property for 



symmetric 2-tensors, the guiding example being the Ricci tensor. 

We give some conjectures on the 2-tensors derived from further 

Ledger conditions which, on the face of i t , cannot be resolved 

by the methods of the chapter. 

I n Chapter 3 the work of Gray and Willmore on the power series 

of the mean-value of a function over a geodesic sphere is described 

and extended. I t is shown, rather disappointingly, that at least 

as far as r ^ term the mean-value power series gives no more 

information concerning harmonicity than is already contained i n 

the f i r s t three Ledger conditions. 

Ledger was the f i r s t to show that i f a sjnnmetric space i s 

harmonic then i t i s rank one. We show i n Chapter 4 that the 

classical Lie groups with bi-invariant metrics which are not 

rank one are quite a long way from being harmonic i n the sense 

that only two can satisfy Ledger's 2nd condition and none satisfy 

the t h i r d . This work has been generalised and extended to 

symmetric spaces i n a j o i n t paper with A. Gray and T.J. Willmore 

currently i n preparation. 

I n a l l chapters M i s an n-dimensional connected analytic 

Riemannian manifold with metric tensor g and arc length s . The 

sign convention f o r the curvature tensor i s that of [GR], [H] 

and [E]. The Einstein stmimation convention is assumed throughout, 

apart from §3 of Chapter 3. The end of a proof w i l l be denoted by I I . 



Chapter 1 D e f i n i t i o n of Harmonicity and Some Necessary Conditions 

We f i r s t define the very useful tool of normal co-ordinates about 

a point of a Riemannian manifold, then using these we give one of the 

classical definitions of harmonicity. (For other definitions and their 

equivalence, see [RWW] pp. 34 -430 The major part of this chapter is 

concerned with deriving information of a tensorial nature from this 

d e f i n i t i o n . The method used i s that of [B], Chapter 6, with a s l i g h t l y 

d i f f e r e n t emphasis. As i s usual i n t h i s subject, the information comes i n 

form of the vanishing of. nearly a l l the terms of a power series, giving 

r i s e to an i n f i n i t e nimiber of necessary conditions for harmonicity which, 

when taken together, are s u f f i c i e n t . We only consider the f i r s t four 

of these. 

§1 Normal co-ordinates, the function 0 and the matrix A 
m ; • 

There is associated with each point of a Riemannian manifold a 

geometrically defined class of local co-ordinate systems which, when 

used i n calculations, give information about the geometry of the 

manifold. These are the normal co-ordinate systems and w i l l be used 

extensively i n what follows. 

We define normal co-ordinates about a point by using the exponential 

map. Let m e M. The exponential map at m, exp^, i s a d i f f eomorphism of 

some neighbourhood of 0 i n T̂ M onto some neighbourhood of m i n M. By 

d e f i n i t i o n , the i n j e c t i v i t y radius i(m) is the supremum (possibly 

i n f i n i t e ) of positive real numbers e such that exp^ | B(0,e) is a 

d i f f eomorphism onto i t s image. We shall say that the image of the open 

b a l l radius i(m), denoted V , i s the maximal normal co-ordinate 
m 

neighbourhood of m, and we co-ordinatise i t as follows. Choose an 
orthonormal basis of T M, (Ui, U ), and define normal co-ordinates 

m -".n 



(x^, ..., x^) of a point n e V by 
m 

(1.1) x^(n) = t . , i = 1, n, 

i f n = exp^(tjUj). 

A normal co-ordinate neighbourhood of m i s a nhd of m contained i n 

with the obvious parametrisation. 

As the image of a straight l i n e through 0 i n T̂ M i s a geodesic 

through m i n M, a geodesic through m restricted to has the equation 

i n normal co-ordinates 

(1.2) x^(s) = sa^, i = 1 n, 

where a^ are the components of the tangent vector of the geodesic at 

m with respect to (U^, Û )̂ • 

Note that the d e f i n i t i o n of normal co-ordinates requires a 

choice of orthonormal basis of T M. However i t can be easily seen 
m ^ 

that any two sets of normal co-ordinates about m are expressible i n 

terms of each other by an orthogonal matrix. 

We shall often refer to tensorial equations as being " i n 

orthonormal co-ordinates". This means that we have chosen a point m 

of our manifold, a system of normal co-ordinates about m, and have 

expressed the components of the tensors evaluated at m i n 

these co-ordinates. 

We also define a geodesic b a l l and sphere, centre m, radius r , 

f o r r < i(m). These are the images under exp^ of a b a l l and sphere, 

centre 0, radius r i n T M. . 
m 0 is a real-valued function defined on V for each m €, M as m m 

follows. Let g_j^j be the components of the metric tensor i n a set of 



normal co-ordinates about m. Then 

(1.3) 0 = i/3Stg. 
m 

Note that this d e f i n i t i o n is independent of the choice of orthonormal 

frame. 

We are ready to define harmonicity of a manifold. 

Definition; A Riemannian manifold M is harmonic i f for each pt 

m e M, the function 0^ i s a function of distance from m only. 

We wish to translate this condition into information about the 

curvature of the manifold. The most direct way of doing so would be 

to exploit the available power series expansion of 0^ about m as 

given for example i n [GR]. However we follow the method of [B] 

which i s , i n f a c t , similar to Gray's method of calculation. 

The f i r s t step i s to exploit (1.2) as the equation for geodesies 

through m. 

Lemma 1.1 I n normal co-ordinates the vector f i e l d s c''"̂ ,̂ where 

c""" are constants, i s a Jacobi vector f i e l d along any geodesic through 

m re s t r i c t e d to V . 
m 

Proof We demonstrate that s c^ ~i i s the variation vector f i e l d of 

a v a r i a t i o n through geodesies of any geodesic y with equation 

Y'''(S) = sa^ for c''" a^. When c''' = a'"', s c"*" i s obviously 

a Jacobi f i e l d along y. 

Consider the two parameter family of vectors s(a + tc )U£ e T̂ M. 

For small enough s,t these are contained i n the b a l l radius i(m). 

Their images under exp^ are then seen to be geodesies through m 

giving a v a r i a t i o n through geodesies of y. The variation vector 

f i e l d is then seen to be s c"'' along y. [H 

I f we denote this vector f i e l d by J(s), then along y i t satisfies 



the vector d i f f e r e n t i a l equation 

(1.4) Y^J + R(-?,J)Y = 0 , 

with i n i t i a l conditions 

J(0) = 0 , V^J(O) = c^U. 

(since Y(0) = v^(sc^g|-i)(0) = 7.(s)c^ g-|i = '̂ Ŝ -

Let us denote by E i ( s ) , E^(s) the p a r a l l e l translation of 

Ui, ...» U^ along Y« We cdn thus define an n x n matrix of functions A 

along Y> r e s t r i c t e d to by 

(1.5) s = A^^Ej , i = 1 n. 

9 

From Lemma 1.1 s are Jacobi f i e l d s along y, and A is the matrix of 

components of these with respect to a para l l e l frame. 

I t i s easy to determine an ordinary d i f f e r e n t i a l equation satisfied 

by A by substituting the Jacobi f i e l d A..E. into (1.4) to get 
J ̂  3 

d^Aj. Ej + A j . R(-v',E|) Y =̂  0 , i = 1 n. 
ds2 

By taking the scalar product with E we get 
Jo 

— J l i •*'̂ jî j£ " °' i , i l = 1 n, 
ds2 

where R is a symmetric matrix of functions along Y defined by 

Rjj = g(R(-y',E^)Y,Ej), i , j = 1 n. 

I n matrix form this can be expressed by 

(1.6) A" + RA = 0. 



The i n i t i a l conditions for this equation are 

(1.7) A(0) = 0, A'(0) = I 

(since A'. .(0)U. = V.(A..E.)(0) = V.(sA ) ( o ) = U.). 

The significance of A is i t s relationship with 0 . From (1.5) 
m 

«'Sij = S<«34i'«3|j> = g < \ i V ^ j V = \ i \ j = ( ^ ' ^ > i j ' 

Thus concisely 

(1.8) s2g = A \ . 

Taking determinants, we have 

(1.9) 0 = — detA. 
m n s 

Remark 1 Note that power series expansion of g can be found from 

that of A by (1.8). However we w i l l give later an easier method of 

finding the expansions of the determinant and trace of g. 

Remark 2 This approach i n defining 0^ is essentially that of [B]. 

However there 0^ is defined d i r e c t l y from A by (1.9) and has the 

advantage that i t i s defined along the whole length of the geodesic. 

Before we come to the calculation of the power series of 0 , 
m 

we prove a rather unexpected property of 0 i n a harmonic manifold. 
m 

We show that 0^ i s , loosely speaking, the same function of s for each 

m e M. Precisely: 

Proposition 1.2 Let m e M, and rg < i(m). The i n j e c t i v i t y radius i s 

a continuous function on M and thus attains i t s minimum on B(m,ro), io(ffl) 

say. Then i f M is harmonic, 0 (r ) = 0^(r) for r < in(m) and 
m n " 

ft G B(m,ro). 

We f i r s t need a lemma, a classical result i n the theory of 

d i f f e r e n t i a l equations. 



Lemma 1.3 Suppose m, Y and A are as above. Let B be a matrix satisfying 

the same d i f f e r e n t i a l equation (1.6) but with i n i t i a l conditions 

Bit) = 0 . B'(t) = - I , \t 4 0 . 

Then B(0) = A ^ ( t ) . 

Proof We know that 

A" + RA = 0 , A(0) = 0, A' (0) = I , 

B" + RB = 0, B(t) = 0, B'(t) = - I . 

Transpose the f i r s t equation and postmultiply by B, and premultiply 
T , , 

the second by A . On subtracting, the symmetry of R gives 

Â "B - A^B" = 0. 

We can integrate t h i s to 
A''''B - A''"B' = C , C constant, 

and the result follows from substituting i n the prescribed values at 

0 and t . |_ 
o 

Proof of Proposition 1.2 Let i i G'B(m,ro) and U e T„M. We shall show 
that df^(U) = 0 where f ^ is the real-valued function defined on 
o 
B(m,ro) by 

f^(ia) = 0 ^ ( r ) , r < io(m), m e B(m,ro), 

As f ^ i s continuous (when expressed as a power series i n r, the 

coefficients are polynomials i n the curvature tensor and i t s covariant 

derivatives, so i t i s , i n f a c t , analytic) this w i l l prove the 

proposition. 

We are assuming r < i ( n ) , so Q^(x) ¥ 0. We consider a geodesic y 

(parametrised by arc length) through n such that y(,r) = n and 



Y' (r) _L U. Let Y(0) = p. As r < i ( i l ) , ft and p are not conjugate 

along Y« Thus there exists a 1-parameter family of geodesies Y^ such 

that Y^CO) = P, Yo = Y and ^(y^(i:))iO) = U. 

Applying Lemma 1.3 to each Y^ we see that, on taking determinants, 

and so df(U) = ^ ( 0 ^ (r)(r))(0) = 0 . L 

This proof i s based upon [B] p. 157, but the proof there has been 

modified to overcome a few apparent problems. 

§2 The power series expansion of 0^ and other functions 

Our method of calculation depends on the following classical 

result on the derivative of the determinant A of a matrix function M. 

(1.10) (log A)' = tr(M'M~l). 

We are led to a consideration of the matrix A'A"-̂ . Unfortunately 

for small s 

(1.11) A = s i + 0(s2) 

by (1.7), and so A~̂  is not defined at 0. However l^A is inv e r t i b l e 
s 

i n a nhd of 0 with inverse sA~^, and so we consider the matrix 

C = sA'A"^, which i s well-defined for small s. 

Using (1.9) and (1.10) we f i n d that 

(1.12) . s(log0 )' = trC - n. 
m 

I t i s as well to point out now that the t i t l e of this section 

i s misleading. We w i l l not calculate the power series of 0 , but 
m 

rather that of log 0̂ ^ via (1.12). This is enough for our purposes 



as 0 i s a function of s alone i f f log 0 is a function of s alone. "1 m 
The power series of 0 can be calculated from that of log© .e.g. by 

m m 
use of the formula 0' = 0(log 0)' . 

An elementary calculation shows that C satisfies 

(U3) sC = -S2R - C2 + C. 

Unfortunately t h i s equation has a singular point at 0, but, i n the 

analytic case, inspection shows that given C(0) and C'(0) a l l the 

other derivatives of C at 0 can be found, and hence a unique solution 

i s generated.^ 

We calculate 

C(0) = lim sA'A"! = lim A' lim sA"l 
s-»-0 s->0s-*-0 

= I . I = I . 

Also since A"(0) = 0, equation (1.11) becomes 

A = s i + 0(s3). 

Hence (sA"^)'(0) = 0 and 

C'(0) = A"(0)(sA-l)(0) + A'(0)(sA-l)'(0) 

= 0. 

We are now i n a position to calculate the power series expansion 

of C as far as we wish from the following recurrence re l a t i o n for 

the derivatives of C at 0^ derived from (1.13).^ 

(pn)c<P>(0) = -P(P-I)R(P-2>(O) - ll) c^^ho) C^^-^UO) p >. 2 
k=2 



The f i r s t nine derivatives are given here: 

C(0) = I , 
C (0) = 0 , 
C(2)(0) = --|R(0), 
c(3)(o) = -|R'(0), 
c('t)(0) = - 1^R(2)(0) - I|R(0)R(0), 
c(5)(o) = - ^^R(3)(O) - -|(R'(0)R(0) + R(0)R'(0)) , 
C(6)(O) = - ^R('t)(0) - ^R'(0)R'(0) -^(R(2)(0)R(0) + R(0)R(2)(0)) 

- |fR(0)R(0)R(0), 
C(7)(0) = - ^R(5)(0) - ^(R(3)(0)R(0) + R(0)R(3)(0)) 

- f|(R'(0)R(0)R(0) + R(0)R(0)R' (0)) - ^R(0)R'(O)R(O) 
- ^(R(2)(O)R«(O) + R'(0)R<2)(0)). 

C<8)(0) = - fR(6)(0) - ^(R('*)(0)R(0) + R(0)R(t)(0)) 
- ^(R(3)(0)R'(0) + R'(0)R(3)(0)) - i^^R(2)(0)R(2)(o) 

- ^(R(2)(O)R(O)R(0) + 'R(0)R(0)R(2)(0)) - lffiR(0)R(2) (O)R(O) 
- ^(R'(0)R'(0)R(0) + R(0)R'(0)R'(0)) - (R'(0)R(0)R'(0)) 
- ^R(0)R(0)R(0)R(0) , 

C(9)(0) = - ^R(7)(0) - ^(R(5)(0)R(0) + R(0)R(5) (o)) 
- 5it(R('*^(0)R'(0) + R'(0)R<t)(0)) - 2i^(R(3 ) ( o)R(2 ) ( o ) 

+ R(2)(0)R(3)(0)) - ^(R(3)(0)R(0)R(0) + R(0)R(0)R(3) (0)) 
- 28R(0)R(3)(0)R(0) - 18.9R'(0)R'(0)R'(0) - ^it^R(2) (o)R'(O)R(O) 
- 2V^R'(0)R(0)R(2)(0) - 81R(0)R(2)(0)R'(0) 
- 2a^R(2 ) (o)R (o)R'(0) - 81R'(0)R(2)(0)R<0) 
- •^^R(0)R'(0)R(2)(0) - ^(R'(0)R(0)R(0)R(0) +R(0)R(0)R(0)R'(0)) 
- ^mO)r (0)R(0)R(0) + R(0)R(0)R'(0)R(0)). 
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We next give the traces of these matrices: 

trC(O) = n , 

t r C (0) = 0 , 

trc(2)(o) = - ftrR(O). 

trc(3>(0) = - i t r R ' ( O ) , 

t r c ( ^ ) ( 0 ) = - ^ t r R ( 2 ) ( Q ) _ ^^trR(0)R(0) , 

trc(5)(o) = - ^ t r R ( 3 ) ( 0 ) - ^ t r R ' ( 0 ) R ( 0 ) , 

t r c ( 6 ) ( 0 ) = - 3^trR('t>(0) - ^trR'(O)R'(0) - ^ t r R ^ ^ ) (O)R(O) 

- |ftrR(0)R(0)R(0) , 

trc(7)(o) = - • ^ t r R ( 5 ) ( 0 ) - ^ t r R ^ S ) (O)R(O) - ̂ t r R '(0)R(0)R(0) 

- y t r R ( 2 ) ( o ) R ' ( 0 ) , 

t r c ( 8 ) (0) = - ^ t r R ( 6 ) ( 0 ) - il^trRC**) (O)R(O) -Sf^trR^S) (O)R'(0) 

- ^ t r R ( 2 ) ( o ) R ( 2 ) ( o ) - ^V^trR(2>(0)R(0)R(0) 

- ^ t r R ' ( 0 ) R ' ( 0 ) R ( 0 ) - ^ t r R ( 0 ) R ( 0 ) R ( 0 ) R ( 0 ) , 

tr c ( 9 ) ( 0 ) = - ^ t r R ( 7 ) ( 0 ) - i§StrR(5)(0)R(0) - 10 8trR('*)(O)R'(O) 

- 5 ^ ^ t r R < 3 ) ( 0 ) R ( 2 ) ( 0 ) - •2^^trR(3^(0)R(0)R(0) 

- 9.18trR'(0)R'(0)R'(0) - ^ V ^ t r R ( 2 ) (o)R'(O)R(O) 

- ^ ^ t r R ( 2 ) ( 0 ) R ( 0 ) R ' ( 0 ) - ^^^trR'(0)R(0)R(0)R(0) . 

Using (1.12) necessary conditions for harmonicity can be deduced 

from these equations. This w i l l be done i n the next section. 

Remark Normal co-ordinates about a point are but a special example 

of Fermi co-ordinates associated with a submanifold. The construction 

of the matrices A and C along a geodesic perpendicular to the 

submanifold i s similar; i n fact they s a t i s f y the same d i f f e r e n t i a l 

equations but with different i n i t i a l conditions. An exposition of 

th i s generalisation i s given i n Appendix I , together with a rather 

surprising property of C. 

(1.14) 
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We now digress from [B] to i l l u s t r a t e a similar method of 

obtaining the power series expansions of the trace of the metric 

tensor in normal co-ordinates and the trace of i t s inverse. This 

i s of interest as Willmore i n [W2] has introduced the idea of 

k-harmonic manifolds which are manifolds where the k*"̂  sjmmietric 

sum of the eigenvalues of the inverse of g i n normal co-ordinates 

i s a function of s alone. Thus n-harmonic i s equivalent to harmonic, 

and 1-harmonic i s defined using the trace of the inverse of g. 

We have already noted that 

2 
S'̂ g = A A 

and that the expansion for g could be found from that of A. I t would 
T 

be convenient i f we could find a d i f f e r e n t i a l equation for A A. However 
T 

the best we can do i s find one for AA which, while not the same matrix. 
1 T 

has the same eigenvalues. Let us denote the matrix —AA by D and i t s 
s2 

inverse by E. (By (1.11) D i s invertible i n a nhd of 0.) 
Proposition 1.4 D and E s a t i s f y the following d i f f e r e n t i a l equations 

and i n i t i a l conditions: 

(1.15) sD' = -2D + CD + DC , D(0) = I , D'(0) = 0, 

(1.16) sE' = 2E - CE - EC , E(0) = I , E'(0) = 0. 

Proof This follows e a s i l y frcm 

sD' = S(JLAA''^)' = - —Ak^ + s.i.A'(A-lA)A^ + s.1A(A^(A^)-1) (A'^) ' 

and 

s2 s2 s2 s2 

»e' -4-
D'E + = 0. ' 

The i n i t i a l conditions are e a s i l y derived from those of J l A : 

t V0<, OOM) I V M ^ ttwJt f VA Lp<^ 
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(1A)(0) = I , ( l A ) '(0) = 0. • 
s s 

(1.15) and (1.16) lead to recurrence formulae for the derivatives 

of D and E at 0: 

p-2 + a (i^M> 
PD^P^ (0) = I (3 ( C ( ^ > (0) D^P-'^) (0) + D(P-^> (0) C(^> (0)) \ p >. 2 . 

k=2 ^ ^^^^^ 

P E ^ P \ G ) = - Y (?) ( C ^ ^ ^ O ) E^P-'^^O) + E(P-'^>(0) C^^\0)A'vl: 2. ' 
k=2 

With our knowledge of the f i r s t nine derivatives of C we can write 

those of D and E . However, we w i l l give just the traces: 

trD(O) = n , 

trD' (0) = 0 , 

trD(2)(o) = - •|trR(0) , 

trD(3)(0) = - trR'(O), 

trD('*)(0) = - ftrR(2)(o) + }ftrR(0)R(0) , 

trD(5)(0) = - ^ r R ( 3 ) ( 0 ) + ^trR'(O)R(O), 

trD(6)(0) = - y t r R ( ^ ) ( 0 ) + ̂ t r R ' ( 0 ) R ' ( 0 ) + ^ t r R ( 2 ) ( 0 ) R ( 0 ) 

- ^ t r R ( 0 ) R ( 0 ) R ( 0 ) , 

trD(7)(0) = - |trR(5)(0) + ^ t r R ( 3 ) ( 0 ) R ( 0 ) - 2»ftrR'(0)R(p)R(0) 

+ 33trR(2)(o)R'(0), 

trD(8)(0) = - ^ t r R ( 6 ) ( o ) + ^ t r R ^ ' * ) (O)R(O) + ^ ^ t r R ^ ^ ^ (O)R'(0) 

+ ^^4^trR(2)(0)R(2)(0) - ^ f ^ t r R ( 2 ) ( 0 ) R ( 0 ) R ( 0 ) 

- ^^t^trR'(0)R'(0)R(0) + T^trR(0)R(0)R(0)R(0) , 

trD(9>(0) = - |trR(7)(o) + ^ ^ t r R ( 5 ) ( o ) R ( o ) + getrR^'^^XOR'XO) 

+ i ^ t r R ( 3 ) ( 0 ) R ( 2 ) ( 0 ) - i V ^ t r R ( 3 ) ( 0 ) R ( 0 ) R ( 0 ) 

- 8.17trR'(0)R'(0)R'(0) - ^ 4 ^ t r R ( 2 ) (o)R'(O)R(O) 

- ^ ^ t r R ( 2 ) (O)R(0)R' (0) + ^ t r R ' (0)R(0)R(0)R(0) , 
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(1.18) 

t r E ( O ) = n, 

t r E ' ( O ) = 0, 

trE(2)(o) = 4trR(0), 

trE(3)(0) = t r R ' ( O ) , 

trE('*)(0) = •|trR(2)(o) +-|trR(0)R(0), 

trE(5)(o) = •|trR(3)(0) + 8trR'(O)R(O), 

trE^6)(o) = JftrR<'^)(0) + ^trR'( 0 ) R ' ( 0 ) + ^ t r R ( 2 ) ( o ) R ( 0 ) 

+ ^ t r R ( 0 ) R ( 0 ) R ( 0 ) , 

trE(7)(o) = |trR(5)(o) + aztrR^^^(O)R(O) + 51trR(2)(o)R'(0) 

+ 80trR'(O)R(O)R(O), 

t r E ( 8 ) ( 0 ) = ^ t r R ( 6 ) ( 0 ) + ^ t r R ( ' * ) ( 0 ) R ( 0 ) + ^ ^ t r R ( 3 ) ( 0 ) R ' ( 0 ) 

+ ^ V ^ t r R ( 2 ) ( 0 ) R ( 2 ) ( 0 ) + ^ V | ^ t r R ( 2 ) (0)R(0)R(0) 

+ ^^^^^trR'(0)R'(0)R(0) + ^T^ t r R ( 0 ) R ( 0 ) R ( 0 ) R ( 0 ) , 

trE(9)(o) = |trR(7)(o) + ^ t r R ^ s ) (O)R(O) + ii+ittrR^'^^ (O)R'(0) 

+ ^ V ^ t r R ( 3 > ( 0 ) R ( 2 ) ( 0 ) + ^ ^ t r R ( 3 > ( 0 ) R ( 0 ) R ( 0 ) 

+ 16.31trR'(0)R'(0)R'(0) + ^ ^ - ^ t r R ( 2 ) (o)R'(O)R(O) 

+ ^ ^ ^ ^ t r R ( 2 ) (o)R(0)R'(0) + ^ ^ t r R ' ( 0 ) R ( 0 ) R ( 0 ) R ( 0 ) . 

§3 The f i r s t four harmonic conditions 

Using now our equations for the derivatives of trC, (1.14), we 

can write down some necessary conditions that trC only depends on s. 

Before we do so, we change our notation s l i g h t l y (& l a Besse) to 

emphasise the choice of i i i i t i a l vector of the geodesic we have been 

considering. Thus we s h a l l denote the endomorphism from T M to T M 
m m 

given by V R(U,V)U for U,V e T̂ M by R^ and the endomorphisms given 

by V ... u^^"''^^" ^^"u-

The definition of hannonicity requires that trC should depend 

only upon distance along the geodesic and not upon the i n i t i a l 
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direction of the geodesic so the derivatives of trC at 0 must be 
a 

independent of the i n i t i a l direction. From Proposition l.jf we see 

that they must also be l o c a l l y constant as we allow our i n i t i a l 

point to vary, and, as we are assuming M connected, globally constant. 

We would expect, then, from equations (1.14) to have 8 pieces of 

information to make use of. This, however, i s not the case, and the 

t o t a l information i s summed up i n the following theorem. 

Theorem 1.5 (Ledger) Suppose M i s harmonic. Then for any U e UM, 

the following equations hold for constants K,H,L,M«. 

(1.19) trRy = K, 

(1.20) t r R ^ = H, 

(1.21) 32trR^RyR^ - 9trR'^R'^ = L , 
(1.22) 3trR^(2)R^(2) + 8 t r R ^ ( 2 ) R ^ _ sotrRj^Rj^R^ 

H. 72trRyRyRyR^ = M. 

Proof (1.19) i s obviously derived from the formula for trC^2) ̂  

However assuming (1.19) immediately implies that trc(3) = 0, so 

no new information i s derived from that condition. 

Again, assuming (1.19) we get (1.20) from the formula for 

trC^'*\ Once more no new information i s gained from the formula 

for t r c ( ^ ) as i t i s , assuming (1.19), a constant multiple of the 

derivative of (1.20). 

(1.21) and (1.22) are derived similarly. One assumes the 

previously gained conditions to obtain them, and one finds also that 

under these conditions the next (odd) condition i s a constant multiple 

of the derivative of the condition preceding i t . I 

Conjecture Assuming the conditions for harmonicity derived from 
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the formulae for trC^^^, k = 2 2p-l, then trC^^^"^^^ I S 

a constant multiple of the derivative of the condition derived from 
,(2p) t r C 

Conditions (1.19) - (1.22) are known as the f i r s t four Ledger 

conditions for harmonicity. The k^^ Ledger condition, which we sha l l 

denote by 1^, i s derived from the formula for trC^^''"^ , assuming the 

previous k-1 Ledger conditions. 

I t i s of some int e r e s t to investigate the conditions derived 

from equations (1.17) and (1.18). These are set out i n the following 

proposition. 

Proposition 1.6 Suppose at each point of M trD i s required to depend 

only on s,then the following equations hold for constants K^, , 

L j , Ml,for any U e UM» 

trRy = K j . 

trRyR^ = Hi, 

(1.23) l e t r R ^ R ^ + 13trRjR^ = L^, 

13.13trR^(2)R^(2) _ 37.8trR^(2)R^i^ + 23.50trR^R^Ry 

+ 32.13trRyRyR^Ry = M̂ . 

Similarly, i f the same i s required of trE, we have the following 

equations for constants K2, H2, L2, M2, and any U e UMs 

trR^ = K2-
trR^R^ = H2, 

(1.24) 3 2 t r R ^ R ^ - 9 t r R ^ = L2. 

3trRy(2)R^(2) + 8trR^(2)R^R^ _ SOtrR^R^R^ 
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Proof We f i r s t note that i f trD or trE i s assumed to be a function of 

s at each point, then by a similar proof to that of Proposition 1.2, 

i t must be the same function of s at each point. For, according to 

Lemma 1.3, i n that notation, 

t r A A ^ ( t ) = trB^B(O) = trBB^(O), 

and the res t of that proof c a r r i e s through i n the same way. 

The proof of the current proposition uses the same method of 

proof as Theorem 1.5 but see Remark 1 below. 1 

Remark 1 As i s seen when the calculations i n Proposition 1.6 

are carried out, equations (1.15) and (1.16) have the same property 

as equation (1.13): the odd derivatives give no new information, 

at l e a s t as far as the ninth derivative. Again we conjecture that 

this happens for a l l the odd derivatives. 

Remark 2 I t w i l l be noted that conditions (1.24) and (1.19) -(1.22) 

are i d e n t i c a l , and this leads to the obvious conjecture: 

trC constant function of s over M <=> trE constant function of s over 

Willmore [W2] has proved the '=>' part, but the converse i s as yet 

unproved. I t may be asked why the trace of the inverse of g should 

be closely related to the determinant of g rather than the trace of. 

g i t s e l f . The only light we can shed on this i s to observe that the 

forms of equation for C and E are similar (try substituting C for E 

in equation (1.16)), 
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Chapter 2 Local Co-ordinates, Super-Einstein Spaces 

I n this chapter the conditions for harmonicity are put into 

local co-ordinate form. This leads to the definition of super-Einstein 

space which i s an Ei n s t e i n space with an extra condition on the 

curvature. We prove some curvature formulae i n super-Einstein spaces 

and also introduce the notion of the Schur property which seems to 

be shared by a number of 2-tensors i n this theory, 

§1 Harmonic conditions i n lo c a l co-ordinates 

We return to our nomal co-ordinate system about m e M and 

suppose a geodesic y through m has i n i t i a l vector U = a'''Û  and 

hence equation 

Y^(s) = a^s , i = 1 n , 

then along y, 

V " ^Sk£^^^''^^ a l i for vector f i e l d V = V^g-|i. 

Thus at m 

V k = ^ S k / - > ^ ' - \ ' 

and 

1 a 
trRy = pj^(m)a'^a , where p i s the R i c c i tensor, 

Ledger's 1st condition, (1.19), states that 

trR^ = K , VU G UM, 

and this leads to 
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Pjjj^(m)aja^ = KS^^a^a'^ , 

since U i s unit and g, (m) = 6, . As this i s true for a l l choices 
j * 3 5!' 

of the a's we have 

(2.1) S(p.^(m)) = KS(6.^) , 

where by definition S(T, . ) i s the sum over a l l permutations 
i l > • •.» 

of the free i ^ , i ^ ^ i . e . 

S(T . i ) = I ''̂ <j(ii) ... a ( i J . 
^1' ••" "-k a£S^ ^ 

where Ŝ ^ i s the symmetric group on k objects. As p i s symmetric we 

can rewrite (2.1) as 

(2.2) p.o(m) = K6. i n normal co-ordinates 
J * J * 

about m and so M must be Eins t e i n . 

Considering now L2, (1.20), we have at m 

Thus 

trR^R^^ = (^'jk/qis>(->^'^'^'^' 

Ledger's 2nd condition becomes, i n normal co-ordinates based at m, 

(2.3) S(Riajb\a£b>("'> = « « ^ ^ i j W 

(Note that because g^j (m) = 6̂ ^ we can write contracted strais with 

a l l indices downstairs). 

Noting that R'^V = V. (R^ .^j^)aJv\^^ 

= V R ^ ^ a V a V A , r jkJl 3x1 
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and 

R ( P ) V = V R \ „ a j a V l . . . a^P v'̂  . Y r i ... r ^ jk£ 

we can write down L3 and L4 i n normal co-ordinates based at m: 

^ i j \ i l W ' (2-^) ^(32R.^.^R^^^R^^^^-9V,R.^^^V^R^^^^)(m) = LS(6. 

(2.5) S(3V..R, „,7 R , + 8V. .R, „̂ R , R 
i j Kailb mn paqb i j kaSb mbnc pcqa 

- 507.R, V„R , R + 72R. R,, „ R ,R , s , 1 jakb £ mbnc cpaq lajb kb£c mend pdqa) (m) 

= MS(6. .6, „6 6 ) . i j kSL mn pq 

In l a t e r sections we s h a l l gain useful information from (2.3) 

and (2.4) but (2.5) i s too unwieldy to be of much use. I t was originally 

hoped that the f i r s t three conditions with some manipulation might 

lead to the proof of the fundamental conjecture, but this has not 

been the case. The conjecture has been proved by Lichnerowicz and 

Walker (see [B], p. 166) i n the case of dimension 4 from the f i r s t 

three conditions, but this makes heavy use of the low dimensionality. 

We now discuss a notion which occurs frequently i n this context, 

the easiest example of which i s contained i n the following well-known 

theorem of Schur. 

Theorem 2.1 Suppose the curvature of M s a t i s f i e s p = fg for some 

function f. Then i f dim M ii* 2, f i s a constant. 

Proof I n orthonormal co-ordinates we are given that 

(2.6) p.. = f6... 

Applying to both sides and summing, we find 

V.p.. = V.f. 
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Using the 2nd Bianchi identity, this becomes 

^V.T = V.f. 
J J 

On the other hand, taking the trace of (2.6) reveals that 

jr_ = f . 
n 

Comparing the l a s t two equations we see that if n ^ 2, then Vjf = 0 

and f i s a constant. I — 

I n the l i g h t of t h i s , we s h a l l say that a symmetric covariant 

2-tensor T defined on M has the Schur property i f , given T = fg 

for some function f, then f i s a constant. Further, we s h a l l say 

that a symmetric covariant 2-tensor T defined on M has the Schur 

property of order k i f i t has the Schur property except when dim M = k. 

Thus the R i c c i tensor has the Schur property of order 2. 

§2 Consequences of L2. Super-Einstein spaces. 

We r e c a l l Ledger's 2nd condition i n orthonormal co-ordinates: 

S(^iajb\a£b> = «S(6..6^^). 

We can gain a 2-tensor r e l a t i o n by putting k = Z and summing from 

1 to n. As we carry out many calculations of this kind, we write 

this one out e x p l i c i t l y . 

Proposition 2.2 I f the curvature of M s a t i s f i e s LI and L2, then 

i t also s a t i s f i e s 

(2.7) ^iabc'^jabc ~ ^ ^ i j i n orthonormal co-ordinates, 

where S = •3-((n+2)H - K2) . 



21 

Proof I t i s necessary to consider the permutations on 4 l e t t e r s , 

2 of which are the same, say i j k k . We f i r s t write down those with 

i preceding j, : 

i j k k , i k j k , i k k j , k i j k , k i k j , k k i j . 

The corresponding terms on the LHS of (2.3) are now written down and 

summed over k,simplifying where possible: 

And the RHS: 

^iajb.\akb • i j ' 

^iakb'^jakb , 

iakb Tcajb 

\ a i b ^ j a k b 

^ a i b ^ a j b 

^^iakb^jakb ' 

^^iakb^jakb • 

^iakb^j akb * 

> see Lemma 2.4 below 

\ a k b ^ i a j b ' 

6. .6,, i j kk n6. . , 

6., S., ik j k 6... 

6., 6, . 
ik kj. 

6, .6., k i j k 6.. , 

6, .6, . k i kj 

6,, 6.. 
kk i j 

= n6 
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Noting that the LHS and RHS are both symmetric i n i and j , and thus 

there i s no need to consider terms with j preceding i , we get by adding, 

I R . ,,R. + K26.. = H(n+2) 6.. ^ lakb jakb i j ^ i j 

and (2.7) follows e a s i l y . I 

We s h a l l denote the tensor R. . R. , by R... 
labc jabc i j 

Proposition 2.3 I n an E i n s t e i n space, R has the Schur property of 

order 4. 
Proof We are given that 

(2.9) R. , R. , = f 6. . , for some function f . ^ ' labc jabc i j ' 

As i n Theorem 2,1, we take of each side and sum: 

V.R, , R. , + R. , V.R. V = V.f. 1 labc jabc labc i jabc j 

By the 2nd Bianchi identity, 

V.R. , = V , p - V p , = 0 , i n an E i n s t e i n space. 1 labc b ac c ab * 

Also 

R. , V.R. , = |R. , V.R. , (Lemma 2.4) labc 1 jabc ^ labc j labc 
= |V.(R. , R. , ) . * 3 labc labc 

Thus we have shown that 

V.(iR. , R. , ) = V.f. J * labc labc j 

On the other hand taking the trace of (2.9) gives 

AR. , R. , = f labc labc n 

and the proposition follows. I— 
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An E i n s t e i n space of dim > 4 which s a t i s f i e s (2.9) has been 

defined by Gray and Willmore [GW] to be a super-Einstein manifold. An 

E i n s t e i n space of dimension < 4 automatically s a t i s f i e s (2.9). This 

can be shown either by d i r e c t calculation using the Singer-Thorpe 

form of the curvature of a 4-dimensional E i n s t e i n manifold [ST] 

or by the algebraic method of Patterson [PA], a description of which 

w i l l be given at the end of this chapter. A super-Einstein space of 

dimension 4 i s defined to be an E i n s t e i n space with |R|2 = R^^^jj^^^g^ij. 

constant. 

Examples of super-Einstein spaces are not d i f f i c u l t to find. Any 

irreducible symmetric space i s super-Einstein, since any 2-tensor 

obtained from the cuirvature tensor has covariant derivative zero 

and by a theorem of Walker [WA] i n an irreducible space i t must be 

a multiple of the metric tensor. Most known examples of E i n s t e i n spaces 

are also super-Einstein, but Gray and Vanhecke have shown that there 

e x i s t metrics on spheres of dimension 4n + 3 which are Einstein, but 

not super-Einstein. 

As we have seen, a harmonic manifold must be super-Einstein 

(including the case of dimension 4. A 4-dimensional harmonic manifold 

i s l o c a l l y symmetric, so 1 R | 2 must be constant.). 

§3 Curvature formulae i n a super-Einstein space 

I n this section we prove some interesting relations between 

various tensors i n a super-Einstein space. F i r s t we make some 

definitions. The following equations i n orthonormal co-ordinates 

define the tensors on the LHS: 
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^ i j ^iafb^jcfd^acbd , V.RV.R = V.R , ,V.R ̂  J 1 J 1 abed J abed , 

^ i j ^ifab'^jfcd^abcd * 

T. = V 

VR.VR. = V R., jV R.̂  J . 1 J a ibcd a jbcd 

.\cde\cdf^iaef 

and the scalars 

R = R,. , 
11 

R = R... 
11 

VR|2 = V.RV.R = VR.VR., 1 1 1 1 * 

The next lemma i s a consequence of the Bianchi i d e n t i t i e s , and 

was used i n the l a s t section. 

Lemma 2v4 Suppose A^^, 1 <i,j« n, i s a set of numbers anti-symmetric 

in i and j . Then ( i ) A. .R. 
i j lajb 

= |A..R.. . , 
i j i jab ' 

( i i ) A_,,V,.R_,„i, = ^A. .V R i j 1 cjab i j c ijab • 

Proof ( i ) A..R. i j lajb K A . . - A..)R. 
i j j r lajb 

= ^A..(R. ^ i j ^ l a j b 

= |A , ,R_., 

R. .J 
j a i b ' 

' i j " i j a b » by the 1st Bianchi identity. 

( i i ) Proved s i m i l a r l y , using the 2nd Bianchi identity. I 

These results w i l l be made considerable use of in the sequel, as 

w i l l the R i c c i identity for the non-commutativity of covariant 

d i f f e r e n t i a t i o n (see e.g. [E]) and the fact that the 3-tensor 

^i^jbcd^bcd anti-symmetric i n j and k i n a super-Einstein space. 

Generally there i s no re l a t i o n between the four 2-tensors 

defined above even i n an Eins t e i n space. However we have the r e s u l t : -

Proposition 2.5 I n an Eins t e i n space with p = Kg, 

(2.10) L 4 R . . - VR.VR. = 2KR.. - ^A(R,.). 
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Proof By de f i n i t i o n 

A(R. .) == V,, (R. . R. V ) ^ i j ' kk^ labc jabc' 

= V, ,R. , R. , + 2V, R. , 7, R. , + R. , V, ,R. , kk labc jabc k labc k jabc labc kk jabc 

(2.11) = 27, ,R. , R. , + 27R.7R. + 2R. , 7,, R. , 
kb lake jabc i j labc kb jakc 

(Lemma 2. 4 ( i i ) ) . 

By the R i c c i identity. 

\ b ^ i a k c " ^bk'^iakc * \ i b k \ a k c \ a b k \ h k c \kbk^iahc * ^cbk^iakh 

The E i n s t e i n condition implies that ^^jj^R^^j^g - 0 

\kbk^iahc = '^iabc' ^° ^2.11) becomes 

A(R.j) = 2(KR.^^^^Rj^^^^ \ i b k \ a k c ^ j a b c * Vbk^hkc^jabc 

* ^cbk^iakh^jabc^ * 27R£7Rj + 2(KRj.^^^Rj^^^ + ^ i a i j ( . \ j b k \ a k c 

* ^iabc\abk^jhkc * ^ i a b c \ c b k ^ j a k h ^ ' 

Use of Lemma 2.4(i) gives 

0 2 ^ A(R. .) = 4KR. . - 2R. . - SR.. .+ 27R.7R. . 

Corollary 2.6 ( i ) I n an Ei n s t e i n space, 

R + 4R - l7Rl^ = 2KI;R'I'^ - i A ( | R | ^ ) . 

( i i ) In a super-Einstein space, with R = Sg, 

0 o 
Rj-j + 4R^j - 7R.7Rj =» 2KS6^j . 

Thus in a super-Einstein space only three of our defined tensors 

are independent. We wish to see which combinations of these tensors 

can have the Schur property on a super-Einstein space. To this end we 
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prove the following proposition (cf. proofs of Theorem 2.1, Proposition 2.3) 

Proposition 2.7 In a super-Einstein space, 

1 ^ 1 
i n /T>\ A ( i) V . ( R . . ) = ^ V . ( R ) - i T . , 

I n /2N ( i i ) V . ( R . . ) = i V . ( R ) - T . . 

( i i i ) V , ( V . R V j R ) = ^ V j ( | 7 R | 2 ) - 4Tj . 

0̂  
Proof ( i ) V . ( R . , ) = V . ( R . , , R . , ,R , , ) 1 i j 1 lahb jchd acbd' 

= R. V . R . , j R , , + R. R. , j V . R , , lahb 1 jchd acbd lahb jchd i acbd 

since the space i s Einstein. But, by the 2nd Bianchi identity. 

R. V . R . , ,R , J = R. , , V . R . , ,R , , + R. , , V R . , R , , lahb 1 jchd acbd lahb j ichd acbd lahb c jihd acbd 

1 ^ 
= 3V. (R) - R, , , 7 . R . , ,R , J , ^ j lahb 1 jchd acbd 

where an interchange of dummy indices has been made in the second term. 

Thus 

R. V . R . , ,R ^, = h.CR) lahb 1 jchd acbd ° j 

Also 

R- uvR- u j = 2 ^ - uuR- uj ' i ' R , (Lemma 2 .4( i i ) ) lahb jchd i acbd lahb jchd c aibd ^ \ 

(Note that this formula holds i f only the Einstein condition is assumed.) 

( i i ) V . ( R . . ) = V . ( R . , , R . , j R ^ j ) 1 i j 1 ihab jhcd abed 

^ihab^i^jhcd\bcd ^ihab^jhcd^i\bcd 

again, as the space is Einstein. Then 
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R,, , V.R., ,R , J = iR., ^V.R.^ jR , J (Lemma 2 .4( i i ) ) ihab 1 jhcd abed ^ ihab j ihcd abed . \ 
1 o 

Also 

R,, ,R . , jV.R , J = 2R., , R . , ,V R , . , (Lemma 2 .4( i i ) ) ihab jhed i abed ihab jhcd e abid ^ \ / / 

^e^abid^abih^jchd ' 

using the super-Einstein condition and Lemma 2.4( i ) . Thus 

ihab jhcd i abed j 

( i i i ) V.(V.RV.R) = 7.(7.R , ,V,R , ,) 1 1 J 1 1 abed J abed 

= V . . R , j V . R , , + V . R , , 7 . . R , , 11 abed j abed i abed i j abed 

Considering the f i r s t term, 

V, .R , jV.R , , = 2V. R., ,V.R , , (Lenma 2 .4( i i ) ) 11 abed j abed la ibed j abed 

^^hiai\bed^j^abed * ^\bai^ihed^j\bed 

. 2 R ^ 

eai\bhd^j^abed ^ ^\dai\beh^j^abcd 

using the Rieci identity and the Einstein condition. Thus 
V,.R , jV.R , , = 2KR , ,V.R , , + R .R., ,V.R ^ , - 2R . ^R.^^^V.R ^ , 11 abed j abed abed j abed abhi ihcd j abed aich ibhd j abed 

" ^^iahd^ibeh^j^bcd » 

since the space is Einstein. Using the super-Einstein condition we have 

that 

V . . R , , V . R , , = - k , ( R ) - •|v.(R) 11 abed j abed J 

• 5 ^ j ( l V R | 2 ) 
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by Corollary 2 . 6 ( i i ) . Final ly , using the Ricci identity once more we 

have 

V . R , , V . . R , j = V , R , , V , . R ^ , + V . R , , R . . .R,, , + V.R ̂  ,R., . .R , , 1 abed i j abed i abed j i abed i abed naji nbcd i abed nbji abed 

* ^i \bed\ej i^abhd ^ ^i^abcd\djc\bch 

= | V . ( | V R P ) - 4V.R^bcd\aji \bcd 

by changing duimny indices. Thus 

V . R , , V . . R , , = | V . ( 7 R | 2 ) - 4T. . D 1 abed i j abed ^ j ' j 

Proposition 2.8 In a super-Einstein space where T 4 0, a necessary 
o 

and sufficient condition that a tensor of the form AR. . + BR. . + CV.RV.R 

has the Schur property of order 6 is that 

(2.14) A + 2B + 8C = 0 . 

I f T = 0 then any tensor of that form has the Sehur property of 

order 6. 

Proof As usual we suppose that 

Q. o 
(2.15) A R . . + B R . . + CV.RV.R = f6. . 

in orthonormal co-ordinates for some function f. Taking V^ of both 

sides and summing, 

9. o 
AV.(R..) +BV,(R. . ) +CV.(V.RV.R) = V. f , 

1 i j 1 i-J 31 1 J J 

Proposition 2.7 gives 

(2.16) iv . ( A R + BR + C|VR|2) - (̂ A + B + 4C)T. = V . f . 
J J J 
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On the other hand, taking the trace of (2.15) gives 

(2.17) J:.(AR + BR + C|VR|2) = f . 
n 

o. o 

I f T = 0 we see that AR + BR + C |VR 12 has the Schur property of 

order 6. Suppose T 4 0 and the tensor in question has the Schur 

property of order 6, then for n 6 f is constant and thus (2.14) 

holds, by comparing (2.16) and (2.17). 

Conversely i f (2.14) holds the tensor has the Schur property of 

order 6. I 
Corollary 2.9 In a 6-dimensional super-Einstein space T = 0. 

£L o 
Proof Take a 2-tensor of the form AR. . + BR,. + CV.RV.R where 

i j i j 1 J 

A + 2B + 8 C 0 . 

Substitution of (2.17) into (2.16) when n = 6 gives 

(A + 2B + 8C)Tj = 0. L 

The f ina l proposition in this seption gives a l i s t of identities 

val id in a super-Einstein space, useful in this and the next chapter. 

Proposition 2.10 In a super-Einstein space (with p = Kg, R = Sg), 

( i ) i f T,.,, „, = S(7..R, „,R, , ) , then T . . , , „ „ = 8(-5V.RV,R - 47R.VR.), ^ ijk£hm i j K.a£b hamb ' ijkkili!, ^ i j i J 

( i i ) i f U. „, = S(V.R. ,,V„R, , ) , t h e n U , . , , „ „ = 8(5V.RV.R + 4VR. VR.) , ijkAhm 1 jakb £ hamb ' ijkk££ ^ i j i J 

( i i i ) i f V. „, = S(R. . , S , , . R. ) , then V. . , , „ = 8 (¥R . . - 3R. . ^ ijk£hm lajb Tcbilc hcma" ijkkAA ^ 2 

+ (3K3+^KS)6^j), 

(iv) i f W,., = S(V.R. , , R „ , , R ) , thenW. . . . . „„ = 48(|v, (R) - Iv . (R) ijk£hmn i jakb ilbhc mcna ' ijjkkHJ!, J ' 

- 6T.) , 
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(v) i f X . , , „, =S(V.,R, . ,V,R , ) , then X . . . , , „ = 48(3V.( VR 2) - 3 2 T , ) , ijkUhmn i j kaAb h manb" ijjkk££ ^ i^ i ' » 

( v i ) i f Y . . , = S(V..,R„ _ R , ) , then Y. . . , , „ = 48(-9V. ( VR 2) + 96T.). 
ijk£hmn i j k £ahb manb ' ijjkki!,£ ^ i^ i 

Proof The method of proof is the same in each ease. I t is in principle 

the same as Proposition 2.2, but more laborious. Al l possible permutations 

are written down and f u l l use is made of the identities used in previous 

propositions. I 

Remark From Proposition 2.10 we note the following identities in 

a super-Einstein space: 

(2.18) T. . , , „ „ + U . „ „ = 0, 
ijkkA£ ijkk££ ' 

(2.19) 3 X . . . , , „„ + Y . . . , , „„ = 0. 
ijjkkAA ijjkkA£ 

We also know that i f we assume instead Ledger's 2nd condition^by 

differentiating twice and three times we obtain 

^ijk£hm "ijkJlhm " ° ' 

3X. „, + Y. ., = 0. 
ijkAhmn ijk£hmn 

Thus while i t i s clear that (2.18) and (2,19) hold in a space which 

satisf ies L2, i t is not obvious why they hold when only the super-

Einstein condition is assumed. This must have a significance which 

indicates an easier proof than the hard labour of Proposition 2.10. 

§4 Consequences of L3 

Ledger's 3rd condition which, i t wi l l be recalled, is derived 

assuming the 1st and 2nd conditions is., in orthonormal co-ordinates, 

(2.20) S(32R. . ,R , , . R - 9 V . R , , , V „ R , ) = LS(6..(5,„6 ) . 
lajb kb£c mena i jakb I manb ^ i j k£ mn 
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The next proposition is the analogue of Proposition 2.2. 

Proposition 2.11 I f the curvature of a manifold satisf ies Ll, L2 and 

L3, then i t also sat isf ies 

S. o 
(2.21) 16R. . - 20R. . + 3\7.RV.R = N6.. for some constant N. 

i j i j 1 J i j 

Proof By setting k = J,, m = n, summing and applying Proposition 2.10 

we get 

o o 
32R. . - 112R. . + 15V.RV.R + 12VR.VR. = C6. . for some constant C. 

Then applying Corollary 2 .6( i i ) we get (2.21). I — 

From Corollary 2.6 we have the following relation in a super-

Einstein space: 

o o 
R + 4R - |VR|2 = 2KSn, 

and from (2.21) 

o. o 
16R - 20R + 3|VR|2 = Nn . 

These formulae are of interest for i f we can find another linearly 
o -S-

independent linear combination of R, R and |VR|2 which is constant, 

we could infer that each of these was constant. I f the fundamental 

conjecture is true, then they must be constant; more importantly 

i f |VR|2 could be proved to be the constant 0, then the conjecture is 

proved. However, as yet, no third condition has been found, and 

should one be found i t would be no easy matter to infer that 

V R | 2 = 0 (cf. [B] p.174). 

Also i t i s interesting to note that i f , instead of simplifying 

the condition gained from trc(^) in Chapter 1 by use of L l and L2, 

we had assumed only that the space was super-Einstein,we would have 
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obtained 

^^•'•^^^^jakb^Aamb * •'•^^^ij\a£b\amb * ^^^iajb\bi!c\cma^ ~ ^ ^̂ "̂ ij"̂ kJl̂ hm^ 

whence, by use of Proposition 2.10, we would have arrived at (2.21). 

Proposition 2.12 In a super-Einstein space, the 2-tensor 
o. o 

16R.. - 20R.. + 3V,RV.R has the Schur property of order 6. 
I J I J 1 J f J 

Proof Its coefficients satisfy the condition of Proposition 2.8. I 
0 o 

We shall denote the 2-tensor 16R.. - 20R.. + 3V.RV.R by A. . . 

We have seen that p has the Schur property of order 2, in an Einstein 

space R has the Schur property of order 4, and in a super^Einstein 

space <() has the Schur property of order 6. So we are led to a 

Conjecture. Suppose T(k) is the symmetric 2-tensor derived from the 

kth Ledger condition (which is derived assuming the preceding k - 1 

Ledger conditions) then T(k) has the Sehur property of order 2k. 

However, as we have noted above, there are grounds for a second 

Conjecture. Suppose T(k) is the symmetric 2-tensor derived from the 

2kth derivative of trC. I f i t is assumed that T(p) = C g for 
P 

constants C^, l < : p ^ k - l , then T(k) has the Schur property of 

order 2k. 
§5 Results of Patterson 

In this section we describe some of the results obtained in a 

recent paper of Patterson [PA]. In particular we note the discovery 

of an inf ini te sequence of symmetric 2-tensors, a l l of which have 

the general Schur property. However these are constructed from 

algebraic combinations of the curvature tensor and do not involve i t s 

covariant derivatives. We also mention some results of consequence 

for low-dimensional harmonic manifolds. 

F i r s t l y we define the main tool of the paper, a contravariant 
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tensor of order 2r: 

(2.22) a^l^2"'i-r\hh"-2T = I E g^l^^Jl^g^zCf(ja) _ ^ g V ( j r ) -

I t is seen immediately that the i ' s and j ' s are anti-symmetric in 

pairs. We can now define a sequence of contravariant 2-tensors 

F(k),k l.by 

F^j(k) = < x i i l - " i 2 k | j j l . . . j 2 k R R. . . 
I 1 I 2 J 1 J 2 l 2 k - l l 2 k J 2 k - l J 2 k • 

E(k) are defined to be the corresponding covariant tensors obtained 

by lowering the indices. 

Proposition,2.13 E(k) has the Schur property, k :̂  l i 

Proof We work in orthonormal co-ordinates so that 

E . .(k) = a . . . 1 . . . R R. 
i J i i - l « " i - 2 k | j J i . . . J 2 k 1 1 I 2 J 1 J 2 i 2 k - i i 2 k J 2 k - i J 2 k » 

where 

° ' i i i . . . i 2 k | j j i . . . j 2 k J s ^<J^i«j(j)"^il<^(jl)---"^i2k'^(j2k) 
21^1 

We are given that 

E . . ( k ) = f6 . . for some function f . 

As usual we take of both sides and svsa. so that 

(2.23) V .E . j (k ) = V j f . 

But 

V .E . . (k ) = V . ( a . . . . . . R R. • • • ) 
i i j ^ 1̂  111- . . i2k J J l - - - J 2 k I 1 I 2 J 1 J 2 i 2 k - l i 2 k J 2 k - l J 2 k 

= a . . . i . . • (V.R . .R . . . . + . . . 
l l j . . . l 2 k | j J l " • J 2 k 1 I 1 I 2 J 1 J 2 l 2 k - 1 ^ 2 k J 2 k - l J 2 k 

. . .+ R V.R. . . . ) 
I 1 I 2 J 1 J 2 1 l 2 k - 1 ^ 2 k J 2 k - l J 2 k 

(2.24) " ^ " i i l . . . i 2 k j j i - - - j 2 k ^ i ^ i l i 2 j l j 2 " * % k - l i 2 k j 2 k - i j 2 k 



34 

(since V.R R. . . . can be derived from the other 
1 111-2J1J2 i 2 k - l i 2 k J 2 k - l J 2 k 

terms by even permutations of the i ' s and j ' s . ) . 

= ^ka. . . . . . V . R R. . . 
I l l . . . l 2 k J J l ' . - J 2 k ^2 l l l : J l J 2 l 2 k - l l 2 k J 2 k - l J 2 k 

(by Lemma 2 .4( i i ) using anti-symmetry of i and i^) 

(2.25) = |ka V.R R. . . . 
i l l . . . i 2 k J J l . - . J 2 k 1 I - 1 I 2 J 1 J 2 l 2 k - l l 2 k J 2 k - l J 2 k 

(by Lemma 2 .4( i i ) using anti-sjrametry of i j and i 2 ) . 

Comparing (2.24) and (2.25) we see that both must be zero. Hence 

from (2.23) f is constant and E(k) has the Sehur property. I 

We can now derive from these tensors a sequence D(k) of covariant 

2-tensors, k ^ 1, such that the kth has the Schur property of order 2kj 

thus inviting comparison with our T's of the last section. This is 

accomplished by subtracting a certain term from each E(k) . We define 

scalars G(k), k ^ 1, by 

G(k) = a. . . . R R. 
i l . . . i 2 k J i ' " J 2 k I - 1 I 2 J 1 J 2 i - 2 k - l i 2 k J 2 k - l J 2 k 

and covariant 2-tensors D(k) by, in orthonormal co-ordinates. 

(2.26) D.j(k) = E . j ( k ) - G(k)6 . j . 

Proposition 2.14 D(k) has the Schur property of order 2k, V. >^ 1. 

Proof We calculate f i r s t the trace of E^^(k). We have 

E . . ( k ) = a . . . | . . . R R. 
^1 1 ^ 1 - • • l 2 k | l 3 l - • • J 2 k ^ l l 2 J l J 2 l 2 k - l l 2 k J 2 k - l J 2 k . 

Using the usual expansion of a determinant by the f i r s t row, we have 

a . . . 1 . . . = 6 . . a . . . . - 6 . . a . 
^ ^ 1 - • • ^ 2 k l JJ l* • • J 2 k ^1* •'^ak J l " • J 2 k ^Jl ^1 • • • ^ 2 k J J 2 " * J 2 k 

+ . . . - 6 . . a. . 1 . . 
i J 2 k l l ' " l 2 k l J J l ' " J 2 k - l » 
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and so 

a . . . • . . = (n - 2k)a. . . 111. . . i2k i j ...J i l . " i 2 k Jl«-'Jac* 
1 ^ 

Thus 

(2.27) E . . ( k ) = (n - 2k)G(k) 

We are given that 

D^j(k) = f 6 _ for some function f . 

Once more we take of both sides and sum: 

(2.28) V D (k) = 7 f 
J J 

But, from (2.26) , 

V.D..(k) = V .E . . (k ) - V.G(k) 

(2.29) = -VjG(k) 

(see proof of Proposition 2.13). 

On the other hand taking the trace of D . (k) , 

D^iCk) = E . . ( k ) - nG(k) 

-2kG(k) (from (2.27)), 

Thus 

f = D. . 
11 

(2.30) = -2k G(k), 

n 

Combining (2.28). (2.29) and (2.30), we see that i.t n i 2k, f must 

be constant. 
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Calculation reveals that D(l) is a multiple of the Ricci tensor 

and D(2) is a multiple of following quadratic polynomial in the 

components of the curvature tensor: 

R. , R. , + xp. . + 2R. .,p , + 2p. p. . labc jabc i j lajb ab '^la j a • 

Note that in an Einstein space this reduces to 

R. . + C6. . for some constant C. 

D(3) requires a lot more calculation, but in a super-Einstein space 

i t i s a constant multiple of this tensor: 

SI o 
2R.. - R . . + B6,. for some constant B. 13 i j 3-3 

Its having the Schur property is verified by Proposition 2,8. 

This raises a number of interesting questions. Do there exist any 

more naturally occurring sequences of 2-tensors with the same property? 

Is there an elegant proof of the conjectures in the last section 

similar to that of the propositions above? The second question would 

appear to require a different approach to the notion of harmonicity, 

but one feels that the answer should be 'yes'. 

I t is easily seen that when n < 2k then 

^ i i l . . . i 2 k | j j i . . . j 2 k = 0 

since i t is anti-S3mnnetric in the i ' s and there are 2k + 1 places to 

put at most 2k different integers. Hence for n « 2k, E(k) = 0. This 

quickly shows that ( i ) any manifold of dimension 2 has p = fg for 

some function f, 

( i i ) any Einstein manifold of dimension •$ 4 has 

R = fg for some function f. 
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( i i i ) any super-Einstein manifold of dimension 6 

has the following property, in orthonormal co-ordinates: 

SI Q = 
2R.. - R.. = f6. . and f is constant for dim M < 5. 

Thus for a harmonic manifold of dimension 5, we have a third relation 

between the three scalar invariants v i z . 

2R - R = Constant , 

o fi. 

and we can conclude that R, R, and |VR 2 are individually constant. 

However as pointed out earl ier , i t s t i l l seems d i f f i cu l t to prove 

that the constant in the ease of |VR]2 is 0 and hence deduce local 

symmetry. 
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Chapter 3 The Mean-Value Theorem 

In 1950 another characterisation of harmonic spaces was 

discovered by Willmore [Wl]. Observing the well-known fact that 

harmonic functions on IR" are those with the mean-value property, he 

found that harmonic manifolds are exactly those spaces in which 

harmonic functions have the mean-value property. This chapter is 

concerned with exploiting this by calculating the f i r s t few terms 

in the power series expansion of the mean-value of a function over 

a geodesic sphere and then using i t to deduce properties of the 

manifold. Most of this chapter is modelled on the paper of Gray and 

Willmore [GW]. 

§1 Calculation of the mean-value: the preparation 

Let us denote by S^(r) the geodesic sphere centre m, radius r 

(r < i(m), of course). This is the image under exp^ of the Euclidean 

sphere of radius r in T^M, which we denote by $(r) . The volime elements 

of these two manifolds w i l l be denoted by du , dtji^ respectively. The 

mean-value of a function defined on a nhd of m, M (̂f , r ) , is then given 

by 

(3.1) ^(f' '^) = fda,g / 
S^(r) S^(r) m m 

dWg for r small enough. 

Willmore's result can then be expressed as the following theorem. 

Theorem 3.1 A manifold M is harmonic i f f for each pt m e M and each 

function f harmonic on a nhd of m, 

M^(f,r) = f(m) for r sufficiently 

small (see [Wl] or [B] p . l58ff ) . 
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By expanding M^(f,r) as a power series in r , we can gain 

necessary conditions for a manifold to be harmonic by demanding that 

the non-constant terms vanish. We can also obtain results interesting 

in themselves concerning the vanishing of these terms. 

The f i r s t step in finding this power series is to transform the 

integrals over geodesic spheres to integrals over Euclidean spheres, 

to which we can apply c lass ical results. 
* 

Lemma 3.2 I f du)_ denotes the pull back of da)_ under exp , then 
o o m 

(3.2) da,g* = O^dojĵ , 

where 0 is as before /det g in normal co-ordinates. m 

Proof Let dr„, dr_ be the radial 1-forms defined on a nhd of m and 
' M E 

a nhd of 0 in T̂ M by the corresponding radial functions. Then 

(3.3) dUg = du^ A dr^, doiĵ  = dUg A dr^, 

where du^, dw^ are the volume elements of T̂ M and M. Both equations 

3 9 

follow from the Gauss lemma which says that r—(resp. r—) is of unit 

length and is perpendicular to S^(r) (resp. $ (r ) ) . 

Also from the definition of 0 we have 
m 

(3.4) (da,^)- = 0^da,g. 

Hence 

dojg A dr̂ ^ = (dcog A dr^) = (dcoĵ ) = Ô da,̂  

* I— by (3.3) and (3.4), and as dr̂ ^ = dr^, the result follows. I 
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We can thus write (3.1) as 

M^(f,r) = m 
* * 

f d»g / 
$(r) 

do). 
$(r) 

(3.5) f 0 dojj. m $ 
$(r) $(r) 

m $ 

by Lemma 3.2, where we abuse the notation slightly and consider f and 

0 to be defined on a nhd of 0 in T M or a nhd of m in M, as suits m m 

our needs. 

The main tool in calculating the power series is the classical 

formula of Pizzett i for the power series expansion of the mean-value 

of a function over a Euclidean sphere: 

(3.6) h da)> "$ / J 
$"(r) $(r) 

m 00 

I do). = r (b) I (-|)^^ ( A ) (0) , 
' J * k=0 ^ k'. r (̂ n+k) 

where A is the kth iterate of the Euclidean Laplaeian i . e . 

(3.7) A^f A . 
9x̂ 1 9xii •••3x^k9xik 

(see e.g. [CH] p.287ff) 

rk With this in mind we define differential operators A^, k » 1, 

on a maximal normal co-ordinate nhd of m by 

rk . _ . 9^^f. ^ , 
^ m̂  ~ 9x̂ 1 9x̂ 1— 9x^k9x^k 

where x^ ...x'^ are a set of normal co-ordinates about m. Note that 

~k 
A f is however independent of the choice of normal co-ordinates, and m 

Applying (3.6) to (3.5) we have 



(3.8) M ( f . r ) = 
m 
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k=0 

To gain information about the geometry of the manifold we need 

to be able to translate information from partial derivatives of f 

and 0 with respect to normal co-ordinates into information concerning m 

the curvature tensor. Once again the usefulness of normal co-ordinates 

is demonstrated in the next lemma. 

Lemma 3.3 ( i ) The partial derivatives of 0 with respect to normal 
" m 

co-ordinates about m at m can be expressed in terms of the curvature 

tensor. 
( i i ) / \ n ) = 1 S(V. . . . f ) (m) , 

—'• ~ — 1̂ ^k 
9x^1-••3x^k/ kl 

where ( x V •••> x'̂ ) are normal co-ordinates about m. 

Proof ( i ) This was shown in the course of chapter 1. 

( i i ) In normal co-ordinates about m a geodesic y through m has 

the simple equation 

i / \ i • , Y (s) = a s , 1 = 1 nj-

The tangent vector along the geodesic has components a''' and as y is 

a geodesic 

(39 ) Vjd (a^) = ^""^j^^ = ° » i = 1 n . 

The formula in ( i i ) is certainly true when k = 1, by definition 

of Vf. Indeed i f we take the covariant derivative of f along y we could 

write i t both aaaV.f or a''"9f̂  . We can repeat this using these as our 
3xi 

scalar functions to get 
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a^V.(a^V.f) = 9, (a^ 9f. ) along y , 
J ^ 8? ax-

whence, from (3.9) and the fact that the a's are constant,we get 

a-'â V. .f = a-'â  Ŝ f along y. 

In particular this is true at m and as the choice of a's is arbitrary 
i t follows that 

;(V .f) (m) = S( ) = 21 a^f^ (m). 
3x^3xJ 9xi9xJ 

The result for any k follows from applying this a further k-2 times. 
We shall need the. power series expansion of 0 i n normal 

co-ordinates up to the seventh order term i n the next section, so 
we give i t here: 

(3.10) 0^ = 1 - . j (m)xV - nV.pj^(m)xVx^ 

' - Majb\a£b hf^Z^ (m)xix^x'^x^ 

* 5T(-3̂ ijkp£h - 3Vjakb\ahb ^ i ^ j k ^ ^ h ^ ("'>̂  ^ ̂  

^(-^^jk^Phg - T^^i^jakb^Aagb - -^^ij^ailb^agb 
16 2 

~63Riajb\b£c\cga " ^ ^ i j ^ k A g ^ ̂ ^iajb\ailbPhg 
.5„ r, 5 ^,•.ijk£hg 
""-^h^ikh^hg - •^PijPkAg^^"'^^ ^ ̂  ̂  

^ ^<-^^ijk£hPgf - -^^jk^Jlahb^afb - t^i^jakb^£bhc\cfa 

-^^j\a£bVgafb ^ ̂ Pij\ilhPgf ^PijVjlahb^gafb 
21 7 
2 i ^ j k £ĥ gf 3 I'^jk Jlahb gafb 

- a îPjkP£hPgf ̂ (m)x^xjx''x^x\Sxf 

This is easily derived from the results of chapter 1. We now have a l l 
we need to begin calculation of the power series of the mean value. 
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In passing we note the following 

Proposition 3.4. In a harmonic manifold formula (3.8) for M^(f,r) 
becomes 

/fx 2k 1 M,(f,r) = r C i n U ( | ) ^ ' ^ ^ ^ ^ ( A ^ f ) ( m ) . 

Proof Simply note that 0 is a function of r alone and m 

M^(f.r) = 
$(r) $(r) 

and the result follows by Pizzetti. I — 
Corollary A sequence of necessary and sufficient conditions that 
f be harmonic on a nhd of m i n a harmonic manifold is 

A^f(m) = 0 k = 1,2 

§2 The Calculation 
We write 

i 
M (f ,r) = f(m) + A(m)r2 + B(m)r^ + C(m)r6 + D(m)r8 + O(rlO) m 

and the object of this section is to calculate A,B,C and D. However 
B,C, and D w i l l not be found i n the most general situation, but under 
simplifying conditions which w i l l be made clear in each case. 

I f we multiply out the power series i n (3.8) using the binomial 
theorem, we find that, writing 0 for 0̂ , 

(3.11) A(m) = 1 (A (f0) - fA (0))(m), 

(3.12) B(m) = 1 (A2 (f0) - fA2(0))(m) - 1 (Z (f0)-fA„(0))(m)A„(0)(m). 
8i^uT2) i;^ ^ ^ ^ 
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(3.13) C(m) = _ _ _ _ J ^ _ ( A 3 ( f 0 ) - fA3(0))(m) 
48n(n+2)(n+4) " ™ 

- 1 (A„(fe) - fA^(0))A2(0)(m) 
16n2(n+2) " m m 

- 1 (A2(f0) - f&He))(m)KjQ)(m) 
16n2(n+2) m 

+ - J ^ ( A^(f0) - fS (0))(m)[A^(0)]2(m) ĝ 3 m m m 

(3.14) D(m) = 1 (A'*(f0) - fA^(0))(m) 
48.8n(n+2)(n+4)(n+6) " 

-. 1 (A3(f0) - fA3(0)).(m)i (0)(m) 
16.6n2(n+2)(n+4) " m m 

1 i^Hm - fA2(0))(m)(A2(0))(m) 
64n2(n+2)2'» 

• 1 (A (f0) - fA^(0))(m)A3(0)(m) 
16.6n2(n+2)(n+4) «i m m 

+ 1 (A2(f0) - fA2(0))(m)[^ (0)]2(m) 
32n3(n+2) ^ m m 

+_J^ (S (f0) - fS„(0)) (m) [(£ (0)) ] ̂ m) 
isn't m ni 

+ 1 (\ (f Q) - f Â  (0)) (m) Â  (0) (m) A2 (0) (m) 
32n3(n+2) " 

In the ensuing calculations we shall denote partial differentiation 
of a function h with respect to x"*" by h_ĵ . 
Calculation of A From (3.11) 

A(m) = l.a^(fQ) - fK^iQ))(.m). 
2n 
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Now V^^®) " ^^^hi 

= f .,0 + 2f .0. + f0.. 11 1 1 11 

so A (f0) - fA (0) = f.,0 + 2f.0.. 
m ' m . 11 1 1 

Evaluating the RHS at m we have, by Lemma 3.3 and (3.10), 

f..(m)0(m) = A,.f(m), 

f.(m)0.(m) = 0. 

So A = _l_Af. 

2n 
Thus we easily get 
Proposition 3.5. Suppose f is defined on an open set U of M. A 
necessary and sufficient condition that for each m e U 

M^(f,r) = f(m) + 0(r'*) for sufficiently small r 

is Af = 0. 
Recalling now Theorem 3.1, from the point of view of harmonicity 

we are interested i n the meau'^alue of harmonic functions, so we shall 
asstmie from now on that f is harmonic on a nhd of m. However i f we 
had started with a general function and asked that i t had the mean-
value property where defined, i t would have been forced to be 
harmonic by Proposition 3.5. 
Calculation of B assuming Af = 0 throughout a nhd of m. (For 
B i n the general case see [GW].) From (3.12), 

B(m) = _ _ l _ ( ^ ^ ( f 0 ) - fA2(0))(m) - Jj;2 (f 0) - f Â  (0)) (m)S (0) (m). 
8n(n+2) ^ _ ^ i,^2 ^ 

From the calculation of A, we see that the second term vanishes under 
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our assumption. Now 

A2(f0) -fA2(0) = (f0).. .. -f3.. .. 

= f 0 + 4f.,.0. + 2f.,0.. + 4f..0.. + 4f.0... 
i i J J i i j J 11 JJ i j i j 1 i J J 

Evaluating the EHS at m, we have by Lemma 3.3 and (3.10) 

(3.15) f (m)0(m) = "kv f + V....f + 7 f) (m) , 

f^^j(m)0j(m) = 0, 

f^j(m)0^j(m) = iv^jf(m)p^j(m) , 

f j,^(m)0j j (m) = 0, in view of our assumption, 

f.(m)0,jj(m) = -^^^fim)^^T(m). 

We define two scalar functions i n which B w i l l be expressed: 

p. .V,,f , 
i j i J 

= V.xV.f. 
1 1 

(P.v2f) 

(vT,7f) 

Thus B(m) = 1 ( f . . , , - T(p.V^f) - I (vx, Vf\ ) (m) . 

8n(n+2) ^̂ ^̂  \ / \ / 
Al l that remains to be calculated is the expression for f^^jj(m) 
We need the next lemma for this and calculations to follow. 
Lemma 3.6 We have 

^ j i i k ^ = V^''^ ^ ^ j \ i i V ^ \ . ^ j i i ^ ' 

^ i j i k ^ = ^jk(^^> ^ j ^ k . ^ . ^ ' P j A / - \jk£^i.^ 

( i i i ) y,,.^f = v.^(Af) . (v.p^^ . v^p.^ - v^p.^)v^f . p^^v.^f 



47 

Proof From the Ricci identity we have 

( i ) results from taking of this equation, ( i i ) and ( i i i ) follow 
from further applications of the Ricci identity. I 

We see from this lemma that 

V f = V f = A^f + •|v„TV„f + p, „V, „f , 
i j i j i J J i ^11 kJl k£ 

and so from (3.15) 

f....(m) = i ( <Vt,Vf) + 2<;^p,v2f))(m), 

since Af = 0 by assumption. 
Hence, assuming Af = 0, 

B = - 1 (2 /p.ygfX +3/vT,Vf\), 
24n(n+2) 

Note that a sufficient condition for B to vanish, given Af = 0, is 
that the manifold is Einstein. Later we shall prove the necessity in 
the following proposition. 
Proposition 3.7 A necessary and sufficient condition that for every 
m 6 M and every f harmonic on a nhd of m 

M^(f,r) = f(m) + 0(rS) for sufficiently small r 

is that M is Einstein. 
Thus we recover Ll from this term. We carry the conditions Af = 0 
and M is Einstein over into the calculation of the next term, as we 
are interested in the circumstances where a l l the terms up to a 
certain point vanish. 
Calculation of C assuming Af = 0 throughout a nhd of m and M is 
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Einstein (p = Kg). (For computation of C i n the general case see 
[GW].) Under our assimiptions (3.13) gives 

C(m) = 1 (A3(f0) - fA3(0))(m). 
48n(n+2) (n+4) ™ ^ 

We have that 

(3.16) A3(f0) - fA3(0) = f ,,0 + 6f , 0, + 3f 0,, 
^ m̂  m̂  ' i i j j k k i i j j k k i i j j kk 

+ 12f^^j^0jj^ + 12f ̂ ^jOjj^j^ + Sf^jj^O^jj^ 

+ 3f..0..,, +12f,, 0,,,, + 6f, 0 , 
11 j j k k j k 11jk k i i j j k 

We write down two scalar functions i n which C w i l l be expressed: 

(R,v2f> = R..V..f. 

<^V(|R|2),7f^ = 7^(|R|2)V^f. 

From (3.10) the required derivatives of 0 are, under our assumptions, 

^jk('"> = -5Pjk(-> = - I ' ^ ^ j k ' 
0..̂ (m) = 0. 

îjkil(™> = As(-Majb\a£b^*^'«ij\£>(-)' 

^ijk.h(-> = ^S(-|7.R.^^^R^^^^)(m). 

Summing the last two i n the familiar way of Chapter 2 gives 

^ i i jk^"'^ = 4: <-i^jk " f5K2(5n-^4) 6 .̂ ) (m) . 

0 , (m) = --^7, ( R 2)(m). 
i i j j k 15 k ' 

From the calculations of A and B, we see that our assumptions 
imply 

f,.(m) = 0, f (m) = 0, 
11 i i J J 



49 

and hence (3.16) reduces to 

A3(f0) - fA3(0) = -|(v(|R|2),Vf) J 

so i t remains to find f....,,(m). By Lemma 3.3 11J J '̂'̂  

l ^ ^ ^ i i j j k k ^ + ^ i i j k j k ^ "'' V. . , .f + V -, f 
i i j k k j i j i j k k 

+ V. .., f •+ V. ..., .f 
i j i k j k i j i k k j 

+ 7 1, f + V. ., . ., f 
i j j i k k i j k i j k 

i j k i k j i j j k i k ^ i j k j i k ^ ^ i j k k i j ^ 
+ V. ..,, ,f + V. ., ., ,f 

i j j k k i i j k j k i 
+ V. ... ..f}(m) 

i j k k j i 

^S^^ijikjk'^ ^ i j k i j k ^ i j j k i k i j k j i k 

* ^ijkkijf><-) 

by the commutativity of the last two indices and the assumptions we have 
made. Under our assumptions formulae ( i ) - ( i i i ) of Lemma 3.6 become 

(3.17a) 

( i ) V.. .^^f = KV.^f . 

( i i ) V,.,^f = 2KV.,f . R,.̂ V̂.̂ f . 

( i i i ) V,,.^f = 2KV.^f H-2R..̂ V̂,̂ f. 

Thus 7. ..... f = KV f = 0 , 
i j i k j k i j i j 

^ i j k i j k ^ = 2KV,i.,.f •HV,.(R^..^7^^f) = \ i j , V . . ^ ^ f (Einstein). 

V. . .. .. f = KV f = 0 , 
i j j k i k i j i j 
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= K i j £ ^ ( \ k i l j V > (Ricci identity) 

= K i j A k £ j ^ h ^ ' Kij£^\k£3V 
= Y^R,v2f^ + "I <Ĵ V(|R|2),Vf̂  (by Lemma 2.4(ii): 

Thus from (3.17) 

^ i i j j k k ^ " ^ ^ " l%(2^R,v2f) +^<^V(lR|2),Vf))(m)» 

and 

(A3(f0) - fZ:̂ (0))(m) = (^i%<^R,v2f^ - i<^V(|R|2),vf))(m). 

Finally 

C = i _(-8(R,v2f\ - 5(v(|R|2),vf\). 
1-2) (n+4) \ / \ / 720n(n+i 

Note that a sufficient condition for C to vanish, given Af = 0, 
is that the manifold is super-Einstein. Later we w i l l prove the 
necessity i n the following proposition. 
Proposition 3»8 A necessary and sufficient condition that for every 
m e n and every f harmonic on a nhd of m 

M^(f,r) = f(m) + 0(r8) for sufficiently small r 
is that M is super-Einstein. 
Thus we recover the 2-tensor condition derived from L2 from this 
term. We carry this condition over into our calculation of D. 
Calculation of D assuming Af = 0 and M is super-Einstein, with 
p = Kg, R = Sg. From (3.14) under these assumptions we see that 

D(m) = 1 (A^(f0) - fSn0))(m). 
48.8n(n+2)(n+4)(n+6) 
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NOW A;(f0) - fA2(0) = f i i j j , , k U ^ ' «̂ iijjkk£̂ . ̂  ^ ^ ^ i i j j k A i l 

^ ^ ^ i i j j k k ^ u " 32fi.jj^.e.^, + 24f. . ..j^0^^, 

^"ijk,9ijk£^ ̂ «̂ iik£®jjkil " " i i j j W 

" 32f j k , 0 i i j k , ^ 24f...0.^^^^ + 24f..0..^^^^ 

^ ̂ ^ii®jjkk£il-^«Vijjkkil£-

We write down the scalar functions i n which D w i l l be expresseds 

(RoR.v'^f) = Riajb\a£bV£f' {'^^^ ̂ '') = ̂ ^ ^ ^ ^ i ^ ' 

( R ,v2f^ = ^ i j ^ i j ^ ' (v(R),Vf) = V.(R)V.f, 
( R ,v2f) = S^.V-.f, (v(|VR|2),Vf) = V.(|VR|2)V,f. 
^VR®VR,v2f^ = V^RVjRV^jf, <^T,Vf^ = ""^i^i^ • 

From (3.10) we can write down the required derivatives of 0 under 
our assumptions: 

0̂ (̂m) = -iK6^^. 

0j^,(m) = 0 . 

®ijk£h<̂ > = lS(-̂ î̂ jakb̂ £ahb>("'>' 

®ijk£hĝ °'̂  = ^^^-'^^h^3aVh\\agh -^\Aalh\ash " ' ^ ^ i a j b \ b ) l c \ 

->iajb\a£bV--^^''ij'kAg>^™>' 

®ijk£hgf̂ "̂ ^ = J,S(-|v.j,̂ Rĵ b̂Rĝ fT, -IViR.^j^tR^bhc^g^fa 

--I^ij\a*bVgafb ^ TK6i.V^R,^^,Rg,f,)(tn). 

As before we can calculate appropriate sums: 
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0jjj^j^(m) = for some number P (see Proposition 2.2) , 

îijk£̂ ™̂  = 0 (since i t is the symmetric sum of terms of 

the form ̂ i^j^bc^abc ^̂ ^̂  anti-sjraimetrie i n 
3 and k in a super-Einstein space), 

o JCL 
Q..,,.Am) = 40 (3V.RV,R - 20R, . + 16R. ,) + Q6, . for some number Q, 
1JKKX,X, g,^2 1 J i j i j i j 

0ijjkk££("'> = 140V. ( t ) ) . 

The last two sums use Proposition 2.10. Our assumptions imply that 

fii(m) = 0, f....(m) = 0. f i i j j ^ k ^ m ) = 0. 

Thus 

(3.18) (A^(f0) - fS;j(0))(m) = ( f i i j j k k i l i l ^ 1 6 W i i k £ 
o ° +1^(3V.RV.R - 20R. . + 16R,.)f.. y r 1 J i j i j iJ 

+24.8(140V.(R) - 85V,(R))f.)(m). 
9.7: ^ 

To express ^ ^ j k ^ ^ i j k ^ , invariant terms we need the next lemma. 
Lemma 3.9 In normal co-ordinates based at m 

^ i a j b \ a . b ( - ) - ^ - 4 ^ ( - ) = ((RoR.v'tf) + | ( t , v 2 f ) 
9x13x1 axkaxil i / o A 1 / i i \ 

-tl<^R,v2f) +-^(^V(R)Vf^ 

- T2 (v(R),Vf) )(m) . 
Proof We have from Lemma 3.3(ii) that 

3x18x19x^3^1 



53 

The lemma follows from repeated use of the Ricci identity to express 
the permuted covariant derivatives i n terms of the f i r s t , and then 
use of the curvature identities to further simplify. | 
Now 

l ^ ^ i j k A j k / - ^ = -iAfijk£<"^>S<^iajb\ailb>(-> 

= -?̂ V̂ '̂ îjk£(->̂ iajb\a£b(-> 
(3.19) = -f|( <̂R .«'R,v'̂ f̂  + |(̂ R,v2f\> - ̂ ^g,v2f^ 

+ i (v(R) , Vf^ - ̂  <̂ V(R) , 7f^ ) (m) 

by Lemma 3.9. The only term l e f t to calculate is (A^f)(m) and the 
lengthy calculation involved is given in detailed outline i n 
Appendix I I . We quote the result: 

(3.20) (S^f)(m) = r|5(56<^R oR.V^f^ + 24<^R,v2f^ + 12 <̂ R,72f̂  

- f (7R®m, V2f^ + I ̂ V(f) , Vf ̂ + ̂  (vd) , Vf̂ >> (m). 

Combining (3.18), (3.19) and (3.20), we have this formula for D, 
assuming Af = 0 and the space is super-Einstein: 

(3.21) D = j((i^)(-112^R oR,v^f^ -48<^R,v2f^ -24<|^R,v2f^ 

5 <̂ VR(g)VR,v2f̂  + 42^V(R),Vf^ - Y^V(R),Vf^ ) 

where x(n) 
48.8.105n(n+2)(n+4)(n+6) 

We w i l l also require D i n a form involving partial derivatives, 
so using Lemma 3.9 we rewrite (3.21) as 

(3.22) D(m) =X(n)(-112R,^.,R^^,,f,.^,+^t,.f,. - '-^L.f.. 

+ 5V.RV.Rf.. + i ^ V . ( t ) f . - ̂ 7.(R)f.)(m). 
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§3 The use of the Cauchy-Kowalewski theorem 
We now proceed to proving the necessary parts of the 

Propositions 3.6 and 3.7 and a similar proposition for the next 
term. This is by means of a well-known theorem in partial differential 
equation theory, the Cauchy—Kowalewski i n i t i a l value theorem, which 
enables us to choose suitable test harmonic functions. 

N.B. The Einstein summation convention is not assumed to hold 
throughout this section. A l l summations w i l l be written explicity. 

Our f i r s t proposition is easily seen to finish the proofs of 
Propositions 3.7 and 3.8. 
Proposition 3.10 Suppose that for every f harmonic in a nhd of m, 
there exist sets of real numbers T. . (T.. = T..) and U. such that 

i J i J J i 1 

(3.23) I T.._^lf^(m) + I U.JE. (m) = 0, 
i , j = l ^^9x19x3 i = l ^9x^ 

(x^ ... x"̂ ) being normal co-ordinates about m. Then 

T. , = X6.. i , j = 1 n for some real number X and 
i j i j ' ' 

= 0 i = l , . . . , n . 

Proof The Cauchy-Kowalewski theorem asserts that there is a 
solution of the e l l i p t i c equation Af = 0 in a nhd of m such that 
on the hypersurface x^ = 0 both f and 3f take arbitrarily prescribed 

3x1 
values, say 

f = (|)o(0, x2 x^) , 

M- = * i ( 0 , x2 x") . 
9x1 
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We express these functions as power series i n the variables x^, x"*. 

n . n 
<|)o(0, x2, x'̂ ) = 3o + I e.x^ + ^ I 3..xV + ••• . 

i=2 ^ i,j=2 ^ 
n 

(j)l(0, x^, x'̂ ) = Yo + I Y.x^ + ••• 
i=2 

where we assume that ĝ ^ = 3^^. Writing down the f i r s t and second 
partial derivatives of f at m: 

i f (m) = 3j,. 2 < k $ n » 
9xK 

M_(ni) = YOt 
9x1 

= 3... 2 « i , j ,̂ n, 
9x19x J 

-4^/"'^ = 9 " ^ = - I hi-
9x^9x1 i=2 i=2 

The last equation follows from Af(m) = (A f) (m) = 0. 
m 

We can make a l l second derivatives of f at m zero by the choice 

3^j = 0 2 i , j $ n, -r^ = 0 2 k <f n . 

For an f of this kind (3.23) reduces to 
n 
I U. _9f (m) = 0 . 

i = l 9xi 

Then by a further choice of one of (3^^, k = 2 n}U{Yo} to be 1 
and the rest 0 we see that 

Û  = 0 i « i « n . 
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Hence (3.23) reduces to, for any harmonic f, 

(3.24) I T __alf_(m) = 0. 
i , j = l 3x19xJ 

Fix integers p,q, 2 p,q <: n, p q, set a l l the 3's equal to zero 
except for g = 3 = 1 and set Y, = 0 , 2 < k <: n. Using an f pq qp 'k ' * 
of this kind i n (3.24) we find that 

Tp^ = 0 , 2 « p,q n, p q, 

as we assumed T to be symmetric. 

Similarly fixing p, 2 ̂  p ̂  n,and setting a l l the y's equal 
to zero except Yp = 1» and a l l the 3's equal to zero we find that 
for an f of this kind, 

Tjp = 0 , 2 p ̂  n. 

Finally fixing p and setting 3 = 1 and the other 3's and Y'S 
PP 

equal to zero we obtain 

•^11 V = ° ' 2.<p.<n, 

whence T.. = X6... 
i j i j 

We now turn our attention to the fourth term, and try to find 
necessary and sufficient conditions for the f i r s t four non-constant terms 
to vanish. From the previous section we recall that 

(3.25) D(m) = X(n)(-112R. . R̂  . â f̂ 

. ( f t , . - . 5V,RV.R)_l£f, 
I J 1 J gxl3xJ 

+ (^V (R) - ̂ V (R))if^(m) 
^ 3x1 
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for Af = 0 in a super-Einstein space. We see that sufficient 
conditions for 

Mj^(f ,r) = f(m) + O(rlO) 

are Af = 0, M satisfies Ll and L2 (and hence is super-Einstein) and 
that the following identities hold i n orthonormal co-ordinates: 

S. o 
(3.26) 16R.. - 20R.. + 3V.RV.R = N6. . » 

i j i j 1 3 13 * 
o o 

(3.27) 28R - 17R = constant. 

Note that (3.26) is exactly the 2-tensor condition derived from 13. 
Although i t would be sufficient for N to be a function, the tensor 
has the Schur property of order 6, and so N must be a constant for 
n i 6. For n = 6 N is a constant because of (3.27) (using corollary 
2.6). Also the constant i n L2 need only be a function, but the 
super-Einstein condition derived from earlier terms ensures i t is 
a constant. 

The content of the next theorem is that these conditions are 
necessary. 

Theorem 3.11 Necessary and sufficient conditions that for every 
m e n and every f harmonic on a nhd of m 

M^(f,r) = f(m) + O(rlO) for sufficiently small r 

are that M satisfies the f i r s t two Ledger conditions and 

o. o 16R.. - 20R.. + 3V.RV.R = N6. . , 
i J I J 1 J i j 

28R - 17R = C for N,C constants. 
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Proof Sufficiency we have seen. We need to extend the e a r l i e r use 

of the Cauchy-Kowalewski theorem to cope with fourth derivatives, so 

we write 

n i 1 " i i 
<|) (0, x2, x") = 3o + I 3.x I e.-xx-J 
° i=2 ̂  i,j=2 ^ 

" -• • - ^ ^ i j k £ 
X X X X 

n . . n 
•.l(0, x2 xn) = To + I Y , - X ^ + 4 - I f i i x V 

where the Y'S and 3's are assumed symmetric i n every index. 

We f i r s t ensure that we are working with functions whose 1st and 

2nd derivatives at m are zero by choosing a l l 3^'s, Y^'s, P^^j'^ 

Yo to be zero (see proof of Proposition 3.10). Our assumption implies 

that the space i s super-Einstein (Proposition 3.8), so we see from 

(3.17a) that for an f of this kind 

j^V.,,^f(m) = J j i j i j , f ( m ) = ^.,.^f(m) = 0. 

Thus i t i s clear from Lemma 3.3 that 

n 

(3.28) I . 3'̂ f (m) = 0 , 1 <S j ,k < n» 
i= l 9x^3xi9xJ3xk 

Thus we can, assuming that the above choice has been made, write 

down the fourth derivatives of such an f i n terms of 3's and Y'S: 
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2 « i , j j k . J l ^ n , 

^ (m) 
8xVaxj,3xkax^ 

= Y 2 >$: j,k,i!, ^ n , 

3'*f „(m) 
3xl9xl9x'^9x*' 

n 
2 k, £ ><: n (from (3.28) ) , 

9^f (m) 
9xl9xl3xl9x^ i=2 

2 4 I 4 n (from (3.28) ) , 

3'*f (m) 
9xl3xl3xl3xl 

n 
I 3.... 

i.j=2 
(from (3.28) twice). 

The condition that D(m) vanishes reduces, with such an f, to 

n 

t,b,i j.k,£=/^i^j^^^'^ 3xi9xj9xkaJ 
. 3^f )(m) = 0 , 

and this i s equivalent to 

n 

a,b 

For ease of notation we define 

n 
^ijk£ = S ( ^ ^ ^ ^ ^ , ^ i a j b W ( - > ' 

and the condition can be written as 

I C , 9^f (m) = 0 
i,j,k,Jl=l ^ 9xi9xJ9xk3xJi 

or 

(3.29) C n i i _ _ 9 ! ! f (m) + 4 I C a'̂ f (m) 
3xl3xl3xl3xl k=2 "^9x19x19x19xk 

n n 
+ 6 I C..,. 9'̂ f (m) + 4 I C (m) 

k,£=2 '^*9xl9xl9xk3x^ j,k,£=2 ^'^^9xl9xj9xk9x^ 

i,j,k,il=2 ^ ^ j^^9xi9xJ9i9x^^ ^ 
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As i n the l a s t proposition we make choices of the Y'S and 3's 

and use (3.29) to gain information about the C's. We make the 

convention that '3 = 1 , res t zero' means '3 and the 3's pqrs pqrs 
obtained by permuting p,q,r,s are a l l equal to 1, the other 3's are 

F i r s t set Y- -1, = 0 , 2 « i , j , k ̂  n. (3.29) becomes 

Choose 3 = 1 , for d i s t i n c t p,q,r,s, re s t zero. Then •^pqrs ' t->-i> > > 

(3.30) C = 0« 2 4 p,q,r,s^n, p,q,r,s d i s t i n c t , pqrs 

Choose 3 = 1 r s, res t zero. Then PPrs 

(3-31) S i r s = S p r s ' 2 .< p,r,s < n r ^ s . 

Choose 3 = 1> r e s t zero. Then PPPP 

(3-32) S n i - ^^llpp " S p P P = 0'2.<p.<n. 

Now we set 3̂ ^̂ ^̂ ^ = 0, 2 ̂  i,j,k,ii,<: n. (3.29) becomes 

Choose Ypqj. = 1» for d i s t i n c t p,q,r, rest zero. Then 

(3.33) Cjpq^ = 0, 2 4 p,q,r < n, p,q,r d i s t i n c t . 

Choose Y = 1 for d i s t i n c t p,r, rest zero. Then ppr 

(3.34) C j i i r = 3Cipp^, 2 . < p,r«n p ?f r . 

Choose Y = 1» r e s t zero. Then PPP 

<3-35) C^^^p = C^ppp, 2.<p.<n. 
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I t should also be remembered that the choice of x l = 0 

as the hypersurface for i n i t i a l conditions was arbitrary and so 

there are similar equations obtained by using x = 0, 2 ̂  k < n. 

We wish to show that the space s a t i s f i e s L2 i . e . that 

^ijkii = « s ( ^ i j W » 1 « i ,j ,k,£ < n. 

This i s equivalent to 

(3.36) 

^ijkA = 0. 

^ i i k . = °» 

C..,. = 8H, i i k k ' 

i n k 

C 
n i l 

24H, 

i,j,k,J!, distinct, 

i,k,i!, d i s t i n c t , 

i g« k, 

i y k, 

}l4 i,j,k,il«n. 

Proposition 2.2 involved the calculation of J! that 

proposition we see that, i n a super-Einstein space. 

n 
(3.37) ^, 1 i = l ik£ for some constant M, 

Let us take equation (3.32) and sum from p = 2 to n to obtain 

n 
y c = 0, 

n n 
ar^ so <n . 4 ) C „ „ - iU^^^^ * Ic^^^ 

Using (3.37) we see that 

= 0, 

n 

But, as remarked e a r l i e r , we could have obtained a similar equation 
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i f we had chosen x""" = 0 , 2 ^ i < n,as our i n i t i a l hypersurface. 

We conclude that 

(3.38) C.... = H', 1 ̂  i ̂  n. 

Reconsidering (3.32) i n the li g h t of this we see that 

^ l l i i = 3H'. 2 « i ̂  n, 

and again by the arbitrariness of choice of index 1 we conclude 

that 

(3.39) C..^j^ = Ĥ', i ̂  k. 

Taking now equation (3.34) 

S i l k = 30..^^. • 2.<i,k.<n, i ^ k . 

and equation (3.35) 

^^lllk" 3Cj^kik» 

we find that, summing, 

and hence that 

(-•^^^Sllk = \ ! i ' i i l k . 

However from (3.37), the R.H.S = 0 as k •?« 1, and we obtain by the 

arbitrary choice of index 1 

(3.40) C...j^ = 0, i ̂  k. 
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Taking equation (3.31) 

^ l l k i l = 2.<i,k,£.<n, k O , 

and summing over i , 

n 

and thus 

n 

J^^iikA-

Again by (3,37) the R.H.S = 0, as k 4 ^, and as the choice of 

index 1 was arbitrary 

(3.41) ^iik£ ° ijk,*- d i s t i n c t . 

F i n a l l y from (3.30) and (3.33) 

(3.42) ^i^^l " ° i , j , k , J l d i s t i n c t . 

We have thus s a t i s f i e d each of (3.36) i n (3.38) - (3.42) and the 

manifold s a t i s f i e s Ll, 

This removes the fourth derivative term from (3.25), and we 

can then conclude from Proposition 3.10 that 

16R.. - 20R.. + 3V.RV.R = N6, . 

Si. o 
28R - 17R = constant. 

I t i s interesting to consider the relationship between the Ledger 

conditions and the conditions on the curvature derived from successive 

terms of the mean value power ser i e s i n the manner above. The f i r s t 

i n either case i s the same namely that the manifold be Einstein. The 

second mean value conditions are obtained from Ll by summing over one 
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and two pairs of indices. The third mean value conditions are 

L2 plus conditions obtained from i.3 by summing over two and three 

pairs of indices. An obvious conjecture i s that the next set of 

mean-value conditions w i l l include L3 and the conditions derived 

from L4 by summing over three and four indices, although v e r i f i c a t i o n 

of this by direct calculation seems out of the question. We know that 

both sets of i n f i n i t e conditions are equivalent to the manifold being 

harmonic and i t i s of interest to note that the mean-value conditions 

seem to occur more slowly inasmuch as one has to go further along the 

sequence to find the corresponding Ledger condition. 

We also note the p o s s i b i l i t y of gaining necessary conditions 

on M by exploiting Proposition 3.4 and i t s corollary by use of the 

Cauchy-Kowalewski theorem. However inspection of our formulae for 

~ k 

Am f (m) for k = 2,3,4 shows that the conditions found are exactly 

those gained above. 
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Chapter 4 C l a s s i c a l Compact Simple L i e Groups and the Ledger Conditions 

This chapter contains an investigation of the extent to which 

the c l a s s i c a l compact simple Lie groups can s a t i s f y the f i r s t three 

Ledger conditions for harmonicity. I t i s well-known that a group of 

this kind, when endowed with abi-invariant metric becomes a globally 

symmetric space ([H] Ch. IV Section 6) . By a theorem of Ledger [L] 

a symmetric space i s harmonic i f and only i f i t i s a rank one 

symmetric space. Thus the c l a s s i c a l compact simple L i e group of rank 

one must s a t i s f y a l l the Ledger conditions and i t i s an interesting 

question to ask whether any other c l a s s i c a l compact simple L i e group 

can s a t i s f y L2 or 1.3 (they are a l l E i n s t e i n ) . We answer the question 

negatively for almost a l l of these groups by f i r s t finding necessary 

conditions for them to s a t i s f y L2 and L3 and showing that these cannot 

be s a t i s f i e d . The main referehce for this chapter i s Pontryagin [PO]. 

§1 C l a s s i c a l compact simple L i e groups, their Lie algebras and root 

sys tems 

A compact simple Lie group gives r i s e to a compact simple Lie 

algebra over (R and the c l a s s i f i c a t i o n of the former i s carried out 

v i a the c l a s s i f i c a t i o n of the l a t t e r . This i s achieved by means of 

the root systems. We now proceed to give a brief description of the 

root system of a compact semi-simple L i e algebra.(For f u l l details 

see [PO], Section 62.) 

Let R be a L i e algebra over K., Then we can for each s e R 

define an endomorphism of R, p , by 
s 

p (x) = [ s , x ] , X e R. 
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R i s then compact semi-simple i f the Killing-Cartan form ^ , ̂  given 

by 

= t r p ^ p ^ , s,t G R> 

i s negative definite. For the r e s t of this section we suppose R 

to be a compact semi-simple L i e algebra. 

For a e R l e t S be the subalgebra of elements commuting with 

a. The dimension of S varies with a; i f i t i s a minimum for R then 
Si • 

a i s , by definition, a regular element and S i s a regular (or Cartan) 
Si 

subalgebra. The dimension of S i s the rank of R. A non-trivial fact 

i s that a regular subalgebra i s commutative ([PO], p.460). Because 

the Killing-Cartan form i s invariant under the adjoint group i . e . 

^[u,v],w^ + ^v,[u,w]^ = 0 , u,v,w e R , 

each of the commutative set of endomorphisms {p : s e S } i s 
S Si 

skew-symmetric with respect to the Killing-Cartan form. Hence they 

have purely imaginary eigenvalues and conmion eigenvectors belonging 

to the complexification of R, R"̂ . The eigenvalues are pure imaginary 

linear forms on S i . e . we can write, i f a i s the eigenvalue 

corresponding to the eigenvector r ^ , 

P^(r^) = a ( s ) r ^ , s e . 

We have the natural inner product ( , ) on S given by the r e s t r i c t i o n 
Si 

of the negative of the Killing-Cartan form. Abusing our notation we 

define the vector a e S , the rootvector of r , by 
3i a 

(4.1) Pj^J = i ( a , s ) r 
a Ob Ub 

The set of a's obtained i n this way together with their pairwise inner 
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products form the root system of R. 

The complexification of R resolves into the d i r e c t simi of, the 

complexification of S^ and R^ , R^ where R i s the eigenspace 
a ai 

corresponding to the rootvector a.. I t can be shown that each R 
a. 

i s of complex dimension 1, and i f j a i s a multiple of a and i s also 

a rootvector then j = ±1, The eigenspace corresponding to -a i s 

R^ ([PO] p.463). 

A res u l t by no means straightforward to prove i s that i f an 

alternative regular subalgebra i s chosen, the root system obtained 

i s isometric to the f i r s t ([PO] Section 64). F i n a l l y the c l a s s i f i c a t i o n 

theory depends on the fact that a compact semi-simple Lie algebra i s 

determined by i t s root system; a long constructive proof i s required 

([PO] Section 63). 

We give now the l i s t of c l a s s i c a l compact simple L i e groups 

i n i t s usual form: 

B 
r 

Group of unitary matrices of order r+1 with determinant 1, r > 1, 

Group of orthogonal matrices of order 2r+l with determinant 1, r » 2, 

Group of sjnnplectic matrices of order 2r, r 3 , 

Group of orthogonal matrices of order 2r with determinant 1, r 4. 

These groups are i n fact defined for a l l values of r > 1, but 

Ai = Bi = Ci, B2 = C2, A3 s P3,P2 s Ai xAj andl?i = Sl. 

The corresponding L i e algebras are: 

A.̂ : Skew-Hermitian matrices of order r+1 with trace zero, r 1, 

B^: Real skew-symmetric matrices of order 2r+l, r :t. 2, 

C : Skew-Hermitian matrices of order 2r such that M e C i f JM = MJ r , V r / 0 I 

for J = I , r ^ 3 , 

D^: Real skew-symmetric matrices of order 2r, r ^ 4 . 
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The subscript gives the rank of each L i e algebra. The Killing-Cartan 

forms are found to be: 

A^: (i,B^ = 2 ( r + l ) t r ( A B ) , 

B^: ^A,B) = ( 2 r - l ) t r ( A B ) , 

C^: (A,B> = 2 ( r + l ) t r ( A B ) , 

D^: ^A,^ = 2 ( r - l ) t r ( A B ) . 

A c l a s s i c a l compact simple L i e group i s given a metric obtained 

by translating a negative multiple of the Killing-Cartan form of the 

associated L i e algebra by the group action. I n fact, i n each case, 

we choose the metric such that a matrix of the form 

belonging to the L i e algebra has unit length. 

Next we give the root systems of these algebras with the metrics 

j u s t mentioned. Let E be an s-dimensional inner product space with 

orthonormal basis E^, E and l e t ^(R) denote the root system of R. 

A^: A regular subalgebra can be considered to be the r-dimensional 

subspace of E''̂ *'̂  given by vectors s'''Ê  such that s''̂  + ... + s^^'^ = 0. 

Then 

l(A^) = {Ej - E^^, j ^ k, j,k = 1 r+1}. 

(E. can be taken to be the diagonal matrix with /2i i n ( j , j ) 
J 

place, zeroes elsewhere.). 
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B^: A regular subalgebra can be considered to be E'̂  and 

l(B^) = {±Ej, j = 1, .. ., r; ±Ej ± Ê ^ j < k, j ,k = 1, ..., r } . 

( E , can be taken to be the matrix with 1 i n (2j -1, 2j) place and 

-1 i n ( 2 j , 2 j - l ) place, zeroes elsewhere.) 

C^: A regular subalgebra can be considered to be E'^ and 

l(C^) = {±2Ey j = 1 r; ±E. ± j < k, j,k = 1, .... r } 

(E. can be taken to be the matrix with i i n (2j - 1, 2j - 1) place 
J 

and - i i n the(2j,2j) place, zeroes elsewhere.) 

D̂ : A regular subalgebra can be considered to be E^ and 

I(D^) = {±E. ± E^, j < k, j,k = 1 r } . 

(Ej can be taken as for B^.) 

The proof of this i s given i n [PO] p.495ff. The dimensions of 

the L i e algebras can be found by adding the rank to the number of 

root vectors. Thus 

dim (A^) = r2 + 2r, dim (B^) = 2r2 + r, dim (C^) = 2r2 + r , 

dim (D^) = 2r2 - r . 

§2 A pa r t i c u l a r co-ordinate system 

We wish to choose an orthonormal basis of a compact semi-simple 

L i e algebra which w i l l make our calculations easier. This basis w i l l 

then give r i s e , i n the usual way, to normal co-ordinates on a 

neighbourhood of the identity of the corresponding c l a s s i c a l compact 

simple L i e group. 

Suppose we have chosen a regular subalgebra S of our L i e 

algebra R of rank r. We take an orthonormal basis of S, e^, e^.say. 
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Let us consider an eigenvector r o f p , s a ; S , a e ^(R), and 
ot s 

writing r ^ = x^ + i y ^ we have from (4.1) 

(4.2) [s,x^] = - ( a , s ) y ^ , 

(4.3) [s,y^] = (oi,s)y^. 

Since the compiexification of R i s the direct sum of the complexification 

of S and {R^, a e 5|(R)}, and r _ ^ = r ^ , we have that {e^, e^, 

^d'^a' ^ span R where i s a subset of Z obtained by choosing 

j u s t one of each ±a. (Here we use the fact that each R^ has complex 

dimension 1.) We note that the choice of r ^ i s not unique; any scalar 

multiple i s also an eigenvector. 

Proposition 4.1 An orthonormal (with respect to a negative multiple 

of the Killing-Cartan form) basis of R of the form {e^, "'^^> 

X ,y , a e E'} can be chosen. 

Proof The proof i s based on the fact that the Killing-Cartan form 

i s adjoint invariant ([PO] p.452) i . e , denoting the given metric by ( , ) 

(4.4) ([u,v],w) + (v, [u,w]) = 0 , 

and so would be true for any other adjoint invariant metric on R. 

( i ) For any choice of r = x + i y , (x ,x ) = (y ,y ) , since • a a a a a a a 
for s e S 

-(a,s)(y^,y^) = ( [ s . x j , y ^ ) (4.2) 

= - ( x ^ . [ s , y j ) (4.4) 

= -(a,s)(x^,x^) (4.3), 

and we can choose s - a 0. Thus by choosing r ' = r = r 
a QL g 

X y a •'a 

> ) 
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we can ensure that the r e a l and imaginary parts have unit length. 

( i i ) (x^,y^) = 0, since for s 6 S 

•(oi,s)(y^,x^) = ( [ s , x j , x ^ ) (4'.2) 

= 0 (4.4) 

( i i i ) (x^,Xg) = (y^.yg) = 0, a 9« 3, a,3 e-V, since for s e S 

(a,s)(x^,Xg) = ([s,y^],Xg) (4.3) 

= -(y^,[s,Xg]) (4.4) 

= (6,s)(y^,yg) (4.2). 

But a cannot be a multiple of 3 so (x ,x-) = (y ,yo) = 0. 
d p Cx p 

(iv) (x„,y_) = 0, a 3,a,3 6 Z', since for s e S 

(a,s)(x^,yp) = ( [ s , y j , y p ) (4.3) 

= -(y„,[s,yg]) (4.4) 

= -(3,s)(y^,Xg) (4.3). 

Thus, as i n ( i i i ) (x^,yQ) = 0. 
a p 

(v) F i n a l l y (x^^^.s') = (y^j^.s') = 0, s' e S, since for s e S 

(a,s)(x^,s') = ( [ s , y j , s ' ) (4.3) 

= 0 (4.4). 

Similarly for y^. 

( i ) - (v) demonstrate that an orthonormal basis can be chosen of the 

required form. I 

We denote the vectors of 2' by a^, . .., a^^. The corresponding 

basis of R { e i , ...e^, x^,,y^ , .. ,x ,y^} w i l l be renamed 
r «k '̂ k 
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Sj-j e„^> 6(3(1 ••• 0̂1, '̂ o,'-̂ ' ^""^ constants of 

s t r u c t u r e take a p a r t i c u l a r l y easy form with r e s p e c t to t h i s 

basis v i z . 

(4.5) 

C~. = 0, 
im 

^ i a = - < « p ' V \ a " P P 
\ where l < i , m « r , l « p < k , 

14 14 r+2k. 
p p ; 

Note that i n general, when referred to an orthonormal basis the 

constants of structure s a t i s f y 

(4.6) i j kj ki 

due to (4.4) and the anti-symmetry i n the lower indices, 

§3 A necessary condition for L2 and the main theorem 

We now make some observations about the curvature of a compact 

L i e group G equipped with a bi-invariant metric. We use the convention 

that the curvature tensor of G i s given by 

R ( X i Y ) Z = [[X,Y],Z], X,Y,Z «. T G. ' e 

(This i s i n fact equivalent to considering G to be the symmetric 

space GxG/{(g,g) |g e G}. See e.g. [CGW] Section 4. We do this to 

avoid awkward factors of i i n our calculations.) I n a co-ordinate 

system this becomes 

(4.7) jkii, jp kJl 

Proposition 4.2 Suppose a compact Lie group G equipped with a 

bi-invariant metric i s Ei n s t e i n with p = Kg, then i t i s super-

E i n s t e i n with R = K^g. 
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Proof We choose an orthonormal basis of the Lie algebra of G 

(not necessarily that of §2). Then i n these co-ordinates 

(4.8) p.j(e) = K6.j. 

As G i s globally symmetric we need only prove that i n these 

co-ordinates 

R..(e) -

From (4.7) we h'g,ve 

Thus frcm (4.8) we deduce 

(4.9) C^. C^ . = K6.. 
i p k j i j 

On the other hand 

R. , R, , (e) = C^ C^ C^ C\ (4.7) labc jabc^ ap be aq be ^ ^ 

= ĉ  cj cP, c\ 
ap aq be be 

= C^ C^ C^ c'̂  (4.6) ap aq pc pq 

= ^"'ap^'ap (^-9) 

= KC^pCP^. (4.6) 

= K26. . (4.9) 

and the proposition i s proved. (We can use (4.6) since the group 

metric i s bi-invariant and thus i s adjoint invariant on the L i e 

algebra). 1 
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Proposition 4.3 Suppose a compact L i e group of dimension n 

equipped with a bi-invariant metric s a t i s f i e s Ll and L2 with 

constants K and H, Then 

(4.10) K2 = 2(n+2)H. 
5 

Proof From Proposition 2.2 we see that i f an Einstein space 

s a t i s f i e s L2 then 

R|2 = 2n((n+2)H - K^). 
3 

However from Proposition 4.2 

|R|2 = K2n 

and the proposition follows. ^ I — 

We return now to the cases of interest, the c l a s s i c a l compact 

simple L i e groups, and the co-ordinate system of §2. I f i n this 

co-ordinate system we denote ^^aib^jalb^®) then a group 

cannot s a t i s f y LZ unless (4.10) holds, where K can be calculated 

from R,„,^(e) for example. We now establish our main theorem by 1 ai a 
calculating K and H from the root systems and seeing i f they s a t i s f y 

(4.10). I t i s quickly seen from (4.5) that i n these co-ordinates 

^ a l b = A a ^ ' l b = ( V ^ l > ^ i f = V ' 

= 0 otherwise. 

Hence 

(4.11) K = ^ a l a = 

^'-''^ « = ^ a l b ^ a l b = 2 j ^ ( a , . e i ) \ 
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Theorem 4.4 Of the c l a s s i c a l compact simple L i e groups only 

Aj, A2 and Vl^ can s a t i s f y Ledger's 2nd condition for harmonicity. 

Proof We calculate K and H i n each case from the root systems 

given i n §1 using (4.11) and (4.12) and show that only the cases 

cited above can s a t i s f y (4.10). 

A^. We choose an orthonomal basis (e^,..., e^) of S such that 

ei = E l - E2 . We take E' = (E. - E., i < j , i , j = 1... r+1). Thus 

K = 2 j; (a,ei)2 = 2(r+l) , H = 2 ^ (a.ei)'^ = r+7. 
aeE' 2eE' 

Substituting these with n = r ^ + 2r into (4.10) we find that the 

condition i s s a t i s f i e d i f 

4 ( r + l ) 2 = ^ ( r Z + 2r + 2)(r + 7) 

or 0 = ( r - 1) (r - 2) (r + 2). 

Thus only Â , A2 can s a t i s f y L2, 

B . We take the orthonormal basis of S to be Ei E and 
r ' ^ r 
E' = (E., i = 1 r, E, ± E , j < k j,k = l , . . . , r ) . Thus 

1 J K 

K = 2 I ( a , E i ) 2 = 2 ( 2 r - l ) , H = 2 ^ ( a , E i ) ^ = 2(2r-l). 
aeE' aeE' 

Together with dim (B^) = 2T^ + r we find that (4.10) i s s a t i s f i e d i f 

4(2r - 1)2 = •|(2r - l ) ( 2 r 2 + r + 2) 

or 0 = (2r - 1) (2r - 7 ) ( r - 1). 

Thus no 8^, r 2 can s a t i s f y L2. (Note that = Â  can.) 

C^. We take the orthonormal basis of S given by E^ E^ and 

E' = (2E_j^, i = l , . . . , r , E^ ± Ej i < j , = l , . . . , r ) . Hence 

K = 2 l ( a , E i ) 2 = 4 ( r + l ) . H = 2 ( a . E j ) ^ = 4(r+7). 
aeE' aeE' 
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Together with dim = 2v^ + r we find that (4.10) i s s a t i s f i e d 

i f 

16(r + 1)2 = |(2r2 + r + 2) (r + 7) 

or 0 = ( r - l ) ( 2 r - 1)(r + 4). 

Thus no C^, r > 3 can s a t i s f y L2. (Note that = can.) 

D̂.. Once more we take the orthonormal basis of S given by Ei,...,.,E^ 

and E' = (E^ ± E^ , i < j , i , j = 1,. .. ,r.) . We find 

K = 2 I (a,Ei)2 = 4 ( r - l ) , H = 2 I ( a , E i ) ^ = 4(r - 1), 

Together with dim = 2r2 - r we find that (4.10) i s s a t i s f i e d i f 

16(r - 1)2 = |(2r2 - r + 2) (r - 1) 

or 0 = (r - l ) ( 2 r - 3) (r - 4). 

Thus only Pij can s a t i s f y L2 and the theorem i s proved. I 

Corollary 4.5 There e x i s t super-Einstein manifolds which do not 

s a t i s f y L2. 

Proof Clear from Theorem 4.4 as a l l the c l a s s i c a l compact simple 

Li e groups are super-Einstein (Proposition 4.2). | 

As to whether A2 and do s a t i s f y L2, see §5. being 

harmonic s a t i s f i e s a l l the Ledger conditions.. 

§4 The third condition 

We can follow a similar procedure for i.3. I t has been remarked 

before that i n using this condition one should be aware that i t has 

been derived asstmiing the preceding Ledger conditions. However, i n 

the case of a symmetric space, they can be considered as being 

independent, since the derivative of any condition i s zero and hence 
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cannot be used to simplify l a t e r conditions. 

For a symmetric space L3 becomes 

S(R. .,R,,„ R. ) = LS(6..6, „6, ) i n orthonormal co-ordinates, lajb kbAc hcma i j kA hm 

Summing over two pairs of indices, and asstiming the space i s super-

Ei n s t e i n with p = Kg,R = Sgjwe see that a necessary condition 

for 1.3 i s 

(4:J.13) ^R^j - R^j + (K3+ 9KS)Sij = (n^ + 6n + 8)L ^1!^ 

where use has been made of Proposition 2 . ^ ( i i i ) . 

We now prove a similar proposition to Proposition 4.2/ 

Proposition 4.6 Suppose a compact L i e group equipped with a 

bi-invariant metric i s E i n s t e i n with = Kg, then the 2-tensors 

R, 1 s a t i s f y R = K ^ and R = K^g. 
4 . 

Proof Working i n orthonormal co-ordinates: 

o 
R, .(e) = R. i,R. . jR , j ( e ) i j lakb jckd acbd ' 

al cn cm kd kb bd 

= C \ CJ C"^^^C^,^C^ , (4.6) la cn cm kd kb nd 

= ^iilcn^jckd^£knd<-> <̂ -7> 

= i^icM^jckd^ilnkd(^> 2.4(i» 
o , o i.e . R,. = iR... 
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Further o ^ R.^ P P ^ ^e) (4.7) 
13 ikab jkcd abed ' v-'/ 

= cV„c^ x \ c " , 

kil ab km cd bn cd 

^ k!p ab^ km̂  bn^ cd^ cd 

= ^ ^ V V V \ m (4.6), (4.9) 
= KC^^„cj, C^ ^C""^ kil km ab .ab 

Proposition 4.7 Suppose a compact L i e group of dimension n equipped 

with a bi-invariant metric s a t i s f i e s Ll and L3 with constants K 

and L. Then 

(4.14) 35K3 = 4(n2 + 6n + 8)L, 

Proof Combine Proposition 4.6 with equation (4.13), using 

Proposition 4.2 to assert that the group i s super-Einstein and 

S = K2. 

I f we are given a compact simple group and the co-ordinate 

system of §2 we can set L = R, R . , R, , (e) then L3 cannot 
lalb i b i c i c i a 

be s a t i s f i e d unless (4.14) holds. Using (4.5) we see that 

L = 2 $; (a,ei)6. 

Theorem 4.8 The only c l a s s i c a l compact simple Lie group which can 

s a t i s f y L3 i s Â . 

Proof A l l that i s required i s a calculation of K and L and to see 

whether they s a t i s f y (4.14). 



79 

A . K = 2(r + 1) , L = r + 31 , n = r2 + 2r , 
^ 2 

Hence (4.14) i s s a t i s f i e d i f 

35.8(r + 1)3 = 2((r2 + 2rf + 6(r2 + 2r) + 8) ( r + 31) 

or 0 = (r - l ) ( r ' ^ + 36r3 + 30r2 - 68r - 108), 

and i t i s eas i l y v e r i f i e d that there are no positive integral 

solutions apart from r = 1. 

B^. K = 2(2r - 1) , L = 2(2r - 1) , n = 2r2 + r. 

Hence (4.14) i s s a t i s f i e d i f 

3 5 . 8 ( 2 r - l ) 3 = 8(2r - l)(gr2+ r ) 2 + 6(2r2 + r) + 8) 

or 0 = (2r - l ) ( r - l ) ( 4 r 3 + 8r2 - 119r + 27), 

and there are no positive integral solutions apart from r = 1. 

C^. K = 4(r + 1) , L = 4(r + 31) , n = 2r2 + r . 

Hence (4.14) i s s a t i s f i e d i f 

35.64(r + 1)3 = 16(er2 + r) 2 + 6(2r2 + r) + 8) (r + 31) 

or 0 = (r - l)(4r't + 132r3 + I29r2 + 118r. - 108), 

and there are no positive integral solutions apart from r = 1. 

D̂ . K = 4(r - 1) , L = 4(r - 1 ) , n = 2r2 - r . 

Hence (4.14) i s s a t i s f i e d i f 

35.64(r - 1)3 = 16(r - l ) ( ( 2 r - r)2 + 6(2r2 - r) + 81) 

or 0 = (r - l)(4r'* - 4r3 - 127r2 + 274r - 132), 

and there are no positive integral solutions apart from r = 1. I 
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§5 Postscript 

The contents of the previous sections have, at the time of 

writing, been overtaken by events. An improved method of proving 

Theorems 4.4 and 4.8 has been found which, as well as giving necessary 

and'sufficient conditions for a compact simple L i e group to s a t i s f y 

any of Ledger's conditions, i s e a s i l y generalised to the case of 

sjmmetric spaces. For a complete exposition of this method and . 

the results obtained, the reader i s referred to [CGW], which i s 

s t i l l i n preparation. Below we give a brief description of this 

approach together with some of the r e s u l t s . 

Let G be a compact semi-simple L i e group and g i t s L i e algebra, 

as usual. Let S be a regular subalgebra and x e S. Suppose we have 

a co-ordinate system as i n §2 and x = x̂ '̂ ê . Then 

p(x,x) = p^jX^x-' 

= cV nj, „xV k r k r 
= 2 I (a,e.)(a,e.)xV, 

= 2 I (a,x)2. 

using (4.5), 

Thus using the E i n s t e i n condition we have 

(4.15) 

L2 can be written as 

2 I (a,x)2 ^ K(x,x)2, X e S, 

(4.16) ^iajb\a£b-'-'-''-' = 

Again, using (4.5) we find that 

(4.17) îajb\a£b-'-'-''̂ ' = 'L/"'"^'' 
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Combining (4.15), (4.16) and (4.17) we see that a necessary condition 

for the group to s a t i s f y L2 i s that 

(4.18) I (a,x)'+= A( ^ ( a , x ) 2 ) 2 ^ A constant, x e S. 
aeE' a e E ' 

On the other hand given that (4.18) holds for every x belonging 

to a regular subalgebra then certainly (4.16) holds for a l l regular 

elements of g. However the regular elements are dense i n g (see [H] 

p. 297 where i t i s shown that the set of non-regular elemeflts has 

dimension dimg -^3) and thus extending by continuity we see that M 

s a t i s f i e s L2. 

I f we revert to describing roots as 1-forms on S, and 

ŵ ,..., ŵ  are the positive roots then a L i e group s a t i s f i e s L2 

i f f 

^ w.* = A( ^ w.2)2^ A constant, 
i = l i = l 

where by w we mean the symmetrised k-fold tensor product of w with 

i t s e l f . The extension to Lk i s obvious and the necessary and suffi c i e n t 

condition i s that 

I 2k ^ k 
I i^.) = A. ( 5] W.2) ^ A, constant. 

i = l ^ ^ 1=1 ^ ^ 

I t i s a straightforward computation to check Theorems 4.4 and 4.8 

and also to show that A2 and do s a t i s f y L2. One can also show 

that no c l a s s i c a l compact simple L i e group can s a t i s f y i k , k ^ 3j£i|)ojt -feTn. Aj. 

When applying this method to the exceptional L i e groups an 

important fact emerges. A l l of these groups s a t i s f y L2, but Eg i s 

the f i r s t known example of a manifold which s a t i s f i e s L I , L2, and 

L3 but which i s not harmonic. Thus the f i r s t three Ledger conditions 

do not characterise harmonicity, but they s t i l l might imply local 

symmetry and so unfortunately the solution to the fundamental 

conjecture seems no nearer. 
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Appendix I A,C and 9 i n Fermi Co-ordinates 

Suppose we are given a q-dimensional submanifold P of M and 

l e t p e P. Then given a co-ordinate system i n a co-ordinate 

neighbourhood W of p i n P, ( y j , ...» y ^ ) , and a set of orthonormal 

vector f i e l d s on W perpendicular to P, (Uq+ĵ » ••• we can 

define Fermi co-ordinates (x^, ...,x^) on a small enough neighbourhood 

of p i n M as follows: 

n 
X (exp.( X t.U (n))) = y ( n ) , a = 1, ...,q, 
^ j=q+l J J ^ 

n 
x.(exp.( I t.U,(n))) = t. , i = q+1 n, 
^ " j=q+l J J 

Informally: to find the Fermi co-ordinates of a point m close to P, 

follow the shortest geodesic y from m to P and l e t n be the point 

where i t intersects P. The f i r s t q Fermi co-ordinates of m are those 

of fi i n the co-ordinates (yi y^) and the l a s t n-q are those 

of the negative of the tangent vector of y at n referred to the 

basis U ,(n) U (fi) . 
q+1 n 

Normal co-ordinates are the special case of when P i s a single point. 

We concentrate on a geodesic y perpendicular to P emanating from 
n 

p e P. I t i s easy to see that the vector f i e l d s s )^ c 8 and 
? i i i . . ^^^"^ 
L ^ _L. >c , d constant are Jacobi vector f i e l d s along y, the former 

i = l 3x^ 

for the same reason as the normal co-ordinate case and the l a t t e r 

because i t i s e a s i l y seen to give r i s e to a variation i n geodesies. 

(Indeed, i f we choose p = Y(0), then y has co-ordinates (0,...,0, 

se^*''", se'^) for constant e's, and ( s , t ) -> (td^ td^i 

se^*''", se'^) i s the required variation.) 
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As i n the normal co-ordinate case we extend 3 (p), ... 9 (p), 
3p Sy^ 

U^^j^(p) ^n^^^ along y by p a r a l l e l translation and denote these 

vector f i e l d s by E i ( s ) , E^(s) . Then we can define an n x n matrix 

A along Y by 

A, = A.,E. , i = 1, q , 
9x1 J 

s_3^ = A..E., i = q+1 n. 
9 x i J 

( I . l ) 

Since the vector f i e l d s on the LHS are Jacobi along YJ A s a t i s f i e s 

the same d i f f e r e n t i a l equation as i n the normal co-ordinate case v i z . 

(1.2) A" + RA = 0, 

but with different i n i t i a l conditions. Before writing these down we 

establish the convention of exhibiting nx n matrices as blocks of 

qxq, (n-q) X q, qx(n-q), (n-q) x (n-q) submatrices with the q x q 

submatrix i n the top l e f t corner. 

I t i s clear from ( I . l ) that 

(1.3) A(0) = 

To find A'(0) we note that 

V.( 9.)(0) = .A:.(0)E ( 0 ) , i = 1, q, 

U.(0) = J . (0) = V . ( s _ 9 ) ( 0 ) = A'.(0)E (0), 
^ 9xi ^ 9xi 

i = q+1, ... , n . 

q n 
Thus, i f V.( 9 )(0) = I M J , . (0) + I N U ( 0 ) , 

^ j = l J 9x3 j=q+l ^ 

i = 1, •» q, 
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(1.4) A' (0) M 0 

N I 

By taking inner products of ( I . l ) we see that i n these 

co-ordinates the metric tensor has the form 

g,. = (A^A).. , 

g.. = s(A^A).., 

g.. =s2(A^^,.. 

On taking determinants we see that 

1 « i , j < q . 

I 4 i < q , q + l « j ^ n , 

q+1 i , j « n . 

(1.5) 0 = s^'^^detA, P 

where 0 = /det g . 
P 

We wish to calculate the f i r s t few terms i n the power series 

expansion of 0^ and so, as i n Chapter 1, we consider the matrix 

C = sA'A"^ along y. 

Proposition 1.1 The matrix C = sA'A"^ exists for s small enough, 

and i s independent of the matrix N occurring i n (1.4).. 

Proof For small s we have, using (1.3) and (1.4) 

A(s) = / l + sM 0 \ + 0(s 2 ) , 

sN s i 

so A i s invertible for small s > 0, but not at s = 0. However 

lim sA~̂  exists since 
s ->-0 

detA(s.) = s""^ + 0(s""'l'"^, 

and the cof actor of any element of A i s of the form K s"̂  ^ + 0(s'^ ̂ ) 
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Thus sA~^ i s an analytic function of s, and C exists i n some nhd of 

0 and i s analytic. 

As i n the normal co-ordinate case C s a t i s f i e s the d i f f e r e n t i a l 

equation 

sC = -S2R - C2 + C 

and i s determined ( i n the analytic case) by the values of C(0) and 

C'(0). Hence i f we show that C(0) and C'(0) are independent of N, 

the proposition i s proved. 

I n order to find C(0) and C'(0) we calculate the f i r s t two 

terms of the power series expansion of sA"^. Suppose 

(1.6) sA-1 = /PQ QO\ + S / P i Q A + s2/p2 +0(s3). 

,So To/ \ S i T i / \S2 T2/ 

We have that A" = -RA along y so writing 

R(0) = / R I R2^ 

R̂3 R̂ y 

T 

(the symmetry of R implies that R2 = R3 and R i , R t j are S3mmietric), 

we have that 

A"(0) = - / R I R2\ / I 0\ = /-Ri 0̂  

\R3 R4/ \ 0 0 ) V-R3 0̂  

Thus 

i A ( s ) = - / l O \ + / M O\ + i - / - R i 0\ + 0 ( s 2 ) . 
s s I 2 

Vo 0/ I N I / V-Rq 0 
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Multiplying (1.6) by (1.7) we find that 

I 0\ = J L / P Q O\ + /PoM+QgN+Pi Qo' 
s 

0 l / \So 0 I S Q M + T O N + S I To 

+ s / -PQRI - Q0R3 + PiM + QiN + P2 Q i \ + 0(s2) . 
2 2 

-SQRI - T0R3 + SiM + TjN + S2 T i 

From the f i r s t term we deduce that 

PQ == 0 , So = 0 . 

From the constant term we have that 

Qo = 0, To = I , P i = 1, S i = -N 

The coefficient of s must be zero, so 

Ql = 0, T i = 0. 

Hence 

sA-1 = f o o \ + sf 1 0 \ + 0(s2) 

0 1/ V-N 0. 

Fi n a l l y 

C(0) = A'(0)sA"l(0) = f u o \ f o o\ = /o o\ , 

N I / \0 1/ \0 I 

C'(0) = A"(0)sA-l(0) + A'(0)(sA-l)'(0) 

''-Rl o\/o O \ + / M O \ / I O \ =/M 0' 

-R3 0 / \ 0 1/ \N I / \-N 0/ \0 0, 
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Remark As s ( l o g 0 p ) ' = t r C - ( n - q ) , 

we see that i s independent of N. 

C a l c u l a t i o n then gives the following formulae f o r the f i r s t four 

d e r i v a t i v e s of t r C a t 0: 

trC'(O) = trM , 

trc(2)(o) = - f t r R ( O ) - •|trRi(0) - 2trM2, 

( 3) 

trC (0) = -|trR'(0) - | t r R i ' ( 0 ) + 6trMRi(0) + 6trM3, 

trc('*)(0) = -^trR(2)(o) - - | t r R i ( 2 ) (o) - T^trR(0)R(0) - J i ^ t r R i ( 0 ) R i ( 0 ) 

-r|trR2(0)R3(0) - -|trR3(0)R2(0) + 8trMRi'(0) 

-32trM2Ri(0) - ^ittrM**. 
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m 
assuming f i s harmonic on a nhd of m 

Appendix I I Calculation of (A^f) (m) i n a super^Einstein space 

We wish to calculate 

( ^ i f X " ' ) = irJg^(^a(i)o(i)a(j)a(j)a(k)a(k)a(£)a(£)^>("'^' 

Because duimiiy indices can be interchanged, there are only 105 

d i s t i n c t terms on the RHS. These f a l l into two classes, 15 begin 

with V.., the other 90 with two different indices. The f i r s t class 
1 1 

can be ignored under our assumptions, for i t s sum i s 

p|sĝ îip(j)p(j)p(k)p(k)p(il)p(£)̂ ^̂ "'̂ ' 
which, from our calculation of C,we see to be zero ( i n fact each 

term i s zero). 

Our strategy w i l l be to calculate the sum of the other 90 

terms by f i r s t considering a l l sixt h covariant derivatives of f 

with two free indices, say i and j , and then applying ^ ^ j * 

Lemma I I . 1 Suppose T i s a covariant 2-tensor then V..T.. = V..T... 

Proof V..T.. = V. .T. . + R. . . .T, . +R....T,, (R i c c i identity) i j i j J i i j h i j i hj T i j j i ih ^ 

= V. .T, . + p T, . - p., T., 
j i i j '^jh hj ih ih 

= V,.T.., [_ 

Using the lemma we see that we only need consider those sixth 

derivatives with i preceding j before applying ^. We write these 

45 terms down i n three classes according to the permutation of the 

dimmy indices: 
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Thus under our assumptions 
15 

k=i i j 

Note that 

Xif = X(5),x(8) = X(9),X(11) = X(12),xn3)= 

where X = A,B,C, since the l a s t two indices commute. 

Extensive use i s now made of the Ricci identity to express 

each term i n terms of the one to the l e f t of i t (except, of course, 

those i n the f i r s t column). The i n i t i a l sums without the use of our 

assumptions are: 

15 

' 5 \ < \ k i £ \ j i j ^ ' Pih\hjf ' 

^ 2(\jikV,hk£^ ^ Pih^jh£^> ^ \ ( \ j i i l \ k £ ^ " \kiil^jhil^ 

^ Pih ĵkh^> \ j i k \ £ k £ ^ " Pih^j£h£^ ' 

15 

J , B{^> = B } I ) . Bif . 23^3) . 73(5) . 7(p.^V^^^.f . ̂ . , ^ ^ , , ^ ^ f ) 

' ^ \ ( P i h \ k j ^ " \ k i £ ^ h j ^ ' \ j i £^kh^> 

^ 3Vk,(\uAj^ \.ii£W> \w<^ijikV> 
2 ( \ j i k ^ h k / ^ ^ih^Jljh/) \ ^ \ j i £ W " \ki£^jh£^ 

^ P i h V h ' ^ ^ \ j i k W £ ' "Pih^j£h/> 

15 

+ V. 

+ V. 
'kk£<\ji£V) ̂  2(p.j^V^.,,f H- Rj^ji^V^j^,/) 

k ( \ j i k \ M ^ > " \ j i k \ k M ^ " Pih^jh££f-
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We now make the assumptions of Einstein and Af = 0 and r e c a l l 

formulae (3.17a): 

V. . f = 2KV., f + 2R. „V. „f. 

We have these formulae for the remaining A's, B's and C'si 

A^l) 
i j 

= B ( I ) 
I J 

= v,.(v k£k£^^ 0 , 

A^?) 
i j 

Bi?) 
I J = ^ i k ^ ^ jAkJl^^ K^V..f, 

A^3) 
I J 

= B^3) £jk/^ 2K2v..f . V.(R^^.^V^^^f) 

A^t) 
i j 

= ^ i k ^ ^ 2K2V..f •^^i<^skjAs/>» 

= ^ i k ^ ^ Jl£kĵ ^ 2K2V,.f 2Vi(R3kjAs£f>» 

ciV = = C^3) = 0, 

= K2V. . f . 

Our svtms now simplify to 
15 

k=l 
" 3\ki£^khjf ^ 5 \ \ j i A . h ^ ^ W j i A k / 

15 
I B ( ^ ) = 21V.(R^^.^V^^ f̂) .5R^^,^7^^ .̂f.3R^,^.^V^^ .̂f 

k=l 
- \ k i A j h / ' 5 \ \ j i £ \ k h f ^ 
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15 

Summing, 
15 
I (k^^^ + B^^^ + C?^^) = 33V. (R , .„V, „f) + 8R̂ , . „V, „̂ .f j ^ ^ ^ ^ i j i j i j ' 1^ skj£ ks£ liki£ k£hj 

2\ki,VkjM^ ^\ki£\h£j^ " 3R^ki£^£khj^ 
" 5\\ji£\£hf " ̂ \\ji£^£khf 
- ^\\ji£\k£f ^ 3V^^(R^..^V^^f) 

" 3Vk,(\jik^,h^) ^\k<\ji£^hf) 
" \££(\jikV> ^ \£k(\ji£^ h^) 
" ^ 2 \ j i k ^ , l , k s ^ s f 122KR^,.^V^^f 
+ 126K2V. . f . 

We simplify further by means of the various curvature i d e n t i t i e s , 

introducing the super - Einstein condition R = Sg, 

33Vi(\kj£\s£^) = ¥sVi.f, 

«\ki£\£hj^ 2Rj^ki£\jh£f 5\ki£\h£jf ^ ^ ^ k i ^ ^ k h j ^ 

13R.^h£\jh£\sf ^ 2R^k£i\j£s^skf ' ^ ^ V ^ j f 
11. 

^ \ki£^j\£hk^s^ ' ̂ \ki£Vsjhk^s^ » 

5\\ji£^£kh^ ' 5\\ji£\£hf 2\\ji£\k£^ 

= ^^\\nli\^Z^ •^'j^ki£?hks£\^ " K^ijh£\kh£^^ 

3\£(\jik^hf^ 3V^^(R^^.,^V^^f) 

= 6\\ji£\k£^ ' 2Vijh£\kh£^s^ - 3Rsj,U^sh£i\h^ 

^ K i s A j s £ V ^ %ji£\h£k\s^ 12KR^ji£\£^' 
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^ k k ( \ j i £ V ) \ j l k ( \ j i . V > ' ' \ k ^ \ i i z \ l . ' ^ 

= ^\k<\jiA£^> - 3R,j,uR,hiiiW ^ K i s A j s A h f 

" ^^jkii^i^skA^ ^ K i k i i ^ s \ j k 

* 2KR^jik\hf' 

Combining these and simplifying a l i t t l e more, 
15 
I (A^^^ + + C^^^) = - 10R.,^„R. , „V, f - 4R,, „.R, .„ V , f i j i j 12 ikhl jsh£ ks lik£i hjJls sk 

- ̂ j \k iAksi l^s^ - t^i\sk£^jskA^ 

^ ^\kiil^s^3hk^s^ ^ ^VijhAkhJl^s^ 
' * 6\k ( \ j i A£f> 
' ^«\jiAhilk\s^ ^ 24SV. .f 

I t i s now that we take V.. of both sides. We r e c a l l that i f a 

covariant 2-tensor T is anti-symmetric then V^/l^^ = 0 by the 

Lemma. Also V..(V..f) = 0 as the space is Einstein and 

^ i j ^ ^ j i J l ^ J l ^ ^ ~ ^ as the space i s super-Einstein. We have 
15 
y (Â '̂ ^ + B?^^ + Ĉ '̂ )̂ = - 107..(R.,^ R. ^„V, f ) 3LJ i J i J , i j ikh£ jsh£ ks 

- 47. ^k£i\j£s^sk^) 

- ^ij(^j \ k i A k s£^s^^ 

* 6^ijkk^ j i A £ ^ > 
^ ^87..(R^..^R^^^^73^^f). 

After much manipulation of the kind met i n Chapter 2 we can 

write each term on the RHS i n terms of known scalar functions. 
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^ij<W^jsh£\s^> = K̂'̂'̂) -K'̂®'̂''''> -l̂(̂<̂>'̂f> 
+ <̂ T,Vf̂ ^ 

^ij<\k£i\j£sW> = (R^R.V'^f) -•?(lv2f) .i(vR(g)VR .Vf) 

+ i(v(§;vf) - | ( T , V f ) , 

^ i j < \ j i £ W V > = (R^R,v^f> - (R.v^f) . i ( i v 2 f > 
- -J (vR(g)VR,v2f) + Y ( l . V f ) , 

^j^\k(\ji£W» = 2 (RoR,V«f) .2(iv2£) . ^ ( g , v 2 f ) . 
- |-(vR®VR,v2f) + (T,Vf), 

^ij^^j\ki£\ks£V)= -2(R,v2f) -i(R,v2f) . | ; (7R®VR,v2f) - ^ T . ^ f ) , 

^ij<\\ji£W> = -(̂'̂ f̂> -K̂.̂'f) -K̂ ®̂̂ '̂̂'̂) 
+ ̂ V(R) , Vf) + 2^ (v ( R ) ,Vf) - -f- <;̂ T,Vf) . 

Summing we obtain the result: 

(S^f)(m) = Tf5(56<;^RoR,7'^f) + 24(R,72f^ +12^R,v2f^ 
- y (vR<g)VR,V2f) + (v(R), Vf) + y ̂ V(R), Vf) ) (m) , 
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