

Durham E-Theses

The petrology and geochemistry of ophiolites from the Khawr Fakkan region. Northern Oman range, United Arab Emirates

Al-Khamees, A. H.

How to cite:

Al-Khamees, A. H. (1980) The petrology and geochemistry of ophiolites from the Khawr Fakkan region. Northern Oman range, United Arab Emirates, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8037/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

The Petrology and Geochemistry of Ophiolites from the Khawr Fakkan Region. Northern Oman Range, United Arab Emirates

A.H. Al-Khamees B.Sc. Texas, M.Sc. Kuwait (Graduate Society)

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

A thesis submitted for the degree of Master of Science in the University of Durham.

June 1980

Š.

ABSTRACT

The field relationships, petrography, geochemistry and phase chemistry of the peridotite-gabbro-basalt sequence of the Khawr Fakkan - Wadi Shi - Wadi Madha area suggest that the various components are genetically related. They result from partial melting of the upper mantle, followed by fractional crystallisation of the basic magma generated by this process. The rocks comprise a typical ophiolite sequence and are similar to assemblages from other Alpine-type ultramafic complexes.

The area studied may be broadly subdivided into two major zones. In the west the rocks are principally tectonised ultramafics, while to the east of these a series of cumulate gabbros, with dolerite dykes particularly prevelant in the east, passes upwards into basaltic lavas.

The tectonised ultramafics are separated from the gabbroic and basaltic rocks by an easterly-dipping thrust-fault zone, which strikes approximately north-south.

The rock types exposed in the area to the west of the major thrust fault are harzburgites, dunites and wehrlites. They are all, to some extent, serpentinised. The harzburgites have an intensely tectonised fabric, and consist of an assemblage of highly refractory chemistry. The dunites also show a strong tectonic fabric and total absence of cumulus textures. Textural evidence shows that most of the wehrlites are strongly deformed. A set of criteria to distinguish the refractory residua of partial melting from the cumulates are developed from analytical data and textural evidence.

The rock types exposed to the east of the major thrust fault are gabbro cumulates. The cumulus types recognised include olivine pyroxenites, olivine gabbros, norites and hypersthene gabbros, gabbros and anorthosites and leucocratic gabbros. Where transected by faults gabbro mylonites are developed. Cumulus textures include heteradcumulates, adcumulates and mesocumulates.

The basaltic rocks occur both as intrusive dolerite dykes and as lava flows. The basalts are invariably altered, with ferromagnesian minerals being represented by amphibole in the most part. They are also silicified.

Variation in major and trace elements reveal that the crustal members of the ophiolite suite (gabbros and basaltic rocks) are tholeiitic. The parent magma being a low-Ti and low-K tholeiitic type. Whole-rock analyses and mineral chemistry are used in an attempt to estimate the nature and composition of the partial-melt magma from which both the cumulate gabbros and basaltic rocks have evolved.

İİ

A variety of methods have been used, and compared, in an attempt to estimate the equilibration temperatures and pressures of the ultramafic rocks and cumulate gabbros.

The application of several geothermometers gave values for dunite of 872 to 1075^oC, for harzburgites of 1099 to 1167^oC, for a wehrlite of 1104^oC, and for the rare rocktype plagioclase peridotite, a somewhat higher value of 1263^oC. Temperatures recorded for olivine pyroxenite cumulates range from 879 to 974^oC, and for gabbros and norites from 839 to 999^oC. Lower temperatures of 909 to 989^oC using an orthopyroxene-clinopyroxene geothermometer, as compared to 1099 to 1167^oC, for the harzburgites may reflect the late, lower temperature, crystallisation of clinopyroxene from trapped liquid.

In all cases pressures were less than 7 Kb and correspond to a maximum depth of about 22 Km in the oceanic setting.

İİİ

ACKNOWLEDGEMENTS

I would like to thank Kuwait University for the award of a Research Studentship and the opportunity to visit the field area and the authorities of the Khawr Fakkan Region and Mr. Ali-Alhamood, President of Public Works at Dubai, for providing the accommodation during my stay in Khawr Fakkan.

I also wish to thank Professors G.M. Brown and M.H.P. Bott for the use of facilities in the Department of Geological Sciences, Durham University.

I am very grateful to my supervisors, Professor G.M. Brown and Dr. D.M. Hirst for various discussions, advice, interest and encouragement during the course of this research. In particular I would like to thank Dr. D.M. Hirst for his critical advice, interest and encouragement which have contributed much to my research. I would especially like to acknowledge many valuable discussions on the subject, and also his assistance in the construction of the manuscript. In addition, I am indebted to Professor G.M. Brown for his valuable comments while reading the finalised chapters of this thesis.

I would like to thank Dr. J.G. Holland and Mr. R.G. Hardy for supervision in X-ray Fluorescence analysis.

In addition, I am indebted to Dr. R.H. Pinsent for

i۷

the theory course of the electron microprobe and Dr. A. Peckett for his instruction and assistance, in the use of the electron microprobe.

I would like to extend my thanks to the technical staff of the Department, especially to Mr. G. Randall and Mr. L. McGregor for preparing probe slides and thin sections respectively; Mr. G. Dresser for help in the production of various photographic plates and Mr. R. Lambert for instruction in wet chemical analysis.

Many members of the Department, both past and present, have contributed much through active assistance and discussion. Amongst them, I would especially like to thank Dr. B.Beddoe-Stephens, Dr. D. Egin, Dr. C.H. Emeleus and Mr. R. Phillips.

Less directly, help was received through discussions from fellow research students, namely Mr. I. Williamson, Miss A.H. Hoey, Mr. R.M. Forster, Mr. R. Dogan and Mr. R.H. Hunter.

Finally, I would like to thank Mrs. C.L. Mines for typing the manuscript so expertly and efficiently.

V

vi

CONTENTS

				Paye
Abstract	:			i
				iv
Acknowle	edgements			IV .
List of	Figures			X
List of	Tables			xiv
Tigt of	Dlates			xviii
DTPC OT	TTUCCO			<u>-</u>
CHAPTER	1.	Introduction		1
	1.1	Scope of Work		1
	1.2	Regional Geology		1
	1.3	Summary	•	13
	n	The Khawr Fakkan Area		17
CHAPTER	2. 0 1	Inc Andre I amont		17
	2.1	physicaraphy and geomorphol	oav	17
	2.2	monography and drainage	- 5 2	17
	2.2.1	Topography and drainage		22
	2.3	Geology The ultramatic complex		22
	2.3.1	The ultramatic complex		24
	2.3.2	The sheared serpencinices		25
	2.3.3	Gabbro cumulates		25
	2.3.4	Dolerite dykes		20
	2.3.5	Extrusives		2. /
CHAPTER	3.	Petrography		28
	31	Petrography of the		
	0.2	Ultramafic Rocks		28
	2 1 1	Occurrence		28
	3 1 2	Dunites		28
•	2.1.2	Harzburgites		32
	J.I. J	Webrlites		37
	J.L.* 2 1 5	Podingites		40
	3.I.J	The sheared serpentinites		44
	3.1.0	Detrography of the		
	3.4	Cumulate Bocks		46
	~ ~ 1	Nomenalature and textures		46
	3.2.1			48
	3.2.2			49
	3.2.3	NOCK Lypes		50
	3,2.3.1	Oliving approa		53
	3.2.3.2	ULIVINE gabbros		
	3.2.3.3	Norites and hyperstnene		61
		gappros		61
	3.2.3.4	Gappros		04

	2 2 2 5	Amonthogitog and	
	3.2.3.3	Anorthosites and	67
	2 2 2 6	Leucocracic Gabbros	72
	2.2.2.0	Betrography of the	
	5.5	Bagaltic Bocks	74
	2 2 1	Dagurrence	74
	2.2.2	Detrography	76
	2.2.4	Amphibolized quartz-rich	, 0
	5.5.5	dolerites	79
		GOTCITCOP	
CHAPTER	4.	Whole-rock geochemistry	82
	4.1	Sample preparation	82
	4.2	Major element analysis	82
	4.3	Trace element analysis	83
	4.3.1	Ultramafic rocks	84
	4.3.2	Cumulate pyroxenites	88
· .	4:3.3	Gabbro cumulates, norites	
· ·		and anorthosites	89
	4.3.4	Basaltic rocks	.90
	4.4	Variation in major elements	91
	4.4.1	AFM diagram	91
	4.4.2	Total alkalis versus SiO	93
	4.4.3	SiO_2 , Al_2O_3 , CaO_3 , Fe_2O_3 and	
		FeO versus MgO.	95
	4.5	Variation in trace elements	103
	4.5.1	Cr versus Ni	103
	4.5.2	Cr ₂ O ₃ and NiO versus	
		$100 \times MgO/(MgO+FeO)$	105
	4.6	Ti-Zr-Y and Ti-Zr-Sr	
		discrimination diagrams	110
	4.7	Discussion	113
CHAPTER	5.	Mineralogy	115
	5.1	Electron Microprobe analysis	
		methods	115
	5.2	Olivine	119
	5.2.1	Peridotite olivines	119
	5.2.2	Cumulus olivines	123
	5.3	Orthopyroxenes	124
	5.3.1	Peridotite orthopyroxenes	125
	5.3.2	Pyroxenite orthopyroxenes	126
	5.3.3	Gabbroic orthopyroxenes	127
	5.3.4	Noritic and gabbroic	
		orthopyroxenes	127
	5.4	Clinopyroxenes	129
	5.4.1	Peridotite clinopyroxenes	131

	5.4.2	Pyroxenite clinopyroxenes	131
	5.4.3	Gabbroic clinopyroxenes	132
	5.5	Clinopyroxene-orthopyroxene-	
		olivine relations	133
	5.6	Plagioclase	141
	5.7	Spinels	144
	5.7.1	Peridotite spinels	148
	5.7.2	Pyroxenite spinel	150
	5.8	Magnetites and ilmenites	151
	5.9	Geothermometry	152
	5.9.1	Method of Jackson (1969)	152
	5.9.2	Method of Wood and Banno (1973)	159
	5.9.3	Method of Mysen and	
		Boettcher (1975)	160
	5.9.4	Method of Hakli and	
		Wright (1967)	161
	5.9.5	Method of O'Hara (1967)	162
	5.9.6	Method of Powell and	
		Powell (1974)	164
	c	G	100
CHAPTER	6.	Summary	108
	6.1	The opniolite sequence	168
	0.2	The area to the west of the	160
	c 2	major thrust fault	103
	0.3	The area to the east of the	1 70
		major thrust rault	1/2
	6.3.1	Cumulates	172
	6.3.2	Basaltic rocks	173
	6 /	Drimary mantle-denived	
	0.4	liquida and magma ovolution	
		rigatas and magina evolution	1/5
	6.5	Pressure-temperature conditions	
		of equilibration.	180
LIST OF	REFERENC	CES	310
•			
		IODC LICED HOD CALCULATIONC OF	
AFFEND12	V TI METI	TEMPEDAMIDES AND DESCUPES OF	
		TEMPERATURES AND PRESSURES OF	210
		EQUILIBRATION.	318
	1.	Jackson (1969)	319
		Temperatures of equilibration	
		for the various rock types.	320
		Typical calculation, worked	0.03
		out to give a temperature.	32T

2.	Wood and Banno (1973)	322
	Temperatures of equilibration for the various rock types.	323
	Typical calculation, worked out to give a temperature.	324
3.	Mysen and Boettcher (1975)	325
	Temperatures of equilibration for the various rock types.	326
	Typical calculation, worked out to give a temperature.	327
4.	Hakli and Wright (1967): Hakli (1968).	328
	Temperatures of equilibration for the various rock types.	329
	Typical calculation, worked out to give a temperature.	330
5.	0'Hara (1967).	331
	Typical calculation, worked	
	of analysed clinopyroxenes.	332
6.	Powell and Powell (1974).	333
	Temperatures of equilibration for the various rock types.	334
	Typical calculation, worked out to give a temperature.	335

LIST OF FIGURE CAPTIONS

Х

- *Fig. 1.1 Generalised lithological map of the Northern Oman Range.
 - Fig. 1.2 Schematic stratigraphic sequence characteristic of Oman mountains, after Welland and Mitchell (1977) with slight modification.
 - Fig. 1.3 Simplified schematic palinspatic reconstruction of Arabian continental margin regime prior to Campanian flysch deposition, emplacement of exotic carbonate blocks, and tectonic compression, after Welland and Mitchell (1977).
 - *Fig. 2.1 Sample location map.
 - *Fig. 2.2 Geological Map of the Khawr Fakkan Region, United Arab Emirates.
 - Fig. 4.1 (A) AFM variation diagram for the ultramafics, gabbros and basaltic rocks. B, C, D, E and F are those of the Bay of Islands ophiolites (Malpas, 1978), the Troodos Plutonic Complex of Cyprus (Allen, 1975), the Bett's Cove ophiolite complex (Upadhyay, 1973) and the ophiolites of Papua and New Caledonia (Rodgers, 1975).
 - Fig. 4.2 Total alkali versus SiO₂ plot, showing the alkali-subalkali basalt divide proposed by MacDonald (1968), and the calc-alkali tholeiitic basalt divide proposed by Kuno (1968).
 - Fig. 4.3 SiO₂ versus MgO diagram for the ultramafic-mafic rocks. The field of olivine, orthopyroxene, clinopyroxene and pure anorthosite is also plotted.

* = Figure located in the attached map pocket.

92

Page

2

15

94

Fig.	4.4	Al ₂ O ₃ versus MgO diagram for the ultramafic-mafic rocks. The field of olivine, orthopyroxene, clino- pyroxene and pure anorthosite is also plotted.	97
Fig.	4.5	CaO versus MgO diagram for the ultramafic-mafic rocks. The field of olivine, orthopyroxene, clino- pyroxene and pure anorthosite is also plotted.	98
Fig.	4.6	Fe ₂ O ₃ versus MgO diagram for the ultramafic-mafic rocks.	99
Fig.	4.7	FeO versus MgO diagram for the ultramafic-mafic rocks.	100
Fig.	4.8	Cr versus Ni logarithmic plot for the ultramafic-mafic rocks.	104
Fig.	4.9	Cr ₂ O ₃ versus 100xMgO/(MgO+FeO) for the ultramafic-mafic rocks.	106
Fig.	4.10	NiO versus 100xMgO/(MgO+FeO) for the ultramafic-mafic rocks.	108
Fig.	4.11	Y-Zr-Ti triangular diagram Pearce and Cann (1973) with selected basalts and gabbros plotted. Within Plate Basalts = D, Low K Tholeiites = A+B, Calc-alkali Basalts = C+B, and Ocean Floor Basalts = B.	111
Fig.	4.12	Sr-Zr-Ti triangular diagram Pearce and Cann (1973) with selected basalts and gabbros plotted. Ocean Floor Basalts = C, Low K Tholeiites = A, and Calc-alkali Basalts = B.	112
Fig.	5.1	NiO-Forsterite content relationships of olivine in mantle peridotites, olivine pyroxenites, and olivine gabbros.	122
Fig.	5.2	Plot of SiO_2/Al_2O_3 for clinopyroxenes from mantle peridotites, pyroxenites and gabbros.	130

Fig. 5.3	Plots of TiO ₂ , Cr ₂ O ₃ , and MnO against MgxlOO/(Mg+Fe) for pyroxenes from the ultramafic and mafic rocks.	134
Fig. 5.4	Pyroxene compositional variation in pyroxene quadrilateral for harzburgites, olivine pyroxenites and gabbros.	136
Fig. 5.5	Clinopyroxene compositions of harzburgites, wehrlites, olivine pyroxenites and gabbros.	137
Fig. 5.6	Compositional ranges of pyroxenes and olivines from mantle rocks.	138
Fig. 5.7	Compositional ranges of pyroxenes and olivines from olivine pyroxenites and olivine gabbros.	139
Fig. 5.8	A spinel compositional prism, from Irvine (1965). The prism shows the principle compositional end members, and the main spinel ratio plots.	145
Fig. 5.9	Variation of chromian spinel compositions.	146
Fig. 5.10	Variation of chromian spinel compositions.	147
Fig. 5.11	A spinel cation ratio plot, after Loney <u>et al</u> . (1971). The plot has been contoured to give the theoretical coexisting olivine Mg cation fraction at 1200°C. The contours are for values of 0.900, 0.915, 0.930. Observed olivine Mg cation fractions are given for each analysed coexisting pair. Sample numbers are: 1=300A, 2=300B, 3=304A, 4=305A, 5=528A, 6=531A, 7=531B, 8=517A, 9=517B, 10=325A, 11= 325C, 12=1037A, 12=1044A, 14=503A,	
	15 = 315A, $16 = 1027A$.	157

xii

- Fig. 5.12 An olivine-spinel equilibration plot, after Irvine (1965), and Rodgers (1973). An Mg-Fe distribution coefficient is plotted against the Cr cation fraction in spinel. The two lines with slopes of 3.7 and 2.6 are shown for reference purposes only. Sample numbers are: 1=300A, 2=300B, 3=304A, 4=305A, 5=528A, 6=531A, 7=531B, 8=517A, 9=517B, 10=325A, 11=325C, 12=1037A, 13=1044A, 14=503A, 15=315A, 16=1027A.
- Fig. 5.13 Pyroxene Grid of O'Hara (1967) with plotted values α_c and β_c of analysed clinopyroxenes from harzburgites, wehrlites and olivine pyroxenites. 163
- Fig. 6.1 Projections in the C-M-A-S system of O'Hara (1968), showing compositions of selected peridotites, cumulate gabbros and basaltic rocks projected from, or towards, olivine into the plane CS-MS-A.
- Fig . 6.2 Projections in the C-M-A-S system of O'Hara (1968), showing compositions of selected peridotites, cumulate gabbros and basaltic rocks projected from, or towards, clinopyroxene into the plane C, A-M-S.

179

178

LIST OF TABLES

			Page
Table	4.	XRF whole-rock chemical analyses together with CIPW norms.	
	4.1	Selected ultramafic rocks on which FeO determinations were made.	184
	4.2	Selected pyroxenites on which FeO determinations were made.	186
	4.3	Selected gabbroic rocks on which FeO determinations were made.	187
	4.4	Selected basaltic rocks On which FeO determinations were made.	192
	4.5	Analyses of dunites expressed on a water-free basis.	194
	4.6	Analyses of harzburgites expressed on a water-free basis.	199
	4.7	Analyses of wehrlites expressed on a water-free basis.	201
	4.8	Analyses of pyroxenites expressed on a water-free basis.	204
· ·	4.9	Analyses of gabbroic rocks expressed on a water-free basis.	205
	4.10	Analyses of anorthosites expressed on a water-free basis.	229
	4.11	Analyses of basaltic rocks expressed on a water-free basis.	230
	4.12	Analyses of altered dolerites expressed on a water-free basis.	233
	4.13	Analyses of amphiboles expressed on a water-free basis	236

Table	5.	Mineral analyses.	
	5.1	Optimum analysing conditions and standards used in electron probe microanalysis.	116
	5.2	Olivine compositions of Alpine-type peridotites and peridotites from various ophiolites.	120
	5.3	Olivine compositions of ophiolite gabbros.	124
	5.4	Orthopyroxene compositions from harzburgites of Alpine-type peridotites and ophiolites.	125
	5.5	Orthopyroxene compositions from norites and gabbros of various ophiolites.	128
	5.6	Plagioclase compositions.	142
	5.7	Spinel compositions of Alpine-type peridotites and peridotites from various ophiolites.	149
	5.8	Temperature ranges of Alpine-type peridotites and peridotites from various ophiolites, based on thermodynamic data from Irvine (1965) and Jackson (1969).	155
	5.9	Olivines from dunites.	237
	5.10	Olivines from harzburgites.	242
·	5.11	Olivines from wehrlites.	243
	5.12	Olivines from olivine pyroxenites.	244
	5.13	Olivines from olivine gabbros.	245
	5.14	Orthopyroxenes from harzburgites.	246
	5.15	Orthopyroxenes from olivine pyroxenites.	247

X۷

Table	5.16	Orthopyroxenes from olivine gabbros.	248
	5.17	Orthopyroxenes from norites.	.249
	5.18	Clinopyroxenes from wehrlites.	250
	5.19	Clinopyroxenes from olivine pyroxenites.	251
	5.20	Clinopyroxenes from olivine gabbros.	252
	5.21	Clinopyroxenes from normal gabbros.	254
	5.22	Clinopyroxene from hypersthene gabbro.	255
	5.23	Plagioclases from anorthosites.	256
	5.24	Plagioclases from normal gabbros.	257
	5.25	Plagioclases from norites.	258
	5.26	Plagioclases from olivine gabbros.	259
	5.27	Plagioclase from olivine pyroxenite.	261
	5.28	Plagioclase from plagioclase peridotite.	262
	5.29	Spinels from dunites.	263
	5.30	Spinels from harzburgites.	264
	5.31	Spinels from wehrlites.	265
	5.32	Spinel from plagioclase peridotite.	266
	5.33	Spinels from sheared talcose serpentinite.	267
	5.34-	-5.43 Representative spinel and olivine analyses of dunites, harzburgites, wehrlite, plagioclase peridotite and olivine pyroxenite used for the spinel-olivine geo-	
		thermometer of Jackson (1969).	268-277

268-277

			Page
Table	5.44-	-5.53 Representative orthopyroxene and clinopyroxene analyses of harzburgites, olivine pyroxenites, gabbros and norites used for the orthopyroxene-clinopyroxene geothermometer of Wood and Banno (1973), and Mysen and Boettcher (1975).	278-287
	5.54-	-5.63 Representative olivine and clinopyroxene analyses of harzburgites, plagioclase peridotite, wehrlites, olivine pyroxenites and gabbros used for the olivine-clinopyroxene geo- thermometer of Hakli and Wright (1967); Hakli (1968), and Powell and Powell (1974).	288-297
	5.64-	-5.66 Representative clinopyroxene analyses of harzourgites, wehrlites and olivine pyroxenites used for the calculation of α_c and β_c values for the method of O'Hara (1967).	298- 300
	5.67	Magnetites in olivine gabbros.	301
	5.68	Magnetites associated with basaltic hornblende in normal gabbros.	302
	5.69	Ilmenites associated with basaltic hornblende in normal gabbros.	303
	5.70	Basaltic hornblende associated with magnetites in olivine gabbros.	304
	5.71	Basaltic hornblende in normal gabbros.	305
	5.72	Actinolite from leucocratic gabbro.	306
	5.73	Chlorite from leucocratic gabbro.	307
	5.74	Analyses of lobate areas from a serpentinized dunite.	308
	5.75	Amphiboles.	309

xvii

LIST OF PLATES

XVIII

		Page
Plate 2.1	Quaternary, fluviatile, terrace deposits consisting of material common to the present day wadis, ranging in size from boulders to gravels, with a silt matrix.	21
Plate 3.1	Dunite outcrop of Wadi Madha showing distribution of asbestiform material composed mainly of chrysotile.	29
Plate 3.2	Hand specimen of sample 315: Plagioclase peridotite composed of sericitised plagioclase (white), olivine top right hand corner, and altered clinopyroxene, lower left hand corner.	29
Plate 3.3	Photomicrograph: Mosaic textured dunite, moderately serpentinized by a network of chrysotile veins. Red spinels are sub- hedral equant (Sample 314, XP. Field width = 4 mm).	31
Plate 3.4	Photomicrograph: Strongly deformed dunite showing crystallization of large, strained, prismatic olivines into a mosaic of small olivines, cut by chrysotile veining (Sample 318. XP. Field width = 4 mm).	31
Plate 3.5	Photomicrograph: equigranular, anhedral, medium grain-size olivines, serpentinized with strong direction of serpentinization	

528. XP. Field width = 8 mm). Plate 3.6 Photomicrograph: Spinel grain in a serpentinized dunite, serpentinization of olivines is reflected in the chrome spinel which shows "pull-apart" toutune

normal to elongation of olivines (Sample

of olivines is reflected in the chrome spinel which shows "pull-apart" texture. The cracks in the spinel being filled with serpentine (Sample 531. XP. Field width = 4 mm).

Plate 3.7 Photomicrograph: Irregular, interstitial, lobate areas of chlorite and clay minerals in a groundmass of mosaictextured olivines, substantially serpentinized by a network of chrysotile veins, in a serpentinized dunite (Sample 515. PPL. Field width = 4 mm).

34

33

Plate 3.8 Photomicrograph: Enstatite grain in a serpentinized harzburgite. The olivines appear to be elongated and shattered. Both the enstatite and olivines show a domain and strain extinction. Note the chrysotile veining strong in one direction (Sample 328. XP. Field width = 2 mm).

Plate 3.9 Photomicrograph: Olivine and clinopyroxene with fine-scale orthopyroxene exsolution in a wehrlite. The olivines show strong, elongate preferred orientation with a tendency for chrysotile veining to be normal to the elongation (Sample 312. XP. Field width = 4 mm).

- Plate 3.10 Photomicrograph: Intensely sheared wehrlite. Note late carbonate veining cutting obliquely across the clinopyroxenes and invading the adjacent olivines. (Sample 317. XP. Field width = 8 mm).
- Plate 3.11 Photomicrograph: Recrystallization and partial melting of garnets in a rodingite. Garnets occupy interstitial spaces and also appear as exsolved blebs in clinopyroxene. Crush zones are evident, where the clinopyroxenes have recrystallized to fine mosaic textures (Sample 535. XP. Field width = 4mm).
- Plate 3.12 Sheared, talcose serpentinite at Wadi Madha, showing cavernous structure which is due to solution of carbonates during weathering.
- Plate 3.13 Sheared serpentinite at Wadi Madha. Note the white cross-cutting veinlets of magnesite, which gives the sheared serpentinites a mesh-like appearance.
- Plate 3.14 Photomicrograph: Metasomatic talcamphibolite showing radiating aggregates of tremolite-actinolite, associated with finer grained talc and amphibole (Sample 516. XP. Field width = 4 mm).

38

35

38

43

43

45

Plate 3.15 Photomicrograph: Sheared, talcose serpentinite rich in subhedral to euhedral chrome-spinels. Note the crudely hexagonal and cubic spinels (Sample 537, XP. Field width = 4mm). 47 Plate 3.16 Photomicrograph: Clinopyroxene-olivine heteradcumulate, showing both cumulus clinopyroxene and cumulus olivine. The olivines are invariably traversed by a network of irregular serpentine veins outlined with magnetite (Sample 1030B. 51 XP. Field width = 2 mm). Plate 3.18 Photomicrograph: Clinopyroxene-olivine adcumulate, showing both cumulus clinopyroxene and cumulus olivine. The cumulus clinopyroxene and dlivine have been extended by adcumulus growth. (Sample 553. XP. Field width = 4 mm). 51 Plate 3.17 Photomicrograph: A large crystal of inverted pigeonite showing clinopyroxene blebs in a clinopyroxeneolivine heteradcumulate (Sample 1030B. 54 XP. Field width = 2 mm). Plate 3.19 Photomicrograph: Clinopyroxene showing (001) and (100) exsolution lamellae of orthopyroxene in a clinopyroxeneolivine adcumulate (Sample 553. XP. Field width = 2 mm). 54 Plate 3.20 Photomicrograph: Plagioclase-olivineclinopyroxene adcumulate. The olivines are partially serpentinized, and welldefined expansion fractures radiate from the olivine into adjacent plaqioclase crystals (Sample 523. XP. Field width = 2 mm). 56 Plate 3.21 Photomicrograph: Clinopyroxeneplaqioclase-olivine mesocumulate. Olivine is in reaction with hypersthene (Sample 119. XP. Field width = 4 mm). 56 Plate 3.22 Photomicrograph: Clinopyroxene-

Plate 3.22 Photomicrograph: Clinopyroxeneplagioclase-olivine mesocumulate, showing occasional graphic texture of ore in the plagioclase. Olivine is in reaction with hypersthene. (Sample 560. XP. Field width = 4 mm).

- Plate 3.23 Photomicrograph: Plagioclase-olivine heteradcumulate. Coronas consisting of central olivine cores surrounded by orthopyroxene shells rimmed by magnetite granules (Sample 232. XP. Field width = 2mm).
- Plate 3.24 Photomicrograph: Plagioclase-olivine heteradcumulate. A large ophitic clinopyroxene enclosing plagioclase and olivine (Sample 232. XP. Field width = 4 mm).
- Plate 3.25 Photomicrograph: Plagioclaseorthopyroxene-(clinopyroxene) adcumulate, showing hypersthene, plagioclase and clinopyroxene. Tremolite replaces the edges of the hypersthene crystals. (Sample 139. XP. Field width = 4 mm).
- Plate 3.26 Photomicrograph: Plagioclaseclinopyroxene mesocumulate, showing large crystals of clinopyroxene enclosing small plagioclase crystals (Sample 859. XP. Field width = 4 mm).
- Plate 3.27 Photomicrograph: Clinopyroxene rimmed by brown basaltic hornblende. Build up of H_2O in the interstitial liquid permitted the precipitation of brown basaltic hornblende. Note magnetite associated with the development of the brown basaltic hornblende (Sample 859. PPL. Field width = 4 mm).
- Plate 3.28 Photomicrograph: Plagioclase heteradcumulate, showing euhedral to prismatic plagioclase surrounded by very large ophitic clinopyroxene. The plagioclase crystals show a slight tendency to lamination. In places the clinopyroxene is replaced by fibrous amphibole, but ophitic texture is preserved (Sample 231. XP. Field width = 4 mm).
- Plate 3.29 Photomicrograph: Plagioclase adcumulate. (Sample 220. XP. Field width = 2 mm).

68

69

66

66

63

60

- Plate 3.30 Photomicrograph: Plagioclase crystals showing evidence of brecciation, granulation and crushing due to tectonic deformation. Ilmenite and hornblende are also present (Sample 110. XP. Field width = 4 mm).
- Plate 3.31 Photomicrograph: Shattered leucogabbro, showing large and bent plagioclases passing into areas of shattering, where plagioclase forms much smaller crystals (Sample 156(3). XP. Field width = 4 mm).
- Plate 3.32 Photomicrograph: Green hornblende occurring interstitially to ilmenite and as reaction rims with ilmenite in a leucocratic gabbro. The plagioclase crystals are bent and shattered. (Sample 110. PPL. Field width = 4 mm).
- Plate 3.33 Photomicrograph: Fine-grained amphibolized gabbro mylonite, showing amphibole as porphyroblasts set in a fine grained matrix of plagioclase laths and amphibole which show a strong alignment. Few residual, large and shattered clinopyroxenes can be observed as remnants in the fine grained matrix (Sample 559. XP. Field width = 8 mm).
- Plate 3.34 Photomicrograph: Porphyritic basalt showing fine-grained lath-shaped plagioclase set in a microcrystalline groundmass of amphibole, quartz and occasional carbonates (Sample 162A. XP. Field width = 8 mm).
- Plate 3.35 Photomicrograph: Silicified porphyritic basalt showing fine lath-shaped plagioclase and fine needle-like amphiboles projecting into quartz patches. (Sample 162A. XP. Field width = 2 mm).
- Plate 3.36 Photomicrograph: Amphibolized quartz dolerite showing clinopyroxene pseudomorphed by hornblende and skeletal ilmeno-magnetite. Clinopyroxene has been almost entirely converted to amphibole, with few remnants remaining (Sample 196. XP. Field width = 4 mm).

69

73

73

75

78

78

CHAPTER 1: Introduction

1.1. Scope of Work

The aim of the present work is a study of the ophiolites in part of the Northern Oman Range lying within the United Arab Emirates. The study investigates the characteristics of the various ophiolitic rocks, based on their petrography, mineralogy and geochemistry. Owing to the extensive size of the ophiolite belt, which outcrops over an area of more than 5000 square miles, a sequence in the Khawr Fakkan - Wadi Madha - Wadi Shi region (70 km²) has been chosen for a detailed study.

1.2. Regional Geology

The Khawr Fakkan area forms a small part of the Oman Mountains, and although the rocks exposed near Khawr Fakkan are entirely igneous, it is worth considering the area in the context of the general regional geology. The main features of the geology of the Oman Mountains are shown in Fig. 1.1 and the structural succession shown in Fig. 1.2. The following account serves to summarise the regional geology and illustrates also the historicaldevelopment of ideas relating to the evolution of the area.

Figure 1.2 Schematic stratigraphic and tectonic sequence characteristic of Oman mountains. (Welland and Mitchell, 1977)

The earliest recorded visit of a geological nature was by Blanford (1872), who collected a few Triassic fossils from the northernmost point of the Ruus Al Jibal. In the winter of 1904-1905, Pilgrim (1908) undertook a survey in the same region and crossed the Oman Range from Dibba to Ras Al Khaimah. This was probably the earliest reconnaissance of the geology of the Oman Mountains. Pilgrim was the first to study the igneous rocks of Oman, in the vicinity of Muscat in Wadi Semail, and at Dibba in the Northern Oman Range. He used the term "Basic igneous series of Oman", but later renamed these rocks "The Semail intrusive series". He considered that the igneous rocks had a limited distribution compared with that of the common limestones. He ascribed an upper Cretaceous age to the Semail igneous rocks.

Lees (1928) outlined the geology and tectonics of Oman, including the Trucial States (United Arab Emirates). This study formed an important foundation for subsequent work. Among the rock formations of the Oman mountain belt, Lees described the Hawasina series and the Semail Igneous Series, suggesting that the former constitutes a great thrust sheet, or nappes, overlain by the nappe of the Semail igneous rocks, and that the movement is from the east. He also mentioned that dykes of very coarse grained gabbros, 6 to 12 feet in thickness, are common

in the igneous series.

A paper dealing with the general geology of a limited area of the northern part of the Oman Range was published by Hudson, Brown and Chatton (1954A). They described the highly complex Jabal Qamar Zone, situated immediately to the south of the Dibba fault line. The authors discovered that this complex area consisted of three tectonic zones: (a) an outer (western) belt of vertical Jurassic-Lower Cretaceous limestones with some chert, part of the vertical limb of a thrust-fold, overridden from the east by (b) a thrust-sheet of Permian-Triassic limestone massifs covered by a Jurassic-Lower Cretaceous succession of radiolarian cherts, epidote-schists and serpentinite, overridden also from the east by (c) the western margin of the Semail thrust-sheet.

Hudson, McGugan and Morton (1954b) described the results of reconnaissance surveys in the Jabel Haqab region which lies on the western front of the Oman Mountains and east of Ras al Khaimah. The outcropping strata of Jabal Haqab consists of limestone and radiolarian chert of Jurassic and Lower Cretaceous age, with a facies expressing the sedimentation in the Arabian Gulf embayment of Southern Tethys and extending southwards between, and overlapping onto, the Arabio-Ethiopian and Indian Massifs. Hudson and Chatton (1959) described the stratigraphy of the Musandam Limestones, which are located in the extreme north of the Oman Range. These outcrops have a total thickness of about 3,400 metres and are considered to be the backbone of the Northern Oman Range. These authors divided the Musandam Limestones into three main stratigraphical successions: (1) upper brown beds of argillaceous limestones, (2) middle calcite-mudstones and (3) lower, grey-green or purple marls.

Morton (1959) published a comprehensive account of the geology of Oman as a whole. He discussed Lees' views on the tectonics of the region, and considered the Hawasina and Semail Formations to be autochthonous. Morton regarded the "chaotic structure" as being due to tectonics associated with large-scale extrusion of an Upper Cretaceous igneous series.

Hudson (1960) published valuable information on the stratigraphy of the deepest exposed part of the Ruus Al Jibal. These rocks comprise the Hajar super-group, a partly fossiliferous dolomite-limestone succession of over 200 metres thickness. He subdivided them into several formations which are as follows: At the base, a few metres of sandstones are found below the Permian dolomites. A thrust cuts out a possible older section.

Southwest of the unit, however, are more than 100 metres of thick-bedded limestones containing algal stromatolites. These are thought to underly the basal part exposed in the above section. The sandstones are succeeded by the main mass of the Permo-Triassic sediments which are characterized by dolomites and limestones. Above lies a Triassic section characterized by sandstone, marl, and shale laminae (the Muti Formation).

Tschopp (1967) attempted to synthesise all the geological data obtained from exploration wells, and from geological and geophysical fieldwork. His conclusions were as follows: During the Cambrian, clastic and carbonates were deposited in two sedimentary cycles in the Oman Mountains region. Simultaneously, a thick sequence of salt and other evaporites was being formed to the west in the area now occupied by the desert plains. Continental sedimentation occurred in the Cambro-Ordovician, changing upwards to shallow marine deposition. During the Campanian, a geosyncline was formed in the area and flysch-type sediments were deposited. Ultrabasic rocks (the ophiolites) were extruded, probably along tension faults in the Gulf of Oman, and were accumulated in the geosyncline. As a result of the filling of the geosyncline, a compressional tectonic phase elevated the region of the Oman Mountains. Thereafter, a succession

of Tertiary marine transgressions followed in the Palaeocene, Oligocene and Miocene.

Greenwood and Loney (1968) considered the geology and mineral resources of the Northern Oman Range, between latitudes 24°45' and 25°37' N. Although their work is mainly concerned with the potentiality of the region for mineral resources, they presented a geologic map (1:250,000), based on aerial photographs, showing the principal litholigic units. These authors regarded the Semail igneous rocks of the Northern Oman Range as a suite produced by several successive phases of ophiolitic magmatism. These included rocks of plutonic aspects and related serpentinites together with hypabyssal and extrusive representatives. The latter occur interlayered with the Hawasina series. The same authors considered the Semail, and at least a part of the Hawasina Series, as allochthonous. Their development history is thought to have involved the intrusion of Semail rocks into a core of geosynclinal sediments (Hawasina) and subsequent tectonic translation of the whole assemblage south-westwards with a concomitant thrusting of Hawasina rocks and metamorphism of geosynclinal flysch. Their account is the first to consider the igneous suite in terms of the ophiolite assemblage.

Reinhardt (1969) considered the genesis and emplacement of ophiolites in the Oman mountains geosyncline. He

presented petrological studies on the igneous rocks based on an E-W traverse crossing the central Oman Range. Reinhardt discussed a new model for the emplacement of the ophiolites in which he incorporated concepts developed by consideration of modern oceanic ridges. He considered the ultrabasic rocks and related serpentinites as part of the upper mantle which has been thrust over the Hawasina series. He arranged the igneous formations found in Wadi Semail in Muscat, from top to base in the following manner: (1) Volcanic, extrusive rocks, (2) subvolcanic feeder dykes, (3) hypabyssal gabbroic rocks, (4) gabbros, (5) transition zone between gabbros and peridotites, and (6) ultramafic rocks.

Wilson (1969) published a detailed study on the Eugeosynclinal sedimentation, gravity tectonics and ophiolite emplacement of the Oman Range. This study was based on the data obtained from the surveys carried out by the Shell Oil Company geologists in 1962-1966. From structural evidence and the extrapolation of the established sequence of events in the Oman Mountains, Wilson concluded that a tensional structural environment governed the evolution of the Late Cretaceous orogeny. He considered that regional tensional relief was accompanied by crustal separation and flood extrusion of an ultrabasic magma which cooled slowly under great hydrostatic pressure

along the axis of the trough in which the Hawasina sediments were deposited. Wilson considered the nappe to be autochthonous, formed by small-scale gravity slumping from the NE-lying landmass. His interpretation is very similar to that of Tschopp (1967).

Allemann and Peters (1972) presented new data on the Mesozoic sediments of the Ruus al Jibal area, and attempted a reconstruction of the structural history of the Oman Mountains, based on stratigraphic and petrographic data. These authors arrived at the following conclusions based on their structural studies:

- The oldest rocks of the Ruus al Jibal area (the Hajar Super-Group and Muti Formation) represent a para-autochthonous sedimentary sheet lying on the eastern margin of the Arabian platform.
- 2. The Hawasina Complex is composed of strongly imbricated sheets of a deep-water, radiolariteshale-turbidite-volcanic series embodying numerous shallow-water olistholites.
- 3. The Hawasina sheet-pile was generated chiefly by gravity gliding into a westward migrating depression. This depression moved successively in front of the advancing Oman trench.
- 4. The metamorphic Series are in thrust contact with the non-metamorphic Hawasina rocks, as well as with the Semail Ophiolites.

Glennie <u>et al</u>. (1973) concluded that overthrusting of the Hawasina and Semail nappes onto the Arabian continental margin during Late Cretaceous probably resulted from continental drift of Arabia in the opposite direction to the spreading movement of contemporaneous oceanic plates. Therefore the presence of ophiolites, radiolarian cherts, turbidites, exotic blocks, etc. in orogenic belts is indicative of the proximity of the former edge of a continent and its transition to adjacent oceanic crust.

Reinhardt (1974) studied the primary spilitic rocks of the Oman Mountains ophiolite suite that occur in the volcanic and subvolcanic parts of the suite. He compared these rocks with fresh, subvolcanic rocks and from petrographical and field evidence concluded that the spilitic rocks have crystallized from a hydrous residual melt that approached a basaltic composition. Reinhardt showed also that, by considering the associated sediments, the spilitic lavas of the Oman Mountains Geosyncline were extruded over a long period, ranging from Late Permian to Late Cretaceous.

Glennie <u>et al</u>. (1974) contributed new ideas, relevant to the oceanic origin of the Hawasina and Semail nappes. These nappes had been considered by both Morton (1959) and Wilson (1969) as autochthonous and

derived by small-scale gravitational sliding or slumping from a landmass NE of Oman. However, Glennie et al. convincingly show that the Hajar Super-Group, the Semeini Group and the Hawasina Series were all deposited in the same time-span of Permian to mid-Cretaceous, although they are now found one above the other. Because they are coeval, the most logical way to reconstruct their relative positions prior to nappe emplacement is to place them side-by-side. From their known, or inferred, environments of deposition, this would give a lateral sequence from west to east of: Continental shelf (Hajar) - Shelf-edge and slope (Sumaini) - Ocean basin (Hawasina). The Semail ophiolites are in turn considered as relicts of ocean crust preserved in the Semail thrust sheets which overlie the Hawasina Series. Glennie et al. introduced the concept of the Hawasina ocean basin which had been created by sea-floor spreading operative since mid-Permian times to the N and E of the Oman Mountains. In Late Cretaceous times the Hawasina ocean basin was apparently reduced in size. Since there are no proper indications of a subduction zone, most of the sedimentary series (Sumaini, Hawasina) and part of the oceanic substratum (Semail ophiolites) were overthrust or obducted onto the SE Arabian continental shelf. The order of tectonic superposition of the rock units in the Oman Mountains is
directly related to their original depositional geography in such a way that the higher the tectonic unit, the further out in the Hawasina ocean basin was its point of origin.

Carney and Welland (1974), and Welland and Mitchell (1977) have described the geology and mineral resources of the Oman Mountains, and the emplacement of the Oman ophiolite, respectively. These authors have outlined the regional geology of Oman based on field and petrographic studies, summarising their findings in the schematic diagram shown in Fig .1.2. On the basis of the diagram, the authors considered units A, B and C, which are approximately 2000 metres thick, to be essentially autochthonous. Unit A consists of a basement of low-grade metamorphic rocks, the base of which is not seen. These are overlain unconformably by a sedimentary sequence (Unit B) consisting of thick, generally featureless carbonates with minor volcanic and clastic intercalations (Hajar Super Group). Unit C is a much thinner sequence of shales and other clastic sediments, termed the Muti The top of C is marked by a major tectonic formation. contact, above which is the lowest allochthonous unit D. This consists of a thick sequence of re-deposited carbonates and is termed the Sumaini Formation. Unit E consists of a thin sequence of shales and cherty

limestones of Upper Cretaceous age. These two units, D and E, have a total thickness of approximately 700 metres. They are in turn overlain by the allochthonous unit F, which has a total thickness of 2000 metres. This consists of a sequence of cherts, cherty limestones, siltstones, shales and calcareous sediments with some intercalated volcanics of variable composition. The overlying allochthonous unit G, consists of an igneous assemblage showing a characteristic ophiolite stratigraphy of ultramafic rocks overlain by differentiated gabbros, a sheeted dolerite complex, and volcanics which include pillow lavas. The ophiolite is overlain by a thin sequence of cherts and cherty limestones which forms unit H. The two units (G and H) are approximately 2000 metres in thickness.

The major sequence may therefore be treated as an autochthon, overlain by a series of allochthonous units, the boundaries of which are major tectonic discontinuities or thrust surfaces dipping northeast.

1.3. Summary

The relationships between the Semail Ophiolite complex and underlying units are most simply explained by the progressive tectonic stacking of a series of more or less contemporaneous stratigraphic sequences derived from originally differing environments (Glennie

et al., 1973; Dewey, 1974, 1976). The assumptions that progressively higher thrust units represent progressively further-travlled allochthonous sequences leads to a reconstruction of a continental margin regime established on the north-eastern side of the Arabian shield by early Mesozoic time (Fig. 1.3). The basic intrusive rocks and volcanic suites of the autochthonous units (A and B) may represent igneous activity associated with early rifting in Late Permian times. Early volcanic associations within unit F may, in turn, represent a transitional igneous phase indicative of active continental rifting but prior to full-fledged, sea-floor spreading and the generation of the ophiolite suite. The local association of gravity emplaced, exotic carbonate blocks with scattered mafic volcanic rocks does not demonstrate that the latter represent oceanic basement predating the oldest (Permian) carbonate age. By late Triassic time, a complete continental margin and ocean basin regime had been established (Carney and Welland, 1974; Glennie et al., 1973). Part of the autochthon (unit B) occupied a pre-emplacement palaeographical position typical of the continental shelf or platform and provided carbonate debris for the turbidite and breccia sequence of unit D, developing on the slope and upper rise. Lower continentalrise sediment is represented in the lower slices of unit F

the upper slices constituting progressively more abyssal facies (Glennie <u>et al.</u>, 1973). The igneous stratigraphy of the ophiolite complex is typical of that which represents oceanic crust and upper mantle at an actively spreading ridge. The continental margin, now forming the autochthon of Oman and Zagros, remained stable until Late Cretaceous time, when the platform subsidence was accompanied by clastic deposition (unit C) and gravity emplacement of the exotic carbonate blocks. There is no evidence for subduction beneath the margin.

Glennie <u>et al</u>. concluded that the tectonic sequence characteristic of Oman and the Zagros can be most simply explained by slicing and accretion of oceanic basement in and above a subduction zone.

CHAPTER 2: The Khawr Fakkan Area

2.1. Location

The Khawr Fakkan region is located about 120 kilometers east of the Emirate of Dubai. The area can be reached by an unpaved road up to Masafi. From the village of Masafi, a four-wheel drive vehicle is necessary to reach the coastal region of Khawr Fakkan, through the villages of Kalba and Fujairah. The area lies immediately south of the Dibba line, a tectonic belt of NE-SW orientation, which thus cuts obliquely across the Oman mountain range (Fig. 1.1). The Khawr Fakkan area includes two major wadi systems, Wadi Shi in the north and Wadi Madha to the South (see sample location map Fig. 2.1).

2.2. Physiography and geomorphology

2.2.1. Topography and drainage

Topographically, a primary and simple division of the region may be made into the elevated mountain zone and the flanking plains.

Rocks of the N-S aligned mountainous zone are practically devoid of soil and vegetation, except for strips of cultivated land on terraces bordering Wadis. The zone as a whole is one of bold (sub-mature) topography, intensely dissected by actively eroding drainage channels. Major peaks reach elevations of some 587 metres, e.g. Jabal Uwayyin 587 metres, and unnamed peaks west of Aqabat al Khawr and west of Jabal Katalina, of 500 and 550 metres respectively. Intermediate elevations are recorded, e.g. Jabal Riyadir 342 metres, Jabal Katalina 300 metres, and Jabal Qidfa 210 metres (see sample location map Fig.2.1).

Variations in underlying lithology are clearly expressed, both in morphology of the terrain and in the character of the scree clothing many of the hill slopes.

The dark-toned gabbro hills commonly show rounded to subrounded profiles, with ridge crests flattened over widths of three to seven metres. Scree tends to be of coarse grade, ranging from blocks to boulders. Serpentinite is characterized by sharp ridges and peaks, and by numerous, closely-spaced, erosional facets of inverted chevron shape, controlled by shear and fracture planes. The scree is composed of small- to cobble-sized, angular and cuboidal fragments.

On the west side of the mountain range the inner zone of strong relief passes outwards to flanking, gravel-covered plains through a generally well-developed

zone of more subdued foothills. The passage from solid rock to alluvial plains is marked, along much of the range, by conglomeratic boulder beds. These tongue westwards, in places for several kilometres. In contrast, the eastern coastal plain is generally of more restricted width, and gabbro hills essentially reach to the sea. Only at the debouchement of major wadis, such as Wadi Madha and Wadi Shi, are more extensive spreads of rock debris and gravel found.

The mountain range is dissected into a number of blocks by major wadi systems, which provide the only means of access to much of the region. On the western side of the roughly centrally-aligned main watershed the general direction of drainage is WNW to NW, while to the east of the divide the drainage direction varies between NE and SE.

Most of the wadis appear to be fault controlled. Along most of their length the watercourses are dry, except during sporadic short periods of spate flow, and on the western side of the range all of the channels stream out in the gravel plains. Short stretches of flowing water are seen in the mountains, where bedrock is at, or near, the surface of the wadi floor.

Morphological features indicative of uplift in

relatively recent times include wadi terraces, raised beaches, and entrenched meanders. The last are well developed in wadis cutting serpentinite and draining eastwards in the region to the northwest of Khawr Fakkan.

Quaternary,fluviatile,terrace deposits are cut by major present-day wadis to depths varying from a few to several tens of metres. They are a common feature of the mountain zone (Plate 2.1). These terraces consist of material common to the present day wadis, ranging in size from boulders to gravels, with a silt matrix. The assemblage is generally chaotic, but in places the deposits display rough stratification with a tendency towards rhythmic grading. Cross bedding is sometimes well developed in the fine grain-size material.

Remnants of raised beaches or marine terraces occur along the coast line of the Gulf of Oman to the south of Khawr Fakkan. They probably represent an originally continuous terrace at about 10 to 12 metres elevation. These terraces locally reach inland for distances of up to a kilometre. Coral limestone blocks can be found in the terrace deposits in the coastal region of Khawr Fakkan. To the south of Khawr Fakkan, marine shell fragments of Recent or late Pleistocene species occur on the terrace surface. This suggests uplift in

Plate 2.1. Quaternary fluviatile terrace deposits consisting of material common to the present day wadis, ranging in size from boulders to gravels, with a silt matrix.

Pleistocene and sub-Recent times, perhaps in the form of gentle arching.

2.3. Geology

The region can be divided into geologically distinct units. These may be arranged in the following stratigraphic order:

> Extrusives Dolerite dykes Gabbro cumulates Sheared serpentinites Ultramafic complex

2.3.1. The ultramafic complex

The peridotites in the Wadi Shi - Wadi Madha area are dissected by a number of ramifying tributaries which form the only access to them. To the west and southwest of Khawr Fakkan in the Wadi Shi - Wadi Madha area (Fig. 2.2), the ultramafic facies of the Semail ophiolite forms low-lying outcrops. The outcrops are generally discontinuous, forming detached blocks of variable dimensions, but of the order of 100 by 200 metres. The distribution of the peridotites has been controlled by the fault system, the ultramafic complex being intersected by numerous N-S faults. These faults dip to the east. N-S faulting is also evident at the contact between the peridotites and gabbros, which is also of tectonic type.

Field observations revealed that the peridotites of the Wadi Shi - Wadi Madha area occur as blocky massive types, frequently dissected by numerous fractures filled with veins of asbestiform material, mainly chrysotile. The veins filling the fractures range in width from 2 centimetres to more than 10 centimetres. The peridotites generally do not exhibit noticeable variations in their general appearance and individual rock types are difficult to determine in the field. The original textures are not discernible in the field as all the ultramafics have a tectonic fabric. Their colour generally varies from dark green to greenish brown, although pale coloured varieties and mottled types also occur. The mottled variety is usually harzburgite, the mottled effect reflecting the presence of orthopyroxene. Such inhomogeneity in appearance may be accentuated locally by weathering, reflecting compositional variation.

It should, however, be mentioned that ultramafic rock types are generally not sharply separable in the field, and one type may grade imperceptibly into the other. An interesting feature observed in the Wadi Shi

sector is that part of the peridotite complex belonging to that sector has been shifted towards the gabbro complex east of Wadi Shi (Fig. 2.2), which is probably due to shearing and faulting.

2.3.2. The sheared serpentinites

Along the contact, between the main ultramafic complex of the Wadi Shi and Wadi Madha areas and the gabbro complex, the characteristics of the peridotite They become brownish, and locally earthy, with change. frequent pockets of the carbonate magnesite. They are highly impregnated with silica and are traversed by magnesite veins. The veins have an average width of a few centimetres but in a few cases they may attain half a metre in width. At the contact of some magnesite veins, the serpentinites are altered to talc carbonates. A secondary brecciated structure is frequently observed which owes its form to a network of silica enclosing extremely weathered peridotite. In general appearance the serpentinites are friable and they are highly sheared because of their close relationship to the faults.

The most striking feature characterizing the sheared serpentinites in the Wadi Shi and Wadi Madha areas is the

highly cavernous structure resulting from surface weathering of the carbonate minerals.

The shear zones encountered in the Wadi Shi and Wadi Madha areas mostly possess a N-S trend.

2.3.3. Gabbro cumulates

The outcropping gabbros are far more homogeneous and massive, in contrast to the peridotites. They constitute rather sharp massifs superimposed on the peridotites.

The gabbros are excellently exposed in the eastern Jabal Qidfa, Jabal Riyadir, Jabal Katalina, and the Jabal Khawr Fakkan areas (Figs. 2.1 and 2.2). They also occur in the eastern sector of Wadi Shi and southeastern part of Wadi Madha, generally becoming coarser towards these two regions, and finer towards the coastal region of Khawr Fakkan.

On the whole, there is a gradual upwards decrease in grain size throughout the gabbro complex.

Layering is a marked and widespread feature in the gabbros. It is the expression of compositional variations, rendered the more obvious by weathering and colour differences, and is generally a result of the alternation of feldspathic and ferromagnesian-rich

layers. In general, layers are impersistent and many of them pinch out over relatively short distances.

Layering that is continuous over long distances, such as occur in stratiform complexes, has not been observed. Also, no rhythmic or cyclic repetition of layers has been noticed in the gabbro complex.

The attitude of the layers is fairly constant with dips ranging from 45° to 65° in a south-easterly direction.

2.3.4. Dolerite dykes

The dolerite dykes are well exposed in the extreme coastal region of Khawr Fakkan (Fig. 2.2), where they occur as subvertical dykes cutting each other at low angles and varying in thickness between two or three metres. The dykes strike between 35 and 40° and dip steeply south-eastwards. They sometimes show faulted contacts with the overlying basaltic flows and these also occur between the dykes themselves. They become less frequent south of the village of Qidfa and immediately west of Aqabat Al-Khawr (Fig.2.2) where they cut through the gabbros. The dykes, in part at least, form the feeders to the overlying basaltic flows.

2.3.5. Extrusives

The extrusive rocks occur as massive flows, generally fine-grained and greenish to black in colour; some display crude columnar jointing. They form low-lying hills.

The basaltic flows are best exposed on the small island of Sirat Al-Khawr, north of Khawr Fakkan and separated from the latter by the Gulf of Oman (Fig. 2.2).

Other occurrences are seen at the extreme north of Khawr Fakkan (Fig. 2.2).

CHAPTER 3: Petrography

3.1. Petrography of the Ultramafic Rocks

3.1.1. Occurrence

The ultramafic rocks are exposed over wide areas of the Northern Oman Range, and occur as large sheetlike masses at least 900 metres thick. The colour of the rock types varies from dark green, almost black, to brown. They are commonly dissected by intersecting fracture planes, and appear to be sheared. Veins of asbestiform material, composed mainly of chrysotile and varying in thickness from 5 to 10 cm, intersect the ultramafic serpentinites (Plate 3.1).

The rock types are mainly dunites, harzburgites and wehrlites, with very limited feldspathic peridotite and lherzolite (Plate 3.2). They are all serpentinized to a greater or lesser degree.

The ultramafics are best exposed in the south of the area, in Wadi Madha and Wadi Sahnah although a limited development may be seen in Wadi Shi in the north (Fig. 2.2).

3.1.2. Dunites (Plate 3.3)

Dunites occur in both the south, in the area of Wadi Madha and in the north, around Wadi Shi. They

Plate 3.1. Dunite outcrop of Wadi Madha showing distribution of asbestiform material composed mainly of chrysotile.

Plate 3.2. Hand specimen of sample 315: Plagioclase peridotite composed of sericitised plagioclase (white), olivine top right hand corner, and altered clinopyroxene, lower left hand corner. are best seen, and most prevalent, around Wadi Madha.

They are found in bands of greatly varying thickness, from 100-200 metres thick, pinching out laterally. They occasionally pass into harzburgites but more commonly into wehrlites.

The dunites have a simple chemistry and mineralogy. Primary minerals include dominant olivine, together with chrome-spinel and diopsidic clinopyroxene. Serpentinization and alteration have added serpentine, talc and carbonate (magnesite) to the assemblage.

Average modal proportions of the constituents are olivine 70%, clinopyroxene 5%, chrome-spinel 3%, serpentine 20%, carbonates and talc 2%. There is, however, considerable variation depending on the degree of serpentinization.

The olivine has an average grain size of 4 by 2.5 mm. In serpentinized dunite it occurs as relict angular grains, of average diameter 3 mm, set in a mesh-textured serpentine matrix. Most of the dunites are strongly deformed, and the olivines show evidence of strain in the form of kink-banding, undulose and zone extinction (Plate 3.4). A cataclastic texture develops at the expense of an early generation of elongate, olivine megacrysts, which have a darker appearance than the later,

Plate 3.3.Photomicrograph: Mosaic textured dunite, moderately serpentinized by a network of chrysotile veins. Red spinels are sub- hedral equant (Sample 314. XP. Field width = 4 mm).

recrystallized, mosaic-textured olivine. The elongate olivines tend to have strong directions of serpentinization normal to the elongation, while mosaic olivine is serpentinized by a network of chrysotile veinlets (Plate 3.5).

Clinopyroxenes occur as small, interstitial grains between the olivine; they have an average grain size of 1-1.5 mm diameter.

The chrome spinels occur as large, red, subhedral grains with semi-circular, embayed margins, their grain size varying between 1 and 0.5 mm diameter. Some of the spinels from strongly deformed dunites show "pull-apart" texture (Plate 3.6), the cracks in the spinel being filled by serpentine.

Within the groundmass, irregular lobate areas are sometimes present. These areas are of low birefringence and may be chlorite or clay minerals (Plate 3.7).

3.1.3. Harzburgites (Plate 3.8)

The harzburgites occur mainly in the north of the Wadi Shi area (although a limited development may be seen in Wadi Madha and Wadi Sahnah to the south of Wadi Shi). They are interbanded with dunites although the latter are subordinate in amount.

Plate 3.5. Photomicrograph: equigranular, anhedral, medium grain-size olivines, serpentinized with strong direction of serpentinization normal to elongation of olivines (Sample 528. XP. Field width = 8 mm).

Plate 3.6. Photomicrograph: Spinel grain in a serpentinized dunite, serpentinization of olivines is reflected in the chrome spinel which shows "pull-apart" texture. The cracks in the spinel being filled with serpentine (Sample 531. XP. Field width = 4mm).

Plate 3.7. Photomicrograph: Irregular, interstitial, lobate areas of chlorite and clay minerals in a groundmass of mosaic-textured olivines, substantially serpentinized by a network of chrysotile veins, in a serpentinized dunite (Sample 515. PPL. Field width = 4mm).

Plate 3.8. Photomicrograph: Enstatite grain in a serpentinized harzburgite. The olivines appear to be elongated and shattered. Both the enstatite and olivines show a domain and strain extinction. Note the chrysotile veining strong in one direction (Sample 328. XP. Field width = 2 mm).

Primary minerals of the harzburgites include dominant olivine and orthopyroxene, together with minor chrome spinel and diopsidic clinopyroxene. Serpentinization and alteration have added serpentine, talc and chlorite.

Average modal proportions of the constituents are olivine 85%, orthopyroxene 12%, clinopyroxene 2%, chrome spinel 2%. These modal values are usually modified by serpentine, talc and chlorite which are present in variable amounts and depend on the extent of serpentin-The harzburgites are generally less serpentinized ization. than the dunites. The olivines are subhedral and have an elongate appearance; there is a tendency towards preferred The elongate olivines often show evidence orientation. of cataclastic deformation; they are shattered and show domain extinction. The olivines are partly altered to serpentine, and are cut by veinlets of chrysotile, while others are traversed by irregular veins of talc. Small olivines are sometimes included within chrome spinel and pyroxene.

Orthopyroxenes occur as subhedral to euhedral crystals with an average grain size between 2x0.5 mm and 3x2 mm. The orthopyroxenes include fine clinopyroxene exsolution lamellae which are mainly parallel to the 100 cleavage trace. They occasionally enclose minute,

rounded olivines, and chrome spinel. In some areas the orthopyroxenes are replaced by fibrous chlorite, but more usually they are pseudomorphed by bastite and talc although fresh cores of the orthopyroxene usually remain.

Clinopyroxenes are very minor in amount, and in some specimens they are completely absent.

The chrome spinels are deep red in colour, with an average grain size of 2.5xl mm and have an anhedral to subhedral texture. The chrome spinels are often fractured, with thin chrysotile veins running through the fractures. Occasionally the spinels occur within the bastite-talc groundmass. They tend to be more irregular in outline than the spinels present in the dunite.

3.1.4. Wehrlites (Plate 3.9)

The wehrlites are seen in the southern part of the area in the vicinity of Wadi Madha and Wadi Sahnah.

They are found in bands commonly associated with the dunites and often in direct contact with them.

Primary minerals of the wehrlites include dominant olivine and clinopyroxene, together with minor chrome spinel and orthopyroxene; serpentinization and alteration have added serpentine, chlorite and carbonate.

Plate 3.9.Photomicrograph: Olivine and clinopyroxene with fine-scale orthopyroxene exsolution in a wehrlite. The olivines show strong, elongate preferred orientation with a tendency for chrysotile veining to be normal to the elongation (Sample 312. XP. Field width = 4mm).

Plate 3.10. Photomicrograph: Intensely sheared wehrlite. Note late carbonate veining cutting obliquely across the clinopyroxenes and invading the adjacent olivines. (Sample 317. XP. Field width = 8 mm). Average modal proportions of the constituents are olivine 70%, clinopyroxene 15%, chrome spinel 5%, serpentine 10%. There is, however, considerable variation depending on the degree of serpentinization.

The olivine has an average grain size of 2x1.5mm. In serpentinized wehrlites the olivines are mosaic textured with a shattered appearance, and net veined by serpentine. A cataclastic texture develops at the expense of an early generation of strongly elongate olivine. The elongate olivine tends to have a strongly preferred orientation and the tendency is for chrysotile veining to be normal to the elongation. Most of the wehrlites are strongly deformed and the olivines show evidence of strain in the form of undulose and zone extinction. Minor interstitial olivines are altered to talc. Occasionally the olivines occur as inclusions in the clinopyroxenes.

The clinopyroxenes occur as subhedral grains, with grain size ranging between 5x0.2mm and 3x1.5mm. They include fine orthopyroxene exsolution lamellae parallel to the 100 cleavage traces. The clinopyroxenes in the serpentinized wehrlites are set in a serpentine matrix, and these pyroxenes are strained and show undulose extinction. The relatively fresh clinopyroxenes are

occasionally altered and dusted with Fe oxides (magnetite) which suggests that the original clinopyroxene contained appreciable Fe. Some clinopyroxenes are altered to talc, marginally and along cleavages; occasionally a clinopyroxene will be completely replaced.

The chrome spinel is deep to pale red in colour and occurs as subhedral, equant, and in some cases rounded grains with an average grain size of 1x0.5mm. The spinels occasionally occur as inclusions in the pyroxene, sometimes contain minute inclusions of olivine, and are embayed.

Within the groundmass, some pale-green chlorite is occasionally present. In one sample, a zone of intense chlorite development is probably related to shearing. In general, however, the wehrlites are substantially fresh although late carbonate veining sometimes cuts obliquely across the clinopyroxenes and invades the adjacent olivines (Plate 3.10).

3.1.5. Rodingites

Rodingite was first defined by Bell <u>et al</u>. (1911) as a coarse grained, gabbro-like rock associated with dunite and containing diallage, grossularite, prehnite and/or serpentine. Bell <u>et al</u>. originally described this

rock type in dykes cutting through serpentinites outcropping in the region of the river Roding in New Zealand. These dykes were composed essentially of garnet (hydrogrossular), diallage and prehnite.

Glennie <u>et al</u>. (1974) recognised this rock type in the southern part of the Oman Mountains, and described the following features as being characteristic of rodingites in general:

- They are calcium-rich rocks composed of (mostly hydrous) calc-silicates.
- 2. They occur as inclusions within serpentinized ultramafic host-rocks.
- 3. They are often separated from the host rock by a rim of chlorite.
- They are lense shaped, roundish or more typically dyke-shaped.
- 5. They are found more commonly within assemblages that have not been affected by a regional metamorphism.

It is generally agreed that the origin of these rocks is low-temperature alteration of mostly gabbroic to basaltic igneous inclusions (layers or dykes) or sometimes of calcareous sedimentary material within the ultramafic host rock. An essential factor for the alterations to take place seems to be the serpentinization of the host

rock, since this is found to take place simultaneously with the rodingite reactions. Another factor favouring the process in many cases is contemporaneous deformation. The reaction is supposed to involve an exchange of matter between the host rock and the inclusion.

The rodingites form dykes and boudins within the sheared ultramafic rocks and dunites, and commonly occur along the contact zone between the ultramafic mass and the sheared serpentinites in Wadi Madha. The most common host rock of the rodingite is a serpentinite composed of chrysotile, chrome spinel, secondary magnetite and hematite.

The main constituents of the rodingites are pyroxenes and garnets. The garnets are most probably hydrogrossular with evidence of recrystallization and partial melting of the garnets. The garnets also occupy interstitial spaces within the pyroxenes and occur as coarse exsolution blebs in the pyroxenes (Plate 3.11). Crush zones are evident where pyroxenes have recrystallized to fine mosaic texture. The pyroxenes present are mainly monoclinic with variations in grain size ranging from medium to coarse grained. Remnants of orthopyroxene are present but with a cloudy appearance due to minute Fe oxides. Partial resorbtion and recrystallization of the rock is evident.

Plate 3.11 Photomicrograph: Recrystallization and partial melting of garnets in a rodingite. Garnets occupy interstitial spaces and also appear as exsolved blebs in clinopyroxene. Crush zones are evident, where the clinopyroxenes have recrystallized to fine mosaic textures (Sample 535. XP. Field width = 4mm).

Plate 3.12 Sheared, talcose serpentinite at Wadi Madha, showing cavernous structure which is due to solution of carbonates during weathering. 3.1.6. The sheared serpentinites

Along the contact zone between the ultramafics and the gabbro-cumulates, the serpentinites are highly sheared and are usually altered to talc-carbonates (Plate 3.12). These rocks are best seen in the south around Wadi Madha and Wadi Sahnah although a limited development may be seen in Wadi Shi to the north (Fig. 2.2). They show a cavernous structure which is due to solution of carbonates during weathering. Magnesite is fairly common and appears in various forms. It occurs as small cross-cutting veinlets, which give the rock a mesh-like appearance, and more often as bands running through the serpentinite (Plate 3.13). The magnesite veins disappear entirely as one approaches the ultramafic zone. Chrysotile veins are also common, both in the contact zone and in the ultramafic zone.

In thin section the most common rock-type from this zone consists of serpentine containing residual olivine granules; relict ortho- and clinopyroxenes are also present. Some areas are traversed by thick chrysotile veins and by later carbonate veins. Talc is present in the form of rims to the residual olivine granules. Ore minerals, probably magnetite, occur in a shattered skeletal form and as a fine dust in the serpentine.

Other examples from this sheared zone include meta-

e 3.13. Sheared serpentinite at Wadi Madha. Note the white cross-cutting veinlets of magnesite, which gives the sheared serpentinites a mesh-like appearance. somatic talc-amphibole rocks. In thin section these rocks are a mixture of talc, pale green to brown amphibole and possibly brucite. Radiating aggregates of tremoliteactinolite (Plate 3.14) sometimes occur; these must have grown after the shearing movements ceased to be effective.

Sheared talcose serpentinite also occurs in this zone. These rocks are extremely rich in subhedral to euhedral chromite showing hexagonal and cubic outlines (Plate 3.15). Analyses of these chrome-spinels are given in Table 5.33.

3.2. Petrography of the Cumulate Rocks

3.2.1. Nomenclature and textures

The classification of igneous cumulates by Wager, Brown and Wadsworth (1960) is used in describing the cumulate rocks. Much of theoretical importance can be incorporated, and a better understanding of cumulate problems gained, by adopting this classification. The various terms used are:

An igneous cumulate: A rock formed by gravity accumulation of crystals from magma.

<u>Cumulus minerals</u>: Those which have settled (or, less commonly, floated) as primocrysts from the contemporary magma.

Plate 3.14 Photomicrograph: Metasomatic talcamphibolite showing radiating aggregates of tremolite-actinolite, associated with finer grained talc and amphibole (Sample 516. XP. Field width = 4mm).

Plate 3.15 Photomicrograph: Sheared, talcose serpentinite rich in subhedral to euhedral chromespinels. Note the crudely hexagonal and cubic spinels (Sample 537, XP. Field width = 4 mm). Intercumulus liquids: Contemporary magmas occupying the pore spaces between the cumulus phases.

An orthocumulate: A cumulate consisting of one or more cumulus minerals together with the products of crystallization of the "trapped" intercumulus liquid, which necessarily has the composition of the contemporary magma. The cumulus phases and their original intercumulus liquid constitute a closed system.

<u>An adcumulate</u>: A term used to describe the extension of the cumulus crystals at constant composition to give unzoned crystals, thus reducing the intercumulus liquid by mechanical expulsion.

<u>Mesocumulates</u>: Those rocks intermediate between orthocumulates and adcumulates and showing small amounts of pore material.

<u>Postcumulus material</u>: Primary, noncumulus material that formed (Jackson, 1961) in the spaces between the cumulus minerals. May be adcumulus or orthocumulus material. <u>A heteradcumulate</u>: Contains unzoned minerals that have nucleated from intercumulus liquid but have grown by the adcumulus process.

3.2.2. Occurrence

The cumulate rocks are mainly concentrated in

the Jabal Khawr Fakkan and also south-east of Wadi Madha (Fig. 2.2). A limited development may be seen around Wadi Madha to the south and Wadi Shi to the north.

3.2.3. Rock types

The rock types are divided into:

1. Olivine pyroxenites

2. Olivine gabbros

3. Norites and hyperstheme gabbros

4. Gabbros

5. Anorthosites and leucocratic gabbros

6. Gabbro mylonites

The above rock types are sub-divided in order of the abundance of the cumulus phases, with the rare phases in brackets, in the following manner:

1. Olivine pyroxenites

A. Clinopyroxene - olivine heteradcumulate

B. Clinopyroxene - olivine adcumulate

2. <u>Olivine gabbros</u>

A. Plagioclase-olivine-clinopyroxene

adcumulate

B. Clinopyroxene-plagioclase-olivine

mesocumulate

C. Olivine-plagioclase heteradcumulate

3. Norites and hyperstheme gabbros

A. Orthopyroxene-clinopyroxene-plagioclase

adcumulate

B. Plagioclase-orthopyroxene (clinopyroxene)

heteradcumulate

4. Gabbros

A. Clinopyroxene-plagioclase adcumulate

B. Plagioclase-clinopyroxene mesocumulate

C. Plagioclase heteradcumulate

5. Anorthosites and leucocratic gabbros

A. Plagioclase adcumulate

6. Gabbro mylonites

The olivine-bearing cumulates are more prevalent than the other types and they are best developed in the north of the area around Wadi Shi and south of the area around Wadi Madha. The olivine-free cumulates are more common in Jabal Khawr Fakkan, and also south-east of Wadi Madha (Fig. 2.2).

3.2.3.1. Olivine pyroxenites

A. Clinopyroxene-olivine-heteradcumulate (Plate 3.16). The following specimen is representative of this group: 1030B.

Plate 3.16 Photomicrograph: Clinopyroxene-olivine heteradcumulate, showing both cumulus clinopyroxene and cumulus olivine. The olivines are invariably traversed by a network of irregular serpentine veins outlined with magnetite (Sample 1030B. XP. Field width = 2 mm).

The main cumulus phases are diopsidic clinopyroxene and olivine. Plagioclase is rare and is an intercumulus phase. Average modal proportions are clinopyroxene 70%, olivine 19%, plagioclase 10% and spinel 1%.

Diopsidic clinopyroxenes occur as large, coarse, anhedral to subhedral crystals with an average grain size between 4x2.05mm and 10x5mm. Fine-scale exsolution lamellae of orthopyroxene parallel to (100) are common in the clinopyroxenes. Fe oxide is occasionally concentrated along the exsolved lamellae. Also present are large cumulus crystals of inverted pigeonite with clinopyroxene blebs (Plate 3.17).

Olivine is present in relatively minor amounts and occurs as large embayed crystals that appear in disequilibrium with the intercumulus liquid. The olivine crystals are highly serpentinized.

Plagioclase is rare, occurs interstitially to the clinopyroxenes and is intercumulus. The anorthite content is An₉₇. Green to brown Al-spinel is present in minor amounts.

B. Clinopyroxene - olivine adcumulates (Plate 3.18) The following specimens are representative of this group: 553, 554, 1027 and 1028.

The main cumulus phases are diopsidic clinopyroxene and olivine. Average modal proportions are clinopyroxene 75%, olivine 24% and spinel 1%.

Diopsidic clinopyroxenes occur as large, coarse, anhedral to subhedral crystals with an average grain size between 4x2.lmm and 10x5mm. Fine-scale exsolution lamellae of orthopyroxene parallel to (100) are common. Also present are large crystals of inverted pigeonite with clinopyroxene blebs. In some samples the exsolution in the pigeonite is evident in two directions, one as broad lamellae parallel to (001) before inversion to hypersthene, and the other as broad lamellae parallel to (100) after inversion to hypersthene (Plate 3.19, Sample 553).

Olivine is present in relatively minor amounts, and occurs either as small, subhedral grains within the pyroxenes or as large grains which are invariably traversed by a network of irregular serpentine veins outlined by magnetite.

Minor brown Cr spinel is present in some samples (refer to analysis Table 5.42).

3.2.3.2. Olivine gabbros

A. Plagioclase-olivine-clinopyroxene adcumulates The following specimens are representative of this group: 500, 501, 505, 523.

Plate 3.19Photomicrograph: Clinopyroxene showing (001)
and (100) exsolution lamellae of orthopyroxene
in a clinopyroxene-olivine adcumulate (Sample
553. XP. Field width = 2 mm).

The main constituents are plagioclase, olivine, and diopsidic clinopyroxene and they form the cumulus phases. Average modal proportions are plagioclase 45%. olivine 33%, diopsidic-augite 15%, serpentine 3%, magnetite 2% and brown hornblende 2%.

Plagioclase occurs as medium-sized, anhedral to subhedral grains of average dimensions 3 mm x 1.5 mm. They have an anorthite content of $\text{An}_{74.8-78.7}$; they are consequently bytownite.

The olivines form rounded, corroded grains, 2x1.5mm and 1x1mm in diameter which are invariably traversed by a network of irregular serpentine veins outlined by magnetite. The texture shows evidence that serpentinization was accompanied by expansion, the effects of which are evident in strong radiate cracking of the adjacent plagioclases (Plate 3.20).

Diopsidic clinopyroxene occurs as 1.5xlmm in diameter, subhedral to anhedral crystals.

Alteration products include minor brown amphibole after pyroxene, and minor magnetite strings produced during serpentinization of olivine.

B. Clinopyroxene-plagioclase-olivine

mesocumulates (Plate 3.21).

The following specimens are representative of this

Plate 3.20Photomicrograph: Plagioclase-olivineclinopyroxene adcumulate. The olivines are partially serpentinized, and well-defined expansion fractures radiate from the olivine into adjacent plagioclase crystals (Sample 523. XP. Field width = 2 mm).

Plate 3.21Photomicrograph: Clinopyroxene-plagioclaseolivine mesocumulate. Olivine is in reaction with hypersthene (Sample 119. XP. Field width = 4 mm).

group: 119, 555, 556, 557, 560, 562, 563, 564, 565, 1029(1), 109, 104A, 851, 871, 112, 106, 237, 846, 200, 539, 542, 567 and 568.

The main constituents are the three dominant cumulus phases - diopsidic clinopyroxene, plagioclase, and olivine. Orthopyroxene occurs as an exsolved phase or as a product of reaction between olivine and the intercumulus liquid. Average modal proportions are clinopyroxene 50%, plagioclase 30%, olivine 15%, orthopyroxene 4%, and magnetite 1%.

Diopsidic clinopyroxene occurs as anhedral crystals with an average grain-size of 3x1.5mm in diameter. The clinopyroxene contains exsolution lamellae of orthopyroxene parallel to (100).

The plagioclase is euhedral with an average grain size of 3x1.5mm in diameter and with an anorthite content of An_{76.2-95.2}. Occasional rosettes of ore in the plagioclase are observed by graphic texture (Plate 3.22).

Olivine is seen as anhedral, often rounded or oval crystals of average diameter 1.5mm x 1mm. Most of the olivines are traversed by a network of irregular serpentine veins outlined by magnetite.

C. Plagioclase-olivine heteradcumulates The following specimens are representative of this

Plate 3.22 Photomicrograph: Clinopyroxene-plagioclaseolivine mesocumulate, showing occasional graphic texture of ore in the plagioclase. Olivine is in reaction with hyperstheme. (Sample 560. XP. Field width = 4 mm). group: 232, 238, 239, 234, 100, 102, and 103.

The main cumulus phases are plagioclase and olivine, the intercumulus mineral being clinopyroxene. Average modal proportions are plagioclase 60%, clinopyroxene 23%, and olivine 17%.

Plagioclase occurs as subhedral to euhedral, prismatic crystals of 3.5xlmm average dimensions. It has a tendency to a planar texture, indicative of igneous lamination. The plagioclase has an anorthite content of An_{89 5} and hence is calcic bytownite.

The cumulus olivine is seen as anhedral, often rounded and oval crystals of 1.5xlmm average diameter. It is invariably traversed by a network of irregular serpentine veins outlined by magnetite. Some olivines have developed coronas separating them from plagioclase (sample 232, Plate 3.23). The coronas are formed from orthopyroxene and magnetite.

Clinopyroxene occurs as large ophitic crystals with an average grain size of 2.5xl.5mm in diameter, in patches surrounding the plagioclase crystals (Plate 3.24)

Plate 3.23 Photomicrograph: Plagioclase-olivine heteradcumulate. Coronas consisting of central olivine cores surrounded by orthopyroxene shells rimmed by magnetite granules (Sample 232. XP. Field width = 2 mm).

Plate 3.24 Photomicrograph: Plagioclase-olivine heteradcumulate. A large ophitic clinopyroxene enclosing plagioclase and olivine (Sample 232. XP. Field width = 4 mm).

3.2.3.3. Norites and hypersthene gabbros Hypersthene gabbros

> A. Orthopyroxene-clinopyroxene-plagioclase adcumulates.

The following specimens are representative of this group: 180, 183 and 138.

Orthopyroxene, clinopyroxene, and plagioclase are the three main cumulus phases with average modal proportions of orthopyroxene 75%, clinopyroxene 25% and plagioclase 5%.

Orthopyroxene, which is represented by hypersthene, is extremely coarse, occurring as large subhedral crystals with exsolution blebs of clinopyroxene. They have a grain-size of 4x2.5mm on average. In some samples the exsolution lamellae seem to have undergone patchy alteration to pale-green amphibole.

Clinopyroxene occurs as coarse, anhedral crystals with an average grain size of 3x2mm. The clinopyroxene contains exsolution blebs of orthopyroxene. Some of the clinopyroxenes are altered to green amphibole.

Plagioclase occurs as coarse, subhedral to anhedral crystals, varying in size between 3x2mm and 4x2.5mm in diameter, with a slight alteration to sericite.

Norites

B. Plagioclase-orthopyroxene (clinopyroxene)

adcumulates (Plate 3.25).

The following specimens are representative of this group: 139, 852, 150, 138, 221, 223, 157, 201, 222, 158, 217 and 152.

Plagioclase and orthopyroxene are the main cumulus phases together with rare clinopyroxene. Average modal proportions are plagioclase 50%, orthopyroxene 40%, magnetite 3%, clinopyroxene 4%, and tremolite-actinolite 3%.

Plagioclase occurs as coarse, interlocking, subhedral to anhedral crystals of average grain size 3x2.02mm. It has an anorthite content of $An_{93.3}$.

Orthopyroxene is represented by hypersthene which occurs as coarse, subhedral crystals of average grain size 3x2mm; they show a faint reddish-pink pleochroism. Exsolved blebs of clinopyroxene, and fine exsolution lamellae parallel to (100), are present. The orthopyroxene shows varying degrees of alteration. In the least altered, tremolite is seen replacing the edges of the crystals. In the more advanced stages, the orthopyroxene is often completely converted to colourless tremolite and actinolitic amphibole.

Plate 3.25 Photomicrograph: Plagioclase-orthopyroxene -(clinopyroxene) adcumulate, showing hypersthene, plagioclase and clinopyroxene. Tremolite replaces the edges of the hypersthene crystals. (Sample 139. XP. Field width = 4 mm).

Diopsidic clinopyroxene occurs as small, anhedral crystals with an average grain size of 2x1.5mm and 1.5xlmm in diameter which are subordinate to the two major phases. Most of the clinopyroxenes are altered to pale-green amphibole.

Granular magnetite is often concentrated in the fibrous tremolite-actinolite.

3.2.3.4. Gabbros

A. Clinopyroxene-plagioclase adcumulate.

This type is considered very rare and only one sample was noticed (209). Diopsidic clinopyroxene and plagioclase are the main cumulus phases with average modal proportions of diopsidic clinopyroxene 70%, plagioclase 29%, and chrome spinel 1%.

The diopsidic clinopyroxenes occur as coarse, subhedral to anhedral crystals of average grain-size 7x6mm in diameter. They contain exsolved blebs of orthopyroxene, and fine exsolution lamellae parallel to (100).

The cumulus plagioclase crystals occur as coarse, euhedral crystals of average dimensions 5x3mm.

Chrome spinel is very minor and occurs as small crystals in the clinopyroxenes.

B. Plagioclase-clinopyroxene mesocumulates (Plate 3.26). The following specimens are representative of this group: 859, 853, 104B, 1018, 544 and 541.

Plagioclase and clinopyroxene are the main cumulus phases with average modal proportions of plagioclase 50%, diopsidic clinopyroxene 40%, magnetite 5%, and fibrous amphibole 5%.

Plagioclase occurs as coarse, euhedral crystals with average grain size 3x2mm in diameter. In some samples such as 859, the plagioclase crystals are slightly bent or strained as shown by the twin lamellae. The anorthite content of the plagioclase crystals is An_{80.6} and hence it is a bytownite.

Clinopyroxene occurs as fairly large, subhedral crystals of average diameter varying between 3x2mm and 2.5x1.5mm, with occasional reaction rims of brown basaltic hornblende (sample 859, Plate 3.27). It is also often replaced by pale green, fibrous amphibole (sample 541).

Magnetite occurs as pods and is associated with the development of the brown basaltic hornblende (sample 859, Plate 3.27).

C. Plagioclase heteradcumulate Only sample 231 can be considered to represent this

Plate 3.26 Photomicrograph: Plagioclase-clinopyroxene mesocumulate, showing large crystals of clinopyroxene enclosing small plagioclase crystals (Sample 859. XP. Field width = 4 mm).

Plate 3.27 Photomicrograph: Clinopyroxene rimmed by brown basaltic hornblende. Build up of H₂O in the interstitial liquid permitted the precipitation of brown basaltic hornblende. Note magnetite associated with the development of the brown basaltic hornblende (Sample 859. PPL. Field width = 4 mm).

category. Plagioclase is the main cumulus phase with intercumulus, diopsidic clinopyroxene. Average modal proportions are plagioclase 55%, diopsidic clinopyroxene 40%, and fibrous amphibole 5%.

The plagioclase occurs as coarse, euhedral, prismatic crystals with a slight tendency to lamination; they have average dimensions of 2.5x2mm and 0.5x0.2mm. The anorthite content is An_{86.5} and hence it is a bytownite. The plagioclase crystals are surrounded by very large, ophitic clinopyroxenes (Plate 3.28).

The clinopyroxenes are often replaced by fibrous amphibole, but this has not affected the texture.

3.2.3.5. Anorthosites and Leucocratic Gabbros

Anorthosites

A. Plagioclase adcumulates (Plate 3.29)

The following specimens are representative of this group: 220, 160, 151, and 146.

Plagioclase is the dominant phase, the rock approaching an extreme adcumulate. Magnetite is considered an intercumulus phase. Average modal proportions of the constituents are plagioclase 97%, magnetite 2%, and clinopyroxene 1%.

The plagioclase is coarse with an anorthite content

Plate 3.28 Photomicrograph: Plagioclase heteradcumulate, showing euhedral to prismatic plagioclase surrounded by very large ophitic clinopyroxene. The plagioclase crystals show a slight tendency to lamination. In places the clinopyroxene is replaced by fibrous amphibole, but ophitic texture is preserved (Sample 231. XP. Field width = 4 mm).

Plate 3.29 Photomicrograph: Plagioclase adcumulate. (Sample 220. XP. Field width = 2 mm).

Plate 3.30 Photomicrograph: Plagioclase crystals showing evidence of brecciation, granulation and crushing due to tectonic deformation. Ilmenite and hornblende are also present (Sample 110. XP. Field width = 4 mm). of An_{93.1}. It has suffered mechanical deformation (e.g. 160) and is slightly bent and strained as shown by the twin lamellae. In these crystals the twin lamellae are concentrated, and broad, in areas where the straining effect is least evident, but they pinch out and taper in the most deformed areas, due to recrystallization. The lamellae themselves are commonly bent, and they frequently terminate at cracks within the plagioclase crystals.

Magnetite is interstitial and occurs as anhedral crystals, and sometimes as stringers between the coarse plagioclase crystals.

In sample 151, a thin layer of altered plagioclaseclinopyroxene cumulate is present, where the clinopyroxene is considered a cumulus phase.

Sample 146 shows compositional layering from (a) plagioclase-clinopyroxene-orthopyroxene cumulate to (b) plagioclase adcumulate.

The overall texture of part (a) is fine grained. Clinopyroxene is concentrated into elongate patches representing brief periods of pyroxene deposition. Orthopyroxene, represented by hypersthene, is concentrated in the fine, felsic layers. The overall texture of part (b) is coarse grained. Ilmenite proved to be intercumulus

after it was checked with a reflected-light microscope and occurs as anhedral crystals and sometimes as stringers between the coarse plagioclase crystals.

Leucocratic Gabbros

This rock type is not a common member of the gabbroic rocks but occurs in the layered sequences together with the olivine gabbros and the clinopyroxene-rich cumulates. The rock-type often shows evidence of granulation and recrystallization, due to its occurrence in highly faulted areas.

The rock type is identified as a leucocratic gabbro due to the diminished amounts of ferromagnesian minerals; it gradually passes into anorthosite.

The main constituents are plagioclase, diopsidic clinopyroxene, ilmenite, chlorite, tremolite-actinolite, and green hornblende. Modal proportions of the minerals present are: plagioclase 70%, diopsidic clinopyroxenes 10%, green hornblende 10%, ilmenite 4%, chlorite and tremolite-actinolite 6%. The overall texture of the mineral phases is extremely coarse grained.

Plagioclase occurs as coarse anhedral crystals. All the plagioclase crystals studied show evidence of brecciation, granulation, and crushing due to tectonic deformation. Undulose extinction and bent twinning are

also evident in most samples (Plate 3.30). Occasionally the large and bent plagioclase crystals pass into areas of shattering where the plagioclase forms much smaller crystals with evidence of recrystallization, e.g. sample 156(3), (Plate 3.31).

Clinopyroxenes are partly altered to chlorite and tremolite, with minor interstitial remnants evident. In rare cases the clinopyroxenes are more resistant to alteration, thus retaining their original shape.

Straw yellow-green hornblende occurs interstitially to ilmenite and as reaction rims with ilmenite (sample 110) (Plate 3.32).

Pseudomorphs after interstitial clinopyroxene, mainly forming acicular and radiate aggregates, were difficult to identify in some samples. These minerals were identified by microprobe analysis. The first type, with anomalous brownish interference colours, was chlorite. The other type, which occurs as radiate aggregates, was identified as tremolite-actinolite.

3.2.3.6. Gabbro mylonites

Mylonites occur as zones of intensely crushed and granulated rocks along clearly defined faults. The rock is of extremely fine-grained size, which makes the

Plate 3.31 Photomicrograph: Shattered leucogabbro, showing large and bent plagioclases passing into areas of shattering, where plagioclase forms much smaller crystals (Sample 156(3). XP. Field width = 4 mm).

Plate 3.32 Photomicrograph: Green hornblende occurring interstitially to ilmenite and as reaction rims with ilmenite in a leucocratic gabbro. The plagioclase crystals are bent and shattered. (Sample 110. PPL. Field width = 4 mm). optical determination of the various mineral phases extremely difficult. The main identifiable constituents are plagioclase and amphibole; clinopyroxenes are mainly altered to pale-green amphibole.

The plagioclase varies in grain-size from laths of 1.5xlmm to crystals of medium grain-size with average diameter of 2.5x2mm. Some of the plagioclase crystals are severely crushed and recrystallized, with a tendency to polygonization. Most of the plagioclase crystals show an undulose extinction due to deformation.

The clinopyroxenes are mainly altered to pale-green amphibole but the few grains remaining can be seen to be elongated, with a very strong parallel fabric. Occasionally a few residual, large and shattered clinopyroxenes can be observed as remnants in the fine-grained matrix (Plate 3.33). In some samples (e.g. 559), the pale-green amphibole occurs as porphyroblasts set in the fine-grained matrix of plagioclase laths and amphibole which show a strong alignment.

3.3. Petrography of the basaltic rocks

3.3.1. Occurrence

Rocks of basaltic composition are common within the ophiolites of the Northern Oman Range. They form massive

Plate 3.33 Photomicrograph: Fine-grained amphibolized gabbro mylonite, showing amphibole as porphyroblasts set in a fine grained matrix of plagioclase laths and amphibole which show a strong alignment. Few residual, large and shattered clinopyroxenes can be observed as remnants in the fine grained matrix (Sample 559. XP. Field width = 8 mm). flows, sheeted dykes and occasionally near-vertical dykes that vary in thickness between two and three metres. The dykes strike between 35° and 40° and dip steeply southeastwards. In hand specimen, the rocks are dark and massive, and contain small phenocrysts of feldspar, and ferromagnesian minerals now pseudomorphed by chlorite.

The basaltic rocks are mainly concentrated to the southeast of Jebel Qidfa where they form sheeted dykes, dissected by short and steep Wadis, and covered by coarse scree. Other basaltic rocks occur as flows, concentrated on the small island of Sirat Al-Khawr, which lies about a mile offshore from Khawr Fakkan and in the extreme north near Jabal Khawr Fakkan. Fine, vertical to subvertical dykes of basaltic rock also intrude the gabbros of Jabal Khawr Fakkan in the coastal region.

The following specimens are representative of this group: Lavas - 101, 103, 107, 122 and 1004. Sheeted dykes -108, 109, 111, 117, 149A, 154, 167, 169, 170, 171, 172, 174, 176, 186, 204, 206, 230, 233, 856, 858, 165, 866, 162A, 162B and 864.

3.3.2. Petrography

The overall texture of the basaltic rocks is fine grained, varying from aphenitic to porphyritic. The

occasional phenocrysts consist of plagioclase, amphibole and chlorite embedded in a microcrystalline groundmass of plagioclase microlites, amphibole, quartz and occasional carbonates (Plate 3.34).

Average modal proportions of the constituents are plagioclase 38%, amphibole 47%, quartz 11%, carbonate 3%, and talc 1%. There is considerable variation in quartz content however, one sample, a porphyritic basalt (154) having 25% quartz. This is thus transitional to the amphibolised, quartz-rich dolerites (Section 3.3.3.).

The groundmass feldspars occur as fine, lath-shaped crystals with average dimensions of 0.6 to 0.4mm. They show slight to very good, preferred orientation. Occasional feldspar phenocrysts range up to 1.5 by 0.5mm. The finegrained, lath-shaped feldspar is albite, while the occasional phenocrysts are andesine An₅₀₋₄₆.

Quartz occurs in patches interstitial to the feldspar laths and occasionally shows a poikilitic texture. The average diameter of the quartz crystals lies between 1 and 2mm. Some show undulose extinction, indicative of strain, and sutured boundaries.

Amphiboles and chlorite occasionally occur as phenocrysts with average dimensions of 2.5xl.5mm. More commonly the amphiboles occur as fine, lath-shaped

Plate 3.34 Photomicrograph: Porphyritic basalt showing fine-grained lath-shaped plagioclase set in a microcrystalline groundmass of amphibole, quartz and occasional carbonates (Sample 162A. XP. Field width = 8 mm).

Plate 3.35 Photomicrograph: Silicified porphyritic basalt showing fine lath-shaped plagioclase and fine needle-like amphiboles projecting into quartz patches. (Sample 162A. XP. Field width = 2 mm). crystals 0.5x0.1mm in average dimensions, or as fine, needle-like, pale-green crystals which project into the quartz patches (Plate 3.35).

Veining of the fine-grained matrix by talc and carbonates is rare, and only evident in one sample.

Pyroxenes are converted entirely to amphiboles.

3.3.3. Amphibolized, quartz-rich dolerites

The amphibolized, quartz-rich dolerites occur as sub-vertical dykes about two metres thick, within the gabbros of the Khawr Fakkan region. They are principally found in Jabal Khawr Fakkan in the coastal region near the Gulf of Oman, and more rarely to the north of Wadi Shi (Fig. 2.2). The following specimens are representative of this group: 227, 228, 184, 196, 164, 218, 137, 140 and 159.

The dolerites are medium to fine grained rocks containing subhedral, lath-shaped plagioclase, interstitial quartz, pale-green amphibole, and ilmenite. Average modal proportions of the constituents are plagioclase 40%, amphibole 30%, quartz 25% and ilmenite 5%.

The plagioclase laths have average dimensions of 4 by 2mm, and 1.5 by 1mm. They have an anorthite content of An₅₀ and are thus andesine-labradorite.

Quartz occurs as clear patches interstitial to plagioclase, occasionally seeming to replace the margins of the plagioclase crystals. The quartz crystals sometimes show a shadowy, strained extinction and sutured boundaries are evident in places.

Pale-green amphibole, and straw yellow-green hornblende after pyroxene occur as needle-like to prismatic crystals; the needle-like amphiboles project into the quartz patches. A tendency to preferred orientation is evident in the straw yellow-green hornblende.

Clinopyroxene is almost entirely converted to amphibole, with the exception of one sample (196) where minor clinopyroxenes are pseudomorphed by hornblende and skeletal ilmeno-magnetite (Plate 3.36).

Plate 3.36 Photomicrograph: Amphibolized quartz dolerite showing clinopyroxene pseudomorphed by hornblende and skeletal ilmeno-magnetite. Clinopyroxene has been almost entirely converted to amphibole, with few remnants remaining (Sample 196. XP. Field width = 4 mm). CHAPTER 4: Whole-rock geochemistry

4.1. Sample preparation

The specimens were split into fragments using a hydraulic splitter, and the weathered parts were cut away and discarded in order to prevent contamination. The fragments were crushed into chips using a Sturtevant Jaw crusher and this was followed by grinding in the tungsten carbide vials of a Tema Disc Mill, which reduced the samples to a powder of around 300 mesh. A few grams of the resulting powder were pelletised, using a hydraulic press, under a pressure of 5 tons per square inch; 3 drops of "Mowiol" were added as a binder.

4.2. Major element analysis

Chemical analyses for major elements were made of 358 samples, which included 86 ultramafic rocks and 272 basic rocks, composed of cumulate pyroxenites, gabbros, and fine-grained basaltic rocks. The pelletised samples were analysed on a Philips PW1212 automatic vacuum spectrometer which is capable of handling up to 108 samples in a run. The elements Si, Al, Fe, Mg, Ca, Na, K, Ti, P and S were determined using a Cr target for primary radiation, and an evacuated sample chamber. Mn was analysed separately using a W target. A "fixed counts"
operating procedure was used. In order to minimise the effects of electronic instability and voltage drift a monitor was used throughout and samples were analysed in groups of three. The samples were divided into three groups (ultramafics, gabbros and related rocks, and finegrained basalts and dolerites). Each group was analysed separately. The international standards AGVI, W1, K211, BCR1, G, T1, S1, GR, GA, OK272, and GSP1 were used for the gabbros and related rocks, and for the fine-grained basalts and doleritic types. For the ultramafic rocks, the U.S.G.S. international standards DTS1, PCC1, UM1, UM2, UM4, RE114, and RE507 were used. The compositions of the international standards were taken from reviews by Flanagan (1969, 1973). Total Fe was calculated as Fe₂O₂. Mass-absorption corrections were made by an iterative procedure using the computer technique originally described by Holland and Brindle (1966), as modified by Reeves (1971). 75 fresh samples representing the three rock groups were chosen for the determination of FeO, using a wet-chemical, metavanadate method; these are shown in Tables 4.1 to 4.4.

4.3. Trace element analysis

The elements Ba, Nb, Zr, Y, Sr, Rb, Zn, Cu, Ni and Cr were determined using a W target, and an evacuated

sample chamber. Analytical count data were converted into concentrations (ppm) using the computer programme "Tratio" written by Dr. R.C.O. Gill. This programme uses the function (peak intensity/background intensity) -1 to compensate for matrix and mass absorption effects, using scattered background radiation as an internal standard. Corrections for contamination and also certain element interferences (e.g. Sr $k\beta$ on Zr $k\alpha$) were included in this programme.

The standards used were synthetic spiked glasses constructed for use in analysis of lunar basalts (Brown <u>et al.</u>, 1970). The U.S.G.S. standards were also used. The samples were again arranged into the three groups described above and each group was run separately.

For analysis of the ultramafic samples, only the U.S.G.S. standards were used because the Ni and Cr values are much higher than the levels in the lunar standards. The elements Ba, Nb, Zr, Y, Sr, Rb and Zn were not determined for the ultramafics, because all of these elements were below the detection limit in a reconnaissance run of thirteen samples.

4.3.1. Ultramafic rocks

Analyses of the ultramafic rocks are given in Tables 4.5 to 4.7 together with their CIPW norms.

The analyses are all expressed on a water-free basis.

The variation in degree of serpentinisation of the ultramafic rocks makes the interpretation of their analysis difficult, owing to the possibility that the serpentinisation may have changed the proportions of the major constituents. An indication of the effects of serpentinisation is seen in samples where ferric iron contents are slightly higher than ferrous iron. This undoubtedly results from the production of magnetite during serpentinisation and oxidation of olivine. Engin and Hirst (1970) have shown, however, that the proportions of most major oxides remain relatively unaffected by serpentinisation and thus analyses expressed on a water-free basis are generally representative of unaltered rocks.

The following points may be remarked upon, on the basis of the major and trace element contents of the ultramafics. In general, the peridotites show a variation of MgO content between 39.25 and 47.62 percent, characteristic of the alpine type of peridotite, while the content of SiO_2 varies from 40.93 and 45.90 percent. The peridotites, mainly dunites, harzburgites and wehrlites can be subdivided on the basis of their significant major and trace oxide contents; mainly on the basis of SiO_2 , MgO, CaO, NiO, and Cr_2O_3 . The

dunites show a lower SiO₂ but higher MgO content than the harzburgites. The wehrlites have comparable SiO₂ contents to the dunites but have higher CaO and lower MgO contents than either the dunites or harzburgites. The analyses are in good agreement with values for peridotites from Burro Mountain California (Loney <u>et al.</u>, 1971).

Total iron, shown as Fe_2O_3 , varies between 10 and 12 percent for the dunites, and 8 and 9 percent for the harzburgites. Variation of total Fe as Fe_2O_3 in the wehrlites is greater, and inversely related to the MgO content. CaO contents are a reflection of the presence of major amounts of clinopyroxene in the wehrlites, and conversely, a minor presence in the dunites and harzburgites. It is possible that some CaO has been removed during serpentinisation; this would be most extensive for the wehrlites (Barnes <u>et al.</u>, 1967; Page, 1967b). Some harzburgites have moderate levels of CaO despite the absence of accessory, discrete clinopyroxene. These levels are due to the calcium contents of the orthopyroxene in the harzburgites.

Orthopyroxene, clinopyroxene and chromian spinel are the Al₂O₃-bearing minerals in the harzburgites and wehrlites. In the dunites, accessory chromian spinel

is virtually the only Al₂0₃-bearing phase.

Alkalis are present only in trace amounts, but in general the Na₂O value is higher in the harzburgites and wehrlites than in the dunites, which suggests that the Na₂O is probably in the clinopyroxenes. K_2O is truly depleted in the peridotites.

The Cr_2O_3 in the peridotites is mainly a function of the modal amount of chromian spinel present in these rocks. In general, the harzburgites have a range of 0.35 to 0.52 percent, the dunites 0.40 to 1.33 percent and the wehrlites from 0.47 to 0.59 percent Cr_2O_3 . In rare cases, wehrlites have higher Cr_2O_3 contents than either the dunites or harzburgites. This is most probably due to chrome-rich clinopyroxene in the wehrlites, a conclusion confirmed by electron-probe analysis of clinopyroxenes whose Cr_2O_3 content varies between 0.98 and 1.43 percent (see Chapter 5).

The NiO levels in the dunites vary between 0.19 and 0.37 percent, in the wehrlites between 0.16 and 0.30 percent and in the harzburgites occupy a very narrow range between 0.29 and 0.30 percent. The Ni of the ultramafics is mainly concentrated in the olivines and the high uniform level in the harzburgites reflects their refractory nature. The whole-rock distribution of Ni is confirmed by electron probe analysis of the olivines in the harzburgites and dunites which gives a distinctly higher Ni content for the olivine from harzburgite. Some variation in content may be a reflection of variable serpentinisation of these rocks. However, during partial melting, Ni would enter the refractory crystals of olivine and thus variation in the ultramafics may well reflect variation in the degree of partial melting, in temperature and pressure, or the extent to which the process approached equilibrium.

4.3.2. Cumulate pyroxenites

Analyses of the cumulate pyroxenites are given in Table 4.8, expressed on a water-free basis. The cumulate olivine pyroxenites are characterised by high MgO varying from 22 to 26 percent, while SiO_2 varies between 43 and 52 percent. Al_2O_3 contents are very low, generally between 1.11 and 1.77 percent; although in rare cases, Al_2O_3 amounts to 11 and 9 percent. CaO is present in relatively high amounts, varying between 14 and 18 percent. This is clearly due to the high modal proportions of clinopyroxene present in these rocks. The pyroxenites are depleted in alkalis and TiO₂.

Chromium and nickel are the only trace elements present in significant amounts. For instance Cr_2O_3 , in

the pyroxenites, varies between 0.40 and 1.01 percent. The chromium is present in significant amounts because Cr^{3+} substitutes in the octahedral sites of pyroxenes. The abundance is confirmed by electron-probe analysis of clinopyroxenes whose Cr_2O_3 content varies between 0.32 to 0.86 percent. The Cr is depleted in the magma early in fractional crystallization (Taylor, 1965).

NiO varies between 0.03 and 0.06 percent levels which are very much less than those of the ultramafic rocks described above. The chief host for Ni is olivine and thus part of the difference between the cumulate pyroxenite and ultramafic Ni levels may be due to the lower proportion of olivine in the cumulates. However, the cumulates themselves have been formed by fractional crystallisation of a basic magma which was generated by partial melting of the upper mantle. During the latter process, as seen above, Ni is partitioned into the refractory residuum, the crystalline phase, and thus depleted in the melt. Consequently the olivinepyroxenite cumulates have formed from a liquid from which Ni has been previously extracted.

4.3.3. Gabbro cumulates, norites and anorthosites

Analyses of these rocks are given in Tables 4.9 to 4.10 expressed on a water-free basis.

Many of the rock types, especially the olivinerich types, are altered with serpentinisation of olivine widespread and to a much lesser extent, alteration of pyroxenes to tremolite-actinolite. Serpentinisation of the olivines, in the olivine gabbros, has led to adjacent cracking of the plagioclases in some samples. Alteration can make the bulk-rock chemistry difficult to interpret if constituents have been added or removed from the original rock. The volume increase shown by the olivine as a result of serpentinisation suggests, however, that the process may have been essentially isochemical except for addition of H_2O . Based on 100xMgO/(MgO+FeO) ratios one can differentiate between the mantle rocks, the cumulates, and the basaltic rocks. The ultramafics have ratios of 87 to 92, the cumulates 60 to 73, and the basaltic rocks between 34 and 59.

4.3.4. Basaltic rocks

Analyses of the basaltic rocks are given in Table 4.11. These rocks include dykes (sheeted dykes) and extrusive lavas. They may in part be silicified and have relatively high silica values in the range 55 to 60 percent. Al_2O_3 contents vary from 8 to 14 percent, MgO from 4 to 10 percent, and CaO from 6 to 12 percent.

General characteristics are their low potassium and titanium contents which are invariably less than 1 percent. In some extrusive samples, Na₂O reaches 2 to 4% and the rocks are spilites, but generally Na₂O values lie in the range 0.39 to 1.53 percent. Based on the modes and chemical composition, the primary magma, from which the extrusive rocks are derived, is regarded as tholeiitic basalt.

4.4. Variation in major elements.

Variation is illustrated by means of AFM diagrams, and plots of total alkalis versus SiO_2 and of oxides versus MgO and versus 100xMgO/(MgO+FeO). The samples chosen to illustrate chemical variation were the freshest samples, based on petrographic examination. Those diagrams involving FeO and Fe₂O₃ result from plotting only those samples on which FeO determinations were made.

4.4.1. AFM diagram

In figure 4.1 the trend shown by the Oman ophiolites is compared with those for the Bay of Islands ophiolites (Malpas, 1978), the Troodos Plutonic Complex of Cyprus (Allen, 1975), the Bett's Cove ophiolite complex

Figure 4.1.(A) AFM variation diagram for the ultramafics, gabbros and basaltic rocks. B, C, D, E and F are those of the Bay of Islands ophiolites (Malpas, 1978), the Troodos Plutonic Complex of Cyprus (Allen, 1975), the Bett's Cove ophiolite complex (Upadhyay, 1973) and the ophiolites of Papua and New Caledonia (Rodgers, 1975).

į

(Upadhyay, 1973), and trends exhibited by the recognised ophiolites of Papua and New Caledonia (Rodgers, 1975).

The general ultramafic-mafic fractionation trend of the ophiolite rocks of the Khawr Fakkan area is similar to the above-mentioned ophiolite complexes, and also similar to the general ophiolite trend given by Thayer (1967). All the rock types plot along a trend of iron enrichment typical of tholeiitic suites. However, fractionation has been such that there is a decrease in iron from some ultramafic rocks to the cumulate gabbros, the most pronounced enrichment being in the basaltic The spread of the gabbroic rocks, apparently rocks. indicating their enrichment in alkalis, is probably explained by their variable concentration of cumulate plagioclase (Malpas, 1978). The basalt fractionation trends of Skaergaard and the Hawaiian lavas are more pronounced than in the ophiolite series. This may be due to the fact that the ophiolite series did not develop from a single magma reservoir, but from basaltic magma generated more or less continuously by partial melting of the mantle (Alleman and Peters, 1972).

4.4.2. Total alkalis versus SiO2

On the diagram (Fig. 4.2), all crustal rock types from the ophiolite suite studied can be classified as

Figure 4.2. Total alkali versus SiO₂ plot, showing the alkali-subalkali basalt divide proposed by MacDonald (1968), and the calc-alkali tholeiitic basalt divide proposed by Kuno (1968).

tholeiitic, since both populations (cumulate gabbros and basaltic rocks) plot below the alkali/sub-alkali dividing line proposed by MacDonald (1968) and also plot below the calc-alkaline trend of Kuno (1968). The rock types are similar to the ophiolitic rocks of the Baie Verte Group of Newfoundland described by Norman and Strong (1975).

4.4.3. SiO_2 , Al_2O_3 , CaO, Fe_2O_3 and FeO versus MgO

Figs. 4.3, 4.4, 4.5, 4.6 and 4.7 show plots of the major-element oxides against MgO. In most instances there is a clear separation between the plots of the upper mantle rocks (dunite, harzburgite and wehrlite) and the cumulate gabbros and associated basaltic rocks. The plot for "pyrolite" (Ringwood, 1966), lherzolite (Boudier, 1972), estimated Upper Mantle (Harris <u>et al</u>., 1967) and lherzolite (Dickey, 1970) are also shown. The position of the wehrlites in relation to this plot clearly demonstrates their less refractory nature in comparison to dunite and harzburgite. Most of the wehrlites are, nevertheless, more refractory than pyrolite.

The evolution of the liquid phase of the partial melting process is only shown by the fine-grained basaltic rocks, variation in the gabbros being clearly controlled by the relative proportions of the cumulate

Figure 4.3. SiO versus MgO diagram for the ultramafic-mafic rocks. The field of olivine, orthopyroxene, clinopyroxene and pure anorthosite is also plotted.

Figure 4.4. Al₂O₃ versus MgO diagram for the ultramafic-mafic rocks. The field of olivine, orthopyroxene, clinopyroxene and pure anorthosite is also plotted.

Figure 4.5. CaO versus MgO diagram for the ultramafic-mafic rocks. The field of olivine, orthopyroxene, clinopyroxene and pure anorthosite is also plotted.

Figure 4.6. Fe₂O₃ versus MgO diagram for the ultramafic-mafic rocks.

Figure 4.7. FeO versus MgO diagram for the ultramafic-mafic rocks.

minerals olivine, pyroxene and plagioclase. The basalts themselves are thus clearly not partial melts from the upper mantle but have evolved from a partial melt magma through the crustal process of fractional crystallisation.

An estimate of the composition of the gabbroic, partial-melt magma can be made by back-extrapolating the line of liquid descent shown by the fine-grained basaltic rocks, the line of plagioclase fractionation (towards anorthosite), and a line joining the cluster of dunite and harzburgite plots (at a point representing a mixture of approximately 9 parts olivine to 1 part orthopyroxene) and "pyrolite". The point of intersection of these evolutionary trend lines gives an estimate of partial melt composition, and further suggests a ratio of liquid to refractory residuum of the order of 1 to 3.

Many of the gabbros plot close to this point, the remainder having plots which are influenced by the dominant cumulus minerals. Olivine and pyroxene-rich cumulates show relative increase in MgO at fairly constant SiO₂ and CaO, olivine gabbros show increase in MgO and decrease in SiO₂ and CaO relative to the partial melt magma, and plagioclase enrichment is clearly shown by the trend towards anorthosite.

The line of liquid descent is reflected by a fairly smooth curve through the fine-grained rocks in both Figs. 4.3 and 4.5. These show that both SiO₂ and CaO decrease as MgO increases, a normal result of fractionation of olivine and/or pyroxene together with plagioclase.

Although Al₂O₃ increases into the anorthosites, the gabbros and fine-grained basaltic rocks show no systematic variation reflecting the ubiquitous presence of plagioclase feldspar in these rocks. Although FeO increases with decreasing MgO from mantle rocks to the cumulate gabbros and pyroxenites, the sharpest increase is in the basaltic rocks. Fractionation of olivine and clinopyroxene account for depletion of MgO relative to FeO and iron enrichment in the basalts is thus probably due to crystallisation of magnetite. Ferric iron is relatively abundant in the harzburgites and dunites compared to the cumulate gabbros and basaltic rocks. Breakdown of olivine to magnetite due to serpentinisation and oxidation, and the presence of considerable spinel, probably account for the high ferric content of the mantle rocks.

4.5. Variation in trace elements

4.5.1. Cr versus Ni (Fig. 4.8)

Irvine and Findlay (1972) used Cr and Ni variation to discriminate between alpine peridotites and cumulate rock associations in layered complexes. Their boundaries were drawn from the Bay of Islands Complex which contain an ultramafic transition zone of feldspathic dunite and troctolite. They suggested a similarity between alpine peridotites and the tectonic harzburgites and lherzolites of the Bay of Islands Complex, attributing a mantle origin to the latter. The peridotites of the present study supplement this view.

The studied dunites, harzburgites and wehrlites fall within Irvine and Findlay's general alpine-peridotite field, while most of the cumulate gabbros occupy the layered-series field. However, some of the cumulate pyroxenites and wehrlites have an unusually high concentration of Cr, in the range 6000-7000 ppm. Substitution of Cr in the clinopyroxenes and its concentration in early crystal phases during fractional crystallisation explains the maximum concentration of Cr in the cumulate pyroxenites. The concentration of Cr in the pyroxene of wehrlites is, however, probably representative of relatively primitive mantle material in which the degree of partial melting is

Figure 4.8. Cr versus Ni logarithmic plot for the ultramafic-mafic rocks.

insufficient for Cr to be redistributed into chromite a situation very clearly shown by the harzburgites and dunites.

Once the partial-melt magma has been generated, concentration of Cr and Ni into the early crystal phases of the olivine and pyroxene-rich cumulates results in depletion in the basaltic rocks.

4.5.2. Cr_0_0 and NiO versus $100 \times MgO/(MgO+FeO)$

The cation Cr^{3+} is virtually identical in size to Fe³⁺ but the more ionic nature of the bond with oxygen leads to preferential entry into Fe³⁺ positions, and consequent depletion at the early stage of fractional crystallisation (Taylor, 1965). According to Taylor, the larger size of V³⁺ causes it to enter rather later fractions than Cr^{3+} . The Cr^{3+}/V^{3+} ratio decreases with fractionation and is a good index of fractionation; Cr/Ni ratio is not a good index of fractionation as Cr and Ni enter different sites and different minerals. Cr abundance follows the series:

Spinel \gg early Cpx > late Mt > Opx > late Cpx \gg Ol. The Cr content of the parent magma decreased rapidly during fractionation (Fig. 4.9), but the separation of a discrete Cr-rich phase into the cumulus rocks makes this trend less apparent than for Ni in the range 100xMg0/

. •

(MgO+FeO) = 87-92.

A large gap in Cr₂O₃ concentration, at 0.23 to 0.29 percent in the present study shown in Fig. 4.9, and at 0.14-0.25 percent in the Troodos Plutonic Complex reported by Allen (1975), occurs between mantle rocks and most cumulate gabbros. The gap corresponds to the partitioning of Cr between refractory residuum (crystal phase) and magma (liquid) attendant on partial melting. The gap is partly bridged by concentration of Cr into the early crystal phases, olivine and pyroxene, and the resulting relatively high contents of these cumulates.

The well-known enrichment of Ni in early mineral fractions of magmatic crystallisation has been explained by Burns (1970). He considers that Ni²⁺ has high octahedral-site preference energy, and occupies the same sites as Mg^{2+} and Fe²⁺. Burns postulates that the solidus-liquidus relations in the binary Ni₂SiO₄-forsterite system are inverted in melts containing large proportions of tetrahedral-coordinated sites, so that enrichment of Ni results in early, rather than late formed, olivine.

Hakli and Wright (1967) showed the K_D liquid/olivine for Ni to be 0.10, 0.074 and 0.059 at 1250, 1160 and 1050° C, respectively. The appreciable difference between NiO contents of harzburgite and dunite, shown in Fig. 4.10

Figure 4.10.

NiO versus 100xMg0/(MgO+FeO) for the ultramafic-mafic rocks.

Dunanaite

•
suggests that K_D may be substantially influenced by pressure and temperature.

As seen in Fig. 4.10, the harzburgites contain from 0.29 to 0.30 percent NiO, the range of concentration being very limited in comparison to the other ultramafics. The uniformity of NiO in the harzburgites suggests that crystal-liquid partitioning has gone to equilibrium and that the temperature may be somewhat lower than for partial melting which produced dunite as a residuum. For the dunites, the range suggests either compositional variation in the starting material or a range of temperatures and pressures for partial melting, some of which were greater than for the harzburgites. Dunites contain 0.19 to 0.30 percent NiO, and overlap with wehrlites which contain 0.16 to 0.20 percent NiO. Concentration of Ni into the refractory residuum of partial melting results in a low NiO content in the magma generated by this process, and also in the cumulate olivine-pyroxenites resulting from fractionation of this magma. Cumulate olivine gabbros contain higher values of NiO than do the cumulate gabbros due to the absence of olivine in the latter, since the NiO content of the rocks is closely related to their olivine content. Ni thus correlates with Mg in the cumulates and in the basaltic rocks is

extremely low, approaching almost complete depletion.

4.6. Ti-Zr-Y and Ti-Zr-Sr discrimination diagrams

Pearce and Cann (1973), using two sets of discriminant analysis, outlined the fields shown on Figs. 4.11 and 4.12 corresponding to different volcanic environments.

The first set is based on the comparatively immobile elements Ti, Zr and Y. The second set is based on an additional element Sr, which gives a better discrimination plot. However, use of Sr is only strictly valid for fresh or slightly altered rocks.

The authors subdivide basalt populations in the following manner:

- "Within Plate" basalts (Ocean Island or Continental basalts).
- 2. Ocean-floor basalts (Tholeiitic and Alkalic).

3. Volcanic-arc basalts (Low-potassium tholeiites).

4. Calc-alkali basalts (High K Basalts).

Although fresh basalts from different tectonic settings show distinctive chemical features for some major and trace elements, such an approach is difficult to apply when the rocks are chemically altered. It is well known that weathering, spilitisation and other Figure 4.11. Y-Zr-Ti triangular diagram Pearce and Cann (1973) with selected basalts and gabbros plotted. Within Plate Basalts = D, Low K Tholeiites = A+B, Calc-alkali Basalts = C+B, and Ocean Floor Basalts = B.

Figure 4.12 Sr-Zr-Ti triangular diagram Pearce and Cann (1973) with selected basalts and gabbros plotted. Ocean Floor Basalts = C, Low K Tholeiites = A, and Calc-alkali Basalts = B.

metamorphism induce strong chemical mobilisation, particularly of the alkali and alkaline-earth elements. Ophiolites, presumed to have formed in an oceanic environment, are often strongly altered and have undergone secondary element mobilisation (Montigny <u>et al</u>., 1973; Pearce, 1975). The present study supplements this view.

Fig. 4.11 discriminates against "Within Plate Basalts" on the basis of Y content. From the diagram it is concluded that both the gabbros and basaltic rocks of the present study lie within the field of ocean-floor-basalts, although a minor proportion of both types fall within field A (low-K tholeiites). Fig. 4.12 is based on Sr, which is probably remobilised, and Sr appears to concentrate in the gabbros. However, the two populations fall distinctly in field A (Low-K tholeiites)

4.7. Discussion

Evidence from field relationships, petrography and geochemistry has been presented that the ultramaficgabbroic basaltic rock sequences of the Khawr Fakkan-Wadi Shi-Wadi Madha are genetically related, having been the result of partial melting of the upper mantle followed by fractional crystallisation of the basaltic

magmas generated by this process.

The trend of the rocks on the AFM diagram is similar to that of other ophiolites which have been referred to as alpine-type ultramafic complexes, with a lower Fe/Mg ratio and lower alkalis than that found in typical basalt fractionation trends of continental layered intrusions. Variation diagrams further reveal the chemical relationship between the various rock types, with trends in cumulates due mainly to the fractionation in various proportions of olivine, orthopyroxene, clinopyroxene, and plagioclase. The variation in iron, with low Fe/Mg ratios in the peridotites and cumulate pyroxenites, and higher Fe/Mg ratio in the cumulate gabbroic and basaltic rocks, can be explained by fractional crystallisation of magma for the gabbros and basalts under conditions of low oxygen fugacity. The parent magma for the studied ophiolitic rocks appears also to have been a low-Ti and low-K tholeiite type basaltic magma that crystallised under conditions of low oxygen fugacity, probably in the upper crustal zones beneath a mid-oceanic ridge.

CHAPTER 5: Mineralogy

5.1. Electron Microprobe analysis methods.

The mineral analyses listed in Tables 5.9-5.75 were obtained by electron microprobe analysis, using a Cambridge Instrument Company "Geoscan Mark II" electron microprobe. They were obtained from polished thin sections, 30-50 microns in thickness, the analysed samples being chosen on the basis of mineralogy and texture. Where possible, all the main coexisting phases were analysed.

Efforts were made to standardize operating conditions, and in order to avoid undue bias all the coexisting phases were analysed for the same elements, under the same conditions. The general methods employed are those described by Sweatman and Long (1969).

The "Geoscan" was operated under a high vacuum, at an accelerating voltage of 15 kV and a specimen current of 0.04A. The electron beam was kept focussed throughout, giving an analysis spot of 1-4 µM diameter.

Secondary X-rays were analysed using a wavelength dispersive system. The spectrometer has a take-off angle of 75[°] and was used with LiF, K.A.P. and P.E.T. analysing crystals. Table 5.1 shows the optimum analysing conditions for the nine main elements, and TABLE 5.1

Electron microprobe analysing conditions and standards

Wollastonite (Wo-2) Wollastonite (Wo-2) Orthoclase (AF-15) Standard Jadeite $A1_20_3$ TiO₂ Cr₂O₃ Mn Mg O Э Ц . Ni Background + 10301 Location +1030' +/-20 +/-20 07-50 +/-20 +/-2⁰ +/-20 +/-20 +/-20 +/-20 Peak 2 0 231 57⁰ 22 ' 52⁰ 58' 36° 16' 30⁰ 44' 500 17 1130 2' 52 -27 -69⁰ 17 86° 7' 43°, 620 48° Counter Flow = Analysing Crystal K.A.P. Р. Е. Т LiF = = Line ΚG 2 Element Na 5 g ч ЧN ыМ Al ЧE ъ Ņİ М Atomic <u>Number</u> н П 14 1 20 22 24 28 22 19 25 26 23

also conditions for the alkalis, Na and K.

The wavelength dispersive system is based on a comparative technique, and the standards used for each elements are also given in Table 5.1. The standards comprise metals, oxides and simple silicates of known composition. Both they and the polished thin sections were carbon coated simultaneously, prior to use, to ensure equal thickness of carbon coat.

Data from the "Geoscan" were corrected for the effects of atomic number (Duncumb and Reed, 1968), mass absorption (Heinrich, 1966), and fluorescence (Reed, 1965). Corrections were made using an on-line Varian 620-100 computer. The correction procedure was applied using the computer programme "Tim 3" written by Dr. A. Peckett. The on-line computer stores the data and also performs a dead-time correction, and subtracts background from peaks. Machine drift was readily detected.

The following procedure was adopted in setting up the "Geoscan" at the start of a probe session:

- Standard peaks were located and analysed (3.5 x 10 second counts).
- Standard backgrounds were analysed, above and below the peak (2-3 x 10 second counts each).

- Unknown backgrounds were taken, above and below the peak (4-5 x 10 second counts each).
- Unknown peaks were analysed (3-4 x 10 second counts each).
- 5. Results were calculated.
- 6. If the results were satisfactory, further unknown peaks were recorded, and the process was continued. If the results were not satisfactory, standard peaks were re-located and re-analysed. Background values, obtained for each peak, were used throughout a session, and they were not re-determined for each individual mineral.

Detection limits are calculated from the formula:

$$\frac{3}{M} = \frac{Rb}{Tb}$$

where M = mean peak counts/sec.

Rb = mean background, counts per second.

Tb = counting time on the background.

Calculated detection limits are in the range 200-500 ppm (0.02-0.05%).

The overall precision, taking into account the counting precision and uncertainties in the correction procedure, is probably in the order of $\frac{+}{-2\%}$ of the amount

of the major constituent present.

The probe analyses given in Tables 5.9-5.75 are all spot analyses each made at one point. Lobate areas from a serpentinized dunite were the phases which readily deteriorated under the electron beam, due to the presence of high amounts of H₂O. In all other cases it was possible to complete analysis before this occurred.

Corrected analyses were tabulated, with Fe (total) taken as Fe^{2+} , except that Fe^{2+} and Fe^{3+} were distributed stoichiometrically for the spinel minerals. Hydrated minerals are presented on a water-free basis, and the apparent percentage deficiency is taken to be the water content.

5.2. Olivine

Microprobe analyses were performed on olivines from peridotites, cumulate olivine pyroxenites, and cumulate olivine gabbros; the analyses are given in Tables 5.9-5.13 and 5.35, 5.37, 5.39, 5.41, 5.43, 5.54, 5.58, 5.60, and 5.62.

5.2.1. Peridotite olivines

Olivine compositions of Alpine-type peridotites and peridotites from various ophiolites are listed in Table 5.2.

Source	<u>F0%</u>
	88-92
Loney <u>et al</u> . (1971)	91.1-91.4
Himmelberg and Loney (1973)	90.7
England and Davies (1973)	91.6-93.6
Irvine and Findley, (1972);Malpas (1978)	89.4-91.8 91.1
Menzies (1974)	90-92
Allen (1975)	90.3-91.4
Sinton (1977)	89.9-90.6
	Source Loney et al. (1971) Himmelberg and Loney (1973) England and Davies (1973) Irvine and Findley, (1972); Malpas (1978) Menzies (1974) Allen (1975) Sinton (1977)

TABLE 5.2

Olivine compositions of Alpine-type peridotites and peridotites from various ophiolites.

There is little variation in major-element chemistry between the harzburgite olivines, and those from dunites, wehrlites, and dunite-wehrlites. In harzburgites the Fo content, as defined by Mgxl00/(Mg+Fe) ratio, varies between 90 and 92; in dunites between 89.7 and 91.6; and in wehrlites between 88 and 90. The intermediate type, classified as dunite-wehrlite because of the presence of minor amounts of small, interstitial clinopyroxene, varies

in Fo content between 90.2 and 91.6. The range of olivine compositions in the peridotites of the Wadi Madha and Wadi Shi areas is thus virtually identical to that of other peridotites of the harzburgite sub-type, in particular to the range given by Allen (1975) for the Troodos Plutonic Complex and to that given by Menzies (1974) for the ophiolites of Orthris, Greece. The majority of the olivines contain negligible amounts of Ti and Ca, and Cr is below detection by conventional techniques (0.005%). The CaO contents of the dunitewehrlite type, and of typical wehrlites show slight enrichment relative to other types, CaO varying between 0.01-0.8. This is to be expected in view of their higher clinopyroxene content. Al is almost completely absent in all samples probed. The amount of Al allowed in the olivine structure is negligible, and no significance is attached to the Al traces observed in some samples. Similarly, as the amount of Fe³⁺ in the olivine structure is limited, total Fe is expressed as FeO.

Dunite olivines can be discriminated from harzburgite olivine by their lower NiO content. This varies between 0.06 and 0.34% NiO while harzburgite olivines have contents between 0.24 and 0.46%. Variation of NiO and Fo content is displayed in fig. 5.1. The high NiO content of the olivine in harzburgites is consistent with their residual

Figure 5.1. NiO-Forsterite content relationships of olivine in mantle peridotites, olivine pyroxenites, and olivine gabbros.

nature, Ni being partitioned into the solid phase rather than the liquid during partial melting.

Olivines from wehrlites overlap with those from dunites and harzburgites with respect to NiO, but have slightly lower Fo contents (Fig. 5.1).

5.2.2. Cumulus olivines

The olivines of the pyroxenites are clearly different from those of the peridotites in their Fo content, which ranges between Fo₈₄ and Fo₈₇. The NiO content, on the other hand, varies between 0.11 and 0.24% and is similar to that in the majority of the dunitic olivines, as seen from Fig. 5.1. The distribution coefficient K_{D} , between olivine and orthopyroxene may be expressed by the function (Mg^{ol}/Fe^{ol}) (Fe^{opx}/Mg^{opx}). The K_{D} for two pairs of olivine and orthopyroxene from olivine pyroxenite is 0.97, and is identical to values obtained in harzburgites. The values are also similar to those reported by Allen (1975), who obtained a figure of 0.96 for two pairs of olivine and orthopyroxene from pyroxenites. The $K_{\rm D}$ value of the two pairs suggests that Mg-Fe equilibrium was established.

Olivine compositions of ophiolite gabbros are listed on the following page in Table 5.3.

Loc	cation	Source		<u>F0%</u>
1.	Wadi Madha and Wadi Shi areas		•	65-86
2.	Greenhill, New Zealand.	Mossman (197 3)		65 -79
3.	Bay of Islands, New Foundland.	Irvine and Findley (1972)		69.6-84.8
4.	Orthris, Greece	Menzies (1974)		77-86
5.	Papua, New Guinea	England and Davies (1973)		78.3-87.7
6.	Troodos Plutonic Complex.	Allen (1975)		69.8-83.9
7.	New Caledonia	Rodgers (1975)		78-89
		TABLE 5.3		

IADLE J.J

Olivine compositions of ophiolite gabbros

The composition of olivines from olivine gabbros in the Wadi Madha and Wadi Shi areas in Fig. 5.1 shows clearly that their iron-rich nature is reflected in their lower NiO contents. The K_D value for two pairs of coexisting olivine and orthopyroxene is 0.95, clearly similar to values in harzburgites, and again suggesting that Mg-Fe equilibrium was established.

5.3. Orthopyroxenes

Orthopyroxene analyses from harzburgites, olivine pyroxenites, olivine gabbros, norites, and hypersthene gabbros are listed in Tables 5.14-5.17 and 5.44, 5.46, 5.48, 5.50 and 5.52.

5.3.1. Peridotite orthopyroxenes

Orthopyroxene compositions from harzburgites of Alpine-type peridotites and peridotites from various ophiolites are listed in Table 5.4.

Location	Source	Mgx100/ (<u>Mg+Fe+Ca</u>)
1. Wadi Madha and Wadi Shi areas		88.8-91.6
2. Troodos Plutonic Complex	Allen (1975)	90-92
3. Orthris, Greece	Menzies (1974)	89-90
4. Papua, New Guinea	England and Davies (1973)	90-92
5. Bay of Islands New Foundland	Malpas (1978)	88.5-92.1
6. Red Mountain Peridotite, New Zealand.	Sinton (1977)	89.5-90.7
7. Vulcan Peak, Oregon	Himmelberg and Loney (1973)	89-90
8. Burrow Mountain	Loney <u>et al</u> . (1971)	89.8-91.1

TABLE 5.4

Orthopyroxene compositions from harzburgites of Alpine-type peridotites and ophiolites

The orthopyroxenes from harzburgites show little compositional variation with respect to Mgx100/(Mg+Fe)

ratio, which ranges from 90-92, while enstatite values expressed by the ratio Mgxl00/(Mg+Fe+Ca) range between 88.8 and 91.6. These values are consistent with the compositions of orthopyroxenes reported from Alpine-type peridotites and ophiolites of the harzburgite sub-types listed above. As clinopyroxene exsolution lamellae are present in the orthopyroxenes, the CaO values of 0.48 and 1.15 percent represent the host composition, and not the bulk pyroxene composition.

The Al_2O_3 content of the orthopyroxenes from the harzburgites varies from 1.59 to 2.68 percent, which is in the range of Al_2O_3 values (1.0 to 3.0 percent) reported for orthopyroxenes from other harzburgite subtype peridotites (Challis, 1965; Himmelberg and Coleman, 1968; Loney <u>et al.</u>, 1971; Jackson and Thayer, 1972).

5.3.2. Pyroxenite orthopyroxenes

The orthopyroxenes from cumulate olivine pyroxenites range in MgxlOO/(Mg+Fe) ratio from 85 to 87 and in MgxlOO/(Mg+Fe+Ca) from 84 to 86. They have less Al_2O_3 than orthopyroxenes from harzburgites (1.38 to 1.92 percent) and CaO is also slightly lower with a range of 0.58 to 1.04 percent. The average Cr_2O_3 and NiO contents of the orthopyroxenes are less than those of harzburgite orthopyroxenes, and they are also depleted in TiO₂. Zoning

within grains is not evident.

5.3.3. Gabbroic orthopyroxenes

The orthopyroxenes from cumulate olivine gabbros range in Mgx100/(Mg+Fe) ratio between 73 to 82 and in Mgx100/(Mg+Fe+Ca) from 72 to 80. The values are consistent with the compositions of orthopyroxenes from olivine gabbros reported by Allen (1975) for the Troodos Plutonic Complex. Allen obtained Mgx100/(Mg+Fe) ratios ranging between 72 and 83.9 and Mgx100/(Mg+Fe+Ca) Al₂0₃ is lower than for orthoof 70 to 82. pyroxenes from either harzburgite or pyroxenite (1.13 to 1.76 percent) but is consistent with values reported by Allen (1975) of 0.99 to 1.51 percent Al_2O_3 for the Troodos Plutonic Complex. CaO is higher than in orthopyroxenes of harzburgites and pyroxenites (0.97 to 1.60 percent) but again similar to those of the Troodos Plutonic Complex which range between 1.03 to 1.83 percent CaO. The orthopyroxenes from the olivine gabbros are higher in TiO, and MnO than those of the harzburgites and pyroxenites, but are depleted in Cr203.

5.3.4. Noritic and gabbroic orthopyroxenes

Orthopyroxene compositions from norites and gabbros of various ophiolites are listed in Table 5.5.

90,	s study	en (1975)	and & Davies	•man (1977)	
Sour	.8 This	35 Alle	Eng1 (1973	Cole	
CaO	2 1.31-3.1	6 1.06-1.8	0.8 -1.5	I	
a) Al ₂ 0 ₃	1.30-1.7	0.99-1.4	1.7 -1.8	l	5
Mgxlod(Mg+Fe+C	67-71	58.27-78.14	69-83	75-80	TABLE
MgxlOO((Mg+Fe)	71-73	68.53-80.64	70-85	I	
Rock Type	Norite	Norite (Cyprus)	Norite (Papua, New Guinea)	Norite	

.

Orthopyroxene compositions from norites and gabbros of various ophiolites.

F

The orthopyroxenes from the norites range in Mgx100/(Mg+Fe) ratio between 71 and 73 and of Mgx100/(Mg+Fe+Ca) ratio between 67 and 71.

Average Al₂O₃ of the orthopyroxenes from the norites varies between 1.30 to 1.72% similar to values for those from the olivine gabbros.

CaO content of the orthopyroxenes from the norites are distinctly higher than those of the olivine gabbros, ranging from 1.31 to 3.18%. Cr_2O_3 is negligible in the orthopyroxenes from the norites, but MnO occurs in significant amounts ranging from 0.28 to 0.41%, distinctly higher than in the olivine gabbros, pyroxenites and harzburgites.

5.4. Clinopyroxenes

Clinopyroxene analyses from harzburgite, wehrlite, plagioclase peridotite (one sample), olivine pyroxenite, olivine gabbro, and hypersthene gabbro are listed in Tables 5.18-5.22 and 5.55, 5.64, 5.59, 5.65, 5.57, 5.61, 5.66, 5.63, 5.51 and 5.53.

On a plot of SiO_2 versus Al_2O_3 shown in fig. 5.2 it is clearly seen that the clinopyroxenes from the mantle rocks and cumulates fall in the tholeiitic field, as defined by Le Bas (1962), with the exception of one sample which is slightly alkaline.

Figure 5.2. Plot of SiO₂/Al₂O₃ for clinopyroxenes from mantle peridotites, pyroxenites and gabbros.

Harzburgites Wehrlites Pyroxenites Gabbros

5.4.1. Peridotite clinopyroxenes

In the harzburgites the clinopyroxenes occur as small interstitial crystals and are relatively rare. They are essentially Cr-bearing diopsides with MgxlOQ/(Mg+Fe) ratio of 92 and 94, with the exception of sample 1031C which contains more iron and shows an MgxlOO/(Mg+Fe) ratio of 90. The Al₂0₃ content has a small range (1.8 to 2.8%), comparable to that in the coexisting orthopyroxenes. In all aspects the clinopyroxenes are similar to those reported from other harzburgite subtype bodies (Challis, 1965; Himmelberg and Coleman, 1968; Loney <u>et al</u>., 1971; Allen, 1975; Himmelberg and Loney, 1973).

The clinopyroxenes from wehrlites range in Mgxl00/(Mg+Fe) ratio between 90 and 93 and are distinctly higher in Cr_2O_3 than those of the harzburgite clinopyroxenes, ranging between 0.98 and 1.43 percent. Al_2O_3 ranges between 2.89 and 3.89 percent, also distinctly higher than in clinopyroxenes of the harzburgites.

5.4.2. Pyroxenite clinopyroxenes

The clinopyroxenes from cumulate olivine pyroxenites show a limited spread of Mgxl00/(Mg+Fe)ratio, ranging from 89 to 91. The Al $_2$ O $_3$ and Cr $_2$ O $_3$ contents are distinctly

lower than those of the harzburgites and wehrlites ranging between 1.85 and 2.44 percent Al_2O_3 and 0.32 to 0.86 percent Cr_2O_3 . FeO contents are higher than in clinopyroxenes from harzburgites and wehrlites.

5.4.3. Gabbroic clinopyroxenes

In general, clinopyroxenes from the cumulate olivine gabbros vary in Mgxl00/(Mg+Fe) ratio from 73 to 85. Al_2O_3 varies from 1.70 to 3.20 percent and is higher than in clinopyroxene from the pyroxenites and harzburgites, but is lower than in the wehrlites. Cr_2O_3 varies between 0.06 and 0.36 percent.

The clinopyroxenes from the olivine gabbros are generally distinguishable from those of the harzburgites, wehrlites and pyroxenites by their more iron-rich composition and higher TiO₂ contents, although there is some overlap.

However, in two olivine gabbros (sample 232 and 539) chrome-rich clinopyroxene is noted. In sample 232 it appears to be a xenocryst, possibly derived from a wehrlite. In summary, Mgxl00/(Mg+Fe) ratio in the chrome-rich clinopyroxene varies from 84 to 88 in sample 232 and from 88 to 90 in sample 539. Cr_2O_3 varies from 0.33 to 1.14 percent in 232 and from 0.34 to 0.53 in 539. TiO₂

values in these samples are lower than in the bulk of gabbroic clinopyroxenes and are comparable to wehrlite clinopyroxenes.

Clinopyroxenes from the pyroxene gabbros range in Mgx100/(Mg+Fe) ratio between 75 and 86. $A1_2O_3$ content varies between 2.15 and 2.82 percent. They show relative Ti enrichment and depletion in Cr.

5.5. Clinopyroxene-orthopyroxene-olivine relations

Fig. 5.3 shows element variation between and within the clinopyroxenes and orthopyroxenes. TiO_2 is observed to increase with decreasing MgxlOO/(Mg+Fe) ratio in both pyroxenes but is enriched in the clinopyroxenes by a factor of approximately 2 over its concentration in the orthopyroxenes.

The high TiO₂ present in the clinopyroxenes from the cumulate gabbros compares closely with the earliest analysed clinopyroxenes of the Skaergaard intrusion (Brown, 1957, analysis 1), and shows a similar trend as in the Bushveld, Stillwater, and Skaergaard clinopyroxenes.

 Cr_2O_3 , as would be expected, shows a rapid decrease in both pyroxenes as MgxlOO/(Mg+Fe) ratio decreases, and like TiO₂, it is enriched in the clinopyroxenes relative to the coexisting orthopyroxenes by a factor of about Figure 5.3. Plots of TiO₂, Cr₂O₃, and MnO against MgxlOO/(Mg+Fe) for pyroxenes from the ultramafic and mafic rocks.

:

-

1.5 to 2.0 for equivalent rock groups.

Mn increases with Fe²⁺, for which it substitutes, in both pyroxenes but in view of the greater Fe²⁺ in the orthopyroxenes, shows an enrichment in them relative to its concentration in clinopyroxenes. MnO occurs in about the same abundance as in the Skaergaard clinopyroxenes.

Figs. 5.4 and 5.5 show the major element interrelationship between and within the pyroxenes. Within the clinopyroxenes, CaO is enriched in those from harzburgites. Also there is a pronounced compositional gap within the gabbroic clinopyroxenes.

In the orthopyroxenes there is a slight tendency for Ca to increase with decreasing Mg/(Mg+Fe). The compositional gap between the pyroxenes, assuming they equilibrated on the pyroxene solvus, is indicative of an equilibration below 1000[°]C (Boyd and Schairer, 1964; Davis and Boyd, 1966; Boyd, 1970).

The tie-line relationships, illustrated in Fig. 5.4 also indicate equilibration of the pyroxenes due to their parallel nature, although some tie-lines do cross.

Figs. 5.6 and 5.7 summarise the relations between olivine and clinopyroxene for the various rock types. Again the tie-lines, representing Mg-Fe partitioning,

Figure 5.4. Pyroxene compositional variation in pyroxene quadrilateral for harzburgites, olivine pyroxenites and gabbros.

Figure 5.5. Clinopyroxene compositions of harzburgites, wehrlites, olivine pyroxenites and gabbros.

Figure 5.6. Compositional ranges of pyroxenes and olivines from mantle rocks.

Figure 5.7. Compositional ranges of pyroxenes and olivines from olivine pyroxenites and olivine gabbros.

are sub-parallel and indicate equilibration between these two phases.

The compositional relationship between the pyroxenes and olivines will be further discussed in the geothermometry and goebarometry section (5.9.2).

In summary:

1. The compositional gap, exhibited in Figs. 5.4, 5.5 and 5.7, within the gabbroic pyroxene could be explained in the following way:

When the asthenosphere melts partially beneath a midocean ridge it produces residual crystals, which accrete to the lithosphere, together with melt which may enter an axial magma chamber. This primary magma may then mix with more evolved magma already in the chamber. A pyroxene subsequently crystallizing from this melt will have a composition which is more evolved than the composition of either residual pyroxenes or pyroxenes which crystallized directly from the primary magma. A compositional gap might thus be expected between pyroxenes related to primary magmas and those related to magma whose composition is buffered in a large magma chamber (Pearce, J.A., pers. comm., 1977).

2. The small amount of clinopyroxenes present in the harzburgites probably formed at a late stage, precipitating from a trapped melt. They are very calcic clinopyroxenes representing relatively primitive magma.

5.6. Plagioclase

Cumulus plagioclase compositions were determined by microprobe analysis from olivine gabbros, norites, olivine-free gabbros, and anorthosites. The results are tabulated in Tables 5.23-5.28, and Table 5.6.

Intercumulus plagioclase was determined from one olivine pyroxenite and one plagioclase peridotite. Saussuritization of plagioclase in the peridotite and olivine pyroxenite make analyses of these samples impossible.

Intercumulus plagioclase in the peridotite and pyroxenite, and core compositions in all coarse-grained gabbros and norites are exceptionally calcic, generally in the range An_{94-97} for olivine gabbros, and $An_{90.62}$ to $An_{95.22}$ for norites. Coarse grained, olivine-free gabbros are generally in the range $An_{80.59}$ to $An_{88.08}$ while medium and fine grained olivine gabbros are less calcic, generally in the range of $An_{78.8}$ to $An_{89.70}$ for the medium-grained olivine gabbros, and $An_{74.82}$ to

TABLE 5.6 Plagioclase Analyses

<u>Rock Type</u> Coarse Grained Gabbro		Sample No.		Core An%
			231A	88.08
n	11	11	231B	84.88
"	ti	- 11	859A	80.59
11	H	11	526AA	86.55
Coarse	Grained	Anorth.	160A	93.30
"	u	11	160B	92.83

Plagioclase compositions of various ophiolites

Rock Type	<u>Core An</u> %	Source	Location
Wehrlite	94.2	Allen (1975)	Troodos Plutonic Complex
Olivine Gabbro	90.9	H	н Н
Pyroxene Gabbro	91.67	11	n
Troctolites and Eucrites	90-95	Coleman (1977)	

Olivine Gabbro

88.3-91.0

Mossman (1973)

Greenhills ophiolite, New Zealand $An_{79.02}$ for the fine-grained ones. Coarse-grained anorthosites range from $An_{92.83}$ to $An_{93.30}$. The intercumulus plagioclase in the peridotite has a composition of $An_{89.31}$ and that of the olivine pyroxenite has a composition of $An_{97.43}$.

Throughout the sections studied, no core-to-margin zoning was noticed.

5.7. Spinels

Electron microprobe analyses of spinels from harzburgites, dunites, wehrlites, plagioclase peridotites, sheared talcose serpentinites, and olivine pyroxenites are listed in Tables 5.29-5.33 and 5.36, 5.34, 5.38, 5.40 and 5.42. End member compositions have been calculated according to the method or Irvine (1965). Iron was determined as total iron, and the amount of FeO and Fe₂O₂ calculated by assuming the RO/R203 ratio in the chromian The validity of this assumption for spinels to be 1:1. natural chromian spinel has been demonstrated by Stevens (1944) and Irvine (1965). All analyses plot close to the chromite-picrochromite plane of Irvine (1965, 1967) Fig. 5.8. Projections of these data points onto the two planes expressing Crx100/(Cr+A1) and $Fe^{3+}x100/(Cr+A1+Fe^{3+})$ versus $Mgx100/(Mg+Fe^{2+})$ in figures 5.9 and 5.10.

Figure 5.8. A spinel compositional prism, from Irvine (1965). The prism shows the principle compositional end members, and the main spinel ratio plots.

Figure 5.9. Variation of chromian spinel compositions.

Figure 5.10. Variation of chromian spinel compositions.

5.7.1. Peridotite spinels

Spinel compositions of Alpine-type peridotites and peridotites from various ophiolites are listed on the following page (Table 5.7)

The chromian spinels of harzburgite show considerable range in chemical composition, the ratio Crx100/(Cr+A1)varying from 47 to 62 and $Mgx100/(Mg+Fe^{2+})$ from 52.82 to 66.54. Values for the cation ratio $Fe^{3+}x100/(Cr+A1+Fe^{3+})$ range between 2 and 12.5 which seems to be characteristic of chromian spinels from Alpine-type peridotites (Irvine, 1967; Loney et al., 1971; Medaris, 1972).

It is apparent from Fig. 5.9 that there is a gap in MgxlOO/(Mg+Fe²⁺) between the spinels of dunites and harzburgites. CrxlOO/(Cr+Al) values are somewhat higher in the dunites with a range between 46.71 and 73.66 MgxlOO/(Mg+Fe²⁺), however, is invariably lower than in the harzburgites spinels, ranging from 41.08 to 52.53. In general the dunite spinels contain more iron in the Fe³⁺ state than those of the harzburgites.

Fig. 5.9 shows that chromian spinels of the wehrlites have a somewhat lower range of Crxl00/(Cr+Al)and $Mgxl00/(Mg+Fe^{2+})$ ratios than those of the harzburgites; they have ranges of 42 to 50 and 45.62 to 56.92 respectively. Fe³⁺ values overlap with those of the dunites and

Location	Source	<u>Crx100/(Cr+A1</u>)	<u>Mgx100(Mg+Fe²⁺)</u>	<u>Rock-Type</u>
Troodos Plutonic Complex	Allen (1975)	51.85-74.76	44.38-61.14	Harzburgite
=	æ	56.90-85.52	35.06-48.83	Dunite
=	E	57.84-80.43	34.23-50.36	Wehrlite
Vulcan Peak, Oregon	Himmelberg & Loney (1973)	53.6-59.43	57-60	Harzburgite
2	8	42-70	45-55	Dunite
Burro Mountain	Loney <u>et al</u> ., (1971)	37-55	57-67	Harzburgite
2	=	30-73	51-73	Dunite
Red Mountain Peridotite, New Zealand	Sinton (1977)	30.4-62.8	45-69	Harzburgite

TABLE 5.7

Spinel compositions of Alpine-type peridotites and peridotites from various ophiolites.

i

harzburgites although average values of Fe²⁺ are slightly less than in spinel from harzburgite. The spinels from wehrlite have a distinctly lower range of Crx100/(Cr+A1) ratios than those from dunite. Both dunite and wehrlite populations overlap with respect to Mgx100/(Mg+Fe²⁺) and Fe³⁺x100/(Cr+A1+Fe³⁺), but the Fe and Cr rich dunite-spinels appear to have lower Mgx100/(Mg+Fe²⁺) ratios.

Spinels from plagioclase peridotites range in CrxlOO/(Cr+A1) between 43 and 50 and MgxlOO/(Mg+Fe²⁺) between 57 and 58; they plot close to spinels from the harzburgites. The Fe³⁺ contents overlap with those of the harzburgites, high Fe³⁺ in one sample being attributed to secondary oxidation.

Chromian spinels from sheared serpentinites range in CrxlOO/(Cr+Al) between 41 and 44 and MgxlOO/(Mg+Fe²⁺) between 46 and 48, overlapping with spinels from wehrlites with respect to both ratios. Similarly the Fe³⁺ content also overlaps with those of the wehrlites.

5.7.2. Pyroxenite spinel

Only one analysis was obtained from spinel in olivine pyroxenite; it has a Crx100/(Cr+A1) ratio of 64.2 and $Mgx100/(Mg+Fe^{2+})$ ratio of 43.42.

5.8. Magnetites and ilmenites

Iron-titanium oxides are present in trace amounts in the olivine and olivine-free gabbros, in reaction relationship with brown basaltic hornblende; they appear to have formed as primary magmatic phases. The oxide species present include ilmenite-hematite. permitting an estimate of temperature and f_{O_2} of formation of the coexisting pairs (Buddington and Lindsley, 1964). Buddington and Lindsley's magnetite-ilmenite, geothermometeroxygen barometer is based on the distribution of iron and titanium between coexisting magnetite and ilmenite. The geothermometer has been used on oxide pairs in which the ilmenites contain less than 5 weight percent MnO. The influence of manganese on the stability of ilmenite has been discussed by Neumann (1974), but is not known quantitatively. The oxidation process in the Buddington and Lindsley hypothesis can be presented by the following equation (Vincent, 1960):

 $3Fe_2TiO_4 + O = 3FeTiO_3$ Ulvospinel in the spinelmagnetite solid solution.

Magnetite in magnetiteulvospinel solid solution.

Fe₃0₄

+

Ilmenite and magnetite are generally pure end-member compositions, and the final equilibrium for two ilmenite-

magnetite assemblages seems to have been under oxygen fugacities between those defined by the QFM and the wüstite-magnetite buffers near 600° C, $f_{O_2} = 10^{-21.5}$ bars

5.9. Geothermometry

Simple experimental systems have yielded potential geothermometers and geobarometers, particularly for mineral assemblages characteristic of many ultramafic and mafic rocks. Therefore it is of interest to trace the pressure-temperature history of the ultramafic and cumulate rock assemblage. Methods and results for determination of temperatures and pressures of equilibration for the peridotites and cumulate rocks of this study are shown in Appendix I.

5.9.1. Method of Jackson (1969)

Partitioning of Mg and Fe²⁺ between olivine and spinel.

Cation distribution between coexisting olivine and chromian spinel has been discussed by Irvine (1965), Jackson (1969) and Loney <u>et al</u>. (1971). Irvine has shown that, while the effect of pressure over moderate ranges may be negligible, the relative distribution of

ferrous iron and magnesium between olivine and spinel may be expected to vary significantly with temperature.

The distribution of Mg and Fe²⁺ is complicated by the presence of trivalent cations in the spinel structure. The Mg-Fe²⁺ exchange reaction between coexisting olivine and chromian spinel can be written:

 $Fe^{2+}Si_{0.5}O_2 + Mg(Cr\alpha, Al\beta, Fe^{3+}U)_2O_4$

$$MgSi_{0.5}O_2 + Fe^{2+} (Cr\alpha, Al\beta, Fe^{3+}U)_2O_4$$

The values α , β , and \forall are the respective fractions of Cr, Al, and Fe³⁺ in chromian spinel. The thermodynamic equilibration coefficient (K_D) may be defined by the following equation, assuming ideal solid solution behaviour (Irvine, 1965; Jackson, 1969).

$$\mathbf{K}_{\mathrm{D}} = \frac{\begin{pmatrix} \mathbf{x}_{\mathrm{Mg}}^{\mathrm{O1}} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{\mathrm{Fe}2}^{\mathrm{Sp}} \\ \begin{pmatrix} \mathbf{x}_{\mathrm{Fe}2}^{\mathrm{O1}} \end{pmatrix} \end{pmatrix}}{\begin{pmatrix} \mathbf{x}_{\mathrm{Fe}2}^{\mathrm{O1}} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{\mathrm{Mg}2}^{\mathrm{Sp}} \end{pmatrix}}$$

where x_{Mg}^{O1} and x_{Fe}^{O1} are mole fractions of the end members MgSi_{0.5}^O₂ and FeSi_{0.5}^O₂ respectively, and x_{Mg}^{sp} and x_{Fe}^{sp} are the mole fractions of divalent cations in the spinels.

Using Jackson's formula (1969), it is possible to calculate the equilibration temperature for olivine-spinel pairs, using Gibbs free-energy data. It is also possible to calculate the theoretical compositions of all spinels, coexisting with an olivine of fixed composition at a given temperature, by substituting different values for α , β , and \forall in the following equation:

 $T^{O} = \frac{5580 \, \alpha + 1018 \, \beta - 1720 \, \forall + 2400}{0.90 \, \alpha + 2.56 \, \beta - 3.08 \, \forall - 1.47 + 1.987 \, \ln K}$

where T is in degrees Kelvin. Possible errors may be introduced due to uncertainties in Gibbs free energy values. Possible maximum errors in the free energies of formation of the spinels alone could affect the temperatures by as much as 300°C. However, these errors are equivalent to standard state errors and should not affect the relative temperatures. Temperatures derived from the above equation are, geologically, quite reasonable.

It appears from Appendex I that the dunites have temperatures of 872-1075[°]C, harzburgites of 1099-1167[°]C, and wehrlite (one sample) of 1104[°]C, the plagioclase peridotite (one sample) an unusually high value of 1263[°]C,

and the olivine pyroxenite (one sample) of 879°C.

Temperature ranges of Alpine-type peridotites and peridotites from various ophiolites are listed in Table 5.8.

Location	<u>Temperature in ^OC</u>	Source
Wadi Shi-Wadi Madha Area	872 - 1263	This study
Blue River ultramafics	1030 - 1231	Pinsent, R.H. Ph.D. Thesis (1974) Univ. of Durham.
Burro Mt., USA	1098 - 1335	Loney <u>et al</u> ., (1971) Himmel- berg and Loney (1973).
Oregon, USA	1200 - 1410	Medaris (1972)
New Caledonia	1180 - 1300	Rodgers (1973)
Bay of Islands Newfoundland	1200 - 1300	Malpas (1978)
Red Mountain Peridotite, New Zealand	930 - 1140	Sinton (1977)
Troodos Plutonic Complex	913 - 1256	Allen (1975)

TABLE 5.8

Temperature ranges of Alpine-type peridotites and peridotites from various ophiolites

Temperatures are based on thermodynamic data from Irvine (1965) and Jackson (1969). The temperature ranges listed above were derived using the same method. Those of the Troodos Plutonic Complex (Allen, 1975), the Red Mountain Peridotite (Sinton, 1977), and the Vulcan Peak Peridotite (Himmelberg and Loney, 1973) are reasonably similar to those for the Wadi Shi-Wadi Madha area.

Median compositions of spinels are plotted in Fig. 5.11 and the actual mole fraction, X_{Mg}^{ol} of coexisting olivine shown, after Loney <u>et al</u>. (1971). The agreement between the actual and theoretical composition is relatively good, especially for assemblages low in Al and Mg. Fig.5.11 has been contoured according to spinel compositions which, at a given P and T, will equilibrate with olivine or pyroxene of fixed Mg/Fe ratio. Fig. 5.12 after Irvine (1965) and Rodgers (1973) shows the mole fraction of Cr in spinel, Y_{Cr}^{Sp} plotted against the Fe-Mg distribution coefficient

$$K_{D} = \ln \left(\frac{X_{Mg}^{ol} \cdot (1 - X_{Mg}^{Sp})}{(1 - X_{Mg}^{ol}) \cdot X_{Mg}^{Sp}} \right)$$

According to theory, when spinels are plotted as in Fig. 5.12 they should lie on a straight line with slope equal to lnK. However this relationship is not perfect, and Rodgers (1973) for example quotes a range of lnK from 2.25 to 3.5.

Figure 5.11. A spinel cation ratio plot, after Loney <u>et al</u>. (1971). The plot has been contoured to give the theoretical coexisting olivine Mg cation fraction at 1200°C. The contours are for values of 0.900, 0.915, 0.930. Observed olivine Mg cation fractions are given for each analysed coexisting pair. Sample numbers are: 1=300A, 2=300B, 3=304A, 4=305A, 5=528A, 6=531A, 7=531B, 8=517A, 9=517B, 10=325A, 11=325C, 12=1037A, 13=1044A, 14=503A, 15=315A, 16=1027A.

Figure 5.12. An olivine-spinel equilibration plot, after Irvine (1965), and Rodgers (1973). An Mg-Fe distribution coefficient is plotted against the Cr cation fraction in spinel. The two lines with slopes of 3.7 and 2.6 are shown for reference purposes only. Sample numbers are: 1=300A, 2=300B, 3=304A, 4=305A, 5=528A, 6=531A, 7=531B, 8=517A, 9=517B, 10=325A, 11=325C, 12=1037A, 13=1044A, 14=503A, 15=315A, 16=1027A.

The two lines in Fig. 5.12, with slopes of 3.7 and 2.6 are shown for reference purposes only and do not represent best-fits.

5.9.2. Method of Wood and Banno (1973)

The use of partition coefficients of Mq^{2+} and Fe^{2+} between coexisting orthopyroxenes and clinopyroxenes has been shown to give reasonable results when applied to the present study. Wood and Banno (1973) suggest that values agree with experimental data to within $\frac{1}{2}$ 60°C although errors of $\frac{+}{-}100^{\circ}$ C are probably not unreasonable. The results of the application of this method to the present study are listed in Appendix I. Appendix I shows that harzburgites indicate equilibration temperatures between 969 and 989°C. Tie lines indicate equilibrium between orthopyroxene and clinopyroxene in Fig. 5.4. Since clinopyroxene is a late-stage mineral, therefore these temperatures represent the lower limits of equilibration and not the upper temperature limit of olivine plus orthopyroxene equilibration. Since the activity-composition relations of Wood and Banno (1973) have been adopted to account for the solution of Fe, Al, Ti, Cr, Mn and Na in the pyroxene phases, one harzburgite sample (1044A) was not used, because of the high Na content in the clinopyroxene, thus resulting in a negative

 $\begin{pmatrix} x_{M_2}^{M_2} \end{pmatrix}$ cpx

Cumulate pyroxenites indicate equilibration temperatures between 927 and 974[°]C, and cumulate gabbros and norite between 839 and 999[°]C.

5.9.3. Method of Mysen and Boettcher (1975)

The orthopyroxene-clinopyroxene geothermometer of Mysen and Boettcher (1975) is based on variation in the ratios $(X_{A1}^{VI}/X_{Cr})^{opx}/(X_{A1}^{VI}/X_{Cr})^{cpx}$ with temperature. It has been calibrated against the clinopyroxene limb of the solvus (Davis and Boyd, 1966; Warner and Luth, 1974). Application of this geothermometer generally gives temperatures that are higher than those derived by the method of Wood and Banno (1973). The results of the application of this method to the present study are listed in Appendix I. Appendix I shows that harzburgites indicate equilibration temperatures between 978 and 1088°C, cumulate pyroxenites between 729 and 1118°C. This method, however, was not applicable for two gabbros and one pyroxenite because $(X_{Cr})^{opx} = 0$. 5.9.4. Method of Hakli and Wright (1967)

Nickel partition between coexisting clinopyroxene and olivine can be used as a geothermometer (Hakli and Wright, 1967; Hakli, 1968) Temperature varies with the distribution coefficient K = ol Ni/cpx Ni, values in ppm, according to the equation $\ln K = -A/T+B$, where A = 8647, B = 7.838. Sample values and equilibration temperatures for harzburgites, plagioclase peridotite, wehrlites, cumulate olivine pyroxenites, and gabbros are listed in Appendix I. The temperatures are fairly consistent though somewhat higher than those obtained from the method of Wood and Banno (1973). Appendix I shows that harzburgites range between 994 and 1330°C, plagioclase peridotite 972°C, wehrlites between 879 and 1045°C, pyroxenites between 911 and 1369°C, and the cumulate gabbros between 849 and 1291°C. This method, however, was not applicable for one wehrlite, two pyroxenites, and one olivine gabbro because ppm Ni in clinopyroxene = 0.

Using the same method, Menzies (1973) obtained temperatures between 1000 and 1150°C for the ultramafic peridotites of Greece and Allen (1975) obtained temperatures of 1121 and 1126°C for the harzburgites of the Troodos Plutonic Complex, and 1104 and 1166°C for the

wehrlites.

5.9.5. Method of O'Hara (1967)

O'Hara (1967) developed a useful pressure-temperature grid based on the chemistry of clinopyroxenes. In Fig. 5.13,

 α_c and β_c parameters for clinopyroxenes are plotted for ultramafic harzburgites, wehrlites and cumulate olivine pyroxenites. The values for α_c and β_c are listed in Appendix I. α_c and β_c values are determined by the relationships:

$$\mathbf{r}_{c} = \frac{\text{wt\% CaSiO}_{3} \times 100}{\text{wt\%}(\text{CaSiO}_{3} + \text{MgSiO}_{3})}$$

$$\beta_{c} = \frac{\text{wt\% Al}_{2}^{O_3} \times 100}{\text{wt\% (CaSiO}_3 + \text{MgSiO}_3 + \text{Al}_{2}^{O_3})}$$

 β_c takes into account the pressure-dependent solid solution of Al₂O₃ in the clinopyroxene. Examination of Fig. 5.13 indicates that the harzburgites equilibrated at pressures less than 7Kb and temperatures in the range 950 to 1250°C, and wehrlites 1050 to 1250°C, near the solidus. The pressures correspond to a depth of about 22km in oceanic regions. The olivine-pyroxenites equilibrated under closely similar conditions, at temperatures of about 1020°C and pressures of less than 7kb. One wehrlite sample (804D), however, gave anomalous Figure 5.13. Pyroxene Grid of O'Hara (1967) with plotted values α_c and β_c of analysed clinopyroxenes from harzburgites, wehrlites and olivine pyroxenites.

Ē

results with a pressure of about 18kb, and temperature of 930°C, the pressure corresponding to a depth of about 55km! The Bay of Islands peridotites reported by Malpas (1978) equilibrated at temperatures of 1000to 1100°C and pressures of about 18-20 kb. Peridotites from the Troodos Plutonic Complex reported by Allen (1975), and those of the Lanzo peridotite Massif reported by Boudier (1978), however, appear to have equilibrated at temperatures of 1150 to 1200°C and 1150 to 1250°C, and pressures of 2 to 4 kb, and less than 5 kb respectively (closely similar values to those reported here).

Stroh (1976) has devised a procedure for calculation of equilibration pressures in harzburgites. Application of this technique gave anomalous results with calculated pressures of -2 to -3 Kb. Sinton (1977) has also attempted to calculate equilibration pressures for peridotites from the Red Mountain, using Stroh's procedure. He also derived anomalous values of -1 to +1 Kb.

5.9.6. Method of Powell and Powell (1974)

The olivine-clinopyroxene geothermometer of Powell and Powell (1974) was derived on the basis of exchange of Mg and Fe between olivine and clinopyroxene according to the reaction:

$$2CaMgSi_2O_6 + Fe_2SiO_4 = 2CaFeSi_2O_6 + Mg_2SiO_4$$

The clinopyroxene Ml site is non-ideal, and it is expressed as a regular solution. Mixing parameters were calculated, and calibrated against iron-titanium oxide temperatures. These enable equilibrium olivineclinopyroxene pairs to be used as geothermometers. The pressure dependence of the geothermometer has been calculated as 5° C per Kilobar. The following equation may be used to determine temperature (T), in degrees Kelvin, at a given pressure (P) in bars.

$$T = \frac{-2X_{A1}}{(920000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 10100}{(320000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 10100}{(320000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 10100}{(320000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 10100}{(320000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 10100}{(320000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 10100}{(320000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 10100}{(320000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 10100}{(320000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 10100}{(320000+3.6P) - 0.0435(P-1) + 10100} \times \frac{(320000+3.6P) - 0.0435(P-1) + 1000}{(320000+3.6P) - 0.0435(P-1) + 1000} \times \frac{(320000+3.6P) - 0.0435(P-1) + 1000}{(320000+3.6P) - 0.0435(P-1) + 1000} \times \frac{(320000+3.6P) - 0.0435(P-1) + 1000}{(320000+3.6P) - 0.0435(P-1) + 1000} \times \frac{(320000+3.6P) - 0.0435(P-1) + 1000}{(320000+3.6P) - 0.0435(P-1) + 1000} \times \frac{(320000+3.6P) - 0.0435(P-1) + 1000}{(320000+3.6P) - 0.0435(P-1) + 1000} \times \frac{(320000+3.6P) - 0.0435(P-1) + 1000}{(320000+3.6P) - 0.0435(P-1) + 1000} \times \frac{(320000+3.6P) - 0.0435(P-1) + 1000}{(320000+3.6P) - 0.0435(P-1) + 1000} \times \frac{(320000+3.6P) - 0.0435(P-1) + 1000}{(320000+3.6P) - 0.0435(P-1) + 1000} \times \frac{(320000+3.6P) - 0.0435(P-1)}{(320000+3.6P) - 0.0435(P-1)} \times \frac{(320000+3.6P) - 0.0435(P-1)}{(320000+3.6P) - 0.0435(P-1)} \times \frac{(320000+3.6P) - 0.0435(P-1)}{(320000+3.6P) - 0.0435(P-1)} \times \frac{(320000+3.6P) - 0.0435(P-1)}{(320000+3.6P) - 0.0435(P-1)} \times \frac{(320000+3.6P) - 0.0435(P-1)}{(32000+3.6P) - 0.0435(P-1)} \times \frac{(320000+3.6P) - 0.045(P-1)}{(32000+3.6P) - 0.045(P-1)} \times \frac{(320$$

The symbols X_{Mg} , X_{Fe} and X_{A1} denote the mole fractions of these elements in olivine, and in the clinopyroxene Ml site. The value for Al includes other trivalent cations in octahedral coordination. The value for R is the gas constant (1.987 cals/mole/^OK). The equation defines P-T lines, and assuming a pressure of 5 kbars, it is possible to estimate olivine-clinopyroxene equilibration temperatures. The results of the application of this method to the present study are listed in Appendix I.

Appendix I shows that the range in temperatures calculated for the various rock types is very narrow with a total range of only 1019 to 1048°C.

Wood (1976) has discussed in detail the reason for the narrow temperature estimates for both lherzolite nodules and for the lavas used by Powell and Powell (1974) in calibrating their technique. Wood considered a clinopyroxene with an occupancy of O.1 aluminium in the Ml site. This figure is close to the average value in the lavas used for calibration and is also similar to that in lherzolite clinopyroxenes discussed by Wood (1976).

According to Wood, if the distribution coefficient K is 0.1 then the temperature derived from the Powell and Powell equation would be 974°C, while a value of 10 changes the estimated temperature to 1062°C. A change in the distribution coefficient K of two orders of magnitude, much greater than the range in the calibration lavas, only alters the one bar temperature by 88°C. Wood concluded therefore that temperatures derived by the Powell and Powell technique are virtually independent of K, but that K depends primarily on the aluminium content at Ml sites in the clinopyroxene. Further, all 1 bar temperature estimates should fall within the very small temperature range of 915-1060°C. Only 3 of 62
temperatures, at 1 bar, given by Powell and Powell (1974) fall outside this range, while all the lherzolite nodules discussed by Wood (1976) had temperatures, at 1 bar, in the middle of the calibration range, 1010-1017^oC.

CHAPTER 6. Summary

6.1. The ophiolite sequence

The field relationships, petrography, geochemistry and phase chemistry of the peridotite-gabbro-basalt sequence of the Khawr Fakkan-Wadi Shi-Wadi Madha area suggest that the various components are genetically related. They result from partial melting of the upper mantle, followed by fractional crystallisation of the basic magma generated by this process. The rocks comprise a typical ophiolite sequence and are similar to assemblages from other Alpinetype ultramafic complexes.

The area studied may be broadly subdivided into two major zones. In the west the rocks are principally tectonised ultramafics, while to the east of these a series of cumulate gabbros, with dolerite dykes particularly prevelant in the east, passes upwards into basaltic lavas. The latter are only exposed in the extreme coastal region. The tectonised ultramafics are separated from the gabbroic and basaltic rocks by an easterly-dipping thrust-fault zone, which strikes approximately north-south. At no point was a normal passage from ultramafic rocks to cumulate gabbros observed. Furthermore, the thrust-fault zone is invariably intensely serpentinised and heavily impregnated with magnesite in veins and pockets. The area can thus be

conveniently subdivided by this fault.

6.2. The area to the west of the major thrust fault

The rock types exposed in this area are harzburgites, dunites and wehrlites. They are all, to some extent, serpentinised. Those exposed in the north are principally harzburgites, although a discrete area of tectonised dunite occurs to the east of the main fault. This block is faultbounded and probably owes its present position to thrusting.

In the southern part of the area the principal rock types are dunites and wehrlites. The two are intimately associated, and form a banded sequence. The strike of the banding is approximately north-northeast and thus oblique to the main thrust-fault.

The harzburgites have an intensely tectonised fabric with large elongate olivine showing strain and domain extinction. They consist of an assemblage of highly refractory chemistry, with a whole-rock MgOxlOO/(MgO+FeO) ratio of 90.5 and an MgxlOO/(Mg+Fe) ratio of 91.0 in the olivines. Whole-rock NiO levels vary from 0.29 to 0.30 percent, while the olivines contain from 0.24 to 0.46 percent NiO. The high NiO contents of the olivines in the harzburgites are consistent with their residual nature, Ni being partitioned into the solid phase, rather than the liquid, during partial melting. Na₂0, K₂0, CaO and Al₂O₃ are each generally less than 1 percent in content, and

TiO, values are low.

The dunites also show a strong tectonic fabric and a total absence of cumulus textures. They have a closely similar bulk chemistry to the harzburgites, with an overall MgOx100/(MgO+FeO) ratio of 91.4 and an identical average Mgx100/(Mg+Fe) ratio of 91.0 in the olivines. Whole-rock NiO levels range from 0.19 to 0.37 percent, while the olivines themselves contain from 0.06 to 0.34 percent NiO.

Textural evidence shows that most of the wehrlites are strongly deformed, with their olivines showing evidence of strain in the form of undulose and zone extinction. The olivines are elongate and have a strong preferred orientation. The whole-rock chemistry of the wehrlites indicates that they are only slightly less magnesium-rich than the harzburgites and dunites. Their whole-rock MgOx100/(MgO+FeO) ratio varies from 88 to 91 and the ratio Mgx100/(Mg+Fe) in the olivines averages 89.3. Whole-rock NiO levels vary from 0.16 to 0.20 percent. The NiO content of olivine from wehrlite varies over a wide range (Fig.5.1), but the NiO versus MgOx100/(MgO+FeO) plot, shown in Fig. 4.10 indicates that the NiO contents of the wehrlites are generally lower than those of either the harzburgites or dunites.

The high, and uniform, NiO content of the harzburgites is consistent with their origin as a refractory residuum

of partial melting. The evidence for a similar origin for the dunite is less certain. A residual origin is perhaps supported by their closely similar whole-rock geochemistry to that of the harzburigtes, MgOxlOO/(MgO+FeO) ratios being almost identical in the two rock types, and considerably more magnesian than any of the clearlydefined cumulates. More indirectly, their tectonised fabric and absence of cumulate texture could be used as an argument for a residual origin, although it would clearly be possible to thoroughly tectonise a cumulate and obliterate the original fabric.

The whole-rock geochemistry shows that the dunites have higher Cr contents than the harzburgites, but lower Ni contents. As dunites are generally considered to represent the partial melt residue of more intense partial melting than that required to generate harzburgite, their lower Ni contents are anomalous. The more extreme partial melting necessary to produce a dunite residuum should have resulted in more extreme fractionation of Ni into residual olivine.

The wehrlites also have lower Ni contents than the harzburgites, or indeed the dunites, but this could result from less advanced partial melting. These rocks, by definition, contain considerable clinopyroxene, which has high Cr_2O_3 contents, up to 1.5 percent. Partial melting should result in the elimination of clinopyroxene first,

the Cr released in the process possibly being recombined in spinel. Several plots, e.g. Figs. 4.3, 4.4 and 4.5, show that the wehrlites are less refractory than either the harzburgites or dunites, but more refractory than pyrolite. The intimate association of the wehrlite and dunite in the south of the ultramafic area suggests they must have a common origin, indeed, within this area the two rock types appear to grade into each other in places.

The relatively low Ni contents of the dunites remain something of an enigma. Absence of a cumulate texture and presence of a tectonic fabric are not, in themselves, evidence of a residual origin, as indicated above. Generation of large volumes of cumulus olivine could arise by rapid upwards movement of a picritic partial melt - a process which should promote olivine crystallisation and fractionation (O'Hara, 1968). If this is the case, then a cumulus origin must also be postulated for the wehrlites, the banding of these two rock types thus reflecting phase layering which has been partially obliterated by later tectonism.

6.3. The area to the east of the major thrust fault.6.3.1. Cumulates

The gabbro cumulates to the east of the major thrustfault form a clearly identifiable unit. Phase-layering is evident within these rocks although individual layers cannot

be traced laterally for more than a few metres. The petrographic criteria used to define the cumulates are those proposed by Wager, Brown and Wadsworth (1960). The cumulus types recognised include olivine pyroxenites, olivine gabbros, norites and hypersthene gabbros, gabbros and anorthosites and leucocratic gabbros. Where transected by faults gabbro mylonites are developed. Cumulus textures include heteradcumulates, adcumulates and mesocumulates.

The rocks have lower Fe/Mg ratios and alkalis than are found in typical basalt fractionation trends of continental layered intrusions. Variation diagrams show that trends in the cumulates are due mainly to the fractionation of various proportions of olivine, orthopyroxene, clinopyroxene and plagioclase. The parent magma for the gabbroic, and basaltic, rocks studied here appears to have been of low-Ti and low-K tholeiitic type. The gabbros, themselves however, are clearly not representative of their liquids but are cumulates formed from the low-pressure crystallisation of (a) olivine (b) olivine and plagioclase (c) olivine, plagioclase and clinopyroxene.

6.3.2. Basaltic rocks

The basaltic rocks occur both as intrusive dolerite dykes and as lava flows, the latter being restricted to the coast and the offshore island of Sirat al Khawr. The basalts are invariably altered, with ferromagnesian minerals

being represented by amphibole in the most part. They are also silicified, with quartz occurring in interstitial patches or pools, into which project fine, lath-shaped plagioclases and needle-like amphiboles.

Evidence for silicification is supported by the high SiO, contents, which range up to 60 percent. These values are virtually the levels expected in a dacite, yet no other petrographic or chemical characteristics support differentiation to dacite. The silica content thus probably reflects a net addition. This is born out by the alkali-silica plot, shown in Fig. 4.2. In this diagram the crustal members of the ophiolite suite (gabbros and basaltic rocks) plot below the alkali/sub-alkali field boundary proposed by MacDonald (1968) and also below the calc-alkaline/tholeiitic field boundary of Kuno (1968). They thus possess tholeiitic characteristics. The high Sio, bearing members, however, do not have the correspondingly high alkalis expected had they resulted from fractional crystallisation alone. Further evidence for metasomatism may be deduced from Fig. 4.12. This figure shows that both basalts and gabbros are within the field of low-K tholeiite, but that Sr contents are distinctly lower in the basalts than the gabbros. Although this distribution may result from Sr depletion with differentiation, Sr being concentrated into cumulus plagioclases, it could also be

partly due to mobilisation of Sr from the basalts during metasomatism and alteration.

6.4. Primary, mantle-derived, liquids and magma evolution.

Figs. 4.3, 4.4 and 4.5 are plots of major-element oxides against MgO, and show a clear separation between the ultramafic rocks, dunite, harzburgite and wehrlite, and the cumulate gabbros and basaltic rocks. The composition of pyrolite is also shown in the figures.

The evolution of the liquid phase is only shown by the fine grain-size basaltic rocks, although even these are probably modified by subsequent silicification. The gabbro compositions are clearly controlled by the relative proportions of the cumulate minerals olivine, pyroxene and plagioclase, and thus the basalts cannot represent direct partial melts from the upper mantle, but rather have evolved through the crustal process of fractional crystallisation.

An estimate of the composition of the partial-melt magma can be made by back-extrapolating the line of liquid descent shown by the basaltic rocks, the line of plagioclase fractionation (towards, or from, anorthosite), and a line joining the cluster of harzburgite and dunite plots, at a point representing a mixture of 9 parts olivine to 1 part orthopyroxene, and pyrolite. The point of intersection of these trend lines gives an estimate of partial melt

composition, and suggests a ratio of liquid to refractory residuum of about 1 to 3. A large number of the gabbro analyses cluster around this point, suggesting the possibility that they lie near the cotectic.

The remaining gabbros have plots which are clearly influenced by the dominant cumulus minerals. Olivine and pyroxene-rich cumulates show an increase in MgO, and decrease in SiO₂ and CaO, relative to the partial-melt magma. Plagioclase enrichment is shown by the trend towards anorthosite.

The line of liquid descent is reflected by the fairly smooth curve through the fine-grained rocks in both figures 4.3 and 4.5. These show that both SiO_2 and CaO increase as MgO decreases. This would normally result from fractionation which principally involves ferromagnesian minerals such as olivine and orthopyroxene. Although Al_2O_3 increases into the fine-grained basaltic rocks, the variation is not as systematic and probably reflects the ubiquitous presence of feldspar.

FeO increases with decreasing MgO from the tectonised ultramafics to the gabbros. The most pronounced increase, however, is in the basaltic rocks. Fractionation of olivine and pyroxene would account for depletion of MgO relative to FeO, and iron enrichment in the basalts is doubtless due to this effect, and to the crystallisation of magnetite.

The relatively high ferric iron contents of the harzburgites and dunites, when compared to the cumulate gabbros and the basalts, is probably related to release of magnetite during serpentinisation of olivine, together with the presence of considerable spinel.

A selection of analyses have been plotted in CMAS projections, following O'Hara (1968). Fig. 6.1 shows that many gabbros lie near the 1 atmosphere cotectic and that the basaltic rocks lie along the control line for advanced partial melting. This control line passes through the dunites and harzburgites, and also through garnet lherzolite (Ito and Kennedy, 1967), below the orthopyroxeneclinopyroxene-plagioclase piercing point. The clustering of basalt points suggests that olivine fractionation was important in controlling their composition. The position of the 30kb cotectic in relation to the plot for garnet lherzolite, shown in Fig. 6.2, suggests that the residue of partial melting would be a harzburgite. The position of the wehrlites, in this figure, indicates that they fall on asingle control line relative to the gabbros and dunites, although the harzburgites lie slightly off this line. The basaltic rocks plot near the 1 atmosphere cotectic, but lie exclusively to the orthopyroxene side of the orthopyroxeneolivine boundary confirming their silica over-saturated character. Their plot in this diagram would undoubtedly

Figure 6.1. Projections in the C-M-A-S system of O'Hara (1968), showing compositions of selected peridotites, cumulate gabbros and basaltic rocks projected from, or towards, olivine into the plane CS-MS-A.

Figure 6.2. Projections in the C-M-A-S system of O'Hara (1968), showing compositions of selected peridotites, cumulate gabbros and basaltic rocks projected from, or towards, clinopyroxene into the plane C_3^{A-M-S} .

be influenced by their silicification, and might thus have little petrogenetic significance

6.5. Pressure-temperature conditions of equilibration.

A variety of methods have been used in an attempt to estimate the equilibration temperatures of the ultramafic rocks and the cumulate gabbros. These techniques include the olivine-spinel geothermometer (Jackson, 1969), the orthopyroxene-clinopyroxene methods of Wood and Banno (1973) and Mysen and Boettcher (1975), the olivineclinopyroxene geothermometers of Powell and Powell (1974) and Hakli and Wright (1967) and the pressure-temperature grid, based on clinopyroxene chemistry, developed by O'Hara (1967).

Application of all, or most, of these techniques to each investigated sample would provide an ideal basis for comparison. In many instances, however, this did not prove possible for a variety of reasons.

The method most widely applicable to the tectonised ultramafic rocks was the olivine-spinel geothermometer. This gave values for dunite of 872 to 1075°C, for harzburgite of 1099 to 1167°C, for a wehrlite of 1104°C and for the rare rock-type plagioclase peridotite, the somewhat higher value of 1263°C. An olivine pyroxenite cumulate rock gave a temperature of 879°C. The olivineclinopyroxene geothermometer of Powell and Powell (1974)

produced the extremely narrow temperature range of 1019-1048[°]C. Reasons for this have been extensively discussed above, in Chapter 5, section 5.9.6.

Hakli and Wright (1967) also used the mineral pair olivine-clinopyroxene, their method depending on the partitioning of Ni between co-existing olivine and clinopyroxene. The method was subject to some limitations, principally in the gabbros where some of the clinopyroxenes are totally depleted in Ni. Harzburgite clinopyroxenes are also usually badly altered and, further, are considered to represent crystallisation of residual dregs of trapped liquid. Equilibration with olivine, in harzburgite, may thus be at a lower temperature than that indicated by the olivine-spinel geothermometer of Jackson (1969). Despite this the overall range indicated for the harzburgites is greater by the Hakli and Wright method, 994-1330°C, than by the olivine-spinel method. In cumulate rocks the technique must also be used carefully in order to avoid any clinopyroxene resulting from exsolution. Temperatures derived using such clinopyroxene would clearly relate to subsolidus reactions. This might also apply to the plagioclase peridotite which gave a value of 972⁰C, almost 300°C lower than the temperature derived from the olivinespinel geothermometer. Temperature ranges for the cumulates, of 911-1369°C for pyroxenites, and 849-1291°C

for gabbros and norites, again show a large temperature range with some unusually high values.

The orthopyroxene-clinopyroxene method of Wood and Banno (1973) is obviously subject to the same considerations as those given above regarding the origins of the clinopyroxene in the various rocks. In harzburgite the range of 909-989⁰C is much lower than that given by other techniques and may thus reflect the late, lower temperature, crystallisation of clinopyroxene from trapped liquid. Temperatures for the cumulate pyroxenites of 927-974°C and for gabbros and norites of 839-999⁰C are similar to the lower end of the ranges given by the techniques of Mysen and Boettcher (1975) and Hakli and Wright (1967). It is interesting to note that they show similarity to the temperature recorded by this technique for harzburgite. Again, in rocks with pyroxene exsolution, care must be taken that the temperature recorded is not that related to this subsolidus event.

The two pyroxene method of Mysen and Boettcher (1975) gives temperatures in the range 978-1088°C for harzburgite, 985-1168°C for cumulate pyroxenites and 729 to 1118°C for gabbros and norites. The method is limited in the gabbros because $x_{Cr}^{opx} = 0$ in some of these rocks.

Temperature and pressure estimates made using the grid developed by O'Hara (1967) indicate that the harzburgites

equilibrated at temperatures in the range 950 to 1250° C, the wehrlites from 1050 to 1250° C and the olivine pyroxenites at 1020° C. In all cases pressures were less than 7kb and correspond to a depth of about 22km in the oceanic setting. As this technique is applied to clinopyroxene only, the values recorded for harzburgite may thus only refer to equilibration during crystallisation of the trapped liquid at a late stage. Gabbros investigated by the technique of 0'Hara (1967) indicate equilibration pressures in the range 5 to lokb - the results are thus far from conclusive.

IABLE 4-1 ULTRANAFIC MAJURS TRACES AND NURMS, NURN FE AS FEU

	A 300	A 304	A 305	•312	6150	A 314	• člć•	A 310	•319	, 1 3 4 4
PERCENT	-		÷	•				· · ·		
SIUZ	41.20	41.57	42.71	40.93	41.07	45.14	42.23	40.70	41.92	62.64
álzu3	0.30	52° C	0.46	3.51	U . 35	0.66	5.80	0•47	ده ۵۰	. 0.75
FE2U3	4.30	5.47	5 8	5.04	1.9.5	7.01	5.07	5.94	7.55	4.90
FEU	5.00	4.80		5.73	4.00	3.67	3.01	4.84	4.35	50.4
MGU	47.62	46.25	40.42	39.42	40.95	45.78	35.46	46.95	43.23	43.53
CAU	0.13	25.0	0.20	3.10	0.52	0.23	2.74	0.23	- 1-30	0.72
NA2U	0.02	× 0.04	0.04	u. 32	0.02	0.03	61-0	0.03	0.02	20.0
KZU VZ	20.0	20.0	20.0	0.05	0.02	0,02	20.02	0.02	0.02	0.02
71u2	0.04	0.04	0.04	0.05		ć 0•0	0.05	0.04	0 • C5	0.04
MNO	0.15	0.16	0.15	0.18	0.15	0.17	0.15	0.17	0.17	0.14
S	1	0.21	0.19	ł	1		0.14	1	0.13	0.10
P 20.5	0.07	0.00	0.00	0.07	G1.0	0.00	0.06	0.06	. 0.07	1
CKZU3	0.51	0.02	0.55	0.49	0.46	0.55	0.37	. 0.64	0.59	0 • 4 5
010	0.19	0.30	0.24	0-20	0.27	0.23	0.19	0.21	. 0. Io	U- 30
:				•				-		
Mdd							*		•	
رلا	3510	4239	3779	3350	3183	6543	2557	4423	4082	2443
NI	1530	2417	C361	1586	- 2151	1830	1518	1703	1260	6372
cu		2	I	23	1	73	×0	27	52T	1
										•
ULPW NUR	X	•		•						
Ur Ur	0.10	0.10	0-10	0.30	0110	0.10	0.10	0.10	0.10	0.10
AU	0.20	0.30	0.30	0.20	0.20	0.30	0.7.7	0.30	0.20	Ú e ce Ú
AN	0.20	1.20	0.000	10.00	0.3•0	0.70	13.10	0.70	1.60	05.1.
DI	1	0.10		3.40	0.00	ł	1	1	3.70	1.30
HΥ	14.50	17.70	22.70	13.30	17.50	23.50	18.30	14.10	23.10	34.50
üL	76.80	71-10	00.40	02.80	71.70	03.40	57.00	75.00	59,00	53.90
TM	1.0u	06.7	7.60	8.50	8.10	10.10	7.30	09*8	10.90	01-1
CN	0.70	0.5*0	03.0	0.7.0	0 . 70	1-40	0.50	05.0	05.*0	0.60
I.C.	0.10	0.10	0.10	0.10	0.10	0.10	0,10	.0.10	0.10	0.10
AP	02°0	0.10	0110	0.20	0.40	0.10	0-50	0.10	0.20	1

A DUNITESDHARZBURGITESWEHRLITES

I Ab		ILAMAFIC	MAJUKS IK	ALES ANU	NUNIO - NUN			
	525 d	n 327	a 329	• 502	• 003	• 805	1001 1	
PERCENT								
5102	45.10	45.27	45.90	41.50	42.11	47.54	44.78	
ALZUB	0.53	10.0	10.0	5.53	3.13	2.00	0.95	
E2US	5.05	4.05	3.12	5.07	4.84	4.53	3.81	
FÉC	3.51	16.4	5.48	4.00	5 • 06	5.42	4.92	
NGU	44.74	42.89	43.23	45.59	39.25	41.62	43.47	
.A.	0.35	1.1.1	0.53	0.78	33.4	2.50	L • 26	
VA2U	. CO. O	0.02	0.03	0.03	u 04	0.01	0•04	
<20	20.0	20.02	0.01	0.02	20.0	0.02	0.02	
1102	0.04	0.04	0.04	0.04	0.06	0.05	0 •0+	
4NU	el.O	· 0 · 1 ·	21-12	0.10	0.10	0.17	0.14	
	1	1	0.08]-	1	4		
0.20.5 - 20.5	0.06	0.07	0.06	0.07	0.13	0.07	0.06	
CR2 U3	0.44	0.43	0.45	0.48	0.47	0.43	0.45	
VIC.	0-30	0.29	0.30	0.19	6110	0.18	0.29	-
				•	•			
M d d	3007	7545	3104	3306	3235	3300	3085	
	2423	2287	2413	1570	1556	1451	2313	
;)) 1 			, 1	. 84	30	. 0	
					•	•		
CIPN NUK	Σ							
UX CX	0.10	· U.I.O	0.1.0	0.10	0.10	0-10	0.10	
10	0.30	0.20	0.30	0.30	00	0.10	05.0	
NN	Ú2• 🖌 -	2.30	2.00	00-1	3 .30	1.20	2.30	
1	U. JU	∪1 •>	0.10	1.70	00" TT	3 - 60	2.70	
·	34.90	U 2.2.5 5.5 5.5 5.5 5.5 5.5 5.5 5	36.60	18.00	10.70	16.20	20.60	
	55.2U	55.10	55.40	68.80	61.40	64-60	54.30	
11	7.30	06.5	4.50	3.20	7.00	7.10	5.50	
×	0.0	0.00	0.70	0.70	0.70	070	0.70	
Ļ	0.10	0.10	0.10	01:0	0.10	0.10	0.10	
٩P	0.10	0.20	0.10	0.20	U.3J	0.20	0.10	

1.F.O
AS
لنا ريار
NURN
NCKNS .
AND
TRACES
MAJURS
3
P YKUXENA
Ņ
4
ABLE

	1014(3)	10 - 6	30201	553	554
PERCENT				•	
S102	45.33	51.30	49.32	51.91	51.32
AL2U3	1.17	1.23	5-51	1.11	51° 1
FE2U3	1.50	40.1	0•49	0.33	0.77
FEU	14.4	4 .Ú.	4.55	4.04	4.26
MGU	26.20	. 23. 54	22.19	22.60	24 .32
CAU	15.54	17.05	16.35	18.08	17.30
NA2U	I		0.03	i	0.02
K ZŪ	0.01	0.01	Ú. UL .	0:01	0.01
T102	10.07	70. C	0.07	0.07	0.07
MNU	0.14	0.14	0.14	0.13	0.14
S		1	١.	i i	1
P2U5	6.06	0 - Ge	0.06	0.01	0.06
CR2u3	0.54	0.52	0 • 40	1.01	05.0
NIC	0.00	0.04	0.03	0-04	0.05
Мdd		•			
ÊΑ	.	0	t	20.	. 23
NB	2	1	- - -		m'
ZR	4.	1	ł	1	ł
,	ल	۱		ł	-1
SK	5		77	.1	N
КB	1	ب	1	I	1
ZN	53	17	21	17	18
n n n	107		to 5	ŧ	- 1 -
IN	4 95	350	272	344	358
CR	3711	3577	2145	6879	6170
ACTON MCTO	V				
CLUR NOW	0.10	0.10	0.10	0.10	0.10
AB	1	1	0.30	1	0.20
AN	4.80	UC. 6	15.00	3.00	3.10
D I	56.50	65.90	52.40	67.40	64.70
НΥ	10+20	11.6U	C9. U1	11.10	11.40
0L	24.60	1c.30	<01.02	16.00	17.00
LW	2. 90	0.9-7 .	0.10	0.50	1.10
CM	0.80	0.80	0 • 6 0	1.50	L.30
١L	0.10	0.10	0.10	0.10	0.10
AP	01-0	0.10	01.0	1. 1.	0.10

FEC
A S
ш.
NCRM
NURMS.,
AND
TRACES
MAJUKS
GAbbku
TABLE 4.3

173	48 • 56 1 / • 07	90 • •	02.0	14.20	0.20	0.01	70° C	0.14	ł	0.05	0.04	0.01		77	-	· 4	*,	53	-	2.5	64	18	262		1	0.10	L.7.	05.64 .	19.60	• 1	06.02	1.50	1.60	0.10	0.10	01.0
156(1)	48 • 20 16 • 85	1 82	10.53	16.36	0.19	0.01	60.0	0.14	l	0.05	0• 02	0.01	•	ŝ				62	I	25	4 55	67	i 56		0.20	0.10	1.60	45.30	28.70	1	21.20	1	2.70	I	0. 20	0-10
152	- 48.74 15.22	1.57	4.00	15.51	0.08	0.01	0.11	0.13	0.01	. 0.13	0.04	0.01		25			2	55	1 -	23	1	7.9	245		!	0.10	0.10	41.30	27.90	•	26.50	0.60	2.30	0.10	0.20	0.30
151	50-99 15-32	2.30	4 - 4 0 - 4 0	25.24	0.24	0.02	0.15	1,	10.0	0.25	•	1		I	1	~	. ~J	104	I		1	(55		7.00	0.10	2.00	40.70	21.50	25.10	1	1	06.0	ł	0.30	0.60
051	48.34 16.26	1.45 1.45	り・40 11・56	15.73	0.12	0.02	0.11	0.15	0.01	0.14	0.03	0.01		1		10	ε Γ	123	i	27	234	84 ,	86		0.20	0.10	1.00	44.00	26.80	1	25.10		2.20	1	0.20	0.30
146	47.21 18.71	2.04 40.2	2 0 2 0 2 0	16.22	0.14	0.02	11.0	0.13	0:02	0.15	0.01	0.01		35		9		. 1 .2	1	23	106.4	114	115		06*0	0.10	1.20	50.70	23.60	Ì.	19,90	l	3.00	I	0.20	0.40
139	47.31	1.09	0.13	15.61	0.20	0.01	0.13	0.16	0.01	0.14	0.14	,]	•	36°,		ି ଅନ୍ 	4	1.6	i	ы 4	42.	29	55		i	0.10	.1.70	47.10	24.00		22.50	1.30	2.50	0.20	0.20	0.30
134	47•71 17-19	(1) (0.04	15.23	0.19	0.01	0.13	0.14	0.01	0.14	0.04	0.01		52		¢	-	16	1	30	155	87	269		ł	0.1.0	L-60	46.00	23.50		24.'90	0.70	2660	0-10	0.20	0.30
131	47 • 77 15 • 19	1.30	0 • L 4	17.38	0.25	0.02	0.10	0.15	0.01	0.14	0.12	1		2.7			~	. o ö	. 1	10	341	62	525			0.10	2.10	43.20	56.30	l	14.20	. L.20	1.90	0.20	0.30	0.30
1044	49.8U 17.14	1.85	9.61 0.0	16.62	1.79	0.02	0.24	0.10	0.01	0.15	0.04	1		1	l	161	2	179		18	19	. 40	252	Σ	ł	0.10	15.20	36.80	34.20	1	5.30	2.83	2.70	0.10	0.50	0.40
	PERCENT S 102 Alzu3	FE2U3			NAZU	K2U	1102	MNU	S	P205	CR2L3	NIC	MOO	202	1 N	ZR		SR	RB	ZN	C U	IN	СR	C IPW NOK	012	ÚR	AĞ	AN	. I D	Ĵ,	HΥ	CL S	MT	CM	١L	AP

188 TABLE 4.3 GABBRC MAJORS TRACES AND NURMS, NORM FE AS FEC 110-00 12-01 12-01 12-02 12-0 180 90000 10000 10000 10000 10000 10000 10000 10000 10000 10000 521 CIPW NURM QIPW NURM AB AD MC MC MC AP AP P ERCENT SIG2 F ECU3 F ECU3 F ECU3 MGC CACU NNU2 NNU2 S CR2U3 N10 CR2U3 N10 CR2U3 PPM BA ZR ZR CZCZXB CZCZZB

FEU
AS
<u>رن</u> بد
NURM
NORMS,
ANU
THALES
MAJUKS
GABBRU
4.3
TABLE

-	183	190	200	209	211	221	223	231	232	ູ່ດູກຸດ
P EK C EN T		•					•			
S102	49.87	47 - 48	44.88	50.62	54.23	48.51	48.10	47.15	46.91	44.43
ALZUJ	6.30	13.54	13.92	6.18	15 . UC	10.87	15.32	19.48	19.49	12.79
FE263 -	2.40	2.41	2.44	1.04	1.60	1.70	77.1	2.03	1.24	2.02
FEO .	7.60	5.06	ຣິ . ເ3	4.0l	3.60	5.26	.6.52	3.35	3.10	4.92
MGC	17.79	14.30	14.09	16.21	5.94	5.57	10.80	10.16		21.79
CAD	14.54	15.40	13.97	17.79	10.25	10.56	15.74	16:03	16.30	12.5%
NAZU	60.0	Go. C	0.43	0.12	1.15	0.24	0.19	1.12	0.70	0.50
K 2ù	ı	0.01	ł	0.01	0.03	ţ	I,	0.01	0.0	
1102	0.16	0.5	21.0	0.13	0.57	0.10	0.11	0.14	0.15	0.1 - 0.0
MNU	0.21	0.14	0.20	0.14	0.10	0.15	0.16	0.08	0.07	
S	1	I	1	1	ı	1	I			
P2U5	0.05	0.05	0.07	0.06	0.07	0, 06	0.05	0-06	0.05	44 • 0
CR2u3	. 0.23	0.13	0.03	0.33	0.03	0.03	0.03	0.03	c1.0	0.35
NIU	0.02	0.02	0.01	0.02		1	0.01		0.03	10.0
			•				•	•		r))
Wdd										
BA	30	21.	31	24	13	. 35	I	I	I	3.0
NB	-4	4	2	2	: N	7	Ŕ	2) }
ZK	ະ ກ	ر بر	0	ß	Υ.t.	, 9		16	4 7	। य
۲,	,	ŝ	: -)	4	2) (r 	י ה ה נ)
SR	67	105	70	24	138	. 78	57	146	15	ז ר ג
K B	4	ו	-1	2		-	1	-4	I	5
ZN	43	32	41	25	22	24	31	14	20	
cu	51	Č IJ	114	169	.6	1	320	E	54 10	
Z	170	412	òĈi	177	34	39	61	63	249	571
CK	1582	661	210	2315	196	204	218	248	5 05	2395
CIPh NOR	5			-						
G T Z	I	I	ł	ł	10.50	1.30	0.10	1	I	1
O.K	i	0.10	ł	0.10	0.20) 4 1	010	0.1.0	1
AB	0.80	ບດີ. ດີ	4.10	1.00	10.10	2.00	1.60	. 4. 5.0		
AN	16.50	34.10	36.20	21.50	38.00	45.20	42.60	4 2. 30		
01	44.20	33.50	26.00	52.40	34.20	31.30	28-70	24.70	24 - 27	
HΥ	29.30	10.70	7.80	10.00	3.70	17.30	24.00	4 2 0	1 - FO	
נר	4.50	11.00	21.00	2.70		ļ	, 1	00-00	11.80	
M T M	3.60	3.50	3.60	2.40	. 2.40	2.50	2.60	3.00	1.80	
СM	0.30	0-20	1	0.50	ł	1	ł	ł	0.20	0.50 0
1 L	0.30	0-60	0.30	0.20	0.70	0.20	0.20	0.30	0.20	0.20
AP	01-0	0.10	0-20	01 0	0.40	01-0	01.0	0.10	0.10	0.10
				•						

-*

TABL	.E 4:3 GAB	uku Majuk	S TRALES	AND NUKHS	, NUAN FE	AS FEU			•••
•	523	52 6A	868	Se y	178	1014(1)	1017	1025(1)	1033
PERCENT									
SIU2	42.03	62.14	40.14	46.59	48.30	49.11	62-54	47.59	47.57
AL 203	14.07	11.30	15.07	15.23	14.20	16.49	16.06	29.31	15.55
FE203	5.02	3.00	0.65	2.43	l, ju	0.81	0.45	1.20	1.23
FEU	8.10	6.21	3.54	7.23	4.61	3.73	3471	6.24	5.69
MGU	16.62	12.08	15.38	11.92	13-49	8.61	12.72	11-41	12.43
ĊAU	6.77	- 15-99	15.68	13.01	16.65	14.12	10.03	15.21	15.47
NA20	0.70	0.43	0.50	0.38	0.40	74.0	0.21	1.30	1.04
K2U	1	10.0	0.01	0.02	0.02	0.01	Ú. ÚI	0.01	0.03
1102	0.10	0.73	 11	0.11	0.10	0.07	0.07	0.19	0.19
MNU	0.19	0.19	0.07	0.21	0.12	0° 03	0.11	0.13	0.15
S	1	•		1	1	1	1	. 1	1
P 20 5	0.08	0.04	0.07	0.07	0.06	0.07	0.06	. 0.07	0.05
CR203	0.01	2.07	0.20	1	0.01	0.03	60°0	0.2.0	0.00
NIC	0.03	0.01	0.04	1	1	0.01	0.01	0.03	0.03
									•
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 (- C V	i 	1	ۍ د	1	U.C.		I
A D) +			n o		4	1	
70	47	4 07	(۲	4 [~	• 4	J N	94	14
2 2 2	•	·	1.05	• •				. 4	• (* •
SR	105	95		76	73	. 57	623	125	114
KB	1	1	. I	.1			с л	1	1
ZN	58	35	5 T	54.	- - 	17	16	29	25
0	50	50	146	41	101	15	172	111	153
IN	267	0 C C	301	61 .	11	- 51	63	240	262
CK	53	455	1359	I	11	220	620	1351	550
C IPW NUKM		· .							
CTZ	I	1	ł	0.90	ł	0.50	i		1
<u>C</u> K	i	0.10	0.10	0.10	0.LU	0.10	0.10	0.10	0.20
AB	6.00	4 • LU	4.20	3.20	3.40	4.00	1.60	11.10	ເຮົ. 3
AN	37.20	29 .0 0	36.40	40.10	37.10	48.50	43.00	37.80	37.50
10	4.90	44.20	31.20	19.70	36.20	33.00	32.20	30.10	31.10
HΥ	13.00	12.90	9.90	3 2. 00	12.10	12.00	19.00	2.80	4.20
UL:	30.30	2 . 10	13.70	1	8.80	I	2.60	15.60	15.40
MT	8.20	5.40	I. 20	3.66	1.50	1.20	0.10	1.70	, 1. 80
СМ	1	0.10	00	I	1	1	0.10	0.30	0.10
י 11,	0,20	1.40	0 - 5 C	0.20	0.20	0.10	0-10	0.40	0.40
ÅP .	0.20	01-0	0-20	0- 20	0-10	0-20	01.0	0-20	0.10

	5265	539	541	544	552	555	556	553	850	<u>652</u>
PFRCENT							•			
SIU2	44.27	42.14	66-44	49.78	47.11	46.92	47.04	48.54	47.15	41.99
AL2U3	14.20	7.13	16.i.d.	15.71	16.41	Ić. jl	15.70	15.42	17.62	10.91
Fedu3	1.60	2 . 14	· 1•14	0.41	1-04	1.32	1.17	. 1.12	1.54	95.0
FEO	10.42	5.15	2.97	3.35	6.03	6.48	5.04	5.43	5.36	. 5 . 5.
MGD	13.22	22.04	17.41	12.49	11.09	11.62	12.21	10.62	11-42	12.14
CAU	13.48	15. čl	16.75	17.43	15.13	14.47	15.53	16.73	14.73	UE.cI
NA2U	0.30	0.02	0.11	0.18	5c.0	1.37	1.09	1.13	1.24	· U• 26
K 20	1	E	0.01	0.01	0.02	0.01	0.01	0.01	0.01	10.0
1102	0.45	0.08	0.07	0.07	0.10	0.18	0.19	0.22	0.17	0.00
MINU	0.20	0.15	0.08	0.10	0.16	0.13	0.12	0.12	0.12	0.i.s
s	I	1	1	1	t .	1	I		ł	1
P205	0.05	0.06	0.06	0.07	0.07	0.07	0.07	0.07	0.07	0 • 07
CR2U3	0.05	0.35	0.19	0.15		0.18	0.10	0.06	GO • O	0.04
NIC	0.01	0.04	U. U3	0.01	I	0.03	0.02	0.02	0.01	0.01
				· .	•		•		•	
5 L L				6	17	а ~	80	10	~1	0.2
BA	71	Э-		, , ,	• • •	0° C	3 ~		--	
202	4		1 4	4 4	• ~	1	•	- 4	14	10
4 X		4.0		Εp	~	j r	ע י י	ר ער ד ר	- 7	J
r v		بر ا ر	69	1 (L) 1 4 1	101		106	125	135	1 .
5 82	4 > 4) ->J -	1	1	2	ı	4	1		1 -
ZN	50	5	5	51	34	67	23	22	23	23
C U	31	TOT	2	172	5.5	106	150	142	I	61
TN	108	306	223	113		232	I62	125	112	82
LR.	332	2632	80CT	1002	37	66TT	7 U3	429	379	270
	2		•		·					-
017	1	ı	I		ł		ł	1		•
C.F.	.1	ł	1	0.10	0.10	0.10	0.10	. 0.10	0.10	0.10
AB	6.8Ù	0.70	I	1.50	2.70	11.70	0°°5	09*6	10.50	2.20
AN	35.80	01.21	43.70	42.10	42.00	39.10	38.10	37.20	42.70	45.20
NE	I	١.	0.50	1	1	1)	•	1	1
10	25.60	44.80	27.50	. 34. 90	25.40	26.20	31.10	36.70	24.20	24.50
ΗY	L.6.	5.90	4	19.70	18.50	1.30	4.10	4.50	4.70	21.20
GL 1	26.70	24.50	24.60	0. 0	00.7	00 • AT	00-CT	n - 6	12 ° CU	00.0
	u I C			04-0	2 40	05-1	1 - 70	1.60	06.20	
₹ X		01.60	0.30	0.20		0.30	0.10	0.10	0.10	0.10
5 1	0.6-0.	02.0	01.0	0.10	0.20	0.30	0.40	0.40	0.30	U.20
40	0-10	0.10	0.10	0-20	0.20	J -20	0.20	0.20	0.20	0.20
			•							

	•				-																							~. 								
80 C	čľ.†č	22.11	<u> </u>	7.36	14.2	JZ • 50	2¢•0	0.07	05.0	0.18	ł	41.0	0.00	I.		2 0	י כ ז	יי כ ג	• *	- + + -	: -1	. 67	123	5 C	417		13.10	0.40	4.40	29.10	25.70	22+40	07 °C	0.10	0. eÛ.	M = M
864	53+ 5+	12.80	2 • 88	7.66	9.19	11.64	0.80	0.00	0.29	0.19	0. CI	0.14	0.04	10.0	•	15	4 .c }		ר 1 1	7	ı	64	133		303		11-40	0.50	6. BU	31.30	21.70	23.10	4 • 20	0.10	0. 60	0 20.
<u>8</u> 56	54.30	13.18	2.74	7.86	7.98	11.70	0.68	0.08	0.27	0.19	. 1	0.14	0.01	F0.0	•	40	י איני		η α +	о 4 0 4		73	196	44	100		13.40	0.50	5.80	33.00	20.10	22.40	4.00		0.50	0 30
1625	54.53	10.01	2.12	7.21	10.67	12.75	0.39	0.05	0.1.0	0.18	ł	0.13	50°0.	0.01	•	C	1 G	1 ~) น	6 6 7	1	. 64	139	52	653		12.20	0.30	3.50	27.00	26,90	24.20	3.10.	0.10	0.50	02.0
162A	55.75	12.11	2.30	7.25	- 9-26	12.08	0. 60	0.07	0.28	0.19	0.01	0.14	0.08	1		30))			51		70	58	. <u>,</u> 84	513		14.20	0.40	5.00	27.60	25.70	22.00	3.40	0.10	. 0.50	
159	54.20	12.00	4 . U.3	7.22	9.47	12.00	0.60	0.00	0.24	0.10	0.01	0.14	<u>60.0</u>	ł		4			ע ק ק	0 1 1 1 1 1	~7	13	122	5 5 2	370		11.60	04.0	5.00.	29.70	25.50	20.60	5.60	0.10	0.50	200
154	57.34	12.57	2.28	7.05	6.25	11.444	0.78	0.12	0.30	0- 17	0.01	0.14	i	1		01		+ 7	4 4	195	1	0 S	19-	. 16	. 27		14°00	0.70	6.70	31.00	20.50	17.60	5.30	5 	0.60	0.00
140	59-83	11.02	30°.8	14.0	4.50	5.44	1.13	0.16	0.41	0.19	1	0.13	ļ	I			י גר ר ר		4 - 4 -	74	ິ	55	25	ß	11	e	24.80	00°T -	9.70	26.40	16.00	15.90	4.50	l	0.80	
122	52.14	00.61	2.30	0°-02	0.77	12.50	5 5 °0	0.04	. U. 28	0.18	1	0.14	0.01	I		<u>v</u> v	2 ×	t o	4	. 72	! †	57	707	50	777		5.60	02.0	∩v•ć	0 5 .40	21-60	24.80	3.40	I	0.50	
101	55 • 8 5	14.07	3.30	7.75	6.63	6.51	4.24	0.04	0.43	0.18	10.01	0.16	ł	I			ע ת	n o	0 4 F	1 8 7	•	76	134	. 10	25	•	5.30	0.20	36.10	19.40	6.90	22.90	4.80	1	06*0	
	PERCENT SIU2	AI 2113	FE203	FED .	MGC	CAC	NAZU	K20	1102	MND	л	P 205	CR203	NIC		M d d	DA A	DN D	47	Y SR		ZNZ	<u>c</u> u	IN	CK	I I D. NURM	012 012	C.K.	AD	AN	. IO	нҮ	MT	CM		1 f

193 TABLE 44 BASALT- UDLERITE MAJUKS TKACES AND NUKMS, NGRM FE AS FEO 147. 0 - 10 22 61 76 11 76 11 76 19.9 16.30 8.640 8.640 3.100 20.20 3.40 0.40 0.40 1004 PERCENT SIL2 AL2U3 FEC MGU MGU NA2U MMU KZU MMU PZU5 NIQ NIQ NIQ CNCN т Ц 28 SR

TABLE 45 DUNITE MAJORS TRACES AND NORMS

503 42.40 0.21 10.33 46.28 46.28 46.28 0.051 0.051 0.02 0.051 0.051 0.15 0.15 0.15 3385 1506 -30.8 .
 42.35

 42.35

 47.058

 47.058

 60.024

 60.024

 60.024

 60.024

 71.058

 71.058

 71.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 72.058

 7 0.10 0.80 0.80 0.80 1.70 1.70 0.50 0.50 0.10 307 4158 2631 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 306 42 - 71 - 42 - 71 - 42 - 62 - 42 - 62 - 62 - 62 - 15 -305 304 303 5060 2939 -302 11.5 12.5 2900 1736 -301
 11.26

 10.230

 17.62

 17.62

 17.62

 17.62

 15.00

 1530

 1530

 1530
 300 0.100 PERCENT SIU2 SIU2 AL2U3 FE2U3 MGU NA2U NA2U NA2U NU2 CZ20 CR2U3 NIU NU2 NU2 NU2 ALCMCHONGRUC CLAR ALCMCHONGRUC CLAM ALCMCHONGRUC CLAM ALCMCHONGRUC CLAR ALCMCHONGRUC CLAR ALCMCHONGRUC CLAR ALCMCHONGRUC CLAR

FABLE 4.5 DUNITE MAJURS TRACES AND NURMS

+1. 68 0. 53 10. 55 10. 55 212

 11.04

 0.56

 11.98

 11.98

 11.98

 11.98

 0.17

 0.023

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.17

 0.18

 0.19

 0.10

 0.10

 0.10

 322 41.40 12.035 45.69 45.69 45.69 0.15 0.02 0.02 0.06 0.15 0.05 0.05 0.15 0.15 1252 321
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t \$20 41.64 6.56 6.56 6.56 6.56 6.61 1.45 0.05 2750 1988 10 317 4423 1703 27 6. - 70 6. - 47 6. - 47 6. - 47 6. - 99 6. - 17 6. - 25 6. - 17 6. - 6 6. - 17 6. - 6 7. - 6 7. - 6 7. - 70 0.80 316

 11.94

 11.95

 11.95

 11.95

 11.95

 11.95

 11.95

 11.95

 11.95

 11.95

 11.95

 11.95

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15

 11.15
 314 313 3019 1537 58 000 - 20000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 511 3927 1610 33 310 ALCMCHUNBA PLAJLYIN ALCMCHUNBA ALCMCHUNBA A C S C F M

	528	531	530	545	546	800	801	808	809	317
			,							
PERCENT				51 53	41 86	42.62	41.03	41.11	40.58	42.01
S1U2	41.32	41.12	50.07 0	4 1. 00			0.51	0.40	0.40	0.49
AL2U3	0.39	0.35	0.49	0.00	0 • V 0			12 11	11.36	-+
EE203	10.67	12.04	10.95	10.44	5T * OT					4.5
	44 94	45-54	60.44	46.58	47.25	45.09	41.05	40+11	10. 10	3 3 4 9 • 1 3 1
300 100			0.15	0.37	50.0	0.66	0.29	0.21	0 • 22	0.40
CAD	0- 20			0.04	0.03	1	0.02	0.04	0.03	0.02
NAZU	50.0	1 0.0	10.0			0 . O 2	0.02	0.02	0.02	0.02
K20	0 0 02	0.02	0.0	20.0				70 0	0.04	0-04
T10.2	0.04	0.04	0.04	0.04	0.04					
	• • •	01-0	Û.ló	0.16	. 0.15	0.15	0.15	GI •0	0.10	01.0
JNN C) (• • • •			0.10	0.13	I	1	T	1	I
S	C1 • N	0 - F 0	ir C		0 . 06	0-07	0.06	0.06	60.0	G • 05
P205	0.00	<n• n<="" td=""><td>0+14</td><td></td><td>ວ ເ ວັນ ວັນ</td><td></td><td>0.47</td><td>0.50</td><td>0.53</td><td>1. U5</td></n•>	0+14		ວ ເ ວັນ ວັນ		0.47	0.50	0.53	1. U5
F R 2113	0.61	0.80	· 0 • 4 1	1•04	00.00					0
N 1 7	0-20	0.17	0.20	0.21	0.21	0.28	12.0	cc• 0	77 • 0	
	•			•						
P.PM					3004	4603	4035	3462	3679	7178
CR	4220	5480	2840	1140		1000	2104	2614	1689	1494
1 N	2054	1597	1551	1014	CIOT	0077	F 2 4 2	 		7.6
10		3 0	12	•	2	1	í	CFC .	7	17
	÷									
CIPW NOR	2.	•			010	0.1.0	010	0.10	0.10	0.10
OR	0-10	01-0	0.10) 4)	0.20	0.30	0.30	0.20
Àb	0.30	0.30	0.40			с г		0.70	0.50	0.471
ΔN	06*0	0.40	1	07 T	01.0			•		
10	0.10	I	ł	t	1	1.20	1			
4.2		9,00	21.50	9.50	10.50	14.00	8 · 70	00.0	20.0	10.11
		67.00	75.50	85.60	86.30	80.50	87.50	89.90	91.50	06.78
יר		07.10	1 - 30	1.20	1.20	I.20	1.20	1.40	1.40	. I.30
- E	L•30) (- -		1-50	0.6 - 0.	1.00	1.00	0.10	0.80	1.50
CM	0.40				0.10	0.10	0.10	0.10	0.10	01-0
IL	01.0	01.0		0 C C C C	0.10	0-20	0.10	0.10	0.20	0.10
АР	0.10	0.1.0		•	•	-	•			-

TABLE "45 DUNITE MAJCKS TRACES AND NORMS

TABLE 45 DUNITE MAJUKS TRACES AND NURMS

1020 41.67 41.67 46.83 46.83 46.83 46.83 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.015 0.015 0.15 0 0.10 0.30 0.30 0.10 0.10 0.10 0.10 1019 5073 1461 836 10.10 10 631 41.66 41.65 46.51 46.55 46.55 46.55 76.03 0.17 0.02 0.16 0.17 0.69 4735 1403 830 11.54 4500 2133 -829 0.10 0.20 0.40 0.40 0.40 0.40 0.40 0.70 0.70 0.20 0.20 0.20 825 41.57 41.57 46.422 46.424 46.834 46.834 0.0000 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.0000 0.0000 0.00000 4120 2055 -823 4500 2441 -0.000 0.0000 0 0 i l 11-44 3.20 SERCENJ SIG2 SIG2 SIG2 AGC S MGC S MGC S MID2 CR2U3 NID2 CR2U3 NID2 CR2U3 NID2 CR2U3 S CU ALCACHUZACC PLANCHUZACU ALCACHUZACU

198 TABLE 4.5 DUNITE MAJUKS TRACES AND NORMS 40.93 6.60 11.73 46.20 0.02 0.02 0.02 0.16 0.16 0.10 0.10 0.10 0.27 4755 2141 65 0.10 38.40 1.40 1.40 0.10 0.10 0.20 1036 CIPH NORM Or Ab PEKCENT SID2 AL2U3 FE2U3 MGU CAC NA2U NA2U NA2U TIU2 NM0 S N1U NIU ALCAC Z ΥY 10

	-									
	323	324	325	326	327	328	329	55	822	1031
PERCENT								•		
SICZ	45.87	45.20	45.18	46.46	45.27	46.30	. 45.50	45.26	44.14	44.70
AL 203	1.19	0.76	0.53	0° 0° 99	0.91	0.97	0.01	0.36	0.51	35*0
FE203	8 • 5 9	9.45	8.95	9.09	9.55	9° 05	9.21	9.36	5.12	9.20
MGD	44.12	43.53	44.74	42.70	42.89	42.09	43.23	43.27	45.34	43.47
CAD	0.29	0.72	0.35	0.51		0.59	0.53	0.0.90	0.44	1.20
NA2U	0.04	0.0 0	0.03	0.03 C	0.02	0.03	0.03	0.01	0.13	0 . 04
K 2U	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	· · 0 • C2	U• U2
T 10.2	0.04	0.04	0.04	0.04	0°0,4	0.04	0.04	0.04	0.04	0.04
MNG	0.12		0.13	0.13	0.14	0.14	0.12	0.14	0.13	6.14
S	- 1	0.10	ł		1	ł	0.08	0.07	. I	ł
P205	0.06	I	0.00	0.06	10.01	0.21	0.06	0.06	0.07	0.06
CR2U3	0,49	0.43	0.44	0.36	0.43	0.39	0.45	0.40	0.39	0.45
N IO	0.31	0.30	0:30	0.30	0.29	0.29	0.30	0.25	0.30	0.29
						•				
р РМ С.К.	3357	2948	3007	2460	2949	2718	3104	2800	2690	3089
NI NI	2444	2572	2423	2386	2287	2287	2413	2296	2420	
cu	7	1	•	f	M.,	1 1		ŋ	1	Ω,
C TPw NOAM		. •								
UK .	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0 * 10
AB	0.30	0.30	0.30	0.30	0.20	0.30	0.30	0.10	I.10	0.5.0
AN	1.00	1+90	1.30	2.10	2.30	. 1.60	. 2.00	2.20	0,50	40
01	ľ	1.30	0.10	t.	2.10	1.	0.500	1.40	0.60	5°3°7
НҮ	32.30	27.40	27.40	35.70	27.60	36.10	32.50	28-10	15. EU	23.40
. TO	63 - 60	67.00	60.90	59.80	65 . i 0	59.40	62.50	65.90	75.50	01.20
TM	1.00		1.10	 i.10 	. 1.10	1.10	1.10	1.10	1.10	्र • •
СМ	0.70	0.60	0.60	0.50	0.60	0.60	0.70	0.60	0.60	0.70
	0.10	0.10	01.0	0.10	0.10	0.10	0.10	0.10	0.10	0 .1 0
AP	0.10	1	0.13	0.10	0.20	0.50	0.10	0.10	0.20	0.10

TABLE 4.6 HARZBURGITE MAJUKS TRACES AND NORMS

Ç,

4

NORMS	
TRACES AND	
YAJURS	
HARZBURGITE	
TABLE 4.6	

·	1035(1)	1035(2)	1037	1030	1039	1040	1041	1042	1043	1044
PERCENT			·						•	
S1U2	45.10	44.71	47.18	45.05	26.44	<u>66</u> 70			1	
AL 203	67.40	16-0	1.44				アー・ナナ	45.50	45.13	40.33
£ F 2 1 3	10.2					10*0	0.20	0.73	0.74	0.46
		7	0	4. 25	9,08	9.30	9.62	9.70	17.P	
100	40 • 50	43.90	42.14	43.08	45.52	41.98	43.40	42.15	1 2 27	0 J • C - C - C - C - C - C - C - C - C - C
CAU	0.64	0.80	0.44	0.75	0.34	0 - 8 2				44.0
NA2U	0.03	0.02	0-04	0.02		4 C • •		10+0	0.11	J • 55
K 21	C 0 0				20.0	0.03	0.03	1	1	1
2		20.0	20.0	0.02	0.02.0	0.02	Ú • 02	1	ļ	I
1.104	+0•0	10.0	0.04	0.04	0.04	0.04	0.04	0.04	0.07	
MNU	0.13	0:13	0.12	0.14	0-13	0.12		- (- - -	+ · · ·	, n n n n n n n n n n n n n n n n n n n
S	Į	1	.1) +)		+	ST•D	G • 15	(m)
P 2015	00 0					ł	ļ	-1	0.10	1
		07.0	0.00	0.06	0.05	0.06	0.14	0.07	03	0 () () (
C KZU S	52.0	0.43	0.39	0.52	0.40	0.47	0 40		5 . • <	
NIC	0.29	0.30	0,30	0.78	00			T + >	0. 7 • 0	- 5 - 0
	, 1 1)))		04.0		57 · 0	57.0	0.31	0.31	0.5.0
Wd d										
C.8	2424	0000 0	0.770.0	u u u						
IN		י 	5 - 7 C		Z114	3218	2741	3013	2.937	2532
	1107	7507	2152	2253	2419	2302	2306	2454	2440	1 0 1 - 1 1 - 1
	I.	t	n L	T	•*	- O T	9	2	2 1	0 -> 0 1 4
CTDN NOLD										J .
C K	0.10	01.0	0.10	0.10	0.10	0.10	010			
Aß	0.30	0.⊴•C	0.30	0.30	0.20				ł	ł
AN	2.00	2.30	1.80	040) () () (ł	I	1
	0.5.0)). 		0+• F	. 2 • 20	7.00	2.00	2.00	1.30
			1	0.00	,	1.20	2.20	0.70	(1, 3.)	
	2 C • J 2 ·	24.40	40.50	20.50	22.20	36.80	21.40	30.70		
	68.00	69.70	54.70	67.60	74.30	57.40				01.02
TM	1.10	1.10	1.00	1.10			0.4.1.1	01. 100	66. IU	61.20
CX	0.50	3.60	0.60	0 8 0				T+20	- L • 20 .	1.10
11	01.0))))) (0	0.60	0.60	0.60	0.50
a ⊲				01.0	0.1.0	0.10	0.10	0.10	0.10	01 20
	5440	0.1.0	01.0	01 0	0.10	0-10	0.30	0.20	0.20	
	312	315	318	319	502	503	504	. 515	527	532
---------------	-------	--------	-------	-------	--------	--------------	----------	--------	--------------------------	--------------------
PERCENT				•		•				
S102	40.93	42.23	42.46	41.92	41.90	42.48	42.38	41.55	44 • 44	44 e Ö l
AI 203	5.97	5.66	1.08	0.63	0.53	0.04	0.75	1.07	0.63	<u>፡</u> ፡ ፡ ፡ ፡ ፡
FF203	12.21	90.6	10.11	12.39	10.05	9.9 2	10.08	11.54	10.20	. ö•ö2
NOC.	39.42	39.40	40.39	43.23	45.59	43.94	45.23	16.44	43 。 24	34.40
) () ()	3.10	2 • 74	4°43	1.33	0.78	2.74	0.68	0.63	1. C8	3. ⁵ 0
V A ZEL	0.02	0.19	0.04	0.02	0.03	0.04		0.02	.002	0.04
K2II	0.05		0.020	0.02	0.02	0.02	0.02	0.02	0 • 02	0.02
1162	0.05	0.05	0.07	0.05	0.04.	0.05	0.04	0.04	ũ • 05	0.07
MND	0.10	0.13	0.21	0.17	0.15	0.14	0.15	0.17	GT • 0	0.1
	1	0.14	0.16	0.13	1	-	1	ł	•	0.05 0.05
6205	0.07	0.08	0.13	0.07	0.07	0.07	0.07	0.06	0.01	0.07
LR2G3	0.49	75.0	0.67	0.59	0.43	0.36	0.75	· CJ42	الله . الم : • الله .	0.54
	0.20	0.19	0.15	0.10	0.19	0.17	0.19	0.22	0• 34	
j										
ррм						•				
×.	3350	2357	4048	4082	3306	2455	5150	2896	7735	3 750
IN	1580	1516	1253	1260	1570	1334	1503	1744	2673	1221
c u	2.5	20	702	125	•]	1	1	109	3527	ć.
•										
CIPW NOR	×									-
JŘ ·	0.30	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	u.10
A G	0.20	1.60	0.30	0.20	0.30	0.50	0.40	0*20	0 4 20	ు ఎ
AN	10.60	13,10	2.70	1.60	1.30	. 1.50	1.80	2.70	.1.70	່ເວີ
10	3.40	1	14°70	3.60	1.70	9.20	0.510		2.50	10, 20
	4.20	10.40	4.50	11.20	10.00	5.90	12.00	06.6	23.00	17.50
	75.80	71.80	74.60	80.20	84.440	61.00	81.50	84.50	68 . 70 -	63.70
41	1.50	1.10	1.30	1.50	1.30	1.20	1.30 		1.20	1.13
X	0.70	0.5.0	1.00	0.50	.01.0.	0.50	L•10	0.60	I. 70	0.80
ĪL	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
∆ P	0.20	0.20	0.30	0.20	0.20	0.20	0.20	0.10	0.20	ů • 20

TABLE 4.7 WEHKLITE MAJORS TRACES AND NURMS

	537	802	803	304	805	806	807	ε 10	&11 8	312
PERCENT									-	• •
5102	46.65	47.71	42.11	42.82	41.94	41.20	41.54	42.20	45 7 <u>4</u>	
AL203	0.68	2,02	3.13	1• 99	2.00	2.54	0.57	0.50		
FE203	7.20	5.19	. 10.47	9.68	10.56	12.28	10.34	10.80		0 • 4 C
MGU	43.91	16.62	39.25	29.24	41.62	41.79	44.79	45.58	・ 、 、 、 、 、 、 、 、	41.07 42.01
CAU	1.04	14.62	4.68	5.96	2.50	1.57	2.45	0-54	0 - 1 0 - 1 0	
NA2U	0.02	0.07	0.04	0.03	10.0	0.04	0.04			
K20	0.02	0.03	0.02	0.02	0.02	0.02	0.07	- C		
TIU2	0.04	0.10	0.05	0.07	0.05	0.05	0.06	0-0-		
NNO	0.13	0.11	0.10	0.15	0.17	0.18				+ • •
S	ł	1	1	ŧ	i) - 	•	+ • • •	27.0
P 205	0.00	0.05	0.13	0.07	0.07	0107	20 0		، د ا	1
CK203	0.47	0.85	0.47	0.46	0.48					
V I D	210							00.0	14.0	04.0
		0 	× • •	6T*0	0.10	0.21.	0.21	0.22	0.12	0.14
Wdo			•	•		•				·
2	3235	5012	3235	3200	3300	3600	0 4 5 4 0	160		(7
17	1392	1399	1556	1516		1676		4 - C C C	5 C C C C C C C C C C C C C C C C C C C	0617
	5 2 7	CL7		0 C C C C C C C C C C C C C C C C C C C		0101	TCAC	1130	という	SIC
2	ר כ ד	116	+ 0	7 L U	D M	56	54	65	231	न न र र
LIPM NOR	Σ					•		. #.,		
a a a a a a a a a a a a a a a a a a a	0.10	1	0.10	0.10	0.10	0.1.0	0.10	0.10	(, f)	
10	0.20	ł	0.30	0.30	0.10	0.30	0-30			1
2	2.30	5.10	8.30	5.20	7.20	6.70	1.30		- - - -	
I (2.00	50.80	11.10	18.90	3 - XÛ	1 7.0		0 C 1 L -	07•4 0	00 * 7
X	27.50	1) - C - 1 - 1	0.0	01.0	04°40	<u> </u>
•	· · · · · · · · · · · · · · · · · · ·				0.0	07.1	I = c0	12.50	0.50	
1	07.40	40.00 0.00	14.50	12.90	06.11	81.40	65.80	62.60	56.60	. 65.68
	05.0	J. 60	0c.I	. 20	1.30	1.50	1.20	L= 30	0. 30	
2	00	- 90	0.70	0.70	070	0.80	1.00	0.00	0.80	
	0.10	020	0.10	0.10	0.10	0.10.	0**0	0.10	0.23) - - - -
بر	01.0	0.10	0.30	0.20	0.20	0.20	0.20	0.20	0. 20	0.20

TABLE 47 WEHKLIJE NAJORS IKALES AND NOKMS ÷

203 TABLE 4.7 WEHRLITE MAUORS TRACES AND NURMS 2 275 1 283 28 8885 1000 100 1000 1 634 42. 42. 411. 41 1705 1245 129 C. 10 C. 20 C. 20 C. 20 75 - 50 C. 20 75 - 50 C. 44 C. 20 C. 44 C. 20 C. 852 CLPW NORM AB APL CMULY APL PERCENT SID2 PERCENT FE2U3 MGU FE2U3 MA20 FE2U3 NA20 FE2U3 CR203 CR203 C I K M

TABLE 4.8 PYREXENITE MAJORS TRACES AND NORMS

10300	43 28	11.59	7.89	22-85	13.96	0.03	0.01		0.16		0.07		1	• •		•	40) ~~	10	; I	284	170		I	1	31.70	01-0	24.20	1	39.00	2.10	2.40	0.10	0.27
1.029(3)	46.14	8 89	4.72	22.57	17.45		0-01	0-06	0.09		0- 06	•,•	I			•	16		16	234	305	2254	·	:	ł	24.30		39.90	1	30.50	3.50	1.50	0.10	0- 10
1013	47-71	6.71	6.46	23.55	15.30	0-02	0-01	0.06	0.12	I	0•07		•	~	•	1	26	1	21	135	371	2930		0.10	0.20	18-30	1	45.40	6.60	27.20	ł	2.00	0.10	0.20
1028	51.36	1.23	5.55	23.94	17.65	-	0.01	0.07	0.14	•. •	0• 06	•	9) (•	ł	ŝ	-	17	1	350	3577		0-10	;	3.30	ı	66.30	11.80	16.60	ł	1.70	0.10	0*10
1027	50.96	1.35	5.18	24.61	17.64	1	0.01	0.08	0.13	I	0- 06		ł	m	.1	n î	9	-	18	I	374	3792		0.10	I	3.70	ł	65.90	8.90	19.50	1	1.60	0.20	0-10
1014(3)	49 • 33	1.77	6.88	26.20	15.54	ł	10:0	0.07	0.14	1	0.06		9	2	1		.13	1	23	102	495	3717		0.10	ł	4.80	l	57.00	6• 00	26 . 80	1	2-10	0-10	0-10
10308	49.32	5.51	6.32	22.19	16.35	0.03	0-01	0.07	0.14	· . 1	0.06		1	۳-۱ ,	1	-1	21	-1	21	165	272	2745		0-10	0-30	14.90	1	52.20	10.90	19.40	ł	2.00	0-10	0.10
1024	46.01	9-46	6.05	23.01	15.20	I	0-01	90-0	0.12	ł	0-06		63	-	2	~	34	1	6	64	334	2230		0-10	ł	25.90	I	39.00	0.50	32.40	ł	1-90	0-10	0.10
554	51.32	1.19	5.51	24.32	17.36	0.02	10*0 .	0.07	0.14	ł	0-06		23	ŝ			2	1	18	1	358	. 6170		0 - 10	0.20	3.10	ł	65.30	12.00	17.40	1	1.70	0-10	0-10
553	51.91	1-11	4.82	23.86	18.08	ł	0• 01	0.07	0.13	1	0-01		20	-	•	1	I	I	17	1	344	6879	. 5	0.10	I	3.00	t	68.30	11.00	15.10	1	1.50	0-10	Í
	P ERCENT S102	AL2U3	F E203	MGD	CAD	NAZU	K 20	T 102	MND	S	P205	Mdd	BA	NB	2 R	۲ ۲	SR	RB	ZN	C U	IN	СR	CIPW NOR	GR	AB	AN	NE	ID	Η	OL 2	CA-OK	IW		AP

IAD	LE 4.9 640	DIAU NAJUKS	TRACES	AND NURAS.	•		
	115	177	133	637	1025	516	
PERCENT							
SIU2	50.44	49.35	47.07	40.55	16.12	48.00	
AL 203	05.5	11.70	13.25	13.70	12.91	22.6	
± E2 U3	6 • 8 Ó	24.9	22.01.	ີ ສຸ ເ	10.56	6.24	
MGU	14.71	0 6.51	11 .05	15.09	11.24	24.21	
CAU.	14.90	12.71	15.00	18.05	16.17	15.97	
NA2U	0.00	0.66	55.0	0.53	0.39	0.12	
K ZU -	ú . 03	0.US	0° 05	. 0. 02	0.08	0.03	
1 I U 2	0 • 24	0.23	0.37	0.17	0.30	0.11	
MNU	:0 .1 5	0.12	C.14	0.05	0.14	0.11	
S	10.0	10.0	0.01	0.01	0.01	1	
P205 -	0.13	0.14	0.14	0.14	0.13	0.05	
WCO							
		0	7	L ,			
1	0、	0 1	J µ	~ ~	о, И	1	
NC .	э		n i	+ •	າ :	I	
۲K	ື	 • •	27	10	20	, 1 	
~	4	ŝ,	07	ς η	ح ى	1	
SK	70	154	158	122	137	` 1	
RU .	I	-1	ი ა	1	-+ 	1	
ZN	27	70	+	1.7	41	ì	
ເຕ	1	. 7	1	14	1	1.	
N I V	190	167	44-	545	ن. ت	149	
ск К	1495	1421	130	21152	104	165	
CIPW NORA							
GTZ	I	1	I	I	1.	1	
л. К	0.20	0.20	0.50	0.10	0.50	u .20	
415	5.10	09 • d	4.40	1. YO	3.50	L.00	
24	24.40	29.00	53.60	35.10	33.50	20.20	
йП С	1	١.		1.40	!	1	
10	34.50	44.70	34,90	4 2.50	37.50	42.10	
۲,	25.70	10.3U	16.70 j	I	16.70	04.11	
Ļ	L. U.	7.20	3.10	16.70	4.00	17.90	
1	2.73	07=7	3.40	1.60	3.40	0.80	
۱۱	0.50	0-40	0.70	0.5.0	02.0	0:20	
٩P	0.30	0.30	0.30	C- 30	0.30	0.00	

ΤAΈ	sLE 4-9 GAB	Suku MAJUR	KALES	AND NURIAS	×						
	124	191	1003	1006	1017	1022	IUSUA	1048	116	121	
PERCENT	л. 78	5	05°54	48•4]	62.84	47.05	4 6 8 8	40.57	51.53	40°ZI	
510C	01.10			16.12	10.00	14.70	18.75	14.58	13.42	11.10	
REACU FEACA		2.70	4.07	7.50	4.50	3.69	5.40	9.64	2. 40	10.0	
M CO CO			12.33	12,85	12.72	16.92	14.00	13.51	8 . 24	11.50	
	10 - 44 10 - 44	26.24	19.04	14-64	16.50	17.08	15-13	14.35	21.71	15.05	
NA2LI	0.63	0.24	0.50	0.29	0.21	0.14	0.27	0.56	I. 10	0.1c	
K 20	0.02	0.02	0.01	0.01	0.0i	0.01	0.02	0.03	0.03	0.02	
TIUV	0.12	0.15	60.0	u. 09	0.07	0.00	0 • 05 20 • 0	0.26	1.27	01.0	•
MNU	0.01	1	C.09	0.14	0.11	0.08	0.07	0.16	0.01	- 0.12	
S	0.01	0.01	I	1	-1	i	1	0.01	70.0	10.0	
P2U5	0.19	، د ک . ن	0. 06	0.07	0.06	0.07	0.07	0.14	T	0.13	
						•	· ·				
РРМ		. 1		40	U a	13	1	i I	1	19 1	
EA	i .	} -		r -	9 9	1 0		•) J	
22	-4	- 4 F	V V	4 3		7 4	α		ן מ	,	
2k	ת	•	t (o c	1 .0	+ -	.	+ <	0 0	۲ ···	
۲ ۲	2	v č	ດ :	7 V 0	4	1 2 2	C.L.	- - - -	2001	2 7 7	
SK	U 2 1	101	0	16	0 0		20		127	5	
ខ្មុន	-1 , ,	ł	1		V .	-	n J	u r		-	
7	, 1	i	کار	ν) (0 ° 7 F		ות	n 0 n		0 V - 7	
cu	77	1 [°]	- + -)	717			2 4 7 7 7 7 7	1 1 C		
NI	I	1	111	1	ת סי	747	t : 	571 1	20	0 (t	
CR	:0	5.2	0511	771	079	CT/T	511	0.0	81	C77	
CIPM NGR	X		•								
wTZ	6.90	5.70	1	1	1	ł	1	 	05• -		
0 K	0.10	01.0	0.10	0.10	0.10	0.10	0.10	0.20	0.23	U. LU	
Åβ	5.30	2.00	4.20	2.50	1.00	1.20	2.30	8.20	10.00	1.50	
AN V	43.60	40.40	35.00	42.90	43.00	00.95	50.00	35.10	31,30	0 6. 04	
E Z	1	.1	1	I	. 1	_; ∤	ł	F ,	1	1	
10	25.50	27.00	46.90	23.70	32.20	35.40	05-12	28.60	45.50	24.13	
0	16.00	22-7U	t	ı	I	I	1	1	7.50	I	
× 4	ı	1	8.30	. 25.60	06.61	3.50	9.50	6.60	ł	24°JU	
٥٢	I	1	3+90	2.70	1+40	ໄຮ ູບບູ	14.50	17.60	J	Ud.U	
L Z	1.00	0.40	1.50	2.30	1.40	1.20	1.10	5.00 1	0.80		
I L	0.20	0.30	0.20	020	0.10	0.10	0.10	0.50	2.40	0-20	
	0.50	0.00	07:0	0.20	01.0	0.20	0.20	0 . 30	1	0.80	

いいた	
ANU	
TRALES	
MAJURS	
UABBKU	
6.4	
ч	

TABL

 S_{j_1} in

S

44.74 11.03 6.55 6.55 6.55 72 15.44 0.14 0.14 0.15 0.10 IULL 1005 0.10 36.30 1.60 1.60 1.60 0.10 0.10 0.10 0 - 10 0 15502220221 865 44.45 15 553 182 110-10-00 110-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-10-00 10-0 1 - 40 - 40 - 40 - 40 - 40 - 40 - 10 - 40 - 10 - 40 - 10 517 110,000 166 0.00 145 7.81 13.73 9.52 5.52 11.66 11.66 11.66 11.00 11. 141 138 NCEN JERCENT 5112 5112 71203 71203 600 600 600 7102 7102 7102 7205 7205 A A A A

ΤÀΒ	LE 4-9 6-131	BRU MAJUKS	TRACES	AND NORMS					•	
	11961	150(2)	151	181	1.5.1	351	201	222	543	544
PEKCENT					-					- ,
SIUZ	48.20	47.00	ذر.54	48.93	47.27	47.26	48.57	40.65	48.63	42.10
AL2U3	16.85	17.35	17.8J	10.59	17 • 4 1	15.02	14.00	14.93	14. 80	17.01
FE203	7.10	5.45	6.02	10.44	11.07	12.54	9.92	0.69°	10.4	4.10
MGU	10.93	12.62	9.19	15.33	30.5	9.11	10. šč	10.70	14.73	14.49
CAU	16.30	15.83	13.04	14.23	13.04	14.05	15.53	16.53	16.51	11.45
NAZU	61.0	Ü - 14	0.18	50.0	0.57	0.39	0.30	0.16	Ú.15	U • 1 ¤
K20	0.01	I	I.	10.0	I	l	I	. 1	1,	0.01
T102	0.09	0.07	0. U.8.	0.13	0.13	0.15	0.13	0.11	.0.01	0.07
MNO	0.14	0.12	0.12	0,20	0.20	0.23	0.19	0.17	U. 10	50.0
S	1		1.	1 [.]	t,	;	1	I .	1	
P205	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	U .05	10.0
Med										
	je I	,Ç	۲ ۲	,55	.n	2	1	44	21	
) 0) ~	• •		• •		~		;] ^
04	J -	4 0	n, t		ب ت	1.	1		4 (*	1 ×
14	- i /	<u>ດ</u> ້	n 1	t 4	ņ-	o r	D .u	- 	n -	+
≻.		V	ກີ	η,	-4 .	, n	ດ			V
SR	62	55	5 4 3	54	64	(9 <i>)</i>	50	5.3	Ω Ŧ	ω.
КB	I	Ì	1		7	1	. I-	~-i	1.	I
ZN	25	24	37	45	53	73	48	30	11	12
CC	495	10.	420	Ϋ́,	č٦	- - - - -	55	ł	125	172
IN	67	164	101	127	34.	72	7 6	57	96	ינני -
C.R.	150	5625	021	2011	163	412	255	272	651	1002
CIPW NEAD								·		
сТ.7	. 1		1.10	1	0.30	0.50	0.40	1.00		0.30
Ľ. K.	C.10		ı	0.10	I	1	ł	1	i.	u-1u
AE	1.60	1.20	1.5V	0.80	3.20	3.30	2.60	1.40	1.10	ں 5 . ا
AN	45.40	46.90	48.00	28.70	46.20	41.30	39.00	40.30	40.10	42.20
NE	I,	1	1	1	1	1	1	I.	1	I
10	28.70	22.10	33.30	53.70	16.40	25.50	30.90	33.70	33.00	つた。 中語
нΥ	21.30	L3 .8U	14 • UÚ	30.00	28.10	24.70	23. 00	20.60	16.50	1×-50
uL .	0.40	5.30	ł	3.10		1	1	ł	7.10	1
LW TW	2.20	1.00	1.90	Z•20	3.40	06.0	3.10	2.70	1.50	0.0 = 1
ĬL	0.20	0.1.0	0-20	0.20	0.20	0.30	02.0	0.20	0.10	01.0
٩P	0.10	01.0	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.20

0 - 10 0 - 12 0 - 12 0 - 12 0 - 12 0 - 10 2000 d 1 2003 215 500000104100 500000104000 0.20 2.510 2.510 2.510 2.510 0.10 0.10 0.10 0.10 214 500 40 1 8 2 2 1 8 5 0 0 4 0 1 8 1449-84 1449-84 5-70 5-70 111-441 111-441 111-441 111-441 00-00 00-00 00-00 00-00 0.70 213 13.44 13.44 12.54 212 54 - 27 56 - 27 57 211 315 - 15 - 17 K 210 50.62 68.162 68.16 68.16 68.16 11 76.75 11 76.75 0.00 0.00 0.00 0.06 0. 10 0 205 864612000146 66461200016 50.17 5.257 5.257 5.257 5.257 6.22 0.22 0.12 0.12 0.12 0.12 203 147.66 147.66 14.30 17.97 17.9 175 173 NUFM A H Z D H Z

TABLE 4.9 GASEND RAJERS TRACES AND MURKS

NUKMS
AND
TRACES
MAJUKS
GAUBKU
4.9
TABLE

	180	102	- 04A	105	851	853	862	368	869	1012
PERCENT	••••••									
SIUZ	49.10	46.31	49.00	47.76	40.43	48.45	.49.55	48.14	46.54	40.04
ALZUB	11.21	15.53	1.41.11	14 - 95	13-26	18.50	15.40	15.07	15.23	Co. 01
FE2u3	10.13	04•01 ·	5.43	3.57	7.93	5.65	4.26	4.78	10.47	11:5
MGU	16.03	12.30	8.21	11-53	10.93	11.40	11.34	15.38	11.52	13.17
CAU	12.69	13.56	10-02	15.03	17.86	15.55	18.14	15.88	13.01	55.cl
NAZU	0.25	1.14	1.79	1.10	0.05	0.19	U. 66	0.50	0.38	0.19
K2U	10.0	Ú•U∠	0.02	0.03	0.01	0.01	0.03	0.01	0.02	10.0
1102	0.12	52.C	0.24	0.26	0.47	0.06	0.08	0.11	0.11	10.0
MNO	0.19	0.17	0.10	0.14	0.14	0.12	40 • 0	0.07	0.21	0.12
S		10-0	0.01	0.01	I	ł	. j	1	•	I
P2U5	0.05	61.0	0.15	0.14	0.06	0.07	0.06	0.07	0.07	0.07
						•				
Mdd										
дA	32	1 .:		,20	14.	24	4	1	ļ	119
NB	rei L	~	4	-1	ł.	2	2	n	I	
ZR .	2	アブ	. 61	31	20	ŝ	14		· · /	11
¥		C L	7	3	ي بر	1	Г	ς. Γ	+	1.00
SR	52	175	179	156	151	- 0 9	132	111	76	VCI
RB	1	4	4	ر م		1		I	 1	1
ZN	43	42	1.6	32	20	21	່ ບ	16	54	20
CC	5.5	. 61	. 19	151 -	ີ່	233	1	142	41	, Loy
IN	173	141	46	81	50.5	25	47	301	(T)	0.0
CR	1420	200	252	206	594	06	300	1359	l	<u>897</u>
CIPW NCRP	~				-					
012	. 1	ı	I		ľ	0.10	I	I	0.60	I
CR	0.10	0.10	0.10	0.20	0.10	0.10	0.20	0.10	0.10	v.i.∪
AU	2.00	10.20	15.20	5.50	7.20	1.60	5.00	4.20	3,20	1-00
AN	62.80	00.75	38.90	35. 60	32.50	49.80	01.45	39,00	40.10	44.00
NE NE	I	ł	Ĵ1	I	ł.	1	ł	ł	1	1
01	27.50	24.00	34.40	30.70	45.00	21.60	40.20	31.30	19.70	24.90
ΗY	33.10	7 • UÜ	4.10	7.70	4.90	24.80	11.10	10.20	32.50	05.52
0L	4. I.O	17.40	4.60	12.30	6.60	I	2.20	13.40	ŀ	2.70
IW	3.10	5	1.80	2.70	5 - 50	1.70	1.30	1•50	3.30	U > • · ·
1 L	0.20	0.50	0.3 • 0	04.0	05.0	0.10	0.20	0.20	0.20	01-0
AP	0-10	0.30	0.40	0. 30	0.10	0.20	01.0	0.20	0.20	0.20

TABL	E 4-9 JAB	BRU MAJUR	S TRACES	AND NURMS			• • •		-	
	183	192	231	252	500	510	5208	529	530	460
PEKCENT						-	• •			:
SIU2 .	49.87	50.72	47.15	40.91	44.43	43.02	44.27	46.30	47.34	41.50
AL 203	6.30	14.45	74.42	19.49	12.19	10 • 0 - 1 0 • 0	μ +.ζδ	10. 10.	12.4	C.C. ● 1 ,7
. FE203	11.00	3.55	5.76	4.73	1.02	5.24	13.60	1.60	5.14)))
201	17.79	7.40	10.16	11.50	21.75	13.69.	15.22	15.57	16.62	12.71
CAD	14.54	61.52	16.03	16.30	12.50	17.01	13.48	16.22	21.11	11.11
NAZU	6 0 •0	06-0	1.12	0.70	0.34	0.55	0.5.0	0.57	0.10	0.12
K Zu	1	1	0.01	0.01	1	0.02	ł,	0.01	c.10	0.01
1102	0.16	0.24	0+14	0.13	0.10	0.13	25.0	0.22	0.15	0.10
UNW.	0.21	0.05	0.08	0.07	0.12	0.10	0.20	0.13	0.10	U. I I
S	1	1	†		0.11	I	đ,	1	1	i
P205	0.05	. 0.03	0.06	0.05	0.00	0.05	0.05	0.05	0•03	0.07
				•				•		
5	c r		I	α . •	08	0		26	- 70 -	1 /.
۲D.	л С		1 0	0、	2 -	4 4	J	4	3) ·
2 Z		~	V <u>-</u>	τ	- 1)	4 3	-	- C -	, ,	4
ZR	.	Ω.,	0 ľ	-	ອຸດ	5 (7 7 7	0 4	0.0	4
> -	0 ¹		າ	ำ รู	n :		F C) \	V 2	
SR	61	270	140	<u>у</u>	ר ח גע	7.07	TOT	, 130	2	111
RB	-			•	1	1	1	7	سار	1
ZN	4 1	m	5 - 1-	2 1 2	15.1	- 1 4	D -	ر بر بر بر		
C C	10	•	0 0	07 777			1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
N	110	0 0 0	0 V V 0 V C			2 - 2 2 - 2		1750	1665	
C.R	72 C T	4 < 5	64 C	ה ק	1403	0777	200		r. + 0 1	2401
CIPW NORM			-		•	•				
6T2	1	1.10	I	I	1	1	1	۱ ،	ł	1
Ck		F	0.10	0.10	1	C.10	ł	0.10	ł	0.10
AU	0.30	7.60	9-50	5.90	3.30	4.70	6. ¢Ù	4.40	1	0.10
AN	16.90	36.30	48.30	50.20	33.40	34.00	35.70	34.00	24.60	31.40
NE N	ł	ļ	I	I	I	ł	I	0.20	0.50	ł
10	44.30	41.10	24.00	24.30	23.00	43.10	25.40	37.00	51.20	31.70
0%	ł	5.70	ł	•	ł	: 	1	•	I	!
ΥΫ́	29.10		2.60	5.10	1.10	7.06	3.90		1	2.00
оL	5.10	1	12.00	12.00	36.30	9.10	23.00	21.30	16.50	10.40
LA-CR	I	1	i	1	1	1	1	1	4.80	i
IW	3.40	1.10	1.00	1.50	2.40	0 	4.10	2.40	1.60	2.4.2
٦۲ ۲	0.30	0.50	ີ່ດີ	0.20	0.20	0.20	0.50	0 * 40	0.30	00.0
ΔР	0.10	01.0	0.1.0	0.10	0.10	0.10	0.10	0.10	0.10	07 * 0

.

205 225 237 13 555 556 577 1014(4) 523 139 FRUGNI ALLUA TELUS 11.259 11.									-				
FHLENT FHLENT<		205	225	752	H3	555	556	557	1014 (4)	523	189		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PERCEN	١T	-									•	
ALEUE LAPUN FALUE LAPUN LAPUN <thlapun< th=""> LAPUN <thl< td=""><td>S 10.2</td><td>48.01</td><td>49.39</td><td>41.79</td><td>47.68</td><td>46.* 52</td><td>41.64</td><td>48 •54 ·</td><td>47.72</td><td>42.08</td><td>50.13</td><td></td><td></td></thl<></thlapun<>	S 10.2	48.01	49.39	41.79	47.68	46.* 52	41.64	48 •54 ·	47.72	42.08	50.13		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AL2U3	12.99	12-51	14-68	14.04	16.51	. 15.70	15.42	19.10	14.67	10.17	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FE2U3	7.58	5-36	6.6 1	7.53	8 - 52	7.44	7.15	7.41	14.63	3.59		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MGD	13.22	12.90	11.32	12.25	11.82	12-21	10.62	10.60	18.82	11.27		
	CALL	17.66	18.58	16.25	17.43	14.47	15.53	16.73	14.26	8.77	- 23 • 65	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.6.7	0.07	0-66	1.27	1 - 09	1.13	0.42	0.70	0.25		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NAZO	77 • 7											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K ZU	1	1	1	0.00	10•0	10.0		0.0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T 102	0.13	0.18	0.19	0-20	0.18	0.14	72-0		. n• n	U-11		: .
Rouse 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.06 0.05 0.06 <t< td=""><td>ONIM</td><td>0.15</td><td>0.11</td><td>0.15</td><td>0.13</td><td>0.13</td><td>0.12</td><td>0.12</td><td>0.13</td><td>0.19</td><td>0.09</td><td></td><td>•</td></t<>	ONIM	0.15	0.11	0.15	0.13	0.13	0.12	0.12	0.13	0.19	0.09		•
ZUS 0.05 0.02 0.03	2	1	1		ı	I	T	J		•			•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DUDE	0.05	0.05	0.08	. 0.05	0.07	0-07	0.07	0-07	0.08	0-05		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	072					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·))))	· • •	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Wad						1		i				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ÊΑ	ب ا	30	12	t 	18	23	17	m	19	· · ·		•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NB		-4	1	1	~	~4	1	2		n 1	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	710		×	5	10	13	. 12	14	5	5	18		
Ki 6.3 6.5 7.2 6.5 1.24 1.06 1.25 7.5 1.05 1.5 ZN Zoo 1.5 2.6 1.5 2.6 2.5 2.6 2.6 2.6 ZN 1.11 2.201 1.36 1.36 1.36 2.6 2.6 2.6 2.6 2.6 CK 1.111 2.21 2.65 1.06 1.36 1.36 2.6 CK 1.111 2.24 1.06 1.36 1.36 2.6 CK 1.111 2.24 1.06 1.35 1.42 4 CK 1.111 2.24 1.06 1.36 2.6 4 CK 1.111 2.24 0.6 1.99 1.93 4.29 CK 1.111 2.24 0.6 0.10 0.10 0.10 CK 1.199 7.30 2.60 11.70 2.60 2.60 CK 1.93 4.60 35.60 11.70 3.60 6.00 1.10 CK 1.19 37.20 39.10 31.60 3.60 6.00 1.10 CK 1.170 35.50 40.50 35.60 10.70 3.60 <td>2 2</td> <td></td> <td>ע</td> <td>1</td> <td></td> <td></td> <td>ים ו ו</td> <td></td> <td></td> <td>, .</td> <td>1 1</td> <td></td> <td></td>	2 2		ע	1			ים ו ו			, .	1 1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	t - 1	n (c c T		7			4 L 7	4 1			
RB - 1 34 29 23 34 58 4 58 4 58 4 58 4 58 4 58 4 58 4 58 4 58 4 58 4 58 4 58 1111 2224 106 132 106 132 112 223 139 106 132 51 221 112 223 4 58 139 139 102 97 97 97 97 97 97 97 97 97 97 97 97 97 93 65 93 65 93 65 97 97 97 97 97 97 97 97 97 97 93 94 94 94	æ	63	53	71	22	124	100	C71	<u>د</u>	C) T	107		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RE	•	4	1	1	•	~- 4 •	ł	-4	I	N		
UI 132 63 106 136 142 80 550 97 VI 117 292 639 536 1199 703 267 97 97 GIP, NORN 272 111 2924 639 536 1199 703 267 97 GIP, NORN 273 267 1199 703 1232 1662 1265 GIP, NORN 273 273 1662 1199 703 266 97 963 OK 1199 710 0.10 0.10 0.10 0.10 0.10 1149 OK 1199 9.36 0.10 0.10 0.10 0.10 0.10 0.20 OK 1199 9.36 5.60 1170 9.36 10.10 2.66 2.67 2.73 NF 10.30 5.50 35.10 35.10 37.20 55.50 37.30 25.50 2.36 1.49 1.49 1.40 NF 10.33 10.35 10.36 1.62 1.49 1.49	7 N	26	16	34	29	29.	23	22	34	58	4		
NI III Z01 I02 Z02 I02 Z01 Z02 Z02 Z02 Z02 Z02 Z03 Z0	112	661	63	106	136	106	136	142	. 4	50	1	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		177	107	149	213	232	162	125	80	267	- 25	·	
CIPM NDRM - - 0.10			2 C C C			1 1 0 0	202	007	202	1 1			:
CIPA NORM 0.10	L L		176.7		2								
UIT 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0K 1.90 4.60 5.60 11.70 9.30 9.60 5.60 1.40 0K 34.70 32.50 39.10 39.10 37.20 50.50 37.30 20.50 0K AN 34.70 32.50 39.10 38.10 37.20 50.50 37.30 20.50 37.20 50.50 37.30 20.50 37.30 20.50 37.20 50.50 37.30 20.50 37.20 50.50 37.20 50.50 37.20 50.50 37.20 50.50 37.20 50.50 37.20 50.50 37.30 20.50 37.20 50.50 37.20 50.50 37.30 20.50 37.20 50.50 37.30 20.50 37.20 20.50 37.30 20.50 37.30 20.50 37.30 20.50 37.30 20.50 37.30 20.50 37.30 20.50 37.30 20.50 37.30 20.50 37.30 20.50 27.30 20.50 27.30 21.70 21.90								•					
G12 - - 0.10 0.10 - 0.20 AN 34.70 32.50 5.60 11.70 9.30 5.60 11.40 NE 1.90 4.60 5.60 11.70 9.30 5.60 11.70 NE 34.70 32.50 35.50 39.10 38.10 37.20 50.50 37.30 NE 42.40 47.50 35.50 39.10 36.60 16.20 4.90 6.01 NH 42.40 47.50 35.60 16.20 4.90 6.01 1.90 NH 10.30 5.00 40.80 26.20 31.00 35.60 16.20 1.90 NH 10.30 5.00 10.60 17.60 2.30 36.60 1.90 0.10 NH 10.30 5.00 17.60 2.30 25.10 8.20 1.90 NH 10.30 2.10 17.60 2.30 2.30 2.30 2.30 NH 0.130 2.30 2.50 2.30 2.30 2.30 2.30 <	CIPM N	UKM								• •		•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	710 S	9	ł	1	1	1	1		1	ŧ.	; ; ;		•
AB1.904.60 8.30 5.60 11.70 9.30 9.60 5.60 11.10 NL 34.70 32.50 35.50 35.50 37.20 50.50 37.30 25.60 NL 42 $ 0.50$ 37.30 25.60 NL 42 $ 0.50$ 37.30 25.60 NL $ 0.50$ NL $ 0.50$ NL $ 0.50$ NL $ 0.50$ NL $ 0.50$ NL $ 0.50$ NL $ -$ NL $ -$ NL $ -$ NL $ -$ NL $ -$ NL $ -$ NL $ -$ NL $ -$ NL $ -$ NL $ -$	OK	1	1	I	0.10	0.10	0.10	0.10	0.10	i	0.20	:	
AN 34.70 32.50 35.50 35.50 35.10 37.20 50.50 37.30 26.60 NE 7.40 47.50 35.80 40.80 26.20 31.00 35.60 16.20 4.90 0.50 HY 10.30 5.00 6.10 3.60 16.20 4.90 5.30 25.10 8.20 - 1.90 MI 2.30 1.70 2.70 2.20 36.60 1.10 0.20 0.20 0.20 0.20 0.30.60 - 1.10 11 0.20 0.20 0.20 0.20 0.30.60 - 1.10 0.20 0.20 0.20 0.20 0.20 0.30.60 - 1.10 11 0.20 0.20 0.20 0.20 0.30.60 - 1.10 12 0.20 0.20 0.20 0.20 0.20 0.30.60 - 1.10 14 0.10 0.20 0.20 0.20 0.30.60 - 1.10 15 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	AB	1.90	4.80	8.30	5.60	11.70	9.30	9.60	3.60	6.00	····1.•1.0		
NE 42.40 47.50 35.80 40.80 26.20 31.00 36.60 16.20 4.90 66.10 01.50 4.90 01.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 11.50 0.20 38.60 0.20 38.60 1.10 0.20 0.20 0.20 0.20 0.20 0.20 0.2	A N	112 - 72	32.50	25.90	35.50	39.10	38.10	37.20	50.50	37-30	20.00	•	
NF 42.40 47.50 35.80 40.80 26.20 31.00 36.60 16.20 4.90 6.10 HY 10.30 6.00 6.10 3.60 2.20 4.90 5.30 25.10 8.20 HY 8.10 7.10 10.60 11.50 17.60 13.80 8.20 2.30 2.30 2.30 4.60 1.10 MT 2.30 1.760 13.80 2.30 2.30 2.30 4.60 1.10 MT 2.30 1.760 13.80 2.30 2.20 2.30 4.60 1.10 MT 2.30 0.20 0.20 2.20 2.30 4.60 1.10 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 AP 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20))))]		1		1	0.50	•	
UI 42.44 HQ	2												
HY 10.30 5.30 25.10 8.20 HY 10.30 5.30 25.10 8.20 MI 7.10 10.60 17.60 13.60 2.30 MI 2.30 2.30 2.30 2.50 2.530 MI 2.30 2.50 2.50 2.50 2.50 0.10 0.1760 11.60 2.50 2.30 2.50 0.17 0.20 2.30 2.50 2.30 2.50 0.10 0.20 0.10 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.20 0.20 0.10 0.20 0.20 0.20 0.20 0.20		42.40	41.00	10.00	40.04	02.02	00.10	00.00	10+20	07.4	00.1.00	•	•
HY 10.30 5.00 5.10 3.60 2.20 4.90 5.30 25.10 8.20 $-$ 01 33.60 7.10 11.50 11.50 17.60 13.80 38.60 $-$ 01 2.30 2.30 2.36 2.20 38.60 $-$ 0.20 0.00	03	1	I	!	1	ł	I			1	- 06 • T		•
0L 8.10 7.10 10.60 11.50 17.60 38.60 - MT 2.30 2.30 2.30 2.30 38.60 - MT 2.30 2.30 2.30 2.30 - - NT 2.30 2.50 2.30 2.30 - - - 0.10 2.50 2.70 2.30 2.30 - <td>λH</td> <td>10.30</td> <td>5.00</td> <td>6.10</td> <td>3.60</td> <td>2.20</td> <td>4.90</td> <td>5.30</td> <td>25.10</td> <td>8.20</td> <td>1</td> <td></td> <td></td>	λH	10.30	5.00	6.10	3.60	2.20	4.90	5.30	25.10	8.20	1		
MT 2.30 1.70 2.50 2.60 2.30 4.60 1.10 AP 0.20 0.40 0.40 0.20 0.20 0.10 0.20 0.20 0.20 0.20 0.20 0.10 0.10 0.20 0.20 0.20 0.10 0.10 0.20 0.20 0.20 0.10	Ξ.	8.10	7.10	10.60	11.50	17.60	13.80	8.50	2.00	38. 60	t t		
APP 111			07 1	07.70	05.0	2.60	2.30	2.20	2-30	4.60	1.10		•
							07.0						
AP 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20	٦ ٢	01-0	00-0	>++>		2			0 4 4 0 0 4 4 0	0.4.0	20.0		÷
	AP	0.10	ł	020	0.10	0-20	0.20	0-20	0*20	0- 20	0.10	•••	:
								•		•	•	•	•
	•		r							÷			
		•				•							
			•										
				•									

TAB	LE 4-9 GAD	GKU MAJUK	S TRACES	AND NURHS						
	210	217	505	505	507	605	511	635	823	とひぶ
PERCENT										
Stuz	51.55	44.10	42.44	4c•26	50.60	46.54	48.00	43.00	48.20	40.50 - 55
ALZUB	14.97	10.05	15.25	12.77	10.11	14.50	6.04	IC.IL	13.15	14.
Ft2U3	4.51	50.6	820	12.21	5 . 24	ć. 55	9.16	4.02	4.40	4.70
MGU	10.56	10.64	25.55	14-20	6.7c	16.52	27.04	11.30	15.69	
CAU	16.94	17.62	10.12	13.40	20.00	14.76	67.3	17.63	16.27	
NAZU	. 0.77	0.15	5.0	0.4.0	1.05	0.56	1	0.11	0 55	44 - 04 40 - 0
K 2u	0.01	• 1 • 2**	0.01	0.13	0.03	0.01	1	0.01	0.02	0.01
1102	0.03	60 - 0	0.00	0.27	0.12	0.12	0.07	0.09	0.15	0.10
MNU	0.10	0.11	6.13	0.25	0.06	0.11	0-11	0.06	0.10)))))))
S	1	.1	0.04	1	J	.]	1	•		
P205	0.06	0.00	0.06	0.09	0.00	0-06	0.05	0.07	0 • 00 00	0•0e
MQQ		•								
 a 	4	1				Ċ	- iu -	ć		
a : u :	0	l c	n n	- 1 -	1 :	7	ດ ⁻	ייכ	4	12
20	J :	n !	7 .	n' i	V .	2				~
78		~	τ 1	c n	11	ìι	I	11	15	C.I.
۲	1	1	2	15	1	N N 1	1	-1		4
SR	119	ر ت ک	15c	229	175	130 -	Ś	123	124	112
KE	~~	1	1	C J	1		t	1	1	I
ZN	15	16	5 E	04	ß	20	15	11	17	1
сu	I	111	511	51	0 2	26	585	54	27	5
IN	-57	50	151	134	6 Ì	251	522	156	250	172
ск	472	412	1015	02	320	5 1 0	. 1204	1485	2850	1445
CIPW NORM										
0.12	2.30	I00	ţ	1	1.80	I	1	, .	1	ł
OK .	0.10		0.10	0, 00	Ù.∠G	0.10	1	0.10	0.10	0.10
AG	54:3	1.40	2.80	3.40	8.70	4.80	I	6.00	4.00	04.4
AN	37.50	44.90	40.40	33.00	44 + 80	36.50	10.80	46.30	33.40	36.00
л И	I ·	ł.	I	, 1	ł	1	1	J	0.30	
10	36.80	34.60	7.70	27.30	43.10	27.60	19.40	32.40	45.10	42 • DU
ΥН	01-61	16.30	0.2.1	17.10	ł	5.70	33.20	4.20	ļ	2 . 70
יר	1	1	44.30	13.90	1	21.00	25.00	9.40	15.20	11-4U
	1 • 40	1.00	2.20	J		2.4 00	2.80	1.40	I.40	09 T
	0.20	07-0	0.50	05.0	0.20	C• 20	U. 10	0.20	0.20	0.50
AP	0-10	0-10	0-1-0	02.0	0.10	0.10	0.10	0.20	0.10	0-10

TABLE 4.9 UABURU MAJUKS TKAUES AND NURMS

16.75 16.75 16.75 16.75 17.45 10.05 17.55 10.05 100 100 100 100 100 100 100 100 1000 001 0 - 10 - 28 - 60 - 20 - 70 - 2 135 47.71 8.005 8.005 8.005 111.233 115.23 115.23 10.02 0.01 0.01 0.01 0.14 0.01 134 47.77 16.19 8.13 9.29 9.29 7.88 17.88 17.88 0.25 0.25 0.25 0.10 0.10 0.10 0.10 0.10 0.10 0.10 131 2000 1005 46.92 14.91 14.91 14.91 14.92 14.92 14.92 15.020 0-20 1-10 1-30 1-30 1-30 1-30 0-20 0-20 0-20 0-20 0-20 571 12.8 1-401-14000 16-000 5 6-10 0-30 0-10 0-1-20 0-1-20 0-1-20 0-1-20 0-1-20 0-1-20 0-50 0-50 126 47.47 18.54 10.05 110.05 110.05 110.05 10.05 10.05 10.05 1410 0.14 1410 0.14 1410 600 × 125 46.07 12.17 12.17 12.17 12.17 12.17 12.17 12.17 12.17 12.17 10.070 1007 48.10 15.82 49.02 49.02 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.10 10.10 10.10 10.10 0.30 1.60 1.60 2.50 223 NUEM PERCENT SIU2 ALEU3 ALEU3 MGC NAZU NAZU NAZU NAZU S PZO5 MCHDNARKZIP MCHDNARKZIP MCHDNARKZ KHCN8K

								•		
	229	ά4 c	843	10J3	1034	11	114	234	560	561
PERCENT										
SIU2	51.21	49.20	47.40	41.57	48 • 60	47.28	. 42.46	40.15	46.49	47.02
AL 2U3	14.97	12.45	14.21	15.55	14.54	13.26	15.03	15.82	15.6U	ου.čl
ŕE2U3	3*65	0.79	65.1	7.55	7.4.7	7.54	7.27	6•58	10.36	02°0
MGU	7.21	12.10	13.47	12.43	11.17	14.51	9.4L	14•58	11.30	12.75
CAU	20.53	17.39	15.49	15.47	10.08	16.63	17-55	15.06	14.44	GA* CT -
NAZO	1.61	1.13	0.91	1.04	1.05	0 - 44	0.95	0.43	1.30	1.03
K 20	čl.0)	U.U	0.02	Ú. 03	0.03	0.02	0.2	0.01	0.02	0.02
1102	0.23	0.20	0.22	0.19	0.25	C. 14	0.25	0.15	0.23	0.2 0
MNU	0.08	0.14	0-15	0.15	0.14	0.15	0.13	0.12	0.16	0.10
S	1	I		1	¢.	1	0.01	1	I.	
P205	0.04	· 0.05	0.07	0.05	0.05	0.05	0.13	0.05	0.07	0.07
XQ										· · ·
	30		4- 404	- 1 N -	•		I	7	00	17
	, ~	~	•			i a) 1	• *
20	, ~ , ~	- - - - -	14	14	16	ع ا	- 9		1 :	<u>, d</u>
, r	1 in) -	ند <u>(</u>	, ,) 	່ ຕ າ	1 1 1	4	<u> </u>	5° LC †	ייי ר י	יי 1 ר
SR SR	210	152	133	114	105	74	137	55	140	140
, a	ĩ	1	1	1	41 -	1 ⁻		~	. 1	
ŽΝ	7	۲ <u>۲</u>	29	25	28	33	27	28	33	
cn	- 1	5 2 3	41	158	112	<u>ን</u> ን	16		22	51
IN	14	124	167	202	234	248	68.	145	43	
CR	255	161	553 5	5°C	647	559	. 353	504	78	145
NO DIA DIA C						•				
CITA NUN		1	I	į			4			·
11	0-80	0.10	0.1.0	0,20	02-0	01.0	0.10	0 - 10		
AL	12.70	9.60	7.70	0.5.3	06	3.70	8.10	5.40	11.10	
AN A	33.30	25.50	34.80	57.50	34.90	34.30	39. IO	40.50	37.00	30.10
	0.50	ì	. 1 	1	1	1	J	1	J	1 1 1
DI	05-04	40.00	33.50	31.10	38.40	38.40	38.20	27.20	28.00	30.00
MO M	4.00	4	ł	1	1	ļ	ţ	, 1	.†	1
ΥY	1	1.00 00	5.50	5• UO	5.żŮ	5.60	6.80	3.80	3.00	2.20
Ĺ.	ł	11-30	15.20	14.20	01.6	15.10	4.70	20-40	17.00	02.4
M T	1.20	2.10	2.50	2.30	2.30	2.30	2.30	2.20	3.20	05.5.
I.L.	0.40	0.50	0.40	0.40	0 • 5 0	0.50	0.50	0.30	C • 50	0.50
АР	0.10	0.10	0740	0.10	0.10	0.10	0.30	0.10	U • 2Ù	02.0

TABLE 4.9 GAUKKU NAJURS TRACES AND NUKMS

	/ T 2 2 2 2 2 3										
	230	524	5264	549	LZB	139	143	144	148	153	- 1
PERCENT											
SIUZ	46.03	47.45	66.74	40.50	48.52	47.31	47.01	47.47	48.19	49.05	
ALZUB	14.45	12.39	11.38	10.31	ان - دن ان	14.71	16.82	15-55	17.59	10.14	
FE2U3	9.52	6.03	10.58	5.65	C.74	6.51	ú - 86	9.32	6.70	20° C	
MGU	26°21 -	19.01	12.08	20.70	12.• 25	10.41	31.4	12.19	10.15	11.10	
CAU	<i>ĿĿ.Ğ</i> <u>I</u>	10+41	16.99	10.34	15.07	15.01	16.40	14.52	16.72	11.50	
NA2U	0.70	G5•0	0.43	0.15	0 • 0 S	0~00	0.17	0.11	0.16	3. 35	
K 20		10.0	0.01	0.01	0.02	10.0	0.02	0.01	0.02	. In. D	
1102 ·	0.26	0.23	0.73	50.0	0.11	0.13	0.14	0.11	0.11	0.10	
MNU	0.15	0.14	0.19	0.13	0.13	0.16	0.10	0.17	0.12	U. LI	
S	ł	0.05			0.01	0. UI	0.01	0.01	0.01	10-0	
P2U5	0.05	0.05	0.04	0.06	0.14	0.14	0.14	0.13	0.14	51.0	
							. *	•		•	
5 - U			(17		160	х с	73	. 1			
	7 r	1) - r)	ם ר	- -	•	ء . ا	5	
n s	η	V		۲	4. (- 	-4 1		1 .	i	
7 K	ار	14	7	7	V	٣	~	.	9	: م	
۲	4	?	, ,	5	, j	4	2	m	. .	4	
SR	120	128	50	0 G	30	15	0.5	é5	, 7u	10	
5 2 2	1	1	1	1		•		1	י י		
ZN	34	27	3 A.	25	02.	94	27	37	21	3	
CC CC	20	. 170	20	131	121	42	1 03	260	40	270°	
NI	77	د ر ۲	8.6	255	102	67	3.3	÷ . 64	23	ເປັນ	
CR	222	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	493	2164	451	ר ר ר	64	65	55	000	
CIPM NUR	×					•		÷			
17 M	ł	ł	ł	I	!	I	0.70		0.60	- 01 - 1 0	
C.K.	ł	0.10	0.10	0.10	0.10	0.10	0.10	0.10	U. IU	0.10	
Ab	6.00	8 . I U	01.4	0.30	02.0	1.70	1.40	0.5.0	1.40	04-0	
AN	56.60	29.10	29.10	27.60	43.60	47.40	45.40	43.30	47.50	44.10	
AE.		ł	. !	u.50	ŀ	1	I	1	I	1	
UI :	31,80	41.4U	44.70	42.10	UG-72	24.00	30.70	22.80	28 . CU	33.84	
НY	7.40	0.10	10.20	1	25.10	22-70	10.30	27.20	19.80	10-01	
5	14.60	1530	7.10	21.40	0.10	1.20	1	2.20	I	; ;	
MT	3.00	2.50	3.30	1.70	2 • 10	2.00	2.70	2.40	2.10	L • 00.	
IL	0.50	05.0	I.40	9.20	0.40	0.20	0.30	0.20	0.20	0 5 20	
AP	0.10	0.10	0.10	0.10	0:30	0	0.30	0.30	0.30	05.0	

TABLE 4.9 GAUBRU MAJUKS TRACES AND NCRMS

TABLE 4.9 UNDER MAJUKS TRALES AND NURMS

(נּ)טְכָוֹ 0 - 10 20 - 10 20 - 70 1 - 50 1 - 49.62 17.66 5.75 5.75 5.75 5.75 6.75 0.66 0.60 0.01 0.00 0.15 1 4 9 9 4 1 7 1 4 7 147 45.30 11.22 11.22 11.22 12.36 12.36 12.36 0.66 0.66 0.66 0.12 0.12 24 1606 1911 1919 1919 1919 177 0.40 11:50 11:50 11:50 15:10 15:10 15:10 15:00 15:00 1:80 0.30 0.30 0.30 0.30 110 11 11 11 11 12 12 12 15 15 15 26 0.10 36.80 0.10 0.10 1.10 1.10 0.20 0.10 655 **5**2 0 81124111 6 1 50 50 84111 6 1 1 1 26 9 9 0 - 10 626 44.01 114.42 111 0-10 0-10 24-900 24-900 17-50 17-50 0-40 0-40 0-40 0-20 0-20 シート 24.0 619 0 - 20 55 - 70 55 - 70 55 - 70 12 - 20 12 - 70 12 - 70 0 - 20 0 - 20 0 - 20 014 44.52 12.52 5.339 5.339 0.02 0.12 0.12 0.12 0.12 0.10 536 VORM CCIPW CCIPW DAU ANMACCIC APL APL APL APL P P M B A N B Z R A B Z D H Z

	539	542	1023	103.00	200	512	510	513	520	275
PERCENT										
Slu2	47.25	45.JS	46.40	45.22	44 . 88	47.55	50.33	47.05	47.05	37.45
AL2U3	7.15	10.15	10-08	13.39	25.01	-4-12	13.49	16.51	14.70	10.36
FE203	7.80	5.02	10.0	4.63	12.25	5.51	6 . 14	8.9I	c. 34	14.10
M GO	22.04	14.19	20.41	20.65	14.09	16.20.	13.01	ê.35	15.54	27.20
UAU	15.30	45.24	16.08	15.78	13.97	15. کرنے ک	15.50	15.55	15.24	5 - 92
NAZG	0.08	0.21	0.16	0.08	0.45	0.53	0.43	0.83	0.75	•
K2G	! -	1	0°01	0.01	. 1	0-02	u. u6	50.0	0.01	10-0
1102	0. 08	0.07	0.10	0.00	0.17	0.12	0.19	0.49	ći.0	0.09
DNM	. 0.15	0.10	0.13	0.12	0.20	0.10	0.11	0.16	11-0	0 - ZU
ŝ	ļ	, - 	J	ł	ŀ	1	1	I.	1	•
P 20 5	0°.05	0.05	0.06	0.06	0.67	0.06	0.07	0.07	0.05	0.00
								•		
27	•									•
BA	70	۲. ۲.	1 2	••••	31	1	17	5	I .	I
NB NB		2	2	1	ر	ר י	ŝ			' J
<u> Ž</u> Ř		. ~)	ŝ	2	ç	11	1.5	32	51 .	I
۲ ۲	, J	ר יע	C.	\$	n,	M	٥	25	ר י ז ני	الا
SR	23		49	55	76	145	141	190	141	ો
RB .	2	2	1	I	~			ŝ		1
ZN	32	101	24	6T	41.	2.1	20	49	19	
C.U	101	. 14	62	10	114	5 2 2	I	1	L 50	ł
IN	306	162	255	2 t S	136	200	155	58	242	021
CR	2692	507	2305	1739	216	105	. 1455	66	1140	1621
CIPM NORM						•.				
01.4	I	I	Ļ		I	1	T	ł	ł	1
<u>C</u> R	ł	١	0.10	l.	1	0.10	0•40	0.50	0.10	0.10
AB	0.70	- L - 3U	0.00	• • •	4 . 10	4.50	7.50	7.10	6.40	1.
AN	19.20	48.80	26.90	36-30	36.∠0	56.30	52.10	46.90	36-90	19.10
NE	1	1	02-0	0.40	1	1	†	1	1.	1
U.I.	45.20	25.30	÷1-70	30.40	26.50	00.15	37.10	24.50	30.70	1
ЪС	J	ا .	I	1	I	ł	i	ł	1	1
HΥ	5.80	2 . 80	ļ	ł	6 • 20	8.30	10.10	13.10	3.70	13.50
uL	26.40	19-30	26.10	30.20	20.50	17.10	4.10	4.00	19.90	67.40
CA-UR	Ι.	1	1	00.1	1	1	1	1	1	I
MT	2.40	1.70	1.50	1.40	3.80	1.80	1 • 4 U	2 . 80	2.00	4.40
1L	0.20	0.10	0.20	0.10	0.30	0.200	0.4.0	0.40	0.30	0 - 20
ΔP	0.10	0.10	0.10	0.10	0.20	0.10	0•20	0.20	0.10	0.20

TABLE 4.9 VADENU MAJURS TRACES AND NUKMS

		.,																																		
505		シューアナ				ידרי ידרי	• 7 •	,) - 	22-0			ປັນ • ບໍ		-	J ł	۰ <i>۲</i>) Cũ I		Υ .\	1 V 1 - 0		365		1	ł	11.00	01.15	, Í	30 • UU	,1	5.00	່ວ . ທີ	00.1	0 d • 0 · `	ି : - ୦
194		47.30	14 00	e. 22	1.72	17.67	C. 50	1	0.21	0.14	0.01	-0.0 -0		י ד	•	c)	84		5	1.65	124	206		I	I	4 - 80	36,10	i	41.50		4.10	1.0.60	2.50	0.40	0.10
188		43.02	10.12	U •53	10.07	17.17	U.71	l	0.19	0.12	1	0° 05		ł	2	12	l N	155	1	21	1 U	40	634		1	1	00 ° 0	41.00	ł	37.80	I	6.50 ·	0.20	<.10	0.40	0.10
d υ L		40 • JE	.15 . <i>c</i> 8	C• 61	13.02	15.GI	0.19	<u>0.01</u>	0.14	0.15		0.05		J	4	4	εŋ.	ຕ. ເ	े जन -	ς Σ	L C	lul	3 c 5		i	0.1¢	1.00	41.10	1	30.70	· t	11.00	01.11	2.70	0.30	0.10
119		47.06	12.08	c. 54	31.61	17.07	U • U7	C.01	0.12	0.I2	0.01	C.14	•	I,	i.	4	2	52	1	21	201	101	2.C2		I	0.10	0.00	34 .40	ł	04-52	1	11.50	l, lu	20	0.20	0. 30
100		45.97	15.34	11.10	16.55	15.51	. 1 . 1 1	0.02	0.24	0 • 1 č	0° 01	Э Т • О		10	1	16	Ç	177	1	ά Ο	25	いち	157		I	0.10	5.50	37.10	1	23 • 00	ł	7.70	LC.30	ざ・ちい	0.50	U č č U
566		52.49	12.20	1.03	9.24	62.50	0. c Ú	0.01	0.19	0.02	.1	U. 06		- 1	3	0 E .	2 7	c70	1	1	1	50	સ્વદ .		2.80	0-10	5.10	30.80	I	52.60	. 70	:	1	0-50	0.40	0.10
515		47-15	10.02	ă•Ü≿	9.70	čb.4 1	1.31	u•Ŭ∠	0.13	0.12	ŀ	0•01		23		รา โ	2	えいご	;	25	c	11	51		i	0.10	11.20	45.20	1	22.90	ł	5.čÜ	12.00	N • • 0	0.20	0.40
564		47.20	10.00	5 - C - S	LU.37	10 • < 4	J • 5 C	0.01	0 - 22	0.14	I	3 0 • 0 :		1	\sim	ST.	.× 1	lъć		35	1	10	202		ŀ	0.10	10.11	00°.55	1	25.00	1	4 • č Ü	13.70	ビート	0.40	0 - 10
562		40.22	15.27	7. dù	10.65	16.01	1.25	0.01	0.24	0.14	ļ	0.07		.	2	. 14	4	cE T	1	<u>्</u> य भ	4C	÷ č∠	140		1	0.10	10.60	36.50	ł	34.40	I	4.80	10.60	2.40	0.50	0• 20
	PERCENT	SIUZ	alžuš	FEZU3	MGU	CAU	NAZU	N 20	1102	Mi.C	S	P2u5	Nd d	E A	NB	ZR .	>-	S.R.	34	ZIN	S	IN	ск	CIPM NUR	Q 7.2	LŔ	ÅC.	AN	22	. 10) ×	Υ	υL	МТ		Α.Ρ

TALLE 4:9 GAUGHU NAJUHS TRAULS AND NUMBS

TABLE 4.9 GABBKO MAJUKS TRACES AND NURNS

2202 10 4 1 1400 10 4 1 040 30 30 101 241 241 2641 2641 13. 75 13. 75 17. 24 17. 24 26. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0.10 0.00 0.10 548 46.42 17.15 17.15 12.81 12.87 12.87 12.87 0.94 0.94 0.10 0.10 0.10 0.00 22225183112 0.20 8.00 16.70 21.60 21.60 21.60 0.20 0.20 224 121 113 0.0000 0.0000 844 47.76 44.76 5.62 5.62 115.62 5.62 115.62 5.62 0.00 110.00 0.01 0.00 0.01 0.00 0.01 0.00 843 0.20 9.70 9.70 9.70 9.70 9.70 9.70 9.70 0.20 842 11.44 11.44 11.45 14.55 14.55 **541** 6 - 10 6 - 10 6 - 10 6 - 10 6 - 10 6 - 10 6 - 20 6 - 20 6 - 20 6 - 20 840 NCKM A H MC H D N A B C C C C A A C C C C A A B C H D N A A Ndo K H C N K K K A B A

TABLE 49 GABBRU MAJUKS TRALES AND NORM

445.445 10.45 12.65 12.5 170 47.21 16.24 6.25 6.25 16.22 16.22 0.72 0.15 0.02 0.13 35 1062 7 6 5 5 11 6 6 2 1 1 6 6 5 5 0.60 0.10 1.20 1.20 50.70 50.70 2.60 0.20 0.20 0.40 146 200-27 20-27 20-27 20-27 20-27 20-27 20-27 20-15 20-12 20-12 20-12 20-12 20-12 20-12 20-12 20-12 20-12 20-12 20-22 20-22 20-27 20-20 100 1029(2) 00-10 00-10 00-10 00-10 00-10 00-10 00-10 00-10 00-10 00-10 00-10 00-10 1016 1014(2) 47.92 15.032 15.032 13.11 13.11 13.67 0.05 0.06 0.06 0.00 0.00 0.00 luut: 66666112150000 1111100000 1111100000 000-871 1 14 133 133 25 25 25 379 379 11-42 12-62 0 - 10 - 24 - 24 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 10 850 VORM PERCENT STUZ ALZU3 ALZU3 MGU MGU MAZU TTU2 NMNU PZ05 PZ05 Mdo

TA	BLE 4:9 341	JERC MAJUR	S TRACES	AND NURWS				• .	•	
	867	010	567	5 0 2 2	645	547	0101	1029(1)	1 032	Н2
PERCENT			•	ŗ	r	ŗ		()		F
S102	46.66	10.04	45.434	41.41	4 6. 40	4 (• T U		4 (• C • C • C • C • C • C • C • C • C •	10.40	41.04
AL2U3	14.52	15.61	14.90	18.52	14.00	. 14.43	15.70	15.95	13.49	14.14
FE2US	8.01	1.72	8.02	8. 05	7.45	7.22	7.04	6 . 1 3	8.4T	F D · O
MGU	12.47	12.64	10.72	5.74	14. 23	13.02	11.41	11.41	12 * 54	V' L'
UAU	15.49	10.01	16.30	14.69	14.99	16.20	17.00	15.21	15 • 52	16.11
NAZU	0.50	0.43	1.17	1.38	0.67	0.58	0.14	1.30	1.08	.0.52
K2U	0.01	1 0.0	0.01	0.01	0.05	0.01	0.01	0.01	0.03	0.02
T 10 2	0.13	U-11	0.25	ŭ• 15	0.14	0.15	0.14	0.19	0.25	0.14
NNO	0.14	0.12	C. a.1.4	0.12	0.11	0.12	0.12	0.13	0,15	0.12
S	1	1	1	ŧ.	•	•		2 1	0.01	1
P205	0.07	0.67	0.07	0.07	0.07	0.00	0• 06	0.07	0.05	0 . 05
12 C C										
		71	I		ł	I	1	. 1	I	ۍ ۲
A I		- -	-			-		I)
2	-	7	-	-4 ł	I .		- -1 . L			
4 R	4		77	7	a 1	ວ ·	ດ <i>.</i>		Ì	Ω.
>	7	4	n	ΥŪ,	n	4	-1	+	I	1
SK	76	LL	115	160	96	104	61	125	1	:5 1 3
КÜ	1.	~- 	н н		2	ł	1	I	1	
ZN	3	2	24	30	22	22	21	29	1	2.5
cu	169	ł	137	- 10	ljc	158	121	111	53	ÜÉT
IN	ξ B	77	40	57	75T	150	122	240	187	456
C.K.	2cU	ł	553	58	831	1217	043	1351	42 <i>i</i>	Č Š D
UN MOLJ	X									·
CT Z	1	. t	1	ł	1	١.	I	•	1	Ĩ
	0.10	0.10	0.10	0.10	0 - ZU	0.10	0.10	0.10	0.20	0. LU
AB	4,,30	3.70	10.00	11.80	5.70	4.50	2.80	11.10	5.20	4.40
ÅN	37.00	59.60	35.80	44.00	37.10	37.00	41+ <i>1</i> 0	37.50	32.10	30.440
NE		ł		1	Ţ		ł	1	I	1
10	04.16	27.70	36-10	22.70	∠9. LŨ	34.70	37.50	30.10	36.10	05.25
хн	15.60	23.00	5.70	5.50	10.00	6.00	7.00	3.80	8.20	07.4
СL	4.00	3.10	9.20	12.00	14.50	14• ċ0	8.40	14.10	11.00	〔 1∠ •50
L M	2.50	2-40	ن د - 2	2 • 5 0	2.30	2.40	2.20	2.50	2.60	Z-10
11	0.20	0.20	0+50	0.30	0.30	C.30	0.450	0.40	0.50	05.0
ÅР	0.20	0.20	0.20	0.20	0.*20	0.10	0.10	0-20	, 0• IU	0.10

.

	1002	1008	1005	132	GČI	150	155	158	55T	221
PLEKCENT										
S102	50.20	45:65	45.19	40.20	46.45	48.34	48.29	41.37	48.00	40.51
4L2U3	6.50	14.91	17.75	10.50	10.40	10.20	15.94	15.94	15.44	10.1
FE203	5.94	14-50	15.45	7.55	6.51	7.57	0.59	9.51	7.69	دت. ۱
MUD	14.01	0.22	1.15	11.10	11.37	11.56	11-00	1.4.85	10.35	10.4
L AU	18.63	12.04	14.01	15.87	16.34	15.73	15.00	13.31	14.75	16.36
NAZU	0.15	0.49	6+*0	U. 18	0.18	0.12	0.15	0.19	0.37	0.24
K 20	U. ŬÌ	0.01	0.01	0.02	10-0	0.02	0°0%	1	t	1
T102	0.11	0.20	0.30	0.12	0.11	G. 11	Ú È L	0.09	0.11	01.0
NINC	0.13	0.22	v.25	0.15	0.14	.d.0	0.10	0.18	0, 15	0.15
ŝ	· . 1	l	1	0.01	0.01 ⁻	0.01	0.01	1	1	I.
P205	0.05	0.07	0.07	0.13	0.13	0.14	0.13	0.05	50.0	0.00
								•		
2.1.1									Į ,	:
EA	N.,	4 1	7	20T	1 t	1 •	•	00	<u>را</u>	C D
VB	1		7		. 1	-	-4	ł	n [°]	2
ZK -	4	4	5	01	. 7	- 10	4	2	n	с
	ŝ		7	4	4	ິ ຕົ	6 1	۳	~	4
SR	34	<u>د</u> 7	69	511	57	123	52	55	55	70
30	. 1	7	.	ł,	٦	ł	I,	I		·-4
Z N	. 21	57	59	27	20	27	30	18	40	÷ 7
c c	217	S	76	152	245	234	42	21	30	ľ
	141	ภ	15	54	67	40	16	43	47	39
Ľ X	1238	I	1	ΞST	334	86	. 444	56	151	- 20t
CIPM NCH	×									
	1	ł	. 1	0-20	ł	0.30	u.50	t ,	0.30	01.I
	0.10	0.10	0.10	0.10	0.10	0.10	0.10	4	ł	
4 H	Uc.I	4-20	4.20	1.5U	L - 5 C	1.00.	1.30	1.60	3.20	2.00
27	26.40	51.50	46.70	44.00	44.30	44.00	43.00	43.00	45.00	45.20
ш И	ł	1	I	1		1	1	↓	I	, n t
I I	52.40	10.10	- 20.20	27-00	29.00	26.80	20.20	18.60	15.50	31.30
17	14.0U	27.50	15.40	23.70	22 • 22	24.00	23.00	31.60	25.40	11.60
-	3,60	2.10	4.40	1	0. ZÙ	1	 	L.90		ł
11	1.50	4.00	4.30	2.30	<.iu	2.30	2.00	3.00	2.40	6.30
נר	0.20	0.40	0.60	0- 20	07.0	0.20	0.20	020	0.20	0.40
D C	0.10	0.20	0.20	0*30	0.50	0.30	0.30	0.10	0110	01-0

TAELE 4.9 GABERL MAJERS TRALES AND NERMS

							•		•	
	1015	1010	120	130	202	657	859	800	861	505 5
P ER C EN T	-						• •			
S102	40.45	45 .55 CC- 74	0+.64	49.32	50.42	51.43	40.74	48.71	4 7.00	50.44 ·
AL2U3	14.54	15.24	. Le . 5 6	15.64	11.62	<u>15.31</u>	15.31	10.84	17.71	07.11
FE2U3	3.64	4.22	4.00	6.45	I0. <l< td=""><td>3440</td><td>5.73</td><td>5.92</td><td>5.10</td><td>6.45</td></l<>	3440	5.73	5.92	5.10	6.45
N.C.	10.10	15.26	12.75	10.21	11.14	11.60	11.14	11.66	12.50	16.16
U AŪ	10.01	22. TI	19.91	17.03	14.96	16.86	15.31	16.28	16.64	14.54
NA2U	0.31	0.20	0.30	0.42	0.44	52.0	0.79	0.31	0 • 3 0	0.4 <i>č</i>
K20	0.02	10.0	0 • U -	0.02	0.01	0.01	0.01	0.01	20.0	. Ú i
T102	0.05	0.07	0.12	0.11	0.14	0. 28	0.23	0.08	0.07	20.0
	0.00	0.10	0.09	0.07	0.21	0.05	0.17	0.12	Ú. 08	.1.0
	ł	1	0.01	0.01	1	. 1	I	1	I	1
P2U5	0 • 0	0.07	0.13	0.14	Ċ. Ú5	0.07	0.07	0.07	0. 07	0.07
						,		•		
5 5 1	•		u	ر ب		с г	2			
DA DA	•	-	n -	υ.	P	7 C	• :	י 	4	t
NB	1	~-4		-4.5	7	V.	V.	7	لا	V
ZK	2	7	'n	5	11	74	77	14	5 T	.14
	2	-1	2	ŝ	ο. Γ	m	Ċ,	5	5	
SK	78	42	50	87	15	207	i 4 l	130	32	0 1
КG	N		-	1	-		1		1	!
ZN	30	13	11	10	04	5	54	61	. 17	2 2 2
, C	Ģ	111	6.7	I	1	1	EC	255	481	14
. 1 7	184	116	50 T	57	75	55	50	24	781	107
СR	1120	0.60 T	1253	554	185	433	162	218	285	124
LIPW NUKW			,			•				
212	1	I	1	1.90	05.2.	1.20	1	ł	1	I
80	0.10	0.10	0.10	0.10	0.10	0.10	01*0.	0.10	0.10	0.1.0
413	2.60	1.70	2.50	3.60	3.80	7.60	0.40	2.60	2.50	3.60
AN -	43.80	40.50	33.30	40.90	30.50	57.50	05*58	44.70	47.10	30.20
117 117	·	1	1		ŀ	.]		1	1	ł
J.L.	30.20	07:02	50 . 20	34.60	35.40	35.50	25.10	28.00	28.00	34.00
1 Y	1.10	10.50	7.50	16.30	24.20	15.70	9.40	20.40	- 10 ·	21.30
j.	26.70	2.00	4.40	ł	ı		ii.20	1.40	.11.30	7.00
11	1.10	1-30	1.50		5.20	1.10	3.00	1.80	1.60	Ú × • Ż
	0.10	0.1.0	00	C• 20	00	0.50	0.40	0.20	0.10	0.20
TP - A	0.10	0.20	0.50	0.30	0-10	0.2 • 0	0.20	0.20	0. 20	0-20

AP

TAULE 4.9 UABUKU MAJUKS IRACES AND NURMS

H4 122 101 117 150 151	TAL	LE 4.9 UAU	BRU KAJUK	S TRALES	ANU NURMS				·		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Н4	2 GT	lol	101	061	161	ίν.	56 T	207	612
ALUL X.2.0	PERCENT			0 7 7	4	47.42	47.00	50 . 54	47.5	40.44	- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	> 10 Z	40 * 0 *	+01	17• L 7				- C - C -	1 4. 1 6	14.7	
Reduct 19.7 <	ALZUS	オフ・フォー	17.01) - - - -			10.75	4 	0 T = 0 T = 1		• • • • •
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ft2U3	0 C	t t							· · · ·	J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mul	14•25	le.ci	06-11	0)))))			n • • • • •	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	u Áu	11.59	15.51	li.fc	10.16	10.40	11.01	cc•07	CC • 7 T	12.21	いじょう
Kku G.02 J.UL - UU U Q U Q <th< td=""><td>NAZÜ</td><td>64.0</td><td>30-05</td><td>77-10</td><td>0. J4</td><td>0.0</td><td>0.51</td><td>0 . + 2</td><td>0.42</td><td>4Z•0</td><td>01.1</td></th<>	NAZÜ	64.0	30 - 05	77-10	0. J4	0.0	0.51	0 . + 2	0.42	4Z•0	01.1
1102 0.11	KZU	0.02	10.0	ł	0.01	10.0	u • 02	ł	0-02	I	0.62
NKU 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.11 0.12 0.12 0.11 0.12 0.11 0.12 0.12 0.11 0.12 0.12 0.11 0.12 0.11 0.12	1102	0. L.J.	0. LI	30 • 0	50°0	0 • 5 •	6.1 0	31.U	c.18	0.14	1 0 - 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MNG	0.11	0.15	J. L. L.	Ú. US	U- 14	0.12	0.07	0.12	U.15	ŭ.ľ.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S	1	0.01	i	ei i	.• 1	1	I	ł	I	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P 205	0°- 05	č1.U	u. u	Ú. U4	d u • 0	0.05	0.04	0.05	0.05	40°0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						•			•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mdd										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U À	ł	25	ת .		21	- - 	14	Ω.	э.	- -
Y Y <td>ND</td> <td>1</td> <td>4</td> <td>ţ.</td> <td>~1</td> <td></td> <td>2</td> <td>2</td> <td></td> <td></td> <td>Ņ</td>	ND	1	4	ţ.	~1		2	2			Ņ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z K	یں ر	्रत्व	÷J	1	ۍ ۲	. J 	16	11	S	0 T
SR 73 59 75 101 109 127 154 114 70 VN Z^2 Z^3 Z^2 Z^3 Z^2 Z^3 Z^4 Z^2 Z^3 Z^4 Z^4 Z^2 Z^3 Z^4	. .	,†	. 1	'n,	." J	- <u>`</u>	د.	.л	m		С
Kb - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 1 22 23 1 <th1< th=""> <th1< th=""></th1<></th1<>	S.K.	<i>c1</i>	-9:5 -9:5	15	LUL	ÌÙУ	127	154	114	76	<u>አ</u> ን .
ZN Z2 Z3 11 Z Z2 Z3 13 LU L69 - J00 144 115 J14 J J34 NI J004 T5 J004 T5 J15 J34 NI J004 T5 J15 J14 J15 J34 NI J004 T5 J15 J14 J15 J34 L1229 Z45 Z04 J22 U17 J36 J34 L12 J14 J15 Z14 J17 J36 J34 L12 J14 J15 U16 J36 <	L X	1	1	, 4	t -	1	I		ł	~-	1
169 169 167 151 151 151 152 167 162 167 0.10 500 75 1229 245 204 922 167 1128 167 0.10 1229 245 204 922 0.10 0.10 128 51 0.10 0.10 0.10 0.10 0.10 2.50 3.60 3.60 2.10 0.10 2.50 3.70 2.50 3.60 3.60 2.10 3.60 2.10 0.10 2.50 3.70 2.50 3.60 3.60 2.10 3.60 2.10 0.10 2.50 2.50 3.70 2.50 3.60 2.10 3.60 2.10 0.10 2.10 3.20 4.50 5.50 4.50 2.10 3.60 2.10 0.10 2.50 2.50 2.50 2.50 2.50 2.50 2.50 0.10 2.10 3.20 2.50 2.20 2.20 2.20 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	ZN	22	ି ଜୁନ	14	7	26	17	Ω	51	34	21
NI 504 Ys cc 151 214 1.7 150 128 51 CR 1229 245 204 y22 cc1 12 Ult 1229 245 204 y22 cc1 12 Ult 0.10 0.10 0.10 0.10 570 128 Ut 0.10 0.10 0.10 0.10 128 U 0.10 2.50 2.50 3.60 3.60 Ab 3.2.30 41.40 2.50 34.50 34.50 Ab 3.2.30 41.40 2.50 34.50 34.50 Ab 3.2.30 31.10 2.50 34.50 34.50 Ab 2.50 35.70 4.30 31.10 34.50 Ab 2.50 2.50 2.50 2.510 2.50 Ab 1.60 1.50 2.50 2.510 2.50 Ab 1.60 2.50 2.50 2.50 2.540 Ab 1.60 2.50 2.50 2.540 2.50 Ab 0.10 0.50 0.50 2.540 2.540 Ab 0.50 0.50 2.50 2.50 2.	3	105		300	44	CJ E	ा ५२ व	I	182	107	⊭⊸ब
CK 1.229 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 245 244 255 244 255 245 245 245 245 246 245 246	1 V	504	75	3	151	214	17	051	128	51	ULIO
CIPW NUKMW12W12W12W12W12W12W13W14W15W15W16W16W17W17W18W18W19	Ck	1229	245	204	525	c č i	c.57	1621	57.6) 	243
W12 - 0.10 0.10 - 0.10	CiPw Nik	X					•				
GK 0.10 0.10 0.10 0.10 - 0.10 0.10 - 0.10 0.10 - 0.10 0.10 - 0.10<		1	I	I	1	1	I	t	1	i	I
Ab 4.20 0.70 2.50 5.50 4.30 3.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.10 5.60 2.60 <		Ú.lu	0.1.0	I	0.10	U.10	ú. lO		0.10	1	U • 10 -
AN 33.30 41.40 4z.70 34.20 34.20 34.20 34.50 yz NE -	Åυ	4.20	0.7.0	2.50	2.5Ŭ	5.50	4.30	00.6	3.60	2.10	5.00
NE -	AN	33.30	41.40	44.70	30.10	34.20	07.50	21-10	34.20	39.50	02.50
DI 44.4 28.00 35.70 43.00 56.10 42.20 25.70 5 HY z.ed zee.ju i.00 g.ed ze.ju g.g.g HY z.ed zee.ju i.00 g.g.g g.g.g g.g.g KI 13.10 i.00 g.g.g g.g.g g.g.g g.g.g M1 1.80 z.10 i.70 15.50 j.g.g g.g.g M1 1.80 z.10 i.70 z.50 z.80 g.g M1 1.80 z.10 i.70 i.70 z.80 g.g M1 0.20 u.z0 u.z0 u.s0 z.80 g.g M1 u.z0 u.z0 u.s0 u.s0 u.s0 u.s0	20	I	1	ł	I	1	1	I	1		ł
HY z.ε0 z0.z0 td=""><td>0 I</td><td>14.40</td><td>26.00</td><td>01-20</td><td>37.20</td><td>55.70</td><td>43.00</td><td>50.10</td><td>42.20</td><td>CL-57</td><td>01.05</td></th<>	0 I	14.40	26.00	01-20	37.20	55.70	43.00	50.10	42.20	CL-57	01.05
LL 13.10 1.00 0.00 10.60 13.50 14.16 0.70 15.30 0.10 0 M1 1.80 2.10 1.70 1.80 2.80 2.80 2 IL 0.20 0.50 2.60 2.80 0.30 0.33 AP 0.10 0.50 0.10 0.10 0.10 0.10 0.10	нY	Z • 80	うた・ウス	20-20	11.00	5 · 7	× × 0	6. 60	7.00	25•40	0.2 · E
M1 1.80 2.10 1.70 1.40 2.50 2.60 2.80 2 IL u.20 u.20 u.20 u.20 u.20 0.50 0.30 0 AP 0.10 u.10 0.10 0.10 0.10 0.10 0.10 0.10	СL У	13.10	20.4	Ú••Ĵ	10.¢0	12.5ú	14.10	u. 70	15.30	0.10	D e • 0
IL U.20 U.20 U.20 U.20 U.20 U.20 U.20 U.30 U.30 U.30 U AP U.1U U.3U U.1U U.1U U.1U U.1U U.1U U.10 U	LW	1.80	2.20	L - I J	L. 30	2 • 50	2.1C	05. I	2.20	2 • 80	<u>2</u> •40
AP 0.10 0.50 0.10 0.10 0.10 0.10 0.10 0.10	, L	U • 20	U = 2U	00	0. 20.	0. .0	0.30	0.30	0.50	ů.3Ú	0000
	AP	0.10	0 € € 0	0.1.0	0-10	0.10	0.10	U • 10	0.10	0°-0	0.1.0

.

.

-									226									•	•		÷				
•					•						. •									ч. -					
					•																				
			•																			•			
·									•										та Т	• ••	•				
													÷												
														•					- '						
	N											. *						•							
									•					·											
															•			۹.					1.1		
											•														
•						۰.																			
																						· .			
		÷.								•															
•																• .									
																•						· .			
				•																				-	
			•												-										
									•										۰.				· ·		
·. · · · ·												ч,													
												, A	·							•					
						•																			Ì
		•																•.'							
							•																		
												•										•			
	•											1					•								
								•																	
																									Ŧ
												•													
	MS									•															
r	C.R.	•								•••		• .													
40	2																	•							
	ANC																								ł
	· · ·											1												.•	
	د		ين بري	5 5 9 5	ς Γ C	່ານ ເກີ	101	1 1 1 1 1 0 1 1))	26	ە د. ز	50	4 12	マフレ	5		07	202	4 Û	00	00 20	20			
· · ·	L P	01		ာ တ	40	ം		ింది ర						-4 ሆ	202		' ·	ີ່ ມີ	1 3	0.4	~ 5	;			
	- S															•		. y		1					
	30																					· .			
	ل لم آ	0	20	102	000	50	ດ ລ ວັວ		• •	э ^х	1 / 1	1 4		1114	• 24 N		20 20	00 40	0 Ú	5 0	50 202	S N			
	2	ن ک	- ¹ 2	00	₩.0	5:	50	;	• •			4						4 10	<u>၊</u> သိ	ا.∙ م	-10	.			
	SKL SKL	.	7	~-4	~			•										- - - -	ני						
	AGA	3																	•						
	<u>د</u>	4 (اہ ۔ اسم	49 90	19	14	10	60 C	5	~	4 4	2 2 8	ind for m	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	5		202	50.	06	50	501	20			
	4-9	6	م	τ (C	ා න	50	50	: c	5						2		-i -i	4.0	1 2	. +	-0	்	•		
	щ		. 7	~	~	•										-		4	3	-					
ļ	ABL		⊢													J.F.R								,	
1 1			Z Ш	in in												Ž									
		· · ·	2 C Z	121	33	120	2.2	יי גי			.		.n.	×	• ~	M d]	7	~ -							
1 1		X	S I	-ч ш -	N N	Ż	Ϋ́Ξ	ξs	. a		27	≻'S R	34		5	5	5 S	ΑN ΑΝ	20	Ξd	L M	АP	•		
																			. *•						· -
						e e Art	,				•				• • •						•				
		•			· .				• •				. '				•								
• · · · · •																									

•	227
•	
-	
S W	
a	
AN	
s L	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AC 4	
15 15	
S S S	
, nc	1110 m 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 S 2	
2 X 1	
A U U	
6	12447111470 0 IN4IDIGNAD 200 00000
4.9	494M9000000 0
ا لا. است	
A	
· •	ี่มี ฏ ญ Z
	PLAPLACHEZERAH RACZER REPA 2 000070
· · · ·	TNAMSIAXHENT JULYNXNICI IJDAAZDELDOXHA
	${f x}^{(0)}$, where ${f x}^{(0)}$,

TABLE 4.9 GABBRU MAJLRS TRACES AND NORMS

0000 8240 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 00000	
	4 4 4 6 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	
NDKW NDKW NDKW NDKW NDKW NDKW NDKW NDKW		

229 TABLE4.10 ANUKTHUSITE MAJURS TRACES AND NURMS 540 220 142 142 146 101 55 55 160 NCRM PERCENT SIGA AL2U3 AL2U3 AGU MGU NAZU NAZU NAZU NIU2 S P2U5 P2U5 PL 10 L NO NA A C C C C PL 10 L NO NA A C C C C PL 10 L NO L NA A C C C C P PM Z D H X V V V V 80 20 N N N N N N

	137
	001
NCRMS	7
AND	~~
TRACES	114
MAJORS	0
JLERITE	
BASALT-DC	101
ABLE 4-11	
-	

	101	107	108	116	117	122	137	140	1494	154
PERCENT S ID2	55-88	44.85	48 . 18	46.97	50. 62	52.14	60.43	59.89	46.74	57.34
AL203	14.07	15.02	12.41	13.93	9.79	13.88	11.77	11.62	15.43	12.67
FE203	11.80	9-65	10.20	10.35	10.73	11.20	12.27	12.51	12.09	10.78
MGD	6.63	14.20	14.95	11.89	13.22	8.97	4.17	4.50	10.53	6.25
CAU	6.51	14.87	11-70	15.41	14.07	12.58	9.34	9•44	14.29	11.44
NAZO	4.24	77.0	1.53	0.73	0.73	0.59	1.15	1.13	0.26	0.76
K20	0.04	0.03	60-0	0.02	0.04	0.04	0.14	0.16	0.02	0.12
1102	0.48	0.24	0.00	0.37	0.57	028	0-40	0.41	0, 29	0.30
ONW	0.18	0.17	0.16	0.18	0.09	0.18	0.18	0.19	G.22	0.17
ŝ	0.01	10.0	0.01	0.01	10.0	1	0.01	, I	0.01	10-01
P 205	0.16	0.14	0-15	0.14	0.13	0.14	0.15	0.13	0.13	0.14
	•				•••					
ppM							•			• .
ВА	6	. 14	15	34	1	40	23	48	27	19
NB NB	`` ``		4	- 1 、	S	4	. 7	ب	ın ا	4
ZR	28	15	51	11	6	12	24	21	4	14
	14	9	12	80	S.	¢	12	11	2	84
SR	87	157	123	. 60 T	84	72	92	74	87	195
RB			1	. 1	1	1	-4	rî I	I	
ZN	6	41	44	40	6	15	82	56	63	80
5	134	206		61	ſ	162	76	25	78	19
IN	16	. 104	352	63	160	58	(n)	ŝ	28	. 16
CR	25	703	1295	331	936	112	2	17	78	27
CTON NOON	_				•					· .
	4.50	1	jł ,	I	1.50	8.70	25-60	24.40	ł	19.40
OR OR	0.20	020	0.50	0-10	0-20	0-20	0.80	1.00	0.10	0.70
AB	36.20	5.50	13.10	6.20	6.20	5.00	9.80	9.70	2.20	6.70
AN	19-40	37-70	26.90	35.00	23.50	35.40	26.80	26.40	41.30	31.00
NE		0.60	1	1	 	ł	1	r I F	1	, î
10	06*6	. 28 .50	24.40	33.10	36.90	21.60	15.90	16.70	23.90	20.80
НΥ	24.70	1	14.10	10-80	26.90	24 • 60	16.20	16.90	26.10	17.50
or	.1	23.70	16-20	1.0.50	ţ	. 1	1	1	1.80	ļ
MT	3.70	3-00	3.20	3.20	9.30	3.50	3.80	3. 50	3 80	3.40
IL	0- 00	0.50	1.10	0-10	1.10	0.50	0.80	0.80	0.60	0.60
AP	0.40	0.30	0.40	0- 30	0.30	0-30	0.40	0=30	0.30	0.30

TABLE 4.11 BASALT-DOLERITE MAJORS TRACES AND NURMS

C 59.29

100041000 54-75 12-53 22-80 22-80 22-80 23-80 24-40 24-40 24-800 866 53.54 12.80 9.19 9.19 0.60 0.60 0.29 0.19 0.19 10.70 0.50 6.80 6.80 31.40 31.40 24.50 0.80 0.60 0.60 0.30 864 47.95 13.95 13.82 13.82 0.24 0.02 0.13 0.13 0.13 0.13 22 154 154 154 113 113 785 0.30.00 26.10 29.20 0.40 0.40 0.30 0.40 0.30 858 59-35 11-56 5-008 5-008 9-15 0-03 0-17 0-17 0-16 1040104830 1040104830 21840104 23°70 0~20 9~20 31~00 31~60 19~80 19~80 0~70 0~70 0~70 218 11-14 9-27 15-99 14-96 14-96 0-23 0-15 0-15 0-115 0-13 0.10 29.50 29.50 29.50 29.50 2.90 2.90 2.90 0.30 186 13.80 0.50 7.30 29.80 29.80 21.80 21.80 3.40 0.50 0.50 184 37024258 37024258 37024258 55.26 11.71 10.60 9.18 0.54 0.08 0.17 0.17 0.17 0.18 0.17 13.90 4.60 24.60 24.60 23.20 23.20 23.20 0.50 0.30 0.30 0.30 164 54-93 110-51 122-67 0-13 0-13 0-13 0-13 0-13 162B 52880 1 1 0 4 0 57580 1 1 1 0 4 0 579 55.75 11.23 10.355 9.256 0.07 0.07 0.19 0.19 162A 14.00 5.60 5.60 225.80 225.80 3.50 0.50 0.50 0.50 35 61 61 55 55 370 370 11.30 0.50 30.20 30.20 30.20 22.80 3.20 0.50 0.30 159 NORM PERCENT SIU2 AL2U3 AL2U3 FE203 MG0 CA0 CA0 CA0 K20 T102 NN0 S P205 CIPH OTZ AB AA AA AA AA AA AA AA AA AA PPP BBA NB ZR SR ZN SR CI CR

231

..

	•	232
	•	
	· · ·	
.*		
•		
and the second		
	•	
•		
an an an an an an an an an an an an an a		
	•	
		an an an an an an an an an an an an an a
	1 • •	
	•	
SWS		
Ň		
9		
A		
E ES	8 400000000 8	000 00 00 00 00 00 00 00 00 00 00 00 00
RA(28	0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	10 m m	
ORS		
IAJ	00000000000000000000000000000000000000	4 0 8 900 900 900 900 4 7 4 1 8 4 8 8 900 00 00 000
E 1	00000000000000000000000000000000000000	
XII X		
ີ່ ເພື່ອ 	o o t a n a a a a a a a a a a a a a a a a a	2 NO WHITID 2003 00 000
00-9	0 0 0 0 0 0 0	
	0 00012000	
IS A		
4 9 7	151 003 0042	000 00 000 000 0000 0000 0000 0000 0000 0000
11.4 0 0 0	0 m 0 M 0 M 0 0 0 0 0	
ш Ц		
AB		ž.
		2
	S NUSSESSEE	A B X D H X H H X B X H H X H X H H X H H X H H X H H X H H X H H X H H X H H X H
	TNATZOSXHZNU	HUKNYNUKU UGOAAZOIOXHA

233 TABLE 4-12 ALTERED DULERITE MAJUKS TRACES AND NURMS 46.00 10.65 10.65 10.65 10.65 10.00 11 0.13 0.13 0.13 111 147.65 147.65 16.94 16.84 16.84 19.00 19.00 19.00 19.00 19.00 19.00 144 аса сос 2000 - 200 2000 - 2 50T 444.75 444.75 44.97 23.11 23.11 23.11 23.11 2.39 0.02 0.35 0.01 0.25 0.01 2 L 9 9 L 9 2 2 9 9 L 6 4 2 8 1 5 1 4 4 6 6 4 11.20 11.20 11.50 1. 103 PERCENT SIO2 AL203 FE203 M60 CA60 CA60 K20 K20 K20 K20 S S S CNCNRKKARB ANNERA ANNERARA

NURMS
AND
TRACES
MAJORS
ULLER ITE
AL TÉKEÙ
TAELE 4.12

	165	167	168	169	170	171	717	174	176	204
PEKCEN		200 200 200 200 200 200 200 200 200 200	4 17 17	()))	1 ~ - 74	52-01	52,15	51.78	47-64	11-(13
51UZ		11.73	10.00 10.00	11-11 0.04	11.5°	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.69	4 - 2 5 4 - 2 5	12.91	10.1
FF2.03	- 50 · 2	5.49	4.73	4.21	7.63	2.87	J.11	10-26	7.14	5. 10.
MGU	13.07	11-54	13.53	1 - 32	15.05	12.77	11.90	16.13	14.14	13.70
CAD	15.81	20.00.	13.79	23.24	16.47	23.32	21.28	11.59	17.28	vč.01
NA2 G	0.32	0.45	25.0	Ū • Ŭ 6	09.0	0.23	0.57	0.37	0.45	07.0
K 20	0.03	0.02	0.102	0.02	du. 0	0.02	0.02	60.0	. 0.02	20.0
T 102	0.14	0-25	71.6	0.17	0.19	C. 15	0.12	U.22	0.20	0.10
MNU	0.14	0.07	0°05	0.05	0.13	0.02	0°0	0.18	C• 11	0. 09
ý	0.01	0.01	0.01	0.01	0.01	0.01	0.01	, 1	10.0	10.0
P 20 5	0.13	0.14	0.13	0.12	0.14	0.12	0.13	0.13	0.13	0.14
						•		•		
г Р Ж	76	77		000	0	х С	x	۲.	£	4
D D	0 °	+ -	ן ע	4 U 1	t t L		0 4	4 . 1	טי נ <u>י</u>) 4
ם מ ב ^	n 🗸		יז (ר	- - -	•) (0	· · ·	ט נ	10	+ 4
7	t	+ - -	ŋ ∧ ∙	14	4 ;« 4) 1 1	• (\	ע ר	n n	-
, ,		+ 02 -) 4	- 00 -	יי ר ר	י מ ער ר	1	יג יי) ~ ~	ہ ہ ا - ت
42	СC.	747	140					n (n -	CTT .	10
R3	1	1		ا ا	<u>:</u> ۱	I	•	V (Í t	1
ZN Z	22	• •	1		77	 		53	1/	77
CU		•	1	I	ר הי הי	ł	1	ŧ	31	I
IN	14	112	153	53	149	ትት	S 23	287	152	ر ال
ú.k	61	759	5231	-524	440	4574	600	1559	- - -	320
CIPW N	N N U					•		•		
012	1	1	0.30	1.30	ł	0.00	T.10	- 2.70	1	04.0
CR	0.20	01.01	0.10	0.10	0 . ŝ.	0.10	0.10	0.50	0.10	0.10
A B	2.70	3.00	2.70	0.50	5.10	2.00	4.00	3.20	3 - ຮິບ	L.70
AN	33.50	30.10	24.UU	17.80	28.50	22.10	26.60	23.50	33.30	35.40
NE	1	ì	1	1	I	1		1	1	1
10	35.20	54.50	53.20	76.50	41.70	73.10	01.10	26.30	41.40	05.65
нҮ	24.10	5°.5°	14.50	1.80	ົ່ງຈໍ່ເ	0.00	4.10	39.30	5.40	24°10
СĽ.	0.70	2+40	I	1	15.00	۰. ۱	1	1	13.CU	1
MT	2.50	I.70	1.50	00.1	2.40	0.50	1.00	3.20	2,20	06.I
IL	0:30	0.56	0.50	0.30	0.40	0.50	0.20	0.40	0.4 0	u. 20
AP	0.30	0.30	0.30	0.30	05.0	05.0	0-30	0.30	. 0.30	0.30

TAB	LE 4-12 AL 1	LEKED DULE	KITE MAJU	AS IRALES	ANU NUKMS
	206	230	233	8.55	856
PEKCENT					
S102	46.30	46.68	47-19	46.74	54.30
AL2U3	14.40	14.75	18.47	10.25	01.E1
FEZU3	7.19	7.78	6.67	6.15	LL.4 8
MGU	14.04	10.11	9.20	9.16	7.96
CAC	16.67	13.24	16.20	17. 03	11.70
NA2 U	0.30	0.73	0.99	0.44	0.58
K2U	0.03	0.00	0.02	0.03	0.08
T102	0.14	0.16	0.16	0.17	0.27
WN0	0.12	50.0	u.10	0,09	0.19
S	0.01	0.01	0.01	0.01	ı
P205	0.13	0.14	0.14	0.14	0.14
Mdd			. 1.		
BA	TO T	4	ດ ·	0.1	2 · C
NE	ŝ	n	4	ഹ	n :
ZR	6	77	13	с Э	15
۲	Ξ Π	4	4	2	э э
SR	78	130	.145	102	64
RB	Í	•	1	I	ł
ZN	25	15	17	22	73
C U	129	+ •	110	I	196
IN	187	130	106	54	44
Сĸ	495	174	246	·870	100
CIPM NOK	¥				
uTZ	I	1	۰ł.	2.30	13.00
CK	0.20	0.40	0.10	0.20	0.50
AU	2.60	0.20	6.40	3.70	5.80
AN	38.10	37.00	46.10	42.50	33.00
к Ш	I	ł	1	ł	
DI	35.20	22.60	21.20	36.40	20.10
Ύ	4 . ŬŬ	06°TT	01.0	12.40	23.20
GL	17.20	10-51	LU.3U	1	1
MT	2.20	2.40	2.10	1.90	3.60
	0.30	05-0	05.0	0.30	0.50
AP	0.30	0.30	0.30	0.30	0.30

	236	
•	• • • • •	
•	ана стана стана стана стана стана стана стана стана стана стана стана стана стана стана стана стана стана стана Стана стана	
· · · · · · · · · · · · · · · · · · ·		
	•	
SWA		
	0014074400 00170744000000000000000000000	и ныть кака сан ни по ла сосоосос
4	8 N-1 H	
Ċ.		
T K P	20000000 0 000 0 000 000 000 000 000 00	● M ⊕ N = O = O = O = O = O = O = O = O = O =
\$		ိန်နိုင်နိုင်နိုင်နိုင်နိုင်နိုင်နိုင်နိ
2		4 (1)
Υ. Έ		2 N N M H H N N D D D D D D D D D D D D D D D D
ц. Ц.		
		「 「 で 「 で 「 」 「 」 「 」」
H A M		
	11 6 6444 464 87	11111100 00000000000000000000000000000
4 H	0 0000 13/50 PF	
Bi E		2 X
TAI		$\overline{\mathbf{v}}_{\mathbf{v}}$
	N C C C C C C C C C C C C C C C C C C C	a
	PAP 20 SEHUAPAGETER	ALACHUADAC CNCARR XB PLACHUADAC CNCARR XB
	$C = \sum_{i=1}^{n} (i - 1) $	
TABLE 5.9 DLIVINES FROM DUNITES

305 C		41.15	0.03		с. 16 16	0.10	50.68	ł	. 1	t	0.18	100.1	•	0.997	0.000	0.000	0.000	0.100	0.002	1.8.51	0.000	0.000	0.000	0.003		91.09 8.30
305B		40.86	0.02	ı	8.15	01.0	.50.13	I	I	•	0.36	99.62	•	0.598	000.0	0.000	000.0	0.166	0.002	1.826	0.000	0.000	0.000	0.007		91•64 8•35
304B		40.25	I .	Ĩ	9.05	0.05	50.87	I	T	•	0.43	100.65 ·	•	0.42.0	0-000	0000-0	0.000	0.184	100*0	l. 546	000.0	0.000	000000	0.008	• • •	9.02
3001		40•24 -	I	1	8.71	I	.51.02	1	1	I	0.27	100.24		0.981	000.0	0,000	0-000	0.177	0.000.0	I•854	000.000	0• 000	0.000	0.005	· ·	51.20 8.74
300H		40-35 .0.05		I	8.73	1	51.11	†-	. 1 -	ı	0.17	100.42		0.982	0.001	0.000	0.000	0.177	0.000	1.853	0.000	0.000	000.0	0.003		91.25 8.75
3006		40.62	1	1	8.45	0.02.	50.94	ł	ŀ		0.13	100.17		0.953	0.000	0.000	0.000	0.172	0.000	1.047	0.000	0.00.0	00000	0.002		91.48 8.52
300F		40.40 0.01		1	8.59	0.07	51.53	1	!		0.24	100.84	4 UXYGENS	0.979	000.0	0.000	000.0	0.174	0.001	1.861	000.0	0.000	0.000	0.004		91 •44 8 •55
30.0E		40.93	J 	ı	8.73	0.09	51.66	0.02		ŀ	0.20	101.65	BASIS OF	0.963	0.000	0.000	0.000	0.175	-0.00.	1-50	0.000	0.000	0.000	0.004		91.33 8.66
3000	IDE	40.87	I I	ł	č. 82	0.05	50.74	1	1	1	0.16	100.65	A UN THE	165.0	0.000	0.000	00000	0.180	100-0	1.534	0.000	0.000	0.000	£00.0	ITICWS	91.11 0.85
3000	ERCENT OX	40.35		ł	8.60 .	0.06	51.71	i	I	ł	51.0	100.52	AL FORMUL	0.977	0.000	0.000	0000-0	0.174	0.001	1.800	0.000	0.000	0.000	0.005	ER CUMPUS	91.46 8.54
	NEIGHT P	S162	AL203	C R 2 C 3	FEC	MNC	MGC	CAC	NAZO	K2C	N I C	TUTAL	STRUCTUR	SI	11	AL	C.F.	11 12 12	ZX	NU	СA	NA	¥	N I	END MEMB	л Х Эш

* DUNITE - WEHRLITE

TABLE 5-9 ULIVINES FROM DUNITES

	31 CA	31.08	31 oC	3100	311A	3118	3110	3110	311E	311F
WEIGHT	PERCENT OX	1DE								•.
S I C 2	40.67	40.19	40.38	40.25	40.73	41.03	40.77	40.30	39.78	40 . 06
T1C2	1	•	I	0.02	0.01	0. 04	0-02	I		
AL2C3	1	I	.1	ł	0-04	0.06	0.00	0.03	0.05	0.02
CR2C3	í	ł	•	I	I	1	Ì	1	l	1
FEC	9.33	9.19	. 07 • 6	9.13	9.41	9.20	56•3	9.02	9.45	9-25
MNC	0.13	0.18	0.11	0.16	0.11	0.13	0.19	0.13	0.19	0.17
MGC	50.22	50.22	49.17	50.24	49.21	49.50	50.14	49.70	45•74	49.50
CAC	1	I	I	0.05	I	0.02	0.01	ł	I	1
NAZC	•	I	1	 ,	I	•	ì	ı	I	I
K 20	I,	1	I	. I .	I	° 1	ţ	1		1
NIC	0.25	0.18	0.18	0.32	0.21	0.20	0.12	0.17	0.19	0.26
TCTAL	100.59	5 9 . 94	60°04	100.16	11.65	100.24	100.30	- 96 - 55	99.41	99.20
STRUCTU	IRAL FURMUL	A UN THE	BASIS OF	4 UXYGENS				ъ.		
SI	0550	0.985	722.0	0.954	665.0	1.000	0,993	989 0	0.582	0.989
TI	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000.0	000.0	0.00
AL	0.000	0.000	000.0	0.000	0.001	0.002	100.00	0.001	0.001	0.000
CK	0.000	0.000	0.000	000000	0.000	0.000	0.000	0.000	0.000	0.000
FEZ	0.190	0.138	. 0.150	0.136	0.193	U. 168	0.183	261-0	0.195	161-0
X >	0.002	0.003	· U • 0 0 2	0.003	0.002	0.002	0.004	0.002	0.004	0.003
MG	1+822	. 1.834	1.609	1.831	1.799	1.758	1-820	1.817	1.630	1-821
CA .	000.0	0.000	00000	0.001	0.000	0.000	000.00	0.000	0.000	0.000
NA	0.000	0.000	0.000	0.000	0.000.0	000-0	0.000	0.000	0.000	0,000
×	0.000	0.00.0	0.000	0.000	0.000	0.000	000-0	0.000	0.000	0.000
NI	0.005	0.003	0.003	0.000	0.004	0.004	0.002	0.003	0.003	0.005
ENC MEM	BER COMPOS	ITIUNS			•				-	
	-									
S I	50 . 56	90.63 0.53	90•49	90.25	90.51 50.51	50°-50°	90.85	07.06	90.37	50.50
LLJ LLJ	9.44	9-51	DC • 6	C2.K	7°07	2.50	9.14	9.80	9.63	64•6

TABLE 5-9 OLIVINES FROM DUNITES

	3116	311H	3111	3144	3148	3214	3218	321C	3210	321E
N E I GHT	PERCENT UX	IDE						•	* 1 [*]	
SICS	40.30	40•23 0-02	40.38	40.12 -	40•43 -	40.18 -	41.06	39-96	40.22	40.09
AI 203	0.04	0-11	0.12	0-04	0-04	0.08	0 - 04		0.03	1 G
CR2C3	•		 	 	2 1					
FEC	9.01	9•44	9.12	8.94	9-10	10.10	10.20	0.00 0.00	9_ 93	9.87
MNC	0.12	0.14	0.22	0.03	0.08	0.12	0.11	0.11	0.18	O
MGC	50.47	49.57	50.40	48.88	49.18	49.43	49.62	49.12	25-64.	50.52
CAC	1	I	0.00	I	1	1	10.0	•	l	
NA2G	i	1	1	1	1	1	1	1	1	
K2Ú	1	ł	I	E.	1	1	ı	I	1	1
N IC	0.24	0.20	0.21	0.17	0.16	0.10	0.11	0.18	0.06	0.14
TCTAL	100.20	94.76	100.58	98.19	98.99	100.07	101.17	99.34	100-02	100.86
STRUCTU	RAL FURMUL	A UN THE	BASIS OF	4 CXYGENS	۶.			•	•	• .
SI	0.984	585°0	<u>. 0.983</u>	855.0	0.998	0.986	0.996	0.988	0.487	0.477
	0.000	0.000	0.001	0:000	0.000	0.000	0.000	0.000	0.000	0.000
AL	0.001	200.0	0.003	0.001	0.001	0.002	0.001	0.002	0.001	0.001
CR -	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000
FEZ	0.184	0.194	- U.185	0.185	0.103	0.20 8	0-206	0-204	0.204	0.201
MN	0.002	0.003	400 ° 0.	0.000	0.001	<u>00</u> 02	0.002	0.002	0.003	0-004
MG	I.837	1.815	L-829	1.812	1. d09	1.809	1.794	1.809	1.813	1.835
CA	0000-0	000-0	100.0	0,000	0.000	0.000	0.000	0.000	0.000	0.000
A N	000.0	0.000	0.000	0.000	0.000	000-0	0.000	0.000	0.000	0.000
×	G.000	0.000	00000	0.000	0.000	01000	0.000	0.000 -	0.000	0.000
NI	0.004	0.004	0.004	0.003	0.003	0.002	0.002	0.003	0.001	0.002
ENC MEME	SER COMPUS	ITIUNS								
MG	68°05	90.34	90.78	90.69	90.59	89 . 66	89 - 66	84.85	08 08	6 L US
11	9.10	9.60	9.21	9.30	9.41	10.33	10.34	10.14	10.11	9.88
							•	•		

TABLE 5-9 OLIVINES FROM DUNITES

	502A	5170	5170	517E	517F	5176	517H	*	517.1	5 7 8 R
THOIJA	DERCENT UX	TDF			•					, , ,
		1								
SIC2	40.62	41.01	40.71	40.78	40.80	40.25	40.65	40.94	40.80	41-10
1102	I	0.02	I	1	ŀ	1	1	0.02	0.07	1
AL203	i	ł	•	ł	1	1	I	ı	I	0.05
CR2C3	ł	0.01	1	1	1	I.	ł	ł	ł	, ,
FEC	8.16	9.48	9-2-6	9.30	8•91	9.19	5. II	5.10	9.23	ظ 4 م م
MNG	0.12	0.17	0.12	0.15	0.16	c.20	0.12	0.23	0.20	0.15
NGC	50.03	44.94	49.29	49.40	49.03	49.55	49.26	45.15	49.40	50.04
CAC	1	0.03	0.06	0.06	0.02	80.03	0.01	0.04	0.05	
NAZO	I	I	0.02	1	0.01	0.01	0.03	0.03	0.02	ŀ
K2C	1	t .	1	, 1 ,	1	ł	I	1	1	ı
N IC	0.27	0.20	0.23	0.24	0.23	0.23	0.21	0-36	0.22	0.74
TCTAL	59 . 21	69.69	01.99	99.92	99.16	99.51	59.44	- 58-66 -	100.00	100.02
STRUCTUF	AL FURMUL	A UN THE	BASIS UF	< UXYGENS	*					•
SI	155.0	1.004	366.0	0 . 998	1.004	164.0	1.000	1.002	855*0	0.995
11	0000	0.000	0.000	0.000	0.00.0	0.000	0.000.0	0.000	0.001	0-000
AL	0.00	0.000	000.000	0.000.0	0.000	0000-0	0,000	0.000	0.000	0.001
СК	0000.0	0000-0	0.000	0.00	0.000	0.000	000.00	0.000	0.000	0.000
FEZ	0.167	0.194	051.0 .	0.190	0.143	0.189	0.187	0.1.0	0.159	0.171
22	0.002	0.003	.0.002	0.003	0.003	0.004	0.002	0.004	0.004	0.003
NG S	1.830	1.738	1.80Z	I.803	1.799	1.818	I-804	1.793	1.802	1.328
СA	0.000	0.000	0.001	0.001	0.000	0.002	0.002	0.001	0.001	0.000
NA	000.0	0.000	0.001	0.000	000.00	0.000	100.0	0.002	100.0	0.000
×	0.000	0000-0	0.000	0.000	0.00.0	0000-0	000-00	- 000-0	0.000	0.000
IN	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.007	0.004	0.004
END MEMB	ER CUMPUS	ITIONS							•	
		•			;			r		
う. ど.	91.62	90-50	90°40	90 • 44	90.74	90.57	50. 60 0	90.58	90.51	÷+•16
1	α. υ υ	A. 14	Y. D4	CC • F	C>+K	9+4C	5.40	9.41	9.49	8.60

5280

WEIGHT PERCENT DXIDE

									•		
41.56	1	0.03	I	8.33	0.12	50.54	I	1	ı	0.34	100 . 93
S1C2	TIC2	AL2C3	CR2G3 1	FLC	NNC	MGC	CAC	NAZC	K 2C	NIC	TUTAL

STRUCTURAL FORMULA ON THE BASIS OF 4 DXYGENS

241

1.003	0.00	0.000	0.000	0.143	0.003	1.816	U • OÛO	0.000	0.000	0.006	MEMBER CONPOSITION
SI		٩٢	C.R.	F E 2	NW	MG	СÀ	AN	¥	N	ENC

MG 91-53 FE 8-46

TABLE 510 ULIVINES FRUM HARZBURGITES

	325B	10310	10378	10370	10370
NE1GHT	PERCENT UX	(IDE			
SIC2	41.18	40.00	40.00	40.82	40.36
1162	ł	t	1	0.05	I
ALZCB	I	0.02	4	ł	ı
CK2C3	1	I	1		
FĔĊ	8 - 23	9.21	9.02	8.57	8.47
MNL	0.03	0.06	0.08	0.14	0.U9
MGU	44.55	48.50	60.64	50.38	50.21
CAC	0.02	1	ł	1	
NAZC	1	I	1		I
K2C	0.02		F	. J	ł
NIC	0.34	0.31	0-41	0.34	0.24
TUTAL	7E.92	94.71	44 • 65	100.25	99.68
STRUCTU	IRAL FORMUL	A ON THE	sASIS 4 U	XYGENS.	بر
S I	1.008	<pre>cuu-1</pre>	1.004	0.943	1997
T.I.	0.000	0.000	0.000.0	0.000	0.000
AL	0.000	0.000	0.000	000.0	0.00.0
C R	0.000	000.0	0.000	ú. UOO	0.000
FE2	Ú•168	0.191	0.185	0.174	0.173
てと	000.0	0.001	0.001	0-003	0.002
M.G.	1.807	L.749	1-797 J	1.827	1.026
CA	0.000	0.00.0	0.000	000.0	000.0
NA	0.000.	0.00	0.000	ŭ . JÜÜ	0.000
×	0.000	0.00.0	0000-0	. 000 • 0	0.000
ΞN	ü. 606	0.006	0.006	0.006	0.005
ENC MEM	BER CUMPOS	SNULTI			·
NG NG	91-50	90.40	90.70	91.30	91-35
F F	8.52	60.6	9-34	8.71	8.64

н S Г

WÊHRLI TES
FROM
LIVINES
5-11 CI
TABLE

	5030	802A	602B	. 803B	803L	504B	8054
NELGHT	PERCENT OX	IDE					
SIC2 TIC2	40.42	40.47 0.01	40 • 35 0 • 04	40.56 -	40•59 =	40.70	40.40
ALZC3				1	I	I	I
CK2L3	I	I	I	1	ľ	I	ł
л С П	9.41	9.29	9.43	11.01	11.20	10.95	11.15
MNC	0.04	0.01	0.01	07.0	0.13	0.12	0.10
MUC	48.70	49.15	47.99	47.58	46.24	46.25	49.47
CAC	1	0-02	0.00	0.02	I	0.02	0.01
NAZŪ	0.01	, 1	1	ł	•	0.03	0.04
K2C	0.02	I	I	1	1	1	0.03
NIC	0.15	0.20	0.37	0.43	0.26	0.27	0.25
TUTAL	98 - 80	99.15	98.24	99.69	98.43	100.32	101.44
SIRUCTI	JRAL FORMUL	A UN THE	BASIS 4 [JXYGENS			
SI	1.000	865.0	1.005	1.003	1.016	666.0	0.984
11	0.000	0.000	0000.0	0.000	000000	0.000	0.000
AL	0.000	0.000	0.000	0.000	0.000	0.000	0.000
СR	00.0 0	000-0	0.00.0	000-0	0.00.0	0.000	0.000
FE2	0.195	0.192	0.200	0.227	0.234	0.224	0.227
42	C-001	0.000	0.000	0.002	0.003.	0.002	200-0
NG	1.797	1.800	1.702	1.754	1.725	1.766	1.800
CA	0.000	0.000	0. 302	000-0-0	0.000	0.000	00000
NA	0.000	0.000	0.000	00000	0.000	0.001	0.001
×	0.000	0.000	0.000	0.000	0.000	0.000	100-0
۲N	0.03	0.004	0.007	0.008	0.005	0.005	0.005
ENC MEN	NBER COMPUS	ITILNS					
MG F	90•21 6 75	90•41 6 40	90.07 9.03	- 88.50 11.49	83.03 11.97	88 . 72. 11. 27	88.77
	2	20*2		~ ~ ~ ~ ~		1 7 4 7 1	77077

TABLES 12 ULIVINES FROM ULIVINE PYROXENITES

in the second

1014(3) ¥ 1014(3) D 1014(3) E

FIGHT PERCENT OXIDE

554A

	40.36	20.0	1 (1	0.01	13.3/	67.0	40*22	30.0	1	0.01	0.14	99.73	OXYGENS	1.003	0.000	000.0	0.000	0.279	0.005
	39.07	6 . 02	1	U. 03	13.39	0.23	45.42	0.02	1	0.01	0.11	66*10	EASIS 4	1.003	0.000	0.000	0,000	. 0.281	· 0 605
l	39.80	0.03	I.	1	13.71	0.21	45.73	0.02	0.01	0:01	0.15	11.66	UN THE	192.0	0.000	0.000	0.000	0.237	200 0
	95 • 50	i	I	1	12.13	0.13	46.04	0. 05		0.03	0.17	98.49	URAL FÜRMULA	1-064	0.000	0.000	0.000	0.255	
METCON	S 102	1162	41.263	r R 2/03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MAC.	N C L	LAF .	U V V V			TCTAL	STRUCT	1 0	+ >	• - <		2 U 2 U	ون ا ا

0.279 0.005 0.001 0.000 0.000 0.000		85 • 85 14 • 15
1		85• 80 14• 19
0.000 0.000 0.000 0.000 0.000 0.000	SITIUNS	85•61 14•39
0.0000000000000000000000000000000000000	MEMBER CUMPO	87-12 12-68
H PPCNEX	ENC	м Б П С

TABLE 5:13 ULIVINES FRUM ULIVINE GABBKUS

Melicht Fekchni Gxib 33.75 31.57 37.57 37.56 35.28 35.28 35.28 35.76 35.28 35.28 35.28 35.27 37.57 37.57 37.56 35.28 35.28 35.28 35.28 35.28 35.76 35.28 35.28 35.76 35.28 35.76 35.28 35.76 35.28 35.76 35.28 35.76 35.28 35.76 35.28 35.76 35.28 35.76 35.28 35.76 35.28 35.76 35.28 35.76 35.26 35.76 </th <th></th> <th>1198</th> <th>232A</th> <th>5238</th> <th>5230</th> <th>2328</th> <th>1064</th> <th>1065</th> <th>104A A</th> <th>5648</th> <th>5208</th> <th>· · ·</th>		1198	232A	5238	5230	2328	1064	1065	104A A	5648	5208	· · ·
SIC2 39-52 39.49 38.78 11.59 39.96 37.50 37.57 37.56 35.28 ALC22 0.02 0.04 0.04 0.04 0.04 0.05 0.02 0.04 0.07 ALC23 0.02 0.02 0.04 0.01 0.004 0.05 0.04 ALC2 0.02 0.02 0.01 0.004 0.05 0.04 ALC2 0.02 0.01 0.01 0.004 0.05 0.03 ALC2 0.02 0.01 0.01 0.005 0.03 ALC2 0.02 0.01 0.01 0.005 0.03 ALC2 0.02 0.01 0.01 0.005 0.03 ALC2 0.02 0.01 0.01 0.003 0.04 ALC2 0.02 0.01 0.01 0.003 0.04 ALC2 0.02 0.01 0.01 0.003 0.02 ALC2 0.02 0.01 0.01 0.003 0.02 ALC2 0.02 0.01 0.02 0.01 ALC2 0.02 0.01 0.02 0.01 ALC2 0.02 0.01 0.02 ALC2 0.02 0.02 ALC2 0.02 0.01 0.02 ALC2 0.02 0.02 ALC2 0.02 0.02 ALC2 0.02 0.02 ALC2 0.02 0.02 ALC2 0.02 0.02 ALC2 0.02 0.02 ALC2 0.02 0.02 ALC2 0.02 0.000 0.02 ALC2 0.02 ALC2 0.02 0.000 0.000 0.000 0.000 ALC2 0.02 ALC2 0.02 ALC2 0.000 0.000 0.000 0.000 0.000 ALC2 0.000 0.000 0.000 0.000 0.000 ALC2 0.02 ALC2 0.000 0.000 0.000 0.000 0.000 0.000 ALC2 0.02 ALC2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ALC2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ALC2 0.02 ALC2 0.000 0.00	WEIGHT F	PERCENT UX	(IDE		.					•		
TIGZ 0.02 <th0.02< th=""> 0.02 0.02 <th0< td=""><td>2112</td><td>39.52</td><td>39.49</td><td>38.78</td><td>- 65-1-</td><td>39.96</td><td>37.90</td><td>37.85</td><td>37.57</td><td>37.56</td><td>35.28</td><td></td></th0<></th0.02<>	2112	39.52	39.49	38.78	- 65-1-	39.96	37.90	37.85	37.57	37.56	35.28	
AIZE3 - <td>T 102</td> <td>0•02</td> <td>0.02</td> <td>0.04</td> <td>0°0</td> <td>0.07</td> <td>0.05</td> <td>0.05</td> <td>0.02</td> <td>0.04</td> <td>0.07</td> <td></td>	T 102	0•02	0.02	0.04	0°0	0.07	0.05	0.05	0.02	0.04	0.07	
CRECT 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.02 0.03 0.05 0.04 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.01 0.05 0.01 0.05 0.01 <t< td=""><td>A1 2C3</td><td>1</td><td>1</td><td>i I</td><td>ł</td><td>1</td><td>0.04</td><td>1</td><td>0.02</td><td>0.08</td><td>•</td><td></td></t<>	A1 2C3	1	1	i I	ł	1	0.04	1	0.02	0.08	•	
FEC 19.17 17.00 23.72 25.55 10.41 26.33 20.45 0.35 0.33 0.35 0.33 0.35 0.35 0.33 0.35 <th0.35< th=""> 0.35</th0.35<>	CR203	0.02	0.02	0.04	0.01	0.04	0.04	0.05	0.04	I	0.05	
MNC 0.26 0.27 0.33 0.440 0.45 0.37 0.266 0.37 0.356 0.37 0.356 0.37 0.356 0.37 0.356 0.37 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.356 0.366 0.356 0.366 0.356 0.366 0.356 0.366 0.356 0.366 0.356 0.366 0.356 0.366 <th0.366< th=""> <th0.366< th=""> <th0.366< th=""></th0.366<></th0.366<></th0.366<>	E E E E	19.17	17.06	23.72	25.55	16.31	20.38	20.69	20.22	27.04	31.01	
MCC 40.60 43.17 34.92 31.11 42.40 34.11 34.25 36.60 36.77 32.04 CAC 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01	MNC	0.26	0.27	0.33	0.40	0.23	0.49	0.45	0.37	0.56.	0.39	
CAC C.0.2 U.0.1 - U.0.1 U.0.2 U.0.2 <thu.0< th=""> <thu.0< th=""> <thu.0< th=""></thu.0<></thu.0<></thu.0<>	N CO	40.50	43.17	36.92	37.11	42.40	34.11	34.25	36.80	36.77	34.04	
NAŽU 0.02 - - - 0.10 0.02 <th0.02< th=""> <th0.02< th=""> <th0.02< th=""></th0.02<></th0.02<></th0.02<>	CAC	0.02	0.01	.1	0.01	50°0	0,09	60.0	0.05	0.12	I	
KZC 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 <th0< td=""><td>NAZO</td><td>0.02</td><td>I</td><td>I</td><td>1</td><td>1</td><td>0.16</td><td>t</td><td>ı</td><td>1</td><td>ı</td><td></td></th0<>	NAZO	0.02	I	I	1	1	0.16	t	ı	1	ı	
NIC 0.21 0.114 0.10 0.11 0.25 0.14 0.10 0.06 0.09 0.07 TGTAL 100.04 100.21 99.45 99.45 99.45 99.55 99.55 99.53 99.53 99.53 SIRLCTURAL FURMULA GN THE JASIS 4 DXYGENS 59.89 99.43 99.55 10117 102.29 99.53 SIRLCTURAL FURMULA GN THE JASIS 4 DXYGENS 1.0010 0.999 1.0012 1.0010 0.9995 0.9000 TI 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0010 0.0012 0.9955 0.0012 0.9000 0.0012 <t< td=""><td>KZC</td><td>0.02</td><td>0.01</td><td>0.02</td><td>0.01</td><td>0.03</td><td>0.02</td><td>0.01</td><td>0.02</td><td>0.02</td><td>0.02</td><td></td></t<>	KZC	0.02	0.01	0.02	0.01	0.03	0.02	0.01	0.02	0.02	0.02	
TGTAL 100.04 100.21 99.45 59.59 101.17 102.29 99.53 SIRUCTURAL FURMULA UN THE BASIS 4 DXYGENS SIRUCTURAL FURMULA UN THE BASIS 4 DXYGENS 99.43 99.59 101.17 102.29 99.53 SIRUCTURAL FURMULA UN THE BASIS 4 DXYGENS SIRUCTURAL FURMULA UN THE BASIS 4 DXYGENS 0.001 0.011 0.945 0.979 0.978 SI 1.010 0.9999 1.014 0.9792 1.012 1.0110 0.985 0.979 0.968 TI 0.0000 0.0000 0.0001 0.001 0.001 0.001 0.001 0.001 AL 0.0000 0.0001 0.0001 0.001 0.0002 0.001 0.001 AL 0.0000 0.0001 0.0001 0.0001 0.0001 0.001 AL 0.0000 0.0001 0.0001 0.0012 0.0012 0.0012 AL 0.0000 0.0001 0.0012 0.0012 0.0012 0.0012 AL 0.0000 0.0022 0.0022	NIC	.0.21	0.14	0.10	0.11	0.25	0.14	0.10	0.06	0.09	0.07	
SIRICTURAL FURMULA GN THE AASIS 4 DXYGENS SI 1.010 0.999 1.014 0.992 1.012 0.979 0.979 0.979 TI 0.000 0.000 0.001 0.001 0.001 0.000 0.001 AL 0.000 0.000 0.000 0.001 0.001 0.000 0.001 AL 0.000 0.000 0.000 0.000 0.001 0.000 0.001 AL 0.000 0.000 0.000 0.000 0.000 0.000 0.001 AL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 AL 0.000 0.000 0.000 <	TCTAL	100.04	100.21	96 • 66	101.23	99.89	99.43	65.56	101.17	102.29	99.53	
SI 1.010 0.999 1.014 0.992 1.012 1.010 0.985 0.979 0.968 TI 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 AL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001	S TRUCTUF	AL FORMUL	A GN THE	BASIS 4 (JXYGENS					•		
TI 0.000 0.	SI	1.010	666.0	1.014	266.0	1.012	1.012	1.010	0.985	616.0	0.963	
AL 0.000 0.001 0.000 0.001 0.	TI	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	. 0.000	0.001	
CK 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.012 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.	AL	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.002	0.000	
FE2 0.410 0.301 0.558 0.356 0.356 0.559 0.712 MN 0.005 0.007 0.008 0.010 0.012 0.012 0.012 MN 1.555 1.428 1.444 1.001 1.358 1.428 1.428 MA 1.555 1.428 1.444 1.001 0.012 0.012 0.012 MA 0.000 0.000 0.002 0.012 0.012 0.012 0.012 MA 0.000 0.000 0.002 0.002 0.001 0.003 0.000 NA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NI 0.004 0.000 0.000 0.000 0.000 0.000 0.000 NI 0.004 0.002 0.000 0.000 0.000 0.000 0.000 NI 0.004 0.002 0.002 0.000 0.000 0.000 0.001	C K	0.000	0.000	0.000	0.000	0.00.0	0.000	0.001	000.000	0.000	0.001	
MN 0.005 0.001 0.0012	FE2	0.410	0.301	. 0.519	. 0.558	0.350	684*0	0.596	0.575	0.589	0.712	
Mo 1.555 1.428 1.444 1.401 1.358 1.428 1.428 1.428 1.428 1.428 1.355 CA 0.000 0.000 0.002 0.001 0.003 0.000 0.000 0.000 NA 0.000	42	0.005	0.005	0.007	0.003	0.005	0* 011	0.010	0.008	0.012	0.009	
CA 0.000 0.000 0.000 0.000 0.002 0.002 0.001 0.003 0.000 NA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NI 0.004 0.003 0.002 0.003 0.002 0.000 0.000 NE 0.004 0.003 0.002 0.000 0.000 0.000 0.000 NE 79.13 81.84 75.50 72.13 81.80 69.74 69.59 71.43 70.78 65.22 FE 20.86 18.15 26.50 27.87 13.19 30.26 30.40 28.56 29.21 34.77	540	1-555	1.028	1.439	1.444	<u>i001</u>	L.358	1.364	.1.439	1.428	1.335	
NA 0.000 0.	СА	0.000	0.00.0	0.000	0.000	0.002	0.002	0.02	0.001	0.003	0.00.0	
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NI 0.004 0.003 0.002 0.001 0.002 0.001 END MEMBER CUMPUSITIUNS 0.002 72.13 81.80 69.74 69.59 71.43 70.78 69.22 MG 79.13 81.81 20.86 18.15 26.50 27.87 13.19 30.26 30.40 28.56 29.21 34.77	NA	0.000	0.000	0.000	0.000	0.000	0.008	0.000	C* 000 - 0	0.000	0.000	
NI 0.004 0.003 0.002 0.002 0.005 0.003 0.002 0.001 0.002 0.001 END MEMBER CUMPUSITIUNS MG 79.13 81.84 73.50 72.13 81.80 69.74 69.59 71.43 70.78 65.22 FE 20.86 18.15 26.50 27.87 13.19 30.26 30.40 28.56 29.21 34.77	×	0:000	0.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	0.000	
END MEMBER CUMPOSITIUNS MG 79.13 81.84 73.50 72.13 81.80 69.74 69.59 71.43 70.78 65.22 FE 20.86 18.15 26.50 27.87 13.19 30.26 30.40 28.56 29.21 34.77	IN	0.004	0.003	200-0	0.002	0.005	0.003	0.002	0.001	0.002	0.001	
MG 79.13 81.84 73.50 72.13 81.80 69.74 69.59 71.43 70.78 65.22 FE 20.86 18.15 26.50 27.87 18.19 30.26 30.40 28.56 29.21 34.77	END MEMB	SER CUMPUS	ITIONS			•				•		
MG 79.13 81.84 73.50 72.13 81.80 69.74 69.59 71.43 70.78 65.22 FE 20.86 18.15 26.50 27.87 18.19 30.26 30.40 28.56 29.21 34.77					-			•	· .			
FE 20.86 18.15 26.50 27.87 18.19 30.26 30.40 28.56 29.21 34.77	мG	79.13	81.84	73.50	.72.13	81.80	69.74	69.59	71.43	70.78	65.22	
	L) L)	20.86	18.15	26.50	27.87	13.19	30.26	30.40	28.56	29.21	34.77	

and a

HARZBURGITES
FRUM
URTHOPYROXENES
5.14
ABLE

328C		55. 55. 55. 55. 55. 55. 55. 55.		70.00
3285		55.65 0.01 7.18 7.649 7.649 1.14 1.14 1.14 1.14 1.14 1.00 0.02	6 0 XYGENS 1.923 0.000 0.103 0.103 0.103 0.0000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	67.13 8.15
3250		56.94 1.5-74 1.5-74 1.5-74 1.1-7-94 1.1-1-1 1.2-2-2 2.5-0-2-2 2.5-0-2-2 2.5-0-2-2 2.5-2-2-2 2.5-2-2-2 2.5-2-2-2 2.5-2-2-2 2.5-2-2-2 2.5-2-2-2-2 2.5-2-2-2-2 2.5-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	BASIS GF 1.960 0.0000 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000 0.00000 0.0000 0.0000 00	15.TV
3258	IDE -	56. 90. 90. 90. 90. 90. 90. 90. 90	A CN THE 1.944 0.000 0.000 0.0152 0.152 0.000 1.44 1.16NS 1.44 1.44	90.88 7.67
325A	EKCENT OX	56.18 35.15 35.15 56.03 56.03 56.03 56.03 56.03 56.03 56.03 56.03 56.03 56.03 56.03 56.03 56.03 56.18	AL FURMUL 1.943 0.000 0.0014 0.149 0.014 1.816 0.021 0.021 0.021 0.001 0.002 0.002 1.67 1.07	91.42 7.50
	NEIGHT F	SIC2 TIC2 AL2C3 FEC CR2C3 Mnnc Mnnc Mnc CR2C3 TC2C TC2C TC2C TC2C TC2C	STRUE STRUE	л М М

1027C 1028A

MEIGHT PERCENT UXIDE

ŝ

55.97 0.01	1 • 72 0 • 43 8 • 04	0.11 31.62 0.65	0.01 0.03 023	98.80
55.76 0.11	1 - 82 0 - 54 8 - 57	0.09 31.83 1.60	0.00	56 . 77
S1C2 74C2	ALZC3 Ukzc3 Fec	M M C M M M M M M M M M M M M M M M M M	NA2C Nac Nac	TLTAL

STRUCTURAL FURMULA UN THE BASIS OF 6 DXYGENS

1.570	0.000	0.070	0-012	0.236	0.003	1.659	0.032	0.000	0.001	0.000	SNOL	1. o5
I. 553.	0.003	0.070	0.010	U-250	0.002	1.660	0.037	0.001	0.001	000.0	K CUMPOSI	1.93
. •			•		•						MEMBE	
S I	1	AL	СĶ	FE2	NW	Э Х	СA	NA	×	I V	ENL	СA

1. 05 86.06 12.28
1.93 85.20 12.66
T A D

119B 232A

WEIGHT PERCENT DXIDE

1 1 1 1	ナー・つ	0.30	1.13	0.10	11.31	0.20	29.41	1.54	0.05	0.0	0.09	99.74	
6 4 64		0.11	1.43	0.11	11.65	0.28	27.93	1.60	I.	0.01	0.04	97.92	
6113	2112	1102	AL203	Ck2C3	FEC	NNC	NGC.	CAC	NAZC	KZC	NIC	TCTAL	

STRUCTURAL FURMULA ON THE BASIS OF 6 UXYGENS

1.972	0.000	0.047	0.002	0.330	0.007	1.55v	0.056	0.003	00000	0.002	I UNS	· .•
78	03	0 0	ି ମ	60	00	6	ې بې	0	0		POSIT	
1.9-1	0.00	0.06	0.00	0.35	00-0	1.50	0.00	00.0	0.00	0.00	R COM	ç
			•							•	MEMBE	
5 I S	11	AL	сÿ	FE2	1	0	C A	A N	×	T N,	END	(

TICNS	3.00 79.73 17.21
COMPOSI	3.21 8.17 8.60
MEMBER	
ENC	L S C

Line P	1398 852A E	221A
	ы Ба Ба Ва Ва	С ц
	0.10 0.07	0.12
•	1.46 1.50	C+•1
'	1 0.04	0.06
	17.94 IU.53	10.49
•	U.58 0.32	0.41
	25.17 25.69	25.59
•	5.18 1.72	1.31
•	0.01	0.01
	0.03 0.02	0.02
•	- 0.11	0.03
•	02.14 99.14	97.94
5	ON THE BASIS OF	6 UXYGE

070	アナフ・バ	0.003	2.003	1001	0.512	0.013	1.417	0.052	0.000	0.001	0.001		2.63	71.50	25.86
	104 T	0.002	0.056	0.001	. 0.517	0.001	L-408	0.067	0.000	0.001	0.003		0 • 40	70.03	25.96
с С С	1.920-T	0.JUZ	200.0	0.000	0.539	0.011	1.549	0.1.22	0.00.0	0.001	0-000	TILNS	60°0	67.08	26.82
	798-1	0.004	0.060	0.000	0.551	0.012	1.358	0.051	0.001	0.001	000.000	R COMPOSI	2.61	69.29	28.09
ŀ	21	11	AL	CR	.FE2	22	MG	CA	NA	×	NI	END MEMBE	C A	¥G .	Ъ. Э.

804C · 804b 5030

WEIGHT PERCENT UXIDE

					•			•				6 DXYGENS
52.04	0.14	3.60	I.13	5.02	0.04	17.41	21:20	0.21	0.03	1	98.82	BASIS UF
52.32	0.15	3.86	1.15	3.42	0.01	17.07	19.17	0.27	0.02	0.04	98.09	CN THE
51.47	ŀ	3.38	0.58	2.11	I	17.39	22.41	0.23	0.03	0.02	48 . 02	L FORMULA
SIC2	TIC2	ALZC3	CR203	FEC	MNC	MGC	CAC	NAZU	K2C	NIC	TGIAL	STRUCTURA
					, i		•				l.	

1.510 0.004 0.156	0.03 0.03 0.03 0.00	0.952 0.015 0.0015 0.001	44.37	50.68 4.94
1.924 0.004 0.1c7	0.035 0.005 0.000	0.468 0.759 0.019 0.001 0.001	TILNS 41.20	52.93
1.906 0.000 0.147	0-028 0-065 0-065	0.859 0.889 0.016 0.001 0.001	46.45	50.12 3.41
SI AL	N N N N N N N	H PPC	ENC	(o) Ш >≥ Щ

41.JU	52.93	5.76
46.45	50.12	3.41
CA	S S	ເມ ປຸ

പ
-
1
_
- i - i
\mathbf{x}
~
۵_
1
1.0
2
>
ind
~
୍
Σ
.n
متن ا
Ապ
5
111
5
ч.
×
O.
2
5
~
Δ,
Ω
-
<u></u>
-
J
Б
=
10
1
-
с о

S

	554A	554B	554C	1014(3	(B) A 10306(B)	1030b (C) 553A
NE IGHT	PERCENT 0)	XIDE					
SIC2	52.51	53.04	53.11	53_43	51.49	52.16	41 - 74
T102	L 	U. U7	0.05	0.08	60°0	0.11	
AL2C3	1.59	1.98	1.89	<.31 	2.15	1.85	2 26
CR203	0. 64	20.0	0.07	05.0	75.0	0.35	0.70
F B C	3.87	3.30	3.08	5.00	3.81	3.60	2.95
AAC	0.03	0.01	U • 00 -	0.16	0.15	. 0.13	10.0
MGC	18.c9	16.24	17.76	17.81	17-20	16.70	10.54
CAC	21.11	22.61	21.13	21.58	24.45	23.32	23.21
NAZC	0.1I	0.19	11. 0	0.14	0.12	0.17	0.14
K20	C • 04	0.03	0.03	0.02	0.02	0.02	0.03
NIC	0.06	•	•	0.07	0.05	1	0.03
TUTAL	50°65	100.69	98.49	100.28	99.89	98.68	97.74
SIRUCTI	URAL FURMUL	A DN THE	BASIS CF	6 CXYGENS			•
SI	1. 930	1.940	1.957	1.940	1- 055	1.536	1.932
Ţ	0000	0.002	0.001	0.022	0.002	0.003	u.003
AL	0.085	0.064	0.000	650.0	£50°0	0.061	0.099
СК	0.018	0.017	0.019	0.014	0.010	0.010	0.020
FE2	0.119	550.0	0.110	0.118	111.0	0.118	0.092
MN	0.000	6.000	100.0	0,005	6.005	0.004	0.000
MC	1. 024	0.540	0.975	0.563	0.945	0.928	0.920
ĊΔ	153.0	0.675	0.834	0.850	0.960	0.930	0.930
NA	0.008	0.013	0.008	0.010	0,00£	0.012	0.010
×	0.002	0.001	0.001	0.001	0.001	0.000	0.001
12	0.02	0.000.0	0.000	0-002	0.001	0.000	0.000
END MEN	ABER COMPUS	ITIUNS					
			-				
C P	42.10	44.73	43.33	44.03	47.62	40.57	47.84
ט נ ב נ	02.10	11-00	21.00	47.00	40.08	41.03	47.40
LL LL	0.02	50 • 4	06 .c	0.10	5.79	5.97	4.75
			•••••••••••••••••••••••••••••••••••••••				

TABLE520 CLINOPYROXENES FROM GLIVINE GABBROS

	555A	5558	232A	2328	232C	2320	232E	1064	1068	5398
WEIGHT	PERCENT 0	XIDE								
S ICZ	52.30	52.41	52.52	10.11	53.54	51.56	51 87	ц Ц	í	: ; ;
T1C2	0.54	0.45	0.41	0.47	0.23	01-24	0.40		11.10	52.49
AL 203	3.13	3.04	2.50	2.30	3.20		1		0.00	0.05
CK2C3	0.36	U.31	0.33	0.40					2.61	L • 70
FEC	6.50	7.35	4.10	5.44			0.0		0-10	0.53
M N C	0.22	0.21	0.13	0.16			אני לי לי	F0.04	9.25	3.44
MGU	14.77	14.90	17.15	16.52	1 × • • •		0.10	0.22	0.25	0.15
CAG	21.59	21.37	717		- C	10.0T	11.01	15.24	14.95	17.36
NA2G	0.41	0.49	1 N N N N N N N N N N N N N N N N N N N	0.05		C+•12 <	28•1× 3	20.10	20.56	23.04
K 20	0.03	0.07	0.01	0.00			67•N	0.31	0.34	0.17
NIC	0.08	0.04	50°0	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •			20•0 0	0.02	0.02	0-01
TUTAL	100.79	100-60	20-05	10 ag	4 4 0 0		0.02	0.18.	0.11	I
				16.06	20.44	20.44	. CI.66	101-83	100.49	99.54
SIRUCTUI	RAL FURMUI	LA ON THE	BASIS OF	6. DXYGENS	• •					, L
•	:						× .			
10	1-920	I-920	1. 934	1.930	1.925	1.920	1.910	57571	1 019	
- 1	0.015	0.012	0.005	0.013	0.006	0.007	0.005	0.017	01010	
AL	0.135	0.130	0.108	0.101	0.140	0-140	0.135	0.104		
C.S.	0.010	500.0	600.0	0.012	0.029	0.033	0,030		· +	0.073
FEZ .	0.210	0.220	0.1.0	0.170	0.115	0.138	0.000			0.015
22	0.007	0.006	0.004	0.005	0.004	0.003	6 - 004 - 004		0.281	0.105
WG .	0.800	0.020	0.941	0.913	G. 89.6	0.586			0.00 0.00	0.004
CA	U . b 6 U	0.840	0.855	0.846	0.049	000000 0000	0.00 1980 1980	0 0 0 0 0 0 0 0 0	0.826	265.0
NA	0.029	0.035	0.018	0.013	0-020	0.016	0.018		0.817	0.931
×	0.001	0.001	0.000.0	0.000	0.000	0-000			5 0 0 4 4 V	710-0
12	0.002	0.001	0.002	0.001	0.003	0.002	0.000	0.005	0.000	0.000
										000
END MEMB	ER COMPOS	ITIONS					•	•		
Ą	45 × 8	44.59	44-43	43.87	45 55	74 74				
NG .	42.87	43.43	40.88	47-36	50.87 50.84		40.01 2001	4090	42.32	46.84
	11.24	11.97		8-80	10.01	7 24	4 - • 00	43.14	42.81	47.64
	• •		1 1 1 1)))	5	00.0	1 + 32	15.95	14.87	5.32

TABLE 520 LLINDPYRDXENES FRUM ULIVINE GABBROS WEIGHT PERCENT UXIDE 53.90 52.12 20.11 20.12 20.15 23.04 23.04 23.04 20.15 23.04 20.15 23.04 20.15 23.04 20.15 23.04 20.15 20.15

SIC2 TIC2 AL2C3 CK2C3

1

Ę

FFC MARC ARAC ARAC NAZC NAZC TIAL

SIRUCIURAL FURMULA ON THE BASIS OF 6 DXYGENS

SI 1.913 TI 0.004 AL 0.0059 CR 0.012 FE2 0.118 MA MA MA 0.005 CA 0.953 CA 0.953 CA 0.005 NI 0.002 NI 0.002 END MEMBER CUMPOSITIONS		1										•
N N N N N N N N N N N N N N N N N N N	1.913	0.004	0.099	0.012	0.118	0.005	0.953	0.506	0.010	0.000	0-002	MEMBER CUMPOSITIONS
	SI		AL	C R	FE2	22	MG	CA	NA	×	I Z	END

45.69	48.32	5.99
CA	ЯG	ц Ц

TABLE521 CLINUPYROXENES FROM NORMAL GAUSKUS

855A 526A(b) 231A 2318

WEIGHT PERCENT UXIDE

52. 22. 22. 22. 22. 22. 22. 23. 23	. GXYGENS 1.931 0.008 0.102	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	BASIS UF 4 1.950 0.006 0.100	
NON00410000 NON000410000 NON047100000 NON047100000 NON000000 NON000000 NON000000 NON000000 NON000000 NON000000 NON000000 NON0000000 NON000000 NON000000 NON0000000 NON0000000 NON0000000 NON00000000 NON000000000 NON0000000000	UN THe 1.947 0.110	
52 0 0 0 0 0 0 0 0 0 0 0 0 0	RAL FURMULA 1.931 0.016 0.115	
АТ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	STRUCTU ST TT	

1.950° 1.931° 0.006 0.008 0.100 0.102	0.004 0.005 0.159 0.145 0.004 0.004 0.928 0.924	0.634 0.672 0.017 0.019 0.001 0.001 0.003 0.002	43.42 44.90 45.29 47.62 5.28 7.47
1.947 0.017 0.110	0.002 0.200 0.007 0.786	0.87¢ 0.022 0.005 0.005 0.005	171LNS 47.05 42.22 10.72
1.931 0.016 0.115	0.002 0.246 0.068 0.154	0.869 0.022 0.001	MENBER CLMPUS 45.54 41.56 12.89
N H A	N N N N N N N N N N N N N N N N N N N	L ANC	T A C H C A C H

Ì

1804

WEIGHT PERCENT OXIDE

52.31	າ ການ ການ ການ ການ ການ ການ ການ ການ ການ ກາ	17.76	17.27	99,55
5102 1102	AL 203 CR203 FFN	M C O	040 8420 820	NID Total

STRUCTURAL FORMULA ON THE BASIS OF 6 OXYGENS

1,937	A ,064	8,894	0,007	A_289	Ø. ØU8	R_988	0.685	0,001	0,000	0,000 0	MEMBER COMPOSITIONS		-
21	11	٩Ľ	ч С	F E 2	ZW	U ¥	CA	٨N	¥	H Z	END	•	

35, 95 59, 13 14, 81

1 X F 4 0 M

TABLE 523PLAGIOCLASES FROM ANORTHOSITES

1608 160A

S. ...

Ę,

WEIGHT PERCENT OXIDE

44 . 80	004 904 909 909	18 244 244	98,56
44,32 a ar	M 2 4 2 1 0 4 5 1 0 4 5 1 0 4	18.79	98, 74 98, 61
SI02	AL203 FEO MGD	CAN K20	NA20 TOTAL

STRUCTURAL FORMULA ON THE BASIS OF 8 OXYGENS

NØ→ØØØØØ 0000000000000000000000000000000	SNOTI	7_09 92_83 0_08
899994 8000000	BER COMPOSI	96,64 93,38 888
	ND WE	e z r

6.64	93,38	0,08
AB	AN	0R

TABLE5-24PLAGIOCLASES FROM NORMAL GABBROS

2318	
231A	
526A (A)	(DE
859A	PERCENT 0X]
	WEIGHT

0 0 0 0 0 0 0 0 0 0 0 0 0 0	OXYGENS
	, co
N N N N N N N N N N N N N N N N N N N	ц С
4 M H O 4 SUBSNOHN	SISA8
0 7 8 0 8 7 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	THE S
A W H W V Q W Q Q M Q V Q W Q Q M Q	0N
4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	FORMULA
SI02 7102 460 760 760 760 760 760 760 760 760 760 7	TRUCTURAL

0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	14,97 84,58 0,15
2222 2222 2222 2222 2222 2222 2222 2222 2222		100 80 80 80 80 80 80 80 80 80 80 80 80 8
00000000000000000000000000000000000000	ITIONS	13°37 86°53 8°33 8°33
0 2 4 2 2 2 4 2 0 0 2 2 4 2 0 0 2 2 4 2 0 0 2 2 2 2 4 2 0 0 2 4 2 2 4 2 0 0 2 4 2 2 4 2 0 0 2 4 2 2 4 2 0 0 2 4 2 2 4 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1	MEMBER COMPOS	19 86,59 888 888
N POULAN N POULAN	END	A A O

257

•

TABLE 5-25 PLAGIOCLASES FROM CUMULATE NORITES

	139A	1398	1390	131A	852/
EIGHT F	ERCENT OX	DE			
102 201	44.74	44,89	45,02	43,83	43,94
			t	2	20.00
503	34, 58	35,12	34,28	34,57	33,36
	0.46	B, 33	0,45	0.57	Ø . 39
00	•	\$.6	0,00	1
A O	19,21	19,52	18,94	19.27	19.90
50	0,04	0,03	0.03	0.01	0.0
A20	0,75	0 77	0,70		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
DTAL	99,57	100,66	99.42	66°47	98.22
TRUCTUR	AL FORMULA	ON THE	BASIG OF	8 OXYGENS	
	2,080	2,065	2,093	2,048	2.077
	0.000	0,000	0.000	0,000	0.000
_	1.886	1,996	1.900	1.905	1.860
2	0.017	0.012	0.017	0.022	0.015
	0,000	0,000	0.003	0.004	0.000
	0,957	0,963	0,943	0.965	008
	0.002	0.092	0.002	0.000	0.000
	0.067	0.070	0,063	660 0	0.050
D MEMBI	ER COMPOSI	TIONS			
	ទុំទន	6,65	6,23	9,38	\$ ° 74
	93,21	93 17	93,57	90.62	95.22
	0,21	6.18	0,20	0.06	0.05

TABLE 5.26 PLAGIDCLASES FROM CUMULATE DLIVINE GABBROS

6B A		4 c 0 u	0.4	- œ	I	10	10	36	98		74	10	59	70	00	÷0	00	6		98	80	;
52		47.				17.	•	2.	- 86		2.2(0.0		0.00	0.0	0°87	0.0	0.18		17.0	31.0	
1134		44.69	- 34.72	0.38	0.04	19.40	0.01	0.51	99.75		2.073	0.000	1. 899	0.015	0.002	0.964	0.00.0	0.045		4.50	95.43	
539A		43.20	35.52		0.04	20.09	0.01	0.33	99.39		2.017	0.000	1.956	0.004	0.003	1.005	0.000.0	0.030		2 • 88	97.05	
564A	•	47.50	33-07	0.17	1	16.14	0.02	2.63	66.70		2.187	0.005	1.796	0.006	0.000	0.796	0.000.0	0.235		22.77	77.14	
104A A		48.89	31.88 88	0.47	0.02	15.91	0.01	2.47	11.99		2.246	100°C	1.727	0.018	0.001	0.783	0.000	0.220		21.94	77.98	
557A		48.32	30.48	0.20	ı	16.37	0.01	2.21	99.72		2.220	0.002	1.759	0.007	0.000	0.806	0.000	191.0		19.62	80.31	
1064		48.82	31.52	0.73	0•03	16.37	0.02	2.39	96•66	8 OXYGENS	2.244	0.001	1.709	0.028	0.002	0.806	0.001	0.213		20.87	79,02	
23 2B		45.66	33,14	0.49	0.26	17.95	0• 02	1.13	98.73	BASIS OF	2.133	0.001	1.826	0.019	0.018	0.898	0.001	0.102		10.19	89.70	
232A	IDE	45.36	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.41	0.08	18.04	0.02	1.17	60*66	A ON THE	2.112	0.005	1.857	0.016	0.006	006*0	0.001	0.105	ITIONS.	10.47	89.39	
523E	ERCENT OX	48.62	32 - 45	0.96	0.14	15.39	0.03	2.61	100.28	AL FORMUL	2.25	0.000	1.751	0.036	0.009	0.755	0.001	0.232	ER COMPOS	23.47	76.37	
	MEIGHT P	SI 02	11 203		460	CAO	K2 0	NA2D	TOTAL	STRUCTUR	15	TI		FE2	46	40	×	AA	END MEMB	AB .	AN	

ĩ

259

۰.

GABBROS
OLIVINE
CUMULATE
FROM
5.26 PLAGIDCLASES
TABLE

C	555A	556Å	5568	5560	1194	1198	523A	5238	523C	5230
JEIGHT PI	ERCENT DX1	DE		. 、						
C F F	4.7 4.8	47 25	47.36	47.25	44.74	43.77	47.00	50.25	48.04	48.52
			0.05	0.02	0.04	0.04	0.16	0.07	0•03	0°02
		20. 40 20. 40	00.00	32.60	34.83	34.44	30.81	31.58	31.92	32.18
	07.70		40.04	0.22	0.79	0.29	2.15	0.31	1.36	1.32
Fru Sec	0 • FG	7 - L L		11	0.02	0.02	0.00	0.02	0.96	1.16
M6U			1 4 4 4 4	17 01	19.29	19.04	14.75	14.82	14.53	14.60
CAO	10.54					0.02	0.02	0.02	0.02	0.03
K20	0.02	10.0	20.0		• • •	0.63	51.5	2.60	2.69	2.60
NA 20	2.45	1.81	4 ND	1 • 7 •				00 68	12.00	100.65
TOTAL	99.29	99.02	98.16	99•06	TJ • 65	92•26	00.02	00.00	4 0 1 0	•
STRUCTUR	AL FORMULI	A ON THE	BASIS OF	8 DXYGENS						• .
L	205	2,192	2.213	. 2.190	2.079	2.061	2.213	2,295	2.214	2.218
101		0.000	0.001	0.000	0.001	0.001	0.006	0.002	0.001	0000
1 1		1.780	1.760	1.750	1.904	1.913	1.711	1.700	1.735	1.732
ר ביו ביו			0.009	0.038	0.010	0.010	0.084	0.012	0.052	0.050
202				0.000	0-001	0.001	0.063	0.001	0.966	0. 080
٩ ٩			0 0 0 0	0.845	0.958	0.960	C.744	0.725	0.717	0.714
съ 2			0.001		0-001	0.001	0.001	0.001	100.0	0.001
A Z	0.219	0.168	0.186	0.172	0.037	0.057	0. 200	0.230	0.240	0.230
END MEMB	ER COMPOS	SNOITI					•			
ú	90 FC	16 61	1.8 - 265	16.89	3.70	5.66	21,16	24.06	25.04	24.31
A G A V	78,80	8 9 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	81.39	83•03	96.19	94.24	78.68	75.83	74.82	10 10 10 10
4 C	0.14	0.07	0.14.	0.07	0.10	0.09	0.15	0.10	0.13	0.16

TABLE 5.27 PLAGIOCLASE FROM CUMULATE OLIVINE PYROXENITE

1 A 3 Ø B (A)

Ç,

WEIGHT PERCENT OXIDE

42,77 8,01 34,02	ଜ • - ୨୦ ଜ ଜ ଜ ଜ	20,75	0 9 7 0 7 0 7 0 0 0 7 0 0
S102 T102 AL203	FE0 MGO	CAO K2O	NA20 TOTAL

STRUCTURAL FORMULA ON THE BASIS OF 8 GXYGENS

2 . 826	0000	1.901	0.010	0.013	1,053	0,001	0,026	
16	1	AL	FE2	мG	CA	×	A Z	

END MEMBER COMPOSITIONS

2,47	97,43	g, g9
A B	۸N	0 R

TABLE 5.28 PLAGIOCLASE FROM PLAGIOCLASE BEARING PERIDOTITE

315A

WEIGHT PERCENT OXIDE

45,90	0.04	35,03	0,08	1 .	18,63	0,01	1,23	100,94	
S102	1102	AL203	FEO	MGO	CAO	K20	NAZO	TOTAL	

STRUCTURAL FORMULA ON THE BASIS OF 8 DXYGENS

2.097	0.001	1.887	0,003	00000	0.912	0 000	0.108	
SI	IL	۸L	FE2	S N	CA	×.	NA	

END MEMBER COMPOSITIONS

10,62	89_31	6 ,06
A B	A N	0R

TABLE 5.29 SPINELS FROM DUNITES

5468	
546A	

WEIGHT PERCENT UXIDE

0.21	12.04 52.70 4.41	20-26 0-55 8-52	t 1	0.22 99.57
- 0• 29	28.03 36.65 4.40	21.20 0.46 9.92	. 1 1 1	0.02 101.19
S1C2 7102	ALZC3 CRZC3 FE2C3	N N	CAC NAZO Kazo	N LC TCTAL

STRUCTURAL FURMULA ON THE BASIS OF 32 UXYGENS

000.0	0.042	3. 459	11.076	0.881	4.500	0.124	3.371	0.000	0.000	6.000	0.046
 0000	0.053	6.041	7.048	0.304	4.314	0.055	3.553	0.000	0.000	0.000	0.046
S I	11	AL	СР	FE3	FE2	12	ЗС	C A .	NA	×	IN

324A	
3258	

WEIGHT PERCENT CXIDE

4

				•	•							
1	0.20	25.37	33.78	9.32	17.84	0.42	11.21	. I	1		0.18	98•33
Г ,	1	18.70	46.15	7.60	12.57	0.66	14.03	1	1	I	0.18	99.89
S1C2	TIC2	AL2C3	C K 2 C 3	FE203	FEC	MAG	MGC	CAC	NAZC	K2C	NIC	TCTAL

STRUCTURAL FURMULA ON THE BASIS OF 32 DXYGENS

			••								
0.000	0.037	7.480	6.632	1.755	3.752	680.0	4.179	0.000	0.000	0.000	0.037
0.000	0.000	154.5	9.085	1.424	2.017	0.139	5•206	0.000	000-0	0.000	0.036
S I	11	AL	СR	т СЦ СЦ	FE2	42	ыс	CA	NA	×	I Z

265 TABLE 531 SPINELS FROM WEHKLITES 32 UXYGENS 5328 - 0.32 26.58 25.78 20.20 20.43 10.35 0.23 0.000 0.0580 0.0580 0.0580 0.0580 0.0580 0.0580 0.0580 0.000 0.000 0.000 0.000 0.000 0.000 0.000 STRUCTURAL FURMULA ON THE BASIS UF 532A 0.000 7.679 7.679 6.923 6.925 6.087 0.600 0.600 0.600 0.600 - 0.21 256.55 36.24 4.94 4.94 0.42 0.42 0.42 0.42 0.42 0.17 99.35 1 1 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 318A 01.20 22.00 22.00 22.00 20.100 WEIGHT PERCENT OXIDE 319A 0.25 29.40 31.75 0.45 0.40 10.44 10.44 10.44 10.44 25 58.50 58.50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 SIC2 11C2 AL2C3 CR2C3 FEEC3 MOC CAC CAC NAZC NIC TAL 10TAL NTAOTATAN NXNOXXMMALIL

3158

WEIGHT PERCENT UXIDE

									2			•
0.56	0.14	30.62	34.86	2.02	17.15	0.39	12.78	0.02	0.08	0.02	0.24	98.88
S I C 2	1102	AL2C3	C K 203	FE2C3	, F.E.C	MNC	MGC	CAC	NAZG	K2C	NIC	TCTAL
		<u>.</u>										

STRUCTURAL FURMULA ON THE BASIS OF 32 OXYGENS

0.135	0.024	6.079	6.024	0.366	3.447	0.080	4.576	0.004	0.036	0.007	0.046
SI	11	AL	CR	FE3	FE2	4W	MG	CA	NA	×	IN

-

537C

-5378.

637A

{

		OXYGENS
		32
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
	N N N O	BASIS
س	00000 00000000000000000000000000000000	ON THE
PERCENT OXID	00000 2000000 00000 200000 000000000000	RAL FORMULA
WEIGHT	SI02 CAL202 CAL202 CAC203 CAC303 CAC30 CAC3	STRUCTU

0,023	0.037	8,228	6,122	1.524	4.209	0.078	3,697	9.013	0,000	0.007	0.061
0.023	0.044	7,917	6,257	1.673	4.052	0.116	3,835	0.090	0.056	0.012	0,054
0 033	0.040	8,723	6 6 080	1.038	4.150	n_087	3 784	0.000	0,051	0.007	0.043
Is	11	AL .	х С	Б Ц	С И И И	Z	AG.	CA.	V 7		Hフ

TABLE 534 REPRESENTATIVE SPINEL ANALYSES FROM DUNITES

•	30 0A	3008	3044	305A	528A	531A	5318	517A	5178
MEIGHT F	PERCENT OXI	DE							
S102	0. 61	0.07	ł	I	ŧ		60.0	0.05	ł
1102	0.34	0.36	35°U	0.28	0.19	0.21	0.05	0.25	0.12
ALZUB	13.30	12.33	23 - 00	14.37	21.39	I & • 60	.18.50	23.60	25.46
C k 2 L 3	47.07	47.24	39.76	47.13	35.08	39.72	42.52	37.77	36.54
FE2C3	8.71	9.93	5.62	9.64	12.80	10.64	8.53	7.44	7.12
FEC	20.02	20.71	13.86	19.01	18.00	20.02	21.48	18.25	18.00
MNC	0.50	0.51	0.43	0.52	0.50	0.54	0.53	05.0	0.46
MGC	8.68	8 - 27	10-63	9.77	10.80	8.74	8.41	10.50	11.18
CAG	0. 62	0.04	I	1	. 1	1.	0.04	ı	0.02
NAZO	1	ł	I	I	ı		1	0.07	0.07
ΚZC	ı	I	I	1	1	1	1	•	I
NIC	0.20	0.31	0.20	0.32	0.33	0.33	0.24	0.23	0.24
TCTAL	98.92	11.66	85*55	101.05	99•69	. 99.4I	100.39	99.06	99.22
STRUCTUR	AL FURMULA	ON THE	BASIS UF	32 UXYGEN	S				
SI	0.003	0.018	0000	000-0	0.000	0.000	0.022	0.012	0.000
11	0.067	0.072	0.004	0.054	0.037	0.040	0.010	0.046	0.023
AL	4.157	3.075	7.002	4.382	6.370	5.092	5.021	6.98L	7.449
CR	9.914	9.952	. 7.616	9.633	7.122	8.147	8.659	7.408	7.166
FL3	1.740	7-99-1	1.052	1.876	2.432	2.075	1. 654	1.403	. I.329
FE2	4.461	4.015	5.923	4.109	3.801	4.475	4.628	3.827	3.735
×	0.112	0.114	0.089	0.114	0.106	0.119	0.115	0.107	0.096
жG	3.448	3.283	4.012	3.703	4.062	3.377	3.227	4.074	4.134
C Þ	0.006	0.012	0.000	0.000	0.000	000.00	0.012	000.0	0.004
A A	0.000	0.000	000.0	0000-0	0.000	000.00	0, 000	0.034	0.033
×	0.000	0.000	000.*0	0.000	0.000	000-0	0.000	0.000	000:•0
IN	0.043	0.066	0.039	0.067	0.066	0.069	0.049	0.046	0.047

TABLE535 REPRESENTATIVE ULIVINE ANALYSES FROM DUNITES

£

	3004	3008	304A	305A	528A	531A	5318	517A	5178
WE IGHT	PERCENT 0	XIDE	•						
SIC2	40.01	40.72	40.37	÷0€∙0∛	40.55	40.24	41.77	40.62	40.84
1102	0.02		I	0.04	t	1	1		
AL2C3	1	ŀ		0.05	0.07	I	1	1	(
CK2C3	l		î L	1	· • •	•	I	ł	0.03
FEC	9 • 19 ·	8•90	9.41	8.26	8.72	9.74	9.57	9.35	60 •0 9 4 4
MNC	0:02	0.04	0.14	0.12	0.14	0.08	0.05	0 - 1 V	
MGC	51.10	51.15	50.31	50.40	50.70	49.54	50.20	50-30	50°03
CAC	0-02	1	t	1	0.01	1	1	80.0	0.00
NAZU	1		ł	1	1	1	1	0-02	0-02
K 20	1	I.		1		ł	. 1	1	
NIC	0.22	0.23	0.26	0.27	0.26	0.21	0.21	0.26	0.24
TUTAL	101.18	101.11	100.50	99-64	100.85	99.82	101.79	100.74	101.67
STRUCTU	RAL FURMUL	-A GN THE	BASIS OF	4 UXYGENS	`		н н н		
S I	0.982	0.985	0.985	0.991	166.0	0.989	1-003	0.988	700 0
TI	0.000	0.000	000.00	0.00.0	0.000	0.000	0-000	00000	
AL	0.000	0.000	0.000	0.001	0.002	0.000	0.000	0.000	
СR	0.000	0.000	U . UUO	0.000	0.000	0.000	0.000	0000-0	
FE2	U.186	0.181	261-0	0.169	0.176	0.200	0.192	0.190	
AN.	000000	000.0	<u> 0.035</u>	0.002	0.003	U 001	0.001	0.003	0.002
MG	I- 843	L• 843	1.830	1.837	1.829	1.815	1.796	1.623	1.832
CA	000-0	0.000	0.000	000.00	000.00	0.000	0.000	0.000	0000
NA	0.000	0.000	0.00.00	0.000	0.000	000	0.000	0.001	0000
×	0.000	0.000	0.000	01.000	0.000	000-00	0.000	0.00	0000-0
IN	0.004	0.004	0.005	0.005	0.005	0.004	0.004	0.005	0.004
ENC MEME	SER, CUMPOS	SNCITI	. .				•		
Э Ш Ж Ц	90• 83 9• 16	91.04 8.95	05.6	91.57 8.42	91.20 8.80	90.10 9.54	90.33 9.66	90.55 9.44	90.56 9.43
								•	

Ē

TAULE 5-36 REPRESENTATIVE SPINEL ANALYSES FROM HAKZBURGITES

	325A	3250	1U-37A	1044A
NEIGHT P	ERCENT UXI	DE		
S1C2	I	1	0.02	0.17
T-1C2	0.13	0.29	0.04	0.13
AL2C3	21.61	22.40	27.58	22+29
CR2C3.	45.27	36.83	39.44	45.78
FE203	3.70	10.59	2.70	1.94
Ê Ê Ĉ	15.60	14.95	16.44	17.67
MNG	0.73	0.04	0.36	0.41
MGC	. 12.37	12.73	12.59	11.53
CAL	ı	1	0.02	
NAZC	1	I	.1	0.19
K2C	ŀ	· 	ł	0.02
NIC	0.10	0.21	0.19	0.24
TGTAL	9.9.57	98.63	99.42	100.37
		711 T 111		
SIRCULOR	AL FURMULA		BAS IS UT	
SI	0.000	0.000	0.003	0.042
.71	0.025	0.054	0-007	0.024
AL	6.345	6.612	7.900	6.513
Сĸ	8.910	7.285	7.562	8.968
FE3	0.054	1.995	+64.0	0.300
FE2 .	3.248	3.129	3.340	3.661
42	0.153	0.154	0.073	0.080
MG	4.591	4.748	4.558	4.258
CA	0.000	000.0	0.004	0.000
NA	0.000	0.000	0.000	160.0
¥	0.000	0.000	000.00	0.007
IV	0.032	0.042	0.037	0.047

S

TABLE 5:37 KEPRESENTATIVE OLIVINE ANALYSES FROM HARZBURGITES

.

10444	·	41.20 0.04 0.02	8 • 54 0 • 15 4 3 • 44	0.01 0.46 98.87 0XYGENS	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	00 • 6 65 • 05
10374		40 • 16 0 • 09	9 - 64 0 - 14 4 - 0 2 - 1 2 - 0 2 - 0 2 - 0	0.44 100.36 BASIS 4	2000010000 2000000000 20000000000000000	55°5
3250	IDE	40.96	7.90	- 0.03 0.32 100.84 A GN THE	11LNS	50°26 2°51
325A	EKCENT UX	41. 18 1 - 1 - 18	8.14 - 51.61	0.01 0.04 0.35 101.53 AL FLAMUL	0.988 0.000 0.000 0.000 0.000 0.000 1.855 0.000 0.000 1.855 0.000 1.855 0.000 1.855 0.000 1.855 0.001 1.855 0.001 1.855 0.000 1.855 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	91.50 8.10
· ·	WEIGHT P	S 1 6 2 11 6 2 AL 263 6 R 263	ACC C ACC ACC ACC ACC ACC ACC ACC ACC AC	NA2G K2L NIC TGTAL STRLCTUR	A MERCANTER A MERCANER MERCANE	S m S

Ē

TABLE 5:38 REPRESENTATIVE SPINEL ANALYSIS FROM WEHRLITE STRUCTURAL FORMULA ON THE BASIS OF 32 DXYGENS WEIGHT PERCENT OXIDE 6 - 21 27 - 17 36 - 01 5 - 62 12 - 29 0 - 34 12 - 29 0 - 64 0 - 6 0.000 0.000 1.039 0.039 0.071 0.071 0.071 0.011 0.011 0.012 0.012 503A SIC2 AL2C3 CK2C3 FFF2C3 MACC CAC NA2C NA2C NIC TUTAL
TABLE 5:39 REPRESENTATIVE OLIVINE ANALYSIS FROM WEHKLITE

503A

•

WEIGHT PERCENT UXIDE

	•						•					ч.
40.17	0.01	1	r	9.70	0.10	49.27	1	0.01	0.03	0.25	99.60	
SICZ	1162	ALZC3	CR2C3	FEC	MNC	MGL	CAU	NAZG	KZL	NIC	TCTAL	

SIRLUTURAL FURMULA UN THE BASIS 4 DXYGENS

NFAOFZYOXXX II X4 N N N N N N N N N N N N N N N N N N N	055.0	0.000	0.000	0.000	0.201	0.362	. ledlu	0.000	0.000	0.001	U. U05	MEMBER CURPUSITION	65 • 69	00 ° 01
	I S	11	AL	S C K	ري ۱۳ ۱۳	22	N N	CP	٩N	×	Z	END	NG MG	1.,

TABLE 5-40 REPRESENTATIVE SPINEL ANALYSIS FROM PLACIDCLASE PERIDOTITE

3154

WEIGHT PERCENT UXIDE

0.51 0.03 80	. 35. 63	35.41	L1.63	16.34	0•40	12.54	· 1	ľ	0.02	0.17	100.76
SIC2 TIC2	AL2C3	CK2U3	F E 203 -	л Г Г	MNC	NGL	UAC	NAŻŪ	K2C	NIC	TUTAL

SIKUCTURAL FURMULA UN THE BASIS UF 52 UXYGENS

0.125 0.014	6.735 6.840 2.139	1.5 0.0 4.0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
S ==	P C R E B B B B B B B B B B B B B B B B B B	トメン () トリ・ マレン	N X Z C

TABLE 5-41 REPRESENTATIVE ULIVINE ANALYSIS FROM PLAGIUCLASE PERIDUTITE

315A

C

WEIGHT PERCENT UXIDE

41.45	Ċ• C3	1	0.01	9.66	.0.13	47.98	l	. 1	0.01	0.22	6.4 • 6.5	
SIC2	T1C2	ALZC3	CR2C3	FEC	MNC	MGC	CAC	NAZC	K2C	NIC	TUTAL	

STRUCTURAL FORMULA UN'THE BASIS 4 UXYGENS

1.018 0.000	0.000	0.000 0.158	0.003	1.756	0.000	0.000	00.0*0	0.064
					•			
11	AL	л г 7 П 2 2	MN	С: Х	ĊΆ	ΔN	¥	12

ENC MEMBER, CUMPOSITIONS

89.85	10.15
МС	بلب مل

ī

1027A

WEIGHT PERCENT UXIDE

0.15 0.20	16.87 45.20	6.86 20.57	0.33 8.66	0.11 0.07	0.64	99.49
S1C2 11C2	AL2C3 CR2C3	FE203 FEC	M N C C	C AC NAZO	K2C NIC	TCTAL

STRUCTURAL FURMULA ON THE BASIS OF 32 UXYGENS

. 0.038	0.039	5.162	9.305	1.344	4.481	0.073	3.439	0.030	0.037	0.013	0.046
S I	1	AL	Сĸ	FE3	FE2	< 2 2	л С	CA	A N	×	IN

1027A

WEIGHT PERCENT DXIDE

40.59	1	I		11.53	0.10	47.38	0.04	0.04	0.02	0.24	100.76	
SIC2	T 1C2	ALZC3	C.R.203	FEC	MAC	MGC	ĈAC	NAZU	K2C	NIC	TUTAL	

STRUCTURAL FURMULA UN THE BASIS 4 UXYGENS

1.000 F	0.000	0.000	0.00	0.245	0.002	1.733	0.001	0.001	0.000	0.004	MEMBER COMPOSITIC	
S I		ΑĽ	C.R.	F = 2	NN .	э Ж	C A	ΝA	×	N I	END	

SZ

87.57	12.43	
	•	
NG	ш ц	

TABLE 5.44 REPRESENTATIVE URTHOPYRDXENE ANALYSES FRUM HARZBURGITES

	328A	10314	10316	10310	10444
WEIGHT	PERCENT DX	(IDE			· . ·
SICZ	55.65	50.57	57.54	- 50.34	56.67
T 102	•	0.08	0. 02	0.05	0.10
AL2C3	2.15	2.65	2.39	2.68	1.65
C.R.203	0.52	0.58	0.04	0.67	0.55
FEC	5.24	6.04	5.63	6.14	5.57
MNC	0. 03	0.11	0.13	0.13	0.12
MGC	34.55	33.55	31.44	32.23	33.17
CAC	0.76	1.15 ·	0.61	0.83	0.95
NAZG	0 • 62	I	0.01	0.01	0.01
K2C	0.03	0.01	0.01	1	0.01
NIC	0.04	0.18	0.10	0.09	0.12
TUTAL	66* 40	100.51	58.61	98.52	16.86
STRUCTU	RAL FURMUL	A GN THE R	SASIS OF 6	DXYGENS	•
S I	1.929	1.939	1.996	136.1	1.972
1 I	0.0000	0.002	0.000	0.001	0.002
AL	0.087	0.107	0.098	0.110	Ú.057
CR	0.014	0.015	0.017	0.018	0.015
F.E.2	0.152	0.173	0.172	0.180	0.162
22	0.001	0.003	+00°0.	0.004	Ú. 003
X C	1.805	1.712	1.631	L.¢83	1 °720
CA	U •Ú28	0.042	0.022	0-031	0.035
A A	0.001	0.000	0.00	000.00	0.000
×	0.001	000.00	000.0	0.000	0.000
IN	0.001	0.005	0.002	0.002	0.003
RND MEM	AFP LIMPUS	TTIC			
		CND1 +			
CA	1.42	2.18	1+24	1-64	1.85
MG	. 90• 53	88.84	89.30	88.86	85.70
11) 11)	7.64	S.58	9.45	9.50	8.45

TABLE545 KEPKESENTATIVE CLINOPYRUXENE ANALYSES FROM HAKZUURGITES

•	3284	1031A	10516	10310	10448
WEIGHT P	ERCENT UXII	ЦШ			
S1C2	52.97	52.27	53.45	51.67	51.68
T.1.C.2	0.10	0.09	0.08	0.08	0.07
AL 203	2.64	2.35	2.81	2.82	L= 32
CRZC3	1.05	0.70	0.51	0.98	0.88
FEC	2.07	2.33	2-22	3.57	181
MAC	0.05	0.0s	0.08	0.07	01.0
NGC	16.40	15.67	15.45	17.97	17.55
CAC	24.34	23.98	23 . 72	24.39	24.83
NAZC	0.09	0.11	0.10	0.06	0.21
K2L	0.01	0.01	0.02	10.0	0.01
ŇIC	0.10	0.00	0.13	0.05	0.04
TLTAL	55.83	97.66	98 . 95	101.66	99.00
•		-			
STRUCTURA	AL FURMULA	CN THE	BASIS UF	6 UXYGENS	
15	1.932	1.949	1.559	1.071	1.910
	0.002	0.002	0.2002	0.002	0.002
AL	0.114	0.103	0.141	0.120	0.079
C.R.	0.030	0. 020	0.026	0.028	0.025
FEZ	0.063	0.072	U. Oed	0.108	0.056
MN	0.002	0.002	0.002	0.002	0.003
X.G	0. 322	0.671	0.844	0.969	0.966
CA	0.951	0 . 95 8	5-5-0	0.946	0.933
NA	0.006	0. 008	0.007	0.004	0.015
×	0.000	0.00.0	0.000	0.000	0.000
NI	0.003	0.002	0.004	0.001	0.001
END MEMOR		CN11			-
CA	49.50	50.40	50.52	46.75	49.02
MG	46.78	45.78	45.78	47.50	48.19
	3.31	3.82	3.09	5.34	2.79

Ī

TABLE546 REPRESENTATIVE GRTHUPYRUXENE ANALYSES FROM ULIVINE PYRUXENITES

1027A 1027b 1030B

MEIGHT PERCENT UXIDE

55.67	0.06	1.30	0.23	65.4	0.20	32:72	8 č• 0 -	1	0.01	I	101.03	
54.83	40°0	1.94	0.51	0.67	0.04	31.40	1.03	0.02	0.02	0.04	94.58	
54.03	0.07	1.70	0.58	8.76	0.10	32.16	1.04	0.01	0.03	1	98.54	
S1C2	1102	AL203	.CR2C3 .		MNU	MGL	ί ΑC	NAZU	K2L	NIC	TUTAL	

SIRLCTURAL FURMULA UN THE 3ASIS UF 6 DXYGENS

1.944 0.002 0.057	000 00 00 00 00 00 00 00 00 00 00 00 00	0.021 0.021 0.021 0.021		1.07 84.46 14.47
1-546 0-001	0.257 0.257	+ 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SNDT LI	1.99 84.88 13.13
1.924 0.002 0.074	0.016 0.261 - 263	550 • 0 • 0 0 0 • 0	U. UUU IEMBER (CMPOS)	1. 57 85.03 12.59
I I I I	2 H Z 3 X H Z 1 N	DAG -	N F F N F	Ч Э Ш Ч Э Щ

IGHT	PERCENT GX1	DE .	
C Z	53.02	52.11	51.50
C2	0.07	60.0	0.10
.2C3	2.26	2.08	2.27
203	0;77	U. 86	0.32
<u> </u>	2.90	2.6 • 2	3.64
Ĵ,	I	0.03	0.11
<u>,</u>	17.07	10.90	10.85
J	24.21	23.53	52.02
20	0.13	0.16	0.12
C C	0.04	0.04	0.01
J	ł	1	0.08
TAL	100.47	<u> 9</u> 8.58	58.75

6 UXYGENS

10000000000000000000000000000000000000	47.•09 46•91 6•00
	17 ILUNS 47.41 47.55 4.63
-0000000000000000000000000000000000000	18EK CUMPUS 48.21 47.28 4.50
N XNCZARALIL N XNCZARALIL	E ND MER Mer Feg

119A 557A 5268(A)

WEIGHT PERCENT OXIDE

52.15	U• 28	1.42	0.03	16.75	0.44	25.92	1.08	0. US	0.02	0.04	98.20	
55.70	0.19	1.76	0. 02	Ιό. δΰ	0.34	20.40	. 76.0	0•04	0.01	0.04	102-33	
. 55 . 05	0.13	1.50	0.10	12.71	0.20	29.48	1.14	0. 02	0.02	0.0 8	100.49	
SIU2	TICZ	AL2C3	.C.R.2C.3	Ť Ľ	MNC	MGC	CAC	NÀZO	K2C	NIC	TCTAL	

STRUCTURAL FORMULA UN THE BASIS UF & DXYGENS

1.930	0.000	0.000	0.001	0.520	0.014	1.434	0.043	0.00 5	000-00	0.001		5 	26.04	
1.971	c.uc.0	0.073	000.0	0.490	0.010	1.391	0.036	0.002	0000	0.001	SITIUNS	I. 90	25. 61 25. 61	
1 •952	0.03	0.002	0.003	0.377	0.307	1.558	0.043	. 0.001	0.002	0.002	MENBER COMPO	2•19 70.05	1 9 1 9 1	
5		AL AL	۲ ر	74,4	NN	Э Х	СA	٩N	×	2	ENC	C.A.	ວ ແ ເ	1 1 1

119A 557A 5200(4)

NEIGHT PERCENT UXIDE

51.60	ú. 55	2.30	0.07	7.23	0.22	14.10	22-32	U. JE	0.02	0.13	59.48	
52.49	<u>5.</u> 5.0	ε ΰ•ε΄	50-0	6.70	0.19	14.40	23.09	0.51	0.01	0.07	94.101	
53.07	0.21	2.06	0.28	6.11	0.17	17.51	22 • 60	50°0	0.02	0.01	102.20	
SIC2	T1C2	ALZL3	CR2L3	L L L	MNC	NUC	LAC	NAZO	K2C	NIC	ICIAL	

STRUCTURAL FURMULA ON THE BASIS UF & DXYGENS

168 •1	0.015	0.101	U. Ú Ú Z	0.220	700.U	0.705	0.914	0.027	0.001	Ü. 004		
1.427	0.014	0.130	0.002	0.204	0.006	0.700	0.501	0.030	0.000	0.02	TICHS	
1.910	0.000	0.045	0.006	0.134	0.UG5	74600	0.870	u. J06	0.000	0.000	SEK CUMPUS	
S.L	11	AL	СК	N N N	MN	W C	CA	NA	×	N I	ENC MEMA	

47.50 40.78 11.73
47.65 41.56 10.79
43.75 47.03 9.21
F K A

TABLE 5-50 REPRESENTATIVE URTHUPYRUXENE ANALYSIS FRUM CUNULATE NORITE

1314

WEIGHT PEACENT CXIDE

52.14	0.15	1.72	0.05	18.52	0.20	25.16	1.00	0.01	0.01	C.C4	99.84	
S102	T 102	ALZLS	C K 2C3	F É C	ANC	MGU	CAC	NA2U	KZC	NIC	TUTAL	

STRUCTURAL FURMULA UN THE BASIS OF & UXYGENS

1.922	0.004	0.074	0.001	0.574	Ú. U U B.	1.302	0.005	0.000	0.00	Ú.001	
ري 1	11	AL	C.R.	FE2	MN	МС	СA	NA .	¥	N I	

END MEMSER CUMPUSITIONS

СА 3.24 МС 68.37 РЕ 28.39

TABLE 551 REPRESENTATIVE CLINCPYRCKENE ANALYSIS FRUM CUMULATE NORITE

131A

WEIGHT PERCENT UXIDE

51.09 0.20	2• 52 0• 20	9.46	L5. 88	02.00	0.07 100.71
SICZ TICZ	ALZC3 Crzc3	F E C Miac	MGC	NA2U K2L	NIC

STRUCTURAL FURMULA UN THE BASIS OF & CXYGENS

1.054	U. UCB	0.123	0.006	0.253	0.007	0.877	0.613	0.014	0.000	0.002	
SI	11	AL	C.R.	FE2	NΝ	N C	ίA	AN	¥	1 N	

ENC MEMBER COMPOSITIONS

40.58	44.23	14.79
	, v	•
CA	NG NG	::

TABLE 5-52 REPRESENTATIVE ORTHUPYROXENE ANALYSIS FRUM NURMAL CABBRG

520A (A).

WEIGHT PERCENT OXIDE

53.09 0.18	1•49	0.04	10. Ja	26.07	0.83	I	0.01	0.05	55.08	
S1C2 T1C2	ALZU3	C K Z C S	ANC	NGL	CAC	NAZO	KZČ	NIC	TCTAL	

STRUCTURAL FURMULA ON THE BASIS OF 6 DXYGENS

L L L L L L L L L L L L L L L L L L L	1.943	0.005	0.064	0.001	0.454	6.012	1.405	SE0.0	0.000	0.000	0.001	MEMBER COMPUSITIO
	S I	ŢŢ	٩L	æ O	FE2	くた	S Z	ĊA	N N	ž	N	ËNL

SNC

1. 64[.] 73.57 24. 80 A D M F A C

TABLE553 KEPRESENTATIVE CLINUPYKOXENE ANALYSIS FROM NURMAL GABBRU

52 cA (A)

ſ

SELCHI PERCENT OXIDE

51.54	0.55	2.52	0.07	7.24	0.23	15.32	21.32	0.38	0.03	0.00	99.27	
-S1C2	T1C2	ALZUS	C.R.203	FEC	MNC	MGC	C.A.C	NAZU	K2C	NIC	TGTAL	

SIKUUTURAL FURMULA UN THE BASIS OF 6 UXYGENS

1.923	0.015	0.111	0.002	0.226	C. 0C7	0.852	0.652	0.027	0.001	0.001	
S I	4 i	AL	СŖ	FE2	NN	NС	СA	۸A	×	I N	

ENC MEMBER COMPUSITIONS

-	44.15	44.14	11.70
	CA	S C	ц.

TABLE 554 REPRESENTATIVE CLIVINE ANALYSES FRUM HARZBURGITES

326A 1031A 1031E 1031C 1044A

WEIGHT PERCENT UXIDE

TABLE 555 REPRESENTATIVE CLINCPYRUXENE ANALYSES FROM HAKZBURGITES

· 1044A 10310 10316 53.43 0.08 2.61 **~ •** 22 0.51 **AISUI MEIGHT PERCENT DXIDE** 52.97 0.10 1.05 2.07 2.07 32 6Å 0.05 24.540 0.09 0.01 0.01 99.83 SIC2 TIC2 AL2C3 CR2C3 ICTAL NA2C NIC F EC MNC MGC CAC K 2C

STRUCTURAL FORMULA ON THE BASIS OF & UXYGENS

SI	1.932	I.949	1.959	1.871	I.910
	0.002	0.002	0.002	0002	0.002
AL	U.114	0.105	0.121	0.120	0.079
СŘ	0.030	0.020	0.026	0.028	0.025
FE2	0.003	0.072	0.003	0.108	0.056
NN	0.002	0.002	0.002	0.002	0.003
МG	0.852	0.871	0.844	· 0. • 9 • 9	0.900
СA	0.951	0. 558	0.932	0.9 46	0.983
NA	• 0 • 0 0 • •	0.008	0:007	0.004	0.015
×	0.000	0.000	0.000	0.000	0.000
H Z	0.003	0.002	0.004	0.001	0.001
ENC	MEMBER LUMPO	SITIONS	•	• .	•
СА	49.50	50.40	50.52	40.75	49.02
мG	40.78	45.78	45.78	47.50	48.19
н Ц	3.31	3.82	3.69	5.34	2.79

TABLE 5-56 KEPRESENTATIVE ULIVINE ANALYSIS FRUN PLAGIUCLASE PERIDUTITE

315A

WEIGHT PERCENT OXIDE

41.45 0.03 -	0. c1 5. 66 7. 58 8	54 • 65 10 • 0 1 • 0
SIC2 TIC2 ALZC3	ж ж н с с о о о с о о о с о о о с о о о	LAL NA2C Nic Tcial

STRUCTURAL FURMULA ON THE JASIS 4 OXYGENS

1.0000 0.000000	
STCDTS SGZEXLEL SGZEXLEL	

ENC NEMBER CUMPUSITIONS

MG 89.85 FE 10.15 TABLE5.57 REPRESENTATIVE CLINUPYKUXENE ANALYSIS FRUM PLAGIUCLASE PERIOCTITE

315A

÷.,

WEICHT PERCENT OXIDE

53.23	0.26	3.15	1.37	2.55	01.0	14.87	22.59	0.48	0.02	.50.0	95.10	
 SIC2	TICŽ	ALZCS	CK2C3	FEC	SAC SAC	MGU	CAC	NÁZC	K2C	NIC	TUTAL	

STRUCTURAL FURMULA UN THE BASIS GF 6 CXYGENS

1 0 1 0	1076	0.007	0.130	0.040	0.078	0.03	0.812	0.503	0.034	U.001	0.002	MEMBER CUMPOSITIUNS
15	40	1	٩٢	СВ	Ч Ц	MW	N C	СA	AN	×	N	ĒNL

50.34	45.29	4.3¢
CA	MG	ц.

ī

IABLE 5-58 REPRESENTATIVE ULIVINE ANALYSES FROM WEHRLITES

10.73 0.06 48.58 0.05 804A 0°13 100.76 1.000 0.000 0.000 0.000 0.220 1.706 41.15 0.001 0.001 88.97 11.02 0.02 C.001 0.004 ł STRUCTURAL FURMULA UN THE BASIS & DXYGENS ł 05A 39.50 0.01 0.23 99.05 0.555 0.000 0.000 0.000 0.000 0.05 47.67 88.42 11.60 11.12 0.000 0000.00 0.000 0.005 0.62 0.252 0.001 1.771 ł ł I 1 5038 0.04 0.04 0.21 99.02 0.990 39.94 0.02 9 • 83 0 • 05 0.000.0 1.800 0.000 89.85 10.14 48.87 0.03 0.002 0.002 0.004 0-204 0.001 I ۱ ENÚ MÉMBER CUMPOSITIONS WEIGHT PERCENT CXIDE 503A 89.59 10.00 0.10 000**°0** 0.000.0 0.0000 40.17 49.27 0.03 0.25 99.60 0.002 0.01 9.76 0.01 0.201 0.000 000:00 0.001 0.005 l I AL2C3 CR203 TCTAL SIC2 TICZ NA20 J J J J J J MNC MGC N I C CAC 534 ž C.F. C.F. N S .) ∑ CA V ΝA ц С Ч ----4 |----4 XZ

TABLE 5-59 REPRESENTATIVE CLINOPYRUXENE ANALYSES FROM WEHALITES

8.04.A		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	23.23 2.00 0.00 100.05 100.05	 b UXYGENS c UXYGENS c U 919 c 919 c 005 c 919 c 0124 c 919 c 919 c 919 c 919 c 919 c 919 <lic 910<="" li=""> c 919 <lic 910<="" li=""> c 919 <lic 910<="" li=""> c 919 <lic 910<="" li=""> c 919 <lic 910<="" li=""> c 919 <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 919 <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> <lic 910<="" li=""> c 910 <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> c 910 <lic 910<="" li=""> <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> c 910 <lic 910<="" li=""> <lic 910<="" li=""> c 910 <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <lic 910<="" li=""> <li< th=""></li<></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic></lic>
803A		4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	BASIS BASIS C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
5038	EUE	5 10 10 10 10 10 10 10 10 10 10 10 10 10	2000 9000 9000 9000 9000 9000 9000 9000	A DN THE 1.844 0.1844 0.160 0.160 0.1443 0.0500 0.5555 0.5555 0.5555 0.051 11UNS 11UNS 45.30 45.30 45.00 0.052 11UNS 45.50 0.052 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.05555 0.0555555 0.0555555 0.0555555 0.0555555 0.05555555 0.055555555 0.05555555 0.05555555555
503A	PERCENT OX	50. 20. 20. 20. 20. 20. 20. 20. 2	22.31 0.05 0.05 28.43	AL FLRMLL 1.885 0.005 0.065 0.064 0.064 0.955 0.002
	WEIGHT	SIC2 ALC2 ALC2 ALC2 MrcC3 MrcC3 MrcC3 MrcC3	CAC NA2C K2C NIC TCTAL	S IN S IN S IN S IN S IN S IN S IN S IN

Ì

TABLE 5.60 REPRESENTATIVE OLIVINE ANALYSES FROM ULIVINE PYRUXENITES

Ĩ

1027A 10275 1014(3)B 1014(3)C 1030B(A)

WEIGHT PERCENT UXIDE

Ę

MITCH	PERCENT UAL	L L			
SIU2	40.95	40.30	39.80	40.24	39.41
T.102	1	0.01	0.02	0.04	0. 02
ALZÜS	. 1	1	ł	1	1
CR203	1	0.02	0. 05	0.02	ł
F C	11.58	12.04	13.80	13.38	15.48
MNC	0.10	0.10	0.24	ć2•0 -	0.20
MGC	47.38	47.10	40.20	. 45.49	45.59
CAC	0.04	0.04	0.09	0.12	0.01
NA20	0. č4	u • C1	4	1	0.05
K2L	0.02	0.03	0.02	6.02	0.02
NIC	0.24	0.21	0.13	0.12	0.18
TUTAL	100.78	6 ~ 61	100.41	99,68	100.96
STRUCTU	RAL FURMULA	GN THE	DASIS 4	CXYGENS	
SI	1.006	0.549	0.552	1.000	0.904
11	0.000	0.000	0.0.0	0.000	0,000
AL	0.000	0.000	0.00	0.000	0.000
CR	000.0	0.000	0.0.0	000.0	0.00
FE2	0.245	0.249	0.287	0.279	0.323
MM	G•002	0.003	0.005	0.000	0.004
MĠ	1.733	1.740	1.714	1.700	L . 697
СА	0.001	0.001	0.032	0.003	0.000
NA NA	0.001	0.000	0.000	0000	0.002
2	0.000	0.001.	0.000	0.000	0.000
IN	0.004	0.004	700°0	0.002	0.003
E&O MEM	ISUdWUJ 448	TIGAS			
NG NG	87.57	87.45	40.c3	85.83	83.99
u) L	12.43	12.55	14.36	14.16	16.00

ļ

TABLE 5-61 REPRESENTATIVE CLINOPYROXENE ANALYSES FROM OLIVINE -- PYROXENITES

1014(3) B 1014(3)C 10308 (Å) 10278 1027A

WEIGHT PERCENT UXIDE

1.916 0.000	1-940 0-000	1-921 0-0-0	1.930 0.000	1-927	
	UXY GENS	BASIS OF 6	UN THE	RAL FURMULA	LC TU
98.78	42.66	98.51	96.50	100.47	IAL
0.08	0°07	0.01	ľ,	ł	. 7
0.01	0.02	0.02	0.04	0.04	1.11
0.12	0.14	0.11	0.16	0.13	0 Q
23.52	23.02	22.50	23.33	24.21	. 1
16.85	17.02	17.50	16.96	17.07	
0.11	0.17	0.13	U. 03	ŀ	t Ti
3.34	3.34	5.39	28•2	2.50	
0.32	0.51	0.43	0.80	0.77	žČ3
2.27	2.10	2.44	2.08	2.26	2i.3
07.0	0.09	30 ° 0	0.09	0.07	N
51.56	52.74	52.02	52.11	53.02	ľ, K

SI	1.927	1.930	1-921	1.940	16.1
11	0.002	0.002	0.007	0.002	00.00
AL	250.0	0.50.0	0.100	0.091	0.09
C K	0.022	۲۵.0	0.013	0.015	0000
F.E.Z	0.058	0•03n	0.104	0.103	0.11
42	0.000	0.001	0.004	0.005	0.00
52	0. 424	0.550	549.0	669.0	0.53.
C Þ	0.943	0.925	0.908	0.907	0.93
A A	600°0	010.0	0.008	0.010	0.00
×	u. 002	0.001	0.001	0.001	0.00
N L	0.000	0.000	0.000	0.002	0.00
ËND	MENDER CUMPOS	SNUT I			
CΔ	48.21	47.41	46.23	46.69	47.0
о х	47.28	47.95	40.44	48.01	40.9
فين سان	4.50	4.65	5.12	5.30	6.00

TABLE 5.62 REPRESENTATIVE GLIVINE ANALYSES FROM CLIVINE GABBROS

5568	1194	5234	557A	557B	5394	504A	1134	5268 ((B)
_ 	XIDE								
58	39.19	38• 86	38.41	33.21	35.76	37.13	37.20	36.38	
C8	0.07	0.05	0 • 02	0.06	0.02	0.03	0.05	0.04	
10	•	I	1	10.0	J	1	1	•	
22	0.01	0.01	0.03	0.04	0.07	0.03	0.01	0.05	
C1	19.20	25.72	25.53	25.94	13.01	20.35	15.44	28.49	
ස ග	0.24	0.36	0.38	0.36	0.16	0.43	0.27	0.47	
46	40.08	5.72	34.39	35.08	47.92	30.72	41.02	34.34	
23	ł	0.07	0.02	0 • 0 S	0.01	0.03	1	0.02	
1	I	1	0.03	0.02	, 1,	1	. 1	0-04	
60,	0.01	0.03	0.02	0.01	0.01	0.03	0.01	0.01	
14	0.10	0.10	0.16	0.17	0.14	0.15	0.12	0.08	
, 14	96.95	100.43	E0.*65	5 6. 97	101.70	100.89	98.13	99.93	
UKAU	LA UN THE	BASIS 4 0	XYGENS				:		
910	1.010	1.012	1.024	1.011	0.977	0.979	0.977	0350	
001	0.001	0.001	0.001	0.001	0.000.	0.00.0	0.001	0.000	
003	0.000	000.0	0.00	0.000	0.000	0.000	0.000	0.000	
000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001	
505	0.410	0.516	0.569	0.574	0.279	0.581	0.427	0.642	
008	0. 005	0.008	0.008	0.008	0.003	0.009	0.000	0.010	
Ē	I.540	1+442	1. 200	1.334	1.755	I.445	1.000	1.379	
107	0.00	0.002	0.00.0	ö. vo 2	0,000	0.000	ü . 000	0.000	
00	0.000	0.000	0.001	0,000	0.000	0.000	0.00.0	0 * 002	
00	0.000	0.00.0	0.000	0.000	0.000	0.001	0.000	0.000	
103	0.002	0003	0.003	0.003	0.002	0.003	0.002	0.01	
MPC	SITILNS								
	ŗ	ſ	2 - - - - - - - - - - - - -	, C					
	10.10	υ	20.07 20.02		00.20	71.30	78.99	68.23	
2 V	21.23	10.20	0**7	20.42	CI • CT	28 • 70	21.00	31.77	

TABLE 5-63 REPRESENTATIVE CLINOPYRUXENE ANALYSES FROM CUMULATE OLIVINE GABBROS

526L (B)	50-70 520-70 520-70 520-70 520-70 520-70 520 520-70 520 520-70 520 520-70 520 520-70 520 520-70 500-70 500-70 500-70 500-70 500-70 500-70	0.02 0.03 94.39	1. 900 00 00 00 00 00 00 00 00 00 00 00 00	45° 45° 47° 42° 55 1° 4
1134	500 50 50 50 50 50 50 50 50 50	10°0 5°5	H 0 0 0 0 0 4 0 0 0 0 • • • • • • • • • • 0 0 0 2 0 H 0 H 0 0 0 0 0 2 0 H 0 H 0 0 0 0 0 4 4 4 8 0 7 0 0 0 H F 0 0 0	4 - 4 4 - 4 8 - 63 8 - 63
564A	50. 70. 70. 70. 70. 70. 70. 70. 7	0.02 0.07 9.8.18	L. 920 0. 015 0. 003 0. 0000000000	40 - 92 44 - 35 14 - 73
5354	52. 52. 52. 53. 53. 53. 54. 53. 54. 53. 54. 55. 55. 55. 55. 55. 55. 55	100.00 100.00 100.00	1.921 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	46 56 51 55 1
5578	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100.43	- 90 - 90 - 90 - 90 - 90 - 90 - 90 - 90	48.35 41.03 10.01
557A	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.01 0.07 101.59 6 UXYGENS	L. 527 0.012 0.020 0.020 0.020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	47.65 41.56 10.79
5234	8 10 10 10 10 10 10 10 10 10 10	0. 02 0. 14 99. 59 8ASIS CF		44. 10 45. 69 12. 13
119A (IDE	5 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.01 102.20 A GN THE	1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	43.75 43.75 47.03 9.21
556A Perlent ux	51. 0.57 0.57 0.57 0.57 0.57 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0. U2 0. U2 59. U5 341 FURMUL	1.910 0.135 0.010 0.015 0.015 0.015 0.0200000000	45.03 45.03 11.24
NEIGHT	SIC ALLC ALLC ACCCC ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCCS ACCCS	KZU NIC ICTAL STRUCTUL	M PPGPHXLIL NXNCMMTCPIN	ENC A A F F F F

τ.

1031C 1044A

WEIGHT PERCENT OXIDE

51.68 0.07	1.82 0.58 1.81	0.10 17.55 24.83	0.21 0.01 99.00
51.67 0.08	2. 52 0. 58 3. 57	0.07 17.57 24.39	0.06 0.01 0.05 101.66
S102 T1C2	AL2C3 Ck203 Fec	N N N N N N N N N N N N N N N N N N N	NA ZÜ KZC Nic TCTAL

SIRLCTURAL FURMULA ON THE BASIS OF 6 DXYGENS

1.510	0.002	0.079	0.025	0.050	0.003	0.900	0.503	0.015	0,000	0.001	SNULT	
173-1	0.002	0.120	0.028	0.100	0.012	0.569	0.540	0.004	0.000	0.001	MEMBER COMPOS	
I S	11	AL	CR	100	4W	MG	CA	٩N	×	IN	ENC	

49.02	48.19	2.79
46.75	47.50	5.34
•	•	
СÞ	хC	ш

TABLE 5.65 REPRESENTATIVE CLINCPYRUXENE ANALYSES FROM WEARLITES

8040		51.61	0.24	3.17	1. U3	66.2	0.02	16.09	23.61	0.20	0.04	0,07	96.72	BASIS CF
CU44	IUE	52.09	0.19	. 2. 69	I.43	C D	0.01	10.01	23.23	0.04	0.03	d0 •0	100-03	A UN THE
5U3Å	PERCENT UX	50.54	0.20	3.69	1.26	2.74	0.04	16.90	22.31	0.04	0.03	0.09	98.43	RAL FURMUL
	w E I GHT	S IC 2	11C2	ALZUB	C R/2 C 3	FEC	MNC	MGL	CAC	NAZC	K2C	NIC	TUTAL	STRUCTU

F 6 DXYGENS

1.909	0.000	8c1.0	0.00.0	0.020	0.000	0.800	0.936	0.018	0.002	0.002		49.10	46.00	. 12.4
1.919	300.0	0.124	0.041	0.061	0.000	0.912	0. 200	0.003	0.001	0.001	IT LUNS	41.72	48.02	4.20
Ι.ΰα5	6.00 5	0.169	0.036	0 • 0 0 • 4	0.001	C+932	0.855	U.• 0 02	0.001	0.002	IENSER COMPUS	40.52	49.02	4.45
S I		ÅL	C F	234	MM	у К	СÀ	NA.	×	N L	ENL M	CA	мG	نان بل

10278		52.11	0.09	2.03	0.86	2.6.2	0. 03	16.96	23.33	U.16	0.04	I	55.52	BASIS OF
1027A	IDE	53.02	0.07	2.26	0.77	2.90		17.07	24.21	0.13	0.04	l	100.47	A CN THE
554D	PEKCENT UX	53.06	· Ů • Ü6	2.02	0.65	3.27	6 • 62	17.21	22.70	0.15	0.03	l	55.22	KAL FURMUL
Ç	WEIGHT	SILZ	T1C2	AL2C3	CR2C3	÷ E C	MNC	MGC	CAC	NAZC	KZC	NIC	TÚTAL	STRLLTU

F & DXYGENS

H0000000000000000000000000000000000000	SNCLT
	MERBER COMPOSI
H PACNER NXNCX3HCA-10	ENC

47.41	47.95	4.03
40.21	47.28	4.50
46.21	48.60	5.20
4	2	u.

TABLE 5-67 MAGNETITES IN OLIVINE GABBRUS

106A 526B A 526B B

WEIGHT PERCENT OXIDE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
SID2 4 202 6 203 7 203 7 203 7 203 7 203 7 203 7 203 7 203 7 203 7 203 7 203 7 203 7 203 7 203 7 203 7 203 7 202 7 203 7 200 7 203 7	

STRUCTURAL FORMULA ON THE BASIS OF 32 OXYGENS

0,069	1,280	0,821	0,329	12,146	8,806	0.126	0_315	0.016	0,000	0.018	0.082
0,066	1, 376	0,835	0,306	11,945	8,941	0.125	0.287	0.004	0,089	0,020	0 071
0.291	0.520	1.376	0,079	12,897	8,186	0,060	0,388	0.083	0,083	0.017	0.080
SI		AL	CR S	FE3	FE2	ZX	MG.	CA	NA	×	1 N

Ē

859A 526A(A) 526A(B)

WEIGHT PERCENT OXIDE

000 000 000 000 000 000 000 000 000 00	97 • 9A T
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	- T = 0AT
ST A T A T S S T A T A T A T A T A T A T A T A T A T	

STRUCTURAL FORMULA ON THE BASIS OF 32 OXYGENS

0,06	0.84)	0.86	0.01	13.26	8.41:	66.0	0.28	0,01	0.60	0.01	0,09
0,082	0,039	0,925	0.244	14,690	7,761	0,089	0.138	0.030	0,051	0.017	0.086
0,088	0.434	0.572	0.689	13,660	8,160	0,086	0.158	0.015	n 187	0.020	0.086
SI	11	AL	C.R.	FE3	FE2	ZX	мG	CA	NA N	×	Iz

526A(A) 526A(B)

WEIGHT PERCENT OXIDE

0.27 50.97	880 0 0 7 8	41,05	00 00 00	0 . 0 4 4 4 4	99 87 99 87
0, 34 30, 02	28 8 9 9 7 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	1.30	0 5 0 0 0 0 0 0 0 0 0 0	0, 11 0, 05	0,28 99,76
SI02 T102	AL203 CR203 FE203	FE0 MNO	MGO CAO	NA20 K20	NIC TOTAL

STRUCTURAL FORMULA ON THE BASIS OF 6 DXYGENS

0,013 1,923	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	60	044	0,155	00.00	0.00	0.010
0.017	0,160 0,015	1.487	1.000 0.056	0.033	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.003	0,012
IS IS	AL CR			E C	C A	۲ ۲ ۲	ÍN

526B A

.

WEIGHT PERCENT OXIDE

4 	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
SI02 1102	N N N N N N N N N N N N N N N N N N N	K20 NIO Total

STRUCTURAL FORMULA ON THE BASIS OF 23 DXYGENS

6.467	0.270	1.698	0,008	1.193	010.0	3,406	937	0,794	0.010	0.006
IS	11.	AL	CR 2	FE2	N	U M	CA	N A	¥	Iz

ļ

8.

TABLE 571 BASALTTC HORNBLENDE IN NORMAL CABBROS

	859A	8598	526A(,	A) 526A(B)
WEIGHT	PERCENT OXI	DE.	
201S	44,89	46.42	43,73	44.53
1102	2.23	2.14	2.38	2,01
AL203	9.74	ຣູດຽ	12.11	12,15
CR203	0,04	0 0 0 0	5.11	0.07
FEO	11,99	12.77	9.17	9.44
ONW	9.20	A.20	0.13	0.12
MGO	14,08	13,46	14.98	15,45
CAN	11,79	12,02	11.72	11,73
NA20	1,54	1.25	2.30	2,59
C CX	0,08	0.07	0.06	0,05
OIN	0,08	0.11	2 .1 2	0.02
TOTAL	96,66	97,18	96,40	97 , 95
STRUCTU	AL FORMULA	ON THE	BASIS OF	23 OXYGENS
Is	6,625	6,817	6.411	6,396
TT	9.248	0,236	a.262	0.217
AL	1.695	1.408	2.024	2,067
ск С	P , 005	0,010	0,013	0,008
FE2	1,509	1,568	1.123	1,138
N N	0.024	0,024	0.016	0.014
Э М С	3,100	2,946	3,272	3 322
CA	1.863	1,892	1.840	1.813
AN	0.440	0,356	0,553	0,723
X	0.015	0,013	0,011	0,009
IN	0,009	0,012	0,013	0.003

TABLE 5-72 ACTINULITE FROM LEUCOCRATIC GABBRD

541A

WEIGHT PERCENT OXIDE

55, 23 0, 04	3, 25 • 25	5 7 7 8 8 8 8	20.04	0 0 0 0 0	96, 24
5102	AL 203	FEO	MGO	NA20	NID
102	CR203	MND		X20	TOTAL

STRUCTURAL FORMULA ON THE BASIS OF 23 OXYGENS

,756	.003	.540	. 000	.632	.005	194	825	016	.003	007
~	0	8	6	ы	6	4	••••	0	0	6
IS	5-1 	٩L	ск С	FE2	ZX	S X	CA	٨N	X	Hz

TABLE 5-73 CHLORITE FROM LEUCOCRATIC GABBRO

5418

<u>)</u>. j

WEIGHT PERCENT OXIDE

31,00	17.07	00 G 4 C 4 C	27,99 0,09	0	0,12 84,79
S102	AL203	REO	MGO	NA20	NID
7102	CR203	K	CAO	K20	TOTAL

STRUCTURAL FORMULA ON THE BASIS OF 28 DXYGENS

6.145	0,003	3 998	0,002	1.399	0.004	8.300	0.019	0,000	0.003	0.019
IS	11	٩L	CR	FE2	ZX	MG	CA	NA	×	Iz

TABLE'5"74 ANALYSES OF LOBATE AREAS FROM A SERPENTINISED DUNITE

515A 515B

WEIGHT PERCENT OXIDE

23.19	0.04	14,80	0.01	6.41	0.33	22.08	9,71	n i E ∍ r	61.0	. 1	76,75
6 86	0.01	23,58	ť.	2,61	0,02	42,15	0,82	ţ.		Ŧ	76,04
S102	1102	AL203	CR203	FEO	ONM	MGO	CAO	NA20	K20	CIN	TOTAL

STRUCTURAL FORMULA ON THE BASIS OF 28 OXYGENS

5,334	800 800 800	232	2007	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.050
0.0	000	ma) Q	00
1,58 0,68	00 00 00	888	14.49	20	000000
12	4 U	MN 2	A C.	AN	x Z

í

818C

8188

8184

	52,29	3.67	5 .03	0.14	7.73	6.18	18,29	12,39	0.66	0,38	C, 05	97,81	
IDE	51.77	0,62	5,23	0.13	7.76	0,18	18,73	12.45	0.70	0,30 30	ທູດ3	97,21	
PERCENT OX	52,02	0.56	4,96	0,31	7.44	0.21	17,51	12,30	0.63	0,31	9,89	96,34	
WEIGHT	SID2	1102	AL203	CR2:03	FEO	ONW	MGO	CAO	NAZO	KZŪ	NIO	TOTAL	

STRUCTURAL FORMULA ON THE BASIS OF 23 OXYGENS

NA20 K20 N10 1014L

7.390	0,070	0.839	0.016	0,918	020	3.850	1.870	0,180	0,068	0.000
7,360	0.056	0,870	0,014	0.020	0,020	3,820	1,898	0,193	0,050	0,093
7.450	0,060	0,837	0.034	0 , 891	a_a25	3.749	1,880	e.175	0.060	0 010
IS	TT	AL	ск СК	FE2	Z	UX X	CA	NA	×	In

REFERENCES

- ALLEMANN, F. and PETERS, T. (1972). The Ophiolite-Radiolarite belt of the North Oman Mountains, Ecologae Geol. Helvetiae, v.65, No.3, p.657-697.
- ALLEN, C.R. (1975). The petrology of a portion of the Troodos Plutonic Complex, Cyprus. Unpub. Ph.D. thesis, Cambridge University.
- BARNES, I., LA MARCHE, V.C. and HIMMELBERG, G.R. (1967). Geochemical evidence of present-day serpentinization. Science, v.156, p.830-832.
- BELL, J.M., CLARKE, E. de C. and MARSHALL, P. (1911). The geology of the Dun Mountain subdivision, Nelson. New Zealand Geol. Survey Bull. 12, p.1-71.
- BLANFORD, W.T. (1872). Notes on the geological formations seen along the coasts of Baluchistan and Persia, from Karachi to the head of the Persian Gulf, and some of the Gulf Islands. India Geol. Survey Recs., v.5, p.41-45.
- BOUDIER, F. (1972). Relations Lherzolite-Gabbro-Dunite dans Le Massif de Lanzo (Alpes pie montaises): Exemple de fusion pantielle. Ph.D. Thesis Nantes 1-106.
- BOUDIER, F. (1978). Structure and petrology of the Lanzo Peridotite Massif (Piedmont Alps). Bull. Geol. Soc. Amer. v.89, p.1574-1591.
- BOYD, F.R. Jr. (1970). Garnet peridotites and the system CaSiO₃-MgSiO₃-Al₂O₃. Mineral. Soc. Amer. Spec. Paper, 3, p.63-75.
- BOYD, F.R. Jr. and SCHAIRER, J.F. (1964). The system MgSiO₃-CaMgSi₂O₆. Jour. Petrol. v.5, p.275-309.
- BROWN, G.M. (1957). Pyroxenes from the early and middle stages of fractionation of the Skaergaard intrusion, East Greenland. Mineral. Mag., v.31, p.511-543.
- BROWN, G.M., EMELEUS, C.H., HOLLAND, J.G. and PHILLIPS, R. (1970). Petrographic, mineralogic and X-ray fluorescence analysis of lunar igneoustype rocks and spherules. Science v.167, p.559-601.
- BUDDINGTON, A.F. and LINDSLEY, D.H. (1964). Irontitanium oxide minerals and synthetic equivalents. Jour. Petrol. v.5, p.310-357.

- BURNS, R.G. (1970). Mineralogical applications of crystal field theory. Cambridge University Press.
- CARNEY, J.N. and WELLAND, M.J.P. (1974). Geology and Mineral Resources of the Oman Mountains. Inst. Geol. Sci. Overseas Div. Rept. 27, 49p.
- CHALLIS, G.A. (1965). The origin of New Zealand ultramafic intrusions. Jour. Petrol., v.6, p.322-364.
- COLEMAN, R.G. (1977). Ophiolites. In: Wyllie, P.J., Ed. Minerals and Rocks: New York, Springer-Verlag.
- DAVIS, B.T.C. and BOYD, F.R. Jr. (1966). The join Mg₂Si₂O₆-CaMgSi₂O₄ at 30 kilobars pressure and its application to pyroxenes from kimberlites. Jour. Geophys. Res. v.71, p.3567-3576.
- DEWEY, J.F. (1974). Continental margins and ophiolite obduction. Appalachian Caledonian System; In: Burk, C.A. and Drake, C.L., eds. The geology of continental margins: New York, Springer-Verlag, p.933-950.
- DEWEY, J.F. (1976). Ophiolite obduction. Tectonophysics. v.31, p.93-120.
- DICKEY, J.S. Jr. (1970). Partial fusion products in alpine-type peridotites. Serrannia de Rondo and other examples. Mineralog. Soc. Am. Spec. Pub. v.3, p.33-49.
- DUNCUMB, P. and REED, S.J.B. (1968). The calculation of stopping power and back scatter effects in electron -probe microanalysis. In Quantitative electron probe microanalysis. Nat. Bur. Standards, Special Publ. 298, p.133-154.
- ENGIN, T. and HIRST, D.M. (1970). The Alpine chrome ores of the Andizlik-Zimparalik area, Fethiye (southwest Turkey). Trans. Inst. Mining Met., Sect.B, 79: B.16-27.
- ENGLAND, R.N. and DAVIES, H.L. (1973). Mineralogy of ultramafic cumulates and tectonites from eastern Papua. Earth Planet. Sci. Letters, v.17, p.416-425.

- FLANAGAN, F.J. (1969). U.S. Geological Survey Standards -II. First compilation of data for the new U.S.G.S. rocks. Geochim. et Cosmochim. Acta, v.33, p.81-120.
- FLANAGAN, F.J. (1973). 1972 values for international reference samples. Geochim. et Cosmochim. Acta, v.37, p.1189-1200.
- GLENNIE, K.W., BOEUF, M.G.A., HUGHES CLARK, M.W., MOODY-STUART, M., PILAAR, W.F.H. and REINHARDT, B.M. (1973). Late Cretaceous Nappes in Oman Mountains and their geologic evolution, A.A.P.G. Bull., v.57, No.1, p.5-27.
- GLENNIE, K.W., BOEUF, M.G.A., HUGHES-CLARK, M.W., MOODY-STUART, M., PILAAR, W.F.H. and REINHARDT, B.M. (1974). Geology of the Oman Mountains. Kon. Nederlands Geol. Mijb. Gen. Ver. Verh. 31, 423p.
- GREENWOOD, J.E.G.W. and LONEY, P.E. (1968). Geology and mineral resources of the Trucial Oman Range. Institute of Geol. Sciences, Overseas Div., London S.W.7, p.1-108.
- HAKLI, T.A. and WRIGHT, T.L. (1967). The fractionation of nickel between olivine and augite as a geothermometer. Geochimica et Cosmochimica Acta, v.31, p.877-884.
- HAKLI, T.A. (1968). An attempt to apply the Makaopuhi nickel fractionation data to the temperature determination of a basic intrusive. Geochim. et Cosmochim. Acta, v.32, p.449-460.
- HARRIS, P.G., REAY, A. and WHITE, I.G. (1967). Chemical composition of the upper mantle. Jour. Geophys. Res., v.72, p.6359-6369.
- HEINRICH, K.F.J. (1966). The absorbtion correction model for microprobe analysis. Trans. 2nd. Nat. Conf. Electron Microprobe Analysis, Boston, Paper 7, 2p.
- HIMMELBERG, G.R. and COLEMAN, R.G. (1968). Chemistry of primary minerals and rocks from the Red Mountain -Del Puerto ultramafic mass, California. U.S. Geol. Survey Prof. Paper 600-C, p.C18-C26.

- HIMMELBERG, G.R. and LONEY, R.A. (1973). Petrology of the Vulcan Peak Alpine-type Peridotite, Southwestern Oregon. Bull. Geol. Soc. Am., v.84, p.1585-1600.
- HOLLAND, J.G. and BRINDLE, D.W. (1966). A self consistent mass absorbtion correction for silicate analysis by X-ray fluorescence. Spectrochim. Acta, v.22, p.2083-2093.
- HUDSON, R.G.S. (1960). The Permian and Triassic of the Oman Peninsula, Arabia, Geol. Mag., v.97, No.4, p.299-308.
- HUDSON, R.G.S., BROWN, R.V. and CHATTON, M. (1954a). The structure and stratigraphy of the Jabal Qamar area, Oman. Proc. Geol. Soc., London, No.1513, p.xcix-civ.
- HUDSON, G.R.S. and CHATTON, M. (1959). The Musandam Limestone (Jurassic to Lower Cretaceous) of Oman, Arabia. Notes et Memoires sur le Moyen-Orient, v.7, p.69-94, Paris: Museum National d'Histoire Naturelle.
- HUDSON, R.G.S., McGUGAN, A. and MORTON, D.M. (1954b). The structure of the Jabel Haqab area, Trucial Oman. Quart. Jour. Geol. Soc., London, v.110, part 2, No. 438, p.121-152.
- IRVINE, T.N. (1965). Chromium spinel as a petrogenetic indicator. Part 1. Theory. Canadian Jour. Earth Sci., v.2, p.648-672.
- IRVINE, T.N. (1967). Chromium spinel as a petrogenetic indicator. Part 2. Petrologic applications. Canadian Jour. Earth Sci., v.4, p.71-103.
- IRVINE, T.N. and FINDLAY, T.C. (1972). Alpine-type peridotite with particular reference to the Bay of Islands igneous complex. In: The ancient ocean lithosphere (ed. E. Irving), V.42, No.3, p.97-128. Ottawa: Earth Physics Branch, E.M.R.
- ITO, K. and KENNEDY, G.C. (1967). Melting and phase relations in a natural peridotite to 40 kilobars. Am. J. Sci., v.265, p.519-539.
- JACKSON, E.D. (1961a). Primary textures and mineral associations in the ultramafic zone of the Stillwater Complex, Montana, U.S.G.S. Prof. Paper 358, 106p.

- JACKSON, E.D. (1969). Chemical variation in coexisting chromite and olivine in chromitite zones of the Stillwater Complex. Econ. Geol. Monograph, v.4, p.41-71.
- JACKSON, E.D. and THAYER, T.P. (1972). Some criteria for distinguishing between stratiform, concentric, and alpine peridotite-gabbro complexes. Internat. Geol. Cong., 24th Montreal, Sec.2, p.289-296.
- KUNO, H. (1968). Differentiation of basaltic magma. In "Basalts", v.2., p.623-688. Ed. H.H. Hess and A. Poldervaart. Interscience, London.
- LE BAS, M.J. (1962). The role of aluminium in igneous clinopyroxenes with relation to their parentage. Am. J. Sci., v.260, p.267-288.
- LEES, G.M. (1928). The geology and tectonics of Oman and parts of south-eastern Arabia. Quart. Jour. Geol. Soc., London, v.84, part 4, No.336, p.585-670.
- LONEY, R.A., HIMMELBERG, G.R. and COLEMAN, R.G. (1971). Structure and petrology of the Alpine-type peridotite at Burro Mountain, California, U.S.A. Jour. Petrology, v.12, p.245-309.
- MACDONALD, G.A. (1968). Composition and origin of Hawaiian lavas. Geol. Soc. Amer. Mem. 116, p.477-522.
- MALPAS, J. (1978). Magma generation in the upper mantle, field evidence from ophiolite suites, and application to the generation of oceanic lithosphere. Phil. Trans. R. Soc. London, v.288A, p.527-546.
- MEDARIS, L.G. (1972). High pressure peridotites in southwest Oregon. Bull. Geol. Soc. Amer., v.83, p.41-57.
- MENZIES, M. (1973). Mineralogy and partial melt textures within an ultramafic-mafic body, Greece. Contr. Mineral. Petrol., v.42, p.273-285.
- MENZIES, M.A. (1974). Petrogenesis of the Makrirraki Ultramafic Complex. Unpubl. Ph.D. Thesis, University of Cambridge.

- MONTIGNY, R., BOUGAULT, H., BOTTINGA, Y. and ALLEGRE, C.J. (1973). Trace element geochemistry and genesis of the Pindos ophiolite suite. Geochim. et Cosmochim. Acta, v.37, p.2135-2147.
- MORTON, D.M. (1959). The geology of Oman, Proc. 5th World Petrol. Congress. Sect.1, paper No.14, p.277-294.
- MOSSMAN, D.J. (1973). Geology of the Greenhills Ultramafic Complex, Bluff Peninsula, Southland, New Zealand. Geol. Soc. America Bull., v.84, p.39-62.
- MYSEN, B. and BOETTCHER, A.L. (1975b). Melting of a hydrous mantle. II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and temperatures of water, hydrogen and carbon dioxide. Jour. Petrol. v.16, p.549-593.
- NEUMANN, E.R. (1974). The distribution of Mn²⁺ and Fe²⁺ between ilmenites and magnetites in igneous rocks. Am. Jour. Sci. v.274, p.1074-1088.
- NORMAN, R.E. and STRONG, D.F. (1975). The geology and geochemistry of ophiolitic rocks exposed at Ming's Bight, Newfoundland. Canadian Jour. Earth Sci., v.12, p.777-797.
- O'HARA, M.J. (1967). Mineral paragenesis in ultrabasic rocks. In Wyllie, P.J. ed., Ultramafic and related rocks: New York, John Wiley and Sons, p.393-403.
- O'HARA, M.J. (1968). The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci. Rev. v.4, p.69-133.
- PAGE, N.J. (1967b). Serpentinization at Burro Mountain, California, U.S.A. Contr. Mineral. Petrol., v.14, p.321-342.
- PEARCE, J.A. (1975). Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics, v.25, p.41-67.
- PEARCE, J.A. and CANN, J.R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, v.19, p.290-300.
- PILGRIM, G.E. (1908). The geology of the Persian Gulf and the adjoining portions of Persia and Arabia. Mem. Geol. Surv. India, v.34, part 4, 177p.

- PINSENT, R.H. (1974). The emplacement and metamorphism of the Blue River ultramafic body, Cassiar district, British Columbia, Canada. Unpubl. Ph.D. thesis, University of Durham.
- POWELL, M. and POWELL, R. (1974). An olivine-clinopyroxene geothermometer. Contr. Mineral. Petrol., v.48, p.249-263.
- REED, S.J.B. (1965). Characteristic fluorescence corrections in electron-microprobe microanalysis. British Jour. Appl. Phys., v.16, p.913-926.
- REEVES, M.J. (1971). Geochemistry and mineralogy of British Carboniferous seatearths from northern coalfields. Unpubl. Ph.D. thesis, University of Durham.
- REINHARDT, B.M. (1969). On the genesis and emplacement of Ophiolites in the Oman Mountains Geosyncline. Schweiz. Mineralogische und petrographische Mitteil, v.49/1, p.1-30.
- REINHARDT, B.M. (1974) The relationship between spilites and other members of the Oman Mountains Ophiolite Suite. In: Spilites and spilitic rocks (Ed. G.C. Amstutz). p.207-227. Springer Verlag, Heidelberg.
- RINGWOOD, A.E. (1966). Chemical evolution of the terrestrial planets. Geochim. et Cosmochim. Acta, v.30, p.41-104.
- RODGERS, K.A. (1973). Chrome-spinels from the Massif du Sud, southern New Caledonia. Mineralog. Mag., v.39, p.326-339.
- RODGERS, K.A. (1975). A comparison of the geology of the Papuan and New Caledonian Ultramafic Belts. Jour. Geology, v.83, p.47-60.
- SINTON, J.M. (1977). Equilibration history of the basal Alpine-type Peridotite, Red Mountain, New Zealand. Jour. Petrol., v.18, p.216-246.
- STEVENS, R.E. (1944). Composition of some chromites of the western hemisphere. Am. Miner. v.29, p.1-34.
- STROH, J.M. (1976). Solubility of alumina in orthopyroxene plus spinel as a geobarometer in complex systems. Applications to spinel-bearing alpine-type peridotites. Contr. Mineral. Petrol., v.54, p.173-188.
- SWEATMAN, T.R. and LONG, J.V.P. (1969). Quantitative electron-probe microanalysis of rock forming minerals. Jour. Petrology, v.10, p.332-379.

TAYLOR, S.R. (1965). The application of trace element data to problems in petrology. Phys. Chem. Earth, v.6, p.133-213.

- THAYER, T.P. (1967). Chemical and structural relationships of ultramafic and feldspathic rocks in alpine instrusive complexes. In Wyllie, P.J., ed. Ultramafic and related rocks. New York, Wiley, p.222-239.
- TSCHOPP, R.H. (1967). The general geology of Oman, 7th World Petroleum Congress Proc., Mexico, v.2, p.231-242.
- UPADHYAY, H.D. (1973). The Betts Cove ophiolite and related rocks of the Snooks Arm Group. Unpubl. Ph.D. thesis, Memorial Univ. of Newfoundland, St. John's Newfoundland.
- VINCENT, E.A. (1960). Ulvöspinel in the Skaergaard intrusion, Greenland. Neues Jb. Miner. Abh. 94, p.993-1016.
- WAGER, L.R. and BROWN, G.M. (1967). Layered igneous rocks. Oliver and Boyd, Edinburgh.
- WAGER, L.R., BROWN, G.M. and WADSWROTH, W.J. (1960). Types of igneous cumulates. Jour. Petrology, v.l, part 1, p.73-85.
- WARNER, R.D. and LUTH, W.C. (1974). The diopsideorthoenstatite two-phase region in the system CaMgSi₂0₆-Mg₂Si₂0₆. Amer. Min., v.59, p.98-109.
- WELLAND, M.J. and MITCHELL, A.H.G. (1977). Emplacement of the Oman Ophiolites: A mechanism related to subduction and collision. Bull. Geol. Soc. Am., v.88, p. 1081-1088.
- WILSON, H.H. (1969). Late Cretaceous Eugeosynclinal Sedimentation, Gravity Tectonics, and Ophiolite Emplacement in Oman Mountains, Southeast Arabia, A.A.P.G. Bull, v.53, No.3, p.626-671.
- WOOD, B.J. and BANNO, S. (1973). Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol. v.42, p.109-124.
- WOOD, B.J. (1976). An olivine-clinopyroxene geothermometer. A discussion. Contr. Mineral. Petrol., v.56, p. 297-303.

APPENDIX I

METHODS USED FOR CALCULATIONS OF TEMPERATURES AND PRESSURES OF EQUILIBRATION 1. Jackson (1969)

The Mg-Fe²⁺ exchange reaction between coexisting olivine and chromian spinel can be written:

 $Fe^{2+}Si_{0.5}O_2+Mg(Cr\alpha,Al\beta,Fe^{3+})_2O_4 = MgSi_{0.5}O_2+Fe^{2+}$ (Cra,Alp,Fe $^{3+}$)₂O₄

The values α , β and γ are the respective fractions of Cr, Al and Fe³⁺ in chromian spinel. The thermodynamic equilibration coefficient (K_D) may be defined by the following equation, assuming ideal solid solution behaviour (Irvine, 1965; Jackson, 1969):

where x_{Mg}^{o1} and $x_{Fe}^{o1}_{2+}$ are mole fractions of the end members MgSi_{0.5}⁰₂ and FeSi_{0.5}⁰₂ respectively, and x_{Mg}^{sp} and $x_{Fe}^{sp}_{2+}$ are the fractions of divalent cations in the spinels.

Using Jackson's formula (1969), it is possible to calculate the equilibrtion temperature for olivinespinel pairs, using Gibbs free-energy data, and substituting different values for α , β and γ in the following equation:

 $T(^{O}K) = \frac{5580 c + 1018 \beta - 1720 b + 2400}{0.90 c + 2.56 \beta - 3.08 b - 1.47 + 1.987 \ln K}$

Sample No.	b	œ	æ	Xol Mg	Xol Fe	ds ^X Mg	X ^{sp} Fe2+	$T(O_{\rm K})$	T (oc)
300A Dunite	0.6196	0.2623	0.1091	0.9083	0.0916	0.4310	0.5576	1321	1048
300B Dunite	0.6220	0.2422	0.1245	0.9104	0.0895	0.4103	0.5768	1279	1006
304A Dunite	0.4885	0.4376	0.0657	0.9050	0.0950	0.5015	0.4903	1263	066
305A Dunite	0.6020	0.2738	0.1172	0.9157	0.0842	0.4704	0.5136	1348	1075
528A Dunite	0.4451	0.3981	0.1520	0.9120	0.0880	0.5077	0.4751	1258	985
531A Dunite	0.5092	0.3557	0.1298	0.9010	0.0994	0.4221	0.5593	1212	939
531B Dunite	0.5412	0.3513	0.1033	0.9033	0.0966	0.4033	0.5785	1177	904
517A Dunite	0.4680	0.4363	0.0877	0.9055	0.0944	0.5092	0.4784	1200	927
517B Dunite	0.4478	0.4655	0.0830	0.9056	0.0943	0.5167	0.4669	1145	872
325A Hzb.	0.5568	0.3965	0.0434	0.9190	0.0810	0.5738	0.4060	1440	1167
325C Hzb.	0.4553	0.4132	0.1247	0.9203	0.0797	0.5935	0.3911	1411	1138
1037A Hzb.	0.4739	0.4937	0.0309	0.9000	0.0999	0.5697	0.4175	1418	1145
1044A Hzb.	0.5605	0.4070	0.0225	0.9099	0.0900	0.5322	0.4576	I 372	1099
503A Wehrl.	0.43725	0.4922	0.0649	0.8999	0.1000	0.5627	0.4260	1377	1104
315APlg.Peri.	0.4275	0.4209	0.1337	0.8985	0.1015	0.5850	0.4176	1536	1263
1027A 01.Py.	0.5815	0.3240	0.0840	0.8757	0.1243	0.4298	0.5601	1152	879

.

Mineral data are shown in Table 5.34 - 5.43.

į

A typical calculation, worked out to give a temperature Sample 300A T(⁰K) =

Xol Fe²⁺ α X^{SP}2+ $X_{Mg}^{ol} = 0.9083$ ъ P $x_{Mg}^{sp} = \frac{3.448}{8} = 0.431$ າ^{ົR 3+}032 $=\frac{Cr}{16}=0.619625$ $=\frac{Fe}{16}3+$ || 11 16 16 11 = 0.0916= 0.2623125 $\frac{4.461}{2} = 0.557625$ = 0.109125ω lnK $T(^{O}K) = \frac{5936.846625}{4.493349312}$ $T(^{O}K) = 1321$ ъ Ч Ъ_м 11 l 1 11 2.5517221 $x_{Fe^{2+i}}^{ol}$ 12.82917727 (2.5517221)(1.987) = 5.070271812(0.9083) (0.557625) (0.0916) (0.431) 0.90 a +2.56 ß 10 M 3457.5075+267.034125-187.695+24005580 cr +1018 ß -1720 & +2400 $\left(x_{Fe}^{sp} 2 \right)$ Mg -3.088 -1.47+1.987 lnK

 $T(^{O}C) = 1048$

2. Wood and Banno (1973)

$$\underset{\text{opx}}{\text{Mg}_2}^{\text{Si}_2} \overset{\text{Si}_2}{\longrightarrow} \underset{\text{cpx}}{\text{Mg}_2} \overset{\text{Si}_2}{\longrightarrow} \overset{0}{\longrightarrow} \underset{\text{cpx}}{\xrightarrow} \overset{0}{\longrightarrow} \underset{\text{cpx}}{\xrightarrow} \overset{0}{\longrightarrow} \overset{0}{\longrightarrow} \underset{\text{cpx}}{\longrightarrow} \overset{0}{\longrightarrow} $

Taking account of x_{Fe}^{opx} (relative to the data of Davis and Boyd (1966) on Di-En at 30Kb):

Sample No	(X ^{M1} _{Mg}) ^{Cpx}	$\begin{pmatrix} M2 \\ Mg \end{pmatrix}^{Cpx}$	$\begin{pmatrix} M1 \\ Mg \end{pmatrix}^{Opx}$	$\begin{pmatrix} M2 \\ Mg \end{pmatrix}^{OPX}$	(x _{Fe}) ^{opx}	т (^о к)	т (⁰ с)
328A Hzb.	0.8509	0.0383	0.8693	0.8946	0.0776	1223	950
1031A Hzb.	0.8557	0.0295	0.8441	0.8673	0.0912	1182	909
1031B Hzb.	0.8435	0.0546	0.8467	0.8810	0.0954	1262	989
lO31C Hzb.	0.8187	0.0432	0.8365	0.87176	0.0966	1224	951
			•				
1027A 01.Px	0.8468	0.0438	0.8196	0.8309	0.1326	1206	933
1027B 01.P*	0.8461	0.0583	0.8185	0.8307	0.1337	1247	974
1030B 01.Px	0.8332	0.0470	0.8279	0.8309	0.1460	1200	927
119A Ol.Gb.	0.7880	0.0945	0.7753	0.7841	0.1948	1272	999
557A Ol.Gb.	0.7296	0.0452	0.7065	0.7017	0.2628	1127	854
526B A 01.Gb.	0.7240	0.0403	0.7052	0.6883	0.2661	1112	839
131 A Norite	0.6929	0.1244	0.6768	0.6549	0.2934	1248	975
526A (A) Gabbro	0.7330	0.0901	0.7194	0.7149	0.2521	1224	951
Minera]	data ar	e shown	in Table	s 5.44 -	5.53.		

Typical calculation, worked out to give a temperature.

Sample 328A

$$T(^{O}K) = \frac{-10202}{\ln\left(\frac{0.03258}{0.77767}\right) - 7.65(0.0776) + 3.8(0.0776)^{2} - 4.6}$$

$$T(^{O}K) = \frac{-10202}{-3.1726 - 0.5936 - 4.5771}$$

$$T(^{O}K) = \frac{-10202}{-8.3428}$$

$$T(^{O}K) = 1223$$

$$T(^{O}C) = 950$$

$$\begin{array}{ccc} \text{CaAl}_2 \text{SiO}_6 + \text{MgCrAlSiO}_6 & & \text{CaCrAlSiO}_6 + \text{MgAl}_2 \text{SiO}_6 \\ \text{cpx} & \text{opx} & \text{cpx} & \text{opx} \end{array}$$

Assuming ideal mixing:

$$\kappa = \frac{\left(x_{Cr}^{M1}\right)^{Cpx} \cdot \left(x_{A1}^{M1}\right)^{opx}}{\left(x_{Cr}^{M1}\right)^{opx} \cdot \left(x_{A1}^{M1}\right)^{cpx}}$$

$$\ln K = \frac{1000}{T} (4.0910 \div 0.2603) - (2.7898 \div 0.2713)$$

$$\frac{4091}{10K + 2.7898}$$

Sample No.	$\left(x_{Cr}^{M1} \right)^{Cpx}$		$(x_{Cr}^{M1})^{opx}$	$\left(x_{Al}^{Ml}VI\right)^{Cpx}$	т (^о к)	Т (⁰ С)
328A Hzb.	0.030	0.043	0.014	0.057	1251	978
1031A Hzb.	0.020	0.053	0.015	0.051	1329	1056
1031B Hzb.	0.026	0.049	0.017	0.060	1361	1088
1031C Hzb.	0.028	0.055	0.0180	0.060	1300	1027
1044A Hzb.	0.025	0.033	0.015	0.039	1304	1031
1027A 01.Px	0.022	0.037	0.016	0.048	1441	1168
1027B 01.P×	0.025	0.040	0.014	0.045	1258	985
1030B 01.Px	0.009	0.028	0.000	0.049	-	-
119A 01.Gb	0.008	0.031	0.003	0.044	1196	923
557A 01.Gb	0.002	0.036	0.000	0.065	r gaa	-
526B (A) 01.Gb	0.002	0.031	0.000	0.050		-
131A Norite	0.006	0.037	0.001	0.061	1002	729
526A (A) Gabbro	0.002	0.032	0.001	0.055	1391	1118
Mineral	data a	ce shown	in Tables	5.44 - 5.53	3.	

Typical calculation, worked out to give a temperature

Sample 328A

$$T(^{O}K) = \frac{4091}{\ln K + 2.7897}$$

$$T(^{\circ}K) = \frac{4091}{0.4803 + 2.7898}$$

$$T(^{O}K) = \frac{4091}{3.2701}$$

$$T(^{O}K) = 1251$$

$$T(^{\circ}C) = 978$$

4. Hakli and Wright (1967); Hakli (1968)

Temperature varies with the distribution coefficient $K = Ol^{Ni}/Cpx^{Ni}$ values in ppm, according to the equation:

$$\ln k = \frac{-A}{T} + B$$

where the numerical values of the A and B parameters of the mineral pairs olivine clinopyroxene are A = 8647, B = 7.838

Sample	ppm Ni in	ppm Ni in	W		τ (⁰ C)
NO.	OTIVINE	CTTHOD AT OX ?	, K	I (K)	1(C)
328 ^A Hzb.	2987	786	3.800	1330	1057
1031A Hzb.	2437	472	5.163	1395	1122
1031B Hzb.	2830	1022	2.769	1267	994
1031C Hzb.	2594	393	6.600	1453	1180
1044A Hzb.	3616	314	11.519	1603	1330
315A Dlag					
Peridotite	1730	707	2.445	1245	972
503A Wehr-	1965	707	2 779	1268	995
lite	1,000	101	4.115	1200	995
503B Wehr-	1650	1170	1 200	1150	070
lite	1650	11/9	1.399	1125	8/9
803A Wehr-	•				
lite	2201		-	. •	
804A Wehr-					
lita	1415	393	3.600	1318	1045
4 L C C				· . ·	
1027A 01.	1996	_		_	_
Pyrox.	7,000				
1027B 01.	1650				
Pyrox.	1020	-			
1014(3)B 01		70	10 100	2 6 40	1000
Pvrox.	1022	/8	13.102	1642	1368
1014(3)C 01	L				
Pvrox.	943	550	0.539	1184	911
1030B(A) 01					
Purox	1415	628	2.253	1230	957
i yı on.					
556A 01.		550	• • • •	1010	
Gabbro	1100	550	2.000	1210	937
119A 01.					
Gabbro	786	78	10.076	1564	1291
523A 01		·			
Cabbro	1258	1100	1.143	1122	849
EETA OI				· .	
JJ/A UL.	1257	550	2.285	1233	960
Gabbro				.'	
55/B 01.	1336	550	2.429	1244	971
Gabbro				. •	
539A OL.	1100	471	2.335	1237	964
Gabbro					
564A Ol.	1179	550	2.143	1222	949
Gabbro	· · ·				
113A Ol.	943	67	. sci		
Gabbro	~ 7 7				
526B(B) 01	• 620	225	2 666	1261	000
Gabbro	020		~ • <u>000</u>	TCOT	200

Mineral data are shown in Tables 5.54 - 5.63.

Typical calculation, worked out to give a temperature.

Sample 328A

$$K = 01^{Ni} / Cpx^{Ni}$$

$$\ln K = \frac{-A}{T} + B$$
where A = 8647, B = 7.838
$$\ln 3.800 = \frac{-8647}{T} + 7.838$$

$$1.335 - 7.838 = \frac{-8647}{T}$$

$$-6.503 = \frac{-8647}{T}$$

$$T (^{O}K) = 1330$$

$$T (^{O}C) = 1057$$

5. <u>O'Hara (1967</u>)

The two parameters suggested by O'Hara (1967) to provide the necessary pressure/temperature data for clinopyroxene are:

$$\alpha_{c} = \frac{\text{wt\% CaSiO}_{3} \times 100}{\text{wt\% (CaSiO}_{3} + \text{MgSiO}_{3})}$$

$$\beta_{c} = \frac{\text{wt\% Al}_{2}O_{3} \times 100}{\text{wt\% (CaSiO}_{3} + \text{MgSiO}_{3} + \text{Al}_{2}O_{3})}$$

where $CaSiO_3 = wt\% CaSiO_3$ equivalent to all CaO; MgSiO_3 = wt\% MgSiO_3 equivalent to all MgO, MnO, NiO and FeO; and Al₂O₃ = wt% Al₂O₃ equivalent to all Al₂O₃, Cr₂O₃ and Fe₂O₃.

Sample	e No.	αc	₽ _c
1031C	Harzburgite	50.30	3.34
1044A	Harzburgite	52.57	2.38
503A	Wehrlite	50 .09	4.86
804A	Wehrlite	51.11	3.91
804D	Wehrlite	52.79	3.97
554D (Pyrc)livine oxenite	49.73	2.51
1027A Pyrc	Olivine oxenite	51.88	2.79
1027B Pyro	Olivine oxenite	51.88	2.71

Mineral data are shown in Tables 5.64 - 5.66

Typical calculation, worked out to give values for α_c and β_c . Sample 1031C $Mg + Fe + Mn + Ni (MgSiO_3)$ = (0.969 + 0.108 + 0.002 + 0.001)(100.4)= (1.08) (100.4) = 108.432(Ca) (CaSiO₃) = (0.946) (116.19) = 109.9157 $\frac{\text{Al}}{2} + \frac{\text{Cr}}{2} \quad (\text{Al}_2 \text{O}_3)$ = (0.06 + 0.014) (101.96) = 7.545 $MgSiO_3 = 108.432 = 48\%$ $A1_{2}0_{3} = 7.545 = 3.34\%$ 109.9157 ----- = 48.658% CaSiO₃ = 225.8927 $\frac{4865.8}{96.658} = 50.34$ <u>د</u> = ۲ $=\frac{334}{100}$ = 3.34 ₿ c

6. Powell and Powell (1974) $2\text{CaMgSi}_2\text{O}_6 + \text{Fe}_2\text{SiO}_4 = 2\text{CaFeSi}_2\text{O}_6 + \text{Mg}_2\text{SiO}_4$ 01 cpx срх

The clinopyroxene M1 site is non-ideal, and it is expressed as a regular solution. The pressure dependence of the geothermometer has been calculated as 5°C per kilobar. The following equation may be used to determine temperature (T) in degrees Kilvin, at a given pressure (P) in bars.

ol

The symbols X_{Mg} , X_{Fe} and X_{A1} denote the mole fractions of these elements in olivine, and in the clinopyroxene Ml site. The value for Al includes other trivalent cations in octahedral coordination. The value for R is the gas constant (1.987 cals/mole ^OK). A pressure of 5 kilobars is assumed for P.

Sample No.	$\begin{pmatrix} M_{A1} \\ x_{A1} \end{pmatrix}$ cpx	(x _{Mg})	$\left(\mathbf{x}_{\mathrm{Fe}}^{\mathrm{ML}} \right)^{\mathrm{cpx}}$	(x _{Fe}) ^{o1}	$\left(x_{Mg}^{M1} \right)^{cpx}$	T (^O K)	т(^о с)
328A Harzburgite 1031A Harzburgite 1031B Harzburgite	0.0900 0.0745 0.0895	0.9152 0.9084 0.9018	0.0600 0.0706 0.0700	0.0848 0.0915 0.0982	0.8500 0.8548 0.8405	1306 1309 1306	1033 1036 1033
1031C Harzburgite 1044A Harzburgite	0.0910 0.0675	0.9060	0.0911 0.0511	0.0940 0.0900	0.8178 0.8814	1321 1291	1048 1018
315A Plag.Perid. 503A Wehrlite	0.1185 0.128	0.8985 0.8999	0.0772 0.0721	0.1015 0.1000	0.8042 0.7999	1311 1310	1038 1037
503B Wehrlite 803A Wehrlite	0.109 0.1265	0.8985 0.8842	0.0700 0.0736	0.1014 0.1160	0.821 0.7998	1307 1306	1034 1033
804A Wehrlite	0.1105	0.8897	0.0723	0.1102	0.8172	1305	1032
1027A OL. Pyrox.	0.0735	0.8757	0.0810	0.1243	0.8455	1298	1025
1027B 01. Pyrox.	0.0730	0.8745	0.0820	0.1255	0.8450	1298	1025
1014(3)B 01.Pyrox.	0.0765	0.8564	0.0909	0.1436	0.8320	1297	1024
1014(3)C 01.Pyrox.	0.0635	0.8583	0.0930	0.1416	0.8435	1295	1022
1030B (A) 01. Pyrox.	0.0615	0.8399	0.1060	0.1600	0.8325	1294	1021
556A Ol.gabbro	0.0895	0.7380	0.1890	0.2620	0.7215	1305	1032
119A Ol.gabbro	0.0610	0.7860	0.1530	0.2123	0.7860	1299	1026
523A 01.gabbro	0.0820	0.7336	0.1990	0.2636	0.7190	1306	1033
557A Ol.gabbro	0.0880	0.7059	0.1879	0.2940	0.7241	1297	1024
557B 01. qabbro	0.0925	0.7067	0.1837	0.2932	0.7238	1297	1024
539A Ol.gabbro	0.0575	0.8625	0.0942	0.1375	0.8477	1296	1023
564A Ol.gabbro	0.0955	0.7130	0.2251	0.2870	0.6794	1310	1037
113A Ol.gabbro	0.0665	0.7899	0.1373	0.2100	0.7962	1294	1021
526B(B)01.gabbro	0.072	0.6823	0.2026	0.3177	0.7253	1292	1019
Mineral data are s	hown in Ta	bles 5.54 .	- 5.63				

334

.

 $\widehat{}$

_____ ~ ~ ~

· - --

... ~.

