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ABSTRACT
APPLICATIONS OF SET COVERING THEORY TO THE

PARTITIONING OF POLITICAL ELECTORAL CONSTITUENCIES

BY

JOSEPH OKEY ELLAH,

The present work reviews recent computer techniques to the
constituency boﬁndary problem, A computer technique based on the
set-covering theary is developed and it is shown how the computer
results based on the choice of objective can help decision making
as regards the optimal plan with respect to equitable apportionment.

Data based on the Northern Counties of England was used for the

European Assembly Constituency apportionment,
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CHAPTER 0

INTRODUCTION.

0.1

In recent times the birth of democracy and the development of
parliaments and parliamentary representation has given rise to the
search for techniques that will ensure equitable apportionment with
respect to political electoral constituencies,

This work has tried to develop a computer technique that could be
used for allocating population units to constituencies in an attempt
to achieve equitable apportionment free from human bias, Furthermore
techniques on how different objectives could be inforporated into the
problem were also developed,

The first chapter of this work is devoted to a coverage of the
mathematical techniques used. The second chapter is a survey of other
computer techniques that have been develobed in an attempt to solve
this problem, The third chapter covers the development and application
of my approach to the European Assembly Constituencies for the northern
counties of England, Different objectives including those that have
political considerations are used, The fourth chapter gives the

computer results, associated plans, observations and recommendations,
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CHAPTER ONE

MATHEMATICAL PROGRAMMING AND THE PARTITIONING OF POLITICAL DISTRICTS.

1.1 General Programming

Generally problems dealing with the maximization or minimization
of a function are classified as optimization problems. These problems
generally deal with the optimum allocatjon of some scarce commodities.
A general programming problem can therefore be stated as follows:-
maximize or minimize z = f(xl, X, ==mm- , xn) | (1)

for a set of n variables X1s Xy, "TT, X which satisfy m inequalities

or equations

By e f2 - >/} b (=1 m (@)
where the bi are known or assumed to be known constants while the

gi(xl, -=-=, % ) are assumed to be specified functions,

There are different techniques for solving somé special cases of
the above functions and I shall cover a few of these techniques later

in this chapter,

The genefal programming problem is divided into different groups
according to the specification of the functions as follows, Linear
programming and Non Linear programming, These are in turn divided into
different classes, I shall restrict myself to the linear programming
type because the problem that I solved made use of the linear'programming

theory,

1,2 Linear programming

This is a type of the general programming problem where all the
functions are linear or assumed to be linear,
For example:

n
When (1) becomes f(x,, -~--, x ) =2 C.X., mmem- (3)
1 n j= 1 3]



Where Cj are known constants and x 7 0 | (4)

n
@) pesomes gy, ) = sy fe =y b (5)
we have a linear programming problem, The exact form depends on

the specifications of the functions,

The above linear programming problem could specify a situation
where there are n(competing) activities with the
i  representing the number of limited resources;
i ‘representing the number of activities;
4 representing the overall measure of effectiveness or
penalty for making a particular choice;
X, representing the decision variable which Specifies the level
of activity of j;
C. specifies the increase in Z due to a unit increase in j;
b, represents the available amount of resource i while aij stands
for the amount of resource i consumed by each unit of activity
;i; Then Xj;? 0 implies that none of these should be operated
at a negative level,
A few specific linear programming terminologies are worthy of mention,
With reference to the above linear programming problem, (3) is the
objective function, (§) are the functional constraints, while (@) stands

for the nonnegativity constraints and'aij, bi’ Cj are the parameters,

Some linear programming problems which are of interest in the
political partitioning problem are the tramsportation problem and Integer

linear programming ,wa blem

1.3 The transportation problem

This is a special type of the linear programming problem and it

is formulated thus:
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For this special case, the objective Z is to minimise the total distrib-
ution cost; m is the numbér of sources, n is the number of destinations,
8, is the supply from source i, d; is the demahq«destination 3o Gy
stands for the cost per unit distribution from source i to destination j;

while Xij is the number of units to be distributed from source i to

destination j,.

It is interesting to note that most linear programming problems

can be framed this way irrespective of their physical meaning.

The assignment/allocation problem deserves a brief description.‘

1.4 The assignment/allocation problem

The objective here is usually to assign some specific supply to a
demand point, It is generally stated thus:

Determine Xij (i=1, ===, m; j =1, -~--, n) such as to minimise

m n
7z == Z_ C_. X,  such that
i=l j=1 ~ij "ij
;:‘_I:Xi.=1 i=1, ===, m
=1
=
i=1 X1J =1 U



For this specific case therefore Z is the total cost and the aim/objective
is to minimise the total cost of assigning some supply to a destination

that has a demand for one,

1.5 Integer programming

Integer programming problems are special types of the general linear
programming problems with an additional constraint which restricts the

X__,| to integer values ounly,

In general therefore, integer programming problemsamount to finding

all
Xl, Xz, --==~, X such as to minimise/maximise
- C.X. """"" (j = l’ my n) (1)
z = j=1 J 3
subject to

zaijxj{é , =, ?'}bi | (2)

provided that

X, = 0,1, 2,3, --=-, n (integers) | (3)

Furthermore if (3) is replaced by

O R (integers) (4)

then the problem becomes a "zero-one" problem, "Zero-one'" problems

will be covered later in the "set-covering' section.

Integer programming has been widely used in an attempt to solve
actual problems since most of the problems that confront ﬁs in our
everyday life demand integer solutions. 1In solving the political
boundary partitioning problem the theory of 'set-covering' was applied
to the problem, ""Set-covering" problems are themselves integer pro-
gramming problems, I shall look at the"set—covering' theory in detail,

but, I think that I should look first at the more general theory of linear



programming and then methods of solving linear programming problems

restricted to integers before returning to the 'set-covering' theory,

1.6 Theory of linear programming

Let f(x) = cx (1)
be the objective function to be maximised or minimised subject to

S ={x/ax =15, x 20} @

In this particular situation

A is an mxn matrix,

b is an m - vector

¢ is an n =~ vector while

O is an n ~ vector of zeroes,
The set S is a convex set since for every x, y € S imply ax + (1 -R)y
€S for all 04 AL 1. A vector x satisfying Ax = b, x20 is a solution

to the linear problem and a feasible solution in fact,

Given any linear problem there exist three possibilities,

1) No feasible solution exists.

2) There could exist vectors x and y such that for CY 7 0;
X + ay is a feasible solution for every nonnegative scqlar a.
In such a case X° can be made arbitrarily large and thus
rendering the problem unbounded,

3) There exists a feasible solution X° with ayC x° % C X for

all feasible solutions of X, X° offers an optimal solution,

Let us assume that we are dealing with the third case because in
the optimization phase of the political electoral constituency problem

we shall be meeting the third case mainly and at times the first,

If a feasible solution exists then a basic feasible solution must

exist in the first instance. Let A = (B, N) be a permutation of the
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columns of A in (2) where B =m x m is a non siqgular matrix, i.e,
det. B0, then the matrix B is a basis matrix,
Let X = (XB, XN) where XB = vector of basic variables associated
with the columns of B, and XN = vector of non-basic variables

associated with the columns of N, Then AX = b =-m== (2) could be

written as
BXB'+ PX, =D (3)

. . . -1 .
Since B is non-singular, then B = exists

Hence

x, =8 ' - 57! wx (4)

B N v
In particular
= g1 =

Xz = B b, %N 0 : (5)
X, is therefore a basic ~ solution and if furthermore X, 70,
then XB is a basic feasible solution, If the linear programming problem

has an optimal solution, it has a basic optimal solution and since there
exist at most(z) bases one can therefore arrive at the basic Optimél
solution of the convex set by solving these, Also a = . feasible
solution corresponds to an extreme point if and only if it is basic.
For S =J x/Ax = b, x 20, a point x B S is an extreme point of the
convex set ifz distinct % Yy es and a scalarob OQ@&( 1 such that

x‘=C%y£f( 1 - a)yz.

In the absence of degeneracy a basic feasible solution can certainly
be improved as we move from one extreme point of the convex set S to
another until we obtain the optimal solution, and techniques are avail-~

able also for the degenerate case,

1.7 How to improve a basic feasible solution

Let

C = (CB, CN) and hence X, = CB XB + CN XN (6)



and using (4) to eliminate XB in (6) we have
_ -1 -1
X, = C,B b - (cB B N - cN) Xy (71

Let XN = 0, then (7) —~-Xo = CB B”l b andthe basic feasible solution

given by (4), (5) and (7) are therefore

IR

Letting X = ceeen ) and R the index set of
m
columns N,
Also let
” o
¢ ) CB B b ) YOO
o ~ -1 = - and
B b YlO
|}
'
!
1
t R
1
| Y0

if jgR such that aj is a column of N, then

C B_la, - C, Ty, 7]
v = i = | id
i B-l a. Yij
J '
'
]
!
1
f
]
Y .
mmJ—nJ
Then (4) and (7) can be written as
i T Yo 7 Fr Yig %y ' (8)
i=0, 1,, ,m

Setting Xj =()¥G£R then solution (5) is obtained., Iet Xy be hon-
degenerate and Yojag(D for some jER, say j = K, then by increasing XK
while keeping all other non~basic variables fixed at zero. It is o

noticed that X increases linearly with slope —YOK' And XBi is a



linear function of X, with slope Vg £ Y, 70, then XBiZ% 0 and

this holds as long as Xégﬁﬁ/ _
K Yit& ".O.

= eik‘ Note that when XK = eik’ XBi
Finding a new basic feasible solution corresponds to solving the
vfh equation (8) for X, to obtain
= Yyo Y .
X T - = (-——in X, - —-"% Xpr M
"tk SER-{ &Y T/ rk |
and eliminating XK from other equations of (8) to obtain
¥pi = Yio " Yix Yoo T = (Yii TN T Vi %
g Y JER- {K. Y Y
where i = r rk 3 rkl rk (10)

Setting XBr = 0 and Xj = 0 for all JBR -{}{S so that whenever}}a non-
degenerate basic feasible solution with Yoj<10, for some JER, say j = M

and Yim:> 0 for at least one i, then a basic feasible solution can be

found by exchanging one column of N for one of B.

Let B = a basis matrix with a basic feasible solution x° with Yoj?70

JER, then from (8) the objective function becomes

X, = ¢ Bl'b - =y x (11)
. o ., ' ~1
With the absence of X g in (11), YOjZ? 0 and Xj;} 0 R’ hence C_B b
is an upper bound on XO. Since XOB = B_1 b.and XoN = 0 is feasible
and achieves the upper bound hence the solution is optimal, Thus

a basis solution is optimal if (i) Yio;; 0,(1 = 1, ~em-, qus feasible

and Yoj?’ o Yz,

These procedures are formalised in what is described as the Simplex

Algorithm, (See T.C. HU (1969)1, Hadley, G (1969)2).

It is interesting to note that every linear program has its dual

and both of them have some characteristics that are worthy of note,

1.8 The dual concept

Gale, Kuhn and Tucker (1971)3 said the following about the dual
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problem,
"It turns out that for each linear programme, there is
another linear programme associated with jit,. such that
the two linear programmes have many intersting relations,

We call the first linear program, the primal linear program,
and the second, the dual linear program."

Let us have the following as a linear problem,

Min Z = CX

gubject to A%Z b

X # 0 the dual would be
max W = Yh
Subject to VY8 % C
Y 2 0

or stated in another way, let the following be the primal linear problem:

Min Z = CX _
subject to
AX = b
X Z 0 3

Thg dual would be the following
Max W = b
n A4C
T % O,
Also the following relationships exist for any primal and its dual,
(1) Both the Primal and the dual problems have optimal solutions,
(2) The dual is unbounded and the Primal is infeasible,
(3) The Primal is unbounded and the dual is infeasibie.
(4) The Primal and the dual are both infeasible, Garfinkel, R.S,

and Nemhauser (1972)4 give a proof of these relationships,

For a standard linear programming problem which is framed thus:
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n
Maximise Z = 2. C.X, subject to
' : =1 43
J
n
= 2, . X, £b
=1 HTIT A
and
X, 70
J
i=1, ===~ m
j= 1’ i RS N
The dual would amount to finding all values of Yi’ —— Ym such as to
inimise Y - mo
minimi o z’ i yi
i-1
Subject to
= a_, Y C
= iy 177
i-1
and
Y. 70

Despite the fact that the formulation of the dual problem arises during

the computation period, it has a geometric interpretation as well as

a much more interesting economic interpretation, The dual variables

Y, (i =1, === , m) would represent the current unit contribution of

all resources that would perhaps be consumed by one unit of activity j.
m

Y = 2 biYi would represent the total implied value of these re-

i=1
sources consumed by the different activities while the constraints

a,, Y, ZVC,, (j = 1, ==--=,n) would indicate that the contribution
2. Y13 17
i=1

of the resources to the criterion of effectiveness must be at least equal
to the unit contribution of activity j.

The methods for solving these are similar to those of the Primal
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except that while in the simplex we decide about which vector to enter
the basis first, in the dual we rather decide about which vector
should leave the basis first.

A summary of solution technique$to Integer linear programming
problems will be given. One can obtain details about the solution
techniques in Beal, E.,M.L, (1954)5; Balinski, M.L. (1965)6; Dantzig,

G.B. (1960)7,

1.9 Methods of solving Integer linear programming problems

There are three main approaches to solving integer linear programming
problems, They are as follows; Implicit Enumeration approach, Branch

and Bound procedure and Gomory's Cutting plane method.

1.9.1 Gomory's cutting plane method

Given an integer linear programming problem say,

max Xo T %00 T aol Xl h ao2 X2 T T aonxn
Subject to
Xl 7 %100 T ¥ T Pneze 2Kp T e ~%4+2] n'n
' .
!
1
'
1
t
'
1
Xn+m - an+m,o°” an+m’ lxl " fnem? ZXZ" T an
XjE; 0O (3=1, ...., n, ntl, e n4m)
Xj (3 =1, ...., n) integers | (1)

Here Xn+1’ ceey Xn+m are the slack variables while Xl’ s Xn are the

original variables of (1), The above problem can be solved by Gomory
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via either the simplex technique or the dual simplex technique and

if the results are restricted to integers, then the solution has been

found and the optimal solution has been reached but if otherwise, then

extra constraints known as Gormory's Cuts are inserted to generate

strictly integer solutions,

'Gomory's Cuts' are derived as follows:

Rewriting (1) in tableau form we have

n-+m

a a —— a
00 01 on
0 -1
[
¢ - —
' _
1
0 -1
a a
.8 0 a )
[ n+l, 1, 1 n+l,n
?
!
¢
.’.
{
a a . aeeae
n+m, 1 n+m, 1 n+m,n

Then go through the following procedure;

1)  Search through the final simplex tableau or dual simplex

tableau and select a variable which produced a non integer

solution.

(2)

2) Examine the row that specifies the non-integer solution value

for that variable, then replace each coefficient in that row

by the smallest possible positive number which is congruent

to that coefficient.

3) Set the resulting expression greater than or equal to the

fractional part of the constant of that row and add this to

the tableau, then invoke the simplex or dual simplex again,
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The rule thevefore is to find a A large enough to produce
a pivote of -1 and at the same time give the biggest decrease

in a, which should be the lexicographically smallest column.
The process Ehus 9oas as follows:

Step I: Let V = Source row
Step IT: Let a, = the 1exicogfaphica11y smallest column
with a € 0
v]

Step III: For each avj<0, let b be the largest integer

such that ¢ <(<x.)
S
[V

J
-A -3 ,
Step IV: Let | — = [T orh, = —Ll (row v is the source
W ] J M,
J J
row),
-8 .
This 7lj is the A that will make a& a, VJ/%]
Step V: Let ?L = maxj %’j for ‘ang.,o. Hence the selection

of7l. is to make the pivot -1, keep the tableau
dual feasible and cause the greatest decrease

lexicographically in the Oth column,

The choice of}lmin of ,/l is very important, Hence assuming the,'
pivot column has been determined by choosing the column which is lexi-
cographically smallest with -avj<o. Then the cut is determined by
constructing a cut from an equation by taking it modulo a number
determined by the condition ‘that the resulting pivot element is -1,
Assuming the source row is x = a, + .aj(—-xj) e E LT —— (3),

whether a, and a, are real numbers (or integers), the Gemory Cut is

]
s = [%/IL] +Z Ej/’/\} <'X§)

where 't' stands for the tableau in question, The result will be that

we shall have interger coefficients with pivot -1, and the first n+l rdws

will be integers; and S a non-negative integer variable and A,‘)l

The choice of ﬂ, therefore decreases or increases the strength of

the cut,.
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One of the optimisation techniqués used in the phase 2 of my program
employed the go called Wilson's Cut which could be stronger than the

Gomory's Cut, but certainly not weaker,

Wilson, R.B, (1966)8 said the following about his cut:
"Stronger cuts are available and easily calculated,

than those obtained by Gomory in the construction of
his all - integer integer programming algorithm".

1.9.2 Wilson's Cut

To derive Wilson's stronger cuts let us consider the following:

. :
S = a -+ 2:: ‘a-("x.), a <O
1 o} =1 3 3 o}
and let it be the equation from which the cut is to be derived, then

a stronger choice of R would be

kg

A = A = mx (Amin’ minj@ Jﬁ)

where

o ao/(1+ [ao/n.mirg) -¢ and for j 1

w a, Jra, ] :
N, = y/[ J/@mié]. If all ajég 0, so that ~.J is empty, f

and [?o/ﬂmigl = -1, then ﬂ? may be taken indefinite1y large,
To illustrate the strength of this cut consider the following example

given by Wilson, R,B. (1966)9

* % ! X
z = 20 1 2 3 4
S, = -20 -7 -8 15 18

Xl - Column is the pivote column since it is the lexicographically
smallest column from among those in set J with negative entries, Hence
J= 1, 2,3

For Gomory the cut would have been considered thus:

/%1 = 1, A% = 2, /% = 3,

3

N = 7, 'RZ = 4, ?%

]
w
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Hence

= maxj6J7L = 7,

min

Thus, the cut is

~20 -7 -8 ~15 18
So= L7 v U U 1%,
hence
S2 = --3+X1-x-2)(2+3x3-ZX4
Thus
$. %= 43 1 a2 2
, = 73 -1 -2 -3

But Wilson's Cut would have been considered thus

*

[

max (ﬁmin’ minjé—JTL?)

where

%

g

(o}

Po/(1 + an/n,min]) -€ = min(9, 10 -€ )

and for
* a,
I LN = el g1 = 9;
b J min
Thus making

ok

S2 = -3 =1 =1 =2 2 = X1+X2+2X3 —2X4>/3
*
which is stronger than 82 by X2 + X3.
Hence
S** _ S*

From my experience the use of Wilson's Cut greatly enhanced the all
integer algorithm and it facilitated the running time for the phase 2
of the algorithm that will be presented in chapter 3, For a detailed
analysis of this cut, see Wilson, R.B. (1966)10,
Greenberg, H, (1971)11 and Langmaack, H, (1965)12 have a good coverage
of Gomory's cutting plane method,

It may also be possible to bring about early convergence by com-
bining the constraints using methods of €.g. Surrogate Constraints and

Aggregate Constraints, Garfinkel, R.S, and Nemhauser (1971)13,
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Taha, H.A, (1976)14 and Plane, D,R; and McMillan, C; Jrn (1971)15 have
a detailed analysis of them,
I shall now look at some of the other methods of solving integer

linear programming problems.

1.9.3 Enumeration Techniques

Enumeration techniques take ad&antage of the fact that in a
bounded integer linear programming problem or in a mixed integer linear
programming problem, the set of values of the integer variables is
finite and the task is therefore to find all such values, Usually
there are 2" solutions, The methods employed to solve problems via
the enumeration procedure are designed to limit the enumeration process
and converge to the optimal solution without going through all the 2"

solutions,

Enumeration techniques are well covered in most mathematical pro-
gramming books but I shall endeavour to summarise some of them; for

details see Garfinkel, R.S. and Nemhauser, G.L. (1972)16. ‘

1.9,4 Theory of enumeration

Given that

n
2- i =8
5=1
Subject to
§l - If j is one of the integers allowed
xj "o - otherwise,
and
Xj = 0, 1 for all j,

The solution to the above are given by unique paths from Vertex

O(VO) to each of the vertices of the enumeration tree (Vo, R Vn),

Here, each edge imposes a constraint while each vertex j represents the
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constraint solution j,

This is usually illustrated using a tree, while the search for
the solution is illustrated by trying out all solutions from the

vertex taking one path at a time,

If for example, we are to find all X@S, then vertex j restricts
X to Sj’ where Sj is the intersection of the set of points satisfying
the constraints given by the edges of P(j)'
If P(j) has K + 1 vertices denoted by
Vv, = Vj(O)’ Vj(l) ceaeeny vj(K) = j

Then |

= o =
57 502 Sy= e =2 85 i

It is noted that Vj(K) is the predecessor of Vj and Vj is the successor
of its predecessor, A vertex would therefore have a unique predecessor

but would generally have more than one successor,

The constraints of the edges from'Vj to its successors determine

*
a finite path say S; of subset Sj such that UT = Sj’ The set

88
j

*
Sj is referred to as a separation of Sj‘ Each of the

*
S,l edges
J
emanating from any Vj corresponds to a constraint restricting X to
* *

only one of the elements of Sj' In many cases Sj is a partition of
5..

J

A vertex that has not been fathomed and whose corresponding con~

straints have not been separated is regarded as a live vertex and it
is usually to these live vertices that we divert while '"branching' in
search of a solution or a better solutionm, In most cases 'branching'

is made to one of the successor vertices of the vertex currently being

considered,

'Bounding' is accomplished by checking out the objective function
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value for any 'branching' made, Where the current vertex has been em t
fathomed; that is, all necessary completions have been made then we thi
'"backtrack' along P(j) until a live vertex is encountered, Where apte

none exists, the enumeration terminates,

To accelerate enumeration som,é interesting techniques are employed, chen
For example, fathoming a vertex by bound, To illustrate this; assume :ion
we are at vertex j; so that the problem is as follows. 18 W
Max Z(x X€ s ] 1 } e
(%), (1) | (1)
25 15 x5 sol (1)
g .y Solves
X(Jf (3) v
%
Z, = - I£s,,, =
j ® (1) g
o If (1) is unbounded,
: . - %
By relaxing (1) an upper bound Zj Z Zj could be considered, say
Max Z(x), X & Tj-;') Sj ' (2)
> ® 1f S is unbounded
C e '
Z, = -eQ IfT, = ¢
J J
o _ o, 0
Zj Z(X.(“)) If X(j) solves (2).
Note that an upper bound at a vertex is also valid for the successors,
. X.
since if VK is a successor of Vj’ then TJ,Q SJ,:._; Sk' h|
X, 03 _ . : i
sj ={, 1A= bJ, X320 lntege% 18
. n cl
Tj = {X/ﬁ_’{x" bJ, X }0} s Zj is thus calculated by solving ix/:
the corresponding linear programme, To calculate lower bounds; suppose a

*
for example zj satisfies Zj‘éz_;’ then find Xle Sj and let Zj = Z(xl).

. * ’ -
If Vk is a predecessor of Vj’ then -z-j'ézk which yields _g_jg_z:. A

vertex is therefore fathomed by bounds if:

(a) i, = 'Z—j &wnzp  NO better solution exisgts,

J
(b) j"{: go.,mmmy No successor of Vj can yield a solution that

N

improves on the best solution, ‘ he
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set Fk’ completion is accomplished,

The partition S: = isk‘ﬂ{x/xj = O}, Skﬂz;(/xj = ]}jsatisfies
Skﬁg S?m@JHkigileJ, thus guaranteeing finiteness, For details about
finiteness see, HU, T.C, (1969)1?

'Bounding is accomplished as follows:

Consider vertex Vk’ and consider the problem at V

K’
Mex z = Z cx, o+ c,
jér, J@sk
where
S ax<4b =2 a. = s (1)
- ij%3= "1 ij i
5=F) 365,
i = 1, , M
Xj = 0, 1
j @Fk.
. o . . : . n
Let T, = H,, since C.£0, X is obtained by setting X, =0, & F, s
thus Z = 70 = Z C..
k k et
&8s,
= o . , _ 0
If S = (Sl’ ceeas sm);;o, then Xk is feasible to (1) and Zk Zk’
Fathoming is accomplished by
(a) Zk = ék P Xi is feasible.to (1)
(b) Zk$§ Zo ey A sufficient condition for this is as follows;
Suppose for some t, = = min{ o, aijf)s> Sl in which case no

JE 7,

completion of W, can satisfy i. Hence Zk = -%and v, is fathomed,

k
See Garfinkel, R.S. and Nemhauser, G,L. (1972)18 for a discussion of

the techniques for choosing partitioning variables and branching,

1.9.6 Set covering problem

The set covering problem is a class of binary problems that requires

that one searches for the minimum number of edges that would cover all
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the n

for points, while edges stand for connecting lines,

t
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odes on a graph, For the purpose of this topic, nodes stand

Generally the set covering problem is stated thus:

Consider a set, I ==1§\1, ..... s J?S and

a set P ={P1, ....,Pn'\s where

PJ,C,; I, and for jfJ =i1,

e
a subset J7 & J defines a cover of I, if

We, = 1
La*
3
and j,K&.J’,j%KweerﬂPk = §
3
J7 defines a partition of T or a cover for I, Now let

LA

(1)

(2)

Cj>’0 be associated with every j & J, then the total "cost" of

he cover Jw = 25: Cj'

i€a

The problem therefore would be to find a cover of minimum cost and

this can be translated into a linear programming problem as follows:

Subje

where

and

inste

n
Min Xo = 2{: C X,

., m

j=1, seesy I

j=1 J J
ct to the following:
n
2. a. . X 21
i=1 N
Xj = 0, 1
i=1,
1 If j is in the cover
Xj - 0 otherwise
1 1£f i P,
a, K —
+J -0 otherwise,

(3)

(4)

(5)

The above can be reduced to a set partitioning problem thus:

ad of (4) we now have
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I =
% aij Xj 1 (6

pany

Any X satisfying (4) and (5) or (5) and (6) is a solution (cover

/f?artition).

Any problem in the above setup can then be solved via implicit
enumeration discussed in section 1,9.5 or via Gomory's cutting plane

method discussed in section 1,9,1,

This can be viewed with respeet to the political parliamentary
constituency boundary pfoblem.as follows:
Consider a set 9;5 1 =1, ...., m to be indivisible population
units which are to be grouped into "K" districts, Givén (1) matrix
"aij", defining acceptable group (2) "Cost" for each group and (3)
an objective function related to (2); then the problem could be framed into

a linear programming problem as follows:

MinZCj Xj (1)

‘where Cj = 1Pj - EJ)defines the-acceptability of a district,

Subject to
o
a . X, =1 2
7=1 3 3 (2)
‘n
> X, = K (3)
=1
j=1 ...., 8 i=1, ...., n
X - ¢1 if district j is accepted
J 0 otherwise

Set covering theory has many applications and for details of these
see Geoffrion, A.M, (1971)19. For a detailed discussion of zero-one

problems see Glover, F, (1965)20.

The mathematical discussions in this chapter will be constantly
referred to in chapter 3. At this point it is necessary to survey
other approaches to computer techniques in political boundary problems

and this will be done in the next chapter,



e e e

24,

CHAPTER TWO

ELECTORAL POLITICAL BOUNDARY PROBLEMS

2.1 Origin of problem

Fo:/m/jy decades gjince the er?h of democracy and- the Subsequent
e - -

e -~ o e

acceﬁﬁance £ the equazzty of man the prlnelple of one-man one-~vote

has been incorporated into theﬂgystem and the world's nations have been
searching for ways to sati f&flhis ideal, Many states therefore face
lots of difficulties in an attempt to produce an equitable electoral
plan for their parliamentary elections as well as local government
elections, This difficulty arises because there are literally eh0usands
of ways in which a country can be subdivided for electoral purposes,
Partisan bias helps to compound the problem and makes it impossible

in most cases to decide on the most equitable electoral plan for a pol-~

itical area, . . N

There has nevertheless been a constant qﬁest for equitable electoral
plans, Countries like Britain, and some EuroPean countries appoint
non-partisan boundary commissioners fo help draw up an equitable plan
for the nation, These boundary commissioners seldom succeed in their
duties because of all the influences that they would usually be subjected
to apart from their personal political bias, Thus, the plans produced
by these commissioners are usually subjected to disputes and represent~
ations as a result of malapportionment, and it would normally take many
months and at times years to produce an acceptable plan where poséible.
In quite a large number of cases no aeceptable plan is reached, the
nation would normally accept and abide by whatever plan the ruling
party is satisfied with. As a result plans keep changing with each —
change of government, This led Vickrey, V. (1961)21 in his paper
entitled, "On the Prevention of Gerrymandering", to propose the use

of an automatic and impersonal procedure for drawing up constituency
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boundaries, By 'automatic' and 'impersonal procedure' he precisely
means 'the computer', In agreement with him, Forrést, E. (1965)22,
maintains that:
"since the computer doesn't know how to gerrymander
.«.....the electronically generated map cannot be
anything but unbiased",
I shall at this point define some terms which will be constantly
used throughout this work, They are as follows:
a) UNIT: This implies the smallest indivisible part of a
population, Each unit has a position Pi’ X corresponds
to the position of unit Pi’ i=1, ..., n,
b) GROUP: A 'group' means a sek of P.1g making up & constituency
or legislative district (Grouping).

c) PLAN: An electoral plan defines a Group for each P,

2.2, Necessity for a computer technique

A few people have used computer techniques to generate group
plans. Some of the well known techniques are those by the following f
people: Weaver, J.B. and Hess, S.W, (1963)23 and their group of 'civic-
minded engineers' known as the 'CRONDT INC. (Computer Research In Non-
Partisan Districting) have developed a technique which accomplishes this
task by measuring the acceptability of a group on its compactness
measure,

Thoreson, J. and Liittschwager, J. (1967)24, have developed a
heuristic approach in which computer simulation techniques are used
for forming electoral groups, |

Garfinkel, R, (1968)25, has a computerised 'tree~search' approach
to this problem,

G.Mills (1967)26, used a heuristic based on Weaver's technique

and applied this to a British local Government Area - Bristol County

Borough,
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Wagner, W.H, (1968)27, used an integer programming technique for

solving the political grouping problem,

From the short list above, it is certain that the problem of

grouping units together for electoral purposes has been approached from

different dimensions as a result of its necessity. We must all app-~

reciate the fact that the possibili;yﬂéf'having a fai; government depends

i

almost entirely on the typgxﬁffgrOup plan a country h%s. In fact

//‘ ' o PR
nearly all civil wars” have as a direct cause or a remote cause-political

f‘ //.A‘ .
malapportionment, which is the result of accepting té\ehoose a biased

"

. P
group plard,
g

I shall analyse some of the work done by the above named computer
pioneérs in electoral grouping but I shall first systematically

survey the general consideration in an electoral grouping excerise,

2,3 General considerations

There are a number of criteria that have to be considered in
the excercise of partitioning a political entity into electoral groups,
They are as follows; population equality, contiguity, compactness,

homogeneity, state law, singularity of representation, preservation of

political boundaries and natural geographical features,

2.3,1 Population equality

Electoral groups are required in practicaily every case to be of
equal or nearly equal population, This is in fact the most important
consideration because it in effect preserves the one-man one~vote
principle which is implied in the acceptance of democracy as a system

of government,
Population equality is defined slightly differently by different

parliaments and a few of the common definitions are as follows:
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(a) 'Electoral Quota', Some parliaments, like the British
House of Commons define 'electoral quota' to mean the
number derived by dividing the 'electofate’ by the number
of available seats, "Electorate', in this sense means the
list of registered voters..
Population equality in this case would then demand that the
total population of a group must be as near as possible to
the electoral quota,
(b) "Population Variance Ratio', Some states in the United
States define 'popuLation variance ratio' to be the ratio
? of the largest population to the smallest population per
representative, The smaller the ratio, the nearer the
electoral groups are to absolute equality,

(c) 'Minimum Percentage Test', In an attempt to achieve popul-

[N F S U S S

ation equality some states try to determine the minimum
percentage of the state's citizens that reside in an electoral
group electing a controlling majority. The electoral groups
are ranked on the basis of their population per representative
from smallest to largest, The populafion of each success-
ively larger group is added up until a majority of legislators
is accounted for and at that point the summed population
is divided by the state's total population giving the figure
for the minimum population from which the minimum percentage
is derived,
The analysis above has population as its central theme, yet differ-

ent measurements of population exist and the pattern of representation

~ can be affected greatly by the population measure chosen, The follow-

ing therefore are some of the available population measurements:

i)  Total Populationm,

ii)  Population of voting age,
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iii)  Population excluding aliens,

iv) Population of registered voters, etc,

The first step in this excercise would then be to choose the exact
population measurement to use, then the population equality desired

is defined and finally a decision as to the 'allowable percentage

deviation' from 'perfect equality' is taken, The final step is usually .

not fixed by law but a few suggestions have been made in this regard,
The American Political Science Committee (1951)28 recommended 10% and

stated further that on no account should it be more than 15%.

2.3.2 Contiguity

In order to preserve territorial continqity in electoral groups -
it is desirable to generate an electoral plan whose groups are made up
of contiguous units, Although the concept of 'best! contiguity is
absent, yet an electoral plan would be more acceptable and feasible if
the principlg of equal population is combined with that of territorial

/@\tmngty

: A group is contiguous, if it is possible to travel between any
two locations within the group without leaving its boundaries, hence
movement within a group without crossing the boundaries of another
group ig guaranteed,

This criterion is very necessary fér campaign purposes and for
the .allocation of resources in terms of electoral groups,

Contiguity can be rigorously defined as foiIOWS! let B =€Pigg
be a symmetric N X N matrix, where bii£= 1, if units of i and k have

a common boundary, = 0 otherwise,

Let us consider an electoral group as an undirected graph with

the vertices as the units of the group, an arc¢ exists between i and k

if and only if bik =1, A group is contiguous if the graph is connected;:

that is to say that a path exists between every pair of vertices,
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2.3.3 Compactness

Geographically, compactness means being c1§sely united so as to
economize space. Mathematically it could be conceived for example as
requiring the maximization of the ratio of a group's. area to its perimeter,

If the above are the accepted definitions then a group would be

/

more desirable if it was circular or square in shape,

The idea of compactness in the context of an electoral plan should

be seen as the desire to create electoral groups that reflect at least

to some extent, popular interest patterns, since in fact a representative

should be seen as someone representing the interests of those who

elected him and to whose class he should be identified with,

Compactness defined as a measure of population as well as Geograph-

ical Concentration would be preferable in this sense,

Mathematically compactness of a group composed of units Pi at'éi
could be defined as follows:

Assuming that the distance between the centres of units i and K
is d(i,K) = Izi - XKP . For each pair of units in a group, let e(i,K)

= exclusion distance, then group j is feasible if d(i, K)7e(i, K)=>
o= -4 5 = d(i

aijvaKj 0. For a particular group, say j, let dj max {f(l, K),

aijp aK;} (i, K =1, ..., N where there exists n units in group j) be

defined as the distance between units of j which are farthest apart,

Then dj = 0 if group j contains only one unit. Let A; = the area of
group j. It follows that Cj = d?/d would then be a dimensionless

N
measure of group j. As Cj decreases, group j becomes more compact,

As stated above, if Cj = O then group j defines a single unit, There
has been no generally accepted definition of compactness,
Weaver, J.B. and Hess, S,W. (1963)29 in an attempt to combine the

mathematical and geographical definitions of compactness, stated that
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"moment of inertia provides a possible measure of

compactness in legislative districting, involving

both area and population", ‘
Io illustrate their definition, consider the following: let figure one
represent an electoral group. By dividing the group into thirty six
rectangular blocks, it would be possible to make calculations similar
to moment of inertia about any point in the plane of the figure say X.
For each block the moment of inertia would be the product of the block's‘
population times the square of the distance between the block and that
point, The moment of inertia about point X for the whole group would
be the summed moments of intertia of all the blocks, This sum would
be smallest if X corresponds to the population centre of the group,
that is, 'centre of gravity of the poéulation, Fof computational

purposes, let moment of inertia about point X be defined as the weight

of say S, = W,, times A2, where A, = the distance between S. and X = W 2.
1 1 1 1 1 11
Hence the moment of inertia about X for the whole group is (wléf +
W A2 + + W A2 ) = ;%? W A2 = Population moment of inertia at X
272 e 36736 fm 1 h 3 ’

AW AW

pARAN2

Yy < ARZINZ

0 s

ZZ R AN,

X ' 314 {Q;f fi; 42;/ ’25/
fig (1)

Hence, compactness which is a measure of diffuseness is thus the sum

of the squared distances of each voter from the centre,
A comparison of the summed moments of inertia for different electoral
plans would enable one to determine the plan that is most compact,

A heuristic based on this technique but mostly used for warehouse
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location problems was uséd by Weaver, J.B. and Hess, S, W, (1963)30 for

producing'an electoral plan, |
Harris, C.C, (1964)31 looks at compactﬁess slightly differently.

He would rather think of it in terms of the length and width of an

&g&ectoral group, In order to generate a compact electoral plan

he decided to minimize the difference between the lengths and widths

of all the electoral groups under consideration,

Hence,

n
win 37 L - W, I
i=1 |

n = number of groups
Li = max, length of group i
; = max. width of group i.

He initially generated all the possible groups somehow before

minimizing as above,

Cellar, E, - .~ saw compactness differently, He rather con-
sidered it as a measure of the quotient of the length and the width.

Hence he defihed compactness as follows:

z (&)

n = number of groups

Li = max, length of group i
. = max, width of W,.
i i

He tried to minimize the above in order to determine the most compact

plan,

The American, House of representatives in Report No, 140 of the
89th Congress in discussing compactness in their "Federal standards for
Congressjional Redistricting" defined compactness as the absence of

gerrymandering,

From the above discussion, it is clear that compactness as a

criterion for electoral planning is very desirable yet its lack of a
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vivid and an exact definitjon renders its exact application highly
impracticable, Compactness is nevertheless, important but certainly

less important than population equality and contiguity.

2.3.4  Homogeneity

In consideration of the economic and social interestsof a commun~
ity one is in effect considering their homogeneity, Homogeneous
groups therefore preserve the communities economic interests, A rep-
resentative is expected to represent the social as well as the economic
interests of h;s electorate, This task is oﬁly possible if the repres-
entative is representing an electorate with similar interests but if

his electorate is a conglomeration of people from practically every

economic class and interest, it is unlikely that he can represent his

AN e

Ve S
---------

\
aSS\»EFually the\upper class‘to wh{;h he w0uld’most likely beldng?

//

electorate adequately, At\Fhe best hgxwguld be rqgresentl g & minority "
“ :

cl k//n

&

His voice would then be that of the minority few and such representation

is highly undesirable,

In practice, it is hard to apportion groups on the basis of homo-
geneity yet whea boundaries are drawn in such a way as not to put those
who live in slums together with those who live in palaces or have
strictly industrial areas and strictly agricultural areas together,

then homogeneity of electoral grouping is preserved,

The advent of'electronically controlled techniques makes the in-

clusion of homogeneity very difficult since a precise mathematical

e e

definition of homogeneity is not readily available,

2,3.5 State law

Parliamenty usually pass laws which guide those concerned with

forming units into groups for electoral purposes,
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These laws usually define the population measure to use, They
also define some other terms, like, 'electorate', electoral quota, etc.
Most importantly, the laws must state the number of seats allocated to

the country or a sub-region of the country,

In general, only the basic criteria are laid down. They are
usually loosely phrased, thus, they fail to guarantee equitable appor-
tionment even when they are strictly followed as they demand; neverthe;
less, whatever strict regulations they define must be adhered to or

else the whole apportionment excercise could be in vain,

The loose nature of these state laws resulting in their lack of
guidance, often lead to malapportionment and gerrymanderihg, and thus,
law courts step in to settle disputes arising from malapportionment;
especially in the United States where the courts can over-rule a

parliamentary act as unconstitutional.

I would like to state that in as much as it is desirable to abide
by state laws, it is more desirable to have, precise, clear and unam-
biguous state lays, I would therefore recommend a review of the ex~
isting apportionment acts since they hardly serve any purpose presently

other than guaranteeing possible gerrymandering freedom,

2.3.6 Singularity of representation

It is a general practice to have a single member representing. one
electoral group, Recently there has been a desire to create multi-
member groups whereby more than one person would be elected to represent
an electoral group, Some european countries have actually adopted this
method for some of their elections, In fact, Northern Ireland of
Great Britain is a2 multi-member group since it is a single assembly

group and yet elects three members to the European Assembly (European

3
Assembly Elections Act (1978)) gh 5
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Whatever may be the reason for the creation of these multi-member
groups, I believe strongly that a single member group has more merits
and therefore more desirable, Where this is nod practicable, and I
do not see why not, the electorate must be informed about the demerits
and merits of a multi~member constituency. I doubt whether it has

any merits whatsoever,

The only reason for the emergence of multi-member groups must have
been due to the difficulty of providing equitable apportionment with
regards to single member groups, This difficulty could be overcome

by using my computer teéhnique which will be presented in the next

‘chapter, I therefore affirm that singularity of representation is

more desirable than plurality of representation,

2.3.7 Preservation of political boundaries

It is desirable to maintain existing political boundaries in
order not to break up useful, ancient traditional ties, In the event
of creating electoral groups it is therefore necessary to preserve as

much as practicable the boundaries of cities, townships and counties,

It is a good practice to include cities, townships, counties and
a few other minor local government areas in one and only one electoral

area,

The preservation of these boundaries could lead to some minor
population differences between electoral groups yet such minor differ-
ences in population would have little adverse effect on a state as
compared to the problem that could be created By breaking up ancient

historic and economic ties,

In some cases the preservation of these boundaries are stipulated

by law. In the European Assembly Act (1978)33, it is stipulated that
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the boundaries of the British House of Commons constituencies be preser-
ved, The preservation of such large political boundaries could lead

to large differences in the population of European Assembly Groups yet
the relationship between the European Assembly and the House of Commons
makes it more desirable to have such large entities together in one
grdup than to have small portions of, say, #welve House of Commons

groups in one European Assembly Group.

2.3.8 Natural seographical features

It is highly desirable to use geographical and topological featﬁres
such as, rivers, lakes, mountains and valleys etc,, as political eiect-
oral boundaries, Naturally, these geographiéal and topological features
preserve the identity and 'mini' culture of abcommunity. They determine
in some respects the profession and hence the economic class of a
community, thus, they could be useful both as.natural,'barriers' as
well as political 'barriers'.

Their importance as useful political boundaries should be fore-
seen during the initial apportionment exercise, hence, they could be
used as the boundaries of the smallest population units that a nation
would always strive to preserve in subsequent apportionment exercise

for larger political groups,

Harris, C.C. (1964)m$ and Hess, W. and Weaver, J.B, (1963)30 have

some discussion on general considerations,

I shall now discuss in some detail a few of the computer techniques
that have been used by some of the forerunners of computer techniques

for creating electoral groups,

2.4 Previous work

The general problem of malapportionment and the search for an
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éutomatic and impersonal medium has led to the development of computer
techniques for partitioning a state into electoral groups.  People
have therefore sought to develop computerised mathematical models for
this purpose, Generally the problem is split into two parts, phase
one and phase two, phase one generates all possible groupings, Phase
two determines the best plan for the area using the groups generated

in phase one,

Most of the techniques developed so far merge phase one with phase

two but the determination of the best plan is done via human scanning,

I shall discuss the work done by the following: Hess, S.W. and
Weaver, J.B. et al; James D. Thoreson and John M, Lijittschwager;
Garfinkel, R.S. and Nemhauser, G.L.; G.Mills. Except for G,Mills, the

others named above worked on areas in the United States,

2.4,1 S.W,Hess, J.B.Weaver et al:; "Computer Techniques for Non-partisan

Political Redistricting".  (U.S.).

Their work was centred on the use of compactness as a measure of
the equitability of an electoral plan, They -defined compactnesé as
a measure of geographical and populafion concentration,

Hess, S.W. and his four 'civic-minded' engineers of the CROND. INC.
(Computer Research on Non-Partisan Districting)j in one of their papers
published by Weaver, J.B, and Hess, S.W., titled 'A Procedure for Non-
Partisan Districting: Development of Computer Techniques' (Yale Law
Journal, Vol, 73) they said the following about compactness:

"Moment of inertia provides a possible measure of
compactness in legislative districting, involving
both area and population".
In support of this they developed a technique which used compactness
as an effective measure of thg superiority of an electoral plan over

\

another (Operational Research Journal, Vol. 13, 1965), See section

i

2.3.3 for reference,
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Their technique merged phase one with phase two and finally em-
ployed human scanning to reject non contiguous groups, The choice
of the best plan was based on the plan that produced the minimum moment

of inertia,

2.4.2 Moment of jnteria - compactness

In an attempt to study the properties of rotating bodies physicists

try to have a measure of the dispersion of a body's weight about an

axis of rotation. This measure is called moment of inertia,

The moment of inertia of a mass about an axis of rotation can

be defined as the product of the mass and the square of the distance

. to the axis, Where a body has only two dimensions and has an axis

of rotation perpendicular to its plane then one would speak of the
moment of inertia of the body about the point where the axis intersects
the plane,

For electoral purposes and in relation to geographical and population
concentration (density), let us consider the foilowing:let M(i) for a

group be defined as M(_:E)G = st Po(x; - 2)2 = moment of inertia of

i i=1
group i. i=1, ..., 8 (units in group i). Pi’ i=1, ..., s
(population unit i, i = 1, ..., s; in group i). X; 3= 1,...s(Position
)3
of unit i), X = The point of rotation (Point at which moment of

inertia is being calculated),
It will be noticed that this will be smallest with respect to g when

X=X since M(X) = $% P.(x, - X) = 0. This implies in fact that
=1

the population is concentrated at the point at which the moment of

inertia is being calculated, To determine the most compact therefore,
. } S .,
o (nerti - . . ‘
the moment of inertia M(X )Gi :§gi P, (X; = X)” is calculated
then T
g z .
M, = < M(K)G- i=1,...,T (wvhere there are T groups
3o i in"the plan)

Mj = (moment of inertia of plan j).
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When the momentsof inertia are calculated from different points, they

represent different plans, The choice would then be
T
Min ST (M(X). s ME), & ).

where M’ is a set of Mj (the total moments of inertia for all plans)

=1, ..... s K (where there are K plans),

2.4.3 Transportation algorithm

In theory the above is what Weaver and his friends intend to do.
In their paper entitled 'A procedure for Non Partisan Districting:
Development of Computer Techniques}'@f‘é,,m35 they noted as follows:

"Since districting by minimizing moment of Inertia
involves numerous calculations, application of this
procedure by hand would require considerable time

and introduce significant probability of arithmetic
error, To overcome these problems, we have used
electronic computers which very quickly perform the
necessary calculations.,,., to the data supplied them",

They went further to add that,

"No available programs or computer techniques are known
which will give a single, best answer to the districting
problem, ., .. ",

and they concluded by saying that,

"The chosen measure of compactness makes it possible

to take advantage of certain mathematical similarities
between the redistricting problem and a problem already
programmed on computers - That of assigning customer

orders to specific warehouse locatijons so as to minimize
freight costs, This program, supplemented for this
specific use by various additional steps and sub-calculations
assigns E.Ds (ED = Enumeration (unit) districts)(Customers),
to L.D. Centres (Warehouses) (L,D,= Legislative (Group)
district), in a manner minimizing moment of inertia (freight
cost)",

They in fact used a transportation algorithm as confirmed by one
of their papers on "Neg-Partisan political redistricting by Computer"
(O.R. 1965)36 they commented as follows:

"Other warehouse - location techniques were unsatisfactory;
either warehouse capacities were unconstrained, or codes
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were unavailable or too small. We resorted to
an approach built around existing transportation
codes,  While not the @dtimate in districting
programs, it worked",

They in effect first formulated the problem as an integer programming

problem as follows:

Let K = Lesilative districts and
‘Let n = number of population units,
Let Pj= population of the jth population unit, (j = 1, 2,....,n)

Let dij= distance between centres of population units i and N

for (i, § = 1, ....,n).

N1 if the jth population is assigned to the ith éentre,

Then Xij L0 otherwise.

a = minimum allowable group population as a percentage of
the average group population,
b = maximum allowable group population as a percentage of
average group population,
The objective is to determine the n2 values Xij that would minimise

moment of inertia d?, P, X.. subject to the
‘ i=1 I

ﬁﬁﬁs

following 3n + 1 constraints,

S Xy 7 1 (3=1,.....,n)
X, = K
n
Foyor 2 2100 (% PO K, (1=1,....,0)

T
The resultant plan from the above problem would then be checked manually

.4- b/ ]
S RX £ 100)(2?—’51 Pod ¥y (3= Li.o,m)
for contiguousness, The application of this technique was not very
satisfactory all through, They in fact had problems with states as
small as Deleware State (0.R, Vol, 13,1965)Qg so they resorted to the

use of a transportation heuristic which I intend to present diagramatically

as follows,
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thard

data,

Input: ED population, geographical
centre co~ordinates other factual

4

Input:Initial trials of L.D.centres

.

Compute’ matrix of squared distances
between EDs and LD centres,

N

Solve transportation problem:

|

D-customers, LD-Warehouses
equire equal LD population,

Recombine Splf% EDs so .that
each ED is assjigned to only
one LD,

For each LD, compute moment of
inertia and Popul. centre of
Gravity, Compute total moment of
inertia for all LDs,

Print interim
solution,

Is interim solution
same as prior solu-
tion?

No

ED = enumeration
district (customer)

(Unit>

LD = legislative
district (Warehouses)
@roug)

se NEW centres(L.D)

YES

Are more initial

trials available.

NO

of gravity as
improved guesses

Stopk

The heuristic essentially goes through the following procedures:

1.

units and the groups are made,

for the units,.

Al

An initial guess as to the geographical centres of both the

These initial guesses are

supplied as input data so also are the exact population figures

The trangportation algorithm is used to accomplish the assignment
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of the units to different groups on an equal population basis
reSuiting in the splitting of the population figures of nearly
all the_indivisible units,

Adjustments are made so that each unit is assignéd to one and
only one group.

The moment of inertia as well as the new centre of gravity of
each group is computed,

Steps (2) to (4) are repeated until the solution converges,
although this is not guaranteed, nevertheless the local minima
for each set of guessed centres is recorded for thé'selection
of the minimum,

Mofe initial guesses for both the units and group certres are
made and the program is executed all over, The selection of

the best plan is then made by inspection,

Phase two

In the above technique attempt is made to merge phase one with

phase two. Although phase two is not completed since the final alloc-

ation still 3eﬁ$@hrough human inspection for the selection of the plan

that is contiguous with a small overall moment of inertia, The absence

of a guarantee for convergence makes this technique a trial and error

technique,

To illustrate the method of selection, consider the following,
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Let figure 4(a) be a set of units, | If it ié desired to divide the 23
units into three groups and after phase one accompanied by its splitting
and readjustment of units, Let figure 4(b),l(c) andf(d) be the result-
ant plans with their populations Pl’ P2’ P3 and the associated momenté
of inertia L LI and Ty Figure 4(c) will be rejected on the grounds
of the absence of contiguity while it will be left for the choice to

be made between figure 4(b) and figure 4(d) on the basis of the moments

of inertia and population equality."/e&(ﬂ/ﬁ:&et al (1965)23 and“ﬁ‘m"ﬁ;m%t al o

(1963;85'have some more details,

2.4,5 "Legislative districting by computer simulation: by J.D.Thoreson

and John M. Liittschwager, (U.S.).

They developed a heuristic approach to.the partitionihg
of electoral areds problem, They accomplished the task of producing
an equitable plan on the basis of population equality as their main
objective, They selected total population as their major population
measure and achieved equality of population by using the 'population
variance ratio' and the 'minimum percentage test' as discussed in
section 2.3,1(b) and 2.3.1(c) respectively,
For compactness they used Harris' meaSuré of sum of maximum lengths | —
minus minimum widths, They finally calculated the statistics for the
moment of inertia although that was not included in the program és a

compactness measuyre,



43,

They developed two methods, method one and method two, Each of
the methods accomplished the production of a plen in one phase and the

best plan was determined by human scanning.

2,4.5.1 Method one

The first method is divided into two sections: One compulsory
section and the other voluntary depending on the result of the first
section, The area to be partitioned is arbitrarily divided into units
(Pog) and grouping is accomplished by forming combinations of these

units,

2.4.5,2 Section One

(A). The state is arbitrarily partitioned into regions with their
corresponding populations, Arbitrary co-ordinate system is defined
approximating the geographical centre of these regions, A region can
take any shape, They are divided up in Such a2 way that the most densely
populated would contain a lower population than the state average per
member, In a case where some regions for some reasons have to contain
more people than the state's average per member, the following can be
done,

i) If a region has more populétion than the states' average

and if such a region cannot be split up, then that regions
population must be divided by the state's average and the result
rounded up to an integer; and consequently seats would be assigned
to the region, Where the above is nét followed then the following
can apply,

ii) Let P_. = Pre-assigned lower limit and let p = Pre-assigned
min _ max

upper limit, Also let. Ei = Population of region i, Then if
Pmin5§ Pi 4‘Pmax’ Pi_mUSt be assigned one seat, (i=1,,.... LN,
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or
iii) If 2 Poin % Py =P ., then (Pi + Pi+1) must be assigned two

i max
members, (Pi+1’ implies other regions).

iv) 1f 2 Pmin £ ﬁi’ then?i should be assigned a number of members

equal to the nearest integer value of'f’i/PK where PK = state average,

. Assignment continues as above until the remaining regions say

Pj+1 all have their populations below the lower limit,

(B). with all the unassigned fegions having populations, each
below the state's average and consequently lesser than the preassigned
average, a new system of assignment is initiated. (Unassigned implies
that no seats have been assigned to those regions). One of the un~
assigned regions say A1 is selected ag a refereqce region,

(C)- B1 is chosen, where B1 is the region that is farthest away

from Al’

(D), With B, as a starting point form a group around it. Regions
are assigned t"o‘B1 on the basis of distance-contiguous criteria where
P..1 is assigned to B, if it is capable of forming a contiguous group
and also nearer to B1 than other unassigned regions, This combination
on the basis of distance-contiguous criteria continues until an additional
combination results in the 'population quota’ being exceeded, 'Popul-
ation quota' in this respect refers to the ratio of unassigned population
to unassigned seats, At that point then, the distance criteria is
abandoned and contiguous regions are added in such a way as to minimize
the absolute deviation from population quota, The addition is continued
until an electoral group is formed,

(E), Steps (C) and (D) are repeated, This involves finding the
current unassigned region which is farthest from A

say B, and new

1

electoral group is formed around B, and including B

2

9° Generally there-
fore electoral groups would be formed about Bi’ i=1,2, ...., N, until
such a time that all the regions and members are assigned, The completion

of the above results in a plan, Different plans can be prepared by using
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different reference regjions, The most compact with the least deviation
from.pOpulation quota is selected as the best, The selection which

should have formed part of phase two is done via human scanning.

2.4.5.3 Method one: section two

It happens at times that due to soﬁé state law it could be required

that some earlier political boundaries such as -county boundaries should
be preserved, The preservation of éuch boundaries could lead to large
population disPérities, Where that results then section two comes in
as an attempt to equalise the population further more,

‘A) The single member group procedure is abandoned for two member gr0up;
ings,  The single member groups of section one are the data for this section,

B) Successively two single member groups of section one are added
together, Each set of additions reduces the ratio term for the p0pu1ation
variance ratio and this reduction is desirable. This section presumes
that the two members are elected at large, hence the average population
per member can be used as the population of péople represented by each
member, This process would terminate at the point when further reduction
in population variance ratio would only be as a result of the combination

of three section one single member groups,

2.4,5.4 Method two

This second method by Thoreson and Liittschwager is strictly meant
for single member groups, The computer program is written in such a
way that the computer assumes that cells with.adjacent subscript notations
are contiguous. For example, element (2,2), (2.3), (4.2) and (2.4) are
supposed to be contiguous, |

A) A grid is placed over a map to cover the whole area that needs

to be partitioned into electoral groups, Geometric uniformity among
the cells of the grid is maintained, The population of-each grid isw
noted, Proper care is taken to ensure that the populations within each

of the cells is not in excess of the average population per group.
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B) The populations within each cell are estimated as accurately
as possible, See Harris, C.C. (1964)3# for different methods of
estimating population densities,

C) Associate population densities to eéch of the grid cells and
form a population matrix by assigning subscripts to each element,

See figﬁre 5 for a sample cell arrangment,

D) Choose an arbitrary element similar to method one and use

. 1 Gty
E) Determine Bl’ the element farthesg&from A1 as was done in
method one,

F) The first step is to form groupings about B, say B, of the

1
unéssigned elements of the grid cells whose populations are less than
the average for an electoral group.

With B, as a starting point, the units of the g;id cells are grouped
around it in a concentric counterclockwise manner until the summed
population of the unassigned unifs exceeds the 'population quota!',
'"Population quota' in this sense is the ratib Qf the unassigned popu-
lation to the assigned members, Also the gfoﬁping is done in such a

way that combining each successive vectors results in a contiguous

rectangular electoral group,

The process therefore involves the determination of B] and the consider-

ation of the next successive vector in the order of increasing distance

from B) until a further addition would result in a greater deviation
from the population quota than the previous one, The first unit
assigned is usually the single element immediately above Bl' The
next vector is thenconsidered and further additions are made in the

order of increasing distance from Bl' When it is likely that a

further addition would result in a greater deviation from the population

quota; stop,and an electoral group has been formed.
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G). Steps (E) and (F) are repeated; This involves the

farthest away from A1 selected from the

unassigned units of the grid cells. A new group is formed about say,

determination of Bi say Bz,
B., i = 1,....., Kuntil all the units of the cell have been allocated
to all the preassigned seats, = Completion of step (G) results in a
plan,

Below is an example of the cell arrangement for one electoral

group and the order of assignment of the population units (cells) to

the group.
Assignment Sequence

29 ’28 ’27 26 25 ector | Order of Assignemént
X IiX IX IX IX I | 1
12 |11 10 | 9o | 2 11 3, 2 J
vi | v | v | v | v 111 5, 4 E
13 | 2 ] 8 | 23 1v 7, 8, 6

vi | 11 1 | 1w | v v |10, 9, 11
U 0 7 | 22 VI |14, 15, 13, 12 7
vi | 11 w | viiz vII |18, 19, 17, 16
151 4 5| 6] 21 VIII |22, 21, 23, 24, 20
VI | IIr| I1ix| iv | vIir IX {27, 26, 28, 25, 29
6 | 17| 18| 19 20 ]

VII | vII| viz| vir vuzi

FIGURE 5, Sample Cell Arrangement

Like method one, a plan depends to a great extent on the choice
of reference point Ai' Different reference points would normally
produce slightly different plans, A choice as to the best is made via
human scanning on the basis of population equality and to some exﬁent

compactness,
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2.4.6 Computer apportionment technique: used by G.MilLls (G.B.)

G.Mills in his paper entitled "The Determination of Local Govern-

ment Electoral Boundaries" (0.R. Vol, 18, 1967)38, in applying the

technique used byWees et al (1965)23, made some very useful observations

and comments which can serve as a summary to the earlier discussion on
the location-allocation technique, He applied this technique in
partitioning the Bristol County Borough into local government electoral
groups, He noted that,
"The assignment of indivisible population groups (of
varying sizes) to wards is a problem in integer pro~-
gramming, In practice, however, the’'size of the problem
would render this approach computatlonally infeasible,

Accordingly, the procedure used was a standard, 'Warehouse
location heuristic' of a general kind already used in the

electoral-~boundary context by Hess ",

......

A summary of the procedure he used is as follo@s:
i) Arbitrary ward centres are chosen, Wards in this context
refer to the local Government electoral gr§ups,

ii) The transportation problem is solved and éplit units are
combined, |

iii) New centres are computed for the wards (groups), namely the
centre of gravity of the set of units assigned to the wards
(groups) in step (ii),

iv) Where any of the new centres differs from the old, return to
step (ii); otherwise the procedure has terminated at what is
in some sense, a local optima,

The above procedure is in fact similar to that used by Hess,
Weaver et al,

G.Mills noted that

"different local optima may be generated by
starting from different arbitrary centres',

These local optima should be similar to the different plans produced

by Thoreson and Liittschwager by altering their points of reference A
H l °
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Mills finally recommended that,

"non~contiguous solutions must be rejected or
adapted after human scanning of local optima',

This human intervention at the tail end of the program could .
possibly result to gerrymandering, which the whole computer technique

was designed to eliminate and overcome,

I must mention that I have tried these techniques and made’ similar
observations, What distressed me most about the techniques was the
amount of time used in computing new centres, and the frequent_ocaurence
of non-contiguous plans that invariabiy have to be eliminated from

consideration.

His initial observation that
"The assignment of indivisible population groups
(of varying sizes) to wards is a problem in
integer programming",

is indeed very interesting, I saw the problem that way and solved

it as such.

I shall next summarize the work done by Garfinkel, R.S. and Nemhauser,
G.L. They both saw the problem as an integer programming problem and

hence tackled it with their own integer programming technique,

5

For a detailed survey of Mills' work see (0,R. Vol. 18, 1967)2

"

L} . .
2.4,7 R.S.Garfinkel and G.L. Nemhauser: Optimal political districting

Garfinkel and Nemhauser as stated above saw th# partitioning of
electoral groupings as an integer problem and solved it as such via
an enumeration technique, I shall give a summary of their work but
for a detailed survey see Garfinkel, R.S. and Nemhauéer,_G.L. (1970)39,
Garfinkel, R.S. (1968)25 and Garfinkel, R.S., and Nemhauser, G.L. (1969)40.
The first three surveys in this fopic lacked a defined objective

function and therefore had no function to be minimized or maximized
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and as a result convergence was not guaranteed and the production of an
'optimal plan' was also not guaranteed, An 'optimal plan' refers to the
most acceptable plan with respect to equitability in apportionment,

On the contrary Garfinkel and Nemhausefs' technique had an objective
function and a guaranteed optimal plan with the termination of any pro-
gram where such was possible, o

They executed their program as follows:- They tried to consider
equality in population, contiguity‘and compactness,

For population equality they considered all groupings

"y T ﬁs"‘f’ (L)

where P(j) was the population of a feasible group, P = the mean population
for the area; and ol00 (Ogagl). .
For contiguity they defined a symmetric N X N - matrix with B =ibi£k
and biK = 1 if units i and K have a common boundary greater than a point,
b, = 0 otherwise,
iK
For compactness they considered an exclusion matrix defined thus:
i 8,98 = i = ma i,K)a, ra {.K=
) we(i,Kx 1 5% O where for group j, dj ? E d(1?K, 11 K;},l,K 1,...,N
s
is defined as the distance between the units of j which were farthest apart,

dei,x

They did not state exactly how this exclusion matrix was calculated,
In applying this technique to a fictional nine units state requiring
four electoral groups. They calculated the exclusion matrix "somehow"

(Management Science, Vol, 16, No.8, 1970, pp. B-499),

Zi K" 0 if d(i,K)r»e(i,K) (i and K may not be in the same group)
3 .
= ] Otherwise . (2)
1 2 3 4 5 6 7 8 9
1 - 1 1 1 1 1 0 0 0 4
2 1 - 1 1 1 0 0 0 1 2
3 1 1 - 1 1 1 1 0 0 3
4 |1 1 1 - 1 1 1 1 1 4
5 1 1 1 1 - 0 1 1 1 5
6 1 0 1 1 0 - 1 1 0 6
7 0 0 1 1 1 1 - 1 0 7
8 0 0 0 1 1 1 1 - 1 8
9 0] 0 0 1 1 0 0 _ 1 - 9

They, then calculated the contiguity matrix, This matrix limited
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the number of population units to be considered on the grounds of being
non-contiguous, where contiguity for B was defined as follows,
B =pb, '3 b, = 1 if units i and K have a common boundary greater
i,k 1,K

than a point (are contiguous).

= 0 Otherwise (3)
12 3 4 5 ¢ 7 8 9
1 |- 1 1 1 o o0 o o o]1
2 1 - 0o 1 1 o o o 1|2
3 1 o - 1 0o 1 1 o ol 3
4 111 1 - 1 0o 1 1 o/l 4
5 1 0 1 - 0 -0 1 115
6 0 o 1 0 0 - 1 0 o016
7 o o 1 10 1 .- 1 ol 7
8 o o o 1 1 o 1 - 1138
9 0o 1 0o 0o 1 0 0 1 =109
1 2 3 4 5 § 7 8 9

By éumming the population of the differenﬁ units in a 'tree-search'
manner and determining those combinations that satisfied (1 - 3)
plus a possible fourth, B which was supposed to define a dimensionless
measure of shape compactness. A58uming the following fourteen groupings

were obtained:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 i 1 0 0 0 0 0 0 0 0 0 1 1
2 1 0 0 1 1 0 0 0 0 0 0 0 0 1
3 0 1 0 0 0 1 0 0 0 0 0 0 0 0
4 0 0 1 1 0 0 1 1 1 0 0 0 1 1
5 0 0 0 0 1 0 1 0 0 1 0 0 1 0
6 0 0 0 0 0 1 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 1 0 0 1 1 0 0
8 0 0 0 0 0 0] 0 0 1 1 0 1 0 0
9 0 0 0 0 1 0 1 0 0 1 0 0 0 0

Then the second phase which was a 'tree-search!' technique as well would
then try to determine the best four groups or the optimal grouping that
would result in a feasible plan, The second phase was set up as follows:

S - -
Min Ma C.X, where Cc, = lP Ly " Pl// P s8ubject to
SR i (1) *r e

57 8 X 41 L= 1,.....,8 (5)

1,..... »8 (total number of groups)
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Zsf X oM = 4 (6)
X, = 0,1, . , (7)
]
aij = pop. unit i, in group j = 1 if
group j is in the optimal plan, = 0, otherwise,

The result would be (2, 4, 10, 11) and (2, 5, 9, 11) since they both
give the same cost,
From the foregoing it is clear that in agreement with G,Mills,

the problem is an integer programming one, and Garfinkel and Nemhauser

have treated it as such,

My approach to the problem which will be discussed in the next
chapter as applied to the European Assembly Groups (Constituenciés)
.is an integer programming approach and my téchnique therefore has afj-

lot in common with the technique that has just been presented,

The example given by Garfinkel and Nemhauser (Management Science,
Vol. 16, No, 8, 1970)39 is based on a fictioﬁél nine units state,
They claim to have applied this technique to areas with larger popul-
ation units than nine. For example, Washington State; nevertheless
they applied it without success to West Virginia and also they were

very unsuccessful with 55 county states,
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CHAPTER THREE

PARTITIONING THE EUROPEAN CONSTITUENCIES

3.0

This chapter describes a computef procedure for (a) sorting given
units into acceptable ngups according tb some specified criteria and,
(b) finding the optimuﬁ plan, that is, the optimum selection of such
grbups which include all the units and also optimise some Specifiedvob—
jective, The two stages are described respectively as Phase 1 and Phase
2, and the method is applied to a particular problem,‘namely the determin-
ation of the best plan fér grouping the Northern Counties of England,
(Cleveland, Cumbria, Durham, Tyne and Wear, Northumbria) into 5 European
Constituencies, The approach however, is quite general and provides in
principle a procedure for solving any such problem without the necessity
for manual intervention or scanning once the criteria for Phase 1 and
the objective(s) for Phase 2 have been defined,

In section 3,1 the conditions governing this pafticular problem
are specified, Section 3,2 then describes thé prpcedurevused for
FPhase 1, the determination of acceptable groupings, using the criteria
of (i) Contiguity of grouped units, (ii) sufficiently small population
deviation, (Compactness has not been used since the total area cdnsidered
is small, but could be included at the cost ofAconsiderabie extra cal-
culatioh), Section 3.3 defines the conditions for obtaining an optimum
plan., Here, these are that all units must be allocated and that the
number of groups is fixed, Subject to these, T define first a pop—
ulation objective and then a more general objective including in

addition political considerations,

3.1 Elections Act

The European Assembly Elections Act (1978)4lvprovided for the
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following seats with reference to the United Kingdom, 66 members
for England, 8 members for Scotland, 4 members for Wales and 3 members

for Northern Ireland.

The Act directed as follows:-

"Each assembly constituency shall consist of an area
that includes two or more parliamentary constituencies
and (b) no parliamentary constituency shall be included
partly in one and partly in another",

It further stipulated that
"The electorate of any assembly constituency in Great
Britain shall be as near the electorate quota as is
reasonably practicable having regard, where appropriate
to special Geographical Consideration',

The Act went on to define "electoral quota" and "electorate", It

stated thus
M.... in their application to a part of Great Britain
for which there is a Boundary Commission - 'electorate
quota' means the number obtained by dividing the electorate
of that part of Great Britain by the number of assembly
constituencies specified for that part,...".

The Act defined electorate as follows:
"....'electorate' means - (a) in relation to an assembly i
constituency, the number of persons whose names appear
on the relevant registers for that assembly constltuency
in force on the enumeration date",

With the above extracts from the Act as a guide the relevant data

for the problem were provided as follows:

3.1.2 (1) A map showing the geographical positions of the House of
Commons Constituencies, Appendix 1 has an extract of the map relevant
to this work. The map was from the Times Guidevto the House of Commons.
(2) A comprehensive list of the Parliamentary Constituencies, their
respective populations and their political complexion computed from the

percentage of votes cast for the three major political parties during

the lést election. (The Times Guide to the House of Commons 1979)42

and (Report, European Assembly Constituencies)éB.
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The following is a list of the Parliamentary Constituencies,

Populations and Percentages of votes, May, 1979,

Pop. Con, Lib, Lab, Units
consid-
ered,

1, Scarborough 60, 535 53,2 20,3 25.5} (1)
2. Cleveland and Whitby 65,651 51.6 11,2 37.8

3. Teeside, Middlesbrough 64,573 30.4 9.1 56,249

4, Teeside, Redcar 63,249 36.7 8.9 53,7

5. Teeside, Stockton 88,181 36.2 9.2  53.1) (2)
6. Teeside, Thornaby 62,518 39.1 9.2 51,1

7. Hartlepool 65,968 38.4 6.5 55.1 (3)
8. Richmond (Yorks.) 64,669 61.5 21,2 17.4 (&)
9. Bishop Auckland 75,134 37.9 13.3 48,7 (5)
10. Darlington 63,408 43.4 10,2 45,5

11. Easington 65,416 24,7 14,4 60,9 (6)
12, Durham : 77,382 33.3 4.5 52,3 (7)
13, N.W.Durham 63,329 29,6 9.1 61.3 (8)
14, Houghton-le~Spring 60,609 20.7 10,2  65.5 (9)
15. Chester-le~Street 79,588 25,2 4.4 60,4 (10)
16. Consett 58,320 24,9 13.9 61.3 (11)
17. Sunderland North 78,009 32.1 10.3 57.5% (12)
18, Sunderland South 75,801 37.9 9.0 53.1¢

19, Jarrow 55,991 29,1 9.1 55.8 (13)
20. South Shields \ 71,437 31.0 12,0 57,1 (14)
21, Gateshead East 63,904 29.9 8.9 61,2 (15)
22, Gateshead.West 30,180 25,9 5.9 67,2

23, Blaydon 58,316 35.0 11.6 53.4 (1s)
24, Tynemouth 75,801 51.6 9.9 38.5 (17)
25, Newcastle-on-Tyne Central 23,683 19.3 13,4  67.3

26, Newcastle-on~Tyne East 45,463 36.4 8.5 55.1:} (18)
27, Newcastle-on-Tyne North 39,898 47,6  11.2 41,2

28, Newcastle-~on~Tyne West 81,410 35,9 9.6 54.5

29, Wallsend 90,179 31,3 12,3 51,1 (19)
30. Blyth 77,687 22,7 8.3 40,1 (20)
31. Morpeth 49, 764 25.7 18,0 56,3 (21)
32, Berwick-on-Tweed 42,703 38.4- 54,3 7.3 (22)
33. Hexam 66,846 48.0 20,1 31,9 (23)
34, Carlisle 53,183 39,1 11,2 49.7} (24)
35, Penrith and the Border 56,974 61.2 16.5 22.4

36. Workington 55,134 40,7 6.1 53.2 (25)
37 Whitehaven 52,224 39.8 5.9 52.4 (26)
38, Westmorland 58,189 56,6 28.8 14.6 (27)
39, Morecambe and Lonsdale 68,597 55.4 19,5 25,3 (28)
40, Barrow in Furness 54,421 35.1 11,7 53,2

41, Lancaster ' 51,183 47,6 4.6  37.3 (29)
42, VNorth Fylde 77 528 60.8 14,4 24,0 .

3.2 Phase 1 - The determination of acceptable groups:

Each state or country has some peculiar features that must be

reflected in a partitioning exercise of this nature, so, the general
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considerations outlined in chapter II have to be applied with due re-
gard to the specific requirements of the area in question,
The following considerations were made for the execution of

Phase 1,

3.2.1 Considerations

(i) State laws

The EuroPean Assembly Act quoted in section 3,1 is the law
guiding the apportionment exercise created, for the benefit of the
boundary commissioners, A computer program executing fhe duties of
a human agent must be bound by the same laws as the human agent,

The Act stipulates that the House of Commons constituency bounda~
ries should be preserved and that two or more of these constituencies
shOuld_be merged to form one European Assembly constituency, Hence
the population units used are the House of Commons cohstituencies.

ii) Contiguity

It has been observed that there can hardly be aﬁy precise mathema-
tical definition of contiguity. The absence of the concept of 'best'
contiguity makes this rather more difficult, A group is either
contiguous or not, It was therefore desirable in order to ensure the
generation of conktiguous groupings; I had to define a 0 -~ 1 matrix
manually from the map in Appendix 1, and this was supplied to guide
the computer programme against generating non-~contiguous groups, This
matrix was defined thus:, let j and K be unité of T (T = state), = N X N

matrix. Then T,9

JoK = 1 if units of j and K have a common boundary =0

otherwise,

Furthermore some obvious combinations were made according to the
following principlés,

a) Units whose geographical areas are completely surrounded by

another are merged together; for example Carlisle and Penrith and Border.

v . X £
Aﬁgxa, "h‘g!@U«}£“~«4Qf
/ v Pt



57.

, ' i
b) Areas that must be together due to their location At extreme

points of the state were merged, for exampie,_ScarborOugh, Whitby and
Cleveland. It is impossible to attach these units to separate groups
while maintaining contiguity, This may be confirmed by reference to
the map on Appendix 1.

It must be noted that the program can still be executed without

_ these initial mergers. and yet produce an acceptable plan but for

efficient execution, these steps are highly recommended. From the
map therefore, areas that must be together were isolated, hence 29
units remained to be assigned to five groups aﬁd'a (0 - 1) matrix could
then be defined specifying which units ﬁere contiguous,

:iii) PoBulation The European Assembly Act 1978 fur;her stipu?
lateé}that each European Assembly Conétituency population should be as
close es possible to the 'electorate‘quota' where 'electorate quota'
is as defined above: hence it is the number found by dividing the elec-
torate by the number of seats for any particuler area under consideraﬁion.
To ensure the above I made the following considerations,

Let K = number of seats and let
Pi, (i =1, ....., n) = population of each House of Commons constituency,

.
then P = 1/K %éi Pi = the electorate,

Since a European Assembly Constituency (grbub) was required to be
as close to the 'electorate quota' as practicable, I decided to define
the percentage deviation of a possible group as o 100 (Og;a4§1) and to
consider the effect of allowing only groups whose devietions were
smaller than this,
The values used were ¢ = 0.15, 0.10, 0.08, 0.05 and 0,02 regpectively.
This idea of allowable percentage deviation meant that a feasible
group was one which had a population within the allowable deviation,

Hence let Pj = Population of group j, then group j was accepteble if
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(F = ql00 P) & P, & (P + ol00 B),

This deviation principle enabled phase one to generate more possible
groups for & = 15% than<&h= 2%, It is desirable to have a good number
of éossible groupings because that allows for a wide choice in phase 2,
It may in fact be impossible to satisfy the conditions for a possible
plan if o is too small,

iv) Other considerations: A fey other criteria ag discussed

in chapter 2 Section 2.3 could be included.

Compagtness could be included as an additional requirement by
rejecting any group which failed some criterion - it would require some
geographical information also and would invariably involve a great deal
of calculation thereby increasing cost due to computer time, in this

case the compact nature of the country did not warrant its inclusion,

3.2,2 Description of phase one algorithm

With thevfollowing as the data, phase one was executed as déscribed
below,
1) Population units (House of Commons Parliamentary Constituencies.)
ii) Names of the population units, The above data were from the
"Boundary Commission for England, report,,.." as listed in
section 3,1.2.
iii) Peréentages of votes for the differént'parties for the 3rd
May, 1979 election,
iv) 0 - 1 matrix produced from map for contiguity,
The percentages as recorded in section 3L2were from the Times
Guide to the House of Commons ' Méy, 1979, Thérevwere some minor
differences :between the list of registered voters in the "Boundary. ..
Reportﬁ as compared to the "Times Guide.,," also the percentages were

for the exact number of those who voted but I assumed that the same trend
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would be followed and hence used them for the electorate as listed in

section (3,1,2).

I ther

efore designed an additive algorithm for this

purpose and execution was in seven steps,

Step 1.

Phase one algorithm

The units (population) are summed up in this case the British

House of

Let

©" Step 3.

Commons Constituencies:

PTot -

-

7

/

(

ZE: P. w
=
o1

J e
rd

P

T 1

i=1

thus

here j = units of population (House of Commons

Constituencies),

i=1, ....,n

set of all British Parliamentary Constituencies,

'electorate quota' is calculated as follows
'electorate quota' = P then
= 1/K 2 Pj where K = 5 = preassigned number of seats for

the area under consideration.

The minimum and maximum acceptable population for a given ¢ are

determined as follows:

a 100

+ a 100

“is possible if(P

P. =P
min
P = p
max
HenééﬁPT
Pd
Step 4: '

" The addition of individual units starts,

P and

P
where P in = Minimum acceptable population,
and Pmax = maximum acceptable population,

o 100 P)%Pj&(P + o 100 P)

-This is carried out lin~-

early starting with the first unit in the list and changing to the next

Occording to the order of listing,

The following calculations are carried out for each initial unit,

i)

ii)

Names are associated with the initial unit.

The population deviation, is calculated thus

P-p

i <§=1':,”9n)

for the initial unit,
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iii) Calculations as to the political complexion are carried out as

follows:

Foke

Let o = percentage of votes for party M in unit i, then

Bj = (Pio;;-_j (10(9 = The percentage of votes for party M in
1

the initial unit of group j. (i =1,....,N) = intial units in
group j.
(L=1, ...., Z2) = Number of major

' parties under-
consideration;

The winning potential for the initial units are determined after testlng
the percentage obtained above as to whether a -party was very likely,
likely or not very likely to win should such set of units remain in the
grouping of the final plan,

Step 5.

i) More contiguous units ‘are added to the initial unit of (4) above
and similar calculations like those of (4) are carriedAOut for each set
of units under consideration including the intial unit thus:

1) The unit to be added is tested for contiguity with the initial

unit of (4) by reference to the 0-1 matrix, if contiguous it is

added, if not it is dropped and another unit is considered,

ii) The population deviation is determined for the set of units

S

in the group thus |p - %;% pj (j =‘1, ce..5 8) for the set (Pj)‘

iii) Names are associated with all the untis,

iv) The political complexion is calculated thus:

Let o = percentage of votes for party M in unit i(i = 1,....,N)
then o, = ;;Piag* 100 | = the percentage of votes for party M
J T 1
1 E:QP‘ ’
=
in group j. /VL

(i =1, ...., N for all the units.

G=1, ...., 8) for the step Pj

1, ...,Z) for the major parties,

i

(L
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Step 6,
The contiguous group Pj generated in (5) is tested to determine
whether it lies within the (a) population range thus

<P

min =% jég Pmax"
If yes it is recorded with all the associated statistics,
i) Population deviation from electorate quota,
ii)  Exact population of the group, populations and individual
names of the units of the group.

iii) Winning potential index or percentage whichever is desired,

b) If Pj<: Pmax and Pjga’Pmin’ after the above caclculations
control returns to (5) for more contiguOus units to be
added,
1f P,:> P no records are takeh. The first unit is

] max

dropped and it returns to (5),

d) If Pj = Pmax records are taken and it returns to (5),
This process continues until all the units in the data set

! are considered then it returns to (4) and starts with another

béib ch{& Al (

Step 7
When all thf 1Jn;;;>Lomb1natlons have been made and all the

initial unlt

rem2ining PJ are together less than P min termination occurs,
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The result is a matrix aij’ where 1 = 1, ...., n (number of units)
and j = 1, ...., S (number of possible groups), This is rewritten

into @ 0 - 1 matrix where aij = 1 if unit i is in possible group j

and a,j = 0 otherwise,
1

This matrix can be associated with any desired objective for the
execution of the second and final phase in the next algorithm,

The program for phase one can be found in Appendix 2,

3.2.3 Comments

The resultant number of groupings generated in phase one could be
more than necessary and present some problems as regards computer time

and space for the efficient and economic exécution of phase 2, In this

regard the algorithm has provision for 1imiting the search in phase one

e

to a straight line and by starting from two extreme points of the pop-

ulation and at most three it could be possible to generate enough

groups for a successful execution of phase 2 with a guaranteed optimal

plan,

It is also desirable to set up the data cards in such a way that
units are placed next to their nearest néigthurs. This saves time
and helps the scanning process of the 0-1 exclusion contiguity matrix
during the execution of step §,

As noted above the ‘aij' = -group matrix is an § X N.matrix

where S corresponds to the number of different possible groupings and

N is the number of units. A Jﬁ#'j o

y AN

/ \

Some of the groupings could in fact be §ubset$ of others and it
( K

\.

¢ N o
is the fuq&ion of the next phase to determlne\the best combination of
groupings that would comstitute aa ". : optimal plan,

The following (figure 1) illustrates the‘formation of these groups.
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Fig- (18

Figure (la) shows the individual units (bopulation).
Figure (1b) illustrates the groupings formed thus:

If P, =1, ....T is a group then the next wbuld be

(a) Paps Jp = Lo eeeeeee, TH A, (B=T+ 1, ..., n)
or ‘
(b) - T o e y (T+1), +(T+1i+K), +, ...., n

(a) The first case would occur if Pminﬁg Pj<; Prax 24 P . & PjTES Pma#'
(b) The second case would occur if for every j)Pminé- PjT>' Pmax or PjT
is not contiguous then the first unit is dropped and combination starts
from the next unit of the previous group,

Termination occurs if for all the units 1eftvP;<:vain.
3.3 Phase 2

Phase two determines the optimal plan with the results of phase
one rewritten in a O-1 format as its data and the necessary objective
function generated in phase one as its objective, A necessary and
sufficient condition‘for a successful execution of phase two is that

all units are allocated, This phase would therefore terminate when

all units have been optimally allocated or where such allocation is
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not possible due to perhaps the use of a very small o in phase one,
Termination will occur after an exhaustive effort for a possible
feagible allocation has failed,

The following considerations are applied for the execution of

phase 2,

3.3,1 i) Constraints

Phase two is principally concerned with,the application of the
set covering theory discussed in section 1.9.§ of chaptef one,

The following constraints are therefore:necessary for the set up
of the problem based on the requirements of the partitioning problem,
a) Preservation of Political boundaries:

Using the notation given there to express the present problem,
the set T is the set of units (constituencies), the set P is the set
of possible groups, that is the set of all groups satisfying the criteria
which have been described, Each Pj is then a subset of the set I, Pj

is most easily defined by a matrix Aj the elements of this could be

defined by
Aij = Pi’ the population of unit i, if i is in the set Pj'
A, , = 0 otherwise,
1]

So that the total population of the ith group, defined by the

set P, is
J

However it is easier to consider the equivalent matrix produced
by dividing the ith row by Pi’ that is
8., =1141f 1 is in the set P,
1] J

a,.

1]

The requirement for a cover is the determination of X, such that

0 otherwise,
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Xj = 1 if j is in the cover
X,
3
where we now require

0, Otherwise

i=1, ..., n

ij=L ...., 8
Because of the equality requirement of thé constraint and theggé}and
%\2?} nature of the all integef and implicit énumeration algorithms
respectively, the above was substituted with the following for the
all integer and vice versa for the implicif‘enumeration.

A, X, &1 ' | (1)

;e Ko &-l o S an k| (2)

b) Singularity of representation

Furthermore, single member groups were éonsidered, hence each
group must have one and only one representative and there must be only
5 representatives'for the area under consideration, Hence.the follow~

ing constraint was necessary to guarantee that-

This was also converted to two inequality constraints thus:

X, & 5 (3
3=1
and
i’ X & -5 | (4)
=1

With these two most important requirements guaranteed it was

certain that depending on the objective, whatever cover that resulted
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from the solution of the above would certainly be feasible and optiﬁal.

To show how large this seemingly small problem could be in practice,
a = 0,15 yielded a 60 x 100‘matrix while o = 0.10 yielded a 60 x 74 matrix
corresponding t°N§9wSREEE5??REEﬁand 100 variables, and 60 constraints
and 74 variables respectively, The number of groupings and hence
variables could be twice as much but as mentioned in section 3.2.3
the search could be limited and hence the number of groupings.

The next chapter has an example of a phase 2 set-up for groupings
with‘a = 0,15,

Having considered the major constraints, the next task is to
consider the available objectives and choose that which we intend to
use,
ii) Objective - population only

Since it is desirable to have a plan that ensures equitable
apportionment, hence the populations of the group in the optimal plan
should be as near the 'electoral quota' as.much as practicable,

‘The following objective should then be adequate,

'S . '
Min § C. X, - ' (5)
=1 37

j=1,....8 (set of possible groups)

la~]
[
i}

population of group j

ot
il

- P electorate quota,

where Cj = P(j)
This acceptability measure which is in fact the deviation of group j

from the electprate quota derived absoluteiy would certainly gﬁarantee
the production of the optimal plan strictly based on population nearness,
The calculation of this acceptability measure is a function of phase one.
The result obtained with population nearness as the.main objective is
adequately discussed in the next chapter,

iii) Objective - including political information

The program was designed among other things to determine the
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'winning potential' of each of the major political parties.

'Winning potentiai' in this sense means the probability that a party

would desire a particular arrangement as opposed to another because of

the likelihood of winning more seats with one arrangément than the other,
Some of the advocates of bi-partisan 'districting' recommend that

boundary commissioners bé drawn from members of the major pariies that

have been holding a balance of power in the particular country,

Fur thermore they are the ones who would approve or disapprove. any

proposed plan, |

An objective which included political information was applied,

The objective was derived as follows: Let Pj,(j=l,....,n) be pop. units.
Let ai,(j=1,....,n) be the percentage of people who voted for
party M in the previous electionm, Then
s :

_.Z: Pjaj 100 would be the percentage of voters for party M
R I -

i M
in group j. Let H

Im

¥ ox, %)

Hence by maximising =i

one is in effect ensuring party M the optimal number -of seats, Clearly,
a plan reulting from this ﬁype of objective would if most cases reflect
a vivid example of gerrymandering in practice,
By including this gerrymandering objective it is possible to
predict the type of plans each of the parties would desire most,

The other objective could be a combination of both the nearness

in population objective and the political bias objective, Hence
C.X,
33
and 100
1

=1, ...., 8 (set of groups)
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S ' |
Then max ;_-/% + min z:: ’I\-‘ (7)

j=1

=m1n{ f*g‘/(f‘ + j=1"LJB (8)

This objective would produce a parameter map, one that considered both
a parties winning potentials and the nearness of the populations of these
groups to the electorate quota,

With a corresponding winning potential index as described in phase
one step§, The second phase of this algorithm was executed using

the above two types of objectives, The results are in the next chapter,

3.3.2 Phase two algorithm

At the conclusion of phase one there resulted an (N X S) matrix
aij’ where aij =1 4if unit i is in group j and a;j‘= 0, otherwise, The
problem was therefore constrained as discussed iﬁ‘section 3.3.1 and the
appropriate objective function chosen, Both the objective function
and the constraint coefficients are functions ofvphase one,

Consider the following set up: ' | o i

g ‘
?;a Cj Xj . | (1)
where c, = \P(j) - 13! i =1,...,52100(for a=0.15)
P(j)= Pop. of group j.
P = electorate quota,
Subject to
= x4 7] ) 2)
Fr ) |
) :
(one of each)
S, _ . )
%:—;1 xj{é,’ﬂ 5 ) (3)
: )
{%L j?;} 1 (29 of these) (4)

and

ﬁ: 2‘: 7} T (29 o8 thes‘e): (5)
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1,....,S (number of groups,
100 for€d=0. 15, etc.)

X, = 1, Op~- 46D j

#

Xj = 1 if group j is accepted i

X,
J

1,....,N (number of units involved).

0 otherwise,

?{é;”:Z{} the exact sign used depends on the method employed,

Thevébove was for the population objective function, eacﬁ objective
function that was used called for a slightly different set up.with
respect to the objective function, Also for each o, o = 0,15, 0.10,
0.8, 0,5, and 0.2, a totally different set up resulted siﬁce the number
of groupings changed, hence the Xj representing the variables changed,
thus for o = 0,15 therg were 100 st (variables), and 74 st (yariables
for a = 0,10 and so omn, The number of constraints for this particular
set of units remained at 60, Two constraints were to ensure that
exactly the desired number of seats were allocated, while the reﬁaihing
58 ensured that each unit was allocated to only one group,

The problem Qas solved via two techniques which took advantage of
the set covering set up as discussed in section 1.9.6 of chaptér one,

The techniques were the implicit enumeration technique and Gomory's

cutting plane method enhanced by the stronger Wilson's cut.

Method One:

(i) Implicit enumeration

As can be seen, the set up of the problem portrays it as an integer
linear programming problem covered in section 1,5 of chapter one, It |
is in fact a bounded integer programming problem of the sét partitioning
type hence it yields itself to the solution techﬁiqge known as implicit
enumeration,

Sections 1.9.3 to 1.9.5 of chapter one have the theory behind
this technique. I shall present _ the techniQue as used coﬁputa-
tionally.

In order to apply this technique to the problem, I adapted a program
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originally written by Plane D.E, and McMillan, C, Jr. (1971) and
conditioned it to solve problems of this size and nature Since it was
originally intended for very small problems, |
To arrive at feasibility in a good time the following techniques
were employed,
a) All constraints were put in the form Gi 7 a constant say O
for this case,
b) All coefficients in the objective function were restricted to
zero or & positive number,

Consider the following sets:

S = set containing subset of all variables completed by the assign-
ment of O, and 1. Any variable not assigned a value at S is a
free variable, Also at SK say, Xj = 1 appears as j while Xj=0
appears as ~-j hence for n = 4, and § = {]#: -é}, then x. = 1, x_ =

1 3

while x2 and x4 are free variables,

et of violated constraints, hence VK = set‘offviolated constréints
: '§hen partial solution SK is completed by setting to zero all free
‘ variables,
T = set of free positive variables (have posit., coefficients in one
or more constraints), Hence TK in VK'
X = set of current optimal sol,
7Z = value of f when oby. funcfion is evaluated at i.

The algorithm specifically compares feasible solutions as they are
enumerated in search of the optimal,
With the above sets in mind I éhall now present the algorithm
diagramatically in the twelve steps that it goes through, At the end
of the steps below, the problem of allocating all the units to their
respective groups must have been accomplished,
This method is highly recommended for the partitioning problem,

The reasons will be discussed in the next chapter,
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Step 1
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Start

Let X = 0, If feasible, problem is
solved, if not; determine Z - f at X=1
for all X, Determine upper bound of f
or use data supplied upper bound if

smaller, Find coeffic
|variable, L=

ient sum for every

Step 2

Determine V,(set of
viol.) when S has a
tion fqr all variabl

constraints
zeéro comple

es not in S,

Step 3
h
Is V empty?

Step 9

Completes S by letting all
variables not in $=0; hence
1£.Yes ,jcurrent solution ¥. Deter-

I£ No

“Imines value of obj. func,
at ¥ hence value of 7,

Step 4 i’
. Determines f,, value of f wh
partial solugions S has a
zero completion for variab
not in S, Let obj. func,co
limit = Z - fp,

en

les
ef f

Step 10

LY

Step 5 J,

pr

ocates’ the rightmost positive
element in S, replaces it with

its complement (negative) and
drops any elements to the righ
lement = variable), »

Stores all variables in T
which are not in S which hav
@) Obj.func,coeff, less than
the limit of & - fp and
b) A positive coeff, in some
constraint in V.

e

I£f No

Step 6

3

Is T empty? 1£f Ye

Step 11

If No If N
Step 7 .

“le

re all variables in §
/ negative :

l

(o]

Determine whether every cons
in V can be made feasible by
adding only Var, in T.

traint

If Yes
Step 8

If Yes

dét to G the variable in T
with the greatest coefficient

Step 12

sSum,

Terminates, Current solution
is optimal sol, if no current
sol, then,yjany better than
that corresponding to the best
known upper bound of (1)
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The above description covers the 12 steps that are involved in the
execution of phase 2 via implicit'énumeration.

I shall add that at step 3 if V = ¢, then step 9 associated with
its objective function value defines a possible cover with all the
units allocated, It may not necessarily be the optimal cover,

The program for'this technique is in Appendix 3.

ii)  Gomory's method:

The problem was also solved via Gomory's method (section 1,9.1) and

‘enhanced by the use of Wilson's cut as discussed in chapter one, section .

1.9.2,

The problem was set up as discussed in section 3.3.2.

The aij apd bi are all integers‘while the Cij are non-negative
integers, Cj corresponds to the coefficients of the objective function

while the aij correspond to the constraint coefficients.’(j =1,....,8)
(i =1,....,n)

In particular the aij are 0's and 1l's,
The resulting (MX1) X N matrix must be lexicographically positive, hence
the first non-zero element in each column must be positive,
After the abo&e setwup which is similar to the set up- in section 3.3.2
execﬁtion was carried out in the following Steps.
Step 0,
Starts with an all integer matrix Ao.
Step 1,

It selects from . < 0 (i=1,....n+m) the row that has the

smallest i, hence the generating row, .But if aio 20 (iél,....,n+m)_

then the‘problem is solved.

Step 2,
Select ﬂ.)o according to the techmique discussed in section
1.9.2, chapter one about deriving Wilson's cut and add the

derived row to the bottom of the tableay,
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Step 3.

Invoke the dual simplex method, This is similar to the simplex

technique diéCussed in chapter one, sections 1,6 and 1,7, There

relationship is as discussed in section 1.8 of the same chapter.

The only difference is that it first decides what variablevis

to leave the basis, and then decides on the variable to enter

the basis. It drops the pivote row after performing the dual

simplex step and returns to step 1. |
iii)i_ Both techniques are good but I recommend the implicit enumeration
teéhniﬁué because of a few advantages enumerated which makes
.it‘#egyVSuitable for a problem of this nature,

Frbm the discussion in sectionbl.7 and section 1,9.5 of chapter
one and also section 3.3.2 (i) of this chapter it is noted that when
once an thimal solution is found, that is,if it is impossible to
improve the objection function value both methods terminate; whereas
it is desirable to have more than one optimal solﬁtion for a problem
of this type, It is possible in fact to have two optimal plans but
this next plan cannot be picked up since the programs terminate if the.
next available solution (plan) is not better than the current, whereas
it is our intention to consider all plans of equal optimal value;
nevertheless, the existence of a solution of equal importance can be
investigated by perturbing the objective function values for‘the cﬁrrent
optimal solution, Hopefully, if another optimal,plén exists except
the one already available it will be picked up.
I shall discuss briefly some other consideratiors before giving

the results in the next chapter,

3.4 ~Other considerations

Compactness:

The compactness objective was considered but was not specifically
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used for this program, Consider the following:
¥, - e, -, | (9)
J J
Where L,k = maximum length of group j
1
and Wj = maximum of width of group j
also consider B = (ij/wi) (10)

where Lj and wj are as defined above,
It is possible that 25; and Bj would provide a possible measuyre of the
compactness of group j, hence a possible objective that could take care

of compactness would be the following,

ming 5= Xx, + sEc.x, (11)

S S '
min X, o+ C.X, 12
gz;;:lBJJ Zz:lJJg - (12)
J 3 o
The above objectives are certain to produce a plan with an assured
equitable arrangement. It is indeed very useful for countries that

have very wide geographical areas like the U.S.A,

ii) flanning for political victory

Those who are working strictly for political victory can ‘use (3)
as the objective where maxééél ?m Xj — 3)
or for a clearer assurance of victory the phase one algorithm should
have the following:
let d; = population of voters of unit i who are'in a desired party,
Then let wj = 1 if Qﬁj d;'7'Pj/2 where Pj is the p0piof group j and

Wj = 0 otherwise,

In phase one therefore, each time a group is generated, a calculation
as to the controlling power of a partybis made via the following

constraint,

Yo owxw oz, 04Z & n
7=1 J ]
This will have ap effect similar to the index calculated in this program
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for phase one but would differ in that it is not a constraint to

guarantee the generation of any particular set of group complexion.

iii) Alternate phase one technique:

The efficient execution of the algorithm depends on the generation
of enough possible groupings in phase one that could result in an
optimal plan for phase 2,

An efﬁé@ieywﬁ technique for generating all possible groupings from

a given set of units Pi’ i=l,....n in phdse 1 would be as follows:
Let P €T =P, (t =1,...,M) €(i =1,....,n) such that
P B, (£=1,....0

and VPt;B a path between Péi and PtK which implies that PtK is conn~
ected to ;very Ptiﬁ P.. |
With Py, as centre generate all possible combinations of Py, and
other elements of Pt which satisfy the population criteria, In practice
every element in I will in turn be treated as a PtK i.e., as a centre,
A1l the possible combinations generatéd ﬁOuld in effect form
groups which would be within a defined range of population, contiguous
and above all as compact as practicable, Phase two would then make
the most equitable allocation with respect to the above criteria, The
resulting optimal plan would in effect be the best possible,
The above arrangement is highly recommended for apportioning the
usual small size constituencies of the Housé.of Commons and the Councils,
The units un this case should be the cenSU; enumeration districts,
A better result will be guaranteed if a grid is placed over a map and
the grid cells used as the population units, . The size of the units
for the'EurOpean Assembly problem discouraged the.use of the above
technique, nevertheless it was tried out,
The above could bg used for any size of state, Theére. will never-

theless be a lot of manual work supplying the original input data
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otherwise it is as straightforward as the algorithm just presented,
A slight adjustment of the phase one algorithm in Appendix 2

could also be used for this alternate technique,

I shall now present the solutions to the earlier problems in

the next chapter,
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CHAPTER FOUR

RESULTS

The results of the work discussed in éhapter 3 will now be given
and discussed,

In section 4,1 the performance of thé phase one algorithm des~
cribed in sections 3.2.2 and 3.2.2 is analysed; in particular the
variation of the number of acceptable groups with ¢ is demonstrated,

- In section 4.2 is described the results of the two methods of
implementing phase two, In section 4,3 the optimum groﬁping for the
population objective is given, In section 4,4 is shown the effect of

using & more general objective including political considerations.

4,1 Phase one results

o = allowable Pj = aij groups Time in seconds
5:5;22;256 formed, (possible)
15% 100 distinct possible - 1,715 seconds
groups ,
10% ‘ 74 distinct possible 1.562 seconds
‘ groups )
8% 60 distinct possible 1.6 seconds
groups .
5% 41 distinet possible - 1.459 seconds
groups '
2% 26 distinct possible 1.37 seconds
groups

The result of phase one was S (groups) column vectors satisfying a set

of criteria, S = aij, unit i is in group j (or column vector j),

The above is a brief analysis of the performancé of phase one algorithm,
It is clear therefore that as « increases the number of possible

groups formed increase because of the wider range of acceptable popu-

lation deviation allowed and the time also increases, The result of

the above would be that for « large a greater chance for gerrymandering

exists than for « small,

*
Also for o = K §?Kf, a = K would contain all the groupings that
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*
are in ¢ = K , hence a larger o« gives a wider choice of selection in

phase two, For small « it may not be possible to obtain a solution

to phase two at all, see section 4,1.1, It is therefore recommended to

use a large o and then use phase two to select the best plan from it,

.« -and number of groups for n = 29 (units)

167«
15¢
144
13
12F
? 11'l
o=k 10f
. oL
8
] 74
6
[
i +4
3-.
2
14
10 20 30 40 50 60 70 80 90 100 110
J
where Pj, =1, 2, ... is an acceptable group
satisfying a given set of criteria,
Figure 1. "
L#'d' ' PoPulaFion a = K% No, of groups Pj T%me'for'oPtimal cover
objective via implicit enumeration
| 15% 100 247,325 seconds
10% 74 61. 721 seconds
8% 60 50, 53 seconds
5% 41 30, 721 seconds
2% 26 No cover

st
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The time varies for different objectives, hence different ob-
jective function values will involve slightly different paths, It
was observed that the optimal plan for the‘pOpulétion objective was the
same for all the aé that produced a cover, It was different for the
political oEjective which involved gerrymandefing, hence more scope for

gerrymandering with a large o than a small a.

4,2 Phase Two: Performance of the two techniques.

(i)  The results obtained from the 2 methods of implementing phase
two show that as mentioned in chapter 3 the implicit enumeration
technique is preferable for the following réasons,

1) Addition is the only arithmetic operation, and therefore
it would be possible to handle the allocation of a very large
area with very many units,

2) Assuming the programme terminates prematurely due to computer
time or otherwise, perhaps one of the'pértial solutions could
be adequate and satisfactory since as it pfogresses it lists
all the partial solutions and for the adaptation made only
possible solutions are listed, |

3) The possibility of monitoring the impliciﬁ‘enumeration cal-
culations exist and this could help one to carry out informed
stopping rules and opportunistié implementation should the
number of variables and constraints be very large,

4) Groups of solutions are consideredbat any one fime and enumer~
ation is done implicitly instead of egpiiCitly in which éase
the 2" solutions are not enumerated and}a,lot of time is
thus saved.

5) Because of the possibility of having more than one possible
solution at any one run it has an added‘advantage o&er Gomory, s

method which has only one solution, the optimal solution, It
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is therefore very much suited to this type of problem,

6) Where termination occurs without a cover hence no possible
solution, implicit enumeréfion technique canvprovide a possible
direction towards a manageable plan by reference to the different
partial solution§enumerated during the search for a possible
solution whereas Gomory's technique will provide none,

ii) Gomory's method enhanced by'the stronger Wilson's cut generally
carried out the allocation in a much shorter tiﬁe_than the implicit
enumeiation technique, The result waé usually restricted to the
optimal plan and was therefore a single solutipn.

Although the time was generally ﬁuch shorter by using this method
than the former yet the addition of onevof more constrajnts in search
of some other solution could increase the time greatly and in most
cases execution could terminate without a solution.

It ﬁas not possible to monitor the steps during execution or sarry
out informed stopping rules and 0pportuni$tic implementation, |

It seems therefore that despite thé'fastness of the above technique
yet thévimplicit enumeration technique is bréferablé fbr this type of
problem,

iii) The result is a vector X, (xj = 1, if group j is selected to be
in the plan and Xj = 0 otherwise), The implicit enumeration technique
would usually give the solution as a set of vectoré X, Xj = 1 if group
j is in the plan and Xj = 0, otherwise; where phe first vector refers
to the first possible plan, then the next, until the optimal plan is
reached, Each plan has the associated objective function values which
indicate the superiority of'one plan over the other,

An example of the solution after an implicit enumeration approach

to the problem with population as the only objective is given,
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4,3 ' Results with population objective ohly

The optimum plan for the population objective is shown on Plan A,
for the ébove result.(For Plan A see pp. 83;)

It is interesting to note that the maximum percentage population
deviation from the electorate quota is 3.447% while the minimum is 0,34%
and the average percentage deviation is 2.03%;

Contrasting the above with Plan Al which was the initial plan provided
via thé enumeration technique with a maximum deviation of 13,04% and a

minimum of 0,05% and an average of 5,38%, This improved to the plan

shown on Plan A2, with a maximum deviation of 10, 75%, and a minimum of

0.34% and an average of 4,29%, And finally the above optimal plan with

a maximum deviation of 3.447%, minimum deviation of 0.34% and an average

deviatio?l of 3.44% as mention‘ued abow}e. (F‘Bgez;}pl;%?:x;l?&%]; and A2 See pages 85 ;a,miﬁf.‘lf‘
1t was observed that for a given objective there could exist more than

one optimal plan with exactly the same objective function value yet thé fwo

techniques whose performance were discussed in thellast section were unable

to piék up alternative and yet equally good'piaﬁs from a set of possible

groupings. Usually termination occﬁrred whenever an optimal plan was

found and if there did not exist any other plan that c0uldbimprove upon

the objective function value of the current 0ptimai plan, As mentioned

briefly in chapter 3, section 3.3.2 (iii); the theory of implicit enumer-

ation and the set covering theory of chapter one and the discussion on the

methods of solving integer linear programming problems of the same chapter,

section 1,9 gave rise to that problem, This could be overcome by per tur-

bing the objective function values of the current optimal plan to check for

the existencé of another plan with exactly the same objective function values,
Also since T used a = 15%, 103,8%, 5% and 2% respectively one'w0u1d

have been temptéd to conclude that o = 5% is the minimum that can produce

the optimal cover yet the result shows that o = 4% can produce a cover; in

articular o = 3,44% can produce a cover, Hence minimum o to produce an
P p

optimal cover is o = 3,447,
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Final Plan - Population Objective Only,

o= 157 TN

Group = P, Population of Group - P, Percentage deviation of Group -
' J J P from electorate quota - P
I 517,633 1.647%
11 508, 140 3. 44%
1o 543,186 3.21% B
Ay 528,065 0. 34%
v 534,344 1.53%

Average percentage deviation from the electorate quota for

all groups = 2,03%.
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lst Plan - Population Objective Only,

o= 157@ LQN ﬂz:

Group P, Population of Group ~ P, Percentage deviation of Group
J ] Pj from the electorate quota

I 526,588 0.05%

11 511,927 2.72%

I1I 528,267 0.37%

v 594,911 13.047%

v 469,675 10. 75%

Average Percentage deviation from the electorate quota for all

groups = 5,38%
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2nd Plan ~ Population Objective Only, a = 157, PLaN Ag '

Group Pj Population of Group = P‘j‘ Percentage deviation of Group

Pj from the electorate quota - P

I - 575,949 9,437
11 529,412 0.59%
111 528,267 , 0.37%
v 528,065 ' 0.34%

\Y 469,675 - 10, 75%

Average Percentage deviation from the electorate quota for all

the groups = 4,29%.
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4.4  Political objective only

The affect of using a political objective was observed for

a = 15%. The following plans, Plan C (see pp. 95), and Plan B (see pp. 90)

summarises the effects when apportioning on strictly political consider-
ations,

Plan B (see pp. 90) shows fhe effect of allocating units for the
benefit of the.lab0ur party, hence guaranteeing labour a maximum of 46%
overall votes.,  This would guarantee labour two groups with over 50%,
another two with over 40%, Thié grouping is possible at the detriment
of the population objective which will cause overall 10.28% population
deviation with a2 maximum deviation of 13.80%vand a minimum of 1,53%
deviation,

letting p = population objective and Cﬁ,= political objective,

For p = O the above holds and for ) = O the condition in the previous

plan, Plan A (see pp, 83) holds.
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Final Plan - Labour Party Consideration, a = 15%

Group P, Population of Expected Percentage Percentage deviation
J Group -~ P, of voters for Labour, of Group P, from the
J ‘| electoratelquota -~ B,

I 584,904 45% 11.14%

Ir 453,611 58% 13.80%

TIX ' 463,588 51% . 11.90%

v 594,911 33% _ 13.04%

\ 534,344 43% » 1.53%

Average Percentage of Votes expected from all the groups = 46%.

Average Percentage population deviation from the electorate quota
for all the groups = 10,28%.
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The following units shifted from their allocation in Plan A
(see pp, 83) to the allocation in Plan B (see pp. 90) due to change in
the objective from strictly population consideration to labour party

consideration, See mar 2. PP 92.

Tynemouth and Blaydon shifted from II to I,

2
Hexam shifted from I to IV,

Ca
o
o
o
[e)

%o Chester~-le-Street shifted from III to II,

(S Ne
o

6 ©°
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ii) ‘Plan C (see pp, 95), shows the effecf of using a conservative
party'oriented objective and the consequent plan therefore, The results
show that with such a plan the conservative party would have two group=~
ing;iﬁ%out 40% - 49% in this labour dominated area aﬁd two groupings
with about 36% - 38%. The plan would guarantée the conservative party
an overall 38,6% votes to the detriment of the population objective
which will have an overall 8,58% shift with a.maximum of 12,76% and

a minimum of 0. 34%deviation, The effect of this objective is con-
trasted with the population objective in Plan A (see pp, 83),

iii)  The above discussions are not the ultimate in the procedure

but it is desirable to see the plan from the point of view of the major
political organisations; nevertheless the ﬁopulation objective would

normally provide the most equitable apportionment,
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Final Plan ~ Conserxvative Party Consideration.

a = 15% EL&M &

Group P,| Population off Expected Percentage Percentage deviation

J Group ~ P, of voters for Conserv-~ | of Group P, from the

J atives, ' electorate quota =~ P}
I 593,434 36% 12, 76%
II 570,247 30% 8.35%
TIz 469,947 38% 10, 70%
v 528,065 49% 0.34%
v 469,675 40% 10, 75%

Average Percentage of wotes expected from all the Groups = 38,6%.

Average Percentage population deviation from the electorate quota

for-all the Groups = 8, 58%.
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The following units shifted from their allocation in Plan A
(see pp. 83) to the allocation in Plan C (see pp. 95) due to change
in the objective from strictly population consideration to Conservative

party consideration, $€e& mAl 4. pp §7

¥ Tynemouth shifted from IT to I,

\ .
\ Richmond (Yorks).shifted from V to III.
pe oo , .
O;’ ) Consett and Chester-le-Street shifted from
0 0001  TII to II. , -
(2P 00

%
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4.5 Conclusions

Non-partisan political constituency apportionment has been a
major problem whose solution is necessary for the legitimacy of a
democratic system of government,

A survey of the previous approaches to this problém clearly shows
that a lot has been done and a lot still needs to be done in order to
solve the problem totally, A few of‘the earlier techniques have the
disadvantage of being inexact, A few of them also fail to optimise
any objective function and hence do not guérantee the production of
an optimai plan, The problem of getting rid of non-cbntiguous plans
~ seem to be general and hence a few of the earlier works include human
scanning for the elimination of non-contiguous grouPS. They neverthe;,
less have an advantage of running fast in'the computer;

. The technique that I have presented in this work is a practicable -
method, It involves little time and effort and after the initial input, it
does not involve human scénning to determine an optimal plan or a non-
contiguous plan, It can be applied to a stgte of any size when once f
the necessary data for phase one has been sﬁpplied no more human inter-
vention is hecessary. The data for phase two is a function of phase
one and the production of the optimal plan is a function of phase two,

I shall like to.sﬁggest that using population as a criteria for
acceptability, the lower limit of percentage population deviation to
be used should be 5% while 157 should be the upper limit. The groups
generated in phase one using such a% would certainly provide a satis-
factory plan for most areas,

The algorithm would provide a' much more interesting result if
smaller population units are used for the allocation of say the Council
wards or House of Commons constituencies,

The algorithm could still be improved with regards to the automatic



merging of phase one with phase two; when that is accomplished I claim
that the electoral boundary partitioning problem can be satisfactorily

and objectively solved by this method,
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APPENDIX 2,

Phase one Computer Program.
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APPENDIX 3.

Phase two Computer Program.
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