

Durham E-Theses

An investigation of the pedology of Upper Weardale, co Durham

Atkinson, K.

How to cite:

Atkinson, K. (1968) An investigation of the pedology of Upper Weardale, co Durham, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7988/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

VOLUME II

CONTENTS

			Page
Appendix	Ι	Meteorological Statistics	1.
Appendix	II	Soil Horizon Designations	4
Appendix	III	Analytical Methods	12
Appendix	IA	Profile Descriptions and Analytical Data	18
Appendix	V	Horizon Sequences	166
Appendix	VΙ	Bibliography	171

APPENDIX I: CLIMATIC STATISTICS

The copyright of this thesis rests with the author.

No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

TABLE A

Station	Grid Reference	Ht.(ft.)	Av."	Rain Days
Stanhope	NY(35)997376	860	33.1	4004
Burnhope (Grass Meres)	NY(35)825372	1850	59.7	-
Burnhope (Lodgegill Mine)	NY(35)802375	1950	65.8	spina
Burnhope Reservoir	NY(35)850391	1160	54.7	228
Wellheads Hush	NY(35)826404	1690	56.9	حنف
Laneheads (1960-61)		1450	54.2	220
Wolsingham	NZ(45)091333	600	31.8	200
Allenheads	NY(35)860453	1350	49.3	230
Nenthead	NY(35)778438	1450	45.5	229
Moorhouse (Dufton)	NY(35)758328	1850	81.2	258

TABLE B

Monthly Means of Temperature ^OF Laneheads School 1960/1961

	Maximum	Minimum	Mean
A sa mus mile	F.O. O.		
August	70.0	45.1	53.0
September	56.5	39.4	48.0
October	49.9	40.9	45.4
November	43.5	34.4	38.9
December	40.3	30.3	35.3
January	36.6	30.0	32.8
February	42.8	34.0	38.4
March	47.2	37.2	42.2
April	47.6	37.5	42.5
May	54.0	40.6	47.3
June	57.6	44.6	51.1
July	56.0	47.0	51.5

TABLE C

Soil	Temperatures Grass	Lanehead	s School	1960-61
Month	Minimum	2 11	4 11	8 **
August	41.2	53.8	53.6	53.1
September	33.1	49.3	51.2	52.1
October	36.1	46.1	45.9	bicte
November	29.8	39.2	40.1	white
December	26.4	35.3	36.2	sente
January	27.6	34.1	33.8	W/553
February	34.2	36.8	370	коби
March	32.8	39.7	40.2	41.1
April	33.9	42.4	43.2	44.O
May	35.2	48.8	48.6	49.4
June	38.7	51.2	50.8	50.9
July	41.5	53.4	51.3	53.4

APPENDIX II: SOIL HORIZON DESIGNATIONS

Systems of horizon designation are apt to be national attributes, varying from one country to another and evolving as soil methodology changes (KUBIENA 1953; SEVENTH APPROXIMATION 1960: GLENTWORTH and MUIR 1963; BRIDGES 1966).

The system used in this thesis to denote the sequence of organic and mineral horizons is that defined by the National Soil Survey Committee of Canada (1963; 1965). It does not claim overwhelming advantages of other currently used systems, but it does allow intricate subdivision of profiles and proves convenient for studies of soil genesis in a relatively small area. Not every horizon in this thesis has been subject to the rigorous chemical analysis which the Canadian system demands (e.g. oxalate extractable iron and aluminium), but some have, and the results have been extrapolated for similar horizons.

The outlines of the Canadian system, as presented by HOFFMAN (1965), are given below.

SOIL HORIZON DESIGNATIONS Conventions Concerning the Use of Designations

- 1. The capital letters A and B may not be used singly in profile descriptions but must be accompanied by the lower case suffix (Ah, Bf, Bt, etc.) indicating the estimated modification from the parent material. The capital letter C may be used alone except when the material is affected by reducing conditions or has the properties of a fragipan.
- 2. Unless otherwise specified additional lower case suffixes indicate a secondary or subordinate feature or features in addition to those characteristic of the defined major horizon. The symbol Btg, for example, indicates that in addition to the dominance of illuvial clay in the B horizon there is also evidence of strong gleying.
- 3. All horizons except AB, A and B, AC, and B and A may be vertically subdivided by consecutive arabic numbers after the letter designations. The assigned arabic numeral has no meaning except that of vertical subdivision.

Organic Horizons

Organic horizons may be found at the surface of mineral soils, at any depth beneath the surface in buried soils

or overlying geologic deposits. They contain more than 30 per cent organic matter. Three horizons are recognized.

- L An organic layer characterized by the accumulation of organic matter in which the original structures are easily discernible
- F An organic layer characterized by the accumulation of partly decomposed organic matter. The original structures are discernible with difficulty. Fungi mycelia are often present.
- H An organic layer characterized by an accumulation of decomposed organic matter in which the original structures are undiscernible.

Note 1 - If it is not possible or advisable to subdivide the organic layer it may be referred to as L-H or other combinations.

Note 2 - It may be desirable to use lower case suffixes to differentiate kinds of organic material. However, none is suggested in this thesis.

Master Mineral Horizons and Layers

Mineral horizons are those that contain less organic matter than that specified for organic horizons.

- A A mineral horizon or horizons formed at or near the surface in the zone of removal of materials in solution and suspension and/or maximum in situ accumulation of organic matter. Included are:
 - (1) organo-mineral horizons in which organic matter has accumulated as a result of biological activity (Ah);
 - (2) horizons that have been eluviated of clay, iron, aluminum, and/or organic matter (Ae);
 - (3) horizons having characteristics of 1 and 2 above but transitional to underlying B or C (AB or A and B);
 - (4) horizons markedly disturbed by cultivation or pasture (Ap).
- B A mineral horizon or horizons characterized by one or more of the following:
 - (1) an enrichment in silicate clay, iron, aluminum
 or humus, alone or in combination (Bt, Bf, Bfh,
 Bhf, and Bh);
 - (2) An alteration by hydrolysis, reduction or oxidation to give a change in colour or structure from horizons above and/or below and does not meet the requirements of (1) above (Bm, Bg).

- C A mineral horizon or horizons comparatively unaffected by the pedogenic processes operative in A and B, excepting (1) the process of gleying, and (2) the accumulation of calcium carbonates (Cca, Cg and C).
- R Underlying consolidated bedrock.

Lower Case Suffixes

- b Buried soil horizon.
- c A cemented (irreversible) pedogenic horizon. The ortstein of a Podzol, a layer cemented by manganese and a duripan are examples.
- ca A horizon with secondary carbonate enrichment where the concentration of lime exceeds that present in the unenriched parent material.
- cc Cemented (irreversible) pedogenic concretions.
 - e A horizon characterized by removal of clay, iron, aluminum or organic matter alone or in combination. Higher in colour value by 1 or more units when dry than an underlying B horizon. It is used with A (Ae).
 - f A horizon enriched with hydrated iron. It usually
 has a chroma of 3 or more. It is used with B alone
 (Bf), with B and h (Bfh and Bhf) and with B and g
 (Bfg), etc.

These horizons are differentiated on the basis of organic matter content into:

Bf less than 5% organic matter

Bfh from 5 to 10% organic matter

Bhf greater than 10% organic matter

- g A horizon characterized by grey colours and/or prominent mottling indicative of permanent or periodic intense reduction. Chromas of the matrix are generally 1 or less.
 - It is used with A and e (Aeg); with B alone (Bg); with B and f (Bfg); with B, h and f (Bfhg and Bhfg); with B and t (Btg); with Cand k (Ckg); etc.
- h A horizon enriched with organic matter. It is
 used with A alone (Ah); or with A and e (Ahe); or
 with B and f (Bfh, Bhf).
- k Presence of carbonate as indicated by visible effervescence with dilute HCl. May be used with any master horizon or combination of master horizon and lower ease suffix. Most often is used with B and m (Bmk) or C (Ck).
- m A horizon slightly altered by hydrolysis, oxidation and/or solution to give a change in colour and/or structure.

- p A layer disturbed by man's activities, i.e. by cultivation and/or pasturing. It is to be used only with A.
- t A horizon enriched with silicate clay. It is used with B alone (Bt) and with B and g (Btg), etc.
- x A horizon of fragipan character. A fragipan is a loamy subsurface horizon of high bulk density. It is very low in organic matter, it is seemingly cemented when dry having a hard consistence. When moist it has a moderate to weak brittleness. It has few or many bleached fracture planes. It is overlain by a friable B horizon.

APPENDIX III: ANALYTICAL METHODS

III A. ORGANIC SOILS

Peat samples were dug out fresh in the field and taken to the laboratory in air-sealed polythene bags.

pH was measured by glass electrode on the field sample.

<u>Water content</u> was determined by noting the loss in weight after thorough drying at 100°C.

Ash content was determined on the oven-dry sample (100°C) by ashing at 400°C for 4 hours.

<u>Nitrogen</u> was determined on the oven-dry sample (100°C) by the modified Kjeldahl procedure (JACKSON 1958)

Water samples were collected in 250 ml. polythene containers and analysed as soon as possible.

 $\underline{\text{pH}}$ was measured by glass electrode.

Ionic composition was determined after filtering through Whatman's No. 1.

 \underline{Na}^{\dagger} and \underline{K}^{\dagger} by EEL Flame Photometer using propane fuel. $\underline{Ca}^{\dagger\dagger}$ and $\underline{Mg}^{\dagger\dagger}$ by HILGER & WATTS Atomic Absorption Spectrophotometer using an acetylene/air mixture.

III B. MINERAL SOILS

All laboratory analyses were performed on the fine earth sample. The field sample was air-dried, reduced by mortar and pestle, and passed through a 2 mm. diameter sieve.

- (i) Mechanical Analysis was determined by a method used by MARSHALL (PIPER 1950), using a Bouyoucos hydrometer and pretreatment with hydrogen peroxide, hydrochloric acid, and sodium hexameta phosphate. Percentages of the mineral fractions are expressed as a percentage of the total recovered material.
- (ii) \underline{pH} was determined on a saturated paste ($\overset{*}{-}$ 1:1) using a glass electrode.
- (iii) Loss on Ignition is percentage weight loss after heating for four hours at 400°C. (V.I. STEWART, personal communication).
- (iv) Exchangeable Cations of non-calcareous samples were extracted with 1N NH₄ OAc and those of calcareous samples by a solution of BaCl₂- triethanolamine of pH 8.1 (JACKSON 1958). Sodium and potassium were determined on the flame photometer using propane gas, and calcium and magnesium on the Atomic Absorption Spectrophotometer using an acetyleneair mixture. Exchangeable hydrogen has been determined by the change in the pH of the IN NH₄ OAc leaching solution. Calcareous samples were treated by a barium chloride-trie-thanolamine solution as given by JACKSON (1958).
- (v) Organic Carbon was determined by the 'Wet oxidation' method of WALKLEY and BLACK (JACKSON 1958).
- (vi) Total Nitrogen was determined by Kjeldahl digestion

with copper sulphate and selenium as catalysts, followed by distillation in the Markham micro-Kjeldahl apparatus into boric acid.

- (vii) <u>Total Carbonates</u> were determined by overnight treatment with N/1 HCl and subsequent titration with N/1 NaOH.
- (viii) Iron Numerous methods have been suggested for the determination of iron in soils (ROBICHET 1957a, 1957b; Commonwealth Bureau of Soils 1965), the ultimate choice depending mainly on the particular iron fraction required. The methods used in the present work include:
- a) <u>Total iron</u>: by the preparation of an acid extract by boiling with hot, concentrated hydrochloric acid for 24 hours (DERTEL 1944; PIPER 1950). Iron was then determined colorimetrically by the salicylate method of SCOTT (1941).
- b) Free Iron Oxides: by the MACKENZIE (1954) modification of DEB (1950) using sodium hydrosulphite.
- c) Total Ferric Iron: a rapid method outlined in CORNWALL (1958) using thioglycollic acid.
- d) "Active" Iron Oxides: using the principles of SCHWERTMANN (1964) and the methods of McKEAGUE and DAY (1966). The writer is indebted to Mr. J.L. Nowland (Soil Survey of Nova Scotia) for bringing this technique to his notice, the value of which has been recently emphasised by AVERY (1957).

(ix) Trace elements: the determination of manganese, lead, copper and zinc by a Hilger-Watts Atomic Absorption

Spectrophotometer (WALSH 1955; DAVID 1958; ALLAN 1959;

WILLIS 1962; FISHMAN and DOWNS 1966) on the acid extract.

Instrument settings used were as follows:

	Mn	Pb.	Cu.	ZN.
Line	2795A ^O	2170A ^O	3248A ^O	2139A ^O
Lamp Current	20mA	7 mA	10mA	10mA
Slit	O.lmm	0.2mm	O.lmm	0.3mm
Flame	neutral	lean	neutral	neutral
Burner	mid	mid	mid	mid

- (x) <u>Clay Analyses</u>: clay separations performed in the manner used at the Macaulay Institute for Soil Research, Aberdeen. (MACKENZIE 1955).
- D.T.A. analysis was carried out in a Bolton D.I.T.A. Furnace with a heating rate of 10° C per minute, using calcined kaolinite as an inert reference substance.

X-ray analysis was performed on Mg-saturated,
Mg-saturated glycerol-solvated, and on K-saturated mounted
samples. The analysis was kindly supervised by Mrs. M. Kay,
Department of Geology, University of Durham, on a Philips
1010 Generator and Diffractometer.

(xi) Thin sections: prepared for fabric studies using Araldite Resin MY 750 as outlined by CATT and ROBINSON (1964).

APPENDIX IV: PROFILE DESCRIPTIONS AND
ANALYTICAL DATA

Profile 1

Blanket Peat: thick phase. G.R. NY(35)803421

Knoutberry Hill

Height 2150 ft.

40

Vegetation Mixed wet Heath

Slope

<u>Calluna-Eriophorum-Vaccinium</u>

Aspect East

with wet pools of Sphagnum-

Carex.

Weather

Cloudy, with strong wind

Surface

Extensive hummock - pool complex on peat mounds.

Erosion intense - category 5.

Land-use

Unenclosed; sheep grazing.

Face of peat mound excavated.

Depth

0-4"

2.5YR 2/0 Black damp peat with abundant roots.

Fibrous. Occasional mineral grains detectable.

Merges into

4-12"

7.5YR 3/2 Dark brown wet peat. Remains of

Eriophorum-Calluna-Sphagnum visible. Roots

common. No mineral material. Clear change into

12-20"

7.5YR 6/4 Light brown wet peat. Dominantly

unhumified Sphagnum with occasional Calluna and

Eriophorum. No live roots. Gradual change to

5YR 6/4 Light reddish brown wet peat. Mixed Eriophorum-Sphagnum peat, more humified than above. No roots visible. Resting sharply on

2.5Y 6/0 Grey sandy loam. Wet and slightly plastic. No mottles. No roots. Sharp junction with

90"+ 5Y 4/1 Dark grey bleached and leached Upper Carboniferous sandstone.

ANALYTICAL DATA

Sample No.	Depth ins.	рН	H ₂ 0	Ash	N
			% dry	weight	
001	0 0004	3.5	760	4.6	1.23
002	4-12	3.6	765	3.1	1.42
003	12-20	3.4	7.90	4.0	1.47
004	20-80	3.5	841	3.0	1.50

Profile 2

Blanket Peat: thin phase. G.R. NY(35)865433

Wolfcleugh Common

Height

1970 ft.

Vegetation Eriophorum Bog

Slope

3°

Aspect

North East

Weather

Showery

Surface

Regular. Eriophorum tussocks with occasional

Sphagnum pools.

Land Use

Sheep grazing; open ditch drainage by 18"

ditches at intervals of 60 yds.

Depth

 $0 - 6^{11}$

5YR 3/2 Dark reddish brown wet fibrous peat.

Abundant live roots. No mineral material

detectable. Gradual change to

6-24"

7.5YR 3/2 Dark brown wet Eriophorum - Sphagnum

peat. Roots common. No mineral material.

Sharp change to

24-45"

2.5YR 6/4 Light reddish brown wet Sphagnum peat.

Highly humified. Resting sharply on

45-56"+

10YR 4/1 Dark grey gleyed slope deposit.

Saturated. Clay loam. Occasional bleached

sandstone fragments.

ANALYTICAL DATA

Sample No.	Depth ins.	рН	H ₂ 0	Ash	N
			% dry	weight	
005	0-6	4.1	856	3.9	1.01
006	6-24	3.8	870	2.4	1.66
007	24-45	3.9	940	2.1	1.73

Profile 3

Basin Peat. G.R. NY(35)820411

Wellhope Burn

Height 1525'

Vegetation. Mixed wet Bog.

Juneus, Eriophorum, Polytrichum,

Sphagnum.

Slope

Weather Sunny

00

<u>Surface</u> Disturbed by preparatory draining and ditching

for tree planting.

<u>Land-use</u> Sheep now excluded by Forestry Commission fencing.

Depth

0-22" 10YR 4/3 Dark brown fibrous Eriophorum-Sphagnum

peat. Saturated. Abundant live roots in

upper twelve inches. Only occasional lower

down. Clear change into

22-38" 10YR 4/4 Dark yellowish brown pseudo-fibrous

peat. Rich in remains of Eriophorum and Carex.

Saturated. Mineral material abundant. Merges

into

38-45" 5Y 5/3 Olive silty clay with Potamogeton

remains and 10YR 4/3 Brown organic bands.

Merges into

45-54"+ 10YR 5/1 Grey sandy clay.

ANALYTICAL DATA

Sample No.	Depth ins.	рН	H ₂ 0	Ash	N
			% dr	y weigh	t
008	0-22	4.4	1308	4.3	1.42
009	22-38	4.6	1160	20.1	1.31
010	38-45	5.1	124	63.2	1.48
			Service in the consequence of th		

Profile 4

Basin Peat. G.R. NY(35)812387

Langtae Moss, Burnhope Burn

Height 1560' Vegetation Eriophorum bog,

with subdominant Sphagnum,

Juncus, and Carex.

Slope 0°

Weather Cloudy. Recent rain

Surface Cotton grass hummocks the only micro relief.

Land-use Within excluded zone of Burnhope Reservoir.

Depth

0-14" 7.5YR 3/2 Dark brown wet Eriophorum-Sphagnum

peat. Fibrous, with abundant roots. Occasional

mineral grains detectable. Merges into

14-41" 7.5YR 3/1 Very dark brown pseudo-fibrous peat.

Saturated. Phragmites remains visible. Mineral

material incorporated. No roots. Merges into

41-51" 5YR 2/1 Black organo-mineral layer. Humose

loam texture. Saturated. No mottles.

51-59"+ 2.5Y 5/4 light olive-brown massive clay loam.

Prominent 10YR 5/6 yellowish brown mottles,

irregularly distributed and in tubular form.

Occasional small bleached sandstone fragments.

ANALYTICAL DATA

Sample No.	Depth ins.	рН	H ₂ 0	Ash	N
			% d:	ry weight	
011	0-14	4.0	1264	4.9	1.03
012	14-41	4.7	958	15.1	1.54
013	41-51	4.9	108	69.4	1.00

Profile 5

Peaty flush. G.R.NY(35)873358

Chapel Fell

Height 1800'

Vegetation Carex, Sphagnum

Juncus within Eriophorum-

Calluna-Vaccinium moorland

Slope

80

Aspect

North-west

Weather

Heavy showers

Surface

Gullied with Eriophorum hummocks. Water

flowing through.

Land-use

Unenclosed; sheep grazing.

Samples from eastern edge of flush zone.

Depth

0-911

10YR 2/1 Black saturated amorphous peat.

Probably redistributed. Few roots. Occasional

incorporated Sphagnum and Carex remains. Merges

into

9-22

7.5YR 4/2 Dark brown fibrous Sphagnum peat.

Occasional roots. No mineral material.

Saturated. Clear change into

22-28"

10YR 2/1 Black humose loam. Mixture of peat

and mineral particles. No roots. No stones.

Saturated. Clear change into

28-36"+ 10YR 6/2 Light brownish grey saturated loam.

Abundant 10YR 6/8 Brownish yellow mottles.

Massive. No roots.

ANALYTICAL DATA

Sample No.	Depth ins	рН	H ₂ 0	Ash	N
			% dr	y weight	
014	0-9	4.8	1104	4.0	1.21
015	9-22	4.7	860	3.6	1.06
016	22-28	5.3	184	43.6	1.41

Profile 6

Peaty flush. G.R. NY(35)873358

Chapel Fell

Height 1800'

Vegetation No vegetation

at sampling site.

Surroundings as for Profile 5.

Slope

80

Aspect

North-west

Weather

Heavy showers

Surface

Gullied with Eriophorum hummocks. Water

flowing through.

Land-use

Unenclosed; sheep grazing.

Samples taken 3 yards to south of profile 5.

Depth

 $0 - 6^{11}$

10YR 2/1 Black saturated amorphous peat. No

roots. No observable plant remains. Sticky

surface. Merges into

6-24"

7.5YR 3/2 Dark brown Sphagnum peat. Fibrous

with occasional Eriophorum remains.

24-38"+

10YR 6/2 Light brownish grey saturated loam.

Few mottles. Massive. No roots.

ANALYTICAL DATA

Sample No.	Depth ins.	рН	H ₂ 0	Ash	N
			% d:	ry weigh	t
017	0-6	4.6	938	3.6	0.94
018	6-24	4.7	1050	4.2	0.76

Lime flush G.R. NY(35) 832434

Killhope Moor

Height 1750'

Vegetation Philonotis,

Molinia, and Carex spp.

locally within Eriophorum-

Calluna moorland.

Slope

70

Aspect

South

Weather

Cloudy but dry.

Surface

Even on edge of blanket peat

Land-use

Unenclosed; sheep grazing

Depth

0-10"

10YR 3/1 Very dark grey saturated peat.

Numerous grass and rush remains, with dense

network of roots. Very incoherent. No mineral

material. Gradual change into

10-22"

10YR 2/1 Black saturated pseudo-fibrous peat.

Remains of grasses, rushes, reeds discernible.

No live roots. Occasional limestone and

sandstone pebbles. Merges into

22-24"

5YR 3/1 Very dark grey humose loam. Wet.

Transitional to

24-33"+

5Y 4/2 Olive grey clay loam slope deposit
with occasional 10YR 5/6 mottles. No obvious
pattern in mottling. Old root channels and
occasional stone pebbles picked out. Saturated.
Massive, but only weakly coherent.

ANALYTICAL DATA

Sample No	Depth ins.	рН	H ₂ 0	Ash	N
TRICKET TO LARGE AND A CONTRACT OF THE CONTRAC			% I	t	
019	0-10	6.9	834	4.6	1.46
020	10-20	6.7	610	6.2	1.80
021	22-24	6.5	108	63.9	1.20

Lime flush G.R. NY(35)833402

Moss Moor

Height 1750'

Vegetation: Philonotis,

Juncus, Carex spp locally

within Wet Grass Heath

Slope

50

Aspect

North East

Weather

Cool and damp

Surface

Dissected by rills

Land-use

Unenclosed; sheep grazing

Depth

0-6"

7.5YR 2/0 Black saturated fibrous peat.

Dense mass of roots and plant remains. Firm.

No mineral material. Many live roots. Clear

change to

6-2011

7.5YR 3/2 Dark brown pseudo-fibrous peat.

Saturated. Occasional fine root penetrates.

Firm consistency. Merges into

20-23"

10YR 3/2 Very dark greyish brown humose loam.

Wet. Occasional small pebbles. No live roots.

Massive. Wavy lower boundary to

23-30"+

2.5Y 5/6 Light olive brown loam. Frequent
7.5YR 5/8 Strong brown mottles around included
limestone and sandstone fragments. Massive
and indurated. Wet. Old root channels but
no live roots.

ANALYTICAL DATA

Sample No.	le No. Depth ins.		H ₂ 0	Ash	N
			% 6	lry weigl	nt
022	0~6	6.4	830	5.4	1.82
023	6-20	6.6	764	3.8	1.48
024	20-23	6.2	96	70.4	1.00

Iron flush G.R. NY(35)847427

Puddingthorn Moor

Height 1700'

Vegetation Sparse Juncus

and Carex in pool complex.

Slope

160

Aspect

South-East

Weather

Light rain

Surface

Pool complex on edge of blanket peat.

Land-use

Unenclosed; sheep grazing

Profile examined on edge of pool complex

Depth

0-4"

2.5YR 4/6 Red colloidal iron deposit forming coating on vegetation and remains. Silky to touch; non sticky. No sulphide odour. Wet.

Merges into

4-7"

7.5YR 4/4 Dark brown amorphous peat with

frequent streaks of 2.5YR 4/6 Red iron colloids.

Saturated. Occasional live roots. Merges into

7-24"

10YR 3/3 Dark brown fibrous peat. Saturated.

Remains of Sphagnum and Eriophorum visible.

No mineral material nor obvious iron enrichment.

24-46"

10YR 5/6 Yellowish brown fibrous peat.

Saturated. Sphagnum-Eriophorum blanket peat.

ANALYTICAL DATA

Sample No.	Depth	рН	H ₂ 0	Ash	N	Fe ₂ 0 ₃ %
od anglesis de la companya de la com			%	dry we	ight	CORNWALL
025	0-4	3.4	684	13.4	0.93	12.4
026	4-7	3.8	8 3.6	4.9	1.04	2.7
027	7-24	3.6	982	3.2	1.21	biolipe
028	24-46	4.0	920	3.4	1.01	e some

Iron flush GR. NY(35) 813439

Killhope Moor

Height 1975'

Vegetation Intermittent

Carex and Juncus

Slope

6°

Aspect

South-East

Weather

Dry; bright sun

Surface

Hagg Complex

Land-use

Unenclosed; sheep grazing

Depth

0-3"

5YR 5/6 Yellowish red colloidal iron oxides.

Saturated, and smooth to the touch. Structureless

and incoherent. Forms cover over

3-7"

5YR 2/2 Dark reddish brown amorphous peat.

Saturated. Structureless. No mineral material.

No roots. Clear change to

7-36"

7.5YR 4/2 Dark brown fibrous peat. Saturated.

Firm. Remains of Eriophorum-Sphagnum. Clear

change to

36-43"

7.5YR 4/2 Dark brown fibrous peat. As above

but fibrous Calluna remains dominant.

ANALYTICAL DATA

Sample No.	Depth ins.	рН	H ₂ 0	Ash	N	Fe ₂ 0 ₃ %
	-		% d	ght	CORNWALL	
029	0-3	4.2	120	56.4	0.4	39.4
030	3-7	3.5	860	5.9	1.04	6550
031	7-36	3.6	.7.90	5.4	1.23	essa
032	36-43	3.4	840	6.1	0.98	essee

Sub-peat Gley

G.R. NY(35)875355

Chapel Fell

Height

1975

Vegetation Eriophorum-Calluna

moorland

Slope

30

Aspect

North-West

<u>Land-use</u>

Unenclosed; sheep grazing

Depth

49-0"

Wet blanket peat

0-3"

10YR 3/3 Dark brown organo/mineral horizon with common 10YR 2/2 Very dark brown vertical organic streaks. Wet humose loam. Occasional small sandstone pebbles with bleached edges and internal areas of iron accumulation.

Merges into

3-12"

5Y 6/8 Olive yellow clay loam. Wet. Massive. Frequent 7.5YR 6/8 Reddish yellow mottles and stainings along old root channels. Sandstone fragments, bleached and incoherent, with mottling on stone-soil interface. Few dead roots. Merges into

12-18"

5Y 4/1 Dark grey clay loam. Stone free.

Massive. Saturated. Rare ochreous mottles.

No roots. Clear change into

18"+

10YR 5/1 Grey clay loam solifluction deposit.

Damp and indurated. Frequent sandstone

fragments.

			Mech	nanical	Analy	sis %		
Sam No	ple	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
03	3	0-3	12.9	30.4	28.5	28.2	3.6	43.2
03	4	3-12	27.2	18.8	28.1	259	3.9	19.1
03	5	12-18	24.9	22.3	22.4	30.4	4.1	6.1
03	6	18-22	230	24.1	19.7	33.2	4.8	1.9

(CONTRACTOR CONTRACTOR	Sample	I	Exchar m.	ngeabl	Le Cat	tions	% Base	00	8		
CANCEL COMMON CO	No.	Ca	Mg	Na	К	Н	Total		Car-	Nitro- gen	C/N ratio
***************************************	033	0.34	0.24	0.21	0.68	47.14	48.61	3.03	28.2	1.32	21.4
Checkery same property	034	0.47	0.26	0.04	0.19	12.46	13.42	7.15	10.3	1.08	9.5
Managerities between	035	0.63	0.62	0.21	0.30	15.45	17.21	10,23	3.2	0.64	5.0
e in the second	036	1.21	0.69	0.10	0.22	12.11	14.33	15.49	0.8	0.24	3.3

Sub-peat Gley

G.R. NY(35)809441

Killhope Moor

Height

20501

Vegetation Eriophorum Vaccinium-

Calluna moorland, recently

planted with pine seedlings.

Slope

70

Aspect

South-East

Surface

Gully dissection of peat

Weather

Cloudy and damp

Land-use

Experimental forestry enclosure

Depth

62-0"

Saturated Blanket peat

0-4"

10YR 2/2 Very dark brown humose loam with

faint ochreous mottling along old root channels.

Sub angular blocky structure. Firm consistency.

No live roots. Clear boundary to

4-10"

10YR 5/2 Grey brown sandy clay loam. Many

distinct 7.5YR 5/6 Strong brown mottles.

Frequent medium and large sub angular sandstone

fragments. Medium angular blocky structure.

Occasional fine dead roots. Merges into

10-22"

10YR 5/1 Grey clay loam. Many distinct fine and medium 10YR 5/6 Yellowish brown mottles. Occasional medium weathering sub angular sandstone fragments. Weakly developed medium prismatic structure. Plastic and sticky. No roots. Merges into 5Y 5/1 Grey clay loam with many 5 YR 5/8 Yellowish red mottles and ochreous stainings along old root channels. Occasional medium and large sub angular and tabular weathering sandstone fragments. Well developed coarse

prismatic structure. Plastic and sticky.

Rare dead fine roots.

22-28"+

		Mecha	nical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
037	0-4	21.0	24.3	35.3	19,4	4.5	32.3
038	4.10	16.0	29.1	25.4	29.5	5.1	3.4
039	10-22	17.1	25.3	29.2	28.4	4.8	2.1
040	22-28	16.1	29.2	33.4	21.3	5.2	1.3

A TOTAL PROPERTY OF THE PARTY O	Sample			ingeal		ations		% Base	%	%	
TO COMPANY AND A STATE OF THE PARTY OF THE P	No .	Ca	Mg	Na	K	H	Total	Satu- ration		Nitro- gen	C/N ratio
	037	0.35	0.14	0.32	0.62	52.41	53.84	2.56	15.4	0.98	15.7
orange property and the second	038	0.87	0.20	0.06	0.03	27.23	28.39	4.09	2.3	0.74	3.1
SECTION AND PROPERTY.	039	L.46	0.31	0.20	0.04	11.40	13.41	14.99	1.4	0.04	35.0
National Association of the Control	040	3 - 42	0.21	0.18	0.06	9.80	13.67	28.32	1.1	0.02	55.0

Sub-peat Gley with pan G.R. NY(35)884356

Chapel Fell

Height

1925

Vegetation Wet grass heath

on blanket bog

Slope

10°

Aspect

North

Weather

Drizzle

Surface

Gullied

Land-use

Unenclosed; sheep grazing

Depth

34-0"

Blanket peat

0-4 "

10YR 5/2 Greyish brown loam with many shale and sandstone fragments. Occasional 10YR 6/8 Brownish yellow mottles. Coarse and distinct.

In upper part 10YR 3/4 Dark yellowish brown

humic stainings. Massive structure.

Sticky and plastic. Many dead roots. Irregular

clear boundary to

4-4111

Thin iron pan with root mat above. Cemented

and hard.

41-18"

10YR 5/8 Yellowish brown loam with many

shale fragments. Medium blocky structure.

Slightly sticky and moist. No roots. Merges

into

18-28"+

10YR 5/6 Yellowish brown slope deposit.

olestation (september)			Mecha	nical				
- Commence of the Comment of the Com	Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рΗ	% Loss on Ignition
CORPECTOR NO MONOTONIO CONTRACTOR	041	0-4	37.2	12.4	36.6	13.7	4.5	11.4
Partering and Partering Street	042	44-18	25.2	14.3	43.0	17.5	4.6	3.2
	043	18-28	24.6	15.7	42.3	19.0	5.1	1.9

			ngeab .e./l	le cat OOg	% Base	9,	0,			
Sample No.	Ca	Mg	Na	K	Н	Total	•	Car-	_	C/N ratio
041	2.13	0.44	0.36	0. 13	29.35	32.41	9.44	6.8	0.61	11.1
042	2.37	0.25	0.18	0.20	28.00	31.00	9,67	2.1	0.32	6.6
043	3.16	0.62	0.29	0.32	19.90	24.29	18.08	1.3	0.16	8.1

Sub-peat Gley with pan G.R. NY(35)814443

Killhope Moor

Height 2125

Vegetation Eriophorum-

Vaccinium-Calluna moorland

Slope

16°

Aspect

South

Weather

Dry and warm

Surface

Gullied peat

Land-use

Unenclosed; sheep grazing

Depth

23-0"

Wet blanket peat

0-12"

5YR 3/3 Dark reddish brown wet loam. Frequent
5Y 5/2 Olive grey mottles. Many sub angular
sandstone fragments. Coarse prismatic
structure, picked out by humus staining.
Sticky. A few roots penetrate. Resting on
irregular.

12-12 11

Thin iron pan. Concretionary and incoherent.

122-28"+

5GY 5/1 Bluish grey wet clay loam slope

deposit. Many small angular and sub angular

sandstone fragments. Massive and compact.

Plastic and sticky. Occasional dead root with

fine iron oxide staining.

()			Mecha	anical	Analys	is %		gademias, politiere (injectors, growinkin sopres princip une filosophis di depeter de dia di la post common di
	Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
o illustrascopologicas consecutados tentros	045	0-12	40.0	19.2	25.4	15.4	4.8	1.6
# CONTRACTOR CONTRACTO	046	12½-28	24.9	24.1	33.6	17.4	5.0	0.3

TOTAL MARKET THE PROPERTY OF T	Camalo	Е	xchan	geabl m.e./	e ca 100g.		% Base	0	0,0		
	Sample No.	Ca	Mg	Na	K	Н	Total	Satu- ration	Car-	Nitro-	C/N ratio
	045	0.29	0.31	0.27	0.05	11.42	12.34	7.46	2.2	0.13	16.9
-	046								0.5	0.05	10.0

Sub-peat Podzol G.R. NY(35)870349

Chapel Fell

Height 2075

Vegetation Eriophorum-

Calluna moorland.

Slope

40

Aspect

North-West

Weather

Dry; snow lying

Surface

Incipient gullies

Land-use

Unenclosed; sheep grazing

Depth

28-011

Wet Blanket peat

0-4"

7.5YR 3/2 Dark brown humose sandy loam.

Damp. Occasional small angular sandstone

fragments. Weak crumb structure. Many fine

and medium roots. No mottling. Clear

change to

4-7"

10YR 3/3 Dark brown sandy loam. Friable

and loose. Weak crumb structure. Occasional

roots. Damp. No mottling. Transitional

horizon. Merges into

7-14

7.5YR 4/4 Brown sandy loam. Compact and

massive. Breaking down into medium crumbs

and clods. Many angular and sub angular

weathering sandstone fragments. No roots.

No mottling. Merges into shattered and bleached

Carboniferous sandstone below.

		Mecha	nical	Analys	is %	gentralektirakturungi empikk kilopot (2-22), manu	
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
047	0-4	41.7	33.6	12.4	12.3	4.8	11.9
048	4-7	41.1	32.9	12.8	13.2	50	7.8
049	7-14	41.3	24.5	14.3	19.9	5.1	3.6

Sample			ngeab .e./1	le car	tions		% Base	0,	%		
No.	No. Ca Mg Na				Н	Totals		Car-	Nitro- gen	C/N ratio	
047	0.93	0.82	0.35	0.21	12.64	14.95	15.45	5.9	0.32	18.4	
048	0.41	0.21	0.26	0.24	9.47	10.59	10.58	4.1	0.19	21.6	
049	0.04	0.12	0.12	0.09	6.81	7.18	5.16	1.0	0.08	12.5	

Sub-peat Podzol G.R. NY(35)820448

Killhope Law

Height 2150' Vegetation Eriophorum-

Vaccinium-Calluna moorland

Slope 2⁰

Aspect South

Weather Windy and dry

Surface Severe gully erosion

Land-use Unenclosed; sheep grazing

Depth

33-0" Wet blanket peat

0-6" 10YR 2/2 Very dark brown sandy loam with

prominent 10YR 5/1 Grey speckles. Damp.

Massive, breaking down to weak sub angular

blocky structure. Occasional small angular

sandstone fragments up to 2" diameter.

Occasional roots. No mottling. Clear

change to

6-10" 7.5YR 6/8 Reddish yellow loam. Compact and

massive. Breaks down with difficulty to

medium sub angular blocky structures. Strong

with angular and sub angular sandstone

fragments. No observable mottling. Clear

change to

10-2211

10YR 6/4 Light brownish yellow sandy loam. Slightly indurated. Strong. Angular fragments of Carboniferous sandstone up to 3" diameter. Moist. No roots. No mottling. Merges into

22"+

10YR 7/2 Light grey loamy sand matrix within shattering sub angular sandstone fragments.

Moist. No mottling. Merges into solid bedrock sandstone below.

Company of the last			Mecl	nanical	Analy	sis%		
republished household belands in protected	Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
WHICH THE PROPERTY OF THE PROP	050	0-6	41.4	45.9	8.6	4.1	4.2	4.9
enticosecomoposicos estab	051	6-10	42.7	42.4	9.6	5.3	4.6	0.8
	052	10-22	36.0	47.3	12.3	4.4	5.0	0.2

Sample]		ngeabl m.e./]	% Base	0,0	90	<u>.</u>			
No.								Car-	Nitro- gen	C/N ratio
050	0.10	0.21	0.05	0.01	12.40	12.77	2.90	1.6	0.07	22.9
051	\$000 *	0.19	0.03	0.02	6.72	6.96	3.45	Miller	•==	PROSIA
052		0.13	0.02	0.02	4.31	4.48	3.80			

Sub-peat Podzol with pan G.R. NY(35)832443

Westend Moor

Height 2030

Vegetation: Eriophorum-Calluna

moorland

Slope

50

Aspect

South

Weather

Light drizzle

Surface

Occasional gullies

Land-use

Unenclosed; sheep grazing

Depth

33-0"

Surface blanket bog

 $0 - 6^{11}$

5YR 5/2 Reddish grey sandy clay loam with

5YR 3/2 Dark reddish brown patches. Moist.

Massive, with medium prismatic structure.

Many old root channels. Many small sandstone

fragments. Sharp change to

 $6 - 6 \frac{1}{4}$ "

2.5YR 5/8 Red iron pan. Passes through

included stones. Resting sharply on

61-9"

7.5YR 5/6 Strong brown sandy clay loam.

Massive. Breaking down to variable blocky.

Many included Carboniferous sandstone

fragments. Merging boundary to

9-18

10YR 4/2 Dark grey brown sandy loam slope deposit. Massive. Abundant sandstone fragments. Moist. Merging into shattered sandstone.

		Mecl	nanical	Analy	sis %		удан өртілік мійнетін жейін марін ұнасқындың жәде қорық Анарақсы Анараксы бастықтар астанады.
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рΗ	% Loss on Ignition
053	06	23.2	17.3	39.4	20 1	3.5	5.8
054	61-9	359		24.7	24.3	3.7	
	·						2.4
055	9-18	46.5	22.5	16.9	14.1	40	0,.9

Sample			ngeab		itions		%Base	0/0		
No.	Ca	Mg	Na	K	H	Total		Car- bon	% Nitro- gen	C/N ratio
053	0.32	0.41	0.03	0.04	20.72	21.52	3.72	2.4	0.23	10.4
054	0.09	0.31	0.05	0.02	19.95	20.42	2.30	2.1	0.06	35.0
055	0.10	0.28	0.02	0.01	9.20	9.61	4.27	0.7	0.04	17.5

Sub-peat Podzol with pan G.R. NY(35)845428

Puddingthorn Moor

Height 1850'

Vegetation Mixed wet

heath (Calluna-Eriophorum-

Juncus-Deschampsia-Polytrichum)

on blanket peat.

Slope

110

Aspect

South-East

Present weather

Showery

Land-use

Once enclosed; now rough moorland for sheep

Surface

Occasional gullies

Depth

36-0"

Fibrous Eriophorum-Calluna blanket peat

0-11"

10YR 4/2 Dark grey brown loam with numerous

bleached sand grains and sandstone fragments.

Massive and slightly sticky. Friable.

Occasional roots. Humus stains towards the

base. Moist. Sharp boundary to

11-14"

5Y 4/1 Olive grey silty loam. Saturated.

Massive. Sticky. Occasional manganese

flecks. Sharp irregular boundary to

14-14-

Thin iron pan.

141-29"

5YR 4/8 Yellowish red loam containing abundant

angular and platy shale fragments. Increasing in frequency with depth. Many pores.
Friable, slightly sticky. Merges into
Weathering shattered shale.

29"+

- 64 -

		Mecl	nanical	Analy	sis%		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
and in the second secon							n Markana Markana katangan kat Katangan katangan ka
056	0-11	19.6	27.3	33.4	19.7	4.6	7.3
057	11-14	10.7	21.0	46.2	22.1	4.9	3.4
058	144-29	20.1	21.6	38.4	19.9	5.3	3.5

Sample	Ez		geable e./100		% Base	0,0	90			
No.	Ca	Mg	Na.	K	H	Total		Car-		C/N ratio
										٠.
056	1.32	0.51	0.09	0.02	15.61	17.55	11.05	4.3	0.05	86.0
057	0.08	0.60	0.01	0.04	9.34	10.07	7.25	2.0	0.04	50.0
058	1.42	0.50	0.01	0.03	7.23	9.19	21.33	1.7	0.01	170.0

Non calcareous ground water gley G.R. NY(35)981433

Stanhope Burn

Height 1025'

<u>Vegetation</u> <u>Juncus</u> patches

within improved pasture.

Slope

30

Aspect

South-East

Weather

Dry and sunny

Land-use

Improved pasture for hay

Depth

0-10"

10YR 4/3 Brown sandy clay loam. Damp. Weak crumb structure. Many medium and fine roots.

Occasional earthworm. Occasional sub angular sandstone pebble. Merges into

10-28"

5Y 5/1 Grey clay. Saturated. 10YR 5/4
Yellowish brown mottling around fine sand
patches. Massive structure with faint
prismatic tendency. Followed by old root
runs and 5B 6/1 Bluish grey colouration.
Occasional sub angular sandstone pebbles.
Merges into

28-36#+

5BG 5/1 Greenish grey clay with rare 10YR 5/3 Brown mottles. Saturated. Massive with occasional vertical fissures and old root channels. Stones rare.

		Mecha	nical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
059	0-10	35.0	16.4	16.5	32.1	6.0	7.5
060	10-28	13.3	19.2	31.0	36.5	6.3	5.5
061	28-36	21.3	10.3	39.1	29.3	6.7	4.3

Sample		xchang m.e	geable e./100		ions		% Base	06	%	
No.	Ca	Mg	Na	K	Н	Total	(Car-	1 -	C/N ratio
059	9.21	0.41	0.13	0.13	6.31	16.19	61.03	3.1	0.49	6.3
060	12.34	2.10	0.19	0.32	3.02	17.97	83.19	0.8	0.06	13.3
061	16.21	3.42	0.23	0.31	3.21	23.38	86.27	0.3	0.03	10.0

Non-calcareous Ground Water Gley G.R. NY(35)941433

Rookhope Burn

Height 1000'

Vegetation Pasture species

for hay

Slope

00

Aspect

Weather

Recent heavy rain

Land-use

Improved pasture for hay

Depth

0-12"

10YR 2/2 Very dark brown humose loam. Wet. Sub angular blocky structure. Occasional rounded and sub angular shale and sandstone fragments. High organic matter content.

12-25"

2.5Y 5/2 Grey brown sandy clay loam. Wet.

10YR 5/6 Yellow brown diffuse mottling.

Earthworm tracks. Merges into

Firm. Ferruginous staining around old root channels, occasional sandstone fragments, and occasional vertical fissures. Weak prismatic

structure. Merges into

25-32"+

5YR 6/2 Light olive grey clay loam. Saturated.

Massive. Compact and sticky. No roots. Stones rare.

			Mechanical Analysi			sis %		
AND THE PROPERTY OF THE PROPER	Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
	062	0-12	260	26.3	32.5	15.2	5.2	15.4
Mediandifonies	063	12-25	32.1	26.4	18.3	23.2	5.5	4.1
TANKS AND THE PARTY OF THE PART	064	25-32	25.1	24.3	25.7	24.9	6.1	3.2

Sample	Е>	chang m.e	geable ./100	% Base	%	0,				
No.	Ca	Mg	Na	K	H	Total		Car-	Nitro- gen	C/N ratio
						·				
062	5.41	0.98	0.32	0.89	10.42	18.02	42.18	6.3	1.03	6.1
063	6.32	0.96	0.41	0.06	5.32	13.07	59.30	1.2	0.42	2.9
064	4.75	3.21	0.23	0.08	3,10	11.37	72.74	0.9	0.05	18.0

Peaty Gley

G.R. NY(35)905434

Redburn Common

Height

14501

Vegetation Wet Grass Heath.

Eriophorum, Juneus, Nardus

Slope

70

Aspect

South-West

Weather

Recent heavy rain

Land-use

Unenclosed moorland; sheep grazing

Depth

0 - 811

10YR 3/3 Dark brown surface peat with penetrating grass roots. Wet, compact but friable.

Occasional earthworm. No stone fragments.

Merging lower boundary to

8-11"

10YR 5/2 Greyish brown clay loam. Wet.

Massive, breaking down to medium blocky on

handling. Organic staining from overlying

peat in upper section. No faunal activity

observed. Many fine and medium roots. Several

small ($<\frac{1}{2}$ " diameter) sandstone gravel fragments.

Compact and slightly plastic. Distinct

lower boundary to

11-16"

7.5YR 4/4 Dark grey sandy clay loam. Damp.

Massive and indurated, breaking down to variable blocky. Stony, with angular sandstone flags less than 9" diameter. Several large and medium roots penetrate; channels etched out by 10YR 6/6 Brownish yellow iron oxides.

Blotchy horizon. Sandy patches around sandstones in clayey groundmass. Merging lower boundary to

16-28"+

5Y 4/2 Olive grey sandy clay. Saturated.
As above but more complete anaerobism shown in more even bluish hue. Very strong with bleached and angular sandstone flags up to 18" diameter. Generally horizontal i.e. not parallel to slope.

8,		minimization de la minimización de la companya de l	Мес	hanica	l Anal	ysis %	T.	
	Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
***************************************	065	0-8	Kerab		Mont		5.2	92.4
***************************************	066	8-11	18.8	21.6	32.4	27.2	5.6	12.1
	067	11-16	23.4	32.1	16.2	28.3	5.8	3.1
	068	16-28	239	29.8	12.4	33.9	6.1	1.0

Sample	I	kchang M.e	geabl e./10	e cat: Og	ions	obstacle experience and experience by the obstacle of the obst	% Base	%	%	C/N
No.	Ca	Mg	Na	K	Н	Total	Satu- ration	Car-	Nitro- gen	ratio
065	simo	cisia	N044	-			denia de	73.4	1.23	59.7
066	2.06	1.26	0.12	0.22	10.03	13.69	26.73	3.4	0.42	8.1
067	5.87	4.64	0.01	0.31	9.40	20.23	53.53	2.1	0.05	42.0
068	10.00	6.30	0.02	0.36	8.35	25.03	66.64	2.8	0.04	70.0

Peaty gley

G.R. NY(35)916353

Black Hill

Height

1575

Vegetation Grass heath;

Nardus-Calluna

Slope

qO

Aspect

East

Weather

Heavy showers

Land-use

Unenclosed; sheep grazing

Depth

 $0 - 5^{11}$

7.5YR 2/0 Black amorphous peat. Wet. Massive breaking down to weak crumb on handling.

Many roots penetrate. No faunal activity.

Dusting of bleached quartz grains. Merges into

5-14"

5Y 4/2 Olive grey sandy clay loam. Mottled with 7.5YR 5/6 Strong brown distinct mottles and blotches of ferric oxides. Massive, plastic. Sand fraction derived from numerous

(≤10" diameter) angular sandstone flags.

Incoherent to touch, rotting. Roots penetrate.

Merges into

14-29"+

5B 4/1 Dark bluish grey sandy clay. 7.5YR 5/6

Strong brown mottles. White bleached sandstone
fragments. More indurated, mottled, and stonier
than above. Mottles mainly along root runs and
around weathering stone fragments. Stones angular

sandstone fragments, up to 18" diameter.

Large roots penetrate.

	, alanca ya manajara sa sa sa ya ya sa	Mecha	nical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рΗ	% Loss on Ignition
069	0-5	filler	giónic	61113		5.1	84.3
070	5-14	20.9	29.3	25.6	24.2	5.4	9.2
071	14-29	20.8	28.6	19.2	31.4	5.6	2.6

Sample	E2		geable e./10	e cati Og	% Base	90	9			
No.	Ca.	Mg	Na	К	Н	Total	Satu- ration	Car-	Nitro-	C/N ratio
069		éna	NO.COSP	ena .	******	4004		72.1	1.26	57.2
070	3.02	1.01	0.51	2.61	12.42	19.57	36.53	7.6	0.61	12.5
071	2.09	0.06	0.06	0.10	8.31	10.62	21.75	1.2	0.05	24.0

Calcareous Gley G.R. NY(35)926388

Heights Quarry

Height 1200'

Vegetation Improved pasture

Slope

5^O

Aspect

South

Weather

Sunny and dry

Land-use

Improved pasture for hay

Depth

 $0 - 7^{11}$

10YR 3/2 Very dark greyish brown clay loam.

Many roots. Medium angular blocky structure.

Moist. Worms. Occasional sandstone fragment.

Clear change to

7-25"

7.5YR 4/2 Brown clay loam with included 5YR 8/1 White carbonate aggregates. Groundmass massive to weakly prismatic. Damp with occasional stones. Effervesces weakly. Lime concretions effervesce violently. Large, up to 5 inches diameter. Faint diffuse ochreous mottling in groundmass. Roots common. Clear change to

25-37"+

10YR 4/1 Dark grey clay with irregular sandy inclusions. Wet. Large prismatic structure. Few roots. Effervesces faintly. Plastic and compact. Occasional sandstone fragment.

		Mecha	nical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
072	0-7	18.1	20.3	32.4	29.2	6.1	9.4
073	7-25	14.1	17.4	40.2	28.3	7.4	6.9
074	25-37+	10.0	10.3	44.3	35.4	6.9	6.2

and the state of t	Е	Exchangeable cations m.e./100g								
Sample No.	Ca									
072	19.01	1.31	0.32	0.51	2.19	23.34				
073	39.21	3.16	0.53	0.50	doznik	43.40				
074	28.31	6.13	0.21	0.32	90046	34.97				

Sample No.	% Base Saturation	% Carbon	% Nitrogen	C/N ratio	CaCO ₃ %
072	90.62	4.3	1.20	3.6	0.5
073	100.0	1.9	0.98	1.9	9.5
074	100.0	1.6	0.52	3.0	5.0

Calcareous Gley G.R. NY(35)946368

Snowhope Close

Height 1350'

Vegetation Agrostis-fescue

grassland

Slope

90

Aspect

North

Weather

Cloudy but dry

Land-use

Improved pasture for sheep

Depth

0-8" loyr 2/1 Black humose loam. Moist. No stones.

abundant roots. Massive, breaking down to

irregular crumb and blocky structure. Clear

change to

8-10" 10YR 3/4 Dark yellowish brown amorphous peaty

layer. Sharp boundary to

10-22" 10YR 5/2 Greyish brown saturated loam. Massive

breaking into variable clods. No stones.

Effervesces strongly. Occasional 10YR 8/2 White

segregation. Particularly along old root

channels. Live, Fine roots occasional.

Merges into

22-33"+ 10YR 6/4 Light yellowish brown loam with 7.5YR 6/8 Reddish yellow mottling along old root channels. Massive. Compact. Wet. Weak effervescence. Becoming more indurated with depth.

		Mecha	nical				
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рΗ	% Loss on Ignition
general							
075	0-8	waish	40s4	NOTION .	Allegad	6.4	23.4
076	8-10	40339	Byrick	Notice	***	6.6	38.9
077	10-22	339	40.4	9.8	159	7.1	1.3
078	22-33	25.7	36.5	23.1	14.7	6.9	2.4

		E>		able cat /100g	tions							
Sample	No.	Ca	Ca Mg Na K H Total									
075		unitaria de la compositiva della compositiva del	March			and and a second	gramu .					
076		quart	nom.	Millionia		-	erold-					
077		6.91	0.56	0.03	0.12	KOVA	7.62					
078		4.62	0.63	0.09	0.75		6.09					

Sample No.	% Base Saturation	% Carbon	% Nitrogen	C/N ratio	CaCO ₃ %
075	unga yang pengapakan mendalan bida dan kelah dada da terbangga berhari Akhara di Malaya Marika da Salaya Marika Marika	10.3	0.96	10.7	40pb
076	Notes	18.9	1.07	17.7	e de de la constante de la con
077	100.0	0.3	0.04	7.5	8.0
078	100.0	3.1	0.06	51.7	2.5

Non-calcareous Surface Water Gley G.R. NY(35)922419

Lintzgarth Common

Height

1475

Vegetation Wet grass heath

Slope

10°

Aspect

North

Weather

Sunny and dry

Land-use

Once enclosed, now relapsed grass heath

Depth

0-411

10YR 3/2 Very dark greyish brown loam. Wet.

Medium crumb structure within network of many roots. Friable, with much included organic matter. Many pores and earthworm tracks.

Many verticla fissures. Few small stones.

Clear change to

4-8"

10YR 4/1 Dark grey loam. Wet. Many 2.5YR 5/4
Reddish brown district mottles. Occasional
small pebbles. Medium angular blocky structure.
Many dead and live roots, medium and fine.
Rusty mottling along old root channels.
Merges into

8-15

2.5Y 6/2 Light brownish grey sandy clay. Wet. With frequent 2.5YR 5/8 Red mottles. Medium angular blocky structure. Few roots. Little organic matter. Merges into

15-25"

2.5Y 5/2 Greyish brown clay/sandy clay.

Wet. Many 7.5YR 5/8 Strong brown ochreous mottles. Prismatic structure. Many large sub angular stones. Compact and plastic.

Occasional dead roots. Clear change to 7.5YR 4/4 Brown sandy loam with many small grit and pebble fragments. Indurated, with 2.5Y 5/0 Grey gleying along vertical fissures. Coarsely prismatic structure. Frequent shale and sandstone pebbles embedded in the matrix.

25-32"+

		Mecha	anical .	Analys	is %		
Sample No:	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
079	0-4	40.2	29.1	6.2	24.5	5.2	12.3
080	4-8	32.5	36.4	7.2	23,9	5.6	5.8
081	8-15	35.1	27.7	9.5	27.7	5.9	5.3
082	15-25	50.4	20.0	7.9	21.7	6.0	3.6
083	25-32	53.4	27.4	7.1	12.1	6.5	3.1

Sample			geable	e cati OOg	lons	ogygygggathagad o dyll gallandi to-dad y Pyriri fyr ga	% Base	0,0	%	
No.	Ca	Mg	Na	К	H	Total		Car-		C/N ratio
					Zazania kwe e ya kanga pa zerbahi ya wang ya wac				ne transpirita e merita e e e e e e e e e e e e e e e e e e e	
079	3.80	0.72	0.80	0.80	23.12	29.24	20.93	5.1	1.01	-5.0
080	3.33	0.36	0.31	0.89	19.62	24.51	19.95	1.3	0.07	18.6
081	3.08	0.27	0.65	0.17	14.91	19.08	21.86	0.5	0.06	8.3
082	3.70	0.27	0.79	0.23	9.32	14.31	34.87	0.3	0.02	15.0
083	3.08	0.27	0.71	0.19	8.32	12.57	33.81	0.2	0.02	10.0

Non-calcareous Surface Water Gley <u>G.R.</u> NY(35)888340

Swinhope Moor

Height

1775

Vegetation Wet grass heath

Slope

110

Aspect

North

Weather

Showery

Land-use

Unenclosed moorland; sheep grazing

Depth

 $0 - 7^{11}$

5Y 3/1 Very dark grey clay loam with ochreous mottles along dead root channels. Structure sub angular and angular blocky. Compact. Many fine and medium roots. Occasional large tabular and sub angular weathering sandstone fragments.

Occasional earthworms. Clear boundary to

7-14"

5Y 5/1 Grey sandy clay loam. Many distinct medium 10YR 6/3 Brownish yellow mottles, particularly around weathering sandstone fragments.

Angular blocky structure. Plastic and slightly sticky. Occasional fine roots. Merges into

14-27"

2.5Y 5/0 Grey sandy clay loam with many 7.5YR 6/8 Reddish yellow mottles. Structure coarsely prismatic. Many medium and large sub angular weathering sandstone fragments. Plastic and sticky. Merges into

27-32"+ 10YR 5/3 Brown sandy clay loam slope deposit.

Weathering sandstone fragments common. No roots. Compact and indurated.

		Mecha	nical .	Analys	is %		
Sample No•	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
084	0-7	17.3	30.7	27.0	25.0	5.6	11.3
085	7-14	15.0	30.4	23.8	30.8	5.4	43.4
086	14-27	16.9	26.9	24.9	31.3	5.2	2.1
087	27-32+	1,4.0	28.3	28.3	29.4	5.1	4.1

Sample	Exc		eable e./100	catic)g	ns		% Base	0/0	%	O /N
No	Ca	Mg	Na	К	Н	Total		Car-	Nitro- gen	C/N ratio
084	9.41	1.36	0.62	0.40	10.33	22.12	53.30	9.8	0.93	10.5
085	8.23	1.04	0.88	0.39	11.42	21.96	48.00	2.0	0.54	3.7
086	3.12	0.89	1.47	0.22	11.24	16.94	33.65	1.8	0.32	5.6
087	4.04	1.07	1.05	0.24	12.11	18.51	34.58	3.7	0.16	23.1

Peaty Gleyed Podzol G.R. NY(35)887450

Rookhope Head

Height 1700' Vegetation Eriophorum

moorland

Slope 9⁰

Aspect South-West

Weather Heavy showers

Land-use Unenclosed moorland; sheep grazing

Depth

0-11" 10YR 2/1 Black wet amorphous peat. Friable.

No stones, no fauna. Many roots. Clear change to

11-17" 10YR 6/3 Grey silty clay loam with 7.5YR 5/7

Strong brown staining. Massive, firm. Angular

and sub angular sandstone fragments. Sticky,

humic staining at top. Fine roots common.

Sharp, wavy lower boundary to

15-15¹" 5YR 2/2 Dark reddish brown thin iron pan. Clear

change to

15¼-20" 10YR 4/2 Dark grey brown loam with fine angular

shale and sandstone fragments. Weak platey

structure. Dense. Occasional fine roots.

Clear change to

20-31"+ 2.5Y 4/4 Olive brown loam with many sub angular

and angular shale fragments. Massive, becoming more

indurated with depth. Diffuse iron staining along old

root channels and around stones.

		Mecha	nical A	Analysi	.s. %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
088	0-11	-	_	-	-	4.1	56.3
089	11-17	8.3	35.4	30.4	259	4.0	9.7
090	154-20	23.2	19.8	32.8	24.2	4.6	7.4
091	20-31	31.4	13.4	33.1	22.1	4.9	4.2

Sample.	Exc	change m.e.	eable ./100g		ons		% Base	o ₀ .	%	
No •	Sampre						1	Car-	Nitro- gen	C/N ratio
088	-	-	-	-	-	-	-	35.4	2.2	16.1
089	0.92	0.37	0.51	1.21	16.72	19.73	15.26	3.2	0.61	5.2
. 090	0.31	0.09	0.03	0.87	15.42	16.72	7.78	1.7	0.03	56.7
091	0.04	0.02	0.04	1.05	17.89	19.04	6.04	0.4	0.05	8.0

Peaty Gleyed Podzol

G.R. NY(35)817405

Malakoff Edge

Height

1.8.00

Vegetation Eriophorum-Calluna

moorland

Slope

110

Aspect

North

Weather

Sunny and dry

<u>Land-use</u>

Unenclosed moorland; sheep grazing

Depth

0-8"

7.5YR 2/1 Very dark brown wet fibrous peat.

Remains of <u>Eriophorum</u> and <u>Calluna</u>. Frequent roots

8-10"

10YR 2/0 Black amorphous peat. Wet. Frequent

roots. Soft, spongy. Sharp change to

10-14"

10YR 4/2 Dark grey brown loam with common

bleached sub angular sandstone fragments.

Structureless and slightly sticky. Obvious

humus staining at top. Roots common. Sharp

wavy boundary to

14-1441

5YR 2/2 Dark reddish brown iron pan. Sharp

change to

144-23"

5YR 4/8 Yellowish red loam with abundant angular

sandstone fragments. Friable, breaking down to

irregular blocky structures. Occasional roots.

Merges into

23-28"+

Rubble horizon of weathering sandstone fragments

with some loamy infill.

		Mech	anical	Analys	is %		
Sample No•	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
092	0-8		-	_	-	4.1	73.1
093	8-10	-	-	-	-	4.2	68.2
094	10-14	27.3	22.8	23.8	26.1	4.5	6.3
095	144-23	45.6	17.9	24.1	12.4	4.5	4.2
096	23-28	48.9	16.2	24.8	10.1	4.6	1.4

		Exchar r		Le cat L00g	ions		% Base		% .	C/N
Sample No.	Ca	Mg	Na	K	Н	Total	Satu- ration	l _	Nitro- gen	ratio
092	-	-	-	-	_	-	_	49.6	1.92	25.8
093	-	-	_	_	_	-	_	40.3	1.81	22.3
094	0.71	0.32	0.09	0.21	18.41	19.74	6.74	3.1	0.26	11.9
095	0.42.	0.21	0.13	0.35	18.03	19.14	5.80	2.6	0.13	20.0
096	0.63	0.31	0.09	0.12	19.86	21.01	5.48	0.9	0.05	18.0

Iron Podzol

G.R. NY(35)902438

Redburn Common

Height

1600'

<u>Vegetation</u> Mixed Grass Heath

Agrostis, Festuca, Deschampsia,

Nardus, Juneus squarrosus,

with moss. Old Calluna clumps

Slope

12°

Aspect

South-West

Weather

Sunny and dry

Land-use

Unenclosed heath for sheep grazing

Depth

0-3"

Dense most of grass roots. Mainly live, but some dead, as mat showing no signs of humification.

Dry, firm fibrous layer, with an occasional included rabbit coprolith. Fine dusting of mineral material seen under the hand lens.

Merges into

O

3-5"

10YR 3/6 Very dark grey layer of humified organic material. Firm consistency, breaking down to medium and strong blocky and crumb structures. Fine powdering of quartz grains. Occasional included stones up to 1" diameter; mainly angular coarse sandstone fragments. Dry. Many fine and medium penetrating roots. Merging lower boundary to

5-14"

10YR 5/1 Grey loamy sand with faint humic staining from above. Massive, but breaking down to weak blocky structure. Roots common.

Several large (c10" diameter) included angular bleached sandstone boulders. Sharp and irregular change to

2.5YR 4/6 Red zone of ferric oxide accumulation.

Frequent iron concretions within main zone of deposition. Many roots, forming dense mat in places. Occasional sandstone fragments with ferric cutans.

7.5YR 5/6 Strong brown sandy loam with occasional
5YR 5/8 Yellowish red mottles. Angular sandstones
up to 4" diameter, increasing in frequency with
depth. Massive, breaking down to variable
weak aggregations.

23-32"+ 2.5Y 4/4 Olive brown colluvial layer. Stony with loam matrix. Damp. Occasional fine roots.

Indurated and compact.

		Mecha	nical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	ρH	% Loss on Ignition
097	0-3	-		_	_	4.4	93.2
098	3-5	-	-		_	3.8	42.1
.099	5-14	50.5	37.1	5.5	3.8	4.0	6.2
100	14-16	40.1	40.0	10.4	9.5	4.9	7.9
101	16-23	55.1	24.6	11.9	8.4	5.1	3.4
102	23-32	55.8	25.1	11.1	8.0	5.2	2.6

Sample	Εz		geable	e cati OOg	ons		% Base	%	%	C/N	
No.	Ca	Mg	Na	K	K H To			Car-	Nitro- gen	ratio	
097	_	-	-	-	-	-	-	50.9	0.98	52.1	
. 098	_	-	_	-	-	-	-	24.6	0.49	50.2	
099	0.30	0.23	0.04	0.11	8.04	8.74	8.01	3.6	0.10	36.0	
100	0.15	0.02	0.02	0.02	4.39	4.60	4.57	4.3	0.09	47.8	
101	0.15	0.02	0.01	0.02	3.27	_@ 3.47	5.77	3.1	0.05	62.0	
102	0.15	0.01	0.02	0.02	4.58	4.78	4.19	1.6	0.03	53.3	

Iron Podzol

G.R. NY(35)995432

Stanhope Burn

Height

1325'

Vegetation Calluna-Grass

Heath Association

Slope

110

Aspect

South-West

Weather

Light drizzle

Land-use

Unenclosed heath for sheep grazing

Depth

0-3"

Compact, firm and dry turf layer, composed of grass and heather roots. Fibrous and dense.

Mat-like appearance with little degradation.

Clear change to

3-8"

10YR 2/2 Very dark brown amorphous organic material. Massive and moist, with original plant structures destroyed. Faint powdering of quartz grains. Sharp lower boundary to

8-13"

7.5YR 3/2 Dark brown organo-mineral horizon.
Humic loam, well humified. Massive, breaking
down to medium angular blocks. Many roots
penetrate. No stones. Merges into

13-18"

10YR 5/1 Grey loam. Weak medium and large angular blocky structure. Consists of bleached material with little organic material. Firm.

Moist. Fine and medium roots. Many included

sandstones (c6" diameter), all bleached. Merges into

18-23"

7.5YR 4/4 Dark brown loam. Variable blocky structure. Friable, dry, well drained. Many included gravel fragments up to 1" diameter, coated with iron oxides. Many fine roots penetrate. Loam matrix around shale and sandstone fragments. Stones increase in frequency with depth.

23-29"

2.5Y 3/2 Very dark greyish brown colluvial material. Loam, with high stone content. Shattered shale fragments with occasional sandstone. Friable and non indurated. Occasional fine roots. Merges into

29-35"+

As above but more indurated and cemented.

		Mecha	nical	Analys	sis %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
103	0-3	-	<u>-</u>	_	-	3.9	91.7
104	3-8	-		-	-	3.7	82.4
105	8-13	-	_		_	3.9	39.6
106	13-18	31.8	27.4	13.4	27.3	4.4	5.6
107	18-23	33.6	23.6	15.7	27.1	4.8	3.7
108	23-29	33.3	25.3	12.4	29.0	4.9	3.4
109	29-35	31.2	25.2	14.3	29.3	4.8	3.2

	Ι	Exchai	ngeabl	e cati	ions		% Base	%	%	0./1
Sample No.	Ca	Mg	Na	K		1	Satu- ration	Car- bon	Nitro- gen	C/N ratio
103	_	-	-		_	_		63.7	1.47	43.3
104	-	_	-	-	-	_		60.1	1.6	37.6
105	-	-	-	-	_	-	-	24.9	0.64	38.9
106	0.36	0.24	0.13	0.0	12.57	13.30	5.49	3.1	0.09	34.4
107	0.42	0.60	0.15	0.10	19.32	20.59	6.17	1.9	0.04	47.5
108	0.31	1.23	0.15	0.15	17.20	19.04	9.67	1.8	0.03	60.0
109	0.60	1.48	0.20	0.15	12.41	14.84	16.38	1.8	0.05	36.0

Humus-iron Podzol

G.R. NY(35)983368

Bollihope

Height

1275'

Vegetation Calluna-dry grass

grass heath Association

Slope

30

Aspect

North-East

Weather

Cloudy but dry

Land-use

Unenclosed moorland for sheep grazing

Depth

0-2"

10YR 2/2 Very dark brown mat of organic matter.

Fibrous. Dry. Firm. Abundant grass roots

and Calluna remains. Porous with fine dusting

of bleached quartz grains. No stones. Merges into

2 - 5.11

10YR 2/1 Black partially humified organic

material. Massive but friable. No stones.

Damp. Fine roots penetrate. Clear change to

5-7"

10YR 4/1 Dark grey humose sandy loam. Bleached

quartz grains with incorporated organic material.

Many fine roots. Single grain structure with

with occasional weak blocky around roots. Dry.

Friable. Porous. No stones. Merges into

7-10"

10YR 6/1 Light grey sandy loam. Weakly

developed angular blocky structure. Many

bleached sandstones, tabular and angular (< 3"

diameter). Dry. Many fine roots. Resting sharply on

- 98 **-**

10-13"

10YR 2/2 Very dark brown humic loam. Dense, compact and cemented pan-like layer. Breaks down moderately on handling to give angular blocky structures. Many included humic-stained sandstones. Occasional medium roots.

Clear change to

13-20"

5YR 5/8 Yellowish red sandy loam. Compound structure, massive with weak platiness.

Occasional root. High stone content; mainly tabular sandstone, stained with iron oxides.

Merges into

20-26"

26-37"

As above but more indurated with fewer stones.

Weak platy structure. Clear change to

7.5YR 6/4 Light brown sandy loam. Weathered
sandstone material with many included stones.

No roots. Occasional iron segregations.

Stones angular and tabular, increasing in frequency to the parent rock at 37". Horizontally bedded tabular, fine grained carboniferous sandstone.

		Mecha	nical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рΗ	% Loss on Ignition
110	0-2	· _	-	_	-	3.5	94.0
111	2-5	-	-	-	-	3.7	56.5
112	5 = 7	57.5	29.0	7.1	2.4	3.8	8.0
11:3	7-10	51.5	27.5	11.1	7.1	4.1	5.7
114	10-13	46.1	26.0	11.0	3.4	ų.4	18.9
115	13-20	48.4	24.0	13.1	11.3	4.8	6.4
116	20-26	47.2	30.2	11.2	11.4	4.9	2.6
117	26-37	49.2	24.0	11.8	11.6	4.9	3.0

Sample			geable		ons.	·	% Base	0/0	%	
No.	Ca	Mg	Na	K	H	Total	Satu- ration	Car-	Nitro- gen	C/N ratio
110	-	-	-	_	_	-	-	56.7	0.85	66.5
111	-	-	-	-	-	-	-	34.6	0.60	60.9
112	0.61	0.55	0.10	0.34	36.41	38.01	4.21	4.7	0.14	33.8
113	0.15	0.14	0.05	0.09	30.75	31.18	1.38	3.1	0.08	38.4
114	0.16	0.37	0.12	0.20	50.14	50.99	1.67	12.3	0.54	22.8
115	0.15	0.05	0.05	0.05	6.32	6.62	4.54	4.3	0.05	86.0
116	0.45	0.05	0.03	0.03	7.10	7.66	7.32	1:4.	0.02	70.0
117	0.46	0.04	0.03	0.03	1.55	2.11	26.54	0.9	0.02	45.0

Humus-iron Podzol G.R. NY(35)965355

Bollihope Carrs

Height 1600' Vegetation Calluna- Dry mixed

Grass Heath

Slope 6⁰

Aspect East

Weather Cloudy but dry

Land-use Unenclosed heathland for sheep grazing

Depth

0-2" Mat of grass roots and Calluna remains. Dry.

Fibrous. Porous. Resting sharply on

2-4" 10YR 2/1 Black amorphous organic material. Damp.

Many roots. Massive, but breaking down to weak,

irregular crumb. Clear change to

4-9" 10YR 5/3 Brown loam. Small angular blocky

structure. Moist and friable. Occasional gravel

fragment. Many fine and medium roots. Clear

change to

9-13" 7.5YR 4/4 Brown humic loam. Many roots. Angular

and sub-angular blocky units. Many stained sand-

stone fragments (< 2" diameter). Friable and

damp. Merges into

13-17" 7.5YR 5/6 Strong brown loam. Well developed

angular and sub-angular blocky structures. Porous,

with many fine and medium roots. Friable.

Many small stones. Merges into

17-25" 10YR 5/8 Yellowish brown loam. Fine angular blocky structure, with many fine roots. Many small stones. Becoming paler and more indurated with depth. Friable. Merges into
25-31"+ 10YR 6/8 Brownish yellow sandy clay loam slope deposit. Many roots. Many small sub-

slope deposit. Many roots. Many small subangular sandstone and platy shale fragments.

		Mecha	nical					
Sample No.	Depth ins.	Coarse Sand			Clay	рН	% Loss on Ignition	
118	0-2	-	_	_		3≩6	72.1	
119	2-4	-	-	_	_	3.8	65.7	
120	4-9	15.6	37.4	29.7	17.3	4.0	6.4	
121	9-13	12.4	24.8	33.4	29.4	4.2	16.3	
122	13-17	14.7	37.9	25.3	22.1	4.2	6.7	
123	17-25	15.9	42.3	21.4	20.4	4.4	2.9	
124	25-31	14.2	39.8	22.8	23.2	4.7	2.1	

Sample No•	Exchangeable cations mee./100g						% Base	0,0	%	
	Ca	Mg	Na	K	Н	Total	Satu- ration	Car-	Nitro- gen	C/N ratio
118	-	-	-	_	-	_	_	53.2	0.82	64.9
119	_	-	-	-	-	-	-	49.1	0.61	80.5
120	0.88	0.12	0.10	0.05	14.17	15.32	7.51	3.8	0.42	9.0
121	1.43	0.86	0.58	0.13	33.50	36.50	8.22	12.4	0.57	21.8
122	1.03	0.57	0.50	0.10	27.22	29.42	7.48	6.1	0.32	19.1
123	1.01	0.32	0.31	0.10	28.08	29\$82	5.84	2.0	0.20	10.0
124	0.82	0.30	0.52	0.10	20.67	22.41	7.77	1.8	0.15	12.0

Podzol with gleying G.R. NY(35) 960432

Stanhope Common

Height 1450° Vegetation Calluna heath

with sub-dominant grass

species

Slope 7⁰

Aspect East

Weather Sunny and dry

Land-use Unenclosed moorland for sheep grazing

Depth

0-4" lOYR 3/3 Dark brown root mat. Becoming darker

with depth and more amorphous. Abundant

roots. Resting sharply on

4-8" 10YR 5/3 Brown loam. Variable colours, with

dark humic staining from above, and 10YR 5/2

Greyish brown mottles. Weak angular blocky

structure. Many fine roots and small sandstone

fragments. Merges into

8-11" 10YR 4/3 Dark brown loam with angular blocky

structure. Occasional roots and many small

sandstone fragments. Friable and firm. Merges into

11-20" 10YR 5/6 Yellowish brown loam. Damp and

compact. Few roots. Many sandstone fragments.

Slightly cemented. Breaks down under pressure

to give angular blocky structures. Few roots.

Merges into

20-31"+

10YR 7/6 Yellow soliflucted weathered material from Carboniferous sandstone. Compact and indurated. Loam texture with many small sandstone fragments. No roots. No mottles.

		Mecha	anical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
125	0-4	-	-	_		3.5	73.2
126	4-8	25.4	36.7	19.4	18.5	3.6	5.4
127	8-11	28.3	38.9	21.9	10.9	4.1	3.2
128	11-20	24.2	24.9	18.2	32.7	4.4	4.8
129	20-31+	30.3	29.8	17.6	22.3	4.5	3.6

Sample	Exc	hange m.e.	able /100g		ns		% Base	%	00	0.437	
No.	Ca	Mg	Na	K	H Total		Satu- ration		Nitro- gen	C/N ratio	
125	_	- .	-	-		_	· _	46.3	0.76	60.9	
126	0.81	0.29	0.13	0.21	10.87	12.31	11.70	3.9	0.31	12.6	
127	0.36	0.13	0.10	0.20	13.13	13.92	5.68	2.7	0.29	9.3	
128	0.51	0.22	0.19	0.13	22.45	23.60	4.87	3.5	0.25	14.0	
129	0.43	0.20	0.13	0.30	16.67	17.73	5.98	2.4	0.15	16.0	

Podzol with gleying G.R. NY(35)984337

Bollihope Common

Height 1250'

<u>Vegetation</u> <u>Eriophorum-Calluna</u>

association

Slope

90

Aspect

North-West

Weather

Cloudy but dry

<u>Land</u>-use

Unenclosed

Depth

0-3"

10YR 3/2 Very dark greyish brown fibrous organic layer. Roots and stocks abundant.

No stones. Moist. Clear change to

3-4"

10YR 2/1 Black amorphous organic material.

Well decomposed remains. Moist. Clear change to

4-9"

Blotchy sandy loam with 7.5YR 6/2 Pinkish grey

and 7.5YR 5/4 Brown blotches. Abundant roots.

Moist. Massive structure, breaking down to

coarse sub-angular blocky. Occasional stone.

Merges into

9#23"

7.5YR 5/6 Strong brown sandy clay loam. Damp, Friable, with blocky structure. Many fine roots.

Few stones clear change to

23-39"+

10YR 5/8 Yellowish brown snady loam. Indurated with platy structures. Few roots. Many platy sandstone fragments. Firmly embedded into groundmass.

- 107 -

		Mecha	nical A	Analysi	.s.%		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
130	0-3	_	_		-	3.5	74.2
131	3-4	_		_	_	3.5	79.8
132	4-9	20.4	27.4	35.3	16.9	3.7	6.8
133	9-23	29.5	25.3	25.4	19.8	4.3	6.9
134	23-39	27.4	26.1	30.2	16.3	4.5	4.1

Sample	Exc		eable /100g	catio	ns		% Base	0/0	0	0.421	
No.			Na	К	Н	Total	Satu- ration	Car-	%itro- gen	C/N ratio	
								54.2	0.93	58.3	
130	-	, -	-	-	_	_	-	54.2	0.93	30.3	
131	- ·	-	-	-	-	-	-	53.1	0.98	54.2	
132	0.61	0.20	0.15	0.07	14.51	15.54	6.63	5.2	0.28	18.6	
133	O 83	0.31	0.19	0.10	16.60	18.03	7.93	5.3	0.34	15.6	
134	0.53	0.24	0.10	0.10	13.32	14.29	6.79	3.2	0.19	16.8	

Sol Brun Acide <u>G.R.</u> NY(35)984399

Stanhope Burn

Height 875' Vegetation Improved

grassland species

Slope 13⁰

Aspect South-East

Weather Dry and sunny

<u>Land-use</u> Improved pasture for hay

Depth

0-2" 7.5YR 3/2 Dark brown sandy loam. Loose,

friable. Weak crumb structure. Bleached

quartz grains in evidence. Occasional frag-

ments of sandstone. Many fine roots. Merges into

2-8" 7.5YR 4/2 Brown sandy loam. Loose, friable,

and structureless with many stone fragments.

Many roots. Merges into

8-15" 7.5YR 5/4 Brown loam. Weak angular blocky

structure. Dry, with occasional fragments of

limestone. No free carbonates. Several

roots. Merges into

15-28" 7.5YR 6/2 Pinkish grey loam with many included

sandstone and limestone fragments. Compact

with angular blocky structure. Few roots.

Colluvial horizon.

		Mecha	nical .	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рH	% Loss on Ignition
135	0-2	18.2	35.8	33.0	13.0	5.2	9.2
136	2-8	26.4	35.6	21.3	16.7	5.3	3.1
137	8-15	28.1	34.8	18.1	19.0	5.5	2.5
138	15-28	.299	32.8	19.2	18.1	5.3	1.8

Sample		change m.e.	eable /100g		·	% Base	06	8		
No.	Ca	Mg	Na -	К	Н	Total		Car-	Nitro- gen	C/N ratio
135	2.91	1.43	0.57	0.61	9.32	14.84	37.20	6.1	0.74	8.2
136	1.32	0.71	0.63	0.60	5.32	8.58	38.00	1.9	0.48	4.0
137	2.19	0.84	0.76	0.42	4.39	8.60	48.96	1.6	0.25	6.4
138	1.83	0.42	0.36	0.41	5.32	8.34	36.22	0.8	0.15	5.3

Sol Brun Acide

G.R. NY(35)952418

High Brandon Walls

Height

1500'

Vegetation Calluna - grass Heath

Slope

110

Aspect

South-West

Weather

Sunny and dry

Land-use

Enclosed but unimproved heath

Depth

0-6"

5YR 3/2 Dark reddish brown sandy loam. Moist.

Friable. Medium sub-angular blocky structure.

Organo-mineral horizon with many fine roots.

Merges into

6-12"

5YR 3/3 Dark reddish brown sandy loam. Moist.

Friable. Many fine penetrating roots. Medium

blocky structure. No stones. Merges into

12-19"

7.5YR 5/6 Strong brown sandy loam. Friable but

massive. Many small (<2" diameter) sandstone

fragments. Few roots. Merges into

19-31"

As above, but more indurated and compact and

with higher frequency of sandstone fragments.

Colluvial slope deposit. Dry.

		Mechar	nical A	nalysi	5. %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pΗ	% Loss on Ignition
139	0-6	47.6	32.1	10.2	10.1	6.5	7.3
140	6-12	40.8	35.4	1 3 322	10.6	6.1	4.2
141	12-19	47.1	33.7	70	12.2	5.8	1.7
142	19-31	46.3	31.9	8.7	13.1	5.6	0.8

Sample		hange m.e.	able /100g		ons		% Base	%	%	
No.	Ca	Mg	Na	K	Н	Total	Satu- ration	Car-	Nitro- gen	C/N ratio
139	7.32	0.91	0.35	0.14	6.42	15.14	57.6	4.3	0.56	7.7
140	3.24	0.92	0.36	0.10	10.32	14.94	30.93	2 3.1	0.32	6.6
141	3.51	0.46	0.31	0.20	8.32	12.80	35.00	1.3	0.17	7.6
142	3.19	0.26	0.25	0.15	12.32	16.17	23.81	0.5	0.05	10.0

Sol Brun Acide with gleying G.R. NY(35)977375

Newlandside

Height 1050'

<u>Vegetation</u> Improved grassland

species

Slope

80

Aspect

North

Weather

Cloudy with light drizzle

<u>Land-use</u>

Improved pasture for hay

Depth

 $0 - 3^{11}$.

7.5YR 3/2 Dark brown clay loam. Well developed medium and fine crumb structure. Dry and soft. Occasional sandstone fragment. Many fine roots and pores. Intimate organic matter. Merges into

3-9"

7.5YR 3/2 Dark brown sandy clay loam. Moist.
Well developed sub-angular blocky structure.
Many fine roots and pores. Stones frequent.
Merges into

9-13"

7.5YR 4/6 Strong brown sandy clay with many large stones and boulders. Sub-angular blocky structure, becoming more compact and indurated with depth. Merges into

13-24"

2.5YR 5/3 Light olive grey brown sandy clay with abundant 7.5YR 5/8 Strong brown mottles. Fewer stones than above. No roots. Firm and indurated

Breaks down with difficulty to give variable angular blocks. Moist.

		Mecha	anical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
143	. 0–3	12.4	30.1	24.6	32:• 9	5.1	8.3
144	3-9	10.3	39.3	15.7	34.7	5.2	2.1
145	9-13	8.1	27.3	16.3	39.3	5.1	3.3
146	13-24	19.2	30.4	14.2	36.2	5.5	1.4

	Ex		geable ./100		ons.		% Base	%	% .	
Sample No.	Ca	Mg	Na	К	Н	Total		Car-	ì	C/N ratio
143	10.31	2.16	0.93	0.71	15.42	29.53	47.79	6.2	0.56	11.1
144	3.61	0.93	1.62	0.25	14.03	20.44	31.37	2.2	0.27	8.1
145	6.23	1.15	0.24	0.36	5.30	13.28	60.10	2.1	0.20	10.5
146	3.21	1.26	0.13	0.35	4.89	9.84	50.31	0.9	0.05	18.0

Sol Brun Acide with gleying G.R. NY(35)889391

Carr Brow Moor

Height 1450'

<u>Vegetation</u> Improved grass

species, plus Nardus and

<u>Juncus</u>

Slope

80

Aspect

South

Weather

Sunny and dry

<u>Land-use</u>

Improved, but relapsing, pasture for hay

Depth

0-9"

7.5YR 4/2 Dark brown loam. Moist and friable.

Medium blocky structure. Occasional small

sandstone fragments. Many roots and pores.

Clear change to

9-18"

7.5YR 5/6 Strong brown loam with weak 2.5YR 5/2

Reddish grey mottling. Moist and friable.

Sub-angular blocky structures. Occasional

large sandstones present. Fine roots penetrate.

Merges into

18-25"

As above, but more indurated and higher stone

content. Merges into

25-37

10YR 4/1 Dark grey loam with many large 7.5YR 6/6 Reddish yellow mottles. Many included small sandstone fragments. No roots. Compact and Massive. Becoming more and more indurated with depth.

		Mechar	nical A	nalysi	5 %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
147	0-9	16.1	38.7	24.0	21.2	5.6	6.4
148	9-18	15.3	39.1	22.2	23.4	5.9	3.2
149	18-25	22.1	43.4	15.3	19.2	6.1	1.0
150	25-37	22.9	42.8	13.0	21.3	5.9	0.8

Sample	Ε		ngeabl		ions		% Base	%	%	
No.	Ca	Mg	Na	K	Н	Total	Satu-	Car-	Nitro- gen	C/N ratio
147	3.90	0.56	0.21	0.10	5.73	10.50	45.43	3.9	0.32	12.2
148	2.31	0.72	0.10	0.05	6.19	9 • 37	33.94	2.5	0.21	11.9
149	204.	0.89	0.10	.07	4.39	7.49	41.39	. 0.7	0.06	11.7
150	2.02	0.82	0.06	0.05	4.29	¹ 7 • 24	40.75	0.3	0.05	6.0

Podzolised sol brun acide G.R. NY(35)968419

Stanhope Common

Height 1650'

<u>Vegetation</u> <u>Calluna</u>-Grass Heath

<u>Slope</u>

140

Aspect

South-West

Present Weather

Dry

<u>Land-use</u>

Unenclosed; sheep grazing

Depth

0-2" Dense mat of dominantly grass roots, mainly

live but some dead. No signs of humification.

Dry and fibrous. Merges into

2-5" 10YR 2/2 Very dark brown organo-mineral

horizon. Firm and massive, but with abundant

roots. Fine sandstone gravel up to 2"

diameter. Humic sandy loam texture. Clear change to

5-12" 5YR 5/4 Reddish brown loam. Massive and

compacted but not indurated. Normal

cementation by ferric oxides breaking down to

fine weak crumb structure on handling. Under

lens, coarse quartz fragments coated with

sesquioxidic ground mass. Slightly damp. Many

fine and medium roots. Common, less than 3"

diameter, shale and sandstone fragments.

Abrupt boundary to

12-19"

10YR 4/1 Dark grey dense, hard and massive slope deposit of shale fragments, approximately 1" diameter. Rotted with liberal 5YR 5/4 Reddish brown iron staining from above, particularly along the pore channels and on shale faces. Angular sandstone foreigners, up to 4" diameter included. Merges into 10YR 4/1 Dark grey compacted shale colluvium consisting of damp shale fragments. Several large, up to 17" diameter, sandstone flags.

19-29"+

		Mecha	nical .	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
151	0-2	_	_	_	_	4.1	63.4
152	2 = 5	-	_	_	-	4.2	31.3
153	5-12	33.0	23.2	28.5	15.3	4.3	4.6
154	12-19	33.8	24.5	32.3	19.4	4.7	5.3
155	19-29	21.3	21.3	34.6	22.8	4.9	3.1

Sample	Ex	chang m.e	eable ./100		ons		% Base	%	%		
No.	Ca	Mg	Na	K	Н	Total		Car-	Nitro- gen	C/N ratio	
151	_	_	_	_	-	_	_	32.1	1.03	31.2	
152	-	-	-	1	-	_	-	21.7	0.62	35.0	
153	1.32	0.26	0.05	0.12	13.61	15.32	11.61	3.2	0.13	24.6	
154	0.31	0.26	0.13	0.10	9.62	10.42	7.68	3.4	0.04	85.0	
155	0.41	0.20	0.10	0.15	10.03	10.89	7.90	2.6	0.04	65.0	

Podzolised Sol Brun Acide G.R. NY(35)893435

Wolfcleugh Common

Height 1625'

Vegetation Erophorum -

<u>Calluna</u> heath

Slope

10°

Aspect

North-East

Weather

Dry and sunny

Land-use

Walled but unimproved; sheep grazing

Depth

0-3" 10YR 3/2 Very dark greyish brown humic sandy

loam. Compact, firm and dry with many fine

and medium roots. Weak medium crumb structure.

No stones. Clear change to

3-9" 10YR 4/3 Brown sandy loam. Medium sub-angular

blocky structure. Several small sandstone

fragments. Friable. Many fine penetrating roots

9-15" 10YR 5/4 Yellowish brown sandy loam with

many small sandstone fragments. Dry. Friable.

Medium sub-angular blocky structure. Many

roots penetrate. Merges into

15-21" 7.5YR 6/6 Reddish yellow sandy loam. Many

small and medium sandstone fragments. Friable.

Angular blocky structure. Occasional fine

roots. Merges into

21-31"+ 10YR 6/3 Pale brown sandy loam slope deposit.

Many sandstone gravels and pebbles. Dry. Compact. No roots.

		Mechar	nical A	nalysi	s %			
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	ΡН	% Loss on Ignition	
156	0-3	17.2	36.8	32.4	13.6	4.3	21.3	
157	3-9	31.3	27.7	25.3	15.7	4.5	3.2	
158	9-15	32.1	26.9	29.0	12.0	4.8	2.1	
159	15-21	32.8	26.2	26.3	14.7	4.9	1.3	
160	21-31	35.6	23.4	29.4	11.6	4.8	1.2	

Sample	.]		ngeab .e./10		tions		% Base	% Car-		
No.	Ca	Mg	Na	K	Н	Total		bon	% Nitro- gen	C/N ratio
156	2.31	0.72	0.90	0.80	19.69	24.42	19.37	19.8	0.93	21.3
157	2.10	0.63	0.72	0.63	14.45	18.53	22.02	3.4	008	42.5
158	0.96	0.65	0.38	0.57	13.42	15.88	15.50	2.3	0.07	32.9
159	0.61	0.43	0.42	0.56	11.98	14.00	14.43	1.9	0.05	38.0
160	0.83	0.62	0.57	0.40	9.32	11.74	20.62	2.1	0.06	35.0

High Pennine Brown Earth G.R. NY(35)828445

Middlehope Moor

Height 2050'

Vegetation Grass Heath

Nardus-Eriophorum

Slope

20

Aspect

South-East

Weather

Dry, sunny, snow lying

Land-use

Unenclosed moorland

Depth

0-5"

7.5YR 4/2 Dark brown humic sandy loam.

Fine and medium sub-angular blocky structure.

Moist. Many small sandstone fragments.

Fine and medium roots. Friable consistency.

Merges into

5-8"

7.5YR 3/2 Very dark brown sandy loam. Massive, moist, with many included sandstone fragments.

Breaks down into structureless mass. Slightly

sticky. Rare fine roots. No mottling.

Merges into

8-20"+

7.5YR 5/6 Strong brown loam. Massive and compact, with many included sandstones.

Moist, and sticky. No roots. Incoherent

slope deposit.

		is %					
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
161	0-5	21.4	32.5	33.3	13.7	5.2	8.9
162	5-8	19.6	35.7	28.6	16.1	5.5	3.7
163	8-20+	15.4	28.4	26.4	29.8	5.3	4.4

Sample	Exc	change m.e.	able /100g		ons		% Base % % C/			
No.	Ca	Mg	Na	K	H Total Satu- ration		Car- Nitro		C/N ratio	
161	3.12	0.42	0.20	0.15	14.31	18.20	21.38	5.3	0.73	7.3
162	14.93	1.02	0.36	0.14	12.32	15.77	21.88	3.2	0.35	9.1
163	2.13	3.42	1.31	0.12	10.26	17.24	40.49	3.6	0.09	40.0

High Pennine Brown Earth <u>G.R.</u> NY(35)831358

Coldberry End

Height 2125'

Slope 4⁰

Aspect East

Weather Light Drizzle

Land-use Unenclosed; sheep grazing

Depth

0-2" 10YR 3/2 Very dark greyish brown amorphous

humus. Damp and sticky. No stones. Fine and

medium penetrating roots. Clear boundary to

2-7" 10YR 3/3 Dark brown clay loam. Damp and

Massive. Sticky and plastic. Strong with

embedded shale and sandstone fragments.

Occasional roots. No mottles, but slight

organic staining at top. Merges into

7-15" 10YR 5/6 Yellowish brown silty loam. Damp,

with many stones. Massive and indurated.

Few pores. Merges into

15-28" 10YR 5/6 Yellowish brown silty loam. Friable

and softer than above. Many small gravel

fragments. No roots. Sticky.

		Mecha	nical	Analys	is %				
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition		
164	0-2	-	n-=		· -	4.3	55.4		
165	2-7	26.6	15.9	28.2	29.3	4.3	6.9		
166	7-15	21.2	18.3	32.1	28.4	4.5	4.2		
167	15-28	22.2	17.9	34.6	25.3	4.7	4.1		

Sample	E	xchang m.e	eable ./100		ons.		% Base			% Base % %		
No.	Ca	Mg	Na	K	K H Total Satu-		Car-	1	C/N ratio			
164		_		_				37.4	0.93	110.0		
		_	_			_				40.2		
165	2.13	0.62	0.19	0.31	15.73	18.98	17.13	4.8	0.42	11.4		
166	1.32	0.31	0.10	0.20	13.21	15.14	12.75	3.2	0.09	35.6		
167	0.49	0.29	0.15	0.20	12.39	13.52	8.36	3.1	0.05	62.0		

Rendzina <u>G.R.</u> NY(35)851422 Greenfield

Height 1650'

Vegetation Agrostis,

Festuca, nettles;

<u>Sesleria</u> common

Slope

50

Aspect

South-West

Weather

Dry spell

Land-use

Enclosed pasture

Depth

0-4"

10YR 4/2 Dark grey-brown loam. Fine and medium crumb structure, becoming more subangular blocky with depth. Damp, friable. Earth worms common, roots frequent. Passes abruptly to

4"+

Blue grey Great Limestone. Well jointed and eroded to give clints and grykes. Profile examined in the fracture between a block.

		Mecha	nical				
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рΗ	% Loss on Ignition
168	0-4	15.4	26.4	26.9	31.3	6.8	27.4

Sample No.	Ca Mg Na K H Total							
168	10.31	2.92	0.32	0.41	8.32	22.28		

Sample No.	% Base Saturation	% Carbon	% Nitrogen	C/N ratio	% CaCO ₃
168	62.7	19.2	1.31	14.7	2.5

Rendzina <u>G.R.</u> NY(35)924390 Heights

Height

1300'

<u>Vegetation</u>

Agrostis-Festuca

grassland with Sesleria

frequent.

Slope

30

Aspect

South

Weather

Cloudy, but dry

Land-use

Enclosed pasture

Depth

0-5"

10YR 3/1 Very dark grey loam. Strong crumb structure. Earthworms common. Many fine

and medium roots. Dry. Friable.

Occasional bleached sand grains. Resting

sharply on

5"+

Dark Grey Great Limestone. No signs of

weathering except for shallow clint and

gryke formations

		Mecha	nical				
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
169	0-5	20.1	21.6	25.4	32.9	6.5	17.4

		Exchangeable cations m.e./100g									
Sample No.	Ca	Mg	Na	K	Н	Total					
169	12.32	2.19	0.42	0.56	6.32	21.81					

Sample No.	% Base Saturation	% Carbon %	Nitrogen	C/N ratio	% CaCO ₃
169	71.0	15.4	1.69	9.1	1.5

Brown calcareous G.R. NY(35) 851422

Greenfield

Height 1650'

Vegetation Agrostis-Festuca

grassland

Slope

50

Aspect

South West

Weather

Sunny and dry

Land Use

Enclosed pasture

Depth

0-8"

5YR 2/1 Black humic loam. Well developed weak and medium crumb structure. Friable and dry. Earthworms common. Dense network of fine and medium grass roots. Occasional small (0.5" diameter) limestone fragments. Merging lower boundary to

8-15"

10YR 4/2 Dark Greyish Brown clay loam. Massive breaking down to irregular blocks. Earthworms present. Slightly plastic to touch. Resting sharply on

15-17"

Horizon of weathered limestone fragments.

Rubble. Passes sharply into

17"

Grey Great Limestone.

ſ			Mecha	nical A				
	Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
	170	0-8	20.7					19.2
	171	8-15	16.1	21.2	27.8	34.9	6.8	7.4

	Exchangeable Cations m.e./100g								
Sample No.	Ca	Mg	Na	К	H	Total			
170 171	12.31	6.23 2.93	1.32 0.42	0.68 0.31	6.42 2.19	26.96 13.26			

Sample No:	% Base Saturation	% Carbon	% Nitrogen	C/N ratio	% CaCO ₃
170	76.19	12.4	1.08	11.5	2.5
171	83.49	4.9	0.73	6.7	1.5

Brown calcareous G.R. NY(35) 924390

Heights

Height 1300'

Vegetation Agrostis-Festuca

grassland

Slope

20

Aspect

South

Weather

Dry and sunny

Land use

Enclosed sheep grazing

Depth

0-5"

10YR 3/2 Very Dark Greyish Brown humic loam.

Prolific network of fine and medium roots.

Small and medium granular structure. Occasional

limestone fragment (up to 1" diameter).

Earthworms. Merges into

5-9"

10YR 3/3 Dark Brown loam. Small sub angular

blocky structure. Roots but fewer than above.

Occasional fragments of sandstone, limestone

and coal. Earthworms. Sharp boundary to

9-16"

10YR 5/8 Yellowish brown clay loam with

frequent 7.5 YR Strong Brown mottles. Very

Damp. Strong medium to large sub-angular

blocky structure. Firm consistency. Only

occasional roots. Merges into

16-18"

Layer of limestone fragments. Angular. Shattered.

18" +

Grey Great Limestone.

		Mecha	nical	Analys			
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	PН	% Loss on Ignition
172	0-5	21.1	26.2	25.4	27.3	6.8	21.3
173	5-9	12.7	31.3	26.8	29.2	6.4	14.2
174	9-16	8.0	30.8	27.3	33.9	6.2	7.8

0	Exchangeable cations m.e./100g								
Sample No.	Ca	Mg	Na	K	Н	Total			
172	15.91	3.72	0.42	0.56	4.57	25.18			
173	6.21	2.49	1.32	0.30	3.26	13.58			
174	4.31	1.39	0.62	0.41	3.91	10.64			

Sample No.	% Base Saturation	% Carbon	% Nitrogen	C/N ratio	% CaCO ₃
172	81.85	16.2	1.32	12.3	2.5
173	75.99	8.3	0.98	8.5	1.5
174	63.25	3.1	0.53	5.8	. 0.5

Fine Alluvial Soil G.R. NY(35)935382 Brotherlee

Height 900'

Vegetation Improved pasture

Slope

00

Weather

Drygand Sunny

Land-use

Grazing

Depth

0-6" lOYR Dark grey silty clay loam. Stone free,

friable, breaking down to sub-angular blocks.

Many fine roots. Merging boundary to

6-12" 10YR 4/2 Dark greyish brown silty clay. Faint

5YR 4/6 Yellowish red mottles. Friable, breaking

down to medium sub-angular blocky structures.

Occasional small rounded gravel fragments.

Many fine roots. Iron oxide coatings on structure

faces and along pore channels. Well defined

lower boundary to

12-18" 2.5Y 5/2 Greyish brown clay. Firm, with faint

10YR 6/8 Brownish yellow mottles. Roots common.

Fine prismatic structure. Sharp boundary to

18-32" lOY5 5/1 Grey plastic clay. Abundant 10YR 6/8

Brownish yellow mottles. No stones. Well

developed prismatic structure. Becomes more

massive with depth.

		Mec	hanica				
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рΗ	% Loss on Ignition
175	0-6	25.8	16.2	17.3	40.7	6.1	17. 0
176	6-12	20.3	17.4	18.5	43.8	5.8	13.6
177	12-18	18.2	24.4	15.1	42.3	5.8	12.3
178	18-32	18.3	21.4	15.2	45.1	5.6	9.3

Sample		Excl	m.e./	able o	% Base	<u>ه</u>	% .	C/N		
No.	Ca	Mg	Na	К	Η	Total	· ·	Car-	Nitro- gen	
175	14.95	0.71	0.12	0.25	18.60	34.63	46.29	9.3	1.03	9.0
176	5.71	0.44	0.08	0.10	18.91	25.24	25.08	7.1	0.62	11.5
177	407	0.38	0.05	0.06	15.23	19.79	23.04	6.2	0.21	29.5
178	2.28	0.25	0.04	0.05	24.13	26.75	9.80	3.9	0.18	21.7

Fine Alluvial Soil G.R. NY(35)967386 White House

Height

725

Vegetation Improved grassland

species

Slope

00

Weather

Cloudy and dull

Land use

Improved pasture

Depth

0-9"

10YR 5/2 Greyish brown silty clay loam. Free

of stones. Well developed crumb structure with

many fine penetrating roots. Merges into

9-19"

10YR 6/4 Light yellowish brown silty clay

loam. Compact, breaking down to sub-angular

blocky structures. Few roots. No stones.

Merges into

20-32"+

10YR 5/1 Light grey silty clay loam. No

roots, no stones. Damp, with faint 10YR 4/3

Brown Mottles.

		Mech	anical	Analy	sis %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
179	0-9	28.0	12.4	31.3	28.3	5.9	11.1
180	9-19	29.8	15.1	26.4	28.7	5.9	6.3
181	19-32	26.8	17.2	25.2	30.8	6.2	5.5

	Exchangeable cations m.e./100g Sample								%	%	C/N
	No.	Ca	Mg	Na	K	Ή	[otal	!	Car-	Nitro- gen	ratio
Γ	179	12.31	1.31	0.96	0.52	6.31	21.41	70.53	8.1	0.93	8.7
	180	7.23	0.81	0.84	1.03	5.32	15.23	65.07	5.3	0.21	25.2
	181	4.19	1.36	0.72	1.02	2.16	9.45	77.15	2.9	0.32	9.1

Coarse Alluvial Soil G.R. NY(35)854406

Burtree Ford

Height

1150'

Slope

00

Weather

Heavy rain

Land use

Improved pasture for stock

Depth

0-5"

10YR 3/1 Very dark grey sandy loam. Single

grain structure. Loose, stony with many sand-

stone pebbles and loose sand grains. Abundant

fibrous roots. Merging lower boundary to

5-15"

10YR 5/1 Grey sandy loam. Single grain

structure. Rounded pebbles. Occasional roots.

Sharp lower boundary to

15-32"+

7.5YR 3/2 Dark brown compact sandy loam.

Massive structure. Stony. Few roots. Many

black flecks of manganese dioxide.

		Mech	anical	Analy	sis %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
182	0-5	50.2	23.3	12.9	13.6	5.8	7.4
183	5-15	54.1	21.2	14.4	10.3	5.2	2.3
184	15-32	48.8	22.4	14.2	14.6	5.6	5.2

Sample			ngeal		ations	% Base	0/0	0/0	C/N	
No.	Ca	Mg	Na	K	Н	Total	Satu- ration		Nitro- gen	ratio
182	8.30	4.43	0.16	0.28	1.54	14.71	89.54	4.9	0.41	12.0
183	9.02	3.16	0.12	0.22	2.31	14.83	84.43	1.9	0.15	12.7
184	1.12	0.59	0.11	0.09	2.21	4.12	46.36	2.3	0.15	15.3

Coarse Alluvial Soil G.R. NY(35)900382

Huntshield Ford

Height

950

Vegetation Meadow pasture

Slope

20

Aspect

South

Weather

Light drizzle

Land use

Meadow for hay

0-3"

Surface organo-mineral horizon consisting of relatively dense root network set in 10YR 3/2 Very dark greyish brown loam mineral material. Friable, breaking down into small crumb units. Large earthworm population. Many small sub-angular stones. Dry. Merging lower boundary to

3-11"

10YR 3/3 Dark brown sandy loam. Loose and very stony. Few roots. Damp. _

11-35"

10YR 5/2 Greyish brown sandy loam.

Compact, with many included stone fragments.

Rare roots. Damp. No signs of mottling or manganese deposition.

		Mecha	nical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
185	0-3	28.3	34.2	24.6	12.9	6.6	32.1
186	3-11	43.0	35.9	12.7	8.4	5.9	4.3
187	11-35	39.7	38.2	13.6	8.5	5.8	2.9

Sample		Exchar m.e	ngeab e./100		ions	% Base	00	%	0 / N	
No.	Ca	Mg	Na	K	Ή	Total	Satu- ration	Car-	Nitro- gen	C/N ratio
185	8.10	1.36	0.32	0.41	1.50	11.69	87.17	21.4	1.90	11.3
186	3.16	0.43	0.21	0.12	0.93	4.85	80.83	3.6	0.41	8.8
187	2.94	0.56	0.20	0.26	1.03	4.99	79.36	2.1	0.18	11.7

Sandy Alluvial Soil G.R. NY(35) 863397 Wearhead

Height

1100'

Vegetation Meadow grasses

Slope

00

Weather

Cloudy and damp

Land use

Stock grazing

Depth

0-7" 10YR 4/2 Dark greyish brown sandy loam.

Friable, occasional stones. Medium sub-angular blocky structure. Occasional rounded limestone and sandstone pebbles. Roots common. Well

defined lower boundary to

7-15" 10YR 4/4 Dark yellowish brown sandy loam.

Damp and firm. Medium blocky structure. Roots

Common. Signs of earthworm activity. Merging

lower boundary to

15-23" 10YR 4/4 Dark yellowish brown loamy. Stony

with occasional 7.5YR 6/6 Reddish yellow

mottles, especially around occasional sandstone

fragments. Earthworms present. Medium

prismatic structure. Well defined lower

boundary to

23-35" 7.5YR 4/4 Brown sandy clay loam. Frequent

10YR 6/4 Light yellowish brown mottles.

Firm and massive with occasional stones.

Roots occasional. Sharp lower boundary to

7.5YR 5/6 Strong brown sandy clay loam.

Many black manganiferous concretions and weathering sandstone fragments.

		Mecha	nical	is %			
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
188	0-7	26.3	35.6	22.7	15.4	59	7.5
189	7-15	37.4	29.8	14.6	18.2	5.9	3.5
190	15-23	32.3	27.2	16.4	24.1	6.2	3.6
191	23-35	32.4	24.3	17.3	26.0	6.3	3.3
192	35 " +	29.0	30.6	21.2	19.2	6.1	3.8

Sample	EΣ	chang m.e	geable ./100		lons		% Base	Q,	00	
No.	Ca	Mg	Na	K	H	Total	Satu- ration	Car-	_	C/N ratio
188	4.20	0.30	0.09	0.06	9.31	13.96	33.31	5.6	0.54	10.4
189	3.86	0.27	0.04	0.06	5.62	9.85	42.95	2.6	0.09	28.9
190	4.73	0.36	0.07	0.09	3.32	8.57	61.27	2.7	0.13	20.8
191	4.26	0.26	0.08	0.06	3.41	8.07	57.75	2.1	0.21	10.0
192	4.04	0.17	0.07	0.07	3.41	7 .7 6	66.06	2.2	0.09	24.4

Sandy Alluvial Soil. <u>G.R</u>. NY(35) 944383 Ludwell

Height

750

Vegetation Dense hawthorn
thicket with rich grass
and herbaceous ground flora.

Slope

00

Weather

Cold and Sunny

Land use

Waste

Depth

0-7" 10YR 2/2 Very dark brown sandy loam. Friable

and stoneless. Fine angular blocky structure.

Abundant fibrous roots. Dry. Sharp boundary to

7-16" 5YR 4/4 Reddish brown sandy loam. Friable

with occasional small sandstone pebbles.

Medium sub-angular blocky structure. Infilled

earthworm channels. Abundant fibrous roots.

Sharp lower boundary to

16-36" 5YR 4/4 Reddish brown sandy clay loam.

Loose with very weak prismatic structure

tending to single-grain. Slightly stony

with fragments of sandstone. Few roots.

		Mecha	nical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
193 194 195	0-7 7-16 16-36	35.1 31.8 36.2	25.6 26.2 27.3	21.1 22.3 12.4	18.2 19.7 24.1	6.0 5.7 5.9	16.8 5.1 5.9

Sample	Ex	chang m.e	eable:/100		% Base	%	0/0	C/N		
No.	Ca	Mg	Na	K	Н	Total	Satu- ration	_	Nitro- gen	ratio
193	3.84	0.84	0.25	0.40	2.30	7.19	68.02	12.3	1.03	11.9
194	1.75	0.28	0.08	0.12	1.97	4.20	53.10	4.1	0.51	8.0
195	1.62	0.72	0.12	0.08	1.84	4.38	57.99	3.8	0.41	9.3

Whin Ranker G.R. NY(30) 851409 Copt Hill

Height

1300'

Vegetation Grasses and herbs

Slope

5°

Aspect

South-west

Weather

Bright and sunny

Land-use

Waste land round disused quarry

Depth

0-311

10YR 5/6 Yellowish brown loam. Damp organo-

mineral horizon of friable consistency.

Medium crumb structure. Abundant roots.

Occasional small (1" diameter) Whin

fragments. Angular and with brown weathering

crust. Resting sharply on

3"+

Solid Whin Sill. Little fractured and

cracked, but 7.5YR 5/4 Brown in colour due

to surface weathering.

		Mecl	nanical				
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
196	0-3	21.7	32.4	20.3	25.6	6.4	17.2

Sample			geable ./100g	cati		% Base	%	%	C / N	
No.	Ca	Mg	Na	K	Н		Satu- ration	Car-	MIT CLO-	C/N ratio
196	9.31	1.20	0.98	1.36	2.06	14.91	86.19	10.3	1.09	9.4

Whin Ranker G.R. NY(30)982392 Greenfoot

Height 700

Vegetation Grasses and clovers

Slope

30

Aspect

West

Weather

Cloudy and damp

Land-use

Waste land in disused quarry

Depth

0-2"

7.5YR 4/4 Dark brown organo-mineral layer.

Humic loam texture. Porous and friable

Small and medium crumb structure with many

fine penetrating roots. Occasional bleached

sand grains. Rests sharply on

2"+

Whin Sill. Thin skin of weathered material

round grey-black unaltered rock.

		Mecha	nical	Analys	sis %			
Sample No.	Depth ins.	Coarse Sand		Silt	Clay	рН	% Loss on Ignition	
197	0-2	21.7	28.6	22.3	27.4	6.7	24.3	

Sample	E>	chang m.e	geable				% Base		% .	C/N
No.	Ca	Mg	Na	K	H	Total	Satu- ration			ratio
197	10.32	1.04	0.56	0.82	1.92	14.66	86.91	13.7	1.08	12.7

Sandstone Ranker G.R. NY(30) 869350 Chapelfell

Height 2050'

Vegetation Thick mat of

mosses with occasional

J. squarrosus

Slope

40

Aspect

North

Weather

Cloudy with slight drizzle

Land-use

Unenclosed sheep grazing round disused quarry.

<u>Depth</u>

0-2"

10YR 2/2 Very dark brown organic material.

Wet and greasy. Significant content of

quartz grains. Massive. Rests sharply on

2-4"

10YR 4/4 Dark yellowish brown sandy loam.

Damp and incoherent. Single grain structure.

Many medium roots. Rests sharply on

4"+

Solid sandstone. Bleached immediately below

solum for depth of three inches. Then merges

into brown coloured rock.

		Mecha	inical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
198 199	0-2 2-4	- 37.5	- 38.2	- 11.9	- 12.4	4.4 4.7	73.6 7.4

Sample			nangea	% Base	%	8				
No.	Ca	Mg	Na	K	H	Total	Satu- Car- ration bon		_	C/N ratio
198	1.20	0.32	0.04	0.02	26.93	28.51	5.55	65.7	2.31	28.4
199	0.56	0.13	0.02	0.05	15.42	4.70	4.1	0.06	68.3	

Sandstone Ranker G.R. NY(30) 982371 Shield Ash

Height 1250'

Vegetation Mosses and occasional

Deschampsia flexuosa

Slope

00

Weather

Sunny and frosty

Land-use

Unenclosed moorland for sheep; signs of

'hushing' for minerals.

Depth

0-311

10YR 2/1 Black amorphous peaty organic

matter. Damp with abundant quartz grains.

Medium fibrous roots. Resting sharply on

3"+

White fine grained Carboniferous sandstone.

Massive and non fractured.

		Mecha	inical A	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
200	0-3	_	- ·			4.8	83.2

Sample	Ex	chang m.e	geable		lons		% Base	%	%	C/N
No.	Ca	Mg	Na	К	H		Satu- ration	Car- bon	Nitro- gen	ratio
200	0.83	0.40	0.05	0.05	18.23	19.56	6.80	74.6	1.19	62.7

Ironstone Ranker G.R. NY(30) 870368 West Grain

Height

1350

Vegetation Mosses and occasional

Nardus stricta

Slope

20

Aspect

North-East

Weather

Dry and sunny

Land-use

Sheep grazing

Depth

0-3"

7.5YR 4/2 Dark brown loam with high organic content. Dry and friable. Mixed structure of small sub-angular blocky and crumb units. Occasional fibrous roots. Bleached sand grains and included small gravel fragments of ironstone. Resting sharply on

3"+

Ironstone outcrop with thin brown weathering crust.

		Mecha	nical				
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рΗ	% Loss on Ignition
201	0-3	25.7	36.7	16.4	21.2	5.7	29.3

Sample	Exchangeable cations m.e./100g							0/0	%	
No.	Ca	Mg	Na	K	H	Total	Satu- ration	Car- bon	Nitro- gen	C/N ratio
201	2.06	0.32	1.02	0.41	16.23	20.04	19.02	21.4	1.31	16.3

Ironstone Ranker G.R. NY(30) 904394 Slit Mines

Height 1200' Vegetation Bare surface with

moss and occasional Deschampsia

flexuosa

Slope 2⁰

<u>Aspect</u> South-East

Weather Cloudy with slight drizzle

Land-use Waste land around disused mine

Depth

0-2" 10YR 5/4 Yellowish brown sandy clay loam.

Damp and Friable. Occasional large ironstone

fragment (up to 1" diameter). Weak sub-

angular blocky structure. Occasional roots.

Becomes slightly wetter towards the base.

Sharp boundary to

2"+ Ironstone outcrop. Thin brown weathering

crust but little fractured.

			Mecha	nical .					
Sam <u>r</u> No		Depth ins.	Coarse Sand	Fine Sand	Silt Clay		pН	% Loss on Ignition	
202	2	0-2	25.5	36.9	9.4	28.2	5.9	16.3	

Sample	-		ngeabl .e./10		ions	% Base		%	C/N	
No.	No. Ca Mg Na K H Total						Satu- ration		Nitro- gen	ratio
202	0.93	93 0.46 0.52 1.06 12.49 15.46						14.3	0.82	17.4

Tip Ranker G.R. NY(30) 825430 Broad Meres

Height 1500'

•

Vegetation Bare with

occasional lichen, moss,

and grass

Slope

00

Weather

Cloudy and damp

Land-use

Disused tip heap near old crushing mill

Depth

0-6" 10YR 5/2 Greyish brown sandy loam. Damp

Structureless, breaking down to single grain.

Many small (less than 1" diameter) sandstone

and vein rock fragments. Loose and porous.

Abrupt change to

6-17" 10YR 2/1 Black fine sand. Loose and incoherent.

Single grain structure. Vein waste material

with no roots. Slightly damp. Abrupt lower

boundary to

17-28" Grey rubble horizon consisting of medium

(less than 6" diameter) stone fragments.

Angular material with little fine earth

fraction. Mainly charred rubble from mill

workings.

28-38" 10YR 5/1 Gray fine sand. Slightly compacted but structureless, loose and friable.

Black speckles common. Occasional large (over 6" diameter) stone fragment.

		Mecha	nical	Analys	is %		
Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	рН	% Loss on Ignition
203	0-6	67.4	22.9	8.4	1.3	5.2	2.1
204	6-17	31.7	46.8	19.4	2.1	4.3	4.2
205	17-28	-	-	-	-	_	_
206	28-38	26.4	59.2	10.5	3.9	4.9	1.2

Sample				able /100g		ions	% Basé	9,0	%	
No.	Ca	Mg	Nа	К	Ή	Total	Satu- ration	Car-	Nitro- gen	C/N ratio
203	1	-	-	-		-	_	1.2	0.0	
204	-	_	_	-	_	-	-	1.7	0.32	5.3
205	_	_	-	-	_	_	-		-	-
206								0.5	0.0	-

Tip Ranker G.R. NY(30)929344 Blaeberry Burn

<u>Vegetation</u> Old <u>C. vulgaris;</u>

recently fired.

Depth

- 0-2" 10YR 2/1 Black humus layer. Charcoal and peaty humus mixture. Frequent bleached sand grains. Occasional large and medium fibrous roots. Merges into
- 2.5Y 5/4 Light olive brown silty clay.

 Compact mineral layer. Damp. Platey structure.

 Occasional roots penetrate. Many small (less than 1" diameter) weathering shale fragments.

 Merges into
- 13-26"+ As above but no roots and more compacted.

 Massive structure. Abundant weathering shale fragments.

			Mechan	ical Ar	nalysis	3 %		
	Sample No.	Depth ins.	Coarse Sand	Fine Sand	Silt	Clay	pН	% Loss on Ignition
ľ	207	0-2	-	-	-	_	4.1	81.3
	208	2-13	8.0	29.4	28.7	33.9	5.3	6.4
	209	13-26	5.5	26.4	32.4	35.7	5.9	5.2

Sample	I	Exchan	igeab] e./10			% Base	0/0	%	C/N	
No.	Ca	Ca Mg Na K H Tota							Nitro- gen	ratio
207	_	-	_	-		_		73.2	1.46	50.1
208	2.91	0.53	0.06	1.42	14.92	19.84	24.80	4.3	0.04	107.5
209	1.94	0.93	0,32	0.94	17.31	21.44	19.27	3.9	0.05	78.0

APPENDIX V HORIZON SEQUENCES

Horizon sequences are presented for the profiles described in Appendix IV. Master horizons are designated by letters and the underlying numerals give their depths in inches.

1.	L 4	F 8	F 8	F 60	C LO	R
2.	L 6	F 18	H 19	Cg 11+		
3.	F 22	F 16	Н 7	Cg 9 +		
4.	L 14	F 27	H 10	Cg 8+		
5.	H 9	F 13	H 6	Cg 8+		
6.	H 6	F 18	Cg 14+			
7.	L 10	F 12	H 2	Cg 9		
8.	L 6	F 14	Cg 3	Cg 7+		
9.	$_{\mu}^{\mathrm{B}}\mathrm{F}$	F 3	F 17	F 22		
10.	B ₃ F	H 4	F 29	F 7		
11.	F 3	Bg 9	Cg 6	Cg		
12.	F 4	Bg 6	Cg 12	Cg 6+		
13.	Aeg 4	B ₁ Fc	C 13∄	C 10		
14.	Ag 12	B ₁ Fc	Cg 15½			
15.	A ₄ e	B _F	^B ₇ F	R		

```
16.
                                                               С
  17.
                                   B
Fc
                                                               Cg
9
                    Ae
11
  18.
                                  Ag
3
                                                                             С
 19.
                                  Bg
18
                                                Cg
8+
 20.
                                  Вg
13
                                                Cg
7+
                    F
8
 21.
                                  Bgh
                                                Cg
3
                                                              Cg
12+
 22.
                   H
5
                                  Bgg
                                                Cg
15+
                                                C<sub>gca</sub>
12+
 23.
                   7
 24.
                                               B<sub>gca</sub>
                   Ah
                                                              C
gca
11+
                   8
                                  2
25.
                   Ah
                                               Bg
7
                                                              Cg
10
                                  Bg
                                                                           C
7
                   4
26.
                                                             C
5
                   Ah
                                               Bg
7
                                 Bg
                   7
                   F
                                                             ^{\mathrm{B}}\mathrm{F}
27.
                                               ^{\mathrm{B}}\mathrm{Fc}
                                 Aeg
                                                                           С
                   11
                                 6
                                                             4 4
                                                                           11+
28.
                   F
                                                             B<sub>Fc</sub>
                                               Aeg
                                                                           ^{\mathrm{B}}\mathrm{F}
                                 Η
                                                                                         С
                   8
                                                                           8 3
                                 2
                                               4
                                                                                         5+
29.
                   L-F
                                 Η
                                               А
9
                                                                                         C
9
                   3
                                 2
                                                            A<sub>e</sub>
30.
                  L
                                 F
                                               Η
                                                                           ^{\mathrm{B}}\mathtt{f}
                                                                                         С
                                                                                                       С
                   3
                                                             5
                                 5
                                               5
                                                                           5
                                                                                         6
                                                                                                       6+
31.
                  L
                                                            ^{\rm A}{_{\rm e}}
                                 F
                                                                          ^{\rm B}{}_{\rm h}
                                                                                        ^{\mathrm{B}}\mathtt{f}
                                                                                                      ^{\mathrm{B}}\mathtt{f}
                                                                                                                    С
                                              2
                  2 2
                                3
                                                             3
                                                                           3
                                                                                         7
                                                                                                       6
                                                                                                                    11
32.
                  L
                                F
                                              ^{\rm A}_{\rm e}
                                                                          ^{\mathrm{B}}\mathtt{f}
                                                                                                      С
                  2
                                              5
                                 2
                                                                                        8
                                                                                                      6+
```

					• *
33.	L-F	Aeg	Bf	Bf	С
	4	4	3	9	11+
34.	L-F	H	A eg	$^{\mathtt{B}}\mathtt{f}$	С
	3	1	5	14	16+
35.	$A_{\mathbf{h}}$	A _m	$^{\mathrm{B}}_{\mathrm{m}}$	С	
	2	6	7	13	
36.	A _h	A _m	Bm	С	
	611	6 ¹¹¹	7	12	
37.	Ah	Am	Bm	Bg 11	С
	3	6	4	11	
38.	A ₉ h	Bg 9	Bg 7	Cg 12	
39.	L-F	Ah	$^{\mathtt{B}}\mathtt{f}$	$\mathtt{c}_\mathtt{f}$	С
	2	3	7	7	10
40.	Ah	Ah		$^{\mathrm{B}}\mathtt{f}$	С
	3	6	6	6 .	11+
41.	Ah	Bm	С		
	5	3	12+		
42.	H	Ah	Bm	C 13	
	2	.5	8	13	
43.	A hca 2	R			
44.	A hea	R			
•	5				
45.	Ahca	Bca	Cca	R	
	8	7	2		
46.	A hca	A	В	Cca	R
	nca 5	4	B _{ca} 7	2	
47.		С	С		
	h 6	6		14	
48.		С			
•	¹¹ h 9	10	12		
49.	Ah		C		
ਜ ਹ•	5 5	10	17		

50.	Ah 5	C 10	C 17		
51.	A _h	B _m	C 8	C 12	С
52.	A ₇ h	C 9	C 20		
53.	A _h	R			
54.	Ah 2	R			
55.	F-H 2	A _h	R		
56.	F-H 3	R			
57.	Ah 3	R			
58.	Ah 2	R			
59.	C 6	C 11	C 11	C 10	
60.	F-H 2	C 11	C 13+		

APPENDIX VI BIBLIOGRAPHY

- 1. Alexandre, J. 1958, Ann. Soc. Geol. de Belge., 81 pp. 333-423.
- 2. Allan, J.E. 1959, Spectrochimica Acta 15 p. 800.
- 3. Andersson, J.G. 1906, J. Geol. 14 pp. 91-112.
 - 4. Ashley, G.D. 1956, Soil Survey Report No. 9.
 - 5. Ashley, G.D. 1957, Soil Survey Report No. 10.
 - 6. Ashley, G.D. 1959, Soil Survey Report No. 12 pp. 4-5
 - 7. Ashley, G.D. 1958, Soil Survey Report No. 11.
 - 8. Ashley, G.D. 1961, Soil Survey Report No. 14. pp. 4-6
 - 9. Ashley, G.D. 1966, Excursion Guide. Proc. N. Eng. Soil Disc. Group. 2.
- 10. Atkinson, K. 1963, M.Sc. thesis. Aberdeen Univ. 1963.
- 11. Atkinson, K., Roberts, B.K. 1967, Proc. Symp. B.S.S.S./ B.G.R.G., Easter 1967.
- 12. Avery, B.W. 1955, Mem. Soil Survey.
- 13. Avery, B.W. 1956, Trans. 6th Int. Congr. Soil Sci. 5 pp. 279-285.
- 14. Avery, B.W. 1963, B.S.S.S. meeting. Oxford 1963.
- 15. Avery, B.W. Proc. Symp. B.S.S.S./B.G.R.G. Easter 1967.
- 16. Avery, B.W. et al. 1959, J. Soil Sci. 10 pp. 177-195.
- 17. Ball, D.F. 1960, H.M.S.O. Mem. Soil Surv. Grt. Britain.
- 18. Ball, D.F. 1964, Abstr. VIII Int. Congr. Soil Sci. V p. 23.
- 19. Ball, D.F. 1966, J. Soil Sci. 17 pp. 148-158.
- 20. Ball, D.F. 1967, J. Soil Sci. 18. pp. 103-108.
- 21. Bear, F.E. 1964, Chemistry of the Soil. Reinhold, New York. 2nd Ed.
- 22. Betremieux, R. 1954, C.R. Acad. Sci. Paris 238 pp. 2257-8.
- 23. Black, W.W. 1959, Trans. Leeds Geol. Ass. 7 pp. 111-121.
- 24. Blanck, E., Rieser, A. 1925, Chemie des Erde 11 p. 15.
- 25. Bloomfield, C. 1951, J. Soil Sci. 2 p. 196.
- 26. Bloomfield, C.A. 1952, Nature 170, p. 540.
- 27. Bloomfield, C.A. 1953, Nature 172 p. 958.
- 28. Bloomfield, C.A. 1953A, J. Soil Sci. 4. pp. 5-16.
- 29. Bloomfield, C.A. 1953B, J. Soil Sci. 4. pp. 17-23.
- 30. Bloomfield, C.A. 1954A, J. Soil Sci. 5. pp. 39-45.

- 31. Bloomfield, C.A. 1954B, J. Soil Sci. 5 pp. 46-49.
- 32. Bloomfield, C.A. 1954C, J. Soil Sci. 5 pp. 50-56.
- 33. Blytt, A. 1882, Bot. Jb. 11 1882.
- 34. Bower, M.M. 1959, London: King's College. M.Sc. 1959.
- 35. Bower, M.M. 1960A, East Mid. Geog. 13 pp. 22-33.
- 36. Bower, M.M. 1960B, Adv. of Sci. 64. pp. 323-331.
- 37. Bower, M.M. 1961, Trans. & Papers. Inst. British Geogr. 29 pp. 17-30.
- 38. Bridges, E.M. 1966, Mem. Soil Survey. 1966.
- 39. Bryan, K. 1946, Amer. J. Sci. 244. p. 622.
- 40. Bullock, P. 1964, M.Sc. Thesis, Leeds Univ.
- 41. Burnham, C.P. 1961, M.Sc. Thesis. Univ of London (ext.) 1961.
- 42. Butler, B.E. 1959, C.S.I.R.O. (Aust.) Soil Publ. No. 14. 20 pp.
- 43. Butterfield, J.A. 1940, Trans. Leeds Geol. Ass. 5 pp. 264-284.
- 44. Cailleux, A., Taylor, G. 1954, Paris, 1954.
- 45. Carruthers, R.G. et al. 1924, Summ. Progr. Geol. Surv. Lond. pp. 80-88.
- 46. Carruthers, R.G. 1947, Proc. Yorks. Geol. Soc. 27. pp. 43-58.
- 47. Carruthers, R.G. 1948, Proc. Yorks. Geol. Soc. 27. pp. 129-172
- 48. Carruthers, R.G. 1953, Glacial drifts and the Undermelt Theory. (Privately printed). Newcastle upon Tyne.
- 49. Case, H.J. 1963, Excavations of Goodland, Co. Antrim. Northern Ireland Govt. Res. Monograph.
- 50. Catt, J.A., Robinson, P.C. 1961, Geol. Mag. 98 pp. 511-514.
- 51. Charlesworth, J.K. 1957, The Quaternary Era with special reference to its glaciation. 2 vols. London.
- 52. Clarke, G.R. 1941, The study of the soil in the field. O.U.P. 3rd Ed.
- 53. Clayden, B., Manley, D.J.R. 1964, In "Dartmoor Essays"
 Devon Ass. 1964, pp. 117-140.
- 54. Commonwealth Bureau of Soils 1965. Determination of iron in soil (1964-1955).
- 55. Commonwealth Bureau of Soils 1966. Bibliography on the Oxidation and Reduction of Manganese in Soil (1965-1940). No. 962.

- Conway, V.M. 1954, J. Ecol. 42 p. 117. 56.
- 57. Cornwall, I.W. 1958, Soils for the Archaeologist, Phoenix,
- Corte, A.E. 1962, U.S. Army Cold Regions Research and Engin-58. eering Laboratory, Research Report 85.
- Coulson, C.B., Davies, R.I., Lewis, DA. 1960, J. Soil Sci. 59. 11, pp. 30-44.
- Cragg, J.B. 1958, The Biological productiviety of Britain 60. London. Symp. Instit. Biol. No. 7. pp. 101-113.
- 61. Crampton, C.B. 1911, The vegetation of Caithness considered in relation to the geology. H.M.S.O. Edin. 62.
- Crampton, C.B. 1963, J. Soil Sci. 14, pp. 282-302.
- Crampton, C.B. 1965, J. Soil Sci. 16, pp. 210-229. 63.
- Crampton, C.B., Webley, D.P. 1964, Bull. Board Celtic Stud. 64.
- Crocker, R.L. 1952, Quart. Rev. Biol. 27, pp. 139-168. 65.
- 66. Crompton, A., Bullock, P. 1961, Yorkshire. Soil Survey Report No. 14.
- Crompton, E. 1952, J. Soil Sci. 3. pp. 277-289. 67.
- Crompton, E. 1956, Trans 7th Int. Congr. Soil Sci. 5 pp. 155-163. 68. 69.
- Crompton, E. 1958, J. Brit. Grassl. Soc. 13 pp. 229-237.
- 70. Crompton, E. 1960, Trans VII Int. Congr. Soil Sci. Vol. IV Comm V pp. 406-412.
- 71. Crompton, E., Osmond, D.A. 1954, The Soils of the Wem District of Shropshire. Mem. Soil Surv. Grt. Brit.
- 72. Cunningham Craig, E.H. 1913, The geology of Upper Strathspey, Gaick and the Forest of Atholl. Mem. Geol. Survey Scotland.
- Curtis, L.F. 1965, Trans. B.G.R.G. Syp., January 1965, 73.
- Curtis, L.F., Doornkamp, J.C., Gregory, K.J. 1965, J. Soil 74. Sci. 16 pp. 16-30.
- 75. David, D.J. 1958, Analyst 83, p. 655.
- Deb, B.C. 1950, J. Soil Sci. 1 pp. 112-122. 76.
- Deckers, J., Vanstallen, R. 1955, Agricultura, Louvain, 3. 77.

- 78. Dimbleby, G.W. 1957, New Phytol. 56 pp. 12-28.
- 79. Dimbleby, G.W. 1962, Oxford Forestry Memoirs No. 23. 1962.
- 80. Dimbleby, G.W. 1965, Proc. Roy. Soc. London. 161 pp. 355-362.
- 81. Dokuchaiev, V.V. 1989, The problem of the re-evaluation of the land in European and Asiatic Russia. Moscow 1898.
- 82. Douglas, L.A., Tedrow, D.C.F. 1960, Trans 7th Int. Congr. Soil Sci. 4. p. 291.
- 83. Duchaufour, P. 1951, R.F.F. Oct. 1951, pp. 647-652.
- 84. Duchaufour, P. 1959, Laval University Forest Research Foundation, Quebec 1959.
- 85. Duchaufour, P. 1961, Ann. E.N.E.F. XVIII 4 pp. 1-68.
- 86. Duchaufour, P. 1965, Precis de Pedologie. Masson & Cie., Paris.
- 87. Dunham, K.C. 1931, Proc. Geol. Assoc. Vol. XIII p. 274.
- 88. Dunham, K.C. 1948, Vol. I Mem. of the Geol. Survey. H.M.S.O. London.
- 89. Dunham, K.C., 1952, Trans. Geol. Soc. Glasgow 21 pp. 595-596.
- 90. Dunham, K.C., Future of non-ferous mining in Great Britain and Ireland pp. 115-147. London.
- 91. Dunn, J.R., Hudec, PP. 1966, Rensselaer Review 3 (i) 1966 pp. 13-17.
- 92. Durno, S.E. 1959, Scot. Geogr. Mag. 75 pp. 102-111.
- 93. Durno, S.E. 1961, J. Ecol. 49. pp. 347-351.
- 94. Dwerryhouse, A.R. 1902, Quart. Journ. Geol. Soc. Vol 58. p. 572.
- 95. Endell, K. 1911, N. Jahrbuck f. Min. 31 p. 27.
- 96. Erdtman, G. 1928, Geol. Fören. Stockh. Förh. 50 pp. 123-192.
- 97. Evans, LT., Russell, E.W. 1959, J. Soil Sci. 10 pp. 119-132.
- 98. Fell, C.I., Hildyard, E.J.W. 1953, Archaeologia Aeliana 31 p. 98.
- 99. Fishman, K.J., Downs, S.C. 1966, U.S. Geol. Surv. Water Supply Paper 1540-C. pp. 45.
- 100. Fitzpatrick, E.A. 1956, J. Soil Sci. 7, pp. 248-254.
- 101. Fitzpatrick, E.A. 1956, Biol. Peryglacjalny Nr. 4. pp. 99-115. Lodz.
- 102. Fitzpatrick, E.A. 1963, J. Soil Sci. 14 pp. 33-43.
- 103. Fitzpatrick, E.A. 1966, The Soils of Scotland, in The Vegetation of Scotland. Ed. Burnett, Oliver & Boyd.

- 104. Fitzpatrick, E.A. 1967, Pedological pathways in North-East Scotland, Proc. Joint. Sump. B.G.R.G./B.S.S.S. London. April 1967.
- 105. Folks, H.C., Riecken, F.F. 1956, Proc. Soil Sci. Soc. Am. 20 p. 575.
- 106. Forster, W. 1809, A treatise on a Section of the strata from Newcastle on Tyne to the Mountain of Cross Fell in Cumberland, with remarks on mineral veins in general. 1st Edition. Alston.
- 107. Fox, Sir.C. 1941, Antiquity 15, p. 142.
- 108. Fox, Sir C. 1943, The Personality of Britain, Cardiff.
- 109. Gallagher, P.H., Walsh, T. 1943, Proc. Roy. Irish Acad. 49B. pp. 1-26.
- 110. Galloway, R.W. 1958, Periglacial features in Scotland, Ph.D. thesis. Edin. Univ.
- 111. Garwood, E.J. 1907, Geol. Mag. New Series, Dec. V. Vol. IV p. 70.
- 112. Geiger, R., 1950, The Climate near the Ground, Harvard University Press, Cambridge, Mass.
- 113. Glentworth, R. Trans. Roy. Soc. Edin. 61 1944. Pt. X 1. p. 149.
- 114. Glentworth, R. 1954, The Soils of the Country round
 Banff, Huntly and Turiff, Mem. Soil Surv. Scot.
- 115. Glentworth, R. 1967, Trans. Meet. Commns. II and IV Int. Soc. Soil Sci. 1966 pp. 401-409.
- 116. Glentworth, R., Muir, J.W. 1963, The soils of the country round Aberdeen, Inverurie, and Fraserburgh. H.M.S.O. Edin.
- 117. Glinka, K.D. 1932, Pedology, London.
- 118. Godwin, H. 1956, The History of the British Flora, Cambridge.
- 119. Godwin, H., Clapham, A.R. 1951, New Phytol., 50 pp. 167-171.
- 120. Godwin, H., Walker, D., Willis, E.H. 1957, Proc. Roy. Soc. Lond. 147, pp. 352-366.
- 121. Goldschmidt, V.M. 1958, Geochemistry, O.U.P.
- 122. Gorham, E. 1950, Oikos 2, p. 217.
- 123. Gorham E. 1955, Geochim. et coomoch. Acta 7 pp. 231-240.
- 124. Gorham, E. 1956, J. Ecol. 44 p. 377.
- 125. Gorham, E. 1957, Quart. Rev. Biol. 32 pp. 145-166.

- 126. Gorham, E. 1958, Nature (Lond.) 181 p. 106.
- 127. Gorham, E. 1961, J. Ecol. 49 pp. 103-106.
- 128. Greenly, H. 1922, quoted in Pigott 1962.
- 129. Grim, R.E., Allen, V.T. 1938, Bull. Geol. Soc. Amer. 49 pp. 1485-1513.
- 130. Haldane, J.B.S. 1956, Sci. Prog. 44 pp. 385-402.
- 131. Hall, B.R. 1967, Proc. N.E.S.D.G. 3 pp. 3-10.
- 132. Handley, W.R.C. 1954, Mull and Mor Formation in relation to Forest Soils. For Comm. Bull. No. 23.
- 133. Harrison, J.L., Murray, H.H. 1959, Clays and clay minerals: proceedings of the 6th national conference. pp. 144-153. London.
- 134. Hem, J.D. 1963, U.S. Geol. Survey. Water Supply Paper. No. 1667-A. pp. 1-64.
- 135. Hem, J.D. 1964, U.S. Geol. Survey Water-Supply Paper 1667-B.
- 136. Henin, S., Betremieux, R. 1948, C.R. Acad. Sci. Paris, 227 p. 1393.
- 137. Hoffman, D.W. 1965, Report 6th Meeting National Soil Survey Committee of Canada. pp. 9-15.
- 138. Hollingworth, S.E. 1931, Quart. J. Geol. Soc. Lond. 87, p. 281.
- 139. Hopkins, W. 1930, Trans. Inst. Mining Eng., Vol. LXXX pp. 101-253.
- 140. Hopkins, D.M., Sigafoos, R.S. 1951, Bull. U.S. Geol. Surv. 974-C pp. 51.
- 141. Horton, R.E., 1945, Geol. Soc. Am. Bull. v. 56, pp. 275-370.
- 142. Iarkov, S.P. 1954, Comm. 5th, I.C.S.S. p. 83.
- 143. Jackson, M.L. 1958, Soil Chemical Analysis. Prentice Hall, 1958.
- 144. Jenny, H. (1941, The factors of Soil Formation, McGraw-Hill, New York.
- 145. Joffe, J.S. 1936, Pedology, Rutgers Univ. Press.
- 146. Johnson, G.A.L. 1963, H.M.S.O. 1963, pp. 182.
- 147. Jonassen, H. 1950, Dansk. Bot. Arkiv. Bind. 13 No. 7.
- 148. Krumbein, W.C. 1939, Jour. Geol. v. 47. pp. 673-706.

- 149. Kubiena, W.L. 1938, Micropedology, Collegiate Press, Ames.
- 150. Kubiena, W.L. 1953, The Soils of Europe, Murby, London.
- 151. Kulczynski, S. 1949, Peat bogs of Polesie, Mem. de l'Acad. Pol. des lettres B, No. 15.
- 152. Lag, J. 1960, Meld. Norg. LandbrHøgsk 39 pp. 1-7.
- 153. Lambe, T.W. 1960, Trans. Am. Soc. Civil Engrs. 125 p. 681.
- 154. Lee, J., Finch, T.F., Ryan, P. 1964, Irish J. Agric. Res. 3 pp. 175-187.
- 155. Lewis, F.J. 1904a, Rept. Brit. Ass. pp. 798-799.
- 156. Lewis, F.J. 1904b, Geog. Journ. 24 pp. 267-284.
- 157. Linton, D.L. 1951, Scot. Geogr. Mag. 67 pp. 65-85.
- 158. Linton, D.L. 1954, Geography 1954, pp. 66-90.
- 159. Linton, D.L. 1955, Geogr. J. 121. pp. 470-486.
- 160. Lossaint P. 1959, Ann. Agron. 10 p. 493.
- 161. Loveday, J. 1958, The soils of the Chilterns and their relation to landscape form. Ph.D. Thesis London Univ.
- 162. Lugn, A.L. 1962, University of Nebraska Studies. New series No. 26, 1962.
- 163. Mackenzie, R.C. 1954, J. Soil Sci. 5 pp. 167-172.
- 164. Mackenzie, R.C. 1955, Clay. Min. Bull. 3 pp. 4-6.
- 165. Mackenzie, R.C.(ed.) 1957, The differntial thermal investigation of clays. Mineralogical Society, Clay Minerals Group. London 1957.
- 166. Mackney, D. 1961, J. Soil Sci. 12, pp. 23-40.
- 167. Mackney, D. 1967, Discussion in Joint B.S.S.S./B.G.R.G. Symposium: "Chronology and Geomorphology of British Soils."
- 168. Mackney, D., Burnham, C.P. 1964, J. Soil Sci. Vol. 15 pp. 319-330.
- 169. Makin, J. 1963, Certain chemical and physical attributes of thin iron pan soils. M.Sc. Thesis Aberdeen Univ.
- 170. Maling, D. 1955, The geomorphology of the Wear valley. Ph.D. Thesis. Durham Univ.
- 171. Manley, G. 1935, Quart. Jour. Roy. Met. Soc. Vol. LXI pp. 405-410.
- 172. Manley, G. 1936, Quart. Jour. Roy. Met. Soc. Vol XII pp. 103-115.

- 173. Manley, G. 1939, Quart. Jour. Roy. Met. Soc. Vol. 65 pp. 2-27.
- 174. Manley, G. 1942, Quart. Jour. Roy. Met. Soc. Vol. LXVIII pp. 151-164.
- 175. Manley, G. 1943, Quart. Jour. Roy. Met. Soc. LXIX. pp. 251-262.
- 176. Manley, G. 1944, Geog. Journ. Vol. 103 pp. 241-263.
- 177. Manley, G. 1945, Geog. Rev. 35 pp. 408-417.
- 178. Manley, G. 1959, Liverpool Manchester Geol. J., 2 pp 188-215.
- 179. Marel, H. van der 1949, Soil Sci. 67 pp. 193-207.
- 180. Marshall, C.E. 1964, The physical chemistry and mineralogy of soils. Wiley, London.
- 181. Martin, R.T. 1955, Clays and clay minerals: proceedings of the third national conference pp. 117-145, Washington.
- 182. Mattson, S. 1930, Soil Sci. 30 p. 459.
- 183. McKeague, J.A., Day, J.H. 1966, Canadian J.S.S. 46, pp. 13-22.
- 184. Merrick, E. 1915, Geol. Mag. Lii p. 294.
- 185. Miller, R.L. 1956, J. Geol. 64 pp. 425-446.
- 186. Mitchell, B.D., Jarvis, R.A. 1956, The Soils of the Country round Kilmarnock, Mem. Soil Surv. Scot.
- 187. Mitchell, G.F. 1938, Proc. Roy. Soc. Dublin 22 pp. 49-55.
- 188. Mitchell, G.F. 1956, Proc. Roy. Irish Acad. 57(B) pp. 185-251.
- 189. Morgan, W.B., Moss R.P. 1965, Ann. Ass. Am. Geogr. 55 pp. 339-350.
- 190. Morison, C.G.T., Sothers, D.B. 1914, J. Agric. Sci. 6 p. 84.
- 191. Muir, A. 1934, Forestry, 8, pp. 25-55.
- 192. Muir, A. 1935, Forestry, IX p. 116.
- 193. Muir, A., Fraser, G.K. 1940, Trans. Roy Soc. Edin. LX. pp. 233-333.
- 194. Muir, J.W. 1955, Jour. S.S. 6 pp. 84-93.
- 195. Muir, J.W. 1956, The Soils of the Country round Jedburgh and Morebattle. Mem. Soil Surv. Scot.
- 196. Newbould, P.J. 1958, New Biol. 26 pp. 88-105.

- 197. Nikiforoff, C.C. 1937, Soil Sci. 44 pp. 447-465.
- 198. Nikiforoff, C.C. 1949, Soil Sci. 65 pp. 135-153.
- 199. Nikiforoff, C.C. 1955, Soil Sci. 75 p. 38.
- 200. Oertel, A.C. 1944, J. Soc. Chem. Ind. v. 63 p. 379.
- 201. Parizek, E.J., Woodruff, J.F. 1957, J. Geol. 65 pp. 24-34.
- 202. Pearsall, W.H. 1950, Mountains and Moorlands, New Naturalist, London.
- 203. Pearsall, W.H. 1956, J. Ecol. 44 pp. 493-516.
- 204. Penck, W. 1953, Morphological Analysis of Landforms, Macmillan, London 1953.
- 205. Perrin, R.M.S. 1956, Nature 178, pp. 31-32.
- 206. Perrin, R.M.S. 1965, Experimental Pedology. Ed.
 Hallsworth E.G., Crawford, D.V. Proc XI Easter
 School in Agric. Science, Nottingham 1964.
 pp. 73-99.
- 207. Pettijohn, F.J. 1949, Sedimentary Rocks, New York, Harper.
- 208. Phillips, J. 1836, Illustrations of the Geology of Yorkshire; or a Description of the Strata and Organic Remains, Part II The Mountain Limestone District. London.
- 209. Piggott, C.D. 1956, J. Ecol. 44. pp. 545-586.
- 210. Pigott, C.D. 1962, J. Ecol. 50 pp. 145-156.
- 211. Piper, C.S. 1950, Soil and Plant Analysis, Adelaide 1950.
- 212. Polynov, B.B. 1937, The Cycle of Weathering, Trans. A. Muir, MacMillan, London 1937.
- 213. Proudfoot, V.B. 1958, J. Soil Sci. 9 pp. 186-197.
- 214. Puustjärvi, V. 1952, Suom. Maataloust. Seur. Julk, 78 p. 1.
- 215. Radforth, N.W. 1962, Proc. 1st Can. Conf. on permafrost. Tech. Memo 76. Natl. Res. Council Can., Ottawa. pp. 57-78.
- 216. Ragg, J.M. 1960, The Soils of the Country round Kelso and Lander, Mem. Soil. Surv. Scot.
- 217. Ragg, J.M., Bibby, J.S. 1966., Geogr. Annal. 48A. pp. 12-23.
- 218. Raistrick, A. 1931, Trans. Nth. Nat. Un. 1 pp. 16-29.
- 219. Raistrick, A. 1933, Proc. Yorks. Geol. Soc 22 p. 199.
- 220. Raistrick, A. 1934, Trans. Newcomen Soc. 14 pp. 119-162.
- 221. Raistrick, A. 1936, Proc. Univ. Durham Phil. Soc. vol. ix p. 164.

- 222. Raistrick, A. 1938, Two centuries of Industrial Welfare: the London (Quaker) Lead Company. 1692-1905. London.
- 223. Raistrick, A. 1951, Naturalist, London pp. 1-5.
- 224. Raistrick, A., Blackburn, K.B. 1931, Proc. Univ. Durham Phil. Soc. 8 pp. 351-358.
- 225. Raistrick, A., Blackburn, K.B. 1932, Trans. Nth. Nat. Un. 1 pp. 79-103.
- 226. Raistrick, A., Blackburn, K.B. 1933, Proc. Univ. Durham Phil. Soc. 10 pp. 24-37.
- 227. Raistrick, A., Jennings, J.B. 1965, A history of Lead Mining in the Pennines. Longmans.
- 228. Ramann, E. 1905, Bodenkunde, Jul. Springer. Berlin.
- 229. Ratcliffe, D.A. 1959, J. Ecol. 47 pp. 371-413.
- 230. Robichet, O. 1957a, Ann. Agron. 8 pp. 257-324.
- 231. Robichet, 0. 1957b. Ann. Agron. 8. pp. 511-570.
- 232. Robinson, G.W. 1935, Trans 3rd Int. Congr. S. Sci. 2. pp. 11-23.
- 233. Robinson, G.W. 1949, Nature 164, p. 641.
- 234. Robinson, G.W., Hughes, D.O., Roberts, E. 1949, J. Soil Sci. Vol. 1. No. 1 pp. 50-62.
- 235. Romans, J.C.C. 1959, J. Soil Sci. 10 pp. 201-214.
- 236. Romans, J.C.C. 1962, Journ. Soil Sci. 13 pp. 141-147.
- 237. Romans, J.C.C., Stevens, J.H., Robertson, L. 1966, J. Soil Sci. 17 pp. 184-199.
- 238. Ruhe, R.V. 1958, Soil Sci. 87, pp. 223-251.
- 239. Russell, R.J. 1944, Geol. Soc. Am. Bull. 55 pp. 1-40.
- 240. Ryan, P. 1963, Character study of the soils developed on the outwash deposits of the Weichsel glaciation in Ireland. Ph.D. Thesis. Trin. Coll., Dublin.
- 241. Ryan, P., Walsh, T. 1966, Proc. Roy. Irish Acad. 64 pp. 465-507.
- 242. Savigear, 1967, Proc. Symp. B.S.S.S./B.G.R.G. Easter 1967.
- 243. Scheys, G., Dudal,., Baeyens,L. 1956, Trans 5th Int. Congr. Soil. Sci. 4 p. 274.
- 244. Schultz, L.G. 1965, U.S. Geol. Survey Prof. Paper. 391-C.

- 245. Schwertmann, U. 1964, Z. PflErnähr. Düng. 105 pp. 194-202.
- 246. Scott, R.O. 1941, The Analyst. 66 pp. 142-148.
- 247. Scottish Peat Survey, 1964, Volume I. South West Scotland, H.M.S.O. Edin.
- 248. Serdobolskii, I.P., 1950, Pochvovedenie v. 8 pp. 42-52.
- 249. Sernander, R. 1908, Geol. Fören Stockh. Förh 30, 1908.
- 250. Seventh Approximation: Soil Classification 1960, Soil Survey Staff, U.S.D.A., 1960.
- 251. Simmons, I.G. 1964, An ecological history of Dartmoor, in Dartmoor Essays. (I.G. Simmons, ed.)
- 252. Sissons, J.B. 1960, Trans. Papers, Inst. of British Geogr. 28 pp. 23-38.
- 253. Sissons, J.B. 1964, The glacial period. in The British Isles (J. Wreford Watson and J.B. Sissons Eds.) pp. 131-151.
- 254. Smailes, A.E. 1960, North England. Nelson, London.
- 255. Smirnov, V.P., 1915 On the question of the influence of humus compounds on the character of the weathering of alumino silicates. Kharkov, 1915.
- 256. Smirnova, K.M., Glebova, G.I. 1958, Soviet Soil Sci. 23 pp. 857-868.
- 257. Smith, R., Taylor, J.A. 1967, Proc. Joint Symp. B.G.R.G./B.S.S.S. London April 1967.
- 258. Smith, S. 1910, Trans. Nat. Hist. North. Durham and Newcastle, New Series, Vol. III. p. 591.
- 259. Smythe, J.A. 1930, Trans. Nat. Hist. Soc. Northumb. 7 pp. 16-150.
- 260. Soil Survey, 1960, Field Handbook, Soil Survey Staff 1960.
- 261. Sopwith, T. 1833, An Account of the Mining District of Alston Moor, Weardale, and Teesdale in Cumberland and Durham. Alnwick.
- 262. Stevens, H.M., Carlisle, A.C. 1959, The Native Pinewoods of Scotland. Oliver & Boyd, Edin.
- 263. Stobbe, P.C., Wright, J.R. 1959, Proc. Soil Sci. Soc. Am. 23 p. 161.
- 264. Sweeting, M.M. 1966, Essays in Geomorphology (G.H. Dury, Ed.) pp. 177-210.
- 265. Swindale, L.D., M.L. Jackson 1956, Trans. VI Int. Cong. Soil Sci. Vol. V p. 233.

- 266. Swineford, A., Frye, J.C. 1951, Jour. Geol. Vol. 59, No. 4 pp. 306-322.
- 267. Tansley, A.G. 1939, The British Islands and their Vegetation, Cambridge U.P.
- 268. Taylor, J.A. 1958, Mem. No. 1. The Growing Season. Univ. College of Wales, Aberystwyth.
- 269. Taylor, R.M., McKenzie, R.M., Norrish, K. 1964, Aust. Journ. Soil Res. Vol. 2, pp. 235-249, 1964.
- 270. Tivy, J. 1962, Trans. I.B.G. 30 pp. 59-73.
- 271. Tomkeieff, S.I. 1927, Proc. Univ. Durham Phil. Soc. 7. pp. 233-243.
- 272. Tomkeieff, S.I. 1929, Min. Mag. 22 p. 100.
- 273. Tricart, J. 1956, Bivl. Peryg. 4 p. 285.
- 274. Troll, C. 1944, Geol. Rundschau Bd. 34. (Trans. No. 43, 1958. U.S. Corps of Engineers).
- 275. Trotter, F.M. 1929, Quart. J. Geol. Soc. Lond. 85 pp. 549-612.
- 276. Trotter, F.M. 1953, Geol Mag. Vol. XC.
- 277. Trotter, F.M. 1954, Proc. Yorks. Geol. Soc XXIX p. 267.
- 278. Trotter, F.M., Hollingworth, S.E. 1928, Geol. Mag. Vol. 65 pp. 433-448.
- 279. Trotter, F.M., Hollingworth, S.E. 1932 Geol. Mag 69 p.374.
- 280. Tufnell, L. 1966, Proc. Cumb. Geol. Soc. 1966 pp. 50-56.
- 281. Ture, L. 1958, C.R. Acad. Sci. Paris 247, p. 1639.
- 282. Van Heuveln, B., Jongerius, A., Pons, L.J. 1960 Trans. 7th Int. Congr. Soil. Sci. V pp. 195-211.
- 283. Versey, H.C. 1927, Proc. Yorks. Geol. Soc. Vol. XXI pp. 181-307.
- 284. Wallace, W. 1861, The Laws which regulate the Deposition of Lead Ore in Veins; illustrated by an examination of the geological structure of the mining districts of Alston Moor. London.
- 285. Walsh, A. 1955, Spectrochim Acta 7 pp. 108-117.
- 286. Weaver, C.E. 1957, Clays and clay minerals: proceedings of the 6th national conference pp. 154-187. London.
- 287. Wells, A.K., Kirkaldy, J.F. 1948, Outline of Historical Geology.

- 288. Williamson, W.T.H. 1959, J. Soil Sci. 10 pp- 1-4.
- 289. Willis, J.B. 1962, Anal. Chem. 34 p. 614.
- 290. Wiman, S. 1963, Geogr. Annal. 45 p. 113.
- 291. Winch, H.J. 1817, Trans. Geol. Soc Vol. IV p.1.
- 292. Woolacott, D. 1905, Quart. Journ. Geol. Soc. Vol. 61 p. 64.
- 293. Woolacott, D. 1921, Geol. Mag. 58 p. 21.
- 294. Wooldridge, S.W., Linton, D.L. 1955, Structure, Surface, and Drainage in S.E. England. G. Philip and Son, London.
- 295. Wright, R.L. 1955, An Investigation into the Denudation Chronology of parts of Teesdale and Weardale. Thesis for M.Sc. at University of Sheffield, June 1955.
- 296. Wurman, E., Whiteside, E.P., Mortland, M.M. 1959, Proc. Soil Sci. Soc. Am. 23 p. 135.
- 297. Young, A. 1960, Nature 188 pp. 120-122.
- 298. Zeuner, F.G., 1947, Dating the Past. London.